1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseBitVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePostDominators.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <map> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "machine-sink" 57 58 static cl::opt<bool> 59 SplitEdges("machine-sink-split", 60 cl::desc("Split critical edges during machine sinking"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> 64 UseBlockFreqInfo("machine-sink-bfi", 65 cl::desc("Use block frequency info to find successors to sink"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 69 "machine-sink-split-probability-threshold", 70 cl::desc( 71 "Percentage threshold for splitting single-instruction critical edge. " 72 "If the branch threshold is higher than this threshold, we allow " 73 "speculative execution of up to 1 instruction to avoid branching to " 74 "splitted critical edge"), 75 cl::init(40), cl::Hidden); 76 77 STATISTIC(NumSunk, "Number of machine instructions sunk"); 78 STATISTIC(NumSplit, "Number of critical edges split"); 79 STATISTIC(NumCoalesces, "Number of copies coalesced"); 80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 81 82 namespace { 83 84 class MachineSinking : public MachineFunctionPass { 85 const TargetInstrInfo *TII; 86 const TargetRegisterInfo *TRI; 87 MachineRegisterInfo *MRI; // Machine register information 88 MachineDominatorTree *DT; // Machine dominator tree 89 MachinePostDominatorTree *PDT; // Machine post dominator tree 90 MachineLoopInfo *LI; 91 const MachineBlockFrequencyInfo *MBFI; 92 const MachineBranchProbabilityInfo *MBPI; 93 AliasAnalysis *AA; 94 95 // Remember which edges have been considered for breaking. 96 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 97 CEBCandidates; 98 // Remember which edges we are about to split. 99 // This is different from CEBCandidates since those edges 100 // will be split. 101 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 102 103 SparseBitVector<> RegsToClearKillFlags; 104 105 using AllSuccsCache = 106 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 107 108 public: 109 static char ID; // Pass identification 110 111 MachineSinking() : MachineFunctionPass(ID) { 112 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 113 } 114 115 bool runOnMachineFunction(MachineFunction &MF) override; 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 AU.addRequired<AAResultsWrapperPass>(); 121 AU.addRequired<MachineDominatorTree>(); 122 AU.addRequired<MachinePostDominatorTree>(); 123 AU.addRequired<MachineLoopInfo>(); 124 AU.addRequired<MachineBranchProbabilityInfo>(); 125 AU.addPreserved<MachineDominatorTree>(); 126 AU.addPreserved<MachinePostDominatorTree>(); 127 AU.addPreserved<MachineLoopInfo>(); 128 if (UseBlockFreqInfo) 129 AU.addRequired<MachineBlockFrequencyInfo>(); 130 } 131 132 void releaseMemory() override { 133 CEBCandidates.clear(); 134 } 135 136 private: 137 bool ProcessBlock(MachineBasicBlock &MBB); 138 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 139 MachineBasicBlock *From, 140 MachineBasicBlock *To); 141 142 /// Postpone the splitting of the given critical 143 /// edge (\p From, \p To). 144 /// 145 /// We do not split the edges on the fly. Indeed, this invalidates 146 /// the dominance information and thus triggers a lot of updates 147 /// of that information underneath. 148 /// Instead, we postpone all the splits after each iteration of 149 /// the main loop. That way, the information is at least valid 150 /// for the lifetime of an iteration. 151 /// 152 /// \return True if the edge is marked as toSplit, false otherwise. 153 /// False can be returned if, for instance, this is not profitable. 154 bool PostponeSplitCriticalEdge(MachineInstr &MI, 155 MachineBasicBlock *From, 156 MachineBasicBlock *To, 157 bool BreakPHIEdge); 158 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 159 160 AllSuccsCache &AllSuccessors); 161 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 162 MachineBasicBlock *DefMBB, 163 bool &BreakPHIEdge, bool &LocalUse) const; 164 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 165 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 166 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 167 MachineBasicBlock *MBB, 168 MachineBasicBlock *SuccToSinkTo, 169 AllSuccsCache &AllSuccessors); 170 171 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 172 MachineBasicBlock *MBB); 173 174 SmallVector<MachineBasicBlock *, 4> & 175 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 176 AllSuccsCache &AllSuccessors) const; 177 }; 178 179 } // end anonymous namespace 180 181 char MachineSinking::ID = 0; 182 183 char &llvm::MachineSinkingID = MachineSinking::ID; 184 185 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 186 "Machine code sinking", false, false) 187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 191 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 192 "Machine code sinking", false, false) 193 194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 195 MachineBasicBlock *MBB) { 196 if (!MI.isCopy()) 197 return false; 198 199 Register SrcReg = MI.getOperand(1).getReg(); 200 Register DstReg = MI.getOperand(0).getReg(); 201 if (!Register::isVirtualRegister(SrcReg) || 202 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 203 return false; 204 205 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 206 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 207 if (SRC != DRC) 208 return false; 209 210 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 211 if (DefMI->isCopyLike()) 212 return false; 213 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 214 LLVM_DEBUG(dbgs() << "*** to: " << MI); 215 MRI->replaceRegWith(DstReg, SrcReg); 216 MI.eraseFromParent(); 217 218 // Conservatively, clear any kill flags, since it's possible that they are no 219 // longer correct. 220 MRI->clearKillFlags(SrcReg); 221 222 ++NumCoalesces; 223 return true; 224 } 225 226 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 227 /// occur in blocks dominated by the specified block. If any use is in the 228 /// definition block, then return false since it is never legal to move def 229 /// after uses. 230 bool 231 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 232 MachineBasicBlock *MBB, 233 MachineBasicBlock *DefMBB, 234 bool &BreakPHIEdge, 235 bool &LocalUse) const { 236 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 237 238 // Ignore debug uses because debug info doesn't affect the code. 239 if (MRI->use_nodbg_empty(Reg)) 240 return true; 241 242 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 243 // into and they are all PHI nodes. In this case, machine-sink must break 244 // the critical edge first. e.g. 245 // 246 // %bb.1: derived from LLVM BB %bb4.preheader 247 // Predecessors according to CFG: %bb.0 248 // ... 249 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags 250 // ... 251 // JE_4 <%bb.37>, implicit %eflags 252 // Successors according to CFG: %bb.37 %bb.2 253 // 254 // %bb.2: derived from LLVM BB %bb.nph 255 // Predecessors according to CFG: %bb.0 %bb.1 256 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1 257 BreakPHIEdge = true; 258 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 259 MachineInstr *UseInst = MO.getParent(); 260 unsigned OpNo = &MO - &UseInst->getOperand(0); 261 MachineBasicBlock *UseBlock = UseInst->getParent(); 262 if (!(UseBlock == MBB && UseInst->isPHI() && 263 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 264 BreakPHIEdge = false; 265 break; 266 } 267 } 268 if (BreakPHIEdge) 269 return true; 270 271 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 272 // Determine the block of the use. 273 MachineInstr *UseInst = MO.getParent(); 274 unsigned OpNo = &MO - &UseInst->getOperand(0); 275 MachineBasicBlock *UseBlock = UseInst->getParent(); 276 if (UseInst->isPHI()) { 277 // PHI nodes use the operand in the predecessor block, not the block with 278 // the PHI. 279 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 280 } else if (UseBlock == DefMBB) { 281 LocalUse = true; 282 return false; 283 } 284 285 // Check that it dominates. 286 if (!DT->dominates(MBB, UseBlock)) 287 return false; 288 } 289 290 return true; 291 } 292 293 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 294 if (skipFunction(MF.getFunction())) 295 return false; 296 297 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 298 299 TII = MF.getSubtarget().getInstrInfo(); 300 TRI = MF.getSubtarget().getRegisterInfo(); 301 MRI = &MF.getRegInfo(); 302 DT = &getAnalysis<MachineDominatorTree>(); 303 PDT = &getAnalysis<MachinePostDominatorTree>(); 304 LI = &getAnalysis<MachineLoopInfo>(); 305 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 306 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 307 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 308 309 bool EverMadeChange = false; 310 311 while (true) { 312 bool MadeChange = false; 313 314 // Process all basic blocks. 315 CEBCandidates.clear(); 316 ToSplit.clear(); 317 for (auto &MBB: MF) 318 MadeChange |= ProcessBlock(MBB); 319 320 // If we have anything we marked as toSplit, split it now. 321 for (auto &Pair : ToSplit) { 322 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 323 if (NewSucc != nullptr) { 324 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 325 << printMBBReference(*Pair.first) << " -- " 326 << printMBBReference(*NewSucc) << " -- " 327 << printMBBReference(*Pair.second) << '\n'); 328 MadeChange = true; 329 ++NumSplit; 330 } else 331 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 332 } 333 // If this iteration over the code changed anything, keep iterating. 334 if (!MadeChange) break; 335 EverMadeChange = true; 336 } 337 338 // Now clear any kill flags for recorded registers. 339 for (auto I : RegsToClearKillFlags) 340 MRI->clearKillFlags(I); 341 RegsToClearKillFlags.clear(); 342 343 return EverMadeChange; 344 } 345 346 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 347 // Can't sink anything out of a block that has less than two successors. 348 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 349 350 // Don't bother sinking code out of unreachable blocks. In addition to being 351 // unprofitable, it can also lead to infinite looping, because in an 352 // unreachable loop there may be nowhere to stop. 353 if (!DT->isReachableFromEntry(&MBB)) return false; 354 355 bool MadeChange = false; 356 357 // Cache all successors, sorted by frequency info and loop depth. 358 AllSuccsCache AllSuccessors; 359 360 // Walk the basic block bottom-up. Remember if we saw a store. 361 MachineBasicBlock::iterator I = MBB.end(); 362 --I; 363 bool ProcessedBegin, SawStore = false; 364 do { 365 MachineInstr &MI = *I; // The instruction to sink. 366 367 // Predecrement I (if it's not begin) so that it isn't invalidated by 368 // sinking. 369 ProcessedBegin = I == MBB.begin(); 370 if (!ProcessedBegin) 371 --I; 372 373 if (MI.isDebugInstr()) 374 continue; 375 376 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 377 if (Joined) { 378 MadeChange = true; 379 continue; 380 } 381 382 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 383 ++NumSunk; 384 MadeChange = true; 385 } 386 387 // If we just processed the first instruction in the block, we're done. 388 } while (!ProcessedBegin); 389 390 return MadeChange; 391 } 392 393 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 394 MachineBasicBlock *From, 395 MachineBasicBlock *To) { 396 // FIXME: Need much better heuristics. 397 398 // If the pass has already considered breaking this edge (during this pass 399 // through the function), then let's go ahead and break it. This means 400 // sinking multiple "cheap" instructions into the same block. 401 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 402 return true; 403 404 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 405 return true; 406 407 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 408 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 409 return true; 410 411 // MI is cheap, we probably don't want to break the critical edge for it. 412 // However, if this would allow some definitions of its source operands 413 // to be sunk then it's probably worth it. 414 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 415 const MachineOperand &MO = MI.getOperand(i); 416 if (!MO.isReg() || !MO.isUse()) 417 continue; 418 Register Reg = MO.getReg(); 419 if (Reg == 0) 420 continue; 421 422 // We don't move live definitions of physical registers, 423 // so sinking their uses won't enable any opportunities. 424 if (Register::isPhysicalRegister(Reg)) 425 continue; 426 427 // If this instruction is the only user of a virtual register, 428 // check if breaking the edge will enable sinking 429 // both this instruction and the defining instruction. 430 if (MRI->hasOneNonDBGUse(Reg)) { 431 // If the definition resides in same MBB, 432 // claim it's likely we can sink these together. 433 // If definition resides elsewhere, we aren't 434 // blocking it from being sunk so don't break the edge. 435 MachineInstr *DefMI = MRI->getVRegDef(Reg); 436 if (DefMI->getParent() == MI.getParent()) 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 445 MachineBasicBlock *FromBB, 446 MachineBasicBlock *ToBB, 447 bool BreakPHIEdge) { 448 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 449 return false; 450 451 // Avoid breaking back edge. From == To means backedge for single BB loop. 452 if (!SplitEdges || FromBB == ToBB) 453 return false; 454 455 // Check for backedges of more "complex" loops. 456 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 457 LI->isLoopHeader(ToBB)) 458 return false; 459 460 // It's not always legal to break critical edges and sink the computation 461 // to the edge. 462 // 463 // %bb.1: 464 // v1024 465 // Beq %bb.3 466 // <fallthrough> 467 // %bb.2: 468 // ... no uses of v1024 469 // <fallthrough> 470 // %bb.3: 471 // ... 472 // = v1024 473 // 474 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 475 // 476 // %bb.1: 477 // ... 478 // Bne %bb.2 479 // %bb.4: 480 // v1024 = 481 // B %bb.3 482 // %bb.2: 483 // ... no uses of v1024 484 // <fallthrough> 485 // %bb.3: 486 // ... 487 // = v1024 488 // 489 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 490 // flow. We need to ensure the new basic block where the computation is 491 // sunk to dominates all the uses. 492 // It's only legal to break critical edge and sink the computation to the 493 // new block if all the predecessors of "To", except for "From", are 494 // not dominated by "From". Given SSA property, this means these 495 // predecessors are dominated by "To". 496 // 497 // There is no need to do this check if all the uses are PHI nodes. PHI 498 // sources are only defined on the specific predecessor edges. 499 if (!BreakPHIEdge) { 500 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 501 E = ToBB->pred_end(); PI != E; ++PI) { 502 if (*PI == FromBB) 503 continue; 504 if (!DT->dominates(ToBB, *PI)) 505 return false; 506 } 507 } 508 509 ToSplit.insert(std::make_pair(FromBB, ToBB)); 510 511 return true; 512 } 513 514 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 515 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 516 MachineBasicBlock *MBB, 517 MachineBasicBlock *SuccToSinkTo, 518 AllSuccsCache &AllSuccessors) { 519 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 520 521 if (MBB == SuccToSinkTo) 522 return false; 523 524 // It is profitable if SuccToSinkTo does not post dominate current block. 525 if (!PDT->dominates(SuccToSinkTo, MBB)) 526 return true; 527 528 // It is profitable to sink an instruction from a deeper loop to a shallower 529 // loop, even if the latter post-dominates the former (PR21115). 530 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 531 return true; 532 533 // Check if only use in post dominated block is PHI instruction. 534 bool NonPHIUse = false; 535 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 536 MachineBasicBlock *UseBlock = UseInst.getParent(); 537 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 538 NonPHIUse = true; 539 } 540 if (!NonPHIUse) 541 return true; 542 543 // If SuccToSinkTo post dominates then also it may be profitable if MI 544 // can further profitably sinked into another block in next round. 545 bool BreakPHIEdge = false; 546 // FIXME - If finding successor is compile time expensive then cache results. 547 if (MachineBasicBlock *MBB2 = 548 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 549 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 550 551 // If SuccToSinkTo is final destination and it is a post dominator of current 552 // block then it is not profitable to sink MI into SuccToSinkTo block. 553 return false; 554 } 555 556 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 557 /// computing it if it was not already cached. 558 SmallVector<MachineBasicBlock *, 4> & 559 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 560 AllSuccsCache &AllSuccessors) const { 561 // Do we have the sorted successors in cache ? 562 auto Succs = AllSuccessors.find(MBB); 563 if (Succs != AllSuccessors.end()) 564 return Succs->second; 565 566 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 567 MBB->succ_end()); 568 569 // Handle cases where sinking can happen but where the sink point isn't a 570 // successor. For example: 571 // 572 // x = computation 573 // if () {} else {} 574 // use x 575 // 576 const std::vector<MachineDomTreeNode *> &Children = 577 DT->getNode(MBB)->getChildren(); 578 for (const auto &DTChild : Children) 579 // DomTree children of MBB that have MBB as immediate dominator are added. 580 if (DTChild->getIDom()->getBlock() == MI.getParent() && 581 // Skip MBBs already added to the AllSuccs vector above. 582 !MBB->isSuccessor(DTChild->getBlock())) 583 AllSuccs.push_back(DTChild->getBlock()); 584 585 // Sort Successors according to their loop depth or block frequency info. 586 llvm::stable_sort( 587 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 588 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 589 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 590 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 591 return HasBlockFreq ? LHSFreq < RHSFreq 592 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 593 }); 594 595 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 596 597 return it.first->second; 598 } 599 600 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 601 MachineBasicBlock * 602 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 603 bool &BreakPHIEdge, 604 AllSuccsCache &AllSuccessors) { 605 assert (MBB && "Invalid MachineBasicBlock!"); 606 607 // Loop over all the operands of the specified instruction. If there is 608 // anything we can't handle, bail out. 609 610 // SuccToSinkTo - This is the successor to sink this instruction to, once we 611 // decide. 612 MachineBasicBlock *SuccToSinkTo = nullptr; 613 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 614 const MachineOperand &MO = MI.getOperand(i); 615 if (!MO.isReg()) continue; // Ignore non-register operands. 616 617 Register Reg = MO.getReg(); 618 if (Reg == 0) continue; 619 620 if (Register::isPhysicalRegister(Reg)) { 621 if (MO.isUse()) { 622 // If the physreg has no defs anywhere, it's just an ambient register 623 // and we can freely move its uses. Alternatively, if it's allocatable, 624 // it could get allocated to something with a def during allocation. 625 if (!MRI->isConstantPhysReg(Reg)) 626 return nullptr; 627 } else if (!MO.isDead()) { 628 // A def that isn't dead. We can't move it. 629 return nullptr; 630 } 631 } else { 632 // Virtual register uses are always safe to sink. 633 if (MO.isUse()) continue; 634 635 // If it's not safe to move defs of the register class, then abort. 636 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 637 return nullptr; 638 639 // Virtual register defs can only be sunk if all their uses are in blocks 640 // dominated by one of the successors. 641 if (SuccToSinkTo) { 642 // If a previous operand picked a block to sink to, then this operand 643 // must be sinkable to the same block. 644 bool LocalUse = false; 645 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 646 BreakPHIEdge, LocalUse)) 647 return nullptr; 648 649 continue; 650 } 651 652 // Otherwise, we should look at all the successors and decide which one 653 // we should sink to. If we have reliable block frequency information 654 // (frequency != 0) available, give successors with smaller frequencies 655 // higher priority, otherwise prioritize smaller loop depths. 656 for (MachineBasicBlock *SuccBlock : 657 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 658 bool LocalUse = false; 659 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 660 BreakPHIEdge, LocalUse)) { 661 SuccToSinkTo = SuccBlock; 662 break; 663 } 664 if (LocalUse) 665 // Def is used locally, it's never safe to move this def. 666 return nullptr; 667 } 668 669 // If we couldn't find a block to sink to, ignore this instruction. 670 if (!SuccToSinkTo) 671 return nullptr; 672 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 673 return nullptr; 674 } 675 } 676 677 // It is not possible to sink an instruction into its own block. This can 678 // happen with loops. 679 if (MBB == SuccToSinkTo) 680 return nullptr; 681 682 // It's not safe to sink instructions to EH landing pad. Control flow into 683 // landing pad is implicitly defined. 684 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 685 return nullptr; 686 687 return SuccToSinkTo; 688 } 689 690 /// Return true if MI is likely to be usable as a memory operation by the 691 /// implicit null check optimization. 692 /// 693 /// This is a "best effort" heuristic, and should not be relied upon for 694 /// correctness. This returning true does not guarantee that the implicit null 695 /// check optimization is legal over MI, and this returning false does not 696 /// guarantee MI cannot possibly be used to do a null check. 697 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 698 const TargetInstrInfo *TII, 699 const TargetRegisterInfo *TRI) { 700 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 701 702 auto *MBB = MI.getParent(); 703 if (MBB->pred_size() != 1) 704 return false; 705 706 auto *PredMBB = *MBB->pred_begin(); 707 auto *PredBB = PredMBB->getBasicBlock(); 708 709 // Frontends that don't use implicit null checks have no reason to emit 710 // branches with make.implicit metadata, and this function should always 711 // return false for them. 712 if (!PredBB || 713 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 714 return false; 715 716 const MachineOperand *BaseOp; 717 int64_t Offset; 718 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 719 return false; 720 721 if (!BaseOp->isReg()) 722 return false; 723 724 if (!(MI.mayLoad() && !MI.isPredicable())) 725 return false; 726 727 MachineBranchPredicate MBP; 728 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 729 return false; 730 731 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 732 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 733 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 734 MBP.LHS.getReg() == BaseOp->getReg(); 735 } 736 737 /// Sink an instruction and its associated debug instructions. If the debug 738 /// instructions to be sunk are already known, they can be provided in DbgVals. 739 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 740 MachineBasicBlock::iterator InsertPos, 741 SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) { 742 // If debug values are provided use those, otherwise call collectDebugValues. 743 SmallVector<MachineInstr *, 2> DbgValuesToSink; 744 if (DbgVals) 745 DbgValuesToSink.insert(DbgValuesToSink.begin(), 746 DbgVals->begin(), DbgVals->end()); 747 else 748 MI.collectDebugValues(DbgValuesToSink); 749 750 // If we cannot find a location to use (merge with), then we erase the debug 751 // location to prevent debug-info driven tools from potentially reporting 752 // wrong location information. 753 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 754 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 755 InsertPos->getDebugLoc())); 756 else 757 MI.setDebugLoc(DebugLoc()); 758 759 // Move the instruction. 760 MachineBasicBlock *ParentBlock = MI.getParent(); 761 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 762 ++MachineBasicBlock::iterator(MI)); 763 764 // Move previously adjacent debug value instructions to the insert position. 765 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 766 DBE = DbgValuesToSink.end(); 767 DBI != DBE; ++DBI) { 768 MachineInstr *DbgMI = *DBI; 769 SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI, 770 ++MachineBasicBlock::iterator(DbgMI)); 771 } 772 } 773 774 /// SinkInstruction - Determine whether it is safe to sink the specified machine 775 /// instruction out of its current block into a successor. 776 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 777 AllSuccsCache &AllSuccessors) { 778 // Don't sink instructions that the target prefers not to sink. 779 if (!TII->shouldSink(MI)) 780 return false; 781 782 // Check if it's safe to move the instruction. 783 if (!MI.isSafeToMove(AA, SawStore)) 784 return false; 785 786 // Convergent operations may not be made control-dependent on additional 787 // values. 788 if (MI.isConvergent()) 789 return false; 790 791 // Don't break implicit null checks. This is a performance heuristic, and not 792 // required for correctness. 793 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 794 return false; 795 796 // FIXME: This should include support for sinking instructions within the 797 // block they are currently in to shorten the live ranges. We often get 798 // instructions sunk into the top of a large block, but it would be better to 799 // also sink them down before their first use in the block. This xform has to 800 // be careful not to *increase* register pressure though, e.g. sinking 801 // "x = y + z" down if it kills y and z would increase the live ranges of y 802 // and z and only shrink the live range of x. 803 804 bool BreakPHIEdge = false; 805 MachineBasicBlock *ParentBlock = MI.getParent(); 806 MachineBasicBlock *SuccToSinkTo = 807 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 808 809 // If there are no outputs, it must have side-effects. 810 if (!SuccToSinkTo) 811 return false; 812 813 // If the instruction to move defines a dead physical register which is live 814 // when leaving the basic block, don't move it because it could turn into a 815 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 816 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 817 const MachineOperand &MO = MI.getOperand(I); 818 if (!MO.isReg()) continue; 819 Register Reg = MO.getReg(); 820 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 821 continue; 822 if (SuccToSinkTo->isLiveIn(Reg)) 823 return false; 824 } 825 826 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 827 828 // If the block has multiple predecessors, this is a critical edge. 829 // Decide if we can sink along it or need to break the edge. 830 if (SuccToSinkTo->pred_size() > 1) { 831 // We cannot sink a load across a critical edge - there may be stores in 832 // other code paths. 833 bool TryBreak = false; 834 bool store = true; 835 if (!MI.isSafeToMove(AA, store)) { 836 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 837 TryBreak = true; 838 } 839 840 // We don't want to sink across a critical edge if we don't dominate the 841 // successor. We could be introducing calculations to new code paths. 842 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 843 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 844 TryBreak = true; 845 } 846 847 // Don't sink instructions into a loop. 848 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 849 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 850 TryBreak = true; 851 } 852 853 // Otherwise we are OK with sinking along a critical edge. 854 if (!TryBreak) 855 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 856 else { 857 // Mark this edge as to be split. 858 // If the edge can actually be split, the next iteration of the main loop 859 // will sink MI in the newly created block. 860 bool Status = 861 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 862 if (!Status) 863 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 864 "break critical edge\n"); 865 // The instruction will not be sunk this time. 866 return false; 867 } 868 } 869 870 if (BreakPHIEdge) { 871 // BreakPHIEdge is true if all the uses are in the successor MBB being 872 // sunken into and they are all PHI nodes. In this case, machine-sink must 873 // break the critical edge first. 874 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 875 SuccToSinkTo, BreakPHIEdge); 876 if (!Status) 877 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 878 "break critical edge\n"); 879 // The instruction will not be sunk this time. 880 return false; 881 } 882 883 // Determine where to insert into. Skip phi nodes. 884 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 885 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 886 ++InsertPos; 887 888 performSink(MI, *SuccToSinkTo, InsertPos); 889 890 // Conservatively, clear any kill flags, since it's possible that they are no 891 // longer correct. 892 // Note that we have to clear the kill flags for any register this instruction 893 // uses as we may sink over another instruction which currently kills the 894 // used registers. 895 for (MachineOperand &MO : MI.operands()) { 896 if (MO.isReg() && MO.isUse()) 897 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 898 } 899 900 return true; 901 } 902 903 //===----------------------------------------------------------------------===// 904 // This pass is not intended to be a replacement or a complete alternative 905 // for the pre-ra machine sink pass. It is only designed to sink COPY 906 // instructions which should be handled after RA. 907 // 908 // This pass sinks COPY instructions into a successor block, if the COPY is not 909 // used in the current block and the COPY is live-in to a single successor 910 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 911 // copy on paths where their results aren't needed. This also exposes 912 // additional opportunites for dead copy elimination and shrink wrapping. 913 // 914 // These copies were either not handled by or are inserted after the MachineSink 915 // pass. As an example of the former case, the MachineSink pass cannot sink 916 // COPY instructions with allocatable source registers; for AArch64 these type 917 // of copy instructions are frequently used to move function parameters (PhyReg) 918 // into virtual registers in the entry block. 919 // 920 // For the machine IR below, this pass will sink %w19 in the entry into its 921 // successor (%bb.1) because %w19 is only live-in in %bb.1. 922 // %bb.0: 923 // %wzr = SUBSWri %w1, 1 924 // %w19 = COPY %w0 925 // Bcc 11, %bb.2 926 // %bb.1: 927 // Live Ins: %w19 928 // BL @fun 929 // %w0 = ADDWrr %w0, %w19 930 // RET %w0 931 // %bb.2: 932 // %w0 = COPY %wzr 933 // RET %w0 934 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 935 // able to see %bb.0 as a candidate. 936 //===----------------------------------------------------------------------===// 937 namespace { 938 939 class PostRAMachineSinking : public MachineFunctionPass { 940 public: 941 bool runOnMachineFunction(MachineFunction &MF) override; 942 943 static char ID; 944 PostRAMachineSinking() : MachineFunctionPass(ID) {} 945 StringRef getPassName() const override { return "PostRA Machine Sink"; } 946 947 void getAnalysisUsage(AnalysisUsage &AU) const override { 948 AU.setPreservesCFG(); 949 MachineFunctionPass::getAnalysisUsage(AU); 950 } 951 952 MachineFunctionProperties getRequiredProperties() const override { 953 return MachineFunctionProperties().set( 954 MachineFunctionProperties::Property::NoVRegs); 955 } 956 957 private: 958 /// Track which register units have been modified and used. 959 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 960 961 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 962 /// entry in this map for each unit it touches. 963 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 964 965 /// Sink Copy instructions unused in the same block close to their uses in 966 /// successors. 967 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 968 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 969 }; 970 } // namespace 971 972 char PostRAMachineSinking::ID = 0; 973 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 974 975 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 976 "PostRA Machine Sink", false, false) 977 978 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 979 const TargetRegisterInfo *TRI) { 980 LiveRegUnits LiveInRegUnits(*TRI); 981 LiveInRegUnits.addLiveIns(MBB); 982 return !LiveInRegUnits.available(Reg); 983 } 984 985 static MachineBasicBlock * 986 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 987 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 988 unsigned Reg, const TargetRegisterInfo *TRI) { 989 // Try to find a single sinkable successor in which Reg is live-in. 990 MachineBasicBlock *BB = nullptr; 991 for (auto *SI : SinkableBBs) { 992 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 993 // If BB is set here, Reg is live-in to at least two sinkable successors, 994 // so quit. 995 if (BB) 996 return nullptr; 997 BB = SI; 998 } 999 } 1000 // Reg is not live-in to any sinkable successors. 1001 if (!BB) 1002 return nullptr; 1003 1004 // Check if any register aliased with Reg is live-in in other successors. 1005 for (auto *SI : CurBB.successors()) { 1006 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1007 return nullptr; 1008 } 1009 return BB; 1010 } 1011 1012 static MachineBasicBlock * 1013 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1014 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1015 ArrayRef<unsigned> DefedRegsInCopy, 1016 const TargetRegisterInfo *TRI) { 1017 MachineBasicBlock *SingleBB = nullptr; 1018 for (auto DefReg : DefedRegsInCopy) { 1019 MachineBasicBlock *BB = 1020 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1021 if (!BB || (SingleBB && SingleBB != BB)) 1022 return nullptr; 1023 SingleBB = BB; 1024 } 1025 return SingleBB; 1026 } 1027 1028 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1029 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1030 LiveRegUnits &UsedRegUnits, 1031 const TargetRegisterInfo *TRI) { 1032 for (auto U : UsedOpsInCopy) { 1033 MachineOperand &MO = MI->getOperand(U); 1034 Register SrcReg = MO.getReg(); 1035 if (!UsedRegUnits.available(SrcReg)) { 1036 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1037 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1038 if (UI.killsRegister(SrcReg, TRI)) { 1039 UI.clearRegisterKills(SrcReg, TRI); 1040 MO.setIsKill(true); 1041 break; 1042 } 1043 } 1044 } 1045 } 1046 } 1047 1048 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1049 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1050 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1051 MachineFunction &MF = *SuccBB->getParent(); 1052 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1053 for (unsigned DefReg : DefedRegsInCopy) 1054 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1055 SuccBB->removeLiveIn(*S); 1056 for (auto U : UsedOpsInCopy) { 1057 Register Reg = MI->getOperand(U).getReg(); 1058 if (!SuccBB->isLiveIn(Reg)) 1059 SuccBB->addLiveIn(Reg); 1060 } 1061 } 1062 1063 static bool hasRegisterDependency(MachineInstr *MI, 1064 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1065 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1066 LiveRegUnits &ModifiedRegUnits, 1067 LiveRegUnits &UsedRegUnits) { 1068 bool HasRegDependency = false; 1069 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1070 MachineOperand &MO = MI->getOperand(i); 1071 if (!MO.isReg()) 1072 continue; 1073 Register Reg = MO.getReg(); 1074 if (!Reg) 1075 continue; 1076 if (MO.isDef()) { 1077 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1078 HasRegDependency = true; 1079 break; 1080 } 1081 DefedRegsInCopy.push_back(Reg); 1082 1083 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1084 // For example, we can ignore modifications in reg with undef. However, 1085 // it's not perfectly clear if skipping the internal read is safe in all 1086 // other targets. 1087 } else if (MO.isUse()) { 1088 if (!ModifiedRegUnits.available(Reg)) { 1089 HasRegDependency = true; 1090 break; 1091 } 1092 UsedOpsInCopy.push_back(i); 1093 } 1094 } 1095 return HasRegDependency; 1096 } 1097 1098 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1099 const TargetRegisterInfo *TRI) { 1100 SmallSet<unsigned, 4> RegUnits; 1101 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1102 RegUnits.insert(*RI); 1103 return RegUnits; 1104 } 1105 1106 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1107 MachineFunction &MF, 1108 const TargetRegisterInfo *TRI, 1109 const TargetInstrInfo *TII) { 1110 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1111 // FIXME: For now, we sink only to a successor which has a single predecessor 1112 // so that we can directly sink COPY instructions to the successor without 1113 // adding any new block or branch instruction. 1114 for (MachineBasicBlock *SI : CurBB.successors()) 1115 if (!SI->livein_empty() && SI->pred_size() == 1) 1116 SinkableBBs.insert(SI); 1117 1118 if (SinkableBBs.empty()) 1119 return false; 1120 1121 bool Changed = false; 1122 1123 // Track which registers have been modified and used between the end of the 1124 // block and the current instruction. 1125 ModifiedRegUnits.clear(); 1126 UsedRegUnits.clear(); 1127 SeenDbgInstrs.clear(); 1128 1129 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1130 MachineInstr *MI = &*I; 1131 ++I; 1132 1133 // Track the operand index for use in Copy. 1134 SmallVector<unsigned, 2> UsedOpsInCopy; 1135 // Track the register number defed in Copy. 1136 SmallVector<unsigned, 2> DefedRegsInCopy; 1137 1138 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1139 // for DBG_VALUEs later, record them when they're encountered. 1140 if (MI->isDebugValue()) { 1141 auto &MO = MI->getOperand(0); 1142 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1143 // Bail if we can already tell the sink would be rejected, rather 1144 // than needlessly accumulating lots of DBG_VALUEs. 1145 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1146 ModifiedRegUnits, UsedRegUnits)) 1147 continue; 1148 1149 // Record debug use of each reg unit. 1150 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1151 for (unsigned Reg : Units) 1152 SeenDbgInstrs[Reg].push_back(MI); 1153 } 1154 continue; 1155 } 1156 1157 if (MI->isDebugInstr()) 1158 continue; 1159 1160 // Do not move any instruction across function call. 1161 if (MI->isCall()) 1162 return false; 1163 1164 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1165 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1166 TRI); 1167 continue; 1168 } 1169 1170 // Don't sink the COPY if it would violate a register dependency. 1171 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1172 ModifiedRegUnits, UsedRegUnits)) { 1173 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1174 TRI); 1175 continue; 1176 } 1177 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1178 "Unexpect SrcReg or DefReg"); 1179 MachineBasicBlock *SuccBB = 1180 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1181 // Don't sink if we cannot find a single sinkable successor in which Reg 1182 // is live-in. 1183 if (!SuccBB) { 1184 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1185 TRI); 1186 continue; 1187 } 1188 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1189 "Unexpected predecessor"); 1190 1191 // Collect DBG_VALUEs that must sink with this copy. We've previously 1192 // recorded which reg units that DBG_VALUEs read, if this instruction 1193 // writes any of those units then the corresponding DBG_VALUEs must sink. 1194 SetVector<MachineInstr *> DbgValsToSinkSet; 1195 SmallVector<MachineInstr *, 4> DbgValsToSink; 1196 for (auto &MO : MI->operands()) { 1197 if (!MO.isReg() || !MO.isDef()) 1198 continue; 1199 1200 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1201 for (unsigned Reg : Units) 1202 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1203 DbgValsToSinkSet.insert(MI); 1204 } 1205 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1206 DbgValsToSinkSet.end()); 1207 1208 // Clear the kill flag if SrcReg is killed between MI and the end of the 1209 // block. 1210 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1211 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1212 performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink); 1213 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1214 1215 Changed = true; 1216 ++NumPostRACopySink; 1217 } 1218 return Changed; 1219 } 1220 1221 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1222 if (skipFunction(MF.getFunction())) 1223 return false; 1224 1225 bool Changed = false; 1226 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1227 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1228 1229 ModifiedRegUnits.init(*TRI); 1230 UsedRegUnits.init(*TRI); 1231 for (auto &BB : MF) 1232 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1233 1234 return Changed; 1235 } 1236