1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDomTreeUpdater.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachinePostDominators.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineSizeOpts.h" 43 #include "llvm/CodeGen/RegisterClassInfo.h" 44 #include "llvm/CodeGen/RegisterPressure.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSubtargetInfo.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> UseBlockFreqInfo( 73 "machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc( 107 "The maximum number of instructions considered for cycle sinking."), 108 cl::init(50), cl::Hidden); 109 110 STATISTIC(NumSunk, "Number of machine instructions sunk"); 111 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 112 STATISTIC(NumSplit, "Number of critical edges split"); 113 STATISTIC(NumCoalesces, "Number of copies coalesced"); 114 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 115 116 namespace { 117 118 class MachineSinking : public MachineFunctionPass { 119 const TargetSubtargetInfo *STI = nullptr; 120 const TargetInstrInfo *TII = nullptr; 121 const TargetRegisterInfo *TRI = nullptr; 122 MachineRegisterInfo *MRI = nullptr; // Machine register information 123 MachineDominatorTree *DT = nullptr; // Machine dominator tree 124 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 125 MachineCycleInfo *CI = nullptr; 126 ProfileSummaryInfo *PSI = nullptr; 127 MachineBlockFrequencyInfo *MBFI = nullptr; 128 const MachineBranchProbabilityInfo *MBPI = nullptr; 129 AliasAnalysis *AA = nullptr; 130 RegisterClassInfo RegClassInfo; 131 132 // Remember which edges have been considered for breaking. 133 SmallSet<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 8> 134 CEBCandidates; 135 // Memorize the register that also wanted to sink into the same block along 136 // a different critical edge. 137 // {register to sink, sink-to block} -> the first sink-from block. 138 // We're recording the first sink-from block because that (critical) edge 139 // was deferred until we see another register that's going to sink into the 140 // same block. 141 DenseMap<std::pair<Register, MachineBasicBlock *>, MachineBasicBlock *> 142 CEMergeCandidates; 143 // Remember which edges we are about to split. 144 // This is different from CEBCandidates since those edges 145 // will be split. 146 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 147 148 DenseSet<Register> RegsToClearKillFlags; 149 150 using AllSuccsCache = 151 SmallDenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 152 153 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 154 /// post-dominated by another DBG_VALUE of the same variable location. 155 /// This is necessary to detect sequences such as: 156 /// %0 = someinst 157 /// DBG_VALUE %0, !123, !DIExpression() 158 /// %1 = anotherinst 159 /// DBG_VALUE %1, !123, !DIExpression() 160 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 161 /// would re-order assignments. 162 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 163 164 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 165 /// debug instructions to sink. 166 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 167 168 /// Record of debug variables that have had their locations set in the 169 /// current block. 170 DenseSet<DebugVariable> SeenDbgVars; 171 172 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 173 HasStoreCache; 174 175 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 176 SmallVector<MachineInstr *>> 177 StoreInstrCache; 178 179 /// Cached BB's register pressure. 180 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 181 CachedRegisterPressure; 182 183 bool EnableSinkAndFold; 184 185 public: 186 static char ID; // Pass identification 187 188 MachineSinking() : MachineFunctionPass(ID) { 189 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 190 } 191 192 bool runOnMachineFunction(MachineFunction &MF) override; 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 MachineFunctionPass::getAnalysisUsage(AU); 196 AU.addRequired<AAResultsWrapperPass>(); 197 AU.addRequired<MachineDominatorTreeWrapperPass>(); 198 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 199 AU.addRequired<MachineCycleInfoWrapperPass>(); 200 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 201 AU.addPreserved<MachineCycleInfoWrapperPass>(); 202 AU.addPreserved<MachineLoopInfoWrapperPass>(); 203 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 204 if (UseBlockFreqInfo) 205 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 206 AU.addRequired<TargetPassConfig>(); 207 } 208 209 void releaseMemory() override { 210 CEBCandidates.clear(); 211 CEMergeCandidates.clear(); 212 } 213 214 private: 215 bool ProcessBlock(MachineBasicBlock &MBB); 216 void ProcessDbgInst(MachineInstr &MI); 217 bool isLegalToBreakCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 218 MachineBasicBlock *To, bool BreakPHIEdge); 219 bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 220 MachineBasicBlock *To, 221 MachineBasicBlock *&DeferredFromBlock); 222 223 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 224 MachineInstr &MI); 225 226 /// Postpone the splitting of the given critical 227 /// edge (\p From, \p To). 228 /// 229 /// We do not split the edges on the fly. Indeed, this invalidates 230 /// the dominance information and thus triggers a lot of updates 231 /// of that information underneath. 232 /// Instead, we postpone all the splits after each iteration of 233 /// the main loop. That way, the information is at least valid 234 /// for the lifetime of an iteration. 235 /// 236 /// \return True if the edge is marked as toSplit, false otherwise. 237 /// False can be returned if, for instance, this is not profitable. 238 bool PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 239 MachineBasicBlock *To, bool BreakPHIEdge); 240 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 241 AllSuccsCache &AllSuccessors); 242 243 /// If we sink a COPY inst, some debug users of it's destination may no 244 /// longer be dominated by the COPY, and will eventually be dropped. 245 /// This is easily rectified by forwarding the non-dominated debug uses 246 /// to the copy source. 247 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 248 MachineBasicBlock *TargetBlock); 249 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 250 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 251 bool &LocalUse) const; 252 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 253 bool &BreakPHIEdge, 254 AllSuccsCache &AllSuccessors); 255 256 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 257 SmallVectorImpl<MachineInstr *> &Candidates); 258 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 259 260 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 261 MachineBasicBlock *MBB, 262 MachineBasicBlock *SuccToSinkTo, 263 AllSuccsCache &AllSuccessors); 264 265 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 266 MachineBasicBlock *MBB); 267 268 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 269 270 SmallVector<MachineBasicBlock *, 4> & 271 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 272 AllSuccsCache &AllSuccessors) const; 273 274 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 275 276 bool registerPressureSetExceedsLimit(unsigned NRegs, 277 const TargetRegisterClass *RC, 278 const MachineBasicBlock &MBB); 279 }; 280 281 } // end anonymous namespace 282 283 char MachineSinking::ID = 0; 284 285 char &llvm::MachineSinkingID = MachineSinking::ID; 286 287 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 288 false) 289 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 290 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 291 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 292 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 293 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 294 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 295 false) 296 297 /// Return true if a target defined block prologue instruction interferes 298 /// with a sink candidate. 299 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 300 MachineBasicBlock::const_iterator End, 301 const MachineInstr &MI, 302 const TargetRegisterInfo *TRI, 303 const TargetInstrInfo *TII, 304 const MachineRegisterInfo *MRI) { 305 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 306 ++PI) { 307 // Only check target defined prologue instructions 308 if (!TII->isBasicBlockPrologue(*PI)) 309 continue; 310 for (auto &MO : MI.operands()) { 311 if (!MO.isReg()) 312 continue; 313 Register Reg = MO.getReg(); 314 if (!Reg) 315 continue; 316 if (MO.isUse()) { 317 if (Reg.isPhysical() && 318 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 319 continue; 320 if (PI->modifiesRegister(Reg, TRI)) 321 return true; 322 } else { 323 if (PI->readsRegister(Reg, TRI)) 324 return true; 325 // Check for interference with non-dead defs 326 auto *DefOp = PI->findRegisterDefOperand(Reg, TRI, false, true); 327 if (DefOp && !DefOp->isDead()) 328 return true; 329 } 330 } 331 } 332 333 return false; 334 } 335 336 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 337 MachineBasicBlock *MBB) { 338 if (!MI.isCopy()) 339 return false; 340 341 Register SrcReg = MI.getOperand(1).getReg(); 342 Register DstReg = MI.getOperand(0).getReg(); 343 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 344 !MRI->hasOneNonDBGUse(SrcReg)) 345 return false; 346 347 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 348 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 349 if (SRC != DRC) 350 return false; 351 352 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 353 if (DefMI->isCopyLike()) 354 return false; 355 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 356 LLVM_DEBUG(dbgs() << "*** to: " << MI); 357 MRI->replaceRegWith(DstReg, SrcReg); 358 MI.eraseFromParent(); 359 360 // Conservatively, clear any kill flags, since it's possible that they are no 361 // longer correct. 362 MRI->clearKillFlags(SrcReg); 363 364 ++NumCoalesces; 365 return true; 366 } 367 368 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 369 MachineBasicBlock *MBB) { 370 if (MI.isCopy() || MI.mayLoadOrStore() || 371 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 372 return false; 373 374 // Don't sink instructions that the target prefers not to sink. 375 if (!TII->shouldSink(MI)) 376 return false; 377 378 // Check if it's safe to move the instruction. 379 bool SawStore = true; 380 if (!MI.isSafeToMove(SawStore)) 381 return false; 382 383 // Convergent operations may not be made control-dependent on additional 384 // values. 385 if (MI.isConvergent()) 386 return false; 387 388 // Don't sink defs/uses of hard registers or if the instruction defines more 389 // than one register. 390 // Don't sink more than two register uses - it'll cover most of the cases and 391 // greatly simplifies the register pressure checks. 392 Register DefReg; 393 Register UsedRegA, UsedRegB; 394 for (const MachineOperand &MO : MI.operands()) { 395 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 396 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 397 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 398 continue; 399 if (!MO.isReg()) 400 return false; 401 402 Register Reg = MO.getReg(); 403 if (Reg == 0) 404 continue; 405 406 if (Reg.isVirtual()) { 407 if (MO.isDef()) { 408 if (DefReg) 409 return false; 410 DefReg = Reg; 411 continue; 412 } 413 414 if (UsedRegA == 0) 415 UsedRegA = Reg; 416 else if (UsedRegB == 0) 417 UsedRegB = Reg; 418 else 419 return false; 420 continue; 421 } 422 423 if (Reg.isPhysical() && MO.isUse() && 424 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 425 continue; 426 427 return false; 428 } 429 430 // Scan uses of the destination register. Every use, except the last, must be 431 // a copy, with a chain of copies terminating with either a copy into a hard 432 // register, or a load/store instruction where the use is part of the 433 // address (*not* the stored value). 434 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 435 SmallVector<SinkInfo> SinkInto; 436 SmallVector<Register> Worklist; 437 438 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 439 const TargetRegisterClass *RCA = 440 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 441 const TargetRegisterClass *RCB = 442 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 443 444 Worklist.push_back(DefReg); 445 while (!Worklist.empty()) { 446 Register Reg = Worklist.pop_back_val(); 447 448 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 449 ExtAddrMode MaybeAM; 450 MachineInstr &UseInst = *MO.getParent(); 451 if (UseInst.isCopy()) { 452 Register DstReg; 453 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 454 DstReg = O.getReg(); 455 if (DstReg == 0) 456 return false; 457 if (DstReg.isVirtual()) { 458 Worklist.push_back(DstReg); 459 continue; 460 } 461 // If we are going to replace a copy, the original instruction must be 462 // as cheap as a copy. 463 if (!TII->isAsCheapAsAMove(MI)) 464 return false; 465 // The hard register must be in the register class of the original 466 // instruction's destination register. 467 if (!RC->contains(DstReg)) 468 return false; 469 } else if (UseInst.mayLoadOrStore()) { 470 ExtAddrMode AM; 471 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 472 return false; 473 MaybeAM = AM; 474 } else { 475 return false; 476 } 477 478 if (UseInst.getParent() != MI.getParent()) { 479 // If the register class of the register we are replacing is a superset 480 // of any of the register classes of the operands of the materialized 481 // instruction don't consider that live range extended. 482 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 483 if (RCA && RCA->hasSuperClassEq(RCS)) 484 RCA = nullptr; 485 else if (RCB && RCB->hasSuperClassEq(RCS)) 486 RCB = nullptr; 487 if (RCA || RCB) { 488 if (RCA == nullptr) { 489 RCA = RCB; 490 RCB = nullptr; 491 } 492 493 unsigned NRegs = !!RCA + !!RCB; 494 if (RCA == RCB) 495 RCB = nullptr; 496 497 // Check we don't exceed register pressure at the destination. 498 const MachineBasicBlock &MBB = *UseInst.getParent(); 499 if (RCB == nullptr) { 500 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 501 return false; 502 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 503 registerPressureSetExceedsLimit(1, RCB, MBB)) { 504 return false; 505 } 506 } 507 } 508 509 SinkInto.emplace_back(&UseInst, MaybeAM); 510 } 511 } 512 513 if (SinkInto.empty()) 514 return false; 515 516 // Now we know we can fold the instruction in all its users. 517 for (auto &[SinkDst, MaybeAM] : SinkInto) { 518 MachineInstr *New = nullptr; 519 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 520 SinkDst->dump()); 521 if (SinkDst->isCopy()) { 522 // TODO: After performing the sink-and-fold, the original instruction is 523 // deleted. Its value is still available (in a hard register), so if there 524 // are debug instructions which refer to the (now deleted) virtual 525 // register they could be updated to refer to the hard register, in 526 // principle. However, it's not clear how to do that, moreover in some 527 // cases the debug instructions may need to be replicated proportionally 528 // to the number of the COPY instructions replaced and in some extreme 529 // cases we can end up with quadratic increase in the number of debug 530 // instructions. 531 532 // Sink a copy of the instruction, replacing a COPY instruction. 533 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 534 Register DstReg = SinkDst->getOperand(0).getReg(); 535 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 536 New = &*std::prev(InsertPt); 537 if (!New->getDebugLoc()) 538 New->setDebugLoc(SinkDst->getDebugLoc()); 539 540 // The operand registers of the "sunk" instruction have their live range 541 // extended and their kill flags may no longer be correct. Conservatively 542 // clear the kill flags. 543 if (UsedRegA) 544 MRI->clearKillFlags(UsedRegA); 545 if (UsedRegB) 546 MRI->clearKillFlags(UsedRegB); 547 } else { 548 // Fold instruction into the addressing mode of a memory instruction. 549 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 550 551 // The registers of the addressing mode may have their live range extended 552 // and their kill flags may no longer be correct. Conservatively clear the 553 // kill flags. 554 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 555 MRI->clearKillFlags(R); 556 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 557 MRI->clearKillFlags(R); 558 } 559 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 560 // Clear the StoreInstrCache, since we may invalidate it by erasing. 561 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 562 StoreInstrCache.clear(); 563 SinkDst->eraseFromParent(); 564 } 565 566 // Collect operands that need to be cleaned up because the registers no longer 567 // exist (in COPYs and debug instructions). We cannot delete instructions or 568 // clear operands while traversing register uses. 569 SmallVector<MachineOperand *> Cleanup; 570 Worklist.push_back(DefReg); 571 while (!Worklist.empty()) { 572 Register Reg = Worklist.pop_back_val(); 573 for (MachineOperand &MO : MRI->use_operands(Reg)) { 574 MachineInstr *U = MO.getParent(); 575 assert((U->isCopy() || U->isDebugInstr()) && 576 "Only debug uses and copies must remain"); 577 if (U->isCopy()) 578 Worklist.push_back(U->getOperand(0).getReg()); 579 Cleanup.push_back(&MO); 580 } 581 } 582 583 // Delete the dead COPYs and clear operands in debug instructions 584 for (MachineOperand *MO : Cleanup) { 585 MachineInstr *I = MO->getParent(); 586 if (I->isCopy()) { 587 I->eraseFromParent(); 588 } else { 589 MO->setReg(0); 590 MO->setSubReg(0); 591 } 592 } 593 594 MI.eraseFromParent(); 595 return true; 596 } 597 598 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 599 /// occur in blocks dominated by the specified block. If any use is in the 600 /// definition block, then return false since it is never legal to move def 601 /// after uses. 602 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 603 MachineBasicBlock *MBB, 604 MachineBasicBlock *DefMBB, 605 bool &BreakPHIEdge, 606 bool &LocalUse) const { 607 assert(Reg.isVirtual() && "Only makes sense for vregs"); 608 609 // Ignore debug uses because debug info doesn't affect the code. 610 if (MRI->use_nodbg_empty(Reg)) 611 return true; 612 613 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 614 // into and they are all PHI nodes. In this case, machine-sink must break 615 // the critical edge first. e.g. 616 // 617 // %bb.1: 618 // Predecessors according to CFG: %bb.0 619 // ... 620 // %def = DEC64_32r %x, implicit-def dead %eflags 621 // ... 622 // JE_4 <%bb.37>, implicit %eflags 623 // Successors according to CFG: %bb.37 %bb.2 624 // 625 // %bb.2: 626 // %p = PHI %y, %bb.0, %def, %bb.1 627 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 628 MachineInstr *UseInst = MO.getParent(); 629 unsigned OpNo = MO.getOperandNo(); 630 MachineBasicBlock *UseBlock = UseInst->getParent(); 631 return UseBlock == MBB && UseInst->isPHI() && 632 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 633 })) { 634 BreakPHIEdge = true; 635 return true; 636 } 637 638 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 639 // Determine the block of the use. 640 MachineInstr *UseInst = MO.getParent(); 641 unsigned OpNo = &MO - &UseInst->getOperand(0); 642 MachineBasicBlock *UseBlock = UseInst->getParent(); 643 if (UseInst->isPHI()) { 644 // PHI nodes use the operand in the predecessor block, not the block with 645 // the PHI. 646 UseBlock = UseInst->getOperand(OpNo + 1).getMBB(); 647 } else if (UseBlock == DefMBB) { 648 LocalUse = true; 649 return false; 650 } 651 652 // Check that it dominates. 653 if (!DT->dominates(MBB, UseBlock)) 654 return false; 655 } 656 657 return true; 658 } 659 660 /// Return true if this machine instruction loads from global offset table or 661 /// constant pool. 662 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 663 assert(MI.mayLoad() && "Expected MI that loads!"); 664 665 // If we lost memory operands, conservatively assume that the instruction 666 // reads from everything.. 667 if (MI.memoperands_empty()) 668 return true; 669 670 for (MachineMemOperand *MemOp : MI.memoperands()) 671 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 672 if (PSV->isGOT() || PSV->isConstantPool()) 673 return true; 674 675 return false; 676 } 677 678 void MachineSinking::FindCycleSinkCandidates( 679 MachineCycle *Cycle, MachineBasicBlock *BB, 680 SmallVectorImpl<MachineInstr *> &Candidates) { 681 for (auto &MI : *BB) { 682 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 683 if (!TII->shouldSink(MI)) { 684 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 685 "target\n"); 686 continue; 687 } 688 if (!isCycleInvariant(Cycle, MI)) { 689 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 690 continue; 691 } 692 bool DontMoveAcrossStore = true; 693 if (!MI.isSafeToMove(DontMoveAcrossStore)) { 694 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 695 continue; 696 } 697 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 698 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 699 continue; 700 } 701 if (MI.isConvergent()) 702 continue; 703 704 const MachineOperand &MO = MI.getOperand(0); 705 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 706 continue; 707 if (!MRI->hasOneDef(MO.getReg())) 708 continue; 709 710 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 711 Candidates.push_back(&MI); 712 } 713 } 714 715 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 716 if (skipFunction(MF.getFunction())) 717 return false; 718 719 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 720 721 STI = &MF.getSubtarget(); 722 TII = STI->getInstrInfo(); 723 TRI = STI->getRegisterInfo(); 724 MRI = &MF.getRegInfo(); 725 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 726 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 727 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 728 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 729 MBFI = UseBlockFreqInfo 730 ? &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI() 731 : nullptr; 732 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 733 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 734 RegClassInfo.runOnMachineFunction(MF); 735 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 736 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 737 738 bool EverMadeChange = false; 739 740 while (true) { 741 bool MadeChange = false; 742 743 // Process all basic blocks. 744 CEBCandidates.clear(); 745 CEMergeCandidates.clear(); 746 ToSplit.clear(); 747 for (auto &MBB : MF) 748 MadeChange |= ProcessBlock(MBB); 749 750 // If we have anything we marked as toSplit, split it now. 751 MachineDomTreeUpdater MDTU(DT, PDT, 752 MachineDomTreeUpdater::UpdateStrategy::Lazy); 753 for (const auto &Pair : ToSplit) { 754 auto NewSucc = 755 Pair.first->SplitCriticalEdge(Pair.second, *this, nullptr, &MDTU); 756 if (NewSucc != nullptr) { 757 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 758 << printMBBReference(*Pair.first) << " -- " 759 << printMBBReference(*NewSucc) << " -- " 760 << printMBBReference(*Pair.second) << '\n'); 761 if (MBFI) 762 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 763 764 MadeChange = true; 765 ++NumSplit; 766 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 767 } else 768 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 769 } 770 // If this iteration over the code changed anything, keep iterating. 771 if (!MadeChange) 772 break; 773 EverMadeChange = true; 774 } 775 776 if (SinkInstsIntoCycle) { 777 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_cycles()); 778 for (auto *Cycle : Cycles) { 779 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 780 if (!Preheader) { 781 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 782 continue; 783 } 784 SmallVector<MachineInstr *, 8> Candidates; 785 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 786 787 // Walk the candidates in reverse order so that we start with the use 788 // of a def-use chain, if there is any. 789 // TODO: Sort the candidates using a cost-model. 790 unsigned i = 0; 791 for (MachineInstr *I : llvm::reverse(Candidates)) { 792 if (i++ == SinkIntoCycleLimit) { 793 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 794 "be analysed."); 795 break; 796 } 797 798 if (!SinkIntoCycle(Cycle, *I)) 799 break; 800 EverMadeChange = true; 801 ++NumCycleSunk; 802 } 803 } 804 } 805 806 HasStoreCache.clear(); 807 StoreInstrCache.clear(); 808 809 // Now clear any kill flags for recorded registers. 810 for (auto I : RegsToClearKillFlags) 811 MRI->clearKillFlags(I); 812 RegsToClearKillFlags.clear(); 813 814 return EverMadeChange; 815 } 816 817 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 818 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 819 return false; 820 821 // Don't bother sinking code out of unreachable blocks. In addition to being 822 // unprofitable, it can also lead to infinite looping, because in an 823 // unreachable cycle there may be nowhere to stop. 824 if (!DT->isReachableFromEntry(&MBB)) 825 return false; 826 827 bool MadeChange = false; 828 829 // Cache all successors, sorted by frequency info and cycle depth. 830 AllSuccsCache AllSuccessors; 831 832 // Walk the basic block bottom-up. Remember if we saw a store. 833 MachineBasicBlock::iterator I = MBB.end(); 834 --I; 835 bool ProcessedBegin, SawStore = false; 836 do { 837 MachineInstr &MI = *I; // The instruction to sink. 838 839 // Predecrement I (if it's not begin) so that it isn't invalidated by 840 // sinking. 841 ProcessedBegin = I == MBB.begin(); 842 if (!ProcessedBegin) 843 --I; 844 845 if (MI.isDebugOrPseudoInstr() || MI.isFakeUse()) { 846 if (MI.isDebugValue()) 847 ProcessDbgInst(MI); 848 continue; 849 } 850 851 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 852 MadeChange = true; 853 continue; 854 } 855 856 // Can't sink anything out of a block that has less than two successors. 857 if (MBB.succ_size() <= 1) 858 continue; 859 860 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 861 MadeChange = true; 862 continue; 863 } 864 865 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 866 ++NumSunk; 867 MadeChange = true; 868 } 869 870 // If we just processed the first instruction in the block, we're done. 871 } while (!ProcessedBegin); 872 873 SeenDbgUsers.clear(); 874 SeenDbgVars.clear(); 875 // recalculate the bb register pressure after sinking one BB. 876 CachedRegisterPressure.clear(); 877 return MadeChange; 878 } 879 880 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 881 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 882 // we know what to sink if the vreg def sinks. 883 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 884 885 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 886 MI.getDebugLoc()->getInlinedAt()); 887 bool SeenBefore = SeenDbgVars.contains(Var); 888 889 for (MachineOperand &MO : MI.debug_operands()) { 890 if (MO.isReg() && MO.getReg().isVirtual()) 891 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 892 } 893 894 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 895 SeenDbgVars.insert(Var); 896 } 897 898 bool MachineSinking::isWorthBreakingCriticalEdge( 899 MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, 900 MachineBasicBlock *&DeferredFromBlock) { 901 // FIXME: Need much better heuristics. 902 903 // If the pass has already considered breaking this edge (during this pass 904 // through the function), then let's go ahead and break it. This means 905 // sinking multiple "cheap" instructions into the same block. 906 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 907 return true; 908 909 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 910 return true; 911 912 // Check and record the register and the destination block we want to sink 913 // into. Note that we want to do the following before the next check on branch 914 // probability. Because we want to record the initial candidate even if it's 915 // on hot edge, so that other candidates that might not on hot edges can be 916 // sinked as well. 917 for (const auto &MO : MI.all_defs()) { 918 Register Reg = MO.getReg(); 919 if (!Reg) 920 continue; 921 Register SrcReg = Reg.isVirtual() ? TRI->lookThruCopyLike(Reg, MRI) : Reg; 922 auto Key = std::make_pair(SrcReg, To); 923 auto Res = CEMergeCandidates.try_emplace(Key, From); 924 // We wanted to sink the same register into the same block, consider it to 925 // be profitable. 926 if (!Res.second) { 927 // Return the source block that was previously held off. 928 DeferredFromBlock = Res.first->second; 929 return true; 930 } 931 } 932 933 if (From->isSuccessor(To) && 934 MBPI->getEdgeProbability(From, To) <= 935 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 936 return true; 937 938 // MI is cheap, we probably don't want to break the critical edge for it. 939 // However, if this would allow some definitions of its source operands 940 // to be sunk then it's probably worth it. 941 for (const MachineOperand &MO : MI.all_uses()) { 942 Register Reg = MO.getReg(); 943 if (Reg == 0) 944 continue; 945 946 // We don't move live definitions of physical registers, 947 // so sinking their uses won't enable any opportunities. 948 if (Reg.isPhysical()) 949 continue; 950 951 // If this instruction is the only user of a virtual register, 952 // check if breaking the edge will enable sinking 953 // both this instruction and the defining instruction. 954 if (MRI->hasOneNonDBGUse(Reg)) { 955 // If the definition resides in same MBB, 956 // claim it's likely we can sink these together. 957 // If definition resides elsewhere, we aren't 958 // blocking it from being sunk so don't break the edge. 959 MachineInstr *DefMI = MRI->getVRegDef(Reg); 960 if (DefMI->getParent() == MI.getParent()) 961 return true; 962 } 963 } 964 965 // Let the target decide if it's worth breaking this 966 // critical edge for a "cheap" instruction. 967 return TII->shouldBreakCriticalEdgeToSink(MI); 968 } 969 970 bool MachineSinking::isLegalToBreakCriticalEdge(MachineInstr &MI, 971 MachineBasicBlock *FromBB, 972 MachineBasicBlock *ToBB, 973 bool BreakPHIEdge) { 974 // Avoid breaking back edge. From == To means backedge for single BB cycle. 975 if (!SplitEdges || FromBB == ToBB || !FromBB->isSuccessor(ToBB)) 976 return false; 977 978 MachineCycle *FromCycle = CI->getCycle(FromBB); 979 MachineCycle *ToCycle = CI->getCycle(ToBB); 980 981 // Check for backedges of more "complex" cycles. 982 if (FromCycle == ToCycle && FromCycle && 983 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 984 return false; 985 986 // It's not always legal to break critical edges and sink the computation 987 // to the edge. 988 // 989 // %bb.1: 990 // v1024 991 // Beq %bb.3 992 // <fallthrough> 993 // %bb.2: 994 // ... no uses of v1024 995 // <fallthrough> 996 // %bb.3: 997 // ... 998 // = v1024 999 // 1000 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 1001 // 1002 // %bb.1: 1003 // ... 1004 // Bne %bb.2 1005 // %bb.4: 1006 // v1024 = 1007 // B %bb.3 1008 // %bb.2: 1009 // ... no uses of v1024 1010 // <fallthrough> 1011 // %bb.3: 1012 // ... 1013 // = v1024 1014 // 1015 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 1016 // flow. We need to ensure the new basic block where the computation is 1017 // sunk to dominates all the uses. 1018 // It's only legal to break critical edge and sink the computation to the 1019 // new block if all the predecessors of "To", except for "From", are 1020 // not dominated by "From". Given SSA property, this means these 1021 // predecessors are dominated by "To". 1022 // 1023 // There is no need to do this check if all the uses are PHI nodes. PHI 1024 // sources are only defined on the specific predecessor edges. 1025 if (!BreakPHIEdge) { 1026 for (MachineBasicBlock *Pred : ToBB->predecessors()) 1027 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 1028 return false; 1029 } 1030 1031 return true; 1032 } 1033 1034 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 1035 MachineBasicBlock *FromBB, 1036 MachineBasicBlock *ToBB, 1037 bool BreakPHIEdge) { 1038 bool Status = false; 1039 MachineBasicBlock *DeferredFromBB = nullptr; 1040 if (isWorthBreakingCriticalEdge(MI, FromBB, ToBB, DeferredFromBB)) { 1041 // If there is a DeferredFromBB, we consider FromBB only if _both_ 1042 // of them are legal to split. 1043 if ((!DeferredFromBB || 1044 ToSplit.count(std::make_pair(DeferredFromBB, ToBB)) || 1045 isLegalToBreakCriticalEdge(MI, DeferredFromBB, ToBB, BreakPHIEdge)) && 1046 isLegalToBreakCriticalEdge(MI, FromBB, ToBB, BreakPHIEdge)) { 1047 ToSplit.insert(std::make_pair(FromBB, ToBB)); 1048 if (DeferredFromBB) 1049 ToSplit.insert(std::make_pair(DeferredFromBB, ToBB)); 1050 Status = true; 1051 } 1052 } 1053 1054 return Status; 1055 } 1056 1057 std::vector<unsigned> & 1058 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 1059 // Currently to save compiling time, MBB's register pressure will not change 1060 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 1061 // register pressure is changed after sinking any instructions into it. 1062 // FIXME: need a accurate and cheap register pressure estiminate model here. 1063 auto RP = CachedRegisterPressure.find(&MBB); 1064 if (RP != CachedRegisterPressure.end()) 1065 return RP->second; 1066 1067 RegionPressure Pressure; 1068 RegPressureTracker RPTracker(Pressure); 1069 1070 // Initialize the register pressure tracker. 1071 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1072 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1073 1074 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1075 MIE = MBB.instr_begin(); 1076 MII != MIE; --MII) { 1077 const MachineInstr &MI = *std::prev(MII); 1078 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1079 continue; 1080 RegisterOperands RegOpers; 1081 RegOpers.collect(MI, *TRI, *MRI, false, false); 1082 RPTracker.recedeSkipDebugValues(); 1083 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1084 RPTracker.recede(RegOpers); 1085 } 1086 1087 RPTracker.closeRegion(); 1088 auto It = CachedRegisterPressure.insert( 1089 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1090 return It.first->second; 1091 } 1092 1093 bool MachineSinking::registerPressureSetExceedsLimit( 1094 unsigned NRegs, const TargetRegisterClass *RC, 1095 const MachineBasicBlock &MBB) { 1096 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1097 const int *PS = TRI->getRegClassPressureSets(RC); 1098 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1099 for (; *PS != -1; PS++) 1100 if (Weight + BBRegisterPressure[*PS] >= 1101 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1102 return true; 1103 return false; 1104 } 1105 1106 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1107 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1108 MachineBasicBlock *MBB, 1109 MachineBasicBlock *SuccToSinkTo, 1110 AllSuccsCache &AllSuccessors) { 1111 assert(SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1112 1113 if (MBB == SuccToSinkTo) 1114 return false; 1115 1116 // It is profitable if SuccToSinkTo does not post dominate current block. 1117 if (!PDT->dominates(SuccToSinkTo, MBB)) 1118 return true; 1119 1120 // It is profitable to sink an instruction from a deeper cycle to a shallower 1121 // cycle, even if the latter post-dominates the former (PR21115). 1122 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1123 return true; 1124 1125 // Check if only use in post dominated block is PHI instruction. 1126 bool NonPHIUse = false; 1127 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1128 MachineBasicBlock *UseBlock = UseInst.getParent(); 1129 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1130 NonPHIUse = true; 1131 } 1132 if (!NonPHIUse) 1133 return true; 1134 1135 // If SuccToSinkTo post dominates then also it may be profitable if MI 1136 // can further profitably sinked into another block in next round. 1137 bool BreakPHIEdge = false; 1138 // FIXME - If finding successor is compile time expensive then cache results. 1139 if (MachineBasicBlock *MBB2 = 1140 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1141 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1142 1143 MachineCycle *MCycle = CI->getCycle(MBB); 1144 1145 // If the instruction is not inside a cycle, it is not profitable to sink MI 1146 // to a post dominate block SuccToSinkTo. 1147 if (!MCycle) 1148 return false; 1149 1150 // If this instruction is inside a Cycle and sinking this instruction can make 1151 // more registers live range shorten, it is still prifitable. 1152 for (const MachineOperand &MO : MI.operands()) { 1153 // Ignore non-register operands. 1154 if (!MO.isReg()) 1155 continue; 1156 Register Reg = MO.getReg(); 1157 if (Reg == 0) 1158 continue; 1159 1160 if (Reg.isPhysical()) { 1161 // Don't handle non-constant and non-ignorable physical register uses. 1162 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && 1163 !TII->isIgnorableUse(MO)) 1164 return false; 1165 continue; 1166 } 1167 1168 // Users for the defs are all dominated by SuccToSinkTo. 1169 if (MO.isDef()) { 1170 // This def register's live range is shortened after sinking. 1171 bool LocalUse = false; 1172 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1173 LocalUse)) 1174 return false; 1175 } else { 1176 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1177 if (!DefMI) 1178 continue; 1179 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1180 // DefMI is defined outside of cycle. There should be no live range 1181 // impact for this operand. Defination outside of cycle means: 1182 // 1: defination is outside of cycle. 1183 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1184 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1185 Cycle->getHeader() == DefMI->getParent())) 1186 continue; 1187 // The DefMI is defined inside the cycle. 1188 // If sinking this operand makes some register pressure set exceed limit, 1189 // it is not profitable. 1190 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1191 *SuccToSinkTo)) { 1192 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1193 return false; 1194 } 1195 } 1196 } 1197 1198 // If MI is in cycle and all its operands are alive across the whole cycle or 1199 // if no operand sinking make register pressure set exceed limit, it is 1200 // profitable to sink MI. 1201 return true; 1202 } 1203 1204 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1205 /// computing it if it was not already cached. 1206 SmallVector<MachineBasicBlock *, 4> & 1207 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1208 AllSuccsCache &AllSuccessors) const { 1209 // Do we have the sorted successors in cache ? 1210 auto Succs = AllSuccessors.find(MBB); 1211 if (Succs != AllSuccessors.end()) 1212 return Succs->second; 1213 1214 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1215 1216 // Handle cases where sinking can happen but where the sink point isn't a 1217 // successor. For example: 1218 // 1219 // x = computation 1220 // if () {} else {} 1221 // use x 1222 // 1223 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1224 // DomTree children of MBB that have MBB as immediate dominator are added. 1225 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1226 // Skip MBBs already added to the AllSuccs vector above. 1227 !MBB->isSuccessor(DTChild->getBlock())) 1228 AllSuccs.push_back(DTChild->getBlock()); 1229 } 1230 1231 // Sort Successors according to their cycle depth or block frequency info. 1232 llvm::stable_sort( 1233 AllSuccs, [&](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1234 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1235 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1236 if (llvm::shouldOptimizeForSize(MBB, PSI, MBFI) || 1237 (!LHSFreq && !RHSFreq)) 1238 return CI->getCycleDepth(L) < CI->getCycleDepth(R); 1239 return LHSFreq < RHSFreq; 1240 }); 1241 1242 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1243 1244 return it.first->second; 1245 } 1246 1247 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1248 MachineBasicBlock * 1249 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1250 bool &BreakPHIEdge, 1251 AllSuccsCache &AllSuccessors) { 1252 assert(MBB && "Invalid MachineBasicBlock!"); 1253 1254 // loop over all the operands of the specified instruction. If there is 1255 // anything we can't handle, bail out. 1256 1257 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1258 // decide. 1259 MachineBasicBlock *SuccToSinkTo = nullptr; 1260 for (const MachineOperand &MO : MI.operands()) { 1261 if (!MO.isReg()) 1262 continue; // Ignore non-register operands. 1263 1264 Register Reg = MO.getReg(); 1265 if (Reg == 0) 1266 continue; 1267 1268 if (Reg.isPhysical()) { 1269 if (MO.isUse()) { 1270 // If the physreg has no defs anywhere, it's just an ambient register 1271 // and we can freely move its uses. Alternatively, if it's allocatable, 1272 // it could get allocated to something with a def during allocation. 1273 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1274 return nullptr; 1275 } else if (!MO.isDead()) { 1276 // A def that isn't dead. We can't move it. 1277 return nullptr; 1278 } 1279 } else { 1280 // Virtual register uses are always safe to sink. 1281 if (MO.isUse()) 1282 continue; 1283 1284 // If it's not safe to move defs of the register class, then abort. 1285 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1286 return nullptr; 1287 1288 // Virtual register defs can only be sunk if all their uses are in blocks 1289 // dominated by one of the successors. 1290 if (SuccToSinkTo) { 1291 // If a previous operand picked a block to sink to, then this operand 1292 // must be sinkable to the same block. 1293 bool LocalUse = false; 1294 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1295 LocalUse)) 1296 return nullptr; 1297 1298 continue; 1299 } 1300 1301 // Otherwise, we should look at all the successors and decide which one 1302 // we should sink to. If we have reliable block frequency information 1303 // (frequency != 0) available, give successors with smaller frequencies 1304 // higher priority, otherwise prioritize smaller cycle depths. 1305 for (MachineBasicBlock *SuccBlock : 1306 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1307 bool LocalUse = false; 1308 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, BreakPHIEdge, 1309 LocalUse)) { 1310 SuccToSinkTo = SuccBlock; 1311 break; 1312 } 1313 if (LocalUse) 1314 // Def is used locally, it's never safe to move this def. 1315 return nullptr; 1316 } 1317 1318 // If we couldn't find a block to sink to, ignore this instruction. 1319 if (!SuccToSinkTo) 1320 return nullptr; 1321 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1322 return nullptr; 1323 } 1324 } 1325 1326 // It is not possible to sink an instruction into its own block. This can 1327 // happen with cycles. 1328 if (MBB == SuccToSinkTo) 1329 return nullptr; 1330 1331 // It's not safe to sink instructions to EH landing pad. Control flow into 1332 // landing pad is implicitly defined. 1333 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1334 return nullptr; 1335 1336 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1337 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1338 // the source block (which this code does not yet do). So for now, forbid 1339 // doing so. 1340 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1341 return nullptr; 1342 1343 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1344 return nullptr; 1345 1346 return SuccToSinkTo; 1347 } 1348 1349 /// Return true if MI is likely to be usable as a memory operation by the 1350 /// implicit null check optimization. 1351 /// 1352 /// This is a "best effort" heuristic, and should not be relied upon for 1353 /// correctness. This returning true does not guarantee that the implicit null 1354 /// check optimization is legal over MI, and this returning false does not 1355 /// guarantee MI cannot possibly be used to do a null check. 1356 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1357 const TargetInstrInfo *TII, 1358 const TargetRegisterInfo *TRI) { 1359 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1360 1361 auto *MBB = MI.getParent(); 1362 if (MBB->pred_size() != 1) 1363 return false; 1364 1365 auto *PredMBB = *MBB->pred_begin(); 1366 auto *PredBB = PredMBB->getBasicBlock(); 1367 1368 // Frontends that don't use implicit null checks have no reason to emit 1369 // branches with make.implicit metadata, and this function should always 1370 // return false for them. 1371 if (!PredBB || 1372 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1373 return false; 1374 1375 const MachineOperand *BaseOp; 1376 int64_t Offset; 1377 bool OffsetIsScalable; 1378 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1379 return false; 1380 1381 if (!BaseOp->isReg()) 1382 return false; 1383 1384 if (!(MI.mayLoad() && !MI.isPredicable())) 1385 return false; 1386 1387 MachineBranchPredicate MBP; 1388 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1389 return false; 1390 1391 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1392 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1393 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1394 MBP.LHS.getReg() == BaseOp->getReg(); 1395 } 1396 1397 /// If the sunk instruction is a copy, try to forward the copy instead of 1398 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1399 /// there's any subregister weirdness involved. Returns true if copy 1400 /// propagation occurred. 1401 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1402 Register Reg) { 1403 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1404 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1405 1406 // Copy DBG_VALUE operand and set the original to undef. We then check to 1407 // see whether this is something that can be copy-forwarded. If it isn't, 1408 // continue around the loop. 1409 1410 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1411 auto CopyOperands = TII.isCopyInstr(SinkInst); 1412 if (!CopyOperands) 1413 return false; 1414 SrcMO = CopyOperands->Source; 1415 DstMO = CopyOperands->Destination; 1416 1417 // Check validity of forwarding this copy. 1418 bool PostRA = MRI.getNumVirtRegs() == 0; 1419 1420 // Trying to forward between physical and virtual registers is too hard. 1421 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1422 return false; 1423 1424 // Only try virtual register copy-forwarding before regalloc, and physical 1425 // register copy-forwarding after regalloc. 1426 bool arePhysRegs = !Reg.isVirtual(); 1427 if (arePhysRegs != PostRA) 1428 return false; 1429 1430 // Pre-regalloc, only forward if all subregisters agree (or there are no 1431 // subregs at all). More analysis might recover some forwardable copies. 1432 if (!PostRA) 1433 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1434 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1435 DbgMO.getSubReg() != DstMO->getSubReg()) 1436 return false; 1437 1438 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1439 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1440 // matches the copy destination. 1441 if (PostRA && Reg != DstMO->getReg()) 1442 return false; 1443 1444 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1445 DbgMO.setReg(SrcMO->getReg()); 1446 DbgMO.setSubReg(SrcMO->getSubReg()); 1447 } 1448 return true; 1449 } 1450 1451 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1452 /// Sink an instruction and its associated debug instructions. 1453 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1454 MachineBasicBlock::iterator InsertPos, 1455 ArrayRef<MIRegs> DbgValuesToSink) { 1456 // If we cannot find a location to use (merge with), then we erase the debug 1457 // location to prevent debug-info driven tools from potentially reporting 1458 // wrong location information. 1459 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1460 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1461 InsertPos->getDebugLoc())); 1462 else 1463 MI.setDebugLoc(DebugLoc()); 1464 1465 // Move the instruction. 1466 MachineBasicBlock *ParentBlock = MI.getParent(); 1467 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1468 ++MachineBasicBlock::iterator(MI)); 1469 1470 // Sink a copy of debug users to the insert position. Mark the original 1471 // DBG_VALUE location as 'undef', indicating that any earlier variable 1472 // location should be terminated as we've optimised away the value at this 1473 // point. 1474 for (const auto &DbgValueToSink : DbgValuesToSink) { 1475 MachineInstr *DbgMI = DbgValueToSink.first; 1476 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1477 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1478 1479 bool PropagatedAllSunkOps = true; 1480 for (unsigned Reg : DbgValueToSink.second) { 1481 if (DbgMI->hasDebugOperandForReg(Reg)) { 1482 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1483 PropagatedAllSunkOps = false; 1484 break; 1485 } 1486 } 1487 } 1488 if (!PropagatedAllSunkOps) 1489 DbgMI->setDebugValueUndef(); 1490 } 1491 } 1492 1493 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1494 /// and To. 1495 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1496 MachineBasicBlock *To, MachineInstr &MI) { 1497 // Make sure From and To are in straight line which means From dominates To 1498 // and To post dominates From. 1499 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1500 return true; 1501 1502 auto BlockPair = std::make_pair(From, To); 1503 1504 // Does these two blocks pair be queried before and have a definite cached 1505 // result? 1506 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1507 return It->second; 1508 1509 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1510 return llvm::any_of(It->second, [&](MachineInstr *I) { 1511 return I->mayAlias(AA, MI, false); 1512 }); 1513 1514 bool SawStore = false; 1515 bool HasAliasedStore = false; 1516 DenseSet<MachineBasicBlock *> HandledBlocks; 1517 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1518 // Go through all reachable blocks from From. 1519 for (MachineBasicBlock *BB : depth_first(From)) { 1520 // We insert the instruction at the start of block To, so no need to worry 1521 // about stores inside To. 1522 // Store in block From should be already considered when just enter function 1523 // SinkInstruction. 1524 if (BB == To || BB == From) 1525 continue; 1526 1527 // We already handle this BB in previous iteration. 1528 if (HandledBlocks.count(BB)) 1529 continue; 1530 1531 HandledBlocks.insert(BB); 1532 // To post dominates BB, it must be a path from block From. 1533 if (PDT->dominates(To, BB)) { 1534 if (!HandledDomBlocks.count(BB)) 1535 HandledDomBlocks.insert(BB); 1536 1537 // If this BB is too big or the block number in straight line between From 1538 // and To is too big, stop searching to save compiling time. 1539 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1540 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1541 for (auto *DomBB : HandledDomBlocks) { 1542 if (DomBB != BB && DT->dominates(DomBB, BB)) 1543 HasStoreCache[std::make_pair(DomBB, To)] = true; 1544 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1545 HasStoreCache[std::make_pair(From, DomBB)] = true; 1546 } 1547 HasStoreCache[BlockPair] = true; 1548 return true; 1549 } 1550 1551 for (MachineInstr &I : *BB) { 1552 // Treat as alias conservatively for a call or an ordered memory 1553 // operation. 1554 if (I.isCall() || I.hasOrderedMemoryRef()) { 1555 for (auto *DomBB : HandledDomBlocks) { 1556 if (DomBB != BB && DT->dominates(DomBB, BB)) 1557 HasStoreCache[std::make_pair(DomBB, To)] = true; 1558 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1559 HasStoreCache[std::make_pair(From, DomBB)] = true; 1560 } 1561 HasStoreCache[BlockPair] = true; 1562 return true; 1563 } 1564 1565 if (I.mayStore()) { 1566 SawStore = true; 1567 // We still have chance to sink MI if all stores between are not 1568 // aliased to MI. 1569 // Cache all store instructions, so that we don't need to go through 1570 // all From reachable blocks for next load instruction. 1571 if (I.mayAlias(AA, MI, false)) 1572 HasAliasedStore = true; 1573 StoreInstrCache[BlockPair].push_back(&I); 1574 } 1575 } 1576 } 1577 } 1578 // If there is no store at all, cache the result. 1579 if (!SawStore) 1580 HasStoreCache[BlockPair] = false; 1581 return HasAliasedStore; 1582 } 1583 1584 /// Sink instructions into cycles if profitable. This especially tries to 1585 /// prevent register spills caused by register pressure if there is little to no 1586 /// overhead moving instructions into cycles. 1587 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1588 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1589 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1590 assert(Preheader && "Cycle sink needs a preheader block"); 1591 MachineBasicBlock *SinkBlock = nullptr; 1592 bool CanSink = true; 1593 const MachineOperand &MO = I.getOperand(0); 1594 1595 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1596 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1597 if (!Cycle->contains(MI.getParent())) { 1598 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1599 CanSink = false; 1600 break; 1601 } 1602 1603 // FIXME: Come up with a proper cost model that estimates whether sinking 1604 // the instruction (and thus possibly executing it on every cycle 1605 // iteration) is more expensive than a register. 1606 // For now assumes that copies are cheap and thus almost always worth it. 1607 if (!MI.isCopy()) { 1608 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1609 CanSink = false; 1610 break; 1611 } 1612 if (!SinkBlock) { 1613 SinkBlock = MI.getParent(); 1614 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1615 << printMBBReference(*SinkBlock) << "\n"); 1616 continue; 1617 } 1618 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1619 if (!SinkBlock) { 1620 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1621 CanSink = false; 1622 break; 1623 } 1624 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " 1625 << printMBBReference(*SinkBlock) << "\n"); 1626 } 1627 1628 if (!CanSink) { 1629 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1630 return false; 1631 } 1632 if (!SinkBlock) { 1633 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1634 return false; 1635 } 1636 if (SinkBlock == Preheader) { 1637 LLVM_DEBUG( 1638 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1639 return false; 1640 } 1641 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1642 LLVM_DEBUG( 1643 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1644 return false; 1645 } 1646 1647 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1648 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1649 I); 1650 1651 // Conservatively clear any kill flags on uses of sunk instruction 1652 for (MachineOperand &MO : I.operands()) { 1653 if (MO.isReg() && MO.readsReg()) 1654 RegsToClearKillFlags.insert(MO.getReg()); 1655 } 1656 1657 // The instruction is moved from its basic block, so do not retain the 1658 // debug information. 1659 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1660 I.setDebugLoc(DebugLoc()); 1661 return true; 1662 } 1663 1664 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1665 /// instruction out of its current block into a successor. 1666 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1667 AllSuccsCache &AllSuccessors) { 1668 // Don't sink instructions that the target prefers not to sink. 1669 if (!TII->shouldSink(MI)) 1670 return false; 1671 1672 // Check if it's safe to move the instruction. 1673 if (!MI.isSafeToMove(SawStore)) 1674 return false; 1675 1676 // Convergent operations may not be made control-dependent on additional 1677 // values. 1678 if (MI.isConvergent()) 1679 return false; 1680 1681 // Don't break implicit null checks. This is a performance heuristic, and not 1682 // required for correctness. 1683 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1684 return false; 1685 1686 // FIXME: This should include support for sinking instructions within the 1687 // block they are currently in to shorten the live ranges. We often get 1688 // instructions sunk into the top of a large block, but it would be better to 1689 // also sink them down before their first use in the block. This xform has to 1690 // be careful not to *increase* register pressure though, e.g. sinking 1691 // "x = y + z" down if it kills y and z would increase the live ranges of y 1692 // and z and only shrink the live range of x. 1693 1694 bool BreakPHIEdge = false; 1695 MachineBasicBlock *ParentBlock = MI.getParent(); 1696 MachineBasicBlock *SuccToSinkTo = 1697 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1698 1699 // If there are no outputs, it must have side-effects. 1700 if (!SuccToSinkTo) 1701 return false; 1702 1703 // If the instruction to move defines a dead physical register which is live 1704 // when leaving the basic block, don't move it because it could turn into a 1705 // "zombie" define of that preg. E.g., EFLAGS. 1706 for (const MachineOperand &MO : MI.all_defs()) { 1707 Register Reg = MO.getReg(); 1708 if (Reg == 0 || !Reg.isPhysical()) 1709 continue; 1710 if (SuccToSinkTo->isLiveIn(Reg)) 1711 return false; 1712 } 1713 1714 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1715 1716 // If the block has multiple predecessors, this is a critical edge. 1717 // Decide if we can sink along it or need to break the edge. 1718 if (SuccToSinkTo->pred_size() > 1) { 1719 // We cannot sink a load across a critical edge - there may be stores in 1720 // other code paths. 1721 bool TryBreak = false; 1722 bool Store = 1723 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1724 if (!MI.isSafeToMove(Store)) { 1725 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1726 TryBreak = true; 1727 } 1728 1729 // We don't want to sink across a critical edge if we don't dominate the 1730 // successor. We could be introducing calculations to new code paths. 1731 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1732 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1733 TryBreak = true; 1734 } 1735 1736 // Don't sink instructions into a cycle. 1737 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1738 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1739 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1740 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1741 TryBreak = true; 1742 } 1743 1744 // Otherwise we are OK with sinking along a critical edge. 1745 if (!TryBreak) 1746 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1747 else { 1748 // Mark this edge as to be split. 1749 // If the edge can actually be split, the next iteration of the main loop 1750 // will sink MI in the newly created block. 1751 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, 1752 BreakPHIEdge); 1753 if (!Status) 1754 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1755 "break critical edge\n"); 1756 // The instruction will not be sunk this time. 1757 return false; 1758 } 1759 } 1760 1761 if (BreakPHIEdge) { 1762 // BreakPHIEdge is true if all the uses are in the successor MBB being 1763 // sunken into and they are all PHI nodes. In this case, machine-sink must 1764 // break the critical edge first. 1765 bool Status = 1766 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1767 if (!Status) 1768 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1769 "break critical edge\n"); 1770 // The instruction will not be sunk this time. 1771 return false; 1772 } 1773 1774 // Determine where to insert into. Skip phi nodes. 1775 MachineBasicBlock::iterator InsertPos = 1776 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1777 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1778 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1779 return false; 1780 } 1781 1782 // Collect debug users of any vreg that this inst defines. 1783 SmallVector<MIRegs, 4> DbgUsersToSink; 1784 for (auto &MO : MI.all_defs()) { 1785 if (!MO.getReg().isVirtual()) 1786 continue; 1787 if (!SeenDbgUsers.count(MO.getReg())) 1788 continue; 1789 1790 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1791 auto &Users = SeenDbgUsers[MO.getReg()]; 1792 for (auto &User : Users) { 1793 MachineInstr *DbgMI = User.getPointer(); 1794 if (User.getInt()) { 1795 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1796 // it, it can't be recovered. Set it undef. 1797 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1798 DbgMI->setDebugValueUndef(); 1799 } else { 1800 DbgUsersToSink.push_back( 1801 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1802 } 1803 } 1804 } 1805 1806 // After sinking, some debug users may not be dominated any more. If possible, 1807 // copy-propagate their operands. As it's expensive, don't do this if there's 1808 // no debuginfo in the program. 1809 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1810 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1811 1812 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1813 1814 // Conservatively, clear any kill flags, since it's possible that they are no 1815 // longer correct. 1816 // Note that we have to clear the kill flags for any register this instruction 1817 // uses as we may sink over another instruction which currently kills the 1818 // used registers. 1819 for (MachineOperand &MO : MI.all_uses()) 1820 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1821 1822 return true; 1823 } 1824 1825 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1826 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1827 assert(MI.isCopy()); 1828 assert(MI.getOperand(1).isReg()); 1829 1830 // Enumerate all users of vreg operands that are def'd. Skip those that will 1831 // be sunk. For the rest, if they are not dominated by the block we will sink 1832 // MI into, propagate the copy source to them. 1833 SmallVector<MachineInstr *, 4> DbgDefUsers; 1834 SmallVector<Register, 4> DbgUseRegs; 1835 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1836 for (auto &MO : MI.all_defs()) { 1837 if (!MO.getReg().isVirtual()) 1838 continue; 1839 DbgUseRegs.push_back(MO.getReg()); 1840 for (auto &User : MRI.use_instructions(MO.getReg())) { 1841 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1842 continue; 1843 1844 // If is in same block, will either sink or be use-before-def. 1845 if (User.getParent() == MI.getParent()) 1846 continue; 1847 1848 assert(User.hasDebugOperandForReg(MO.getReg()) && 1849 "DBG_VALUE user of vreg, but has no operand for it?"); 1850 DbgDefUsers.push_back(&User); 1851 } 1852 } 1853 1854 // Point the users of this copy that are no longer dominated, at the source 1855 // of the copy. 1856 for (auto *User : DbgDefUsers) { 1857 for (auto &Reg : DbgUseRegs) { 1858 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1859 DbgOp.setReg(MI.getOperand(1).getReg()); 1860 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1861 } 1862 } 1863 } 1864 } 1865 1866 //===----------------------------------------------------------------------===// 1867 // This pass is not intended to be a replacement or a complete alternative 1868 // for the pre-ra machine sink pass. It is only designed to sink COPY 1869 // instructions which should be handled after RA. 1870 // 1871 // This pass sinks COPY instructions into a successor block, if the COPY is not 1872 // used in the current block and the COPY is live-in to a single successor 1873 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1874 // copy on paths where their results aren't needed. This also exposes 1875 // additional opportunites for dead copy elimination and shrink wrapping. 1876 // 1877 // These copies were either not handled by or are inserted after the MachineSink 1878 // pass. As an example of the former case, the MachineSink pass cannot sink 1879 // COPY instructions with allocatable source registers; for AArch64 these type 1880 // of copy instructions are frequently used to move function parameters (PhyReg) 1881 // into virtual registers in the entry block. 1882 // 1883 // For the machine IR below, this pass will sink %w19 in the entry into its 1884 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1885 // %bb.0: 1886 // %wzr = SUBSWri %w1, 1 1887 // %w19 = COPY %w0 1888 // Bcc 11, %bb.2 1889 // %bb.1: 1890 // Live Ins: %w19 1891 // BL @fun 1892 // %w0 = ADDWrr %w0, %w19 1893 // RET %w0 1894 // %bb.2: 1895 // %w0 = COPY %wzr 1896 // RET %w0 1897 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1898 // able to see %bb.0 as a candidate. 1899 //===----------------------------------------------------------------------===// 1900 namespace { 1901 1902 class PostRAMachineSinking : public MachineFunctionPass { 1903 public: 1904 bool runOnMachineFunction(MachineFunction &MF) override; 1905 1906 static char ID; 1907 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1908 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1909 1910 void getAnalysisUsage(AnalysisUsage &AU) const override { 1911 AU.setPreservesCFG(); 1912 MachineFunctionPass::getAnalysisUsage(AU); 1913 } 1914 1915 MachineFunctionProperties getRequiredProperties() const override { 1916 return MachineFunctionProperties().set( 1917 MachineFunctionProperties::Property::NoVRegs); 1918 } 1919 1920 private: 1921 /// Track which register units have been modified and used. 1922 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1923 1924 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1925 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1926 /// consists of a pointer to the instruction itself, and a vector of registers 1927 /// referred to by the instruction that overlap the key register unit. 1928 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1929 1930 /// Sink Copy instructions unused in the same block close to their uses in 1931 /// successors. 1932 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1933 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1934 }; 1935 } // namespace 1936 1937 char PostRAMachineSinking::ID = 0; 1938 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1939 1940 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1941 "PostRA Machine Sink", false, false) 1942 1943 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1944 const TargetRegisterInfo *TRI) { 1945 LiveRegUnits LiveInRegUnits(*TRI); 1946 LiveInRegUnits.addLiveIns(MBB); 1947 return !LiveInRegUnits.available(Reg); 1948 } 1949 1950 static MachineBasicBlock * 1951 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1952 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1953 unsigned Reg, const TargetRegisterInfo *TRI) { 1954 // Try to find a single sinkable successor in which Reg is live-in. 1955 MachineBasicBlock *BB = nullptr; 1956 for (auto *SI : SinkableBBs) { 1957 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1958 // If BB is set here, Reg is live-in to at least two sinkable successors, 1959 // so quit. 1960 if (BB) 1961 return nullptr; 1962 BB = SI; 1963 } 1964 } 1965 // Reg is not live-in to any sinkable successors. 1966 if (!BB) 1967 return nullptr; 1968 1969 // Check if any register aliased with Reg is live-in in other successors. 1970 for (auto *SI : CurBB.successors()) { 1971 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1972 return nullptr; 1973 } 1974 return BB; 1975 } 1976 1977 static MachineBasicBlock * 1978 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1979 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1980 ArrayRef<unsigned> DefedRegsInCopy, 1981 const TargetRegisterInfo *TRI) { 1982 MachineBasicBlock *SingleBB = nullptr; 1983 for (auto DefReg : DefedRegsInCopy) { 1984 MachineBasicBlock *BB = 1985 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1986 if (!BB || (SingleBB && SingleBB != BB)) 1987 return nullptr; 1988 SingleBB = BB; 1989 } 1990 return SingleBB; 1991 } 1992 1993 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1994 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1995 LiveRegUnits &UsedRegUnits, 1996 const TargetRegisterInfo *TRI) { 1997 for (auto U : UsedOpsInCopy) { 1998 MachineOperand &MO = MI->getOperand(U); 1999 Register SrcReg = MO.getReg(); 2000 if (!UsedRegUnits.available(SrcReg)) { 2001 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 2002 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 2003 if (UI.killsRegister(SrcReg, TRI)) { 2004 UI.clearRegisterKills(SrcReg, TRI); 2005 MO.setIsKill(true); 2006 break; 2007 } 2008 } 2009 } 2010 } 2011 } 2012 2013 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 2014 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2015 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 2016 MachineFunction &MF = *SuccBB->getParent(); 2017 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2018 for (unsigned DefReg : DefedRegsInCopy) 2019 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 2020 SuccBB->removeLiveIn(S); 2021 for (auto U : UsedOpsInCopy) 2022 SuccBB->addLiveIn(MI->getOperand(U).getReg()); 2023 SuccBB->sortUniqueLiveIns(); 2024 } 2025 2026 static bool hasRegisterDependency(MachineInstr *MI, 2027 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2028 SmallVectorImpl<unsigned> &DefedRegsInCopy, 2029 LiveRegUnits &ModifiedRegUnits, 2030 LiveRegUnits &UsedRegUnits) { 2031 bool HasRegDependency = false; 2032 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2033 MachineOperand &MO = MI->getOperand(i); 2034 if (!MO.isReg()) 2035 continue; 2036 Register Reg = MO.getReg(); 2037 if (!Reg) 2038 continue; 2039 if (MO.isDef()) { 2040 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 2041 HasRegDependency = true; 2042 break; 2043 } 2044 DefedRegsInCopy.push_back(Reg); 2045 2046 // FIXME: instead of isUse(), readsReg() would be a better fix here, 2047 // For example, we can ignore modifications in reg with undef. However, 2048 // it's not perfectly clear if skipping the internal read is safe in all 2049 // other targets. 2050 } else if (MO.isUse()) { 2051 if (!ModifiedRegUnits.available(Reg)) { 2052 HasRegDependency = true; 2053 break; 2054 } 2055 UsedOpsInCopy.push_back(i); 2056 } 2057 } 2058 return HasRegDependency; 2059 } 2060 2061 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 2062 MachineFunction &MF, 2063 const TargetRegisterInfo *TRI, 2064 const TargetInstrInfo *TII) { 2065 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2066 // FIXME: For now, we sink only to a successor which has a single predecessor 2067 // so that we can directly sink COPY instructions to the successor without 2068 // adding any new block or branch instruction. 2069 for (MachineBasicBlock *SI : CurBB.successors()) 2070 if (!SI->livein_empty() && SI->pred_size() == 1) 2071 SinkableBBs.insert(SI); 2072 2073 if (SinkableBBs.empty()) 2074 return false; 2075 2076 bool Changed = false; 2077 2078 // Track which registers have been modified and used between the end of the 2079 // block and the current instruction. 2080 ModifiedRegUnits.clear(); 2081 UsedRegUnits.clear(); 2082 SeenDbgInstrs.clear(); 2083 2084 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2085 // Track the operand index for use in Copy. 2086 SmallVector<unsigned, 2> UsedOpsInCopy; 2087 // Track the register number defed in Copy. 2088 SmallVector<unsigned, 2> DefedRegsInCopy; 2089 2090 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2091 // for DBG_VALUEs later, record them when they're encountered. 2092 if (MI.isDebugValue() && !MI.isDebugRef()) { 2093 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2094 bool IsValid = true; 2095 for (MachineOperand &MO : MI.debug_operands()) { 2096 if (MO.isReg() && MO.getReg().isPhysical()) { 2097 // Bail if we can already tell the sink would be rejected, rather 2098 // than needlessly accumulating lots of DBG_VALUEs. 2099 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2100 ModifiedRegUnits, UsedRegUnits)) { 2101 IsValid = false; 2102 break; 2103 } 2104 2105 // Record debug use of each reg unit. 2106 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2107 MIUnits[Unit].push_back(MO.getReg()); 2108 } 2109 } 2110 if (IsValid) { 2111 for (auto &RegOps : MIUnits) 2112 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2113 std::move(RegOps.second)); 2114 } 2115 continue; 2116 } 2117 2118 if (MI.isDebugOrPseudoInstr()) 2119 continue; 2120 2121 // Do not move any instruction across function call. 2122 if (MI.isCall()) 2123 return false; 2124 2125 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2126 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2127 TRI); 2128 continue; 2129 } 2130 2131 // Don't sink the COPY if it would violate a register dependency. 2132 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2133 ModifiedRegUnits, UsedRegUnits)) { 2134 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2135 TRI); 2136 continue; 2137 } 2138 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2139 "Unexpect SrcReg or DefReg"); 2140 MachineBasicBlock *SuccBB = 2141 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2142 // Don't sink if we cannot find a single sinkable successor in which Reg 2143 // is live-in. 2144 if (!SuccBB) { 2145 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2146 TRI); 2147 continue; 2148 } 2149 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2150 "Unexpected predecessor"); 2151 2152 // Collect DBG_VALUEs that must sink with this copy. We've previously 2153 // recorded which reg units that DBG_VALUEs read, if this instruction 2154 // writes any of those units then the corresponding DBG_VALUEs must sink. 2155 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2156 for (auto &MO : MI.all_defs()) { 2157 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2158 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2159 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2160 for (unsigned Reg : MIRegs.second) 2161 Regs.push_back(Reg); 2162 } 2163 } 2164 } 2165 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2166 2167 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2168 2169 MachineBasicBlock::iterator InsertPos = 2170 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2171 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2172 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2173 TRI); 2174 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 2175 continue; 2176 } 2177 2178 // Clear the kill flag if SrcReg is killed between MI and the end of the 2179 // block. 2180 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2181 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2182 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2183 2184 Changed = true; 2185 ++NumPostRACopySink; 2186 } 2187 return Changed; 2188 } 2189 2190 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2191 if (skipFunction(MF.getFunction())) 2192 return false; 2193 2194 bool Changed = false; 2195 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2196 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2197 2198 ModifiedRegUnits.init(*TRI); 2199 UsedRegUnits.init(*TRI); 2200 for (auto &BB : MF) 2201 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2202 2203 return Changed; 2204 } 2205