xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision 05da2fe52162c80dfa18aedf70cf73cb11201811)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseBitVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <map>
52 #include <utility>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "machine-sink"
58 
59 static cl::opt<bool>
60 SplitEdges("machine-sink-split",
61            cl::desc("Split critical edges during machine sinking"),
62            cl::init(true), cl::Hidden);
63 
64 static cl::opt<bool>
65 UseBlockFreqInfo("machine-sink-bfi",
66            cl::desc("Use block frequency info to find successors to sink"),
67            cl::init(true), cl::Hidden);
68 
69 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
70     "machine-sink-split-probability-threshold",
71     cl::desc(
72         "Percentage threshold for splitting single-instruction critical edge. "
73         "If the branch threshold is higher than this threshold, we allow "
74         "speculative execution of up to 1 instruction to avoid branching to "
75         "splitted critical edge"),
76     cl::init(40), cl::Hidden);
77 
78 STATISTIC(NumSunk,      "Number of machine instructions sunk");
79 STATISTIC(NumSplit,     "Number of critical edges split");
80 STATISTIC(NumCoalesces, "Number of copies coalesced");
81 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
82 
83 namespace {
84 
85   class MachineSinking : public MachineFunctionPass {
86     const TargetInstrInfo *TII;
87     const TargetRegisterInfo *TRI;
88     MachineRegisterInfo  *MRI;     // Machine register information
89     MachineDominatorTree *DT;      // Machine dominator tree
90     MachinePostDominatorTree *PDT; // Machine post dominator tree
91     MachineLoopInfo *LI;
92     const MachineBlockFrequencyInfo *MBFI;
93     const MachineBranchProbabilityInfo *MBPI;
94     AliasAnalysis *AA;
95 
96     // Remember which edges have been considered for breaking.
97     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
98     CEBCandidates;
99     // Remember which edges we are about to split.
100     // This is different from CEBCandidates since those edges
101     // will be split.
102     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
103 
104     SparseBitVector<> RegsToClearKillFlags;
105 
106     using AllSuccsCache =
107         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
108 
109   public:
110     static char ID; // Pass identification
111 
112     MachineSinking() : MachineFunctionPass(ID) {
113       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
114     }
115 
116     bool runOnMachineFunction(MachineFunction &MF) override;
117 
118     void getAnalysisUsage(AnalysisUsage &AU) const override {
119       MachineFunctionPass::getAnalysisUsage(AU);
120       AU.addRequired<AAResultsWrapperPass>();
121       AU.addRequired<MachineDominatorTree>();
122       AU.addRequired<MachinePostDominatorTree>();
123       AU.addRequired<MachineLoopInfo>();
124       AU.addRequired<MachineBranchProbabilityInfo>();
125       AU.addPreserved<MachineLoopInfo>();
126       if (UseBlockFreqInfo)
127         AU.addRequired<MachineBlockFrequencyInfo>();
128     }
129 
130     void releaseMemory() override {
131       CEBCandidates.clear();
132     }
133 
134   private:
135     bool ProcessBlock(MachineBasicBlock &MBB);
136     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
137                                      MachineBasicBlock *From,
138                                      MachineBasicBlock *To);
139 
140     /// Postpone the splitting of the given critical
141     /// edge (\p From, \p To).
142     ///
143     /// We do not split the edges on the fly. Indeed, this invalidates
144     /// the dominance information and thus triggers a lot of updates
145     /// of that information underneath.
146     /// Instead, we postpone all the splits after each iteration of
147     /// the main loop. That way, the information is at least valid
148     /// for the lifetime of an iteration.
149     ///
150     /// \return True if the edge is marked as toSplit, false otherwise.
151     /// False can be returned if, for instance, this is not profitable.
152     bool PostponeSplitCriticalEdge(MachineInstr &MI,
153                                    MachineBasicBlock *From,
154                                    MachineBasicBlock *To,
155                                    bool BreakPHIEdge);
156     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
157 
158                          AllSuccsCache &AllSuccessors);
159     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
160                                  MachineBasicBlock *DefMBB,
161                                  bool &BreakPHIEdge, bool &LocalUse) const;
162     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
163                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
164     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
165                               MachineBasicBlock *MBB,
166                               MachineBasicBlock *SuccToSinkTo,
167                               AllSuccsCache &AllSuccessors);
168 
169     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
170                                          MachineBasicBlock *MBB);
171 
172     SmallVector<MachineBasicBlock *, 4> &
173     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
174                            AllSuccsCache &AllSuccessors) const;
175   };
176 
177 } // end anonymous namespace
178 
179 char MachineSinking::ID = 0;
180 
181 char &llvm::MachineSinkingID = MachineSinking::ID;
182 
183 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
184                       "Machine code sinking", false, false)
185 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
186 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
187 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
190                     "Machine code sinking", false, false)
191 
192 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
193                                                      MachineBasicBlock *MBB) {
194   if (!MI.isCopy())
195     return false;
196 
197   Register SrcReg = MI.getOperand(1).getReg();
198   Register DstReg = MI.getOperand(0).getReg();
199   if (!Register::isVirtualRegister(SrcReg) ||
200       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
201     return false;
202 
203   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
204   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
205   if (SRC != DRC)
206     return false;
207 
208   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
209   if (DefMI->isCopyLike())
210     return false;
211   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
212   LLVM_DEBUG(dbgs() << "*** to: " << MI);
213   MRI->replaceRegWith(DstReg, SrcReg);
214   MI.eraseFromParent();
215 
216   // Conservatively, clear any kill flags, since it's possible that they are no
217   // longer correct.
218   MRI->clearKillFlags(SrcReg);
219 
220   ++NumCoalesces;
221   return true;
222 }
223 
224 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
225 /// occur in blocks dominated by the specified block. If any use is in the
226 /// definition block, then return false since it is never legal to move def
227 /// after uses.
228 bool
229 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
230                                         MachineBasicBlock *MBB,
231                                         MachineBasicBlock *DefMBB,
232                                         bool &BreakPHIEdge,
233                                         bool &LocalUse) const {
234   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
235 
236   // Ignore debug uses because debug info doesn't affect the code.
237   if (MRI->use_nodbg_empty(Reg))
238     return true;
239 
240   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
241   // into and they are all PHI nodes. In this case, machine-sink must break
242   // the critical edge first. e.g.
243   //
244   // %bb.1: derived from LLVM BB %bb4.preheader
245   //   Predecessors according to CFG: %bb.0
246   //     ...
247   //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
248   //     ...
249   //     JE_4 <%bb.37>, implicit %eflags
250   //   Successors according to CFG: %bb.37 %bb.2
251   //
252   // %bb.2: derived from LLVM BB %bb.nph
253   //   Predecessors according to CFG: %bb.0 %bb.1
254   //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
255   BreakPHIEdge = true;
256   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
257     MachineInstr *UseInst = MO.getParent();
258     unsigned OpNo = &MO - &UseInst->getOperand(0);
259     MachineBasicBlock *UseBlock = UseInst->getParent();
260     if (!(UseBlock == MBB && UseInst->isPHI() &&
261           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
262       BreakPHIEdge = false;
263       break;
264     }
265   }
266   if (BreakPHIEdge)
267     return true;
268 
269   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
270     // Determine the block of the use.
271     MachineInstr *UseInst = MO.getParent();
272     unsigned OpNo = &MO - &UseInst->getOperand(0);
273     MachineBasicBlock *UseBlock = UseInst->getParent();
274     if (UseInst->isPHI()) {
275       // PHI nodes use the operand in the predecessor block, not the block with
276       // the PHI.
277       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
278     } else if (UseBlock == DefMBB) {
279       LocalUse = true;
280       return false;
281     }
282 
283     // Check that it dominates.
284     if (!DT->dominates(MBB, UseBlock))
285       return false;
286   }
287 
288   return true;
289 }
290 
291 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
292   if (skipFunction(MF.getFunction()))
293     return false;
294 
295   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
296 
297   TII = MF.getSubtarget().getInstrInfo();
298   TRI = MF.getSubtarget().getRegisterInfo();
299   MRI = &MF.getRegInfo();
300   DT = &getAnalysis<MachineDominatorTree>();
301   PDT = &getAnalysis<MachinePostDominatorTree>();
302   LI = &getAnalysis<MachineLoopInfo>();
303   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
304   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
305   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
306 
307   bool EverMadeChange = false;
308 
309   while (true) {
310     bool MadeChange = false;
311 
312     // Process all basic blocks.
313     CEBCandidates.clear();
314     ToSplit.clear();
315     for (auto &MBB: MF)
316       MadeChange |= ProcessBlock(MBB);
317 
318     // If we have anything we marked as toSplit, split it now.
319     for (auto &Pair : ToSplit) {
320       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
321       if (NewSucc != nullptr) {
322         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
323                           << printMBBReference(*Pair.first) << " -- "
324                           << printMBBReference(*NewSucc) << " -- "
325                           << printMBBReference(*Pair.second) << '\n');
326         MadeChange = true;
327         ++NumSplit;
328       } else
329         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
330     }
331     // If this iteration over the code changed anything, keep iterating.
332     if (!MadeChange) break;
333     EverMadeChange = true;
334   }
335 
336   // Now clear any kill flags for recorded registers.
337   for (auto I : RegsToClearKillFlags)
338     MRI->clearKillFlags(I);
339   RegsToClearKillFlags.clear();
340 
341   return EverMadeChange;
342 }
343 
344 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
345   // Can't sink anything out of a block that has less than two successors.
346   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
347 
348   // Don't bother sinking code out of unreachable blocks. In addition to being
349   // unprofitable, it can also lead to infinite looping, because in an
350   // unreachable loop there may be nowhere to stop.
351   if (!DT->isReachableFromEntry(&MBB)) return false;
352 
353   bool MadeChange = false;
354 
355   // Cache all successors, sorted by frequency info and loop depth.
356   AllSuccsCache AllSuccessors;
357 
358   // Walk the basic block bottom-up.  Remember if we saw a store.
359   MachineBasicBlock::iterator I = MBB.end();
360   --I;
361   bool ProcessedBegin, SawStore = false;
362   do {
363     MachineInstr &MI = *I;  // The instruction to sink.
364 
365     // Predecrement I (if it's not begin) so that it isn't invalidated by
366     // sinking.
367     ProcessedBegin = I == MBB.begin();
368     if (!ProcessedBegin)
369       --I;
370 
371     if (MI.isDebugInstr())
372       continue;
373 
374     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
375     if (Joined) {
376       MadeChange = true;
377       continue;
378     }
379 
380     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
381       ++NumSunk;
382       MadeChange = true;
383     }
384 
385     // If we just processed the first instruction in the block, we're done.
386   } while (!ProcessedBegin);
387 
388   return MadeChange;
389 }
390 
391 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
392                                                  MachineBasicBlock *From,
393                                                  MachineBasicBlock *To) {
394   // FIXME: Need much better heuristics.
395 
396   // If the pass has already considered breaking this edge (during this pass
397   // through the function), then let's go ahead and break it. This means
398   // sinking multiple "cheap" instructions into the same block.
399   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
400     return true;
401 
402   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
403     return true;
404 
405   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
406       BranchProbability(SplitEdgeProbabilityThreshold, 100))
407     return true;
408 
409   // MI is cheap, we probably don't want to break the critical edge for it.
410   // However, if this would allow some definitions of its source operands
411   // to be sunk then it's probably worth it.
412   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
413     const MachineOperand &MO = MI.getOperand(i);
414     if (!MO.isReg() || !MO.isUse())
415       continue;
416     Register Reg = MO.getReg();
417     if (Reg == 0)
418       continue;
419 
420     // We don't move live definitions of physical registers,
421     // so sinking their uses won't enable any opportunities.
422     if (Register::isPhysicalRegister(Reg))
423       continue;
424 
425     // If this instruction is the only user of a virtual register,
426     // check if breaking the edge will enable sinking
427     // both this instruction and the defining instruction.
428     if (MRI->hasOneNonDBGUse(Reg)) {
429       // If the definition resides in same MBB,
430       // claim it's likely we can sink these together.
431       // If definition resides elsewhere, we aren't
432       // blocking it from being sunk so don't break the edge.
433       MachineInstr *DefMI = MRI->getVRegDef(Reg);
434       if (DefMI->getParent() == MI.getParent())
435         return true;
436     }
437   }
438 
439   return false;
440 }
441 
442 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
443                                                MachineBasicBlock *FromBB,
444                                                MachineBasicBlock *ToBB,
445                                                bool BreakPHIEdge) {
446   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
447     return false;
448 
449   // Avoid breaking back edge. From == To means backedge for single BB loop.
450   if (!SplitEdges || FromBB == ToBB)
451     return false;
452 
453   // Check for backedges of more "complex" loops.
454   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
455       LI->isLoopHeader(ToBB))
456     return false;
457 
458   // It's not always legal to break critical edges and sink the computation
459   // to the edge.
460   //
461   // %bb.1:
462   // v1024
463   // Beq %bb.3
464   // <fallthrough>
465   // %bb.2:
466   // ... no uses of v1024
467   // <fallthrough>
468   // %bb.3:
469   // ...
470   //       = v1024
471   //
472   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
473   //
474   // %bb.1:
475   // ...
476   // Bne %bb.2
477   // %bb.4:
478   // v1024 =
479   // B %bb.3
480   // %bb.2:
481   // ... no uses of v1024
482   // <fallthrough>
483   // %bb.3:
484   // ...
485   //       = v1024
486   //
487   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
488   // flow. We need to ensure the new basic block where the computation is
489   // sunk to dominates all the uses.
490   // It's only legal to break critical edge and sink the computation to the
491   // new block if all the predecessors of "To", except for "From", are
492   // not dominated by "From". Given SSA property, this means these
493   // predecessors are dominated by "To".
494   //
495   // There is no need to do this check if all the uses are PHI nodes. PHI
496   // sources are only defined on the specific predecessor edges.
497   if (!BreakPHIEdge) {
498     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
499            E = ToBB->pred_end(); PI != E; ++PI) {
500       if (*PI == FromBB)
501         continue;
502       if (!DT->dominates(ToBB, *PI))
503         return false;
504     }
505   }
506 
507   ToSplit.insert(std::make_pair(FromBB, ToBB));
508 
509   return true;
510 }
511 
512 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
513 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
514                                           MachineBasicBlock *MBB,
515                                           MachineBasicBlock *SuccToSinkTo,
516                                           AllSuccsCache &AllSuccessors) {
517   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
518 
519   if (MBB == SuccToSinkTo)
520     return false;
521 
522   // It is profitable if SuccToSinkTo does not post dominate current block.
523   if (!PDT->dominates(SuccToSinkTo, MBB))
524     return true;
525 
526   // It is profitable to sink an instruction from a deeper loop to a shallower
527   // loop, even if the latter post-dominates the former (PR21115).
528   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
529     return true;
530 
531   // Check if only use in post dominated block is PHI instruction.
532   bool NonPHIUse = false;
533   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
534     MachineBasicBlock *UseBlock = UseInst.getParent();
535     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
536       NonPHIUse = true;
537   }
538   if (!NonPHIUse)
539     return true;
540 
541   // If SuccToSinkTo post dominates then also it may be profitable if MI
542   // can further profitably sinked into another block in next round.
543   bool BreakPHIEdge = false;
544   // FIXME - If finding successor is compile time expensive then cache results.
545   if (MachineBasicBlock *MBB2 =
546           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
547     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
548 
549   // If SuccToSinkTo is final destination and it is a post dominator of current
550   // block then it is not profitable to sink MI into SuccToSinkTo block.
551   return false;
552 }
553 
554 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
555 /// computing it if it was not already cached.
556 SmallVector<MachineBasicBlock *, 4> &
557 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
558                                        AllSuccsCache &AllSuccessors) const {
559   // Do we have the sorted successors in cache ?
560   auto Succs = AllSuccessors.find(MBB);
561   if (Succs != AllSuccessors.end())
562     return Succs->second;
563 
564   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
565                                                MBB->succ_end());
566 
567   // Handle cases where sinking can happen but where the sink point isn't a
568   // successor. For example:
569   //
570   //   x = computation
571   //   if () {} else {}
572   //   use x
573   //
574   const std::vector<MachineDomTreeNode *> &Children =
575     DT->getNode(MBB)->getChildren();
576   for (const auto &DTChild : Children)
577     // DomTree children of MBB that have MBB as immediate dominator are added.
578     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
579         // Skip MBBs already added to the AllSuccs vector above.
580         !MBB->isSuccessor(DTChild->getBlock()))
581       AllSuccs.push_back(DTChild->getBlock());
582 
583   // Sort Successors according to their loop depth or block frequency info.
584   llvm::stable_sort(
585       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
586         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
587         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
588         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
589         return HasBlockFreq ? LHSFreq < RHSFreq
590                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
591       });
592 
593   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
594 
595   return it.first->second;
596 }
597 
598 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
599 MachineBasicBlock *
600 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
601                                  bool &BreakPHIEdge,
602                                  AllSuccsCache &AllSuccessors) {
603   assert (MBB && "Invalid MachineBasicBlock!");
604 
605   // Loop over all the operands of the specified instruction.  If there is
606   // anything we can't handle, bail out.
607 
608   // SuccToSinkTo - This is the successor to sink this instruction to, once we
609   // decide.
610   MachineBasicBlock *SuccToSinkTo = nullptr;
611   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
612     const MachineOperand &MO = MI.getOperand(i);
613     if (!MO.isReg()) continue;  // Ignore non-register operands.
614 
615     Register Reg = MO.getReg();
616     if (Reg == 0) continue;
617 
618     if (Register::isPhysicalRegister(Reg)) {
619       if (MO.isUse()) {
620         // If the physreg has no defs anywhere, it's just an ambient register
621         // and we can freely move its uses. Alternatively, if it's allocatable,
622         // it could get allocated to something with a def during allocation.
623         if (!MRI->isConstantPhysReg(Reg))
624           return nullptr;
625       } else if (!MO.isDead()) {
626         // A def that isn't dead. We can't move it.
627         return nullptr;
628       }
629     } else {
630       // Virtual register uses are always safe to sink.
631       if (MO.isUse()) continue;
632 
633       // If it's not safe to move defs of the register class, then abort.
634       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
635         return nullptr;
636 
637       // Virtual register defs can only be sunk if all their uses are in blocks
638       // dominated by one of the successors.
639       if (SuccToSinkTo) {
640         // If a previous operand picked a block to sink to, then this operand
641         // must be sinkable to the same block.
642         bool LocalUse = false;
643         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
644                                      BreakPHIEdge, LocalUse))
645           return nullptr;
646 
647         continue;
648       }
649 
650       // Otherwise, we should look at all the successors and decide which one
651       // we should sink to. If we have reliable block frequency information
652       // (frequency != 0) available, give successors with smaller frequencies
653       // higher priority, otherwise prioritize smaller loop depths.
654       for (MachineBasicBlock *SuccBlock :
655            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
656         bool LocalUse = false;
657         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
658                                     BreakPHIEdge, LocalUse)) {
659           SuccToSinkTo = SuccBlock;
660           break;
661         }
662         if (LocalUse)
663           // Def is used locally, it's never safe to move this def.
664           return nullptr;
665       }
666 
667       // If we couldn't find a block to sink to, ignore this instruction.
668       if (!SuccToSinkTo)
669         return nullptr;
670       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
671         return nullptr;
672     }
673   }
674 
675   // It is not possible to sink an instruction into its own block.  This can
676   // happen with loops.
677   if (MBB == SuccToSinkTo)
678     return nullptr;
679 
680   // It's not safe to sink instructions to EH landing pad. Control flow into
681   // landing pad is implicitly defined.
682   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
683     return nullptr;
684 
685   return SuccToSinkTo;
686 }
687 
688 /// Return true if MI is likely to be usable as a memory operation by the
689 /// implicit null check optimization.
690 ///
691 /// This is a "best effort" heuristic, and should not be relied upon for
692 /// correctness.  This returning true does not guarantee that the implicit null
693 /// check optimization is legal over MI, and this returning false does not
694 /// guarantee MI cannot possibly be used to do a null check.
695 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
696                                              const TargetInstrInfo *TII,
697                                              const TargetRegisterInfo *TRI) {
698   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
699 
700   auto *MBB = MI.getParent();
701   if (MBB->pred_size() != 1)
702     return false;
703 
704   auto *PredMBB = *MBB->pred_begin();
705   auto *PredBB = PredMBB->getBasicBlock();
706 
707   // Frontends that don't use implicit null checks have no reason to emit
708   // branches with make.implicit metadata, and this function should always
709   // return false for them.
710   if (!PredBB ||
711       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
712     return false;
713 
714   const MachineOperand *BaseOp;
715   int64_t Offset;
716   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
717     return false;
718 
719   if (!BaseOp->isReg())
720     return false;
721 
722   if (!(MI.mayLoad() && !MI.isPredicable()))
723     return false;
724 
725   MachineBranchPredicate MBP;
726   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
727     return false;
728 
729   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
730          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
731           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
732          MBP.LHS.getReg() == BaseOp->getReg();
733 }
734 
735 /// Sink an instruction and its associated debug instructions. If the debug
736 /// instructions to be sunk are already known, they can be provided in DbgVals.
737 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
738                         MachineBasicBlock::iterator InsertPos,
739                         SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
740   // If debug values are provided use those, otherwise call collectDebugValues.
741   SmallVector<MachineInstr *, 2> DbgValuesToSink;
742   if (DbgVals)
743     DbgValuesToSink.insert(DbgValuesToSink.begin(),
744                            DbgVals->begin(), DbgVals->end());
745   else
746     MI.collectDebugValues(DbgValuesToSink);
747 
748   // If we cannot find a location to use (merge with), then we erase the debug
749   // location to prevent debug-info driven tools from potentially reporting
750   // wrong location information.
751   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
752     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
753                                                  InsertPos->getDebugLoc()));
754   else
755     MI.setDebugLoc(DebugLoc());
756 
757   // Move the instruction.
758   MachineBasicBlock *ParentBlock = MI.getParent();
759   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
760                       ++MachineBasicBlock::iterator(MI));
761 
762   // Move previously adjacent debug value instructions to the insert position.
763   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
764                                                  DBE = DbgValuesToSink.end();
765        DBI != DBE; ++DBI) {
766     MachineInstr *DbgMI = *DBI;
767     SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
768                         ++MachineBasicBlock::iterator(DbgMI));
769   }
770 }
771 
772 /// SinkInstruction - Determine whether it is safe to sink the specified machine
773 /// instruction out of its current block into a successor.
774 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
775                                      AllSuccsCache &AllSuccessors) {
776   // Don't sink instructions that the target prefers not to sink.
777   if (!TII->shouldSink(MI))
778     return false;
779 
780   // Check if it's safe to move the instruction.
781   if (!MI.isSafeToMove(AA, SawStore))
782     return false;
783 
784   // Convergent operations may not be made control-dependent on additional
785   // values.
786   if (MI.isConvergent())
787     return false;
788 
789   // Don't break implicit null checks.  This is a performance heuristic, and not
790   // required for correctness.
791   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
792     return false;
793 
794   // FIXME: This should include support for sinking instructions within the
795   // block they are currently in to shorten the live ranges.  We often get
796   // instructions sunk into the top of a large block, but it would be better to
797   // also sink them down before their first use in the block.  This xform has to
798   // be careful not to *increase* register pressure though, e.g. sinking
799   // "x = y + z" down if it kills y and z would increase the live ranges of y
800   // and z and only shrink the live range of x.
801 
802   bool BreakPHIEdge = false;
803   MachineBasicBlock *ParentBlock = MI.getParent();
804   MachineBasicBlock *SuccToSinkTo =
805       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
806 
807   // If there are no outputs, it must have side-effects.
808   if (!SuccToSinkTo)
809     return false;
810 
811   // If the instruction to move defines a dead physical register which is live
812   // when leaving the basic block, don't move it because it could turn into a
813   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
814   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
815     const MachineOperand &MO = MI.getOperand(I);
816     if (!MO.isReg()) continue;
817     Register Reg = MO.getReg();
818     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
819       continue;
820     if (SuccToSinkTo->isLiveIn(Reg))
821       return false;
822   }
823 
824   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
825 
826   // If the block has multiple predecessors, this is a critical edge.
827   // Decide if we can sink along it or need to break the edge.
828   if (SuccToSinkTo->pred_size() > 1) {
829     // We cannot sink a load across a critical edge - there may be stores in
830     // other code paths.
831     bool TryBreak = false;
832     bool store = true;
833     if (!MI.isSafeToMove(AA, store)) {
834       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
835       TryBreak = true;
836     }
837 
838     // We don't want to sink across a critical edge if we don't dominate the
839     // successor. We could be introducing calculations to new code paths.
840     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
841       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
842       TryBreak = true;
843     }
844 
845     // Don't sink instructions into a loop.
846     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
847       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
848       TryBreak = true;
849     }
850 
851     // Otherwise we are OK with sinking along a critical edge.
852     if (!TryBreak)
853       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
854     else {
855       // Mark this edge as to be split.
856       // If the edge can actually be split, the next iteration of the main loop
857       // will sink MI in the newly created block.
858       bool Status =
859         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
860       if (!Status)
861         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
862                              "break critical edge\n");
863       // The instruction will not be sunk this time.
864       return false;
865     }
866   }
867 
868   if (BreakPHIEdge) {
869     // BreakPHIEdge is true if all the uses are in the successor MBB being
870     // sunken into and they are all PHI nodes. In this case, machine-sink must
871     // break the critical edge first.
872     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
873                                             SuccToSinkTo, BreakPHIEdge);
874     if (!Status)
875       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
876                            "break critical edge\n");
877     // The instruction will not be sunk this time.
878     return false;
879   }
880 
881   // Determine where to insert into. Skip phi nodes.
882   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
883   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
884     ++InsertPos;
885 
886   performSink(MI, *SuccToSinkTo, InsertPos);
887 
888   // Conservatively, clear any kill flags, since it's possible that they are no
889   // longer correct.
890   // Note that we have to clear the kill flags for any register this instruction
891   // uses as we may sink over another instruction which currently kills the
892   // used registers.
893   for (MachineOperand &MO : MI.operands()) {
894     if (MO.isReg() && MO.isUse())
895       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
896   }
897 
898   return true;
899 }
900 
901 //===----------------------------------------------------------------------===//
902 // This pass is not intended to be a replacement or a complete alternative
903 // for the pre-ra machine sink pass. It is only designed to sink COPY
904 // instructions which should be handled after RA.
905 //
906 // This pass sinks COPY instructions into a successor block, if the COPY is not
907 // used in the current block and the COPY is live-in to a single successor
908 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
909 // copy on paths where their results aren't needed.  This also exposes
910 // additional opportunites for dead copy elimination and shrink wrapping.
911 //
912 // These copies were either not handled by or are inserted after the MachineSink
913 // pass. As an example of the former case, the MachineSink pass cannot sink
914 // COPY instructions with allocatable source registers; for AArch64 these type
915 // of copy instructions are frequently used to move function parameters (PhyReg)
916 // into virtual registers in the entry block.
917 //
918 // For the machine IR below, this pass will sink %w19 in the entry into its
919 // successor (%bb.1) because %w19 is only live-in in %bb.1.
920 // %bb.0:
921 //   %wzr = SUBSWri %w1, 1
922 //   %w19 = COPY %w0
923 //   Bcc 11, %bb.2
924 // %bb.1:
925 //   Live Ins: %w19
926 //   BL @fun
927 //   %w0 = ADDWrr %w0, %w19
928 //   RET %w0
929 // %bb.2:
930 //   %w0 = COPY %wzr
931 //   RET %w0
932 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
933 // able to see %bb.0 as a candidate.
934 //===----------------------------------------------------------------------===//
935 namespace {
936 
937 class PostRAMachineSinking : public MachineFunctionPass {
938 public:
939   bool runOnMachineFunction(MachineFunction &MF) override;
940 
941   static char ID;
942   PostRAMachineSinking() : MachineFunctionPass(ID) {}
943   StringRef getPassName() const override { return "PostRA Machine Sink"; }
944 
945   void getAnalysisUsage(AnalysisUsage &AU) const override {
946     AU.setPreservesCFG();
947     MachineFunctionPass::getAnalysisUsage(AU);
948   }
949 
950   MachineFunctionProperties getRequiredProperties() const override {
951     return MachineFunctionProperties().set(
952         MachineFunctionProperties::Property::NoVRegs);
953   }
954 
955 private:
956   /// Track which register units have been modified and used.
957   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
958 
959   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
960   /// entry in this map for each unit it touches.
961   DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
962 
963   /// Sink Copy instructions unused in the same block close to their uses in
964   /// successors.
965   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
966                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
967 };
968 } // namespace
969 
970 char PostRAMachineSinking::ID = 0;
971 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
972 
973 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
974                 "PostRA Machine Sink", false, false)
975 
976 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
977                                   const TargetRegisterInfo *TRI) {
978   LiveRegUnits LiveInRegUnits(*TRI);
979   LiveInRegUnits.addLiveIns(MBB);
980   return !LiveInRegUnits.available(Reg);
981 }
982 
983 static MachineBasicBlock *
984 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
985                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
986                       unsigned Reg, const TargetRegisterInfo *TRI) {
987   // Try to find a single sinkable successor in which Reg is live-in.
988   MachineBasicBlock *BB = nullptr;
989   for (auto *SI : SinkableBBs) {
990     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
991       // If BB is set here, Reg is live-in to at least two sinkable successors,
992       // so quit.
993       if (BB)
994         return nullptr;
995       BB = SI;
996     }
997   }
998   // Reg is not live-in to any sinkable successors.
999   if (!BB)
1000     return nullptr;
1001 
1002   // Check if any register aliased with Reg is live-in in other successors.
1003   for (auto *SI : CurBB.successors()) {
1004     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1005       return nullptr;
1006   }
1007   return BB;
1008 }
1009 
1010 static MachineBasicBlock *
1011 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1012                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1013                       ArrayRef<unsigned> DefedRegsInCopy,
1014                       const TargetRegisterInfo *TRI) {
1015   MachineBasicBlock *SingleBB = nullptr;
1016   for (auto DefReg : DefedRegsInCopy) {
1017     MachineBasicBlock *BB =
1018         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1019     if (!BB || (SingleBB && SingleBB != BB))
1020       return nullptr;
1021     SingleBB = BB;
1022   }
1023   return SingleBB;
1024 }
1025 
1026 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1027                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1028                            LiveRegUnits &UsedRegUnits,
1029                            const TargetRegisterInfo *TRI) {
1030   for (auto U : UsedOpsInCopy) {
1031     MachineOperand &MO = MI->getOperand(U);
1032     Register SrcReg = MO.getReg();
1033     if (!UsedRegUnits.available(SrcReg)) {
1034       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1035       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1036         if (UI.killsRegister(SrcReg, TRI)) {
1037           UI.clearRegisterKills(SrcReg, TRI);
1038           MO.setIsKill(true);
1039           break;
1040         }
1041       }
1042     }
1043   }
1044 }
1045 
1046 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1047                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1048                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1049   MachineFunction &MF = *SuccBB->getParent();
1050   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1051   for (unsigned DefReg : DefedRegsInCopy)
1052     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1053       SuccBB->removeLiveIn(*S);
1054   for (auto U : UsedOpsInCopy) {
1055     Register Reg = MI->getOperand(U).getReg();
1056     if (!SuccBB->isLiveIn(Reg))
1057       SuccBB->addLiveIn(Reg);
1058   }
1059 }
1060 
1061 static bool hasRegisterDependency(MachineInstr *MI,
1062                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1063                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1064                                   LiveRegUnits &ModifiedRegUnits,
1065                                   LiveRegUnits &UsedRegUnits) {
1066   bool HasRegDependency = false;
1067   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1068     MachineOperand &MO = MI->getOperand(i);
1069     if (!MO.isReg())
1070       continue;
1071     Register Reg = MO.getReg();
1072     if (!Reg)
1073       continue;
1074     if (MO.isDef()) {
1075       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1076         HasRegDependency = true;
1077         break;
1078       }
1079       DefedRegsInCopy.push_back(Reg);
1080 
1081       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1082       // For example, we can ignore modifications in reg with undef. However,
1083       // it's not perfectly clear if skipping the internal read is safe in all
1084       // other targets.
1085     } else if (MO.isUse()) {
1086       if (!ModifiedRegUnits.available(Reg)) {
1087         HasRegDependency = true;
1088         break;
1089       }
1090       UsedOpsInCopy.push_back(i);
1091     }
1092   }
1093   return HasRegDependency;
1094 }
1095 
1096 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1097                                          const TargetRegisterInfo *TRI) {
1098   SmallSet<unsigned, 4> RegUnits;
1099   for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1100     RegUnits.insert(*RI);
1101   return RegUnits;
1102 }
1103 
1104 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1105                                          MachineFunction &MF,
1106                                          const TargetRegisterInfo *TRI,
1107                                          const TargetInstrInfo *TII) {
1108   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1109   // FIXME: For now, we sink only to a successor which has a single predecessor
1110   // so that we can directly sink COPY instructions to the successor without
1111   // adding any new block or branch instruction.
1112   for (MachineBasicBlock *SI : CurBB.successors())
1113     if (!SI->livein_empty() && SI->pred_size() == 1)
1114       SinkableBBs.insert(SI);
1115 
1116   if (SinkableBBs.empty())
1117     return false;
1118 
1119   bool Changed = false;
1120 
1121   // Track which registers have been modified and used between the end of the
1122   // block and the current instruction.
1123   ModifiedRegUnits.clear();
1124   UsedRegUnits.clear();
1125   SeenDbgInstrs.clear();
1126 
1127   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1128     MachineInstr *MI = &*I;
1129     ++I;
1130 
1131     // Track the operand index for use in Copy.
1132     SmallVector<unsigned, 2> UsedOpsInCopy;
1133     // Track the register number defed in Copy.
1134     SmallVector<unsigned, 2> DefedRegsInCopy;
1135 
1136     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1137     // for DBG_VALUEs later, record them when they're encountered.
1138     if (MI->isDebugValue()) {
1139       auto &MO = MI->getOperand(0);
1140       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1141         // Bail if we can already tell the sink would be rejected, rather
1142         // than needlessly accumulating lots of DBG_VALUEs.
1143         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1144                                   ModifiedRegUnits, UsedRegUnits))
1145           continue;
1146 
1147         // Record debug use of each reg unit.
1148         SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1149         for (unsigned Reg : Units)
1150           SeenDbgInstrs[Reg].push_back(MI);
1151       }
1152       continue;
1153     }
1154 
1155     if (MI->isDebugInstr())
1156       continue;
1157 
1158     // Do not move any instruction across function call.
1159     if (MI->isCall())
1160       return false;
1161 
1162     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1163       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1164                                         TRI);
1165       continue;
1166     }
1167 
1168     // Don't sink the COPY if it would violate a register dependency.
1169     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1170                               ModifiedRegUnits, UsedRegUnits)) {
1171       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1172                                         TRI);
1173       continue;
1174     }
1175     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1176            "Unexpect SrcReg or DefReg");
1177     MachineBasicBlock *SuccBB =
1178         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1179     // Don't sink if we cannot find a single sinkable successor in which Reg
1180     // is live-in.
1181     if (!SuccBB) {
1182       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1183                                         TRI);
1184       continue;
1185     }
1186     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1187            "Unexpected predecessor");
1188 
1189     // Collect DBG_VALUEs that must sink with this copy. We've previously
1190     // recorded which reg units that DBG_VALUEs read, if this instruction
1191     // writes any of those units then the corresponding DBG_VALUEs must sink.
1192     SetVector<MachineInstr *> DbgValsToSinkSet;
1193     SmallVector<MachineInstr *, 4> DbgValsToSink;
1194     for (auto &MO : MI->operands()) {
1195       if (!MO.isReg() || !MO.isDef())
1196         continue;
1197 
1198       SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1199       for (unsigned Reg : Units)
1200         for (auto *MI : SeenDbgInstrs.lookup(Reg))
1201           DbgValsToSinkSet.insert(MI);
1202     }
1203     DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1204                          DbgValsToSinkSet.end());
1205 
1206     // Clear the kill flag if SrcReg is killed between MI and the end of the
1207     // block.
1208     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1209     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1210     performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1211     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1212 
1213     Changed = true;
1214     ++NumPostRACopySink;
1215   }
1216   return Changed;
1217 }
1218 
1219 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1220   if (skipFunction(MF.getFunction()))
1221     return false;
1222 
1223   bool Changed = false;
1224   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1225   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1226 
1227   ModifiedRegUnits.init(*TRI);
1228   UsedRegUnits.init(*TRI);
1229   for (auto &BB : MF)
1230     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1231 
1232   return Changed;
1233 }
1234