xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision 2bea69bf6503ffc9f3cde9a52b5dac1a25e94e1c)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <map>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "machine-sink"
56 
57 static cl::opt<bool>
58 SplitEdges("machine-sink-split",
59            cl::desc("Split critical edges during machine sinking"),
60            cl::init(true), cl::Hidden);
61 
62 static cl::opt<bool>
63 UseBlockFreqInfo("machine-sink-bfi",
64            cl::desc("Use block frequency info to find successors to sink"),
65            cl::init(true), cl::Hidden);
66 
67 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
68     "machine-sink-split-probability-threshold",
69     cl::desc(
70         "Percentage threshold for splitting single-instruction critical edge. "
71         "If the branch threshold is higher than this threshold, we allow "
72         "speculative execution of up to 1 instruction to avoid branching to "
73         "splitted critical edge"),
74     cl::init(40), cl::Hidden);
75 
76 STATISTIC(NumSunk,      "Number of machine instructions sunk");
77 STATISTIC(NumSplit,     "Number of critical edges split");
78 STATISTIC(NumCoalesces, "Number of copies coalesced");
79 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
80 
81 namespace {
82 
83   class MachineSinking : public MachineFunctionPass {
84     const TargetInstrInfo *TII;
85     const TargetRegisterInfo *TRI;
86     MachineRegisterInfo  *MRI;     // Machine register information
87     MachineDominatorTree *DT;      // Machine dominator tree
88     MachinePostDominatorTree *PDT; // Machine post dominator tree
89     MachineLoopInfo *LI;
90     const MachineBlockFrequencyInfo *MBFI;
91     const MachineBranchProbabilityInfo *MBPI;
92     AliasAnalysis *AA;
93 
94     // Remember which edges have been considered for breaking.
95     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
96     CEBCandidates;
97     // Remember which edges we are about to split.
98     // This is different from CEBCandidates since those edges
99     // will be split.
100     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
101 
102     SparseBitVector<> RegsToClearKillFlags;
103 
104     using AllSuccsCache =
105         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
106 
107   public:
108     static char ID; // Pass identification
109 
110     MachineSinking() : MachineFunctionPass(ID) {
111       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
112     }
113 
114     bool runOnMachineFunction(MachineFunction &MF) override;
115 
116     void getAnalysisUsage(AnalysisUsage &AU) const override {
117       AU.setPreservesCFG();
118       MachineFunctionPass::getAnalysisUsage(AU);
119       AU.addRequired<AAResultsWrapperPass>();
120       AU.addRequired<MachineDominatorTree>();
121       AU.addRequired<MachinePostDominatorTree>();
122       AU.addRequired<MachineLoopInfo>();
123       AU.addRequired<MachineBranchProbabilityInfo>();
124       AU.addPreserved<MachineDominatorTree>();
125       AU.addPreserved<MachinePostDominatorTree>();
126       AU.addPreserved<MachineLoopInfo>();
127       if (UseBlockFreqInfo)
128         AU.addRequired<MachineBlockFrequencyInfo>();
129     }
130 
131     void releaseMemory() override {
132       CEBCandidates.clear();
133     }
134 
135   private:
136     bool ProcessBlock(MachineBasicBlock &MBB);
137     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
138                                      MachineBasicBlock *From,
139                                      MachineBasicBlock *To);
140 
141     /// Postpone the splitting of the given critical
142     /// edge (\p From, \p To).
143     ///
144     /// We do not split the edges on the fly. Indeed, this invalidates
145     /// the dominance information and thus triggers a lot of updates
146     /// of that information underneath.
147     /// Instead, we postpone all the splits after each iteration of
148     /// the main loop. That way, the information is at least valid
149     /// for the lifetime of an iteration.
150     ///
151     /// \return True if the edge is marked as toSplit, false otherwise.
152     /// False can be returned if, for instance, this is not profitable.
153     bool PostponeSplitCriticalEdge(MachineInstr &MI,
154                                    MachineBasicBlock *From,
155                                    MachineBasicBlock *To,
156                                    bool BreakPHIEdge);
157     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
158 
159                          AllSuccsCache &AllSuccessors);
160     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
161                                  MachineBasicBlock *DefMBB,
162                                  bool &BreakPHIEdge, bool &LocalUse) const;
163     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
164                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
165     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
166                               MachineBasicBlock *MBB,
167                               MachineBasicBlock *SuccToSinkTo,
168                               AllSuccsCache &AllSuccessors);
169 
170     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
171                                          MachineBasicBlock *MBB);
172 
173     SmallVector<MachineBasicBlock *, 4> &
174     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
175                            AllSuccsCache &AllSuccessors) const;
176   };
177 
178 } // end anonymous namespace
179 
180 char MachineSinking::ID = 0;
181 
182 char &llvm::MachineSinkingID = MachineSinking::ID;
183 
184 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
185                       "Machine code sinking", false, false)
186 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
189 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
190 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
191                     "Machine code sinking", false, false)
192 
193 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
194                                                      MachineBasicBlock *MBB) {
195   if (!MI.isCopy())
196     return false;
197 
198   unsigned SrcReg = MI.getOperand(1).getReg();
199   unsigned DstReg = MI.getOperand(0).getReg();
200   if (!Register::isVirtualRegister(SrcReg) ||
201       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
202     return false;
203 
204   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
205   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
206   if (SRC != DRC)
207     return false;
208 
209   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
210   if (DefMI->isCopyLike())
211     return false;
212   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
213   LLVM_DEBUG(dbgs() << "*** to: " << MI);
214   MRI->replaceRegWith(DstReg, SrcReg);
215   MI.eraseFromParent();
216 
217   // Conservatively, clear any kill flags, since it's possible that they are no
218   // longer correct.
219   MRI->clearKillFlags(SrcReg);
220 
221   ++NumCoalesces;
222   return true;
223 }
224 
225 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
226 /// occur in blocks dominated by the specified block. If any use is in the
227 /// definition block, then return false since it is never legal to move def
228 /// after uses.
229 bool
230 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
231                                         MachineBasicBlock *MBB,
232                                         MachineBasicBlock *DefMBB,
233                                         bool &BreakPHIEdge,
234                                         bool &LocalUse) const {
235   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
236 
237   // Ignore debug uses because debug info doesn't affect the code.
238   if (MRI->use_nodbg_empty(Reg))
239     return true;
240 
241   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
242   // into and they are all PHI nodes. In this case, machine-sink must break
243   // the critical edge first. e.g.
244   //
245   // %bb.1: derived from LLVM BB %bb4.preheader
246   //   Predecessors according to CFG: %bb.0
247   //     ...
248   //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
249   //     ...
250   //     JE_4 <%bb.37>, implicit %eflags
251   //   Successors according to CFG: %bb.37 %bb.2
252   //
253   // %bb.2: derived from LLVM BB %bb.nph
254   //   Predecessors according to CFG: %bb.0 %bb.1
255   //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
256   BreakPHIEdge = true;
257   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
258     MachineInstr *UseInst = MO.getParent();
259     unsigned OpNo = &MO - &UseInst->getOperand(0);
260     MachineBasicBlock *UseBlock = UseInst->getParent();
261     if (!(UseBlock == MBB && UseInst->isPHI() &&
262           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
263       BreakPHIEdge = false;
264       break;
265     }
266   }
267   if (BreakPHIEdge)
268     return true;
269 
270   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
271     // Determine the block of the use.
272     MachineInstr *UseInst = MO.getParent();
273     unsigned OpNo = &MO - &UseInst->getOperand(0);
274     MachineBasicBlock *UseBlock = UseInst->getParent();
275     if (UseInst->isPHI()) {
276       // PHI nodes use the operand in the predecessor block, not the block with
277       // the PHI.
278       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
279     } else if (UseBlock == DefMBB) {
280       LocalUse = true;
281       return false;
282     }
283 
284     // Check that it dominates.
285     if (!DT->dominates(MBB, UseBlock))
286       return false;
287   }
288 
289   return true;
290 }
291 
292 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
293   if (skipFunction(MF.getFunction()))
294     return false;
295 
296   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
297 
298   TII = MF.getSubtarget().getInstrInfo();
299   TRI = MF.getSubtarget().getRegisterInfo();
300   MRI = &MF.getRegInfo();
301   DT = &getAnalysis<MachineDominatorTree>();
302   PDT = &getAnalysis<MachinePostDominatorTree>();
303   LI = &getAnalysis<MachineLoopInfo>();
304   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
305   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
306   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
307 
308   bool EverMadeChange = false;
309 
310   while (true) {
311     bool MadeChange = false;
312 
313     // Process all basic blocks.
314     CEBCandidates.clear();
315     ToSplit.clear();
316     for (auto &MBB: MF)
317       MadeChange |= ProcessBlock(MBB);
318 
319     // If we have anything we marked as toSplit, split it now.
320     for (auto &Pair : ToSplit) {
321       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
322       if (NewSucc != nullptr) {
323         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
324                           << printMBBReference(*Pair.first) << " -- "
325                           << printMBBReference(*NewSucc) << " -- "
326                           << printMBBReference(*Pair.second) << '\n');
327         MadeChange = true;
328         ++NumSplit;
329       } else
330         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
331     }
332     // If this iteration over the code changed anything, keep iterating.
333     if (!MadeChange) break;
334     EverMadeChange = true;
335   }
336 
337   // Now clear any kill flags for recorded registers.
338   for (auto I : RegsToClearKillFlags)
339     MRI->clearKillFlags(I);
340   RegsToClearKillFlags.clear();
341 
342   return EverMadeChange;
343 }
344 
345 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
346   // Can't sink anything out of a block that has less than two successors.
347   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
348 
349   // Don't bother sinking code out of unreachable blocks. In addition to being
350   // unprofitable, it can also lead to infinite looping, because in an
351   // unreachable loop there may be nowhere to stop.
352   if (!DT->isReachableFromEntry(&MBB)) return false;
353 
354   bool MadeChange = false;
355 
356   // Cache all successors, sorted by frequency info and loop depth.
357   AllSuccsCache AllSuccessors;
358 
359   // Walk the basic block bottom-up.  Remember if we saw a store.
360   MachineBasicBlock::iterator I = MBB.end();
361   --I;
362   bool ProcessedBegin, SawStore = false;
363   do {
364     MachineInstr &MI = *I;  // The instruction to sink.
365 
366     // Predecrement I (if it's not begin) so that it isn't invalidated by
367     // sinking.
368     ProcessedBegin = I == MBB.begin();
369     if (!ProcessedBegin)
370       --I;
371 
372     if (MI.isDebugInstr())
373       continue;
374 
375     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
376     if (Joined) {
377       MadeChange = true;
378       continue;
379     }
380 
381     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
382       ++NumSunk;
383       MadeChange = true;
384     }
385 
386     // If we just processed the first instruction in the block, we're done.
387   } while (!ProcessedBegin);
388 
389   return MadeChange;
390 }
391 
392 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
393                                                  MachineBasicBlock *From,
394                                                  MachineBasicBlock *To) {
395   // FIXME: Need much better heuristics.
396 
397   // If the pass has already considered breaking this edge (during this pass
398   // through the function), then let's go ahead and break it. This means
399   // sinking multiple "cheap" instructions into the same block.
400   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
401     return true;
402 
403   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
404     return true;
405 
406   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
407       BranchProbability(SplitEdgeProbabilityThreshold, 100))
408     return true;
409 
410   // MI is cheap, we probably don't want to break the critical edge for it.
411   // However, if this would allow some definitions of its source operands
412   // to be sunk then it's probably worth it.
413   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
414     const MachineOperand &MO = MI.getOperand(i);
415     if (!MO.isReg() || !MO.isUse())
416       continue;
417     unsigned Reg = MO.getReg();
418     if (Reg == 0)
419       continue;
420 
421     // We don't move live definitions of physical registers,
422     // so sinking their uses won't enable any opportunities.
423     if (Register::isPhysicalRegister(Reg))
424       continue;
425 
426     // If this instruction is the only user of a virtual register,
427     // check if breaking the edge will enable sinking
428     // both this instruction and the defining instruction.
429     if (MRI->hasOneNonDBGUse(Reg)) {
430       // If the definition resides in same MBB,
431       // claim it's likely we can sink these together.
432       // If definition resides elsewhere, we aren't
433       // blocking it from being sunk so don't break the edge.
434       MachineInstr *DefMI = MRI->getVRegDef(Reg);
435       if (DefMI->getParent() == MI.getParent())
436         return true;
437     }
438   }
439 
440   return false;
441 }
442 
443 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
444                                                MachineBasicBlock *FromBB,
445                                                MachineBasicBlock *ToBB,
446                                                bool BreakPHIEdge) {
447   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
448     return false;
449 
450   // Avoid breaking back edge. From == To means backedge for single BB loop.
451   if (!SplitEdges || FromBB == ToBB)
452     return false;
453 
454   // Check for backedges of more "complex" loops.
455   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
456       LI->isLoopHeader(ToBB))
457     return false;
458 
459   // It's not always legal to break critical edges and sink the computation
460   // to the edge.
461   //
462   // %bb.1:
463   // v1024
464   // Beq %bb.3
465   // <fallthrough>
466   // %bb.2:
467   // ... no uses of v1024
468   // <fallthrough>
469   // %bb.3:
470   // ...
471   //       = v1024
472   //
473   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
474   //
475   // %bb.1:
476   // ...
477   // Bne %bb.2
478   // %bb.4:
479   // v1024 =
480   // B %bb.3
481   // %bb.2:
482   // ... no uses of v1024
483   // <fallthrough>
484   // %bb.3:
485   // ...
486   //       = v1024
487   //
488   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
489   // flow. We need to ensure the new basic block where the computation is
490   // sunk to dominates all the uses.
491   // It's only legal to break critical edge and sink the computation to the
492   // new block if all the predecessors of "To", except for "From", are
493   // not dominated by "From". Given SSA property, this means these
494   // predecessors are dominated by "To".
495   //
496   // There is no need to do this check if all the uses are PHI nodes. PHI
497   // sources are only defined on the specific predecessor edges.
498   if (!BreakPHIEdge) {
499     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
500            E = ToBB->pred_end(); PI != E; ++PI) {
501       if (*PI == FromBB)
502         continue;
503       if (!DT->dominates(ToBB, *PI))
504         return false;
505     }
506   }
507 
508   ToSplit.insert(std::make_pair(FromBB, ToBB));
509 
510   return true;
511 }
512 
513 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
514 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
515                                           MachineBasicBlock *MBB,
516                                           MachineBasicBlock *SuccToSinkTo,
517                                           AllSuccsCache &AllSuccessors) {
518   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
519 
520   if (MBB == SuccToSinkTo)
521     return false;
522 
523   // It is profitable if SuccToSinkTo does not post dominate current block.
524   if (!PDT->dominates(SuccToSinkTo, MBB))
525     return true;
526 
527   // It is profitable to sink an instruction from a deeper loop to a shallower
528   // loop, even if the latter post-dominates the former (PR21115).
529   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
530     return true;
531 
532   // Check if only use in post dominated block is PHI instruction.
533   bool NonPHIUse = false;
534   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
535     MachineBasicBlock *UseBlock = UseInst.getParent();
536     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
537       NonPHIUse = true;
538   }
539   if (!NonPHIUse)
540     return true;
541 
542   // If SuccToSinkTo post dominates then also it may be profitable if MI
543   // can further profitably sinked into another block in next round.
544   bool BreakPHIEdge = false;
545   // FIXME - If finding successor is compile time expensive then cache results.
546   if (MachineBasicBlock *MBB2 =
547           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
548     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
549 
550   // If SuccToSinkTo is final destination and it is a post dominator of current
551   // block then it is not profitable to sink MI into SuccToSinkTo block.
552   return false;
553 }
554 
555 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
556 /// computing it if it was not already cached.
557 SmallVector<MachineBasicBlock *, 4> &
558 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
559                                        AllSuccsCache &AllSuccessors) const {
560   // Do we have the sorted successors in cache ?
561   auto Succs = AllSuccessors.find(MBB);
562   if (Succs != AllSuccessors.end())
563     return Succs->second;
564 
565   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
566                                                MBB->succ_end());
567 
568   // Handle cases where sinking can happen but where the sink point isn't a
569   // successor. For example:
570   //
571   //   x = computation
572   //   if () {} else {}
573   //   use x
574   //
575   const std::vector<MachineDomTreeNode *> &Children =
576     DT->getNode(MBB)->getChildren();
577   for (const auto &DTChild : Children)
578     // DomTree children of MBB that have MBB as immediate dominator are added.
579     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
580         // Skip MBBs already added to the AllSuccs vector above.
581         !MBB->isSuccessor(DTChild->getBlock()))
582       AllSuccs.push_back(DTChild->getBlock());
583 
584   // Sort Successors according to their loop depth or block frequency info.
585   llvm::stable_sort(
586       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
587         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
588         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
589         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
590         return HasBlockFreq ? LHSFreq < RHSFreq
591                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
592       });
593 
594   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
595 
596   return it.first->second;
597 }
598 
599 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
600 MachineBasicBlock *
601 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
602                                  bool &BreakPHIEdge,
603                                  AllSuccsCache &AllSuccessors) {
604   assert (MBB && "Invalid MachineBasicBlock!");
605 
606   // Loop over all the operands of the specified instruction.  If there is
607   // anything we can't handle, bail out.
608 
609   // SuccToSinkTo - This is the successor to sink this instruction to, once we
610   // decide.
611   MachineBasicBlock *SuccToSinkTo = nullptr;
612   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
613     const MachineOperand &MO = MI.getOperand(i);
614     if (!MO.isReg()) continue;  // Ignore non-register operands.
615 
616     unsigned Reg = MO.getReg();
617     if (Reg == 0) continue;
618 
619     if (Register::isPhysicalRegister(Reg)) {
620       if (MO.isUse()) {
621         // If the physreg has no defs anywhere, it's just an ambient register
622         // and we can freely move its uses. Alternatively, if it's allocatable,
623         // it could get allocated to something with a def during allocation.
624         if (!MRI->isConstantPhysReg(Reg))
625           return nullptr;
626       } else if (!MO.isDead()) {
627         // A def that isn't dead. We can't move it.
628         return nullptr;
629       }
630     } else {
631       // Virtual register uses are always safe to sink.
632       if (MO.isUse()) continue;
633 
634       // If it's not safe to move defs of the register class, then abort.
635       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
636         return nullptr;
637 
638       // Virtual register defs can only be sunk if all their uses are in blocks
639       // dominated by one of the successors.
640       if (SuccToSinkTo) {
641         // If a previous operand picked a block to sink to, then this operand
642         // must be sinkable to the same block.
643         bool LocalUse = false;
644         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
645                                      BreakPHIEdge, LocalUse))
646           return nullptr;
647 
648         continue;
649       }
650 
651       // Otherwise, we should look at all the successors and decide which one
652       // we should sink to. If we have reliable block frequency information
653       // (frequency != 0) available, give successors with smaller frequencies
654       // higher priority, otherwise prioritize smaller loop depths.
655       for (MachineBasicBlock *SuccBlock :
656            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
657         bool LocalUse = false;
658         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
659                                     BreakPHIEdge, LocalUse)) {
660           SuccToSinkTo = SuccBlock;
661           break;
662         }
663         if (LocalUse)
664           // Def is used locally, it's never safe to move this def.
665           return nullptr;
666       }
667 
668       // If we couldn't find a block to sink to, ignore this instruction.
669       if (!SuccToSinkTo)
670         return nullptr;
671       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
672         return nullptr;
673     }
674   }
675 
676   // It is not possible to sink an instruction into its own block.  This can
677   // happen with loops.
678   if (MBB == SuccToSinkTo)
679     return nullptr;
680 
681   // It's not safe to sink instructions to EH landing pad. Control flow into
682   // landing pad is implicitly defined.
683   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
684     return nullptr;
685 
686   return SuccToSinkTo;
687 }
688 
689 /// Return true if MI is likely to be usable as a memory operation by the
690 /// implicit null check optimization.
691 ///
692 /// This is a "best effort" heuristic, and should not be relied upon for
693 /// correctness.  This returning true does not guarantee that the implicit null
694 /// check optimization is legal over MI, and this returning false does not
695 /// guarantee MI cannot possibly be used to do a null check.
696 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
697                                              const TargetInstrInfo *TII,
698                                              const TargetRegisterInfo *TRI) {
699   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
700 
701   auto *MBB = MI.getParent();
702   if (MBB->pred_size() != 1)
703     return false;
704 
705   auto *PredMBB = *MBB->pred_begin();
706   auto *PredBB = PredMBB->getBasicBlock();
707 
708   // Frontends that don't use implicit null checks have no reason to emit
709   // branches with make.implicit metadata, and this function should always
710   // return false for them.
711   if (!PredBB ||
712       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
713     return false;
714 
715   const MachineOperand *BaseOp;
716   int64_t Offset;
717   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
718     return false;
719 
720   if (!BaseOp->isReg())
721     return false;
722 
723   if (!(MI.mayLoad() && !MI.isPredicable()))
724     return false;
725 
726   MachineBranchPredicate MBP;
727   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
728     return false;
729 
730   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
731          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
732           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
733          MBP.LHS.getReg() == BaseOp->getReg();
734 }
735 
736 /// Sink an instruction and its associated debug instructions. If the debug
737 /// instructions to be sunk are already known, they can be provided in DbgVals.
738 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
739                         MachineBasicBlock::iterator InsertPos,
740                         SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
741   // If debug values are provided use those, otherwise call collectDebugValues.
742   SmallVector<MachineInstr *, 2> DbgValuesToSink;
743   if (DbgVals)
744     DbgValuesToSink.insert(DbgValuesToSink.begin(),
745                            DbgVals->begin(), DbgVals->end());
746   else
747     MI.collectDebugValues(DbgValuesToSink);
748 
749   // If we cannot find a location to use (merge with), then we erase the debug
750   // location to prevent debug-info driven tools from potentially reporting
751   // wrong location information.
752   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
753     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
754                                                  InsertPos->getDebugLoc()));
755   else
756     MI.setDebugLoc(DebugLoc());
757 
758   // Move the instruction.
759   MachineBasicBlock *ParentBlock = MI.getParent();
760   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
761                       ++MachineBasicBlock::iterator(MI));
762 
763   // Move previously adjacent debug value instructions to the insert position.
764   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
765                                                  DBE = DbgValuesToSink.end();
766        DBI != DBE; ++DBI) {
767     MachineInstr *DbgMI = *DBI;
768     SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
769                         ++MachineBasicBlock::iterator(DbgMI));
770   }
771 }
772 
773 /// SinkInstruction - Determine whether it is safe to sink the specified machine
774 /// instruction out of its current block into a successor.
775 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
776                                      AllSuccsCache &AllSuccessors) {
777   // Don't sink instructions that the target prefers not to sink.
778   if (!TII->shouldSink(MI))
779     return false;
780 
781   // Check if it's safe to move the instruction.
782   if (!MI.isSafeToMove(AA, SawStore))
783     return false;
784 
785   // Convergent operations may not be made control-dependent on additional
786   // values.
787   if (MI.isConvergent())
788     return false;
789 
790   // Don't break implicit null checks.  This is a performance heuristic, and not
791   // required for correctness.
792   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
793     return false;
794 
795   // FIXME: This should include support for sinking instructions within the
796   // block they are currently in to shorten the live ranges.  We often get
797   // instructions sunk into the top of a large block, but it would be better to
798   // also sink them down before their first use in the block.  This xform has to
799   // be careful not to *increase* register pressure though, e.g. sinking
800   // "x = y + z" down if it kills y and z would increase the live ranges of y
801   // and z and only shrink the live range of x.
802 
803   bool BreakPHIEdge = false;
804   MachineBasicBlock *ParentBlock = MI.getParent();
805   MachineBasicBlock *SuccToSinkTo =
806       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
807 
808   // If there are no outputs, it must have side-effects.
809   if (!SuccToSinkTo)
810     return false;
811 
812   // If the instruction to move defines a dead physical register which is live
813   // when leaving the basic block, don't move it because it could turn into a
814   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
815   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
816     const MachineOperand &MO = MI.getOperand(I);
817     if (!MO.isReg()) continue;
818     unsigned Reg = MO.getReg();
819     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
820       continue;
821     if (SuccToSinkTo->isLiveIn(Reg))
822       return false;
823   }
824 
825   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
826 
827   // If the block has multiple predecessors, this is a critical edge.
828   // Decide if we can sink along it or need to break the edge.
829   if (SuccToSinkTo->pred_size() > 1) {
830     // We cannot sink a load across a critical edge - there may be stores in
831     // other code paths.
832     bool TryBreak = false;
833     bool store = true;
834     if (!MI.isSafeToMove(AA, store)) {
835       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
836       TryBreak = true;
837     }
838 
839     // We don't want to sink across a critical edge if we don't dominate the
840     // successor. We could be introducing calculations to new code paths.
841     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
842       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
843       TryBreak = true;
844     }
845 
846     // Don't sink instructions into a loop.
847     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
848       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
849       TryBreak = true;
850     }
851 
852     // Otherwise we are OK with sinking along a critical edge.
853     if (!TryBreak)
854       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
855     else {
856       // Mark this edge as to be split.
857       // If the edge can actually be split, the next iteration of the main loop
858       // will sink MI in the newly created block.
859       bool Status =
860         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
861       if (!Status)
862         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
863                              "break critical edge\n");
864       // The instruction will not be sunk this time.
865       return false;
866     }
867   }
868 
869   if (BreakPHIEdge) {
870     // BreakPHIEdge is true if all the uses are in the successor MBB being
871     // sunken into and they are all PHI nodes. In this case, machine-sink must
872     // break the critical edge first.
873     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
874                                             SuccToSinkTo, BreakPHIEdge);
875     if (!Status)
876       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
877                            "break critical edge\n");
878     // The instruction will not be sunk this time.
879     return false;
880   }
881 
882   // Determine where to insert into. Skip phi nodes.
883   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
884   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
885     ++InsertPos;
886 
887   performSink(MI, *SuccToSinkTo, InsertPos);
888 
889   // Conservatively, clear any kill flags, since it's possible that they are no
890   // longer correct.
891   // Note that we have to clear the kill flags for any register this instruction
892   // uses as we may sink over another instruction which currently kills the
893   // used registers.
894   for (MachineOperand &MO : MI.operands()) {
895     if (MO.isReg() && MO.isUse())
896       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
897   }
898 
899   return true;
900 }
901 
902 //===----------------------------------------------------------------------===//
903 // This pass is not intended to be a replacement or a complete alternative
904 // for the pre-ra machine sink pass. It is only designed to sink COPY
905 // instructions which should be handled after RA.
906 //
907 // This pass sinks COPY instructions into a successor block, if the COPY is not
908 // used in the current block and the COPY is live-in to a single successor
909 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
910 // copy on paths where their results aren't needed.  This also exposes
911 // additional opportunites for dead copy elimination and shrink wrapping.
912 //
913 // These copies were either not handled by or are inserted after the MachineSink
914 // pass. As an example of the former case, the MachineSink pass cannot sink
915 // COPY instructions with allocatable source registers; for AArch64 these type
916 // of copy instructions are frequently used to move function parameters (PhyReg)
917 // into virtual registers in the entry block.
918 //
919 // For the machine IR below, this pass will sink %w19 in the entry into its
920 // successor (%bb.1) because %w19 is only live-in in %bb.1.
921 // %bb.0:
922 //   %wzr = SUBSWri %w1, 1
923 //   %w19 = COPY %w0
924 //   Bcc 11, %bb.2
925 // %bb.1:
926 //   Live Ins: %w19
927 //   BL @fun
928 //   %w0 = ADDWrr %w0, %w19
929 //   RET %w0
930 // %bb.2:
931 //   %w0 = COPY %wzr
932 //   RET %w0
933 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
934 // able to see %bb.0 as a candidate.
935 //===----------------------------------------------------------------------===//
936 namespace {
937 
938 class PostRAMachineSinking : public MachineFunctionPass {
939 public:
940   bool runOnMachineFunction(MachineFunction &MF) override;
941 
942   static char ID;
943   PostRAMachineSinking() : MachineFunctionPass(ID) {}
944   StringRef getPassName() const override { return "PostRA Machine Sink"; }
945 
946   void getAnalysisUsage(AnalysisUsage &AU) const override {
947     AU.setPreservesCFG();
948     MachineFunctionPass::getAnalysisUsage(AU);
949   }
950 
951   MachineFunctionProperties getRequiredProperties() const override {
952     return MachineFunctionProperties().set(
953         MachineFunctionProperties::Property::NoVRegs);
954   }
955 
956 private:
957   /// Track which register units have been modified and used.
958   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
959 
960   /// Track DBG_VALUEs of (unmodified) register units.
961   DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
962 
963   /// Sink Copy instructions unused in the same block close to their uses in
964   /// successors.
965   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
966                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
967 };
968 } // namespace
969 
970 char PostRAMachineSinking::ID = 0;
971 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
972 
973 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
974                 "PostRA Machine Sink", false, false)
975 
976 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
977                                   const TargetRegisterInfo *TRI) {
978   LiveRegUnits LiveInRegUnits(*TRI);
979   LiveInRegUnits.addLiveIns(MBB);
980   return !LiveInRegUnits.available(Reg);
981 }
982 
983 static MachineBasicBlock *
984 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
985                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
986                       unsigned Reg, const TargetRegisterInfo *TRI) {
987   // Try to find a single sinkable successor in which Reg is live-in.
988   MachineBasicBlock *BB = nullptr;
989   for (auto *SI : SinkableBBs) {
990     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
991       // If BB is set here, Reg is live-in to at least two sinkable successors,
992       // so quit.
993       if (BB)
994         return nullptr;
995       BB = SI;
996     }
997   }
998   // Reg is not live-in to any sinkable successors.
999   if (!BB)
1000     return nullptr;
1001 
1002   // Check if any register aliased with Reg is live-in in other successors.
1003   for (auto *SI : CurBB.successors()) {
1004     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1005       return nullptr;
1006   }
1007   return BB;
1008 }
1009 
1010 static MachineBasicBlock *
1011 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1012                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1013                       ArrayRef<unsigned> DefedRegsInCopy,
1014                       const TargetRegisterInfo *TRI) {
1015   MachineBasicBlock *SingleBB = nullptr;
1016   for (auto DefReg : DefedRegsInCopy) {
1017     MachineBasicBlock *BB =
1018         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1019     if (!BB || (SingleBB && SingleBB != BB))
1020       return nullptr;
1021     SingleBB = BB;
1022   }
1023   return SingleBB;
1024 }
1025 
1026 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1027                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1028                            LiveRegUnits &UsedRegUnits,
1029                            const TargetRegisterInfo *TRI) {
1030   for (auto U : UsedOpsInCopy) {
1031     MachineOperand &MO = MI->getOperand(U);
1032     unsigned SrcReg = MO.getReg();
1033     if (!UsedRegUnits.available(SrcReg)) {
1034       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1035       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1036         if (UI.killsRegister(SrcReg, TRI)) {
1037           UI.clearRegisterKills(SrcReg, TRI);
1038           MO.setIsKill(true);
1039           break;
1040         }
1041       }
1042     }
1043   }
1044 }
1045 
1046 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1047                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1048                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1049   MachineFunction &MF = *SuccBB->getParent();
1050   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1051   for (unsigned DefReg : DefedRegsInCopy)
1052     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1053       SuccBB->removeLiveIn(*S);
1054   for (auto U : UsedOpsInCopy) {
1055     unsigned Reg = MI->getOperand(U).getReg();
1056     if (!SuccBB->isLiveIn(Reg))
1057       SuccBB->addLiveIn(Reg);
1058   }
1059 }
1060 
1061 static bool hasRegisterDependency(MachineInstr *MI,
1062                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1063                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1064                                   LiveRegUnits &ModifiedRegUnits,
1065                                   LiveRegUnits &UsedRegUnits) {
1066   bool HasRegDependency = false;
1067   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1068     MachineOperand &MO = MI->getOperand(i);
1069     if (!MO.isReg())
1070       continue;
1071     unsigned Reg = MO.getReg();
1072     if (!Reg)
1073       continue;
1074     if (MO.isDef()) {
1075       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1076         HasRegDependency = true;
1077         break;
1078       }
1079       DefedRegsInCopy.push_back(Reg);
1080 
1081       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1082       // For example, we can ignore modifications in reg with undef. However,
1083       // it's not perfectly clear if skipping the internal read is safe in all
1084       // other targets.
1085     } else if (MO.isUse()) {
1086       if (!ModifiedRegUnits.available(Reg)) {
1087         HasRegDependency = true;
1088         break;
1089       }
1090       UsedOpsInCopy.push_back(i);
1091     }
1092   }
1093   return HasRegDependency;
1094 }
1095 
1096 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1097                                          MachineFunction &MF,
1098                                          const TargetRegisterInfo *TRI,
1099                                          const TargetInstrInfo *TII) {
1100   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1101   // FIXME: For now, we sink only to a successor which has a single predecessor
1102   // so that we can directly sink COPY instructions to the successor without
1103   // adding any new block or branch instruction.
1104   for (MachineBasicBlock *SI : CurBB.successors())
1105     if (!SI->livein_empty() && SI->pred_size() == 1)
1106       SinkableBBs.insert(SI);
1107 
1108   if (SinkableBBs.empty())
1109     return false;
1110 
1111   bool Changed = false;
1112 
1113   // Track which registers have been modified and used between the end of the
1114   // block and the current instruction.
1115   ModifiedRegUnits.clear();
1116   UsedRegUnits.clear();
1117   SeenDbgInstrs.clear();
1118 
1119   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1120     MachineInstr *MI = &*I;
1121     ++I;
1122 
1123     // Track the operand index for use in Copy.
1124     SmallVector<unsigned, 2> UsedOpsInCopy;
1125     // Track the register number defed in Copy.
1126     SmallVector<unsigned, 2> DefedRegsInCopy;
1127 
1128     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1129     // for DBG_VALUEs later, record them when they're encountered.
1130     if (MI->isDebugValue()) {
1131       auto &MO = MI->getOperand(0);
1132       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1133         // Bail if we can already tell the sink would be rejected, rather
1134         // than needlessly accumulating lots of DBG_VALUEs.
1135         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1136                                   ModifiedRegUnits, UsedRegUnits))
1137           continue;
1138 
1139         // Record debug use of this register.
1140         SeenDbgInstrs[MO.getReg()].push_back(MI);
1141       }
1142       continue;
1143     }
1144 
1145     if (MI->isDebugInstr())
1146       continue;
1147 
1148     // Do not move any instruction across function call.
1149     if (MI->isCall())
1150       return false;
1151 
1152     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1153       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1154                                         TRI);
1155       continue;
1156     }
1157 
1158     // Don't sink the COPY if it would violate a register dependency.
1159     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1160                               ModifiedRegUnits, UsedRegUnits)) {
1161       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1162                                         TRI);
1163       continue;
1164     }
1165     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1166            "Unexpect SrcReg or DefReg");
1167     MachineBasicBlock *SuccBB =
1168         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1169     // Don't sink if we cannot find a single sinkable successor in which Reg
1170     // is live-in.
1171     if (!SuccBB) {
1172       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1173                                         TRI);
1174       continue;
1175     }
1176     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1177            "Unexpected predecessor");
1178 
1179     // Collect DBG_VALUEs that must sink with this copy.
1180     SmallVector<MachineInstr *, 4> DbgValsToSink;
1181     for (auto &MO : MI->operands()) {
1182       if (!MO.isReg() || !MO.isDef())
1183         continue;
1184       unsigned reg = MO.getReg();
1185       for (auto *MI : SeenDbgInstrs.lookup(reg))
1186         DbgValsToSink.push_back(MI);
1187     }
1188 
1189     // Clear the kill flag if SrcReg is killed between MI and the end of the
1190     // block.
1191     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1192     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1193     performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1194     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1195 
1196     Changed = true;
1197     ++NumPostRACopySink;
1198   }
1199   return Changed;
1200 }
1201 
1202 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1203   if (skipFunction(MF.getFunction()))
1204     return false;
1205 
1206   bool Changed = false;
1207   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1208   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1209 
1210   ModifiedRegUnits.init(*TRI);
1211   UsedRegUnits.init(*TRI);
1212   for (auto &BB : MF)
1213     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1214 
1215   return Changed;
1216 }
1217