1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <map> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machine-sink" 60 61 static cl::opt<bool> 62 SplitEdges("machine-sink-split", 63 cl::desc("Split critical edges during machine sinking"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 UseBlockFreqInfo("machine-sink-bfi", 68 cl::desc("Use block frequency info to find successors to sink"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 72 "machine-sink-split-probability-threshold", 73 cl::desc( 74 "Percentage threshold for splitting single-instruction critical edge. " 75 "If the branch threshold is higher than this threshold, we allow " 76 "speculative execution of up to 1 instruction to avoid branching to " 77 "splitted critical edge"), 78 cl::init(40), cl::Hidden); 79 80 STATISTIC(NumSunk, "Number of machine instructions sunk"); 81 STATISTIC(NumSplit, "Number of critical edges split"); 82 STATISTIC(NumCoalesces, "Number of copies coalesced"); 83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 84 85 namespace { 86 87 class MachineSinking : public MachineFunctionPass { 88 const TargetInstrInfo *TII; 89 const TargetRegisterInfo *TRI; 90 MachineRegisterInfo *MRI; // Machine register information 91 MachineDominatorTree *DT; // Machine dominator tree 92 MachinePostDominatorTree *PDT; // Machine post dominator tree 93 MachineLoopInfo *LI; 94 MachineBlockFrequencyInfo *MBFI; 95 const MachineBranchProbabilityInfo *MBPI; 96 AliasAnalysis *AA; 97 98 // Remember which edges have been considered for breaking. 99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 100 CEBCandidates; 101 // Remember which edges we are about to split. 102 // This is different from CEBCandidates since those edges 103 // will be split. 104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 105 106 SparseBitVector<> RegsToClearKillFlags; 107 108 using AllSuccsCache = 109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 110 111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 112 /// post-dominated by another DBG_VALUE of the same variable location. 113 /// This is necessary to detect sequences such as: 114 /// %0 = someinst 115 /// DBG_VALUE %0, !123, !DIExpression() 116 /// %1 = anotherinst 117 /// DBG_VALUE %1, !123, !DIExpression() 118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 119 /// would re-order assignments. 120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 121 122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 123 /// debug instructions to sink. 124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 125 126 /// Record of debug variables that have had their locations set in the 127 /// current block. 128 DenseSet<DebugVariable> SeenDbgVars; 129 130 public: 131 static char ID; // Pass identification 132 133 MachineSinking() : MachineFunctionPass(ID) { 134 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 135 } 136 137 bool runOnMachineFunction(MachineFunction &MF) override; 138 139 void getAnalysisUsage(AnalysisUsage &AU) const override { 140 MachineFunctionPass::getAnalysisUsage(AU); 141 AU.addRequired<AAResultsWrapperPass>(); 142 AU.addRequired<MachineDominatorTree>(); 143 AU.addRequired<MachinePostDominatorTree>(); 144 AU.addRequired<MachineLoopInfo>(); 145 AU.addRequired<MachineBranchProbabilityInfo>(); 146 AU.addPreserved<MachineLoopInfo>(); 147 if (UseBlockFreqInfo) 148 AU.addRequired<MachineBlockFrequencyInfo>(); 149 } 150 151 void releaseMemory() override { 152 CEBCandidates.clear(); 153 } 154 155 private: 156 bool ProcessBlock(MachineBasicBlock &MBB); 157 void ProcessDbgInst(MachineInstr &MI); 158 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 159 MachineBasicBlock *From, 160 MachineBasicBlock *To); 161 162 /// Postpone the splitting of the given critical 163 /// edge (\p From, \p To). 164 /// 165 /// We do not split the edges on the fly. Indeed, this invalidates 166 /// the dominance information and thus triggers a lot of updates 167 /// of that information underneath. 168 /// Instead, we postpone all the splits after each iteration of 169 /// the main loop. That way, the information is at least valid 170 /// for the lifetime of an iteration. 171 /// 172 /// \return True if the edge is marked as toSplit, false otherwise. 173 /// False can be returned if, for instance, this is not profitable. 174 bool PostponeSplitCriticalEdge(MachineInstr &MI, 175 MachineBasicBlock *From, 176 MachineBasicBlock *To, 177 bool BreakPHIEdge); 178 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 179 AllSuccsCache &AllSuccessors); 180 181 /// If we sink a COPY inst, some debug users of it's destination may no 182 /// longer be dominated by the COPY, and will eventually be dropped. 183 /// This is easily rectified by forwarding the non-dominated debug uses 184 /// to the copy source. 185 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 186 MachineBasicBlock *TargetBlock); 187 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 188 MachineBasicBlock *DefMBB, 189 bool &BreakPHIEdge, bool &LocalUse) const; 190 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 191 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 192 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 193 MachineBasicBlock *MBB, 194 MachineBasicBlock *SuccToSinkTo, 195 AllSuccsCache &AllSuccessors); 196 197 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 198 MachineBasicBlock *MBB); 199 200 SmallVector<MachineBasicBlock *, 4> & 201 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 202 AllSuccsCache &AllSuccessors) const; 203 }; 204 205 } // end anonymous namespace 206 207 char MachineSinking::ID = 0; 208 209 char &llvm::MachineSinkingID = MachineSinking::ID; 210 211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 212 "Machine code sinking", false, false) 213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 218 "Machine code sinking", false, false) 219 220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 221 MachineBasicBlock *MBB) { 222 if (!MI.isCopy()) 223 return false; 224 225 Register SrcReg = MI.getOperand(1).getReg(); 226 Register DstReg = MI.getOperand(0).getReg(); 227 if (!Register::isVirtualRegister(SrcReg) || 228 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 229 return false; 230 231 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 232 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 233 if (SRC != DRC) 234 return false; 235 236 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 237 if (DefMI->isCopyLike()) 238 return false; 239 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 240 LLVM_DEBUG(dbgs() << "*** to: " << MI); 241 MRI->replaceRegWith(DstReg, SrcReg); 242 MI.eraseFromParent(); 243 244 // Conservatively, clear any kill flags, since it's possible that they are no 245 // longer correct. 246 MRI->clearKillFlags(SrcReg); 247 248 ++NumCoalesces; 249 return true; 250 } 251 252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 253 /// occur in blocks dominated by the specified block. If any use is in the 254 /// definition block, then return false since it is never legal to move def 255 /// after uses. 256 bool 257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 258 MachineBasicBlock *MBB, 259 MachineBasicBlock *DefMBB, 260 bool &BreakPHIEdge, 261 bool &LocalUse) const { 262 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 263 264 // Ignore debug uses because debug info doesn't affect the code. 265 if (MRI->use_nodbg_empty(Reg)) 266 return true; 267 268 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 269 // into and they are all PHI nodes. In this case, machine-sink must break 270 // the critical edge first. e.g. 271 // 272 // %bb.1: 273 // Predecessors according to CFG: %bb.0 274 // ... 275 // %def = DEC64_32r %x, implicit-def dead %eflags 276 // ... 277 // JE_4 <%bb.37>, implicit %eflags 278 // Successors according to CFG: %bb.37 %bb.2 279 // 280 // %bb.2: 281 // %p = PHI %y, %bb.0, %def, %bb.1 282 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 283 MachineInstr *UseInst = MO.getParent(); 284 unsigned OpNo = UseInst->getOperandNo(&MO); 285 MachineBasicBlock *UseBlock = UseInst->getParent(); 286 return UseBlock == MBB && UseInst->isPHI() && 287 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 288 })) { 289 BreakPHIEdge = true; 290 return true; 291 } 292 293 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 294 // Determine the block of the use. 295 MachineInstr *UseInst = MO.getParent(); 296 unsigned OpNo = &MO - &UseInst->getOperand(0); 297 MachineBasicBlock *UseBlock = UseInst->getParent(); 298 if (UseInst->isPHI()) { 299 // PHI nodes use the operand in the predecessor block, not the block with 300 // the PHI. 301 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 302 } else if (UseBlock == DefMBB) { 303 LocalUse = true; 304 return false; 305 } 306 307 // Check that it dominates. 308 if (!DT->dominates(MBB, UseBlock)) 309 return false; 310 } 311 312 return true; 313 } 314 315 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 316 if (skipFunction(MF.getFunction())) 317 return false; 318 319 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 320 321 TII = MF.getSubtarget().getInstrInfo(); 322 TRI = MF.getSubtarget().getRegisterInfo(); 323 MRI = &MF.getRegInfo(); 324 DT = &getAnalysis<MachineDominatorTree>(); 325 PDT = &getAnalysis<MachinePostDominatorTree>(); 326 LI = &getAnalysis<MachineLoopInfo>(); 327 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 328 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 329 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 330 331 bool EverMadeChange = false; 332 333 while (true) { 334 bool MadeChange = false; 335 336 // Process all basic blocks. 337 CEBCandidates.clear(); 338 ToSplit.clear(); 339 for (auto &MBB: MF) 340 MadeChange |= ProcessBlock(MBB); 341 342 // If we have anything we marked as toSplit, split it now. 343 for (auto &Pair : ToSplit) { 344 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 345 if (NewSucc != nullptr) { 346 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 347 << printMBBReference(*Pair.first) << " -- " 348 << printMBBReference(*NewSucc) << " -- " 349 << printMBBReference(*Pair.second) << '\n'); 350 if (MBFI) 351 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 352 353 MadeChange = true; 354 ++NumSplit; 355 } else 356 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 357 } 358 // If this iteration over the code changed anything, keep iterating. 359 if (!MadeChange) break; 360 EverMadeChange = true; 361 } 362 363 // Now clear any kill flags for recorded registers. 364 for (auto I : RegsToClearKillFlags) 365 MRI->clearKillFlags(I); 366 RegsToClearKillFlags.clear(); 367 368 return EverMadeChange; 369 } 370 371 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 372 // Can't sink anything out of a block that has less than two successors. 373 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 374 375 // Don't bother sinking code out of unreachable blocks. In addition to being 376 // unprofitable, it can also lead to infinite looping, because in an 377 // unreachable loop there may be nowhere to stop. 378 if (!DT->isReachableFromEntry(&MBB)) return false; 379 380 bool MadeChange = false; 381 382 // Cache all successors, sorted by frequency info and loop depth. 383 AllSuccsCache AllSuccessors; 384 385 // Walk the basic block bottom-up. Remember if we saw a store. 386 MachineBasicBlock::iterator I = MBB.end(); 387 --I; 388 bool ProcessedBegin, SawStore = false; 389 do { 390 MachineInstr &MI = *I; // The instruction to sink. 391 392 // Predecrement I (if it's not begin) so that it isn't invalidated by 393 // sinking. 394 ProcessedBegin = I == MBB.begin(); 395 if (!ProcessedBegin) 396 --I; 397 398 if (MI.isDebugInstr()) { 399 if (MI.isDebugValue()) 400 ProcessDbgInst(MI); 401 continue; 402 } 403 404 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 405 if (Joined) { 406 MadeChange = true; 407 continue; 408 } 409 410 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 411 ++NumSunk; 412 MadeChange = true; 413 } 414 415 // If we just processed the first instruction in the block, we're done. 416 } while (!ProcessedBegin); 417 418 SeenDbgUsers.clear(); 419 SeenDbgVars.clear(); 420 421 return MadeChange; 422 } 423 424 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 425 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 426 // we know what to sink if the vreg def sinks. 427 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 428 429 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 430 MI.getDebugLoc()->getInlinedAt()); 431 bool SeenBefore = SeenDbgVars.count(Var) != 0; 432 433 MachineOperand &MO = MI.getDebugOperand(0); 434 if (MO.isReg() && MO.getReg().isVirtual()) 435 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 436 437 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 438 SeenDbgVars.insert(Var); 439 } 440 441 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 442 MachineBasicBlock *From, 443 MachineBasicBlock *To) { 444 // FIXME: Need much better heuristics. 445 446 // If the pass has already considered breaking this edge (during this pass 447 // through the function), then let's go ahead and break it. This means 448 // sinking multiple "cheap" instructions into the same block. 449 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 450 return true; 451 452 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 453 return true; 454 455 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 456 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 457 return true; 458 459 // MI is cheap, we probably don't want to break the critical edge for it. 460 // However, if this would allow some definitions of its source operands 461 // to be sunk then it's probably worth it. 462 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 463 const MachineOperand &MO = MI.getOperand(i); 464 if (!MO.isReg() || !MO.isUse()) 465 continue; 466 Register Reg = MO.getReg(); 467 if (Reg == 0) 468 continue; 469 470 // We don't move live definitions of physical registers, 471 // so sinking their uses won't enable any opportunities. 472 if (Register::isPhysicalRegister(Reg)) 473 continue; 474 475 // If this instruction is the only user of a virtual register, 476 // check if breaking the edge will enable sinking 477 // both this instruction and the defining instruction. 478 if (MRI->hasOneNonDBGUse(Reg)) { 479 // If the definition resides in same MBB, 480 // claim it's likely we can sink these together. 481 // If definition resides elsewhere, we aren't 482 // blocking it from being sunk so don't break the edge. 483 MachineInstr *DefMI = MRI->getVRegDef(Reg); 484 if (DefMI->getParent() == MI.getParent()) 485 return true; 486 } 487 } 488 489 return false; 490 } 491 492 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 493 MachineBasicBlock *FromBB, 494 MachineBasicBlock *ToBB, 495 bool BreakPHIEdge) { 496 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 497 return false; 498 499 // Avoid breaking back edge. From == To means backedge for single BB loop. 500 if (!SplitEdges || FromBB == ToBB) 501 return false; 502 503 // Check for backedges of more "complex" loops. 504 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 505 LI->isLoopHeader(ToBB)) 506 return false; 507 508 // It's not always legal to break critical edges and sink the computation 509 // to the edge. 510 // 511 // %bb.1: 512 // v1024 513 // Beq %bb.3 514 // <fallthrough> 515 // %bb.2: 516 // ... no uses of v1024 517 // <fallthrough> 518 // %bb.3: 519 // ... 520 // = v1024 521 // 522 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 523 // 524 // %bb.1: 525 // ... 526 // Bne %bb.2 527 // %bb.4: 528 // v1024 = 529 // B %bb.3 530 // %bb.2: 531 // ... no uses of v1024 532 // <fallthrough> 533 // %bb.3: 534 // ... 535 // = v1024 536 // 537 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 538 // flow. We need to ensure the new basic block where the computation is 539 // sunk to dominates all the uses. 540 // It's only legal to break critical edge and sink the computation to the 541 // new block if all the predecessors of "To", except for "From", are 542 // not dominated by "From". Given SSA property, this means these 543 // predecessors are dominated by "To". 544 // 545 // There is no need to do this check if all the uses are PHI nodes. PHI 546 // sources are only defined on the specific predecessor edges. 547 if (!BreakPHIEdge) { 548 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 549 E = ToBB->pred_end(); PI != E; ++PI) { 550 if (*PI == FromBB) 551 continue; 552 if (!DT->dominates(ToBB, *PI)) 553 return false; 554 } 555 } 556 557 ToSplit.insert(std::make_pair(FromBB, ToBB)); 558 559 return true; 560 } 561 562 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 563 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 564 MachineBasicBlock *MBB, 565 MachineBasicBlock *SuccToSinkTo, 566 AllSuccsCache &AllSuccessors) { 567 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 568 569 if (MBB == SuccToSinkTo) 570 return false; 571 572 // It is profitable if SuccToSinkTo does not post dominate current block. 573 if (!PDT->dominates(SuccToSinkTo, MBB)) 574 return true; 575 576 // It is profitable to sink an instruction from a deeper loop to a shallower 577 // loop, even if the latter post-dominates the former (PR21115). 578 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 579 return true; 580 581 // Check if only use in post dominated block is PHI instruction. 582 bool NonPHIUse = false; 583 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 584 MachineBasicBlock *UseBlock = UseInst.getParent(); 585 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 586 NonPHIUse = true; 587 } 588 if (!NonPHIUse) 589 return true; 590 591 // If SuccToSinkTo post dominates then also it may be profitable if MI 592 // can further profitably sinked into another block in next round. 593 bool BreakPHIEdge = false; 594 // FIXME - If finding successor is compile time expensive then cache results. 595 if (MachineBasicBlock *MBB2 = 596 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 597 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 598 599 // If SuccToSinkTo is final destination and it is a post dominator of current 600 // block then it is not profitable to sink MI into SuccToSinkTo block. 601 return false; 602 } 603 604 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 605 /// computing it if it was not already cached. 606 SmallVector<MachineBasicBlock *, 4> & 607 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 608 AllSuccsCache &AllSuccessors) const { 609 // Do we have the sorted successors in cache ? 610 auto Succs = AllSuccessors.find(MBB); 611 if (Succs != AllSuccessors.end()) 612 return Succs->second; 613 614 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 615 MBB->succ_end()); 616 617 // Handle cases where sinking can happen but where the sink point isn't a 618 // successor. For example: 619 // 620 // x = computation 621 // if () {} else {} 622 // use x 623 // 624 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 625 // DomTree children of MBB that have MBB as immediate dominator are added. 626 if (DTChild->getIDom()->getBlock() == MI.getParent() && 627 // Skip MBBs already added to the AllSuccs vector above. 628 !MBB->isSuccessor(DTChild->getBlock())) 629 AllSuccs.push_back(DTChild->getBlock()); 630 } 631 632 // Sort Successors according to their loop depth or block frequency info. 633 llvm::stable_sort( 634 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 635 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 636 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 637 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 638 return HasBlockFreq ? LHSFreq < RHSFreq 639 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 640 }); 641 642 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 643 644 return it.first->second; 645 } 646 647 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 648 MachineBasicBlock * 649 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 650 bool &BreakPHIEdge, 651 AllSuccsCache &AllSuccessors) { 652 assert (MBB && "Invalid MachineBasicBlock!"); 653 654 // Loop over all the operands of the specified instruction. If there is 655 // anything we can't handle, bail out. 656 657 // SuccToSinkTo - This is the successor to sink this instruction to, once we 658 // decide. 659 MachineBasicBlock *SuccToSinkTo = nullptr; 660 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 661 const MachineOperand &MO = MI.getOperand(i); 662 if (!MO.isReg()) continue; // Ignore non-register operands. 663 664 Register Reg = MO.getReg(); 665 if (Reg == 0) continue; 666 667 if (Register::isPhysicalRegister(Reg)) { 668 if (MO.isUse()) { 669 // If the physreg has no defs anywhere, it's just an ambient register 670 // and we can freely move its uses. Alternatively, if it's allocatable, 671 // it could get allocated to something with a def during allocation. 672 if (!MRI->isConstantPhysReg(Reg)) 673 return nullptr; 674 } else if (!MO.isDead()) { 675 // A def that isn't dead. We can't move it. 676 return nullptr; 677 } 678 } else { 679 // Virtual register uses are always safe to sink. 680 if (MO.isUse()) continue; 681 682 // If it's not safe to move defs of the register class, then abort. 683 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 684 return nullptr; 685 686 // Virtual register defs can only be sunk if all their uses are in blocks 687 // dominated by one of the successors. 688 if (SuccToSinkTo) { 689 // If a previous operand picked a block to sink to, then this operand 690 // must be sinkable to the same block. 691 bool LocalUse = false; 692 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 693 BreakPHIEdge, LocalUse)) 694 return nullptr; 695 696 continue; 697 } 698 699 // Otherwise, we should look at all the successors and decide which one 700 // we should sink to. If we have reliable block frequency information 701 // (frequency != 0) available, give successors with smaller frequencies 702 // higher priority, otherwise prioritize smaller loop depths. 703 for (MachineBasicBlock *SuccBlock : 704 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 705 bool LocalUse = false; 706 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 707 BreakPHIEdge, LocalUse)) { 708 SuccToSinkTo = SuccBlock; 709 break; 710 } 711 if (LocalUse) 712 // Def is used locally, it's never safe to move this def. 713 return nullptr; 714 } 715 716 // If we couldn't find a block to sink to, ignore this instruction. 717 if (!SuccToSinkTo) 718 return nullptr; 719 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 720 return nullptr; 721 } 722 } 723 724 // It is not possible to sink an instruction into its own block. This can 725 // happen with loops. 726 if (MBB == SuccToSinkTo) 727 return nullptr; 728 729 // It's not safe to sink instructions to EH landing pad. Control flow into 730 // landing pad is implicitly defined. 731 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 732 return nullptr; 733 734 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 735 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 736 // the source block (which this code does not yet do). So for now, forbid 737 // doing so. 738 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 739 return nullptr; 740 741 return SuccToSinkTo; 742 } 743 744 /// Return true if MI is likely to be usable as a memory operation by the 745 /// implicit null check optimization. 746 /// 747 /// This is a "best effort" heuristic, and should not be relied upon for 748 /// correctness. This returning true does not guarantee that the implicit null 749 /// check optimization is legal over MI, and this returning false does not 750 /// guarantee MI cannot possibly be used to do a null check. 751 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 752 const TargetInstrInfo *TII, 753 const TargetRegisterInfo *TRI) { 754 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 755 756 auto *MBB = MI.getParent(); 757 if (MBB->pred_size() != 1) 758 return false; 759 760 auto *PredMBB = *MBB->pred_begin(); 761 auto *PredBB = PredMBB->getBasicBlock(); 762 763 // Frontends that don't use implicit null checks have no reason to emit 764 // branches with make.implicit metadata, and this function should always 765 // return false for them. 766 if (!PredBB || 767 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 768 return false; 769 770 const MachineOperand *BaseOp; 771 int64_t Offset; 772 bool OffsetIsScalable; 773 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 774 return false; 775 776 if (!BaseOp->isReg()) 777 return false; 778 779 if (!(MI.mayLoad() && !MI.isPredicable())) 780 return false; 781 782 MachineBranchPredicate MBP; 783 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 784 return false; 785 786 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 787 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 788 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 789 MBP.LHS.getReg() == BaseOp->getReg(); 790 } 791 792 /// If the sunk instruction is a copy, try to forward the copy instead of 793 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 794 /// there's any subregister weirdness involved. Returns true if copy 795 /// propagation occurred. 796 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 797 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 798 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 799 800 // Copy DBG_VALUE operand and set the original to undef. We then check to 801 // see whether this is something that can be copy-forwarded. If it isn't, 802 // continue around the loop. 803 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 804 805 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 806 auto CopyOperands = TII.isCopyInstr(SinkInst); 807 if (!CopyOperands) 808 return false; 809 SrcMO = CopyOperands->Source; 810 DstMO = CopyOperands->Destination; 811 812 // Check validity of forwarding this copy. 813 bool PostRA = MRI.getNumVirtRegs() == 0; 814 815 // Trying to forward between physical and virtual registers is too hard. 816 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 817 return false; 818 819 // Only try virtual register copy-forwarding before regalloc, and physical 820 // register copy-forwarding after regalloc. 821 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 822 if (arePhysRegs != PostRA) 823 return false; 824 825 // Pre-regalloc, only forward if all subregisters agree (or there are no 826 // subregs at all). More analysis might recover some forwardable copies. 827 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 828 DbgMO.getSubReg() != DstMO->getSubReg())) 829 return false; 830 831 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 832 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 833 // matches the copy destination. 834 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 835 return false; 836 837 DbgMO.setReg(SrcMO->getReg()); 838 DbgMO.setSubReg(SrcMO->getSubReg()); 839 return true; 840 } 841 842 /// Sink an instruction and its associated debug instructions. 843 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 844 MachineBasicBlock::iterator InsertPos, 845 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 846 847 // If we cannot find a location to use (merge with), then we erase the debug 848 // location to prevent debug-info driven tools from potentially reporting 849 // wrong location information. 850 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 851 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 852 InsertPos->getDebugLoc())); 853 else 854 MI.setDebugLoc(DebugLoc()); 855 856 // Move the instruction. 857 MachineBasicBlock *ParentBlock = MI.getParent(); 858 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 859 ++MachineBasicBlock::iterator(MI)); 860 861 // Sink a copy of debug users to the insert position. Mark the original 862 // DBG_VALUE location as 'undef', indicating that any earlier variable 863 // location should be terminated as we've optimised away the value at this 864 // point. 865 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 866 DBE = DbgValuesToSink.end(); 867 DBI != DBE; ++DBI) { 868 MachineInstr *DbgMI = *DBI; 869 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 870 SuccToSinkTo.insert(InsertPos, NewDbgMI); 871 872 if (!attemptDebugCopyProp(MI, *DbgMI)) 873 DbgMI->setDebugValueUndef(); 874 } 875 } 876 877 /// SinkInstruction - Determine whether it is safe to sink the specified machine 878 /// instruction out of its current block into a successor. 879 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 880 AllSuccsCache &AllSuccessors) { 881 // Don't sink instructions that the target prefers not to sink. 882 if (!TII->shouldSink(MI)) 883 return false; 884 885 // Check if it's safe to move the instruction. 886 if (!MI.isSafeToMove(AA, SawStore)) 887 return false; 888 889 // Convergent operations may not be made control-dependent on additional 890 // values. 891 if (MI.isConvergent()) 892 return false; 893 894 // Don't break implicit null checks. This is a performance heuristic, and not 895 // required for correctness. 896 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 897 return false; 898 899 // FIXME: This should include support for sinking instructions within the 900 // block they are currently in to shorten the live ranges. We often get 901 // instructions sunk into the top of a large block, but it would be better to 902 // also sink them down before their first use in the block. This xform has to 903 // be careful not to *increase* register pressure though, e.g. sinking 904 // "x = y + z" down if it kills y and z would increase the live ranges of y 905 // and z and only shrink the live range of x. 906 907 bool BreakPHIEdge = false; 908 MachineBasicBlock *ParentBlock = MI.getParent(); 909 MachineBasicBlock *SuccToSinkTo = 910 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 911 912 // If there are no outputs, it must have side-effects. 913 if (!SuccToSinkTo) 914 return false; 915 916 // If the instruction to move defines a dead physical register which is live 917 // when leaving the basic block, don't move it because it could turn into a 918 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 919 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 920 const MachineOperand &MO = MI.getOperand(I); 921 if (!MO.isReg()) continue; 922 Register Reg = MO.getReg(); 923 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 924 continue; 925 if (SuccToSinkTo->isLiveIn(Reg)) 926 return false; 927 } 928 929 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 930 931 // If the block has multiple predecessors, this is a critical edge. 932 // Decide if we can sink along it or need to break the edge. 933 if (SuccToSinkTo->pred_size() > 1) { 934 // We cannot sink a load across a critical edge - there may be stores in 935 // other code paths. 936 bool TryBreak = false; 937 bool store = true; 938 if (!MI.isSafeToMove(AA, store)) { 939 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 940 TryBreak = true; 941 } 942 943 // We don't want to sink across a critical edge if we don't dominate the 944 // successor. We could be introducing calculations to new code paths. 945 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 946 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 947 TryBreak = true; 948 } 949 950 // Don't sink instructions into a loop. 951 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 952 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 953 TryBreak = true; 954 } 955 956 // Otherwise we are OK with sinking along a critical edge. 957 if (!TryBreak) 958 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 959 else { 960 // Mark this edge as to be split. 961 // If the edge can actually be split, the next iteration of the main loop 962 // will sink MI in the newly created block. 963 bool Status = 964 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 965 if (!Status) 966 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 967 "break critical edge\n"); 968 // The instruction will not be sunk this time. 969 return false; 970 } 971 } 972 973 if (BreakPHIEdge) { 974 // BreakPHIEdge is true if all the uses are in the successor MBB being 975 // sunken into and they are all PHI nodes. In this case, machine-sink must 976 // break the critical edge first. 977 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 978 SuccToSinkTo, BreakPHIEdge); 979 if (!Status) 980 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 981 "break critical edge\n"); 982 // The instruction will not be sunk this time. 983 return false; 984 } 985 986 // Determine where to insert into. Skip phi nodes. 987 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 988 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 989 ++InsertPos; 990 991 // Collect debug users of any vreg that this inst defines. 992 SmallVector<MachineInstr *, 4> DbgUsersToSink; 993 for (auto &MO : MI.operands()) { 994 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 995 continue; 996 if (!SeenDbgUsers.count(MO.getReg())) 997 continue; 998 999 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1000 auto &Users = SeenDbgUsers[MO.getReg()]; 1001 for (auto &User : Users) { 1002 MachineInstr *DbgMI = User.getPointer(); 1003 if (User.getInt()) { 1004 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1005 // it, it can't be recovered. Set it undef. 1006 if (!attemptDebugCopyProp(MI, *DbgMI)) 1007 DbgMI->setDebugValueUndef(); 1008 } else { 1009 DbgUsersToSink.push_back(DbgMI); 1010 } 1011 } 1012 } 1013 1014 // After sinking, some debug users may not be dominated any more. If possible, 1015 // copy-propagate their operands. As it's expensive, don't do this if there's 1016 // no debuginfo in the program. 1017 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1018 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1019 1020 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1021 1022 // Conservatively, clear any kill flags, since it's possible that they are no 1023 // longer correct. 1024 // Note that we have to clear the kill flags for any register this instruction 1025 // uses as we may sink over another instruction which currently kills the 1026 // used registers. 1027 for (MachineOperand &MO : MI.operands()) { 1028 if (MO.isReg() && MO.isUse()) 1029 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1030 } 1031 1032 return true; 1033 } 1034 1035 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1036 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1037 assert(MI.isCopy()); 1038 assert(MI.getOperand(1).isReg()); 1039 1040 // Enumerate all users of vreg operands that are def'd. Skip those that will 1041 // be sunk. For the rest, if they are not dominated by the block we will sink 1042 // MI into, propagate the copy source to them. 1043 SmallVector<MachineInstr *, 4> DbgDefUsers; 1044 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1045 for (auto &MO : MI.operands()) { 1046 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1047 continue; 1048 for (auto &User : MRI.use_instructions(MO.getReg())) { 1049 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1050 continue; 1051 1052 // If is in same block, will either sink or be use-before-def. 1053 if (User.getParent() == MI.getParent()) 1054 continue; 1055 1056 assert(User.getDebugOperand(0).isReg() && 1057 "DBG_VALUE user of vreg, but non reg operand?"); 1058 DbgDefUsers.push_back(&User); 1059 } 1060 } 1061 1062 // Point the users of this copy that are no longer dominated, at the source 1063 // of the copy. 1064 for (auto *User : DbgDefUsers) { 1065 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1066 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1067 } 1068 } 1069 1070 //===----------------------------------------------------------------------===// 1071 // This pass is not intended to be a replacement or a complete alternative 1072 // for the pre-ra machine sink pass. It is only designed to sink COPY 1073 // instructions which should be handled after RA. 1074 // 1075 // This pass sinks COPY instructions into a successor block, if the COPY is not 1076 // used in the current block and the COPY is live-in to a single successor 1077 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1078 // copy on paths where their results aren't needed. This also exposes 1079 // additional opportunites for dead copy elimination and shrink wrapping. 1080 // 1081 // These copies were either not handled by or are inserted after the MachineSink 1082 // pass. As an example of the former case, the MachineSink pass cannot sink 1083 // COPY instructions with allocatable source registers; for AArch64 these type 1084 // of copy instructions are frequently used to move function parameters (PhyReg) 1085 // into virtual registers in the entry block. 1086 // 1087 // For the machine IR below, this pass will sink %w19 in the entry into its 1088 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1089 // %bb.0: 1090 // %wzr = SUBSWri %w1, 1 1091 // %w19 = COPY %w0 1092 // Bcc 11, %bb.2 1093 // %bb.1: 1094 // Live Ins: %w19 1095 // BL @fun 1096 // %w0 = ADDWrr %w0, %w19 1097 // RET %w0 1098 // %bb.2: 1099 // %w0 = COPY %wzr 1100 // RET %w0 1101 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1102 // able to see %bb.0 as a candidate. 1103 //===----------------------------------------------------------------------===// 1104 namespace { 1105 1106 class PostRAMachineSinking : public MachineFunctionPass { 1107 public: 1108 bool runOnMachineFunction(MachineFunction &MF) override; 1109 1110 static char ID; 1111 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1112 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1113 1114 void getAnalysisUsage(AnalysisUsage &AU) const override { 1115 AU.setPreservesCFG(); 1116 MachineFunctionPass::getAnalysisUsage(AU); 1117 } 1118 1119 MachineFunctionProperties getRequiredProperties() const override { 1120 return MachineFunctionProperties().set( 1121 MachineFunctionProperties::Property::NoVRegs); 1122 } 1123 1124 private: 1125 /// Track which register units have been modified and used. 1126 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1127 1128 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1129 /// entry in this map for each unit it touches. 1130 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1131 1132 /// Sink Copy instructions unused in the same block close to their uses in 1133 /// successors. 1134 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1135 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1136 }; 1137 } // namespace 1138 1139 char PostRAMachineSinking::ID = 0; 1140 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1141 1142 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1143 "PostRA Machine Sink", false, false) 1144 1145 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1146 const TargetRegisterInfo *TRI) { 1147 LiveRegUnits LiveInRegUnits(*TRI); 1148 LiveInRegUnits.addLiveIns(MBB); 1149 return !LiveInRegUnits.available(Reg); 1150 } 1151 1152 static MachineBasicBlock * 1153 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1154 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1155 unsigned Reg, const TargetRegisterInfo *TRI) { 1156 // Try to find a single sinkable successor in which Reg is live-in. 1157 MachineBasicBlock *BB = nullptr; 1158 for (auto *SI : SinkableBBs) { 1159 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1160 // If BB is set here, Reg is live-in to at least two sinkable successors, 1161 // so quit. 1162 if (BB) 1163 return nullptr; 1164 BB = SI; 1165 } 1166 } 1167 // Reg is not live-in to any sinkable successors. 1168 if (!BB) 1169 return nullptr; 1170 1171 // Check if any register aliased with Reg is live-in in other successors. 1172 for (auto *SI : CurBB.successors()) { 1173 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1174 return nullptr; 1175 } 1176 return BB; 1177 } 1178 1179 static MachineBasicBlock * 1180 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1181 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1182 ArrayRef<unsigned> DefedRegsInCopy, 1183 const TargetRegisterInfo *TRI) { 1184 MachineBasicBlock *SingleBB = nullptr; 1185 for (auto DefReg : DefedRegsInCopy) { 1186 MachineBasicBlock *BB = 1187 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1188 if (!BB || (SingleBB && SingleBB != BB)) 1189 return nullptr; 1190 SingleBB = BB; 1191 } 1192 return SingleBB; 1193 } 1194 1195 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1196 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1197 LiveRegUnits &UsedRegUnits, 1198 const TargetRegisterInfo *TRI) { 1199 for (auto U : UsedOpsInCopy) { 1200 MachineOperand &MO = MI->getOperand(U); 1201 Register SrcReg = MO.getReg(); 1202 if (!UsedRegUnits.available(SrcReg)) { 1203 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1204 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1205 if (UI.killsRegister(SrcReg, TRI)) { 1206 UI.clearRegisterKills(SrcReg, TRI); 1207 MO.setIsKill(true); 1208 break; 1209 } 1210 } 1211 } 1212 } 1213 } 1214 1215 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1216 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1217 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1218 MachineFunction &MF = *SuccBB->getParent(); 1219 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1220 for (unsigned DefReg : DefedRegsInCopy) 1221 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1222 SuccBB->removeLiveIn(*S); 1223 for (auto U : UsedOpsInCopy) { 1224 Register SrcReg = MI->getOperand(U).getReg(); 1225 LaneBitmask Mask; 1226 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1227 Mask |= (*S).second; 1228 } 1229 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1230 } 1231 SuccBB->sortUniqueLiveIns(); 1232 } 1233 1234 static bool hasRegisterDependency(MachineInstr *MI, 1235 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1236 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1237 LiveRegUnits &ModifiedRegUnits, 1238 LiveRegUnits &UsedRegUnits) { 1239 bool HasRegDependency = false; 1240 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1241 MachineOperand &MO = MI->getOperand(i); 1242 if (!MO.isReg()) 1243 continue; 1244 Register Reg = MO.getReg(); 1245 if (!Reg) 1246 continue; 1247 if (MO.isDef()) { 1248 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1249 HasRegDependency = true; 1250 break; 1251 } 1252 DefedRegsInCopy.push_back(Reg); 1253 1254 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1255 // For example, we can ignore modifications in reg with undef. However, 1256 // it's not perfectly clear if skipping the internal read is safe in all 1257 // other targets. 1258 } else if (MO.isUse()) { 1259 if (!ModifiedRegUnits.available(Reg)) { 1260 HasRegDependency = true; 1261 break; 1262 } 1263 UsedOpsInCopy.push_back(i); 1264 } 1265 } 1266 return HasRegDependency; 1267 } 1268 1269 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1270 const TargetRegisterInfo *TRI) { 1271 SmallSet<unsigned, 4> RegUnits; 1272 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1273 RegUnits.insert(*RI); 1274 return RegUnits; 1275 } 1276 1277 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1278 MachineFunction &MF, 1279 const TargetRegisterInfo *TRI, 1280 const TargetInstrInfo *TII) { 1281 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1282 // FIXME: For now, we sink only to a successor which has a single predecessor 1283 // so that we can directly sink COPY instructions to the successor without 1284 // adding any new block or branch instruction. 1285 for (MachineBasicBlock *SI : CurBB.successors()) 1286 if (!SI->livein_empty() && SI->pred_size() == 1) 1287 SinkableBBs.insert(SI); 1288 1289 if (SinkableBBs.empty()) 1290 return false; 1291 1292 bool Changed = false; 1293 1294 // Track which registers have been modified and used between the end of the 1295 // block and the current instruction. 1296 ModifiedRegUnits.clear(); 1297 UsedRegUnits.clear(); 1298 SeenDbgInstrs.clear(); 1299 1300 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1301 MachineInstr *MI = &*I; 1302 ++I; 1303 1304 // Track the operand index for use in Copy. 1305 SmallVector<unsigned, 2> UsedOpsInCopy; 1306 // Track the register number defed in Copy. 1307 SmallVector<unsigned, 2> DefedRegsInCopy; 1308 1309 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1310 // for DBG_VALUEs later, record them when they're encountered. 1311 if (MI->isDebugValue()) { 1312 auto &MO = MI->getDebugOperand(0); 1313 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1314 // Bail if we can already tell the sink would be rejected, rather 1315 // than needlessly accumulating lots of DBG_VALUEs. 1316 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1317 ModifiedRegUnits, UsedRegUnits)) 1318 continue; 1319 1320 // Record debug use of each reg unit. 1321 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1322 for (unsigned Reg : Units) 1323 SeenDbgInstrs[Reg].push_back(MI); 1324 } 1325 continue; 1326 } 1327 1328 if (MI->isDebugInstr()) 1329 continue; 1330 1331 // Do not move any instruction across function call. 1332 if (MI->isCall()) 1333 return false; 1334 1335 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1336 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1337 TRI); 1338 continue; 1339 } 1340 1341 // Don't sink the COPY if it would violate a register dependency. 1342 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1343 ModifiedRegUnits, UsedRegUnits)) { 1344 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1345 TRI); 1346 continue; 1347 } 1348 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1349 "Unexpect SrcReg or DefReg"); 1350 MachineBasicBlock *SuccBB = 1351 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1352 // Don't sink if we cannot find a single sinkable successor in which Reg 1353 // is live-in. 1354 if (!SuccBB) { 1355 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1356 TRI); 1357 continue; 1358 } 1359 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1360 "Unexpected predecessor"); 1361 1362 // Collect DBG_VALUEs that must sink with this copy. We've previously 1363 // recorded which reg units that DBG_VALUEs read, if this instruction 1364 // writes any of those units then the corresponding DBG_VALUEs must sink. 1365 SetVector<MachineInstr *> DbgValsToSinkSet; 1366 SmallVector<MachineInstr *, 4> DbgValsToSink; 1367 for (auto &MO : MI->operands()) { 1368 if (!MO.isReg() || !MO.isDef()) 1369 continue; 1370 1371 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1372 for (unsigned Reg : Units) 1373 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1374 DbgValsToSinkSet.insert(MI); 1375 } 1376 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1377 DbgValsToSinkSet.end()); 1378 1379 // Clear the kill flag if SrcReg is killed between MI and the end of the 1380 // block. 1381 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1382 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1383 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1384 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1385 1386 Changed = true; 1387 ++NumPostRACopySink; 1388 } 1389 return Changed; 1390 } 1391 1392 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1393 if (skipFunction(MF.getFunction())) 1394 return false; 1395 1396 bool Changed = false; 1397 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1398 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1399 1400 ModifiedRegUnits.init(*TRI); 1401 UsedRegUnits.init(*TRI); 1402 for (auto &BB : MF) 1403 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1404 1405 return Changed; 1406 } 1407