1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <map> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "machine-sink" 62 63 static cl::opt<bool> 64 SplitEdges("machine-sink-split", 65 cl::desc("Split critical edges during machine sinking"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<bool> 69 UseBlockFreqInfo("machine-sink-bfi", 70 cl::desc("Use block frequency info to find successors to sink"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 74 "machine-sink-split-probability-threshold", 75 cl::desc( 76 "Percentage threshold for splitting single-instruction critical edge. " 77 "If the branch threshold is higher than this threshold, we allow " 78 "speculative execution of up to 1 instruction to avoid branching to " 79 "splitted critical edge"), 80 cl::init(40), cl::Hidden); 81 82 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 83 "machine-sink-load-instrs-threshold", 84 cl::desc("Do not try to find alias store for a load if there is a in-path " 85 "block whose instruction number is higher than this threshold."), 86 cl::init(2000), cl::Hidden); 87 88 static cl::opt<unsigned> SinkLoadBlocksThreshold( 89 "machine-sink-load-blocks-threshold", 90 cl::desc("Do not try to find alias store for a load if the block number in " 91 "the straight line is higher than this threshold."), 92 cl::init(20), cl::Hidden); 93 94 STATISTIC(NumSunk, "Number of machine instructions sunk"); 95 STATISTIC(NumSplit, "Number of critical edges split"); 96 STATISTIC(NumCoalesces, "Number of copies coalesced"); 97 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 98 99 namespace { 100 101 class MachineSinking : public MachineFunctionPass { 102 const TargetInstrInfo *TII; 103 const TargetRegisterInfo *TRI; 104 MachineRegisterInfo *MRI; // Machine register information 105 MachineDominatorTree *DT; // Machine dominator tree 106 MachinePostDominatorTree *PDT; // Machine post dominator tree 107 MachineLoopInfo *LI; 108 MachineBlockFrequencyInfo *MBFI; 109 const MachineBranchProbabilityInfo *MBPI; 110 AliasAnalysis *AA; 111 RegisterClassInfo RegClassInfo; 112 113 // Remember which edges have been considered for breaking. 114 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 115 CEBCandidates; 116 // Remember which edges we are about to split. 117 // This is different from CEBCandidates since those edges 118 // will be split. 119 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 120 121 SparseBitVector<> RegsToClearKillFlags; 122 123 using AllSuccsCache = 124 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 125 126 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 127 /// post-dominated by another DBG_VALUE of the same variable location. 128 /// This is necessary to detect sequences such as: 129 /// %0 = someinst 130 /// DBG_VALUE %0, !123, !DIExpression() 131 /// %1 = anotherinst 132 /// DBG_VALUE %1, !123, !DIExpression() 133 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 134 /// would re-order assignments. 135 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 136 137 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 138 /// debug instructions to sink. 139 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 140 141 /// Record of debug variables that have had their locations set in the 142 /// current block. 143 DenseSet<DebugVariable> SeenDbgVars; 144 145 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 146 HasStoreCache; 147 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 148 std::vector<MachineInstr *>> 149 StoreInstrCache; 150 151 /// Cached BB's register pressure. 152 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 153 154 public: 155 static char ID; // Pass identification 156 157 MachineSinking() : MachineFunctionPass(ID) { 158 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 159 } 160 161 bool runOnMachineFunction(MachineFunction &MF) override; 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override { 164 MachineFunctionPass::getAnalysisUsage(AU); 165 AU.addRequired<AAResultsWrapperPass>(); 166 AU.addRequired<MachineDominatorTree>(); 167 AU.addRequired<MachinePostDominatorTree>(); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<MachineBranchProbabilityInfo>(); 170 AU.addPreserved<MachineLoopInfo>(); 171 if (UseBlockFreqInfo) 172 AU.addRequired<MachineBlockFrequencyInfo>(); 173 } 174 175 void releaseMemory() override { 176 CEBCandidates.clear(); 177 } 178 179 private: 180 bool ProcessBlock(MachineBasicBlock &MBB); 181 void ProcessDbgInst(MachineInstr &MI); 182 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 183 MachineBasicBlock *From, 184 MachineBasicBlock *To); 185 186 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 187 MachineInstr &MI); 188 189 /// Postpone the splitting of the given critical 190 /// edge (\p From, \p To). 191 /// 192 /// We do not split the edges on the fly. Indeed, this invalidates 193 /// the dominance information and thus triggers a lot of updates 194 /// of that information underneath. 195 /// Instead, we postpone all the splits after each iteration of 196 /// the main loop. That way, the information is at least valid 197 /// for the lifetime of an iteration. 198 /// 199 /// \return True if the edge is marked as toSplit, false otherwise. 200 /// False can be returned if, for instance, this is not profitable. 201 bool PostponeSplitCriticalEdge(MachineInstr &MI, 202 MachineBasicBlock *From, 203 MachineBasicBlock *To, 204 bool BreakPHIEdge); 205 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 206 AllSuccsCache &AllSuccessors); 207 208 /// If we sink a COPY inst, some debug users of it's destination may no 209 /// longer be dominated by the COPY, and will eventually be dropped. 210 /// This is easily rectified by forwarding the non-dominated debug uses 211 /// to the copy source. 212 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 213 MachineBasicBlock *TargetBlock); 214 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 215 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 216 bool &LocalUse) const; 217 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 218 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 219 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 220 MachineBasicBlock *MBB, 221 MachineBasicBlock *SuccToSinkTo, 222 AllSuccsCache &AllSuccessors); 223 224 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 225 MachineBasicBlock *MBB); 226 227 SmallVector<MachineBasicBlock *, 4> & 228 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 229 AllSuccsCache &AllSuccessors) const; 230 231 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 232 }; 233 234 } // end anonymous namespace 235 236 char MachineSinking::ID = 0; 237 238 char &llvm::MachineSinkingID = MachineSinking::ID; 239 240 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 241 "Machine code sinking", false, false) 242 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 243 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 244 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 245 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 246 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 247 "Machine code sinking", false, false) 248 249 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 250 MachineBasicBlock *MBB) { 251 if (!MI.isCopy()) 252 return false; 253 254 Register SrcReg = MI.getOperand(1).getReg(); 255 Register DstReg = MI.getOperand(0).getReg(); 256 if (!Register::isVirtualRegister(SrcReg) || 257 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 258 return false; 259 260 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 261 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 262 if (SRC != DRC) 263 return false; 264 265 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 266 if (DefMI->isCopyLike()) 267 return false; 268 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 269 LLVM_DEBUG(dbgs() << "*** to: " << MI); 270 MRI->replaceRegWith(DstReg, SrcReg); 271 MI.eraseFromParent(); 272 273 // Conservatively, clear any kill flags, since it's possible that they are no 274 // longer correct. 275 MRI->clearKillFlags(SrcReg); 276 277 ++NumCoalesces; 278 return true; 279 } 280 281 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 282 /// occur in blocks dominated by the specified block. If any use is in the 283 /// definition block, then return false since it is never legal to move def 284 /// after uses. 285 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 286 MachineBasicBlock *MBB, 287 MachineBasicBlock *DefMBB, 288 bool &BreakPHIEdge, 289 bool &LocalUse) const { 290 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 291 292 // Ignore debug uses because debug info doesn't affect the code. 293 if (MRI->use_nodbg_empty(Reg)) 294 return true; 295 296 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 297 // into and they are all PHI nodes. In this case, machine-sink must break 298 // the critical edge first. e.g. 299 // 300 // %bb.1: 301 // Predecessors according to CFG: %bb.0 302 // ... 303 // %def = DEC64_32r %x, implicit-def dead %eflags 304 // ... 305 // JE_4 <%bb.37>, implicit %eflags 306 // Successors according to CFG: %bb.37 %bb.2 307 // 308 // %bb.2: 309 // %p = PHI %y, %bb.0, %def, %bb.1 310 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 311 MachineInstr *UseInst = MO.getParent(); 312 unsigned OpNo = UseInst->getOperandNo(&MO); 313 MachineBasicBlock *UseBlock = UseInst->getParent(); 314 return UseBlock == MBB && UseInst->isPHI() && 315 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 316 })) { 317 BreakPHIEdge = true; 318 return true; 319 } 320 321 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 322 // Determine the block of the use. 323 MachineInstr *UseInst = MO.getParent(); 324 unsigned OpNo = &MO - &UseInst->getOperand(0); 325 MachineBasicBlock *UseBlock = UseInst->getParent(); 326 if (UseInst->isPHI()) { 327 // PHI nodes use the operand in the predecessor block, not the block with 328 // the PHI. 329 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 330 } else if (UseBlock == DefMBB) { 331 LocalUse = true; 332 return false; 333 } 334 335 // Check that it dominates. 336 if (!DT->dominates(MBB, UseBlock)) 337 return false; 338 } 339 340 return true; 341 } 342 343 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 344 if (skipFunction(MF.getFunction())) 345 return false; 346 347 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 348 349 TII = MF.getSubtarget().getInstrInfo(); 350 TRI = MF.getSubtarget().getRegisterInfo(); 351 MRI = &MF.getRegInfo(); 352 DT = &getAnalysis<MachineDominatorTree>(); 353 PDT = &getAnalysis<MachinePostDominatorTree>(); 354 LI = &getAnalysis<MachineLoopInfo>(); 355 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 356 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 357 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 358 RegClassInfo.runOnMachineFunction(MF); 359 360 bool EverMadeChange = false; 361 362 while (true) { 363 bool MadeChange = false; 364 365 // Process all basic blocks. 366 CEBCandidates.clear(); 367 ToSplit.clear(); 368 for (auto &MBB: MF) 369 MadeChange |= ProcessBlock(MBB); 370 371 // If we have anything we marked as toSplit, split it now. 372 for (auto &Pair : ToSplit) { 373 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 374 if (NewSucc != nullptr) { 375 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 376 << printMBBReference(*Pair.first) << " -- " 377 << printMBBReference(*NewSucc) << " -- " 378 << printMBBReference(*Pair.second) << '\n'); 379 if (MBFI) 380 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 381 382 MadeChange = true; 383 ++NumSplit; 384 } else 385 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 386 } 387 // If this iteration over the code changed anything, keep iterating. 388 if (!MadeChange) break; 389 EverMadeChange = true; 390 } 391 392 HasStoreCache.clear(); 393 StoreInstrCache.clear(); 394 395 // Now clear any kill flags for recorded registers. 396 for (auto I : RegsToClearKillFlags) 397 MRI->clearKillFlags(I); 398 RegsToClearKillFlags.clear(); 399 400 return EverMadeChange; 401 } 402 403 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 404 // Can't sink anything out of a block that has less than two successors. 405 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 406 407 // Don't bother sinking code out of unreachable blocks. In addition to being 408 // unprofitable, it can also lead to infinite looping, because in an 409 // unreachable loop there may be nowhere to stop. 410 if (!DT->isReachableFromEntry(&MBB)) return false; 411 412 bool MadeChange = false; 413 414 // Cache all successors, sorted by frequency info and loop depth. 415 AllSuccsCache AllSuccessors; 416 417 // Walk the basic block bottom-up. Remember if we saw a store. 418 MachineBasicBlock::iterator I = MBB.end(); 419 --I; 420 bool ProcessedBegin, SawStore = false; 421 do { 422 MachineInstr &MI = *I; // The instruction to sink. 423 424 // Predecrement I (if it's not begin) so that it isn't invalidated by 425 // sinking. 426 ProcessedBegin = I == MBB.begin(); 427 if (!ProcessedBegin) 428 --I; 429 430 if (MI.isDebugInstr()) { 431 if (MI.isDebugValue()) 432 ProcessDbgInst(MI); 433 continue; 434 } 435 436 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 437 if (Joined) { 438 MadeChange = true; 439 continue; 440 } 441 442 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 443 ++NumSunk; 444 MadeChange = true; 445 } 446 447 // If we just processed the first instruction in the block, we're done. 448 } while (!ProcessedBegin); 449 450 SeenDbgUsers.clear(); 451 SeenDbgVars.clear(); 452 // recalculate the bb register pressure after sinking one BB. 453 CachedRegisterPressure.clear(); 454 455 return MadeChange; 456 } 457 458 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 459 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 460 // we know what to sink if the vreg def sinks. 461 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 462 463 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 464 MI.getDebugLoc()->getInlinedAt()); 465 bool SeenBefore = SeenDbgVars.count(Var) != 0; 466 467 MachineOperand &MO = MI.getDebugOperand(0); 468 if (MO.isReg() && MO.getReg().isVirtual()) 469 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 470 471 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 472 SeenDbgVars.insert(Var); 473 } 474 475 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 476 MachineBasicBlock *From, 477 MachineBasicBlock *To) { 478 // FIXME: Need much better heuristics. 479 480 // If the pass has already considered breaking this edge (during this pass 481 // through the function), then let's go ahead and break it. This means 482 // sinking multiple "cheap" instructions into the same block. 483 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 484 return true; 485 486 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 487 return true; 488 489 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 490 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 491 return true; 492 493 // MI is cheap, we probably don't want to break the critical edge for it. 494 // However, if this would allow some definitions of its source operands 495 // to be sunk then it's probably worth it. 496 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 497 const MachineOperand &MO = MI.getOperand(i); 498 if (!MO.isReg() || !MO.isUse()) 499 continue; 500 Register Reg = MO.getReg(); 501 if (Reg == 0) 502 continue; 503 504 // We don't move live definitions of physical registers, 505 // so sinking their uses won't enable any opportunities. 506 if (Register::isPhysicalRegister(Reg)) 507 continue; 508 509 // If this instruction is the only user of a virtual register, 510 // check if breaking the edge will enable sinking 511 // both this instruction and the defining instruction. 512 if (MRI->hasOneNonDBGUse(Reg)) { 513 // If the definition resides in same MBB, 514 // claim it's likely we can sink these together. 515 // If definition resides elsewhere, we aren't 516 // blocking it from being sunk so don't break the edge. 517 MachineInstr *DefMI = MRI->getVRegDef(Reg); 518 if (DefMI->getParent() == MI.getParent()) 519 return true; 520 } 521 } 522 523 return false; 524 } 525 526 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 527 MachineBasicBlock *FromBB, 528 MachineBasicBlock *ToBB, 529 bool BreakPHIEdge) { 530 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 531 return false; 532 533 // Avoid breaking back edge. From == To means backedge for single BB loop. 534 if (!SplitEdges || FromBB == ToBB) 535 return false; 536 537 // Check for backedges of more "complex" loops. 538 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 539 LI->isLoopHeader(ToBB)) 540 return false; 541 542 // It's not always legal to break critical edges and sink the computation 543 // to the edge. 544 // 545 // %bb.1: 546 // v1024 547 // Beq %bb.3 548 // <fallthrough> 549 // %bb.2: 550 // ... no uses of v1024 551 // <fallthrough> 552 // %bb.3: 553 // ... 554 // = v1024 555 // 556 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 557 // 558 // %bb.1: 559 // ... 560 // Bne %bb.2 561 // %bb.4: 562 // v1024 = 563 // B %bb.3 564 // %bb.2: 565 // ... no uses of v1024 566 // <fallthrough> 567 // %bb.3: 568 // ... 569 // = v1024 570 // 571 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 572 // flow. We need to ensure the new basic block where the computation is 573 // sunk to dominates all the uses. 574 // It's only legal to break critical edge and sink the computation to the 575 // new block if all the predecessors of "To", except for "From", are 576 // not dominated by "From". Given SSA property, this means these 577 // predecessors are dominated by "To". 578 // 579 // There is no need to do this check if all the uses are PHI nodes. PHI 580 // sources are only defined on the specific predecessor edges. 581 if (!BreakPHIEdge) { 582 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 583 E = ToBB->pred_end(); PI != E; ++PI) { 584 if (*PI == FromBB) 585 continue; 586 if (!DT->dominates(ToBB, *PI)) 587 return false; 588 } 589 } 590 591 ToSplit.insert(std::make_pair(FromBB, ToBB)); 592 593 return true; 594 } 595 596 std::vector<unsigned> & 597 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 598 // Currently to save compiling time, MBB's register pressure will not change 599 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 600 // register pressure is changed after sinking any instructions into it. 601 // FIXME: need a accurate and cheap register pressure estiminate model here. 602 auto RP = CachedRegisterPressure.find(&MBB); 603 if (RP != CachedRegisterPressure.end()) 604 return RP->second; 605 606 RegionPressure Pressure; 607 RegPressureTracker RPTracker(Pressure); 608 609 // Initialize the register pressure tracker. 610 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 611 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 612 613 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 614 MIE = MBB.instr_begin(); 615 MII != MIE; --MII) { 616 MachineInstr &MI = *std::prev(MII); 617 if (MI.isDebugValue() || MI.isDebugLabel()) 618 continue; 619 RegisterOperands RegOpers; 620 RegOpers.collect(MI, *TRI, *MRI, false, false); 621 RPTracker.recedeSkipDebugValues(); 622 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 623 RPTracker.recede(RegOpers); 624 } 625 626 RPTracker.closeRegion(); 627 auto It = CachedRegisterPressure.insert( 628 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 629 return It.first->second; 630 } 631 632 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 633 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 634 MachineBasicBlock *MBB, 635 MachineBasicBlock *SuccToSinkTo, 636 AllSuccsCache &AllSuccessors) { 637 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 638 639 if (MBB == SuccToSinkTo) 640 return false; 641 642 // It is profitable if SuccToSinkTo does not post dominate current block. 643 if (!PDT->dominates(SuccToSinkTo, MBB)) 644 return true; 645 646 // It is profitable to sink an instruction from a deeper loop to a shallower 647 // loop, even if the latter post-dominates the former (PR21115). 648 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 649 return true; 650 651 // Check if only use in post dominated block is PHI instruction. 652 bool NonPHIUse = false; 653 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 654 MachineBasicBlock *UseBlock = UseInst.getParent(); 655 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 656 NonPHIUse = true; 657 } 658 if (!NonPHIUse) 659 return true; 660 661 // If SuccToSinkTo post dominates then also it may be profitable if MI 662 // can further profitably sinked into another block in next round. 663 bool BreakPHIEdge = false; 664 // FIXME - If finding successor is compile time expensive then cache results. 665 if (MachineBasicBlock *MBB2 = 666 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 667 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 668 669 MachineLoop *ML = LI->getLoopFor(MBB); 670 671 // If the instruction is not inside a loop, it is not profitable to sink MI to 672 // a post dominate block SuccToSinkTo. 673 if (!ML) 674 return false; 675 676 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 677 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 678 const int *PS = TRI->getRegClassPressureSets(RC); 679 // Get register pressure for block SuccToSinkTo. 680 std::vector<unsigned> BBRegisterPressure = 681 getBBRegisterPressure(*SuccToSinkTo); 682 for (; *PS != -1; PS++) 683 // check if any register pressure set exceeds limit in block SuccToSinkTo 684 // after sinking. 685 if (Weight + BBRegisterPressure[*PS] >= 686 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 687 return true; 688 return false; 689 }; 690 691 // If this instruction is inside a loop and sinking this instruction can make 692 // more registers live range shorten, it is still prifitable. 693 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 694 const MachineOperand &MO = MI.getOperand(i); 695 // Ignore non-register operands. 696 if (!MO.isReg()) 697 continue; 698 Register Reg = MO.getReg(); 699 if (Reg == 0) 700 continue; 701 702 // Don't handle physical register. 703 if (Register::isPhysicalRegister(Reg)) 704 return false; 705 706 // Users for the defs are all dominated by SuccToSinkTo. 707 if (MO.isDef()) { 708 // This def register's live range is shortened after sinking. 709 bool LocalUse = false; 710 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 711 LocalUse)) 712 return false; 713 } else { 714 MachineInstr *DefMI = MRI->getVRegDef(Reg); 715 // DefMI is defined outside of loop. There should be no live range 716 // impact for this operand. Defination outside of loop means: 717 // 1: defination is outside of loop. 718 // 2: defination is in this loop, but it is a PHI in the loop header. 719 if (LI->getLoopFor(DefMI->getParent()) != ML || 720 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 721 continue; 722 // The DefMI is defined inside the loop. 723 // If sinking this operand makes some register pressure set exceed limit, 724 // it is not profitable. 725 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 726 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 727 return false; 728 } 729 } 730 } 731 732 // If MI is in loop and all its operands are alive across the whole loop or if 733 // no operand sinking make register pressure set exceed limit, it is 734 // profitable to sink MI. 735 return true; 736 } 737 738 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 739 /// computing it if it was not already cached. 740 SmallVector<MachineBasicBlock *, 4> & 741 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 742 AllSuccsCache &AllSuccessors) const { 743 // Do we have the sorted successors in cache ? 744 auto Succs = AllSuccessors.find(MBB); 745 if (Succs != AllSuccessors.end()) 746 return Succs->second; 747 748 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 749 MBB->succ_end()); 750 751 // Handle cases where sinking can happen but where the sink point isn't a 752 // successor. For example: 753 // 754 // x = computation 755 // if () {} else {} 756 // use x 757 // 758 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 759 // DomTree children of MBB that have MBB as immediate dominator are added. 760 if (DTChild->getIDom()->getBlock() == MI.getParent() && 761 // Skip MBBs already added to the AllSuccs vector above. 762 !MBB->isSuccessor(DTChild->getBlock())) 763 AllSuccs.push_back(DTChild->getBlock()); 764 } 765 766 // Sort Successors according to their loop depth or block frequency info. 767 llvm::stable_sort( 768 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 769 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 770 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 771 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 772 return HasBlockFreq ? LHSFreq < RHSFreq 773 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 774 }); 775 776 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 777 778 return it.first->second; 779 } 780 781 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 782 MachineBasicBlock * 783 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 784 bool &BreakPHIEdge, 785 AllSuccsCache &AllSuccessors) { 786 assert (MBB && "Invalid MachineBasicBlock!"); 787 788 // Loop over all the operands of the specified instruction. If there is 789 // anything we can't handle, bail out. 790 791 // SuccToSinkTo - This is the successor to sink this instruction to, once we 792 // decide. 793 MachineBasicBlock *SuccToSinkTo = nullptr; 794 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 795 const MachineOperand &MO = MI.getOperand(i); 796 if (!MO.isReg()) continue; // Ignore non-register operands. 797 798 Register Reg = MO.getReg(); 799 if (Reg == 0) continue; 800 801 if (Register::isPhysicalRegister(Reg)) { 802 if (MO.isUse()) { 803 // If the physreg has no defs anywhere, it's just an ambient register 804 // and we can freely move its uses. Alternatively, if it's allocatable, 805 // it could get allocated to something with a def during allocation. 806 if (!MRI->isConstantPhysReg(Reg)) 807 return nullptr; 808 } else if (!MO.isDead()) { 809 // A def that isn't dead. We can't move it. 810 return nullptr; 811 } 812 } else { 813 // Virtual register uses are always safe to sink. 814 if (MO.isUse()) continue; 815 816 // If it's not safe to move defs of the register class, then abort. 817 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 818 return nullptr; 819 820 // Virtual register defs can only be sunk if all their uses are in blocks 821 // dominated by one of the successors. 822 if (SuccToSinkTo) { 823 // If a previous operand picked a block to sink to, then this operand 824 // must be sinkable to the same block. 825 bool LocalUse = false; 826 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 827 BreakPHIEdge, LocalUse)) 828 return nullptr; 829 830 continue; 831 } 832 833 // Otherwise, we should look at all the successors and decide which one 834 // we should sink to. If we have reliable block frequency information 835 // (frequency != 0) available, give successors with smaller frequencies 836 // higher priority, otherwise prioritize smaller loop depths. 837 for (MachineBasicBlock *SuccBlock : 838 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 839 bool LocalUse = false; 840 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 841 BreakPHIEdge, LocalUse)) { 842 SuccToSinkTo = SuccBlock; 843 break; 844 } 845 if (LocalUse) 846 // Def is used locally, it's never safe to move this def. 847 return nullptr; 848 } 849 850 // If we couldn't find a block to sink to, ignore this instruction. 851 if (!SuccToSinkTo) 852 return nullptr; 853 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 854 return nullptr; 855 } 856 } 857 858 // It is not possible to sink an instruction into its own block. This can 859 // happen with loops. 860 if (MBB == SuccToSinkTo) 861 return nullptr; 862 863 // It's not safe to sink instructions to EH landing pad. Control flow into 864 // landing pad is implicitly defined. 865 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 866 return nullptr; 867 868 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 869 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 870 // the source block (which this code does not yet do). So for now, forbid 871 // doing so. 872 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 873 return nullptr; 874 875 return SuccToSinkTo; 876 } 877 878 /// Return true if MI is likely to be usable as a memory operation by the 879 /// implicit null check optimization. 880 /// 881 /// This is a "best effort" heuristic, and should not be relied upon for 882 /// correctness. This returning true does not guarantee that the implicit null 883 /// check optimization is legal over MI, and this returning false does not 884 /// guarantee MI cannot possibly be used to do a null check. 885 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 886 const TargetInstrInfo *TII, 887 const TargetRegisterInfo *TRI) { 888 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 889 890 auto *MBB = MI.getParent(); 891 if (MBB->pred_size() != 1) 892 return false; 893 894 auto *PredMBB = *MBB->pred_begin(); 895 auto *PredBB = PredMBB->getBasicBlock(); 896 897 // Frontends that don't use implicit null checks have no reason to emit 898 // branches with make.implicit metadata, and this function should always 899 // return false for them. 900 if (!PredBB || 901 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 902 return false; 903 904 const MachineOperand *BaseOp; 905 int64_t Offset; 906 bool OffsetIsScalable; 907 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 908 return false; 909 910 if (!BaseOp->isReg()) 911 return false; 912 913 if (!(MI.mayLoad() && !MI.isPredicable())) 914 return false; 915 916 MachineBranchPredicate MBP; 917 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 918 return false; 919 920 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 921 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 922 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 923 MBP.LHS.getReg() == BaseOp->getReg(); 924 } 925 926 /// If the sunk instruction is a copy, try to forward the copy instead of 927 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 928 /// there's any subregister weirdness involved. Returns true if copy 929 /// propagation occurred. 930 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 931 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 932 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 933 934 // Copy DBG_VALUE operand and set the original to undef. We then check to 935 // see whether this is something that can be copy-forwarded. If it isn't, 936 // continue around the loop. 937 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 938 939 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 940 auto CopyOperands = TII.isCopyInstr(SinkInst); 941 if (!CopyOperands) 942 return false; 943 SrcMO = CopyOperands->Source; 944 DstMO = CopyOperands->Destination; 945 946 // Check validity of forwarding this copy. 947 bool PostRA = MRI.getNumVirtRegs() == 0; 948 949 // Trying to forward between physical and virtual registers is too hard. 950 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 951 return false; 952 953 // Only try virtual register copy-forwarding before regalloc, and physical 954 // register copy-forwarding after regalloc. 955 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 956 if (arePhysRegs != PostRA) 957 return false; 958 959 // Pre-regalloc, only forward if all subregisters agree (or there are no 960 // subregs at all). More analysis might recover some forwardable copies. 961 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 962 DbgMO.getSubReg() != DstMO->getSubReg())) 963 return false; 964 965 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 966 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 967 // matches the copy destination. 968 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 969 return false; 970 971 DbgMO.setReg(SrcMO->getReg()); 972 DbgMO.setSubReg(SrcMO->getSubReg()); 973 return true; 974 } 975 976 /// Sink an instruction and its associated debug instructions. 977 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 978 MachineBasicBlock::iterator InsertPos, 979 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 980 981 // If we cannot find a location to use (merge with), then we erase the debug 982 // location to prevent debug-info driven tools from potentially reporting 983 // wrong location information. 984 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 985 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 986 InsertPos->getDebugLoc())); 987 else 988 MI.setDebugLoc(DebugLoc()); 989 990 // Move the instruction. 991 MachineBasicBlock *ParentBlock = MI.getParent(); 992 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 993 ++MachineBasicBlock::iterator(MI)); 994 995 // Sink a copy of debug users to the insert position. Mark the original 996 // DBG_VALUE location as 'undef', indicating that any earlier variable 997 // location should be terminated as we've optimised away the value at this 998 // point. 999 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 1000 DBE = DbgValuesToSink.end(); 1001 DBI != DBE; ++DBI) { 1002 MachineInstr *DbgMI = *DBI; 1003 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 1004 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1005 1006 if (!attemptDebugCopyProp(MI, *DbgMI)) 1007 DbgMI->setDebugValueUndef(); 1008 } 1009 } 1010 1011 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1012 /// and To. 1013 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1014 MachineBasicBlock *To, MachineInstr &MI) { 1015 // Make sure From and To are in straight line which means From dominates To 1016 // and To post dominates From. 1017 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1018 return true; 1019 1020 auto BlockPair = std::make_pair(From, To); 1021 1022 // Does these two blocks pair be queried before and have a definite cached 1023 // result? 1024 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1025 return HasStoreCache[BlockPair]; 1026 1027 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1028 return std::any_of( 1029 StoreInstrCache[BlockPair].begin(), StoreInstrCache[BlockPair].end(), 1030 [&](MachineInstr *I) { return I->mayAlias(AA, MI, false); }); 1031 1032 bool SawStore = false; 1033 bool HasAliasedStore = false; 1034 DenseSet<MachineBasicBlock *> HandledBlocks; 1035 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1036 // Go through all reachable blocks from From. 1037 for (MachineBasicBlock *BB : depth_first(From)) { 1038 // We insert the instruction at the start of block To, so no need to worry 1039 // about stores inside To. 1040 // Store in block From should be already considered when just enter function 1041 // SinkInstruction. 1042 if (BB == To || BB == From) 1043 continue; 1044 1045 // We already handle this BB in previous iteration. 1046 if (HandledBlocks.count(BB)) 1047 continue; 1048 1049 HandledBlocks.insert(BB); 1050 // To post dominates BB, it must be a path from block From. 1051 if (PDT->dominates(To, BB)) { 1052 if (!HandledDomBlocks.count(BB)) 1053 HandledDomBlocks.insert(BB); 1054 1055 // If this BB is too big or the block number in straight line between From 1056 // and To is too big, stop searching to save compiling time. 1057 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1058 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1059 for (auto *DomBB : HandledDomBlocks) { 1060 if (DomBB != BB && DT->dominates(DomBB, BB)) 1061 HasStoreCache[std::make_pair(DomBB, To)] = true; 1062 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1063 HasStoreCache[std::make_pair(From, DomBB)] = true; 1064 } 1065 HasStoreCache[BlockPair] = true; 1066 return true; 1067 } 1068 1069 for (MachineInstr &I : *BB) { 1070 // Treat as alias conservatively for a call or an ordered memory 1071 // operation. 1072 if (I.isCall() || I.hasOrderedMemoryRef()) { 1073 for (auto *DomBB : HandledDomBlocks) { 1074 if (DomBB != BB && DT->dominates(DomBB, BB)) 1075 HasStoreCache[std::make_pair(DomBB, To)] = true; 1076 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1077 HasStoreCache[std::make_pair(From, DomBB)] = true; 1078 } 1079 HasStoreCache[BlockPair] = true; 1080 return true; 1081 } 1082 1083 if (I.mayStore()) { 1084 SawStore = true; 1085 // We still have chance to sink MI if all stores between are not 1086 // aliased to MI. 1087 // Cache all store instructions, so that we don't need to go through 1088 // all From reachable blocks for next load instruction. 1089 if (I.mayAlias(AA, MI, false)) 1090 HasAliasedStore = true; 1091 StoreInstrCache[BlockPair].push_back(&I); 1092 } 1093 } 1094 } 1095 } 1096 // If there is no store at all, cache the result. 1097 if (!SawStore) 1098 HasStoreCache[BlockPair] = false; 1099 return HasAliasedStore; 1100 } 1101 1102 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1103 /// instruction out of its current block into a successor. 1104 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1105 AllSuccsCache &AllSuccessors) { 1106 // Don't sink instructions that the target prefers not to sink. 1107 if (!TII->shouldSink(MI)) 1108 return false; 1109 1110 // Check if it's safe to move the instruction. 1111 if (!MI.isSafeToMove(AA, SawStore)) 1112 return false; 1113 1114 // Convergent operations may not be made control-dependent on additional 1115 // values. 1116 if (MI.isConvergent()) 1117 return false; 1118 1119 // Don't break implicit null checks. This is a performance heuristic, and not 1120 // required for correctness. 1121 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1122 return false; 1123 1124 // FIXME: This should include support for sinking instructions within the 1125 // block they are currently in to shorten the live ranges. We often get 1126 // instructions sunk into the top of a large block, but it would be better to 1127 // also sink them down before their first use in the block. This xform has to 1128 // be careful not to *increase* register pressure though, e.g. sinking 1129 // "x = y + z" down if it kills y and z would increase the live ranges of y 1130 // and z and only shrink the live range of x. 1131 1132 bool BreakPHIEdge = false; 1133 MachineBasicBlock *ParentBlock = MI.getParent(); 1134 MachineBasicBlock *SuccToSinkTo = 1135 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1136 1137 // If there are no outputs, it must have side-effects. 1138 if (!SuccToSinkTo) 1139 return false; 1140 1141 // If the instruction to move defines a dead physical register which is live 1142 // when leaving the basic block, don't move it because it could turn into a 1143 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1144 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1145 const MachineOperand &MO = MI.getOperand(I); 1146 if (!MO.isReg()) continue; 1147 Register Reg = MO.getReg(); 1148 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1149 continue; 1150 if (SuccToSinkTo->isLiveIn(Reg)) 1151 return false; 1152 } 1153 1154 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1155 1156 // If the block has multiple predecessors, this is a critical edge. 1157 // Decide if we can sink along it or need to break the edge. 1158 if (SuccToSinkTo->pred_size() > 1) { 1159 // We cannot sink a load across a critical edge - there may be stores in 1160 // other code paths. 1161 bool TryBreak = false; 1162 bool Store = 1163 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1164 if (!MI.isSafeToMove(AA, Store)) { 1165 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1166 TryBreak = true; 1167 } 1168 1169 // We don't want to sink across a critical edge if we don't dominate the 1170 // successor. We could be introducing calculations to new code paths. 1171 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1172 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1173 TryBreak = true; 1174 } 1175 1176 // Don't sink instructions into a loop. 1177 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1178 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1179 TryBreak = true; 1180 } 1181 1182 // Otherwise we are OK with sinking along a critical edge. 1183 if (!TryBreak) 1184 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1185 else { 1186 // Mark this edge as to be split. 1187 // If the edge can actually be split, the next iteration of the main loop 1188 // will sink MI in the newly created block. 1189 bool Status = 1190 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1191 if (!Status) 1192 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1193 "break critical edge\n"); 1194 // The instruction will not be sunk this time. 1195 return false; 1196 } 1197 } 1198 1199 if (BreakPHIEdge) { 1200 // BreakPHIEdge is true if all the uses are in the successor MBB being 1201 // sunken into and they are all PHI nodes. In this case, machine-sink must 1202 // break the critical edge first. 1203 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1204 SuccToSinkTo, BreakPHIEdge); 1205 if (!Status) 1206 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1207 "break critical edge\n"); 1208 // The instruction will not be sunk this time. 1209 return false; 1210 } 1211 1212 // Determine where to insert into. Skip phi nodes. 1213 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1214 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1215 ++InsertPos; 1216 1217 // Collect debug users of any vreg that this inst defines. 1218 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1219 for (auto &MO : MI.operands()) { 1220 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1221 continue; 1222 if (!SeenDbgUsers.count(MO.getReg())) 1223 continue; 1224 1225 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1226 auto &Users = SeenDbgUsers[MO.getReg()]; 1227 for (auto &User : Users) { 1228 MachineInstr *DbgMI = User.getPointer(); 1229 if (User.getInt()) { 1230 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1231 // it, it can't be recovered. Set it undef. 1232 if (!attemptDebugCopyProp(MI, *DbgMI)) 1233 DbgMI->setDebugValueUndef(); 1234 } else { 1235 DbgUsersToSink.push_back(DbgMI); 1236 } 1237 } 1238 } 1239 1240 // After sinking, some debug users may not be dominated any more. If possible, 1241 // copy-propagate their operands. As it's expensive, don't do this if there's 1242 // no debuginfo in the program. 1243 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1244 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1245 1246 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1247 1248 // Conservatively, clear any kill flags, since it's possible that they are no 1249 // longer correct. 1250 // Note that we have to clear the kill flags for any register this instruction 1251 // uses as we may sink over another instruction which currently kills the 1252 // used registers. 1253 for (MachineOperand &MO : MI.operands()) { 1254 if (MO.isReg() && MO.isUse()) 1255 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1256 } 1257 1258 return true; 1259 } 1260 1261 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1262 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1263 assert(MI.isCopy()); 1264 assert(MI.getOperand(1).isReg()); 1265 1266 // Enumerate all users of vreg operands that are def'd. Skip those that will 1267 // be sunk. For the rest, if they are not dominated by the block we will sink 1268 // MI into, propagate the copy source to them. 1269 SmallVector<MachineInstr *, 4> DbgDefUsers; 1270 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1271 for (auto &MO : MI.operands()) { 1272 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1273 continue; 1274 for (auto &User : MRI.use_instructions(MO.getReg())) { 1275 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1276 continue; 1277 1278 // If is in same block, will either sink or be use-before-def. 1279 if (User.getParent() == MI.getParent()) 1280 continue; 1281 1282 assert(User.getDebugOperand(0).isReg() && 1283 "DBG_VALUE user of vreg, but non reg operand?"); 1284 DbgDefUsers.push_back(&User); 1285 } 1286 } 1287 1288 // Point the users of this copy that are no longer dominated, at the source 1289 // of the copy. 1290 for (auto *User : DbgDefUsers) { 1291 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1292 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1293 } 1294 } 1295 1296 //===----------------------------------------------------------------------===// 1297 // This pass is not intended to be a replacement or a complete alternative 1298 // for the pre-ra machine sink pass. It is only designed to sink COPY 1299 // instructions which should be handled after RA. 1300 // 1301 // This pass sinks COPY instructions into a successor block, if the COPY is not 1302 // used in the current block and the COPY is live-in to a single successor 1303 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1304 // copy on paths where their results aren't needed. This also exposes 1305 // additional opportunites for dead copy elimination and shrink wrapping. 1306 // 1307 // These copies were either not handled by or are inserted after the MachineSink 1308 // pass. As an example of the former case, the MachineSink pass cannot sink 1309 // COPY instructions with allocatable source registers; for AArch64 these type 1310 // of copy instructions are frequently used to move function parameters (PhyReg) 1311 // into virtual registers in the entry block. 1312 // 1313 // For the machine IR below, this pass will sink %w19 in the entry into its 1314 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1315 // %bb.0: 1316 // %wzr = SUBSWri %w1, 1 1317 // %w19 = COPY %w0 1318 // Bcc 11, %bb.2 1319 // %bb.1: 1320 // Live Ins: %w19 1321 // BL @fun 1322 // %w0 = ADDWrr %w0, %w19 1323 // RET %w0 1324 // %bb.2: 1325 // %w0 = COPY %wzr 1326 // RET %w0 1327 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1328 // able to see %bb.0 as a candidate. 1329 //===----------------------------------------------------------------------===// 1330 namespace { 1331 1332 class PostRAMachineSinking : public MachineFunctionPass { 1333 public: 1334 bool runOnMachineFunction(MachineFunction &MF) override; 1335 1336 static char ID; 1337 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1338 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1339 1340 void getAnalysisUsage(AnalysisUsage &AU) const override { 1341 AU.setPreservesCFG(); 1342 MachineFunctionPass::getAnalysisUsage(AU); 1343 } 1344 1345 MachineFunctionProperties getRequiredProperties() const override { 1346 return MachineFunctionProperties().set( 1347 MachineFunctionProperties::Property::NoVRegs); 1348 } 1349 1350 private: 1351 /// Track which register units have been modified and used. 1352 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1353 1354 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1355 /// entry in this map for each unit it touches. 1356 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1357 1358 /// Sink Copy instructions unused in the same block close to their uses in 1359 /// successors. 1360 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1361 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1362 }; 1363 } // namespace 1364 1365 char PostRAMachineSinking::ID = 0; 1366 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1367 1368 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1369 "PostRA Machine Sink", false, false) 1370 1371 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1372 const TargetRegisterInfo *TRI) { 1373 LiveRegUnits LiveInRegUnits(*TRI); 1374 LiveInRegUnits.addLiveIns(MBB); 1375 return !LiveInRegUnits.available(Reg); 1376 } 1377 1378 static MachineBasicBlock * 1379 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1380 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1381 unsigned Reg, const TargetRegisterInfo *TRI) { 1382 // Try to find a single sinkable successor in which Reg is live-in. 1383 MachineBasicBlock *BB = nullptr; 1384 for (auto *SI : SinkableBBs) { 1385 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1386 // If BB is set here, Reg is live-in to at least two sinkable successors, 1387 // so quit. 1388 if (BB) 1389 return nullptr; 1390 BB = SI; 1391 } 1392 } 1393 // Reg is not live-in to any sinkable successors. 1394 if (!BB) 1395 return nullptr; 1396 1397 // Check if any register aliased with Reg is live-in in other successors. 1398 for (auto *SI : CurBB.successors()) { 1399 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1400 return nullptr; 1401 } 1402 return BB; 1403 } 1404 1405 static MachineBasicBlock * 1406 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1407 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1408 ArrayRef<unsigned> DefedRegsInCopy, 1409 const TargetRegisterInfo *TRI) { 1410 MachineBasicBlock *SingleBB = nullptr; 1411 for (auto DefReg : DefedRegsInCopy) { 1412 MachineBasicBlock *BB = 1413 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1414 if (!BB || (SingleBB && SingleBB != BB)) 1415 return nullptr; 1416 SingleBB = BB; 1417 } 1418 return SingleBB; 1419 } 1420 1421 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1422 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1423 LiveRegUnits &UsedRegUnits, 1424 const TargetRegisterInfo *TRI) { 1425 for (auto U : UsedOpsInCopy) { 1426 MachineOperand &MO = MI->getOperand(U); 1427 Register SrcReg = MO.getReg(); 1428 if (!UsedRegUnits.available(SrcReg)) { 1429 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1430 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1431 if (UI.killsRegister(SrcReg, TRI)) { 1432 UI.clearRegisterKills(SrcReg, TRI); 1433 MO.setIsKill(true); 1434 break; 1435 } 1436 } 1437 } 1438 } 1439 } 1440 1441 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1442 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1443 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1444 MachineFunction &MF = *SuccBB->getParent(); 1445 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1446 for (unsigned DefReg : DefedRegsInCopy) 1447 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1448 SuccBB->removeLiveIn(*S); 1449 for (auto U : UsedOpsInCopy) { 1450 Register SrcReg = MI->getOperand(U).getReg(); 1451 LaneBitmask Mask; 1452 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1453 Mask |= (*S).second; 1454 } 1455 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1456 } 1457 SuccBB->sortUniqueLiveIns(); 1458 } 1459 1460 static bool hasRegisterDependency(MachineInstr *MI, 1461 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1462 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1463 LiveRegUnits &ModifiedRegUnits, 1464 LiveRegUnits &UsedRegUnits) { 1465 bool HasRegDependency = false; 1466 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1467 MachineOperand &MO = MI->getOperand(i); 1468 if (!MO.isReg()) 1469 continue; 1470 Register Reg = MO.getReg(); 1471 if (!Reg) 1472 continue; 1473 if (MO.isDef()) { 1474 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1475 HasRegDependency = true; 1476 break; 1477 } 1478 DefedRegsInCopy.push_back(Reg); 1479 1480 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1481 // For example, we can ignore modifications in reg with undef. However, 1482 // it's not perfectly clear if skipping the internal read is safe in all 1483 // other targets. 1484 } else if (MO.isUse()) { 1485 if (!ModifiedRegUnits.available(Reg)) { 1486 HasRegDependency = true; 1487 break; 1488 } 1489 UsedOpsInCopy.push_back(i); 1490 } 1491 } 1492 return HasRegDependency; 1493 } 1494 1495 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1496 const TargetRegisterInfo *TRI) { 1497 SmallSet<MCRegister, 4> RegUnits; 1498 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1499 RegUnits.insert(*RI); 1500 return RegUnits; 1501 } 1502 1503 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1504 MachineFunction &MF, 1505 const TargetRegisterInfo *TRI, 1506 const TargetInstrInfo *TII) { 1507 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1508 // FIXME: For now, we sink only to a successor which has a single predecessor 1509 // so that we can directly sink COPY instructions to the successor without 1510 // adding any new block or branch instruction. 1511 for (MachineBasicBlock *SI : CurBB.successors()) 1512 if (!SI->livein_empty() && SI->pred_size() == 1) 1513 SinkableBBs.insert(SI); 1514 1515 if (SinkableBBs.empty()) 1516 return false; 1517 1518 bool Changed = false; 1519 1520 // Track which registers have been modified and used between the end of the 1521 // block and the current instruction. 1522 ModifiedRegUnits.clear(); 1523 UsedRegUnits.clear(); 1524 SeenDbgInstrs.clear(); 1525 1526 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1527 MachineInstr *MI = &*I; 1528 ++I; 1529 1530 // Track the operand index for use in Copy. 1531 SmallVector<unsigned, 2> UsedOpsInCopy; 1532 // Track the register number defed in Copy. 1533 SmallVector<unsigned, 2> DefedRegsInCopy; 1534 1535 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1536 // for DBG_VALUEs later, record them when they're encountered. 1537 if (MI->isDebugValue()) { 1538 auto &MO = MI->getDebugOperand(0); 1539 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1540 // Bail if we can already tell the sink would be rejected, rather 1541 // than needlessly accumulating lots of DBG_VALUEs. 1542 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1543 ModifiedRegUnits, UsedRegUnits)) 1544 continue; 1545 1546 // Record debug use of each reg unit. 1547 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1548 for (MCRegister Reg : Units) 1549 SeenDbgInstrs[Reg].push_back(MI); 1550 } 1551 continue; 1552 } 1553 1554 if (MI->isDebugInstr()) 1555 continue; 1556 1557 // Do not move any instruction across function call. 1558 if (MI->isCall()) 1559 return false; 1560 1561 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1562 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1563 TRI); 1564 continue; 1565 } 1566 1567 // Don't sink the COPY if it would violate a register dependency. 1568 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1569 ModifiedRegUnits, UsedRegUnits)) { 1570 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1571 TRI); 1572 continue; 1573 } 1574 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1575 "Unexpect SrcReg or DefReg"); 1576 MachineBasicBlock *SuccBB = 1577 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1578 // Don't sink if we cannot find a single sinkable successor in which Reg 1579 // is live-in. 1580 if (!SuccBB) { 1581 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1582 TRI); 1583 continue; 1584 } 1585 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1586 "Unexpected predecessor"); 1587 1588 // Collect DBG_VALUEs that must sink with this copy. We've previously 1589 // recorded which reg units that DBG_VALUEs read, if this instruction 1590 // writes any of those units then the corresponding DBG_VALUEs must sink. 1591 SetVector<MachineInstr *> DbgValsToSinkSet; 1592 SmallVector<MachineInstr *, 4> DbgValsToSink; 1593 for (auto &MO : MI->operands()) { 1594 if (!MO.isReg() || !MO.isDef()) 1595 continue; 1596 1597 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1598 for (MCRegister Reg : Units) 1599 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1600 DbgValsToSinkSet.insert(MI); 1601 } 1602 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1603 DbgValsToSinkSet.end()); 1604 1605 // Clear the kill flag if SrcReg is killed between MI and the end of the 1606 // block. 1607 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1608 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1609 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1610 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1611 1612 Changed = true; 1613 ++NumPostRACopySink; 1614 } 1615 return Changed; 1616 } 1617 1618 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1619 if (skipFunction(MF.getFunction())) 1620 return false; 1621 1622 bool Changed = false; 1623 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1624 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1625 1626 ModifiedRegUnits.init(*TRI); 1627 UsedRegUnits.init(*TRI); 1628 for (auto &BB : MF) 1629 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1630 1631 return Changed; 1632 } 1633