1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 MachineBlockFrequencyInfo *MBFI = nullptr; 126 const MachineBranchProbabilityInfo *MBPI = nullptr; 127 AliasAnalysis *AA = nullptr; 128 RegisterClassInfo RegClassInfo; 129 130 // Remember which edges have been considered for breaking. 131 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 132 CEBCandidates; 133 // Remember which edges we are about to split. 134 // This is different from CEBCandidates since those edges 135 // will be split. 136 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 137 138 DenseSet<Register> RegsToClearKillFlags; 139 140 using AllSuccsCache = 141 DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 142 143 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 144 /// post-dominated by another DBG_VALUE of the same variable location. 145 /// This is necessary to detect sequences such as: 146 /// %0 = someinst 147 /// DBG_VALUE %0, !123, !DIExpression() 148 /// %1 = anotherinst 149 /// DBG_VALUE %1, !123, !DIExpression() 150 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 151 /// would re-order assignments. 152 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 153 154 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 155 /// debug instructions to sink. 156 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 157 158 /// Record of debug variables that have had their locations set in the 159 /// current block. 160 DenseSet<DebugVariable> SeenDbgVars; 161 162 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 163 HasStoreCache; 164 165 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 166 SmallVector<MachineInstr *>> 167 StoreInstrCache; 168 169 /// Cached BB's register pressure. 170 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 171 CachedRegisterPressure; 172 173 bool EnableSinkAndFold; 174 175 public: 176 static char ID; // Pass identification 177 178 MachineSinking() : MachineFunctionPass(ID) { 179 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 MachineFunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<AAResultsWrapperPass>(); 187 AU.addRequired<MachineDominatorTree>(); 188 AU.addRequired<MachinePostDominatorTree>(); 189 AU.addRequired<MachineCycleInfoWrapperPass>(); 190 AU.addRequired<MachineBranchProbabilityInfo>(); 191 AU.addPreserved<MachineCycleInfoWrapperPass>(); 192 AU.addPreserved<MachineLoopInfo>(); 193 if (UseBlockFreqInfo) 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addRequired<TargetPassConfig>(); 196 } 197 198 void releaseMemory() override { 199 CEBCandidates.clear(); 200 } 201 202 private: 203 bool ProcessBlock(MachineBasicBlock &MBB); 204 void ProcessDbgInst(MachineInstr &MI); 205 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 206 MachineBasicBlock *From, 207 MachineBasicBlock *To); 208 209 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 210 MachineInstr &MI); 211 212 /// Postpone the splitting of the given critical 213 /// edge (\p From, \p To). 214 /// 215 /// We do not split the edges on the fly. Indeed, this invalidates 216 /// the dominance information and thus triggers a lot of updates 217 /// of that information underneath. 218 /// Instead, we postpone all the splits after each iteration of 219 /// the main loop. That way, the information is at least valid 220 /// for the lifetime of an iteration. 221 /// 222 /// \return True if the edge is marked as toSplit, false otherwise. 223 /// False can be returned if, for instance, this is not profitable. 224 bool PostponeSplitCriticalEdge(MachineInstr &MI, 225 MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 bool BreakPHIEdge); 228 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 229 AllSuccsCache &AllSuccessors); 230 231 /// If we sink a COPY inst, some debug users of it's destination may no 232 /// longer be dominated by the COPY, and will eventually be dropped. 233 /// This is easily rectified by forwarding the non-dominated debug uses 234 /// to the copy source. 235 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 236 MachineBasicBlock *TargetBlock); 237 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 238 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 239 bool &LocalUse) const; 240 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 241 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 242 243 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 244 SmallVectorImpl<MachineInstr *> &Candidates); 245 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 246 247 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 248 MachineBasicBlock *MBB, 249 MachineBasicBlock *SuccToSinkTo, 250 AllSuccsCache &AllSuccessors); 251 252 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 253 MachineBasicBlock *MBB); 254 255 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 256 257 SmallVector<MachineBasicBlock *, 4> & 258 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 259 AllSuccsCache &AllSuccessors) const; 260 261 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 262 263 bool registerPressureSetExceedsLimit(unsigned NRegs, 264 const TargetRegisterClass *RC, 265 const MachineBasicBlock &MBB); 266 }; 267 268 } // end anonymous namespace 269 270 char MachineSinking::ID = 0; 271 272 char &llvm::MachineSinkingID = MachineSinking::ID; 273 274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 275 "Machine code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 281 "Machine code sinking", false, false) 282 283 /// Return true if a target defined block prologue instruction interferes 284 /// with a sink candidate. 285 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 286 MachineBasicBlock::const_iterator End, 287 const MachineInstr &MI, 288 const TargetRegisterInfo *TRI, 289 const TargetInstrInfo *TII, 290 const MachineRegisterInfo *MRI) { 291 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 292 ++PI) { 293 // Only check target defined prologue instructions 294 if (!TII->isBasicBlockPrologue(*PI)) 295 continue; 296 for (auto &MO : MI.operands()) { 297 if (!MO.isReg()) 298 continue; 299 Register Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 if (MO.isUse()) { 303 if (Reg.isPhysical() && 304 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 305 continue; 306 if (PI->modifiesRegister(Reg, TRI)) 307 return true; 308 } else { 309 if (PI->readsRegister(Reg, TRI)) 310 return true; 311 // Check for interference with non-dead defs 312 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 313 if (DefOp && !DefOp->isDead()) 314 return true; 315 } 316 } 317 } 318 319 return false; 320 } 321 322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 323 MachineBasicBlock *MBB) { 324 if (!MI.isCopy()) 325 return false; 326 327 Register SrcReg = MI.getOperand(1).getReg(); 328 Register DstReg = MI.getOperand(0).getReg(); 329 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 330 !MRI->hasOneNonDBGUse(SrcReg)) 331 return false; 332 333 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 334 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 335 if (SRC != DRC) 336 return false; 337 338 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 339 if (DefMI->isCopyLike()) 340 return false; 341 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 342 LLVM_DEBUG(dbgs() << "*** to: " << MI); 343 MRI->replaceRegWith(DstReg, SrcReg); 344 MI.eraseFromParent(); 345 346 // Conservatively, clear any kill flags, since it's possible that they are no 347 // longer correct. 348 MRI->clearKillFlags(SrcReg); 349 350 ++NumCoalesces; 351 return true; 352 } 353 354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 355 MachineBasicBlock *MBB) { 356 if (MI.isCopy() || MI.mayLoadOrStore() || 357 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 358 return false; 359 360 // Don't sink instructions that the target prefers not to sink. 361 if (!TII->shouldSink(MI)) 362 return false; 363 364 // Check if it's safe to move the instruction. 365 bool SawStore = true; 366 if (!MI.isSafeToMove(AA, SawStore)) 367 return false; 368 369 // Convergent operations may not be made control-dependent on additional 370 // values. 371 if (MI.isConvergent()) 372 return false; 373 374 // Don't sink defs/uses of hard registers or if the instruction defines more 375 // than one register. 376 // Don't sink more than two register uses - it'll cover most of the cases and 377 // greatly simplifies the register pressure checks. 378 Register DefReg; 379 Register UsedRegA, UsedRegB; 380 for (const MachineOperand &MO : MI.operands()) { 381 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 382 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 383 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 384 continue; 385 if (!MO.isReg()) 386 return false; 387 388 Register Reg = MO.getReg(); 389 if (Reg == 0) 390 continue; 391 392 if (Reg.isVirtual()) { 393 if (MO.isDef()) { 394 if (DefReg) 395 return false; 396 DefReg = Reg; 397 continue; 398 } 399 400 if (UsedRegA == 0) 401 UsedRegA = Reg; 402 else if (UsedRegB == 0) 403 UsedRegB = Reg; 404 else 405 return false; 406 continue; 407 } 408 409 if (Reg.isPhysical() && 410 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 411 continue; 412 413 return false; 414 } 415 416 // Scan uses of the destination register. Every use, except the last, must be 417 // a copy, with a chain of copies terminating with either a copy into a hard 418 // register, or a load/store instruction where the use is part of the 419 // address (*not* the stored value). 420 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 421 SmallVector<SinkInfo> SinkInto; 422 SmallVector<Register> Worklist; 423 424 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 425 const TargetRegisterClass *RCA = 426 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 427 const TargetRegisterClass *RCB = 428 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 429 430 Worklist.push_back(DefReg); 431 while (!Worklist.empty()) { 432 Register Reg = Worklist.pop_back_val(); 433 434 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 435 ExtAddrMode MaybeAM; 436 MachineInstr &UseInst = *MO.getParent(); 437 if (UseInst.isCopy()) { 438 Register DstReg; 439 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 440 DstReg = O.getReg(); 441 if (DstReg == 0) 442 return false; 443 if (DstReg.isVirtual()) { 444 Worklist.push_back(DstReg); 445 continue; 446 } 447 // If we are going to replace a copy, the original instruction must be 448 // as cheap as a copy. 449 if (!TII->isAsCheapAsAMove(MI)) 450 return false; 451 // The hard register must be in the register class of the original 452 // instruction's destination register. 453 if (!RC->contains(DstReg)) 454 return false; 455 } else if (UseInst.mayLoadOrStore()) { 456 ExtAddrMode AM; 457 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 458 return false; 459 MaybeAM = AM; 460 } else { 461 return false; 462 } 463 464 if (UseInst.getParent() != MI.getParent()) { 465 // If the register class of the register we are replacing is a superset 466 // of any of the register classes of the operands of the materialized 467 // instruction don't consider that live range extended. 468 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 469 if (RCA && RCA->hasSuperClassEq(RCS)) 470 RCA = nullptr; 471 else if (RCB && RCB->hasSuperClassEq(RCS)) 472 RCB = nullptr; 473 if (RCA || RCB) { 474 if (RCA == nullptr) { 475 RCA = RCB; 476 RCB = nullptr; 477 } 478 479 unsigned NRegs = !!RCA + !!RCB; 480 if (RCA == RCB) 481 RCB = nullptr; 482 483 // Check we don't exceed register pressure at the destination. 484 const MachineBasicBlock &MBB = *UseInst.getParent(); 485 if (RCB == nullptr) { 486 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 487 return false; 488 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 489 registerPressureSetExceedsLimit(1, RCB, MBB)) { 490 return false; 491 } 492 } 493 } 494 495 SinkInto.emplace_back(&UseInst, MaybeAM); 496 } 497 } 498 499 if (SinkInto.empty()) 500 return false; 501 502 // Now we know we can fold the instruction in all its users. 503 if (UsedRegA) 504 MRI->clearKillFlags(UsedRegA); 505 if (UsedRegB) 506 MRI->clearKillFlags(UsedRegB); 507 508 for (auto &[SinkDst, MaybeAM] : SinkInto) { 509 MachineInstr *New = nullptr; 510 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 511 SinkDst->dump()); 512 if (SinkDst->isCopy()) { 513 // Sink a copy of the instruction, replacing a COPY instruction. 514 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 515 Register DstReg = SinkDst->getOperand(0).getReg(); 516 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 517 // If the original instruction did not have source location, reuse a one 518 // from the COPY. 519 New = &*std::prev(InsertPt); 520 if (const DebugLoc &NewLoc = New->getDebugLoc(); !NewLoc) 521 New->setDebugLoc(SinkDst->getDebugLoc()); 522 // Sink DBG_VALUEs, which refer to the original instruction's destination 523 // (DefReg). 524 MachineBasicBlock &SinkMBB = *SinkDst->getParent(); 525 auto &DbgUsers = SeenDbgUsers[DefReg]; 526 for (auto &U : DbgUsers) { 527 MachineInstr *DbgMI = U.getPointer(); 528 if (U.getInt()) 529 continue; 530 MachineInstr *NewDbgMI = SinkDst->getMF()->CloneMachineInstr(DbgMI); 531 SinkMBB.insertAfter(InsertPt, NewDbgMI); 532 for (auto &SrcMO : DbgMI->getDebugOperandsForReg(DefReg)) { 533 auto &DstMO = NewDbgMI->getOperand(SrcMO.getOperandNo()); 534 DstMO.setReg(DstReg); 535 } 536 } 537 } else { 538 // Fold instruction into the addressing mode of a memory instruction. 539 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 540 } 541 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 542 // Clear the StoreInstrCache, since we may invalidate it by erasing. 543 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 544 StoreInstrCache.clear(); 545 SinkDst->eraseFromParent(); 546 } 547 548 // Collect operands that need to be cleaned up because the registers no longer 549 // exist (in COPYs and debug instructions). We cannot delete instructions or 550 // clear operands while traversing register uses. 551 SmallVector<MachineOperand *> Cleanup; 552 Worklist.push_back(DefReg); 553 while (!Worklist.empty()) { 554 Register Reg = Worklist.pop_back_val(); 555 for (MachineOperand &MO : MRI->use_operands(Reg)) { 556 MachineInstr *U = MO.getParent(); 557 assert((U->isCopy() || U->isDebugInstr()) && 558 "Only debug uses and copies must remain"); 559 if (U->isCopy()) 560 Worklist.push_back(U->getOperand(0).getReg()); 561 Cleanup.push_back(&MO); 562 } 563 } 564 565 // Delete the dead COPYs and clear operands in debug instructions 566 for (MachineOperand *MO : Cleanup) { 567 MachineInstr *I = MO->getParent(); 568 if (I->isCopy()) { 569 I->eraseFromParent(); 570 } else { 571 MO->setReg(0); 572 MO->setSubReg(0); 573 } 574 } 575 576 MI.eraseFromParent(); 577 return true; 578 } 579 580 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 581 /// occur in blocks dominated by the specified block. If any use is in the 582 /// definition block, then return false since it is never legal to move def 583 /// after uses. 584 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 585 MachineBasicBlock *MBB, 586 MachineBasicBlock *DefMBB, 587 bool &BreakPHIEdge, 588 bool &LocalUse) const { 589 assert(Reg.isVirtual() && "Only makes sense for vregs"); 590 591 // Ignore debug uses because debug info doesn't affect the code. 592 if (MRI->use_nodbg_empty(Reg)) 593 return true; 594 595 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 596 // into and they are all PHI nodes. In this case, machine-sink must break 597 // the critical edge first. e.g. 598 // 599 // %bb.1: 600 // Predecessors according to CFG: %bb.0 601 // ... 602 // %def = DEC64_32r %x, implicit-def dead %eflags 603 // ... 604 // JE_4 <%bb.37>, implicit %eflags 605 // Successors according to CFG: %bb.37 %bb.2 606 // 607 // %bb.2: 608 // %p = PHI %y, %bb.0, %def, %bb.1 609 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 610 MachineInstr *UseInst = MO.getParent(); 611 unsigned OpNo = MO.getOperandNo(); 612 MachineBasicBlock *UseBlock = UseInst->getParent(); 613 return UseBlock == MBB && UseInst->isPHI() && 614 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 615 })) { 616 BreakPHIEdge = true; 617 return true; 618 } 619 620 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 621 // Determine the block of the use. 622 MachineInstr *UseInst = MO.getParent(); 623 unsigned OpNo = &MO - &UseInst->getOperand(0); 624 MachineBasicBlock *UseBlock = UseInst->getParent(); 625 if (UseInst->isPHI()) { 626 // PHI nodes use the operand in the predecessor block, not the block with 627 // the PHI. 628 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 629 } else if (UseBlock == DefMBB) { 630 LocalUse = true; 631 return false; 632 } 633 634 // Check that it dominates. 635 if (!DT->dominates(MBB, UseBlock)) 636 return false; 637 } 638 639 return true; 640 } 641 642 /// Return true if this machine instruction loads from global offset table or 643 /// constant pool. 644 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 645 assert(MI.mayLoad() && "Expected MI that loads!"); 646 647 // If we lost memory operands, conservatively assume that the instruction 648 // reads from everything.. 649 if (MI.memoperands_empty()) 650 return true; 651 652 for (MachineMemOperand *MemOp : MI.memoperands()) 653 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 654 if (PSV->isGOT() || PSV->isConstantPool()) 655 return true; 656 657 return false; 658 } 659 660 void MachineSinking::FindCycleSinkCandidates( 661 MachineCycle *Cycle, MachineBasicBlock *BB, 662 SmallVectorImpl<MachineInstr *> &Candidates) { 663 for (auto &MI : *BB) { 664 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 665 if (!TII->shouldSink(MI)) { 666 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 667 "target\n"); 668 continue; 669 } 670 if (!isCycleInvariant(Cycle, MI)) { 671 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 672 continue; 673 } 674 bool DontMoveAcrossStore = true; 675 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 676 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 677 continue; 678 } 679 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 680 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 681 continue; 682 } 683 if (MI.isConvergent()) 684 continue; 685 686 const MachineOperand &MO = MI.getOperand(0); 687 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 688 continue; 689 if (!MRI->hasOneDef(MO.getReg())) 690 continue; 691 692 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 693 Candidates.push_back(&MI); 694 } 695 } 696 697 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 698 if (skipFunction(MF.getFunction())) 699 return false; 700 701 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 702 703 STI = &MF.getSubtarget(); 704 TII = STI->getInstrInfo(); 705 TRI = STI->getRegisterInfo(); 706 MRI = &MF.getRegInfo(); 707 DT = &getAnalysis<MachineDominatorTree>(); 708 PDT = &getAnalysis<MachinePostDominatorTree>(); 709 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 710 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 711 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 712 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 713 RegClassInfo.runOnMachineFunction(MF); 714 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 715 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 716 717 bool EverMadeChange = false; 718 719 while (true) { 720 bool MadeChange = false; 721 722 // Process all basic blocks. 723 CEBCandidates.clear(); 724 ToSplit.clear(); 725 for (auto &MBB: MF) 726 MadeChange |= ProcessBlock(MBB); 727 728 // If we have anything we marked as toSplit, split it now. 729 for (const auto &Pair : ToSplit) { 730 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 731 if (NewSucc != nullptr) { 732 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 733 << printMBBReference(*Pair.first) << " -- " 734 << printMBBReference(*NewSucc) << " -- " 735 << printMBBReference(*Pair.second) << '\n'); 736 if (MBFI) 737 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 738 739 MadeChange = true; 740 ++NumSplit; 741 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 742 } else 743 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 744 } 745 // If this iteration over the code changed anything, keep iterating. 746 if (!MadeChange) break; 747 EverMadeChange = true; 748 } 749 750 if (SinkInstsIntoCycle) { 751 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 752 CI->toplevel_end()); 753 for (auto *Cycle : Cycles) { 754 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 755 if (!Preheader) { 756 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 757 continue; 758 } 759 SmallVector<MachineInstr *, 8> Candidates; 760 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 761 762 // Walk the candidates in reverse order so that we start with the use 763 // of a def-use chain, if there is any. 764 // TODO: Sort the candidates using a cost-model. 765 unsigned i = 0; 766 for (MachineInstr *I : llvm::reverse(Candidates)) { 767 if (i++ == SinkIntoCycleLimit) { 768 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 769 "be analysed."); 770 break; 771 } 772 773 if (!SinkIntoCycle(Cycle, *I)) 774 break; 775 EverMadeChange = true; 776 ++NumCycleSunk; 777 } 778 } 779 } 780 781 HasStoreCache.clear(); 782 StoreInstrCache.clear(); 783 784 // Now clear any kill flags for recorded registers. 785 for (auto I : RegsToClearKillFlags) 786 MRI->clearKillFlags(I); 787 RegsToClearKillFlags.clear(); 788 789 return EverMadeChange; 790 } 791 792 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 793 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 794 return false; 795 796 // Don't bother sinking code out of unreachable blocks. In addition to being 797 // unprofitable, it can also lead to infinite looping, because in an 798 // unreachable cycle there may be nowhere to stop. 799 if (!DT->isReachableFromEntry(&MBB)) return false; 800 801 bool MadeChange = false; 802 803 // Cache all successors, sorted by frequency info and cycle depth. 804 AllSuccsCache AllSuccessors; 805 806 // Walk the basic block bottom-up. Remember if we saw a store. 807 MachineBasicBlock::iterator I = MBB.end(); 808 --I; 809 bool ProcessedBegin, SawStore = false; 810 do { 811 MachineInstr &MI = *I; // The instruction to sink. 812 813 // Predecrement I (if it's not begin) so that it isn't invalidated by 814 // sinking. 815 ProcessedBegin = I == MBB.begin(); 816 if (!ProcessedBegin) 817 --I; 818 819 if (MI.isDebugOrPseudoInstr()) { 820 if (MI.isDebugValue()) 821 ProcessDbgInst(MI); 822 continue; 823 } 824 825 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 826 MadeChange = true; 827 continue; 828 } 829 830 // Can't sink anything out of a block that has less than two successors. 831 if (MBB.succ_size() <= 1) 832 continue; 833 834 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 835 MadeChange = true; 836 continue; 837 } 838 839 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 840 ++NumSunk; 841 MadeChange = true; 842 } 843 844 // If we just processed the first instruction in the block, we're done. 845 } while (!ProcessedBegin); 846 847 SeenDbgUsers.clear(); 848 SeenDbgVars.clear(); 849 // recalculate the bb register pressure after sinking one BB. 850 CachedRegisterPressure.clear(); 851 return MadeChange; 852 } 853 854 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 855 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 856 // we know what to sink if the vreg def sinks. 857 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 858 859 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 860 MI.getDebugLoc()->getInlinedAt()); 861 bool SeenBefore = SeenDbgVars.contains(Var); 862 863 for (MachineOperand &MO : MI.debug_operands()) { 864 if (MO.isReg() && MO.getReg().isVirtual()) 865 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 866 } 867 868 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 869 SeenDbgVars.insert(Var); 870 } 871 872 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 873 MachineBasicBlock *From, 874 MachineBasicBlock *To) { 875 // FIXME: Need much better heuristics. 876 877 // If the pass has already considered breaking this edge (during this pass 878 // through the function), then let's go ahead and break it. This means 879 // sinking multiple "cheap" instructions into the same block. 880 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 881 return true; 882 883 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 884 return true; 885 886 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 887 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 888 return true; 889 890 // MI is cheap, we probably don't want to break the critical edge for it. 891 // However, if this would allow some definitions of its source operands 892 // to be sunk then it's probably worth it. 893 for (const MachineOperand &MO : MI.all_uses()) { 894 Register Reg = MO.getReg(); 895 if (Reg == 0) 896 continue; 897 898 // We don't move live definitions of physical registers, 899 // so sinking their uses won't enable any opportunities. 900 if (Reg.isPhysical()) 901 continue; 902 903 // If this instruction is the only user of a virtual register, 904 // check if breaking the edge will enable sinking 905 // both this instruction and the defining instruction. 906 if (MRI->hasOneNonDBGUse(Reg)) { 907 // If the definition resides in same MBB, 908 // claim it's likely we can sink these together. 909 // If definition resides elsewhere, we aren't 910 // blocking it from being sunk so don't break the edge. 911 MachineInstr *DefMI = MRI->getVRegDef(Reg); 912 if (DefMI->getParent() == MI.getParent()) 913 return true; 914 } 915 } 916 917 return false; 918 } 919 920 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 921 MachineBasicBlock *FromBB, 922 MachineBasicBlock *ToBB, 923 bool BreakPHIEdge) { 924 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 925 return false; 926 927 // Avoid breaking back edge. From == To means backedge for single BB cycle. 928 if (!SplitEdges || FromBB == ToBB) 929 return false; 930 931 MachineCycle *FromCycle = CI->getCycle(FromBB); 932 MachineCycle *ToCycle = CI->getCycle(ToBB); 933 934 // Check for backedges of more "complex" cycles. 935 if (FromCycle == ToCycle && FromCycle && 936 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 937 return false; 938 939 // It's not always legal to break critical edges and sink the computation 940 // to the edge. 941 // 942 // %bb.1: 943 // v1024 944 // Beq %bb.3 945 // <fallthrough> 946 // %bb.2: 947 // ... no uses of v1024 948 // <fallthrough> 949 // %bb.3: 950 // ... 951 // = v1024 952 // 953 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 954 // 955 // %bb.1: 956 // ... 957 // Bne %bb.2 958 // %bb.4: 959 // v1024 = 960 // B %bb.3 961 // %bb.2: 962 // ... no uses of v1024 963 // <fallthrough> 964 // %bb.3: 965 // ... 966 // = v1024 967 // 968 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 969 // flow. We need to ensure the new basic block where the computation is 970 // sunk to dominates all the uses. 971 // It's only legal to break critical edge and sink the computation to the 972 // new block if all the predecessors of "To", except for "From", are 973 // not dominated by "From". Given SSA property, this means these 974 // predecessors are dominated by "To". 975 // 976 // There is no need to do this check if all the uses are PHI nodes. PHI 977 // sources are only defined on the specific predecessor edges. 978 if (!BreakPHIEdge) { 979 for (MachineBasicBlock *Pred : ToBB->predecessors()) 980 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 981 return false; 982 } 983 984 ToSplit.insert(std::make_pair(FromBB, ToBB)); 985 986 return true; 987 } 988 989 std::vector<unsigned> & 990 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 991 // Currently to save compiling time, MBB's register pressure will not change 992 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 993 // register pressure is changed after sinking any instructions into it. 994 // FIXME: need a accurate and cheap register pressure estiminate model here. 995 auto RP = CachedRegisterPressure.find(&MBB); 996 if (RP != CachedRegisterPressure.end()) 997 return RP->second; 998 999 RegionPressure Pressure; 1000 RegPressureTracker RPTracker(Pressure); 1001 1002 // Initialize the register pressure tracker. 1003 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1004 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1005 1006 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1007 MIE = MBB.instr_begin(); 1008 MII != MIE; --MII) { 1009 const MachineInstr &MI = *std::prev(MII); 1010 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1011 continue; 1012 RegisterOperands RegOpers; 1013 RegOpers.collect(MI, *TRI, *MRI, false, false); 1014 RPTracker.recedeSkipDebugValues(); 1015 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1016 RPTracker.recede(RegOpers); 1017 } 1018 1019 RPTracker.closeRegion(); 1020 auto It = CachedRegisterPressure.insert( 1021 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1022 return It.first->second; 1023 } 1024 1025 bool MachineSinking::registerPressureSetExceedsLimit( 1026 unsigned NRegs, const TargetRegisterClass *RC, 1027 const MachineBasicBlock &MBB) { 1028 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1029 const int *PS = TRI->getRegClassPressureSets(RC); 1030 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1031 for (; *PS != -1; PS++) 1032 if (Weight + BBRegisterPressure[*PS] >= 1033 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1034 return true; 1035 return false; 1036 } 1037 1038 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1039 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1040 MachineBasicBlock *MBB, 1041 MachineBasicBlock *SuccToSinkTo, 1042 AllSuccsCache &AllSuccessors) { 1043 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1044 1045 if (MBB == SuccToSinkTo) 1046 return false; 1047 1048 // It is profitable if SuccToSinkTo does not post dominate current block. 1049 if (!PDT->dominates(SuccToSinkTo, MBB)) 1050 return true; 1051 1052 // It is profitable to sink an instruction from a deeper cycle to a shallower 1053 // cycle, even if the latter post-dominates the former (PR21115). 1054 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1055 return true; 1056 1057 // Check if only use in post dominated block is PHI instruction. 1058 bool NonPHIUse = false; 1059 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1060 MachineBasicBlock *UseBlock = UseInst.getParent(); 1061 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1062 NonPHIUse = true; 1063 } 1064 if (!NonPHIUse) 1065 return true; 1066 1067 // If SuccToSinkTo post dominates then also it may be profitable if MI 1068 // can further profitably sinked into another block in next round. 1069 bool BreakPHIEdge = false; 1070 // FIXME - If finding successor is compile time expensive then cache results. 1071 if (MachineBasicBlock *MBB2 = 1072 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1073 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1074 1075 MachineCycle *MCycle = CI->getCycle(MBB); 1076 1077 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1078 // a post dominate block SuccToSinkTo. 1079 if (!MCycle) 1080 return false; 1081 1082 // If this instruction is inside a Cycle and sinking this instruction can make 1083 // more registers live range shorten, it is still prifitable. 1084 for (const MachineOperand &MO : MI.operands()) { 1085 // Ignore non-register operands. 1086 if (!MO.isReg()) 1087 continue; 1088 Register Reg = MO.getReg(); 1089 if (Reg == 0) 1090 continue; 1091 1092 if (Reg.isPhysical()) { 1093 // Don't handle non-constant and non-ignorable physical register uses. 1094 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1095 return false; 1096 continue; 1097 } 1098 1099 // Users for the defs are all dominated by SuccToSinkTo. 1100 if (MO.isDef()) { 1101 // This def register's live range is shortened after sinking. 1102 bool LocalUse = false; 1103 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1104 LocalUse)) 1105 return false; 1106 } else { 1107 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1108 if (!DefMI) 1109 continue; 1110 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1111 // DefMI is defined outside of cycle. There should be no live range 1112 // impact for this operand. Defination outside of cycle means: 1113 // 1: defination is outside of cycle. 1114 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1115 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1116 Cycle->getHeader() == DefMI->getParent())) 1117 continue; 1118 // The DefMI is defined inside the cycle. 1119 // If sinking this operand makes some register pressure set exceed limit, 1120 // it is not profitable. 1121 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1122 *SuccToSinkTo)) { 1123 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1124 return false; 1125 } 1126 } 1127 } 1128 1129 // If MI is in cycle and all its operands are alive across the whole cycle or 1130 // if no operand sinking make register pressure set exceed limit, it is 1131 // profitable to sink MI. 1132 return true; 1133 } 1134 1135 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1136 /// computing it if it was not already cached. 1137 SmallVector<MachineBasicBlock *, 4> & 1138 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1139 AllSuccsCache &AllSuccessors) const { 1140 // Do we have the sorted successors in cache ? 1141 auto Succs = AllSuccessors.find(MBB); 1142 if (Succs != AllSuccessors.end()) 1143 return Succs->second; 1144 1145 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1146 1147 // Handle cases where sinking can happen but where the sink point isn't a 1148 // successor. For example: 1149 // 1150 // x = computation 1151 // if () {} else {} 1152 // use x 1153 // 1154 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1155 // DomTree children of MBB that have MBB as immediate dominator are added. 1156 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1157 // Skip MBBs already added to the AllSuccs vector above. 1158 !MBB->isSuccessor(DTChild->getBlock())) 1159 AllSuccs.push_back(DTChild->getBlock()); 1160 } 1161 1162 // Sort Successors according to their cycle depth or block frequency info. 1163 llvm::stable_sort( 1164 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1165 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1166 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1167 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1168 return HasBlockFreq ? LHSFreq < RHSFreq 1169 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1170 }); 1171 1172 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1173 1174 return it.first->second; 1175 } 1176 1177 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1178 MachineBasicBlock * 1179 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1180 bool &BreakPHIEdge, 1181 AllSuccsCache &AllSuccessors) { 1182 assert (MBB && "Invalid MachineBasicBlock!"); 1183 1184 // loop over all the operands of the specified instruction. If there is 1185 // anything we can't handle, bail out. 1186 1187 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1188 // decide. 1189 MachineBasicBlock *SuccToSinkTo = nullptr; 1190 for (const MachineOperand &MO : MI.operands()) { 1191 if (!MO.isReg()) continue; // Ignore non-register operands. 1192 1193 Register Reg = MO.getReg(); 1194 if (Reg == 0) continue; 1195 1196 if (Reg.isPhysical()) { 1197 if (MO.isUse()) { 1198 // If the physreg has no defs anywhere, it's just an ambient register 1199 // and we can freely move its uses. Alternatively, if it's allocatable, 1200 // it could get allocated to something with a def during allocation. 1201 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1202 return nullptr; 1203 } else if (!MO.isDead()) { 1204 // A def that isn't dead. We can't move it. 1205 return nullptr; 1206 } 1207 } else { 1208 // Virtual register uses are always safe to sink. 1209 if (MO.isUse()) continue; 1210 1211 // If it's not safe to move defs of the register class, then abort. 1212 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1213 return nullptr; 1214 1215 // Virtual register defs can only be sunk if all their uses are in blocks 1216 // dominated by one of the successors. 1217 if (SuccToSinkTo) { 1218 // If a previous operand picked a block to sink to, then this operand 1219 // must be sinkable to the same block. 1220 bool LocalUse = false; 1221 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1222 BreakPHIEdge, LocalUse)) 1223 return nullptr; 1224 1225 continue; 1226 } 1227 1228 // Otherwise, we should look at all the successors and decide which one 1229 // we should sink to. If we have reliable block frequency information 1230 // (frequency != 0) available, give successors with smaller frequencies 1231 // higher priority, otherwise prioritize smaller cycle depths. 1232 for (MachineBasicBlock *SuccBlock : 1233 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1234 bool LocalUse = false; 1235 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1236 BreakPHIEdge, LocalUse)) { 1237 SuccToSinkTo = SuccBlock; 1238 break; 1239 } 1240 if (LocalUse) 1241 // Def is used locally, it's never safe to move this def. 1242 return nullptr; 1243 } 1244 1245 // If we couldn't find a block to sink to, ignore this instruction. 1246 if (!SuccToSinkTo) 1247 return nullptr; 1248 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1249 return nullptr; 1250 } 1251 } 1252 1253 // It is not possible to sink an instruction into its own block. This can 1254 // happen with cycles. 1255 if (MBB == SuccToSinkTo) 1256 return nullptr; 1257 1258 // It's not safe to sink instructions to EH landing pad. Control flow into 1259 // landing pad is implicitly defined. 1260 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1261 return nullptr; 1262 1263 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1264 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1265 // the source block (which this code does not yet do). So for now, forbid 1266 // doing so. 1267 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1268 return nullptr; 1269 1270 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1271 return nullptr; 1272 1273 return SuccToSinkTo; 1274 } 1275 1276 /// Return true if MI is likely to be usable as a memory operation by the 1277 /// implicit null check optimization. 1278 /// 1279 /// This is a "best effort" heuristic, and should not be relied upon for 1280 /// correctness. This returning true does not guarantee that the implicit null 1281 /// check optimization is legal over MI, and this returning false does not 1282 /// guarantee MI cannot possibly be used to do a null check. 1283 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1284 const TargetInstrInfo *TII, 1285 const TargetRegisterInfo *TRI) { 1286 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1287 1288 auto *MBB = MI.getParent(); 1289 if (MBB->pred_size() != 1) 1290 return false; 1291 1292 auto *PredMBB = *MBB->pred_begin(); 1293 auto *PredBB = PredMBB->getBasicBlock(); 1294 1295 // Frontends that don't use implicit null checks have no reason to emit 1296 // branches with make.implicit metadata, and this function should always 1297 // return false for them. 1298 if (!PredBB || 1299 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1300 return false; 1301 1302 const MachineOperand *BaseOp; 1303 int64_t Offset; 1304 bool OffsetIsScalable; 1305 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1306 return false; 1307 1308 if (!BaseOp->isReg()) 1309 return false; 1310 1311 if (!(MI.mayLoad() && !MI.isPredicable())) 1312 return false; 1313 1314 MachineBranchPredicate MBP; 1315 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1316 return false; 1317 1318 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1319 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1320 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1321 MBP.LHS.getReg() == BaseOp->getReg(); 1322 } 1323 1324 /// If the sunk instruction is a copy, try to forward the copy instead of 1325 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1326 /// there's any subregister weirdness involved. Returns true if copy 1327 /// propagation occurred. 1328 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1329 Register Reg) { 1330 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1331 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1332 1333 // Copy DBG_VALUE operand and set the original to undef. We then check to 1334 // see whether this is something that can be copy-forwarded. If it isn't, 1335 // continue around the loop. 1336 1337 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1338 auto CopyOperands = TII.isCopyInstr(SinkInst); 1339 if (!CopyOperands) 1340 return false; 1341 SrcMO = CopyOperands->Source; 1342 DstMO = CopyOperands->Destination; 1343 1344 // Check validity of forwarding this copy. 1345 bool PostRA = MRI.getNumVirtRegs() == 0; 1346 1347 // Trying to forward between physical and virtual registers is too hard. 1348 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1349 return false; 1350 1351 // Only try virtual register copy-forwarding before regalloc, and physical 1352 // register copy-forwarding after regalloc. 1353 bool arePhysRegs = !Reg.isVirtual(); 1354 if (arePhysRegs != PostRA) 1355 return false; 1356 1357 // Pre-regalloc, only forward if all subregisters agree (or there are no 1358 // subregs at all). More analysis might recover some forwardable copies. 1359 if (!PostRA) 1360 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1361 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1362 DbgMO.getSubReg() != DstMO->getSubReg()) 1363 return false; 1364 1365 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1366 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1367 // matches the copy destination. 1368 if (PostRA && Reg != DstMO->getReg()) 1369 return false; 1370 1371 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1372 DbgMO.setReg(SrcMO->getReg()); 1373 DbgMO.setSubReg(SrcMO->getSubReg()); 1374 } 1375 return true; 1376 } 1377 1378 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1379 /// Sink an instruction and its associated debug instructions. 1380 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1381 MachineBasicBlock::iterator InsertPos, 1382 ArrayRef<MIRegs> DbgValuesToSink) { 1383 // If we cannot find a location to use (merge with), then we erase the debug 1384 // location to prevent debug-info driven tools from potentially reporting 1385 // wrong location information. 1386 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1387 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1388 InsertPos->getDebugLoc())); 1389 else 1390 MI.setDebugLoc(DebugLoc()); 1391 1392 // Move the instruction. 1393 MachineBasicBlock *ParentBlock = MI.getParent(); 1394 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1395 ++MachineBasicBlock::iterator(MI)); 1396 1397 // Sink a copy of debug users to the insert position. Mark the original 1398 // DBG_VALUE location as 'undef', indicating that any earlier variable 1399 // location should be terminated as we've optimised away the value at this 1400 // point. 1401 for (const auto &DbgValueToSink : DbgValuesToSink) { 1402 MachineInstr *DbgMI = DbgValueToSink.first; 1403 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1404 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1405 1406 bool PropagatedAllSunkOps = true; 1407 for (unsigned Reg : DbgValueToSink.second) { 1408 if (DbgMI->hasDebugOperandForReg(Reg)) { 1409 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1410 PropagatedAllSunkOps = false; 1411 break; 1412 } 1413 } 1414 } 1415 if (!PropagatedAllSunkOps) 1416 DbgMI->setDebugValueUndef(); 1417 } 1418 } 1419 1420 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1421 /// and To. 1422 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1423 MachineBasicBlock *To, MachineInstr &MI) { 1424 // Make sure From and To are in straight line which means From dominates To 1425 // and To post dominates From. 1426 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1427 return true; 1428 1429 auto BlockPair = std::make_pair(From, To); 1430 1431 // Does these two blocks pair be queried before and have a definite cached 1432 // result? 1433 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1434 return It->second; 1435 1436 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1437 return llvm::any_of(It->second, [&](MachineInstr *I) { 1438 return I->mayAlias(AA, MI, false); 1439 }); 1440 1441 bool SawStore = false; 1442 bool HasAliasedStore = false; 1443 DenseSet<MachineBasicBlock *> HandledBlocks; 1444 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1445 // Go through all reachable blocks from From. 1446 for (MachineBasicBlock *BB : depth_first(From)) { 1447 // We insert the instruction at the start of block To, so no need to worry 1448 // about stores inside To. 1449 // Store in block From should be already considered when just enter function 1450 // SinkInstruction. 1451 if (BB == To || BB == From) 1452 continue; 1453 1454 // We already handle this BB in previous iteration. 1455 if (HandledBlocks.count(BB)) 1456 continue; 1457 1458 HandledBlocks.insert(BB); 1459 // To post dominates BB, it must be a path from block From. 1460 if (PDT->dominates(To, BB)) { 1461 if (!HandledDomBlocks.count(BB)) 1462 HandledDomBlocks.insert(BB); 1463 1464 // If this BB is too big or the block number in straight line between From 1465 // and To is too big, stop searching to save compiling time. 1466 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1467 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1468 for (auto *DomBB : HandledDomBlocks) { 1469 if (DomBB != BB && DT->dominates(DomBB, BB)) 1470 HasStoreCache[std::make_pair(DomBB, To)] = true; 1471 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1472 HasStoreCache[std::make_pair(From, DomBB)] = true; 1473 } 1474 HasStoreCache[BlockPair] = true; 1475 return true; 1476 } 1477 1478 for (MachineInstr &I : *BB) { 1479 // Treat as alias conservatively for a call or an ordered memory 1480 // operation. 1481 if (I.isCall() || I.hasOrderedMemoryRef()) { 1482 for (auto *DomBB : HandledDomBlocks) { 1483 if (DomBB != BB && DT->dominates(DomBB, BB)) 1484 HasStoreCache[std::make_pair(DomBB, To)] = true; 1485 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1486 HasStoreCache[std::make_pair(From, DomBB)] = true; 1487 } 1488 HasStoreCache[BlockPair] = true; 1489 return true; 1490 } 1491 1492 if (I.mayStore()) { 1493 SawStore = true; 1494 // We still have chance to sink MI if all stores between are not 1495 // aliased to MI. 1496 // Cache all store instructions, so that we don't need to go through 1497 // all From reachable blocks for next load instruction. 1498 if (I.mayAlias(AA, MI, false)) 1499 HasAliasedStore = true; 1500 StoreInstrCache[BlockPair].push_back(&I); 1501 } 1502 } 1503 } 1504 } 1505 // If there is no store at all, cache the result. 1506 if (!SawStore) 1507 HasStoreCache[BlockPair] = false; 1508 return HasAliasedStore; 1509 } 1510 1511 /// Sink instructions into cycles if profitable. This especially tries to 1512 /// prevent register spills caused by register pressure if there is little to no 1513 /// overhead moving instructions into cycles. 1514 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1515 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1516 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1517 assert(Preheader && "Cycle sink needs a preheader block"); 1518 MachineBasicBlock *SinkBlock = nullptr; 1519 bool CanSink = true; 1520 const MachineOperand &MO = I.getOperand(0); 1521 1522 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1523 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1524 if (!Cycle->contains(MI.getParent())) { 1525 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1526 CanSink = false; 1527 break; 1528 } 1529 1530 // FIXME: Come up with a proper cost model that estimates whether sinking 1531 // the instruction (and thus possibly executing it on every cycle 1532 // iteration) is more expensive than a register. 1533 // For now assumes that copies are cheap and thus almost always worth it. 1534 if (!MI.isCopy()) { 1535 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1536 CanSink = false; 1537 break; 1538 } 1539 if (!SinkBlock) { 1540 SinkBlock = MI.getParent(); 1541 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1542 << printMBBReference(*SinkBlock) << "\n"); 1543 continue; 1544 } 1545 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1546 if (!SinkBlock) { 1547 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1548 CanSink = false; 1549 break; 1550 } 1551 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1552 printMBBReference(*SinkBlock) << "\n"); 1553 } 1554 1555 if (!CanSink) { 1556 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1557 return false; 1558 } 1559 if (!SinkBlock) { 1560 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1561 return false; 1562 } 1563 if (SinkBlock == Preheader) { 1564 LLVM_DEBUG( 1565 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1566 return false; 1567 } 1568 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1569 LLVM_DEBUG( 1570 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1571 return false; 1572 } 1573 1574 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1575 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1576 I); 1577 1578 // Conservatively clear any kill flags on uses of sunk instruction 1579 for (MachineOperand &MO : I.operands()) { 1580 if (MO.isReg() && MO.readsReg()) 1581 RegsToClearKillFlags.insert(MO.getReg()); 1582 } 1583 1584 // The instruction is moved from its basic block, so do not retain the 1585 // debug information. 1586 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1587 I.setDebugLoc(DebugLoc()); 1588 return true; 1589 } 1590 1591 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1592 /// instruction out of its current block into a successor. 1593 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1594 AllSuccsCache &AllSuccessors) { 1595 // Don't sink instructions that the target prefers not to sink. 1596 if (!TII->shouldSink(MI)) 1597 return false; 1598 1599 // Check if it's safe to move the instruction. 1600 if (!MI.isSafeToMove(AA, SawStore)) 1601 return false; 1602 1603 // Convergent operations may not be made control-dependent on additional 1604 // values. 1605 if (MI.isConvergent()) 1606 return false; 1607 1608 // Don't break implicit null checks. This is a performance heuristic, and not 1609 // required for correctness. 1610 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1611 return false; 1612 1613 // FIXME: This should include support for sinking instructions within the 1614 // block they are currently in to shorten the live ranges. We often get 1615 // instructions sunk into the top of a large block, but it would be better to 1616 // also sink them down before their first use in the block. This xform has to 1617 // be careful not to *increase* register pressure though, e.g. sinking 1618 // "x = y + z" down if it kills y and z would increase the live ranges of y 1619 // and z and only shrink the live range of x. 1620 1621 bool BreakPHIEdge = false; 1622 MachineBasicBlock *ParentBlock = MI.getParent(); 1623 MachineBasicBlock *SuccToSinkTo = 1624 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1625 1626 // If there are no outputs, it must have side-effects. 1627 if (!SuccToSinkTo) 1628 return false; 1629 1630 // If the instruction to move defines a dead physical register which is live 1631 // when leaving the basic block, don't move it because it could turn into a 1632 // "zombie" define of that preg. E.g., EFLAGS. 1633 for (const MachineOperand &MO : MI.all_defs()) { 1634 Register Reg = MO.getReg(); 1635 if (Reg == 0 || !Reg.isPhysical()) 1636 continue; 1637 if (SuccToSinkTo->isLiveIn(Reg)) 1638 return false; 1639 } 1640 1641 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1642 1643 // If the block has multiple predecessors, this is a critical edge. 1644 // Decide if we can sink along it or need to break the edge. 1645 if (SuccToSinkTo->pred_size() > 1) { 1646 // We cannot sink a load across a critical edge - there may be stores in 1647 // other code paths. 1648 bool TryBreak = false; 1649 bool Store = 1650 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1651 if (!MI.isSafeToMove(AA, Store)) { 1652 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1653 TryBreak = true; 1654 } 1655 1656 // We don't want to sink across a critical edge if we don't dominate the 1657 // successor. We could be introducing calculations to new code paths. 1658 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1659 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1660 TryBreak = true; 1661 } 1662 1663 // Don't sink instructions into a cycle. 1664 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1665 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1666 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1667 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1668 TryBreak = true; 1669 } 1670 1671 // Otherwise we are OK with sinking along a critical edge. 1672 if (!TryBreak) 1673 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1674 else { 1675 // Mark this edge as to be split. 1676 // If the edge can actually be split, the next iteration of the main loop 1677 // will sink MI in the newly created block. 1678 bool Status = 1679 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1680 if (!Status) 1681 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1682 "break critical edge\n"); 1683 // The instruction will not be sunk this time. 1684 return false; 1685 } 1686 } 1687 1688 if (BreakPHIEdge) { 1689 // BreakPHIEdge is true if all the uses are in the successor MBB being 1690 // sunken into and they are all PHI nodes. In this case, machine-sink must 1691 // break the critical edge first. 1692 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1693 SuccToSinkTo, BreakPHIEdge); 1694 if (!Status) 1695 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1696 "break critical edge\n"); 1697 // The instruction will not be sunk this time. 1698 return false; 1699 } 1700 1701 // Determine where to insert into. Skip phi nodes. 1702 MachineBasicBlock::iterator InsertPos = 1703 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1704 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1705 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1706 return false; 1707 } 1708 1709 // Collect debug users of any vreg that this inst defines. 1710 SmallVector<MIRegs, 4> DbgUsersToSink; 1711 for (auto &MO : MI.all_defs()) { 1712 if (!MO.getReg().isVirtual()) 1713 continue; 1714 if (!SeenDbgUsers.count(MO.getReg())) 1715 continue; 1716 1717 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1718 auto &Users = SeenDbgUsers[MO.getReg()]; 1719 for (auto &User : Users) { 1720 MachineInstr *DbgMI = User.getPointer(); 1721 if (User.getInt()) { 1722 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1723 // it, it can't be recovered. Set it undef. 1724 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1725 DbgMI->setDebugValueUndef(); 1726 } else { 1727 DbgUsersToSink.push_back( 1728 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1729 } 1730 } 1731 } 1732 1733 // After sinking, some debug users may not be dominated any more. If possible, 1734 // copy-propagate their operands. As it's expensive, don't do this if there's 1735 // no debuginfo in the program. 1736 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1737 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1738 1739 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1740 1741 // Conservatively, clear any kill flags, since it's possible that they are no 1742 // longer correct. 1743 // Note that we have to clear the kill flags for any register this instruction 1744 // uses as we may sink over another instruction which currently kills the 1745 // used registers. 1746 for (MachineOperand &MO : MI.all_uses()) 1747 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1748 1749 return true; 1750 } 1751 1752 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1753 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1754 assert(MI.isCopy()); 1755 assert(MI.getOperand(1).isReg()); 1756 1757 // Enumerate all users of vreg operands that are def'd. Skip those that will 1758 // be sunk. For the rest, if they are not dominated by the block we will sink 1759 // MI into, propagate the copy source to them. 1760 SmallVector<MachineInstr *, 4> DbgDefUsers; 1761 SmallVector<Register, 4> DbgUseRegs; 1762 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1763 for (auto &MO : MI.all_defs()) { 1764 if (!MO.getReg().isVirtual()) 1765 continue; 1766 DbgUseRegs.push_back(MO.getReg()); 1767 for (auto &User : MRI.use_instructions(MO.getReg())) { 1768 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1769 continue; 1770 1771 // If is in same block, will either sink or be use-before-def. 1772 if (User.getParent() == MI.getParent()) 1773 continue; 1774 1775 assert(User.hasDebugOperandForReg(MO.getReg()) && 1776 "DBG_VALUE user of vreg, but has no operand for it?"); 1777 DbgDefUsers.push_back(&User); 1778 } 1779 } 1780 1781 // Point the users of this copy that are no longer dominated, at the source 1782 // of the copy. 1783 for (auto *User : DbgDefUsers) { 1784 for (auto &Reg : DbgUseRegs) { 1785 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1786 DbgOp.setReg(MI.getOperand(1).getReg()); 1787 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1788 } 1789 } 1790 } 1791 } 1792 1793 //===----------------------------------------------------------------------===// 1794 // This pass is not intended to be a replacement or a complete alternative 1795 // for the pre-ra machine sink pass. It is only designed to sink COPY 1796 // instructions which should be handled after RA. 1797 // 1798 // This pass sinks COPY instructions into a successor block, if the COPY is not 1799 // used in the current block and the COPY is live-in to a single successor 1800 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1801 // copy on paths where their results aren't needed. This also exposes 1802 // additional opportunites for dead copy elimination and shrink wrapping. 1803 // 1804 // These copies were either not handled by or are inserted after the MachineSink 1805 // pass. As an example of the former case, the MachineSink pass cannot sink 1806 // COPY instructions with allocatable source registers; for AArch64 these type 1807 // of copy instructions are frequently used to move function parameters (PhyReg) 1808 // into virtual registers in the entry block. 1809 // 1810 // For the machine IR below, this pass will sink %w19 in the entry into its 1811 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1812 // %bb.0: 1813 // %wzr = SUBSWri %w1, 1 1814 // %w19 = COPY %w0 1815 // Bcc 11, %bb.2 1816 // %bb.1: 1817 // Live Ins: %w19 1818 // BL @fun 1819 // %w0 = ADDWrr %w0, %w19 1820 // RET %w0 1821 // %bb.2: 1822 // %w0 = COPY %wzr 1823 // RET %w0 1824 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1825 // able to see %bb.0 as a candidate. 1826 //===----------------------------------------------------------------------===// 1827 namespace { 1828 1829 class PostRAMachineSinking : public MachineFunctionPass { 1830 public: 1831 bool runOnMachineFunction(MachineFunction &MF) override; 1832 1833 static char ID; 1834 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1835 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1836 1837 void getAnalysisUsage(AnalysisUsage &AU) const override { 1838 AU.setPreservesCFG(); 1839 MachineFunctionPass::getAnalysisUsage(AU); 1840 } 1841 1842 MachineFunctionProperties getRequiredProperties() const override { 1843 return MachineFunctionProperties().set( 1844 MachineFunctionProperties::Property::NoVRegs); 1845 } 1846 1847 private: 1848 /// Track which register units have been modified and used. 1849 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1850 1851 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1852 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1853 /// consists of a pointer to the instruction itself, and a vector of registers 1854 /// referred to by the instruction that overlap the key register unit. 1855 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1856 1857 /// Sink Copy instructions unused in the same block close to their uses in 1858 /// successors. 1859 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1860 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1861 }; 1862 } // namespace 1863 1864 char PostRAMachineSinking::ID = 0; 1865 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1866 1867 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1868 "PostRA Machine Sink", false, false) 1869 1870 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1871 const TargetRegisterInfo *TRI) { 1872 LiveRegUnits LiveInRegUnits(*TRI); 1873 LiveInRegUnits.addLiveIns(MBB); 1874 return !LiveInRegUnits.available(Reg); 1875 } 1876 1877 static MachineBasicBlock * 1878 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1879 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1880 unsigned Reg, const TargetRegisterInfo *TRI) { 1881 // Try to find a single sinkable successor in which Reg is live-in. 1882 MachineBasicBlock *BB = nullptr; 1883 for (auto *SI : SinkableBBs) { 1884 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1885 // If BB is set here, Reg is live-in to at least two sinkable successors, 1886 // so quit. 1887 if (BB) 1888 return nullptr; 1889 BB = SI; 1890 } 1891 } 1892 // Reg is not live-in to any sinkable successors. 1893 if (!BB) 1894 return nullptr; 1895 1896 // Check if any register aliased with Reg is live-in in other successors. 1897 for (auto *SI : CurBB.successors()) { 1898 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1899 return nullptr; 1900 } 1901 return BB; 1902 } 1903 1904 static MachineBasicBlock * 1905 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1906 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1907 ArrayRef<unsigned> DefedRegsInCopy, 1908 const TargetRegisterInfo *TRI) { 1909 MachineBasicBlock *SingleBB = nullptr; 1910 for (auto DefReg : DefedRegsInCopy) { 1911 MachineBasicBlock *BB = 1912 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1913 if (!BB || (SingleBB && SingleBB != BB)) 1914 return nullptr; 1915 SingleBB = BB; 1916 } 1917 return SingleBB; 1918 } 1919 1920 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1921 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1922 LiveRegUnits &UsedRegUnits, 1923 const TargetRegisterInfo *TRI) { 1924 for (auto U : UsedOpsInCopy) { 1925 MachineOperand &MO = MI->getOperand(U); 1926 Register SrcReg = MO.getReg(); 1927 if (!UsedRegUnits.available(SrcReg)) { 1928 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1929 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1930 if (UI.killsRegister(SrcReg, TRI)) { 1931 UI.clearRegisterKills(SrcReg, TRI); 1932 MO.setIsKill(true); 1933 break; 1934 } 1935 } 1936 } 1937 } 1938 } 1939 1940 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1941 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1942 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1943 MachineFunction &MF = *SuccBB->getParent(); 1944 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1945 for (unsigned DefReg : DefedRegsInCopy) 1946 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1947 SuccBB->removeLiveIn(S); 1948 for (auto U : UsedOpsInCopy) { 1949 Register SrcReg = MI->getOperand(U).getReg(); 1950 LaneBitmask Mask; 1951 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) 1952 Mask |= (*S).second; 1953 SuccBB->addLiveIn(SrcReg, Mask); 1954 } 1955 SuccBB->sortUniqueLiveIns(); 1956 } 1957 1958 static bool hasRegisterDependency(MachineInstr *MI, 1959 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1960 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1961 LiveRegUnits &ModifiedRegUnits, 1962 LiveRegUnits &UsedRegUnits) { 1963 bool HasRegDependency = false; 1964 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1965 MachineOperand &MO = MI->getOperand(i); 1966 if (!MO.isReg()) 1967 continue; 1968 Register Reg = MO.getReg(); 1969 if (!Reg) 1970 continue; 1971 if (MO.isDef()) { 1972 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1973 HasRegDependency = true; 1974 break; 1975 } 1976 DefedRegsInCopy.push_back(Reg); 1977 1978 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1979 // For example, we can ignore modifications in reg with undef. However, 1980 // it's not perfectly clear if skipping the internal read is safe in all 1981 // other targets. 1982 } else if (MO.isUse()) { 1983 if (!ModifiedRegUnits.available(Reg)) { 1984 HasRegDependency = true; 1985 break; 1986 } 1987 UsedOpsInCopy.push_back(i); 1988 } 1989 } 1990 return HasRegDependency; 1991 } 1992 1993 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1994 MachineFunction &MF, 1995 const TargetRegisterInfo *TRI, 1996 const TargetInstrInfo *TII) { 1997 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1998 // FIXME: For now, we sink only to a successor which has a single predecessor 1999 // so that we can directly sink COPY instructions to the successor without 2000 // adding any new block or branch instruction. 2001 for (MachineBasicBlock *SI : CurBB.successors()) 2002 if (!SI->livein_empty() && SI->pred_size() == 1) 2003 SinkableBBs.insert(SI); 2004 2005 if (SinkableBBs.empty()) 2006 return false; 2007 2008 bool Changed = false; 2009 2010 // Track which registers have been modified and used between the end of the 2011 // block and the current instruction. 2012 ModifiedRegUnits.clear(); 2013 UsedRegUnits.clear(); 2014 SeenDbgInstrs.clear(); 2015 2016 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2017 // Track the operand index for use in Copy. 2018 SmallVector<unsigned, 2> UsedOpsInCopy; 2019 // Track the register number defed in Copy. 2020 SmallVector<unsigned, 2> DefedRegsInCopy; 2021 2022 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2023 // for DBG_VALUEs later, record them when they're encountered. 2024 if (MI.isDebugValue() && !MI.isDebugRef()) { 2025 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2026 bool IsValid = true; 2027 for (MachineOperand &MO : MI.debug_operands()) { 2028 if (MO.isReg() && MO.getReg().isPhysical()) { 2029 // Bail if we can already tell the sink would be rejected, rather 2030 // than needlessly accumulating lots of DBG_VALUEs. 2031 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2032 ModifiedRegUnits, UsedRegUnits)) { 2033 IsValid = false; 2034 break; 2035 } 2036 2037 // Record debug use of each reg unit. 2038 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2039 MIUnits[Unit].push_back(MO.getReg()); 2040 } 2041 } 2042 if (IsValid) { 2043 for (auto &RegOps : MIUnits) 2044 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2045 std::move(RegOps.second)); 2046 } 2047 continue; 2048 } 2049 2050 if (MI.isDebugOrPseudoInstr()) 2051 continue; 2052 2053 // Do not move any instruction across function call. 2054 if (MI.isCall()) 2055 return false; 2056 2057 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2058 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2059 TRI); 2060 continue; 2061 } 2062 2063 // Don't sink the COPY if it would violate a register dependency. 2064 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2065 ModifiedRegUnits, UsedRegUnits)) { 2066 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2067 TRI); 2068 continue; 2069 } 2070 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2071 "Unexpect SrcReg or DefReg"); 2072 MachineBasicBlock *SuccBB = 2073 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2074 // Don't sink if we cannot find a single sinkable successor in which Reg 2075 // is live-in. 2076 if (!SuccBB) { 2077 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2078 TRI); 2079 continue; 2080 } 2081 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2082 "Unexpected predecessor"); 2083 2084 // Collect DBG_VALUEs that must sink with this copy. We've previously 2085 // recorded which reg units that DBG_VALUEs read, if this instruction 2086 // writes any of those units then the corresponding DBG_VALUEs must sink. 2087 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2088 for (auto &MO : MI.all_defs()) { 2089 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2090 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2091 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2092 for (unsigned Reg : MIRegs.second) 2093 Regs.push_back(Reg); 2094 } 2095 } 2096 } 2097 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2098 2099 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2100 2101 MachineBasicBlock::iterator InsertPos = 2102 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2103 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2104 LLVM_DEBUG( 2105 dbgs() << " *** Not sinking: prologue interference\n"); 2106 continue; 2107 } 2108 2109 // Clear the kill flag if SrcReg is killed between MI and the end of the 2110 // block. 2111 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2112 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2113 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2114 2115 Changed = true; 2116 ++NumPostRACopySink; 2117 } 2118 return Changed; 2119 } 2120 2121 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2122 if (skipFunction(MF.getFunction())) 2123 return false; 2124 2125 bool Changed = false; 2126 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2127 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2128 2129 ModifiedRegUnits.init(*TRI); 2130 UsedRegUnits.init(*TRI); 2131 for (auto &BB : MF) 2132 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2133 2134 return Changed; 2135 } 2136