1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 228 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequiredID(MachineDominatorsID); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<TargetPassConfig>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 MachinePassRegistry MachineSchedRegistry::Registry; 240 241 /// A dummy default scheduler factory indicates whether the scheduler 242 /// is overridden on the command line. 243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 244 return nullptr; 245 } 246 247 /// MachineSchedOpt allows command line selection of the scheduler. 248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 249 RegisterPassParser<MachineSchedRegistry>> 250 MachineSchedOpt("misched", 251 cl::init(&useDefaultMachineSched), cl::Hidden, 252 cl::desc("Machine instruction scheduler to use")); 253 254 static MachineSchedRegistry 255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 256 useDefaultMachineSched); 257 258 static cl::opt<bool> EnableMachineSched( 259 "enable-misched", 260 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 261 cl::Hidden); 262 263 static cl::opt<bool> EnablePostRAMachineSched( 264 "enable-post-misched", 265 cl::desc("Enable the post-ra machine instruction scheduling pass."), 266 cl::init(true), cl::Hidden); 267 268 /// Decrement this iterator until reaching the top or a non-debug instr. 269 static MachineBasicBlock::const_iterator 270 priorNonDebug(MachineBasicBlock::const_iterator I, 271 MachineBasicBlock::const_iterator Beg) { 272 assert(I != Beg && "reached the top of the region, cannot decrement"); 273 while (--I != Beg) { 274 if (!I->isDebugValue()) 275 break; 276 } 277 return I; 278 } 279 280 /// Non-const version. 281 static MachineBasicBlock::iterator 282 priorNonDebug(MachineBasicBlock::iterator I, 283 MachineBasicBlock::const_iterator Beg) { 284 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 285 .getNonConstIterator(); 286 } 287 288 /// If this iterator is a debug value, increment until reaching the End or a 289 /// non-debug instruction. 290 static MachineBasicBlock::const_iterator 291 nextIfDebug(MachineBasicBlock::const_iterator I, 292 MachineBasicBlock::const_iterator End) { 293 for(; I != End; ++I) { 294 if (!I->isDebugValue()) 295 break; 296 } 297 return I; 298 } 299 300 /// Non-const version. 301 static MachineBasicBlock::iterator 302 nextIfDebug(MachineBasicBlock::iterator I, 303 MachineBasicBlock::const_iterator End) { 304 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 305 .getNonConstIterator(); 306 } 307 308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 310 // Select the scheduler, or set the default. 311 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 312 if (Ctor != useDefaultMachineSched) 313 return Ctor(this); 314 315 // Get the default scheduler set by the target for this function. 316 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 317 if (Scheduler) 318 return Scheduler; 319 320 // Default to GenericScheduler. 321 return createGenericSchedLive(this); 322 } 323 324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 325 /// the caller. We don't have a command line option to override the postRA 326 /// scheduler. The Target must configure it. 327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 328 // Get the postRA scheduler set by the target for this function. 329 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 330 if (Scheduler) 331 return Scheduler; 332 333 // Default to GenericScheduler. 334 return createGenericSchedPostRA(this); 335 } 336 337 /// Top-level MachineScheduler pass driver. 338 /// 339 /// Visit blocks in function order. Divide each block into scheduling regions 340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 341 /// consistent with the DAG builder, which traverses the interior of the 342 /// scheduling regions bottom-up. 343 /// 344 /// This design avoids exposing scheduling boundaries to the DAG builder, 345 /// simplifying the DAG builder's support for "special" target instructions. 346 /// At the same time the design allows target schedulers to operate across 347 /// scheduling boundaries, for example to bundle the boudary instructions 348 /// without reordering them. This creates complexity, because the target 349 /// scheduler must update the RegionBegin and RegionEnd positions cached by 350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 351 /// design would be to split blocks at scheduling boundaries, but LLVM has a 352 /// general bias against block splitting purely for implementation simplicity. 353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 354 if (skipFunction(*mf.getFunction())) 355 return false; 356 357 if (EnableMachineSched.getNumOccurrences()) { 358 if (!EnableMachineSched) 359 return false; 360 } else if (!mf.getSubtarget().enableMachineScheduler()) 361 return false; 362 363 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 MDT = &getAnalysis<MachineDominatorTree>(); 369 PassConfig = &getAnalysis<TargetPassConfig>(); 370 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 371 372 LIS = &getAnalysis<LiveIntervals>(); 373 374 if (VerifyScheduling) { 375 DEBUG(LIS->dump()); 376 MF->verify(this, "Before machine scheduling."); 377 } 378 RegClassInfo->runOnMachineFunction(*MF); 379 380 // Instantiate the selected scheduler for this target, function, and 381 // optimization level. 382 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 383 scheduleRegions(*Scheduler, false); 384 385 DEBUG(LIS->dump()); 386 if (VerifyScheduling) 387 MF->verify(this, "After machine scheduling."); 388 return true; 389 } 390 391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 392 if (skipFunction(*mf.getFunction())) 393 return false; 394 395 if (EnablePostRAMachineSched.getNumOccurrences()) { 396 if (!EnablePostRAMachineSched) 397 return false; 398 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 399 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 400 return false; 401 } 402 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 403 404 // Initialize the context of the pass. 405 MF = &mf; 406 MLI = &getAnalysis<MachineLoopInfo>(); 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// A region of an MBB for scheduling. 440 namespace { 441 struct SchedRegion { 442 /// RegionBegin is the first instruction in the scheduling region, and 443 /// RegionEnd is either MBB->end() or the scheduling boundary after the 444 /// last instruction in the scheduling region. These iterators cannot refer 445 /// to instructions outside of the identified scheduling region because 446 /// those may be reordered before scheduling this region. 447 MachineBasicBlock::iterator RegionBegin; 448 MachineBasicBlock::iterator RegionEnd; 449 unsigned NumRegionInstrs; 450 451 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 452 unsigned N) : 453 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 454 }; 455 } // end anonymous namespace 456 457 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 458 459 static void 460 getSchedRegions(MachineBasicBlock *MBB, 461 MBBRegionsVector &Regions, 462 bool RegionsTopDown) { 463 MachineFunction *MF = MBB->getParent(); 464 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 465 466 MachineBasicBlock::iterator I = nullptr; 467 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 468 RegionEnd != MBB->begin(); RegionEnd = I) { 469 470 // Avoid decrementing RegionEnd for blocks with no terminator. 471 if (RegionEnd != MBB->end() || 472 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 473 --RegionEnd; 474 } 475 476 // The next region starts above the previous region. Look backward in the 477 // instruction stream until we find the nearest boundary. 478 unsigned NumRegionInstrs = 0; 479 I = RegionEnd; 480 for (;I != MBB->begin(); --I) { 481 MachineInstr &MI = *std::prev(I); 482 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 483 break; 484 if (!MI.isDebugValue()) 485 // MBB::size() uses instr_iterator to count. Here we need a bundle to 486 // count as a single instruction. 487 ++NumRegionInstrs; 488 } 489 490 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 491 } 492 493 if (RegionsTopDown) 494 std::reverse(Regions.begin(), Regions.end()); 495 } 496 497 /// Main driver for both MachineScheduler and PostMachineScheduler. 498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 499 bool FixKillFlags) { 500 // Visit all machine basic blocks. 501 // 502 // TODO: Visit blocks in global postorder or postorder within the bottom-up 503 // loop tree. Then we can optionally compute global RegPressure. 504 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 505 MBB != MBBEnd; ++MBB) { 506 507 Scheduler.startBlock(&*MBB); 508 509 #ifndef NDEBUG 510 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 511 continue; 512 if (SchedOnlyBlock.getNumOccurrences() 513 && (int)SchedOnlyBlock != MBB->getNumber()) 514 continue; 515 #endif 516 517 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 518 // points to the scheduling boundary at the bottom of the region. The DAG 519 // does not include RegionEnd, but the region does (i.e. the next 520 // RegionEnd is above the previous RegionBegin). If the current block has 521 // no terminator then RegionEnd == MBB->end() for the bottom region. 522 // 523 // All the regions of MBB are first found and stored in MBBRegions, which 524 // will be processed (MBB) top-down if initialized with true. 525 // 526 // The Scheduler may insert instructions during either schedule() or 527 // exitRegion(), even for empty regions. So the local iterators 'I' and 528 // 'RegionEnd' are invalid across these calls. Instructions must not be 529 // added to other regions than the current one without updating MBBRegions. 530 531 MBBRegionsVector MBBRegions; 532 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 533 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 534 R != MBBRegions.end(); ++R) { 535 MachineBasicBlock::iterator I = R->RegionBegin; 536 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 537 unsigned NumRegionInstrs = R->NumRegionInstrs; 538 539 // Notify the scheduler of the region, even if we may skip scheduling 540 // it. Perhaps it still needs to be bundled. 541 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (I == RegionEnd || I == std::prev(RegionEnd)) { 545 // Close the current region. Bundle the terminator if needed. 546 // This invalidates 'RegionEnd' and 'I'. 547 Scheduler.exitRegion(); 548 continue; 549 } 550 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 551 DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " " 552 << MBB->getName() << "\n From: " << *I << " To: "; 553 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 554 else dbgs() << "End"; 555 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 556 if (DumpCriticalPathLength) { 557 errs() << MF->getName(); 558 errs() << ":%bb. " << MBB->getNumber(); 559 errs() << " " << MBB->getName() << " \n"; 560 } 561 562 // Schedule a region: possibly reorder instructions. 563 // This invalidates the original region iterators. 564 Scheduler.schedule(); 565 566 // Close the current region. 567 Scheduler.exitRegion(); 568 } 569 Scheduler.finishBlock(); 570 // FIXME: Ideally, no further passes should rely on kill flags. However, 571 // thumb2 size reduction is currently an exception, so the PostMIScheduler 572 // needs to do this. 573 if (FixKillFlags) 574 Scheduler.fixupKills(*MBB); 575 } 576 Scheduler.finalizeSchedule(); 577 } 578 579 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 580 // unimplemented 581 } 582 583 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 584 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 585 dbgs() << "Queue " << Name << ": "; 586 for (const SUnit *SU : Queue) 587 dbgs() << SU->NodeNum << " "; 588 dbgs() << "\n"; 589 } 590 #endif 591 592 //===----------------------------------------------------------------------===// 593 // ScheduleDAGMI - Basic machine instruction scheduling. This is 594 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 595 // virtual registers. 596 // ===----------------------------------------------------------------------===/ 597 598 // Provide a vtable anchor. 599 ScheduleDAGMI::~ScheduleDAGMI() = default; 600 601 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 602 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 603 } 604 605 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 606 if (SuccSU != &ExitSU) { 607 // Do not use WillCreateCycle, it assumes SD scheduling. 608 // If Pred is reachable from Succ, then the edge creates a cycle. 609 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 610 return false; 611 Topo.AddPred(SuccSU, PredDep.getSUnit()); 612 } 613 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 614 // Return true regardless of whether a new edge needed to be inserted. 615 return true; 616 } 617 618 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 619 /// NumPredsLeft reaches zero, release the successor node. 620 /// 621 /// FIXME: Adjust SuccSU height based on MinLatency. 622 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 623 SUnit *SuccSU = SuccEdge->getSUnit(); 624 625 if (SuccEdge->isWeak()) { 626 --SuccSU->WeakPredsLeft; 627 if (SuccEdge->isCluster()) 628 NextClusterSucc = SuccSU; 629 return; 630 } 631 #ifndef NDEBUG 632 if (SuccSU->NumPredsLeft == 0) { 633 dbgs() << "*** Scheduling failed! ***\n"; 634 SuccSU->dump(this); 635 dbgs() << " has been released too many times!\n"; 636 llvm_unreachable(nullptr); 637 } 638 #endif 639 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 640 // CurrCycle may have advanced since then. 641 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 642 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 643 644 --SuccSU->NumPredsLeft; 645 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 646 SchedImpl->releaseTopNode(SuccSU); 647 } 648 649 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 650 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 651 for (SDep &Succ : SU->Succs) 652 releaseSucc(SU, &Succ); 653 } 654 655 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 656 /// NumSuccsLeft reaches zero, release the predecessor node. 657 /// 658 /// FIXME: Adjust PredSU height based on MinLatency. 659 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 660 SUnit *PredSU = PredEdge->getSUnit(); 661 662 if (PredEdge->isWeak()) { 663 --PredSU->WeakSuccsLeft; 664 if (PredEdge->isCluster()) 665 NextClusterPred = PredSU; 666 return; 667 } 668 #ifndef NDEBUG 669 if (PredSU->NumSuccsLeft == 0) { 670 dbgs() << "*** Scheduling failed! ***\n"; 671 PredSU->dump(this); 672 dbgs() << " has been released too many times!\n"; 673 llvm_unreachable(nullptr); 674 } 675 #endif 676 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 677 // CurrCycle may have advanced since then. 678 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 679 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 680 681 --PredSU->NumSuccsLeft; 682 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 683 SchedImpl->releaseBottomNode(PredSU); 684 } 685 686 /// releasePredecessors - Call releasePred on each of SU's predecessors. 687 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 688 for (SDep &Pred : SU->Preds) 689 releasePred(SU, &Pred); 690 } 691 692 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 693 ScheduleDAGInstrs::startBlock(bb); 694 SchedImpl->enterMBB(bb); 695 } 696 697 void ScheduleDAGMI::finishBlock() { 698 SchedImpl->leaveMBB(); 699 ScheduleDAGInstrs::finishBlock(); 700 } 701 702 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 703 /// crossing a scheduling boundary. [begin, end) includes all instructions in 704 /// the region, including the boundary itself and single-instruction regions 705 /// that don't get scheduled. 706 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 707 MachineBasicBlock::iterator begin, 708 MachineBasicBlock::iterator end, 709 unsigned regioninstrs) 710 { 711 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 712 713 SchedImpl->initPolicy(begin, end, regioninstrs); 714 } 715 716 /// This is normally called from the main scheduler loop but may also be invoked 717 /// by the scheduling strategy to perform additional code motion. 718 void ScheduleDAGMI::moveInstruction( 719 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 720 // Advance RegionBegin if the first instruction moves down. 721 if (&*RegionBegin == MI) 722 ++RegionBegin; 723 724 // Update the instruction stream. 725 BB->splice(InsertPos, BB, MI); 726 727 // Update LiveIntervals 728 if (LIS) 729 LIS->handleMove(*MI, /*UpdateFlags=*/true); 730 731 // Recede RegionBegin if an instruction moves above the first. 732 if (RegionBegin == InsertPos) 733 RegionBegin = MI; 734 } 735 736 bool ScheduleDAGMI::checkSchedLimit() { 737 #ifndef NDEBUG 738 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 739 CurrentTop = CurrentBottom; 740 return false; 741 } 742 ++NumInstrsScheduled; 743 #endif 744 return true; 745 } 746 747 /// Per-region scheduling driver, called back from 748 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 749 /// does not consider liveness or register pressure. It is useful for PostRA 750 /// scheduling and potentially other custom schedulers. 751 void ScheduleDAGMI::schedule() { 752 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 753 DEBUG(SchedImpl->dumpPolicy()); 754 755 // Build the DAG. 756 buildSchedGraph(AA); 757 758 Topo.InitDAGTopologicalSorting(); 759 760 postprocessDAG(); 761 762 SmallVector<SUnit*, 8> TopRoots, BotRoots; 763 findRootsAndBiasEdges(TopRoots, BotRoots); 764 765 // Initialize the strategy before modifying the DAG. 766 // This may initialize a DFSResult to be used for queue priority. 767 SchedImpl->initialize(this); 768 769 DEBUG( 770 if (EntrySU.getInstr() != nullptr) 771 EntrySU.dumpAll(this); 772 for (const SUnit &SU : SUnits) 773 SU.dumpAll(this); 774 if (ExitSU.getInstr() != nullptr) 775 ExitSU.dumpAll(this); 776 ); 777 if (ViewMISchedDAGs) viewGraph(); 778 779 // Initialize ready queues now that the DAG and priority data are finalized. 780 initQueues(TopRoots, BotRoots); 781 782 bool IsTopNode = false; 783 while (true) { 784 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 785 SUnit *SU = SchedImpl->pickNode(IsTopNode); 786 if (!SU) break; 787 788 assert(!SU->isScheduled && "Node already scheduled"); 789 if (!checkSchedLimit()) 790 break; 791 792 MachineInstr *MI = SU->getInstr(); 793 if (IsTopNode) { 794 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 795 if (&*CurrentTop == MI) 796 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 797 else 798 moveInstruction(MI, CurrentTop); 799 } else { 800 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 801 MachineBasicBlock::iterator priorII = 802 priorNonDebug(CurrentBottom, CurrentTop); 803 if (&*priorII == MI) 804 CurrentBottom = priorII; 805 else { 806 if (&*CurrentTop == MI) 807 CurrentTop = nextIfDebug(++CurrentTop, priorII); 808 moveInstruction(MI, CurrentBottom); 809 CurrentBottom = MI; 810 } 811 } 812 // Notify the scheduling strategy before updating the DAG. 813 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 814 // runs, it can then use the accurate ReadyCycle time to determine whether 815 // newly released nodes can move to the readyQ. 816 SchedImpl->schedNode(SU, IsTopNode); 817 818 updateQueues(SU, IsTopNode); 819 } 820 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 821 822 placeDebugValues(); 823 824 DEBUG({ 825 dbgs() << "*** Final schedule for " 826 << printMBBReference(*begin()->getParent()) << " ***\n"; 827 dumpSchedule(); 828 dbgs() << '\n'; 829 }); 830 } 831 832 /// Apply each ScheduleDAGMutation step in order. 833 void ScheduleDAGMI::postprocessDAG() { 834 for (auto &m : Mutations) 835 m->apply(this); 836 } 837 838 void ScheduleDAGMI:: 839 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 840 SmallVectorImpl<SUnit*> &BotRoots) { 841 for (SUnit &SU : SUnits) { 842 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 843 844 // Order predecessors so DFSResult follows the critical path. 845 SU.biasCriticalPath(); 846 847 // A SUnit is ready to top schedule if it has no predecessors. 848 if (!SU.NumPredsLeft) 849 TopRoots.push_back(&SU); 850 // A SUnit is ready to bottom schedule if it has no successors. 851 if (!SU.NumSuccsLeft) 852 BotRoots.push_back(&SU); 853 } 854 ExitSU.biasCriticalPath(); 855 } 856 857 /// Identify DAG roots and setup scheduler queues. 858 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 859 ArrayRef<SUnit*> BotRoots) { 860 NextClusterSucc = nullptr; 861 NextClusterPred = nullptr; 862 863 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 864 // 865 // Nodes with unreleased weak edges can still be roots. 866 // Release top roots in forward order. 867 for (SUnit *SU : TopRoots) 868 SchedImpl->releaseTopNode(SU); 869 870 // Release bottom roots in reverse order so the higher priority nodes appear 871 // first. This is more natural and slightly more efficient. 872 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 873 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 874 SchedImpl->releaseBottomNode(*I); 875 } 876 877 releaseSuccessors(&EntrySU); 878 releasePredecessors(&ExitSU); 879 880 SchedImpl->registerRoots(); 881 882 // Advance past initial DebugValues. 883 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 884 CurrentBottom = RegionEnd; 885 } 886 887 /// Update scheduler queues after scheduling an instruction. 888 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 889 // Release dependent instructions for scheduling. 890 if (IsTopNode) 891 releaseSuccessors(SU); 892 else 893 releasePredecessors(SU); 894 895 SU->isScheduled = true; 896 } 897 898 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 899 void ScheduleDAGMI::placeDebugValues() { 900 // If first instruction was a DBG_VALUE then put it back. 901 if (FirstDbgValue) { 902 BB->splice(RegionBegin, BB, FirstDbgValue); 903 RegionBegin = FirstDbgValue; 904 } 905 906 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 907 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 908 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 909 MachineInstr *DbgValue = P.first; 910 MachineBasicBlock::iterator OrigPrevMI = P.second; 911 if (&*RegionBegin == DbgValue) 912 ++RegionBegin; 913 BB->splice(++OrigPrevMI, BB, DbgValue); 914 if (OrigPrevMI == std::prev(RegionEnd)) 915 RegionEnd = DbgValue; 916 } 917 DbgValues.clear(); 918 FirstDbgValue = nullptr; 919 } 920 921 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 922 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 923 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 924 if (SUnit *SU = getSUnit(&(*MI))) 925 SU->dump(this); 926 else 927 dbgs() << "Missing SUnit\n"; 928 } 929 } 930 #endif 931 932 //===----------------------------------------------------------------------===// 933 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 934 // preservation. 935 //===----------------------------------------------------------------------===// 936 937 ScheduleDAGMILive::~ScheduleDAGMILive() { 938 delete DFSResult; 939 } 940 941 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 942 const MachineInstr &MI = *SU.getInstr(); 943 for (const MachineOperand &MO : MI.operands()) { 944 if (!MO.isReg()) 945 continue; 946 if (!MO.readsReg()) 947 continue; 948 if (TrackLaneMasks && !MO.isUse()) 949 continue; 950 951 unsigned Reg = MO.getReg(); 952 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 953 continue; 954 955 // Ignore re-defs. 956 if (TrackLaneMasks) { 957 bool FoundDef = false; 958 for (const MachineOperand &MO2 : MI.operands()) { 959 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 960 FoundDef = true; 961 break; 962 } 963 } 964 if (FoundDef) 965 continue; 966 } 967 968 // Record this local VReg use. 969 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 970 for (; UI != VRegUses.end(); ++UI) { 971 if (UI->SU == &SU) 972 break; 973 } 974 if (UI == VRegUses.end()) 975 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 976 } 977 } 978 979 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 980 /// crossing a scheduling boundary. [begin, end) includes all instructions in 981 /// the region, including the boundary itself and single-instruction regions 982 /// that don't get scheduled. 983 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 984 MachineBasicBlock::iterator begin, 985 MachineBasicBlock::iterator end, 986 unsigned regioninstrs) 987 { 988 // ScheduleDAGMI initializes SchedImpl's per-region policy. 989 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 990 991 // For convenience remember the end of the liveness region. 992 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 993 994 SUPressureDiffs.clear(); 995 996 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 997 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 998 999 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1000 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1001 } 1002 1003 // Setup the register pressure trackers for the top scheduled top and bottom 1004 // scheduled regions. 1005 void ScheduleDAGMILive::initRegPressure() { 1006 VRegUses.clear(); 1007 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1008 for (SUnit &SU : SUnits) 1009 collectVRegUses(SU); 1010 1011 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1012 ShouldTrackLaneMasks, false); 1013 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1014 ShouldTrackLaneMasks, false); 1015 1016 // Close the RPTracker to finalize live ins. 1017 RPTracker.closeRegion(); 1018 1019 DEBUG(RPTracker.dump()); 1020 1021 // Initialize the live ins and live outs. 1022 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1023 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1024 1025 // Close one end of the tracker so we can call 1026 // getMaxUpward/DownwardPressureDelta before advancing across any 1027 // instructions. This converts currently live regs into live ins/outs. 1028 TopRPTracker.closeTop(); 1029 BotRPTracker.closeBottom(); 1030 1031 BotRPTracker.initLiveThru(RPTracker); 1032 if (!BotRPTracker.getLiveThru().empty()) { 1033 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1034 DEBUG(dbgs() << "Live Thru: "; 1035 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1036 }; 1037 1038 // For each live out vreg reduce the pressure change associated with other 1039 // uses of the same vreg below the live-out reaching def. 1040 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1041 1042 // Account for liveness generated by the region boundary. 1043 if (LiveRegionEnd != RegionEnd) { 1044 SmallVector<RegisterMaskPair, 8> LiveUses; 1045 BotRPTracker.recede(&LiveUses); 1046 updatePressureDiffs(LiveUses); 1047 } 1048 1049 DEBUG( 1050 dbgs() << "Top Pressure:\n"; 1051 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1052 dbgs() << "Bottom Pressure:\n"; 1053 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1054 ); 1055 1056 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 1057 1058 // Cache the list of excess pressure sets in this region. This will also track 1059 // the max pressure in the scheduled code for these sets. 1060 RegionCriticalPSets.clear(); 1061 const std::vector<unsigned> &RegionPressure = 1062 RPTracker.getPressure().MaxSetPressure; 1063 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1064 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1065 if (RegionPressure[i] > Limit) { 1066 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1067 << " Limit " << Limit 1068 << " Actual " << RegionPressure[i] << "\n"); 1069 RegionCriticalPSets.push_back(PressureChange(i)); 1070 } 1071 } 1072 DEBUG(dbgs() << "Excess PSets: "; 1073 for (const PressureChange &RCPS : RegionCriticalPSets) 1074 dbgs() << TRI->getRegPressureSetName( 1075 RCPS.getPSet()) << " "; 1076 dbgs() << "\n"); 1077 } 1078 1079 void ScheduleDAGMILive:: 1080 updateScheduledPressure(const SUnit *SU, 1081 const std::vector<unsigned> &NewMaxPressure) { 1082 const PressureDiff &PDiff = getPressureDiff(SU); 1083 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1084 for (const PressureChange &PC : PDiff) { 1085 if (!PC.isValid()) 1086 break; 1087 unsigned ID = PC.getPSet(); 1088 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1089 ++CritIdx; 1090 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1091 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1092 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1093 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1094 } 1095 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1096 if (NewMaxPressure[ID] >= Limit - 2) { 1097 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1098 << NewMaxPressure[ID] 1099 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1100 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1101 } 1102 } 1103 } 1104 1105 /// Update the PressureDiff array for liveness after scheduling this 1106 /// instruction. 1107 void ScheduleDAGMILive::updatePressureDiffs( 1108 ArrayRef<RegisterMaskPair> LiveUses) { 1109 for (const RegisterMaskPair &P : LiveUses) { 1110 unsigned Reg = P.RegUnit; 1111 /// FIXME: Currently assuming single-use physregs. 1112 if (!TRI->isVirtualRegister(Reg)) 1113 continue; 1114 1115 if (ShouldTrackLaneMasks) { 1116 // If the register has just become live then other uses won't change 1117 // this fact anymore => decrement pressure. 1118 // If the register has just become dead then other uses make it come 1119 // back to life => increment pressure. 1120 bool Decrement = P.LaneMask.any(); 1121 1122 for (const VReg2SUnit &V2SU 1123 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1124 SUnit &SU = *V2SU.SU; 1125 if (SU.isScheduled || &SU == &ExitSU) 1126 continue; 1127 1128 PressureDiff &PDiff = getPressureDiff(&SU); 1129 PDiff.addPressureChange(Reg, Decrement, &MRI); 1130 DEBUG( 1131 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1132 << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1133 << ' ' << *SU.getInstr(); 1134 dbgs() << " to "; 1135 PDiff.dump(*TRI); 1136 ); 1137 } 1138 } else { 1139 assert(P.LaneMask.any()); 1140 DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1141 // This may be called before CurrentBottom has been initialized. However, 1142 // BotRPTracker must have a valid position. We want the value live into the 1143 // instruction or live out of the block, so ask for the previous 1144 // instruction's live-out. 1145 const LiveInterval &LI = LIS->getInterval(Reg); 1146 VNInfo *VNI; 1147 MachineBasicBlock::const_iterator I = 1148 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1149 if (I == BB->end()) 1150 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1151 else { 1152 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1153 VNI = LRQ.valueIn(); 1154 } 1155 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1156 assert(VNI && "No live value at use."); 1157 for (const VReg2SUnit &V2SU 1158 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1159 SUnit *SU = V2SU.SU; 1160 // If this use comes before the reaching def, it cannot be a last use, 1161 // so decrease its pressure change. 1162 if (!SU->isScheduled && SU != &ExitSU) { 1163 LiveQueryResult LRQ = 1164 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1165 if (LRQ.valueIn() == VNI) { 1166 PressureDiff &PDiff = getPressureDiff(SU); 1167 PDiff.addPressureChange(Reg, true, &MRI); 1168 DEBUG( 1169 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1170 << *SU->getInstr(); 1171 dbgs() << " to "; 1172 PDiff.dump(*TRI); 1173 ); 1174 } 1175 } 1176 } 1177 } 1178 } 1179 } 1180 1181 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1182 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1183 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1184 /// 1185 /// This is a skeletal driver, with all the functionality pushed into helpers, 1186 /// so that it can be easily extended by experimental schedulers. Generally, 1187 /// implementing MachineSchedStrategy should be sufficient to implement a new 1188 /// scheduling algorithm. However, if a scheduler further subclasses 1189 /// ScheduleDAGMILive then it will want to override this virtual method in order 1190 /// to update any specialized state. 1191 void ScheduleDAGMILive::schedule() { 1192 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1193 DEBUG(SchedImpl->dumpPolicy()); 1194 buildDAGWithRegPressure(); 1195 1196 Topo.InitDAGTopologicalSorting(); 1197 1198 postprocessDAG(); 1199 1200 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1201 findRootsAndBiasEdges(TopRoots, BotRoots); 1202 1203 // Initialize the strategy before modifying the DAG. 1204 // This may initialize a DFSResult to be used for queue priority. 1205 SchedImpl->initialize(this); 1206 1207 DEBUG( 1208 if (EntrySU.getInstr() != nullptr) 1209 EntrySU.dumpAll(this); 1210 for (const SUnit &SU : SUnits) { 1211 SU.dumpAll(this); 1212 if (ShouldTrackPressure) { 1213 dbgs() << " Pressure Diff : "; 1214 getPressureDiff(&SU).dump(*TRI); 1215 } 1216 dbgs() << " Single Issue : "; 1217 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1218 SchedModel.mustEndGroup(SU.getInstr())) 1219 dbgs() << "true;"; 1220 else 1221 dbgs() << "false;"; 1222 dbgs() << '\n'; 1223 } 1224 if (ExitSU.getInstr() != nullptr) 1225 ExitSU.dumpAll(this); 1226 ); 1227 if (ViewMISchedDAGs) viewGraph(); 1228 1229 // Initialize ready queues now that the DAG and priority data are finalized. 1230 initQueues(TopRoots, BotRoots); 1231 1232 bool IsTopNode = false; 1233 while (true) { 1234 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1235 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1236 if (!SU) break; 1237 1238 assert(!SU->isScheduled && "Node already scheduled"); 1239 if (!checkSchedLimit()) 1240 break; 1241 1242 scheduleMI(SU, IsTopNode); 1243 1244 if (DFSResult) { 1245 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1246 if (!ScheduledTrees.test(SubtreeID)) { 1247 ScheduledTrees.set(SubtreeID); 1248 DFSResult->scheduleTree(SubtreeID); 1249 SchedImpl->scheduleTree(SubtreeID); 1250 } 1251 } 1252 1253 // Notify the scheduling strategy after updating the DAG. 1254 SchedImpl->schedNode(SU, IsTopNode); 1255 1256 updateQueues(SU, IsTopNode); 1257 } 1258 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1259 1260 placeDebugValues(); 1261 1262 DEBUG({ 1263 dbgs() << "*** Final schedule for " 1264 << printMBBReference(*begin()->getParent()) << " ***\n"; 1265 dumpSchedule(); 1266 dbgs() << '\n'; 1267 }); 1268 } 1269 1270 /// Build the DAG and setup three register pressure trackers. 1271 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1272 if (!ShouldTrackPressure) { 1273 RPTracker.reset(); 1274 RegionCriticalPSets.clear(); 1275 buildSchedGraph(AA); 1276 return; 1277 } 1278 1279 // Initialize the register pressure tracker used by buildSchedGraph. 1280 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1281 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1282 1283 // Account for liveness generate by the region boundary. 1284 if (LiveRegionEnd != RegionEnd) 1285 RPTracker.recede(); 1286 1287 // Build the DAG, and compute current register pressure. 1288 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1289 1290 // Initialize top/bottom trackers after computing region pressure. 1291 initRegPressure(); 1292 } 1293 1294 void ScheduleDAGMILive::computeDFSResult() { 1295 if (!DFSResult) 1296 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1297 DFSResult->clear(); 1298 ScheduledTrees.clear(); 1299 DFSResult->resize(SUnits.size()); 1300 DFSResult->compute(SUnits); 1301 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1302 } 1303 1304 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1305 /// only provides the critical path for single block loops. To handle loops that 1306 /// span blocks, we could use the vreg path latencies provided by 1307 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1308 /// available for use in the scheduler. 1309 /// 1310 /// The cyclic path estimation identifies a def-use pair that crosses the back 1311 /// edge and considers the depth and height of the nodes. For example, consider 1312 /// the following instruction sequence where each instruction has unit latency 1313 /// and defines an epomymous virtual register: 1314 /// 1315 /// a->b(a,c)->c(b)->d(c)->exit 1316 /// 1317 /// The cyclic critical path is a two cycles: b->c->b 1318 /// The acyclic critical path is four cycles: a->b->c->d->exit 1319 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1320 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1321 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1322 /// LiveInDepth = depth(b) = len(a->b) = 1 1323 /// 1324 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1325 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1326 /// CyclicCriticalPath = min(2, 2) = 2 1327 /// 1328 /// This could be relevant to PostRA scheduling, but is currently implemented 1329 /// assuming LiveIntervals. 1330 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1331 // This only applies to single block loop. 1332 if (!BB->isSuccessor(BB)) 1333 return 0; 1334 1335 unsigned MaxCyclicLatency = 0; 1336 // Visit each live out vreg def to find def/use pairs that cross iterations. 1337 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1338 unsigned Reg = P.RegUnit; 1339 if (!TRI->isVirtualRegister(Reg)) 1340 continue; 1341 const LiveInterval &LI = LIS->getInterval(Reg); 1342 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1343 if (!DefVNI) 1344 continue; 1345 1346 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1347 const SUnit *DefSU = getSUnit(DefMI); 1348 if (!DefSU) 1349 continue; 1350 1351 unsigned LiveOutHeight = DefSU->getHeight(); 1352 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1353 // Visit all local users of the vreg def. 1354 for (const VReg2SUnit &V2SU 1355 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1356 SUnit *SU = V2SU.SU; 1357 if (SU == &ExitSU) 1358 continue; 1359 1360 // Only consider uses of the phi. 1361 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1362 if (!LRQ.valueIn()->isPHIDef()) 1363 continue; 1364 1365 // Assume that a path spanning two iterations is a cycle, which could 1366 // overestimate in strange cases. This allows cyclic latency to be 1367 // estimated as the minimum slack of the vreg's depth or height. 1368 unsigned CyclicLatency = 0; 1369 if (LiveOutDepth > SU->getDepth()) 1370 CyclicLatency = LiveOutDepth - SU->getDepth(); 1371 1372 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1373 if (LiveInHeight > LiveOutHeight) { 1374 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1375 CyclicLatency = LiveInHeight - LiveOutHeight; 1376 } else 1377 CyclicLatency = 0; 1378 1379 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1380 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1381 if (CyclicLatency > MaxCyclicLatency) 1382 MaxCyclicLatency = CyclicLatency; 1383 } 1384 } 1385 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1386 return MaxCyclicLatency; 1387 } 1388 1389 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1390 /// the Top RP tracker in case the region beginning has changed. 1391 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1392 ArrayRef<SUnit*> BotRoots) { 1393 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1394 if (ShouldTrackPressure) { 1395 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1396 TopRPTracker.setPos(CurrentTop); 1397 } 1398 } 1399 1400 /// Move an instruction and update register pressure. 1401 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1402 // Move the instruction to its new location in the instruction stream. 1403 MachineInstr *MI = SU->getInstr(); 1404 1405 if (IsTopNode) { 1406 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1407 if (&*CurrentTop == MI) 1408 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1409 else { 1410 moveInstruction(MI, CurrentTop); 1411 TopRPTracker.setPos(MI); 1412 } 1413 1414 if (ShouldTrackPressure) { 1415 // Update top scheduled pressure. 1416 RegisterOperands RegOpers; 1417 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1418 if (ShouldTrackLaneMasks) { 1419 // Adjust liveness and add missing dead+read-undef flags. 1420 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1421 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1422 } else { 1423 // Adjust for missing dead-def flags. 1424 RegOpers.detectDeadDefs(*MI, *LIS); 1425 } 1426 1427 TopRPTracker.advance(RegOpers); 1428 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1429 DEBUG( 1430 dbgs() << "Top Pressure:\n"; 1431 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1432 ); 1433 1434 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1435 } 1436 } else { 1437 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1438 MachineBasicBlock::iterator priorII = 1439 priorNonDebug(CurrentBottom, CurrentTop); 1440 if (&*priorII == MI) 1441 CurrentBottom = priorII; 1442 else { 1443 if (&*CurrentTop == MI) { 1444 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1445 TopRPTracker.setPos(CurrentTop); 1446 } 1447 moveInstruction(MI, CurrentBottom); 1448 CurrentBottom = MI; 1449 } 1450 if (ShouldTrackPressure) { 1451 RegisterOperands RegOpers; 1452 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1453 if (ShouldTrackLaneMasks) { 1454 // Adjust liveness and add missing dead+read-undef flags. 1455 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1456 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1457 } else { 1458 // Adjust for missing dead-def flags. 1459 RegOpers.detectDeadDefs(*MI, *LIS); 1460 } 1461 1462 BotRPTracker.recedeSkipDebugValues(); 1463 SmallVector<RegisterMaskPair, 8> LiveUses; 1464 BotRPTracker.recede(RegOpers, &LiveUses); 1465 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1466 DEBUG( 1467 dbgs() << "Bottom Pressure:\n"; 1468 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1469 ); 1470 1471 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1472 updatePressureDiffs(LiveUses); 1473 } 1474 } 1475 } 1476 1477 //===----------------------------------------------------------------------===// 1478 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1479 //===----------------------------------------------------------------------===// 1480 1481 namespace { 1482 1483 /// \brief Post-process the DAG to create cluster edges between neighboring 1484 /// loads or between neighboring stores. 1485 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1486 struct MemOpInfo { 1487 SUnit *SU; 1488 unsigned BaseReg; 1489 int64_t Offset; 1490 1491 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1492 : SU(su), BaseReg(reg), Offset(ofs) {} 1493 1494 bool operator<(const MemOpInfo&RHS) const { 1495 return std::tie(BaseReg, Offset, SU->NodeNum) < 1496 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1497 } 1498 }; 1499 1500 const TargetInstrInfo *TII; 1501 const TargetRegisterInfo *TRI; 1502 bool IsLoad; 1503 1504 public: 1505 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1506 const TargetRegisterInfo *tri, bool IsLoad) 1507 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1508 1509 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1510 1511 protected: 1512 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1513 }; 1514 1515 class StoreClusterMutation : public BaseMemOpClusterMutation { 1516 public: 1517 StoreClusterMutation(const TargetInstrInfo *tii, 1518 const TargetRegisterInfo *tri) 1519 : BaseMemOpClusterMutation(tii, tri, false) {} 1520 }; 1521 1522 class LoadClusterMutation : public BaseMemOpClusterMutation { 1523 public: 1524 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1525 : BaseMemOpClusterMutation(tii, tri, true) {} 1526 }; 1527 1528 } // end anonymous namespace 1529 1530 namespace llvm { 1531 1532 std::unique_ptr<ScheduleDAGMutation> 1533 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1534 const TargetRegisterInfo *TRI) { 1535 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1536 : nullptr; 1537 } 1538 1539 std::unique_ptr<ScheduleDAGMutation> 1540 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1541 const TargetRegisterInfo *TRI) { 1542 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1543 : nullptr; 1544 } 1545 1546 } // end namespace llvm 1547 1548 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1549 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1550 SmallVector<MemOpInfo, 32> MemOpRecords; 1551 for (SUnit *SU : MemOps) { 1552 unsigned BaseReg; 1553 int64_t Offset; 1554 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1555 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1556 } 1557 if (MemOpRecords.size() < 2) 1558 return; 1559 1560 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1561 unsigned ClusterLength = 1; 1562 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1563 SUnit *SUa = MemOpRecords[Idx].SU; 1564 SUnit *SUb = MemOpRecords[Idx+1].SU; 1565 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1566 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1567 ClusterLength) && 1568 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1569 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1570 << SUb->NodeNum << ")\n"); 1571 // Copy successor edges from SUa to SUb. Interleaving computation 1572 // dependent on SUa can prevent load combining due to register reuse. 1573 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1574 // loads should have effectively the same inputs. 1575 for (const SDep &Succ : SUa->Succs) { 1576 if (Succ.getSUnit() == SUb) 1577 continue; 1578 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1579 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1580 } 1581 ++ClusterLength; 1582 } else 1583 ClusterLength = 1; 1584 } 1585 } 1586 1587 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1588 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1589 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1590 1591 // Map DAG NodeNum to store chain ID. 1592 DenseMap<unsigned, unsigned> StoreChainIDs; 1593 // Map each store chain to a set of dependent MemOps. 1594 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1595 for (SUnit &SU : DAG->SUnits) { 1596 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1597 (!IsLoad && !SU.getInstr()->mayStore())) 1598 continue; 1599 1600 unsigned ChainPredID = DAG->SUnits.size(); 1601 for (const SDep &Pred : SU.Preds) { 1602 if (Pred.isCtrl()) { 1603 ChainPredID = Pred.getSUnit()->NodeNum; 1604 break; 1605 } 1606 } 1607 // Check if this chain-like pred has been seen 1608 // before. ChainPredID==MaxNodeID at the top of the schedule. 1609 unsigned NumChains = StoreChainDependents.size(); 1610 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1611 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1612 if (Result.second) 1613 StoreChainDependents.resize(NumChains + 1); 1614 StoreChainDependents[Result.first->second].push_back(&SU); 1615 } 1616 1617 // Iterate over the store chains. 1618 for (auto &SCD : StoreChainDependents) 1619 clusterNeighboringMemOps(SCD, DAG); 1620 } 1621 1622 //===----------------------------------------------------------------------===// 1623 // CopyConstrain - DAG post-processing to encourage copy elimination. 1624 //===----------------------------------------------------------------------===// 1625 1626 namespace { 1627 1628 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1629 /// the one use that defines the copy's source vreg, most likely an induction 1630 /// variable increment. 1631 class CopyConstrain : public ScheduleDAGMutation { 1632 // Transient state. 1633 SlotIndex RegionBeginIdx; 1634 1635 // RegionEndIdx is the slot index of the last non-debug instruction in the 1636 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1637 SlotIndex RegionEndIdx; 1638 1639 public: 1640 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1641 1642 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1643 1644 protected: 1645 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1646 }; 1647 1648 } // end anonymous namespace 1649 1650 namespace llvm { 1651 1652 std::unique_ptr<ScheduleDAGMutation> 1653 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1654 const TargetRegisterInfo *TRI) { 1655 return llvm::make_unique<CopyConstrain>(TII, TRI); 1656 } 1657 1658 } // end namespace llvm 1659 1660 /// constrainLocalCopy handles two possibilities: 1661 /// 1) Local src: 1662 /// I0: = dst 1663 /// I1: src = ... 1664 /// I2: = dst 1665 /// I3: dst = src (copy) 1666 /// (create pred->succ edges I0->I1, I2->I1) 1667 /// 1668 /// 2) Local copy: 1669 /// I0: dst = src (copy) 1670 /// I1: = dst 1671 /// I2: src = ... 1672 /// I3: = dst 1673 /// (create pred->succ edges I1->I2, I3->I2) 1674 /// 1675 /// Although the MachineScheduler is currently constrained to single blocks, 1676 /// this algorithm should handle extended blocks. An EBB is a set of 1677 /// contiguously numbered blocks such that the previous block in the EBB is 1678 /// always the single predecessor. 1679 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1680 LiveIntervals *LIS = DAG->getLIS(); 1681 MachineInstr *Copy = CopySU->getInstr(); 1682 1683 // Check for pure vreg copies. 1684 const MachineOperand &SrcOp = Copy->getOperand(1); 1685 unsigned SrcReg = SrcOp.getReg(); 1686 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1687 return; 1688 1689 const MachineOperand &DstOp = Copy->getOperand(0); 1690 unsigned DstReg = DstOp.getReg(); 1691 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1692 return; 1693 1694 // Check if either the dest or source is local. If it's live across a back 1695 // edge, it's not local. Note that if both vregs are live across the back 1696 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1697 // If both the copy's source and dest are local live intervals, then we 1698 // should treat the dest as the global for the purpose of adding 1699 // constraints. This adds edges from source's other uses to the copy. 1700 unsigned LocalReg = SrcReg; 1701 unsigned GlobalReg = DstReg; 1702 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1703 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1704 LocalReg = DstReg; 1705 GlobalReg = SrcReg; 1706 LocalLI = &LIS->getInterval(LocalReg); 1707 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1708 return; 1709 } 1710 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1711 1712 // Find the global segment after the start of the local LI. 1713 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1714 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1715 // local live range. We could create edges from other global uses to the local 1716 // start, but the coalescer should have already eliminated these cases, so 1717 // don't bother dealing with it. 1718 if (GlobalSegment == GlobalLI->end()) 1719 return; 1720 1721 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1722 // returned the next global segment. But if GlobalSegment overlaps with 1723 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1724 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1725 if (GlobalSegment->contains(LocalLI->beginIndex())) 1726 ++GlobalSegment; 1727 1728 if (GlobalSegment == GlobalLI->end()) 1729 return; 1730 1731 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1732 if (GlobalSegment != GlobalLI->begin()) { 1733 // Two address defs have no hole. 1734 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1735 GlobalSegment->start)) { 1736 return; 1737 } 1738 // If the prior global segment may be defined by the same two-address 1739 // instruction that also defines LocalLI, then can't make a hole here. 1740 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1741 LocalLI->beginIndex())) { 1742 return; 1743 } 1744 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1745 // it would be a disconnected component in the live range. 1746 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1747 "Disconnected LRG within the scheduling region."); 1748 } 1749 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1750 if (!GlobalDef) 1751 return; 1752 1753 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1754 if (!GlobalSU) 1755 return; 1756 1757 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1758 // constraining the uses of the last local def to precede GlobalDef. 1759 SmallVector<SUnit*,8> LocalUses; 1760 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1761 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1762 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1763 for (const SDep &Succ : LastLocalSU->Succs) { 1764 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1765 continue; 1766 if (Succ.getSUnit() == GlobalSU) 1767 continue; 1768 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1769 return; 1770 LocalUses.push_back(Succ.getSUnit()); 1771 } 1772 // Open the top of the GlobalLI hole by constraining any earlier global uses 1773 // to precede the start of LocalLI. 1774 SmallVector<SUnit*,8> GlobalUses; 1775 MachineInstr *FirstLocalDef = 1776 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1777 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1778 for (const SDep &Pred : GlobalSU->Preds) { 1779 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1780 continue; 1781 if (Pred.getSUnit() == FirstLocalSU) 1782 continue; 1783 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1784 return; 1785 GlobalUses.push_back(Pred.getSUnit()); 1786 } 1787 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1788 // Add the weak edges. 1789 for (SmallVectorImpl<SUnit*>::const_iterator 1790 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1791 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1792 << GlobalSU->NodeNum << ")\n"); 1793 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1794 } 1795 for (SmallVectorImpl<SUnit*>::const_iterator 1796 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1797 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1798 << FirstLocalSU->NodeNum << ")\n"); 1799 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1800 } 1801 } 1802 1803 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1804 /// copy elimination. 1805 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1806 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1807 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1808 1809 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1810 if (FirstPos == DAG->end()) 1811 return; 1812 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1813 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1814 *priorNonDebug(DAG->end(), DAG->begin())); 1815 1816 for (SUnit &SU : DAG->SUnits) { 1817 if (!SU.getInstr()->isCopy()) 1818 continue; 1819 1820 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1821 } 1822 } 1823 1824 //===----------------------------------------------------------------------===// 1825 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1826 // and possibly other custom schedulers. 1827 //===----------------------------------------------------------------------===// 1828 1829 static const unsigned InvalidCycle = ~0U; 1830 1831 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1832 1833 /// Given a Count of resource usage and a Latency value, return true if a 1834 /// SchedBoundary becomes resource limited. 1835 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1836 unsigned Latency) { 1837 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1838 } 1839 1840 void SchedBoundary::reset() { 1841 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1842 // Destroying and reconstructing it is very expensive though. So keep 1843 // invalid, placeholder HazardRecs. 1844 if (HazardRec && HazardRec->isEnabled()) { 1845 delete HazardRec; 1846 HazardRec = nullptr; 1847 } 1848 Available.clear(); 1849 Pending.clear(); 1850 CheckPending = false; 1851 CurrCycle = 0; 1852 CurrMOps = 0; 1853 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1854 ExpectedLatency = 0; 1855 DependentLatency = 0; 1856 RetiredMOps = 0; 1857 MaxExecutedResCount = 0; 1858 ZoneCritResIdx = 0; 1859 IsResourceLimited = false; 1860 ReservedCycles.clear(); 1861 #ifndef NDEBUG 1862 // Track the maximum number of stall cycles that could arise either from the 1863 // latency of a DAG edge or the number of cycles that a processor resource is 1864 // reserved (SchedBoundary::ReservedCycles). 1865 MaxObservedStall = 0; 1866 #endif 1867 // Reserve a zero-count for invalid CritResIdx. 1868 ExecutedResCounts.resize(1); 1869 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1870 } 1871 1872 void SchedRemainder:: 1873 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1874 reset(); 1875 if (!SchedModel->hasInstrSchedModel()) 1876 return; 1877 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1878 for (SUnit &SU : DAG->SUnits) { 1879 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1880 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1881 * SchedModel->getMicroOpFactor(); 1882 for (TargetSchedModel::ProcResIter 1883 PI = SchedModel->getWriteProcResBegin(SC), 1884 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1885 unsigned PIdx = PI->ProcResourceIdx; 1886 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1887 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1888 } 1889 } 1890 } 1891 1892 void SchedBoundary:: 1893 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1894 reset(); 1895 DAG = dag; 1896 SchedModel = smodel; 1897 Rem = rem; 1898 if (SchedModel->hasInstrSchedModel()) { 1899 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1900 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1901 } 1902 } 1903 1904 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1905 /// these "soft stalls" differently than the hard stall cycles based on CPU 1906 /// resources and computed by checkHazard(). A fully in-order model 1907 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1908 /// available for scheduling until they are ready. However, a weaker in-order 1909 /// model may use this for heuristics. For example, if a processor has in-order 1910 /// behavior when reading certain resources, this may come into play. 1911 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1912 if (!SU->isUnbuffered) 1913 return 0; 1914 1915 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1916 if (ReadyCycle > CurrCycle) 1917 return ReadyCycle - CurrCycle; 1918 return 0; 1919 } 1920 1921 /// Compute the next cycle at which the given processor resource can be 1922 /// scheduled. 1923 unsigned SchedBoundary:: 1924 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1925 unsigned NextUnreserved = ReservedCycles[PIdx]; 1926 // If this resource has never been used, always return cycle zero. 1927 if (NextUnreserved == InvalidCycle) 1928 return 0; 1929 // For bottom-up scheduling add the cycles needed for the current operation. 1930 if (!isTop()) 1931 NextUnreserved += Cycles; 1932 return NextUnreserved; 1933 } 1934 1935 /// Does this SU have a hazard within the current instruction group. 1936 /// 1937 /// The scheduler supports two modes of hazard recognition. The first is the 1938 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1939 /// supports highly complicated in-order reservation tables 1940 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1941 /// 1942 /// The second is a streamlined mechanism that checks for hazards based on 1943 /// simple counters that the scheduler itself maintains. It explicitly checks 1944 /// for instruction dispatch limitations, including the number of micro-ops that 1945 /// can dispatch per cycle. 1946 /// 1947 /// TODO: Also check whether the SU must start a new group. 1948 bool SchedBoundary::checkHazard(SUnit *SU) { 1949 if (HazardRec->isEnabled() 1950 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1951 return true; 1952 } 1953 1954 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1955 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1956 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1957 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1958 return true; 1959 } 1960 1961 if (CurrMOps > 0 && 1962 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1963 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1964 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1965 << (isTop()? "begin" : "end") << " group\n"); 1966 return true; 1967 } 1968 1969 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1970 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1971 for (const MCWriteProcResEntry &PE : 1972 make_range(SchedModel->getWriteProcResBegin(SC), 1973 SchedModel->getWriteProcResEnd(SC))) { 1974 unsigned ResIdx = PE.ProcResourceIdx; 1975 unsigned Cycles = PE.Cycles; 1976 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1977 if (NRCycle > CurrCycle) { 1978 #ifndef NDEBUG 1979 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1980 #endif 1981 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1982 << SchedModel->getResourceName(ResIdx) 1983 << "=" << NRCycle << "c\n"); 1984 return true; 1985 } 1986 } 1987 } 1988 return false; 1989 } 1990 1991 // Find the unscheduled node in ReadySUs with the highest latency. 1992 unsigned SchedBoundary:: 1993 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1994 SUnit *LateSU = nullptr; 1995 unsigned RemLatency = 0; 1996 for (SUnit *SU : ReadySUs) { 1997 unsigned L = getUnscheduledLatency(SU); 1998 if (L > RemLatency) { 1999 RemLatency = L; 2000 LateSU = SU; 2001 } 2002 } 2003 if (LateSU) { 2004 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2005 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2006 } 2007 return RemLatency; 2008 } 2009 2010 // Count resources in this zone and the remaining unscheduled 2011 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2012 // resource index, or zero if the zone is issue limited. 2013 unsigned SchedBoundary:: 2014 getOtherResourceCount(unsigned &OtherCritIdx) { 2015 OtherCritIdx = 0; 2016 if (!SchedModel->hasInstrSchedModel()) 2017 return 0; 2018 2019 unsigned OtherCritCount = Rem->RemIssueCount 2020 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2021 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2022 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2023 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2024 PIdx != PEnd; ++PIdx) { 2025 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2026 if (OtherCount > OtherCritCount) { 2027 OtherCritCount = OtherCount; 2028 OtherCritIdx = PIdx; 2029 } 2030 } 2031 if (OtherCritIdx) { 2032 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2033 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2034 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2035 } 2036 return OtherCritCount; 2037 } 2038 2039 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2040 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2041 2042 #ifndef NDEBUG 2043 // ReadyCycle was been bumped up to the CurrCycle when this node was 2044 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2045 // scheduling, so may now be greater than ReadyCycle. 2046 if (ReadyCycle > CurrCycle) 2047 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2048 #endif 2049 2050 if (ReadyCycle < MinReadyCycle) 2051 MinReadyCycle = ReadyCycle; 2052 2053 // Check for interlocks first. For the purpose of other heuristics, an 2054 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2055 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2056 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2057 Available.size() >= ReadyListLimit) 2058 Pending.push(SU); 2059 else 2060 Available.push(SU); 2061 } 2062 2063 /// Move the boundary of scheduled code by one cycle. 2064 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2065 if (SchedModel->getMicroOpBufferSize() == 0) { 2066 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2067 "MinReadyCycle uninitialized"); 2068 if (MinReadyCycle > NextCycle) 2069 NextCycle = MinReadyCycle; 2070 } 2071 // Update the current micro-ops, which will issue in the next cycle. 2072 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2073 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2074 2075 // Decrement DependentLatency based on the next cycle. 2076 if ((NextCycle - CurrCycle) > DependentLatency) 2077 DependentLatency = 0; 2078 else 2079 DependentLatency -= (NextCycle - CurrCycle); 2080 2081 if (!HazardRec->isEnabled()) { 2082 // Bypass HazardRec virtual calls. 2083 CurrCycle = NextCycle; 2084 } else { 2085 // Bypass getHazardType calls in case of long latency. 2086 for (; CurrCycle != NextCycle; ++CurrCycle) { 2087 if (isTop()) 2088 HazardRec->AdvanceCycle(); 2089 else 2090 HazardRec->RecedeCycle(); 2091 } 2092 } 2093 CheckPending = true; 2094 IsResourceLimited = 2095 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2096 getScheduledLatency()); 2097 2098 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2099 } 2100 2101 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2102 ExecutedResCounts[PIdx] += Count; 2103 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2104 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2105 } 2106 2107 /// Add the given processor resource to this scheduled zone. 2108 /// 2109 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2110 /// during which this resource is consumed. 2111 /// 2112 /// \return the next cycle at which the instruction may execute without 2113 /// oversubscribing resources. 2114 unsigned SchedBoundary:: 2115 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2116 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2117 unsigned Count = Factor * Cycles; 2118 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2119 << " +" << Cycles << "x" << Factor << "u\n"); 2120 2121 // Update Executed resources counts. 2122 incExecutedResources(PIdx, Count); 2123 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2124 Rem->RemainingCounts[PIdx] -= Count; 2125 2126 // Check if this resource exceeds the current critical resource. If so, it 2127 // becomes the critical resource. 2128 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2129 ZoneCritResIdx = PIdx; 2130 DEBUG(dbgs() << " *** Critical resource " 2131 << SchedModel->getResourceName(PIdx) << ": " 2132 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2133 } 2134 // For reserved resources, record the highest cycle using the resource. 2135 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2136 if (NextAvailable > CurrCycle) { 2137 DEBUG(dbgs() << " Resource conflict: " 2138 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2139 << NextAvailable << "\n"); 2140 } 2141 return NextAvailable; 2142 } 2143 2144 /// Move the boundary of scheduled code by one SUnit. 2145 void SchedBoundary::bumpNode(SUnit *SU) { 2146 // Update the reservation table. 2147 if (HazardRec->isEnabled()) { 2148 if (!isTop() && SU->isCall) { 2149 // Calls are scheduled with their preceding instructions. For bottom-up 2150 // scheduling, clear the pipeline state before emitting. 2151 HazardRec->Reset(); 2152 } 2153 HazardRec->EmitInstruction(SU); 2154 } 2155 // checkHazard should prevent scheduling multiple instructions per cycle that 2156 // exceed the issue width. 2157 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2158 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2159 assert( 2160 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2161 "Cannot schedule this instruction's MicroOps in the current cycle."); 2162 2163 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2164 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2165 2166 unsigned NextCycle = CurrCycle; 2167 switch (SchedModel->getMicroOpBufferSize()) { 2168 case 0: 2169 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2170 break; 2171 case 1: 2172 if (ReadyCycle > NextCycle) { 2173 NextCycle = ReadyCycle; 2174 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2175 } 2176 break; 2177 default: 2178 // We don't currently model the OOO reorder buffer, so consider all 2179 // scheduled MOps to be "retired". We do loosely model in-order resource 2180 // latency. If this instruction uses an in-order resource, account for any 2181 // likely stall cycles. 2182 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2183 NextCycle = ReadyCycle; 2184 break; 2185 } 2186 RetiredMOps += IncMOps; 2187 2188 // Update resource counts and critical resource. 2189 if (SchedModel->hasInstrSchedModel()) { 2190 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2191 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2192 Rem->RemIssueCount -= DecRemIssue; 2193 if (ZoneCritResIdx) { 2194 // Scale scheduled micro-ops for comparing with the critical resource. 2195 unsigned ScaledMOps = 2196 RetiredMOps * SchedModel->getMicroOpFactor(); 2197 2198 // If scaled micro-ops are now more than the previous critical resource by 2199 // a full cycle, then micro-ops issue becomes critical. 2200 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2201 >= (int)SchedModel->getLatencyFactor()) { 2202 ZoneCritResIdx = 0; 2203 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2204 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2205 } 2206 } 2207 for (TargetSchedModel::ProcResIter 2208 PI = SchedModel->getWriteProcResBegin(SC), 2209 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2210 unsigned RCycle = 2211 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2212 if (RCycle > NextCycle) 2213 NextCycle = RCycle; 2214 } 2215 if (SU->hasReservedResource) { 2216 // For reserved resources, record the highest cycle using the resource. 2217 // For top-down scheduling, this is the cycle in which we schedule this 2218 // instruction plus the number of cycles the operations reserves the 2219 // resource. For bottom-up is it simply the instruction's cycle. 2220 for (TargetSchedModel::ProcResIter 2221 PI = SchedModel->getWriteProcResBegin(SC), 2222 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2223 unsigned PIdx = PI->ProcResourceIdx; 2224 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2225 if (isTop()) { 2226 ReservedCycles[PIdx] = 2227 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2228 } 2229 else 2230 ReservedCycles[PIdx] = NextCycle; 2231 } 2232 } 2233 } 2234 } 2235 // Update ExpectedLatency and DependentLatency. 2236 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2237 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2238 if (SU->getDepth() > TopLatency) { 2239 TopLatency = SU->getDepth(); 2240 DEBUG(dbgs() << " " << Available.getName() 2241 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2242 } 2243 if (SU->getHeight() > BotLatency) { 2244 BotLatency = SU->getHeight(); 2245 DEBUG(dbgs() << " " << Available.getName() 2246 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2247 } 2248 // If we stall for any reason, bump the cycle. 2249 if (NextCycle > CurrCycle) 2250 bumpCycle(NextCycle); 2251 else 2252 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2253 // resource limited. If a stall occurred, bumpCycle does this. 2254 IsResourceLimited = 2255 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2256 getScheduledLatency()); 2257 2258 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2259 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2260 // one cycle. Since we commonly reach the max MOps here, opportunistically 2261 // bump the cycle to avoid uselessly checking everything in the readyQ. 2262 CurrMOps += IncMOps; 2263 2264 // Bump the cycle count for issue group constraints. 2265 // This must be done after NextCycle has been adjust for all other stalls. 2266 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2267 // currCycle to X. 2268 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2269 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2270 DEBUG(dbgs() << " Bump cycle to " 2271 << (isTop() ? "end" : "begin") << " group\n"); 2272 bumpCycle(++NextCycle); 2273 } 2274 2275 while (CurrMOps >= SchedModel->getIssueWidth()) { 2276 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2277 << " at cycle " << CurrCycle << '\n'); 2278 bumpCycle(++NextCycle); 2279 } 2280 DEBUG(dumpScheduledState()); 2281 } 2282 2283 /// Release pending ready nodes in to the available queue. This makes them 2284 /// visible to heuristics. 2285 void SchedBoundary::releasePending() { 2286 // If the available queue is empty, it is safe to reset MinReadyCycle. 2287 if (Available.empty()) 2288 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2289 2290 // Check to see if any of the pending instructions are ready to issue. If 2291 // so, add them to the available queue. 2292 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2293 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2294 SUnit *SU = *(Pending.begin()+i); 2295 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2296 2297 if (ReadyCycle < MinReadyCycle) 2298 MinReadyCycle = ReadyCycle; 2299 2300 if (!IsBuffered && ReadyCycle > CurrCycle) 2301 continue; 2302 2303 if (checkHazard(SU)) 2304 continue; 2305 2306 if (Available.size() >= ReadyListLimit) 2307 break; 2308 2309 Available.push(SU); 2310 Pending.remove(Pending.begin()+i); 2311 --i; --e; 2312 } 2313 CheckPending = false; 2314 } 2315 2316 /// Remove SU from the ready set for this boundary. 2317 void SchedBoundary::removeReady(SUnit *SU) { 2318 if (Available.isInQueue(SU)) 2319 Available.remove(Available.find(SU)); 2320 else { 2321 assert(Pending.isInQueue(SU) && "bad ready count"); 2322 Pending.remove(Pending.find(SU)); 2323 } 2324 } 2325 2326 /// If this queue only has one ready candidate, return it. As a side effect, 2327 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2328 /// one node is ready. If multiple instructions are ready, return NULL. 2329 SUnit *SchedBoundary::pickOnlyChoice() { 2330 if (CheckPending) 2331 releasePending(); 2332 2333 if (CurrMOps > 0) { 2334 // Defer any ready instrs that now have a hazard. 2335 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2336 if (checkHazard(*I)) { 2337 Pending.push(*I); 2338 I = Available.remove(I); 2339 continue; 2340 } 2341 ++I; 2342 } 2343 } 2344 for (unsigned i = 0; Available.empty(); ++i) { 2345 // FIXME: Re-enable assert once PR20057 is resolved. 2346 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2347 // "permanent hazard"); 2348 (void)i; 2349 bumpCycle(CurrCycle + 1); 2350 releasePending(); 2351 } 2352 2353 DEBUG(Pending.dump()); 2354 DEBUG(Available.dump()); 2355 2356 if (Available.size() == 1) 2357 return *Available.begin(); 2358 return nullptr; 2359 } 2360 2361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2362 // This is useful information to dump after bumpNode. 2363 // Note that the Queue contents are more useful before pickNodeFromQueue. 2364 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2365 unsigned ResFactor; 2366 unsigned ResCount; 2367 if (ZoneCritResIdx) { 2368 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2369 ResCount = getResourceCount(ZoneCritResIdx); 2370 } else { 2371 ResFactor = SchedModel->getMicroOpFactor(); 2372 ResCount = RetiredMOps * ResFactor; 2373 } 2374 unsigned LFactor = SchedModel->getLatencyFactor(); 2375 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2376 << " Retired: " << RetiredMOps; 2377 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2378 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2379 << ResCount / ResFactor << " " 2380 << SchedModel->getResourceName(ZoneCritResIdx) 2381 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2382 << (IsResourceLimited ? " - Resource" : " - Latency") 2383 << " limited.\n"; 2384 } 2385 #endif 2386 2387 //===----------------------------------------------------------------------===// 2388 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2389 //===----------------------------------------------------------------------===// 2390 2391 void GenericSchedulerBase::SchedCandidate:: 2392 initResourceDelta(const ScheduleDAGMI *DAG, 2393 const TargetSchedModel *SchedModel) { 2394 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2395 return; 2396 2397 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2398 for (TargetSchedModel::ProcResIter 2399 PI = SchedModel->getWriteProcResBegin(SC), 2400 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2401 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2402 ResDelta.CritResources += PI->Cycles; 2403 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2404 ResDelta.DemandedResources += PI->Cycles; 2405 } 2406 } 2407 2408 /// Set the CandPolicy given a scheduling zone given the current resources and 2409 /// latencies inside and outside the zone. 2410 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2411 SchedBoundary &CurrZone, 2412 SchedBoundary *OtherZone) { 2413 // Apply preemptive heuristics based on the total latency and resources 2414 // inside and outside this zone. Potential stalls should be considered before 2415 // following this policy. 2416 2417 // Compute remaining latency. We need this both to determine whether the 2418 // overall schedule has become latency-limited and whether the instructions 2419 // outside this zone are resource or latency limited. 2420 // 2421 // The "dependent" latency is updated incrementally during scheduling as the 2422 // max height/depth of scheduled nodes minus the cycles since it was 2423 // scheduled: 2424 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2425 // 2426 // The "independent" latency is the max ready queue depth: 2427 // ILat = max N.depth for N in Available|Pending 2428 // 2429 // RemainingLatency is the greater of independent and dependent latency. 2430 unsigned RemLatency = CurrZone.getDependentLatency(); 2431 RemLatency = std::max(RemLatency, 2432 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2433 RemLatency = std::max(RemLatency, 2434 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2435 2436 // Compute the critical resource outside the zone. 2437 unsigned OtherCritIdx = 0; 2438 unsigned OtherCount = 2439 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2440 2441 bool OtherResLimited = false; 2442 if (SchedModel->hasInstrSchedModel()) 2443 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2444 OtherCount, RemLatency); 2445 2446 // Schedule aggressively for latency in PostRA mode. We don't check for 2447 // acyclic latency during PostRA, and highly out-of-order processors will 2448 // skip PostRA scheduling. 2449 if (!OtherResLimited) { 2450 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2451 Policy.ReduceLatency |= true; 2452 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2453 << " RemainingLatency " << RemLatency << " + " 2454 << CurrZone.getCurrCycle() << "c > CritPath " 2455 << Rem.CriticalPath << "\n"); 2456 } 2457 } 2458 // If the same resource is limiting inside and outside the zone, do nothing. 2459 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2460 return; 2461 2462 DEBUG( 2463 if (CurrZone.isResourceLimited()) { 2464 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2465 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2466 << "\n"; 2467 } 2468 if (OtherResLimited) 2469 dbgs() << " RemainingLimit: " 2470 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2471 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2472 dbgs() << " Latency limited both directions.\n"); 2473 2474 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2475 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2476 2477 if (OtherResLimited) 2478 Policy.DemandResIdx = OtherCritIdx; 2479 } 2480 2481 #ifndef NDEBUG 2482 const char *GenericSchedulerBase::getReasonStr( 2483 GenericSchedulerBase::CandReason Reason) { 2484 switch (Reason) { 2485 case NoCand: return "NOCAND "; 2486 case Only1: return "ONLY1 "; 2487 case PhysRegCopy: return "PREG-COPY "; 2488 case RegExcess: return "REG-EXCESS"; 2489 case RegCritical: return "REG-CRIT "; 2490 case Stall: return "STALL "; 2491 case Cluster: return "CLUSTER "; 2492 case Weak: return "WEAK "; 2493 case RegMax: return "REG-MAX "; 2494 case ResourceReduce: return "RES-REDUCE"; 2495 case ResourceDemand: return "RES-DEMAND"; 2496 case TopDepthReduce: return "TOP-DEPTH "; 2497 case TopPathReduce: return "TOP-PATH "; 2498 case BotHeightReduce:return "BOT-HEIGHT"; 2499 case BotPathReduce: return "BOT-PATH "; 2500 case NextDefUse: return "DEF-USE "; 2501 case NodeOrder: return "ORDER "; 2502 }; 2503 llvm_unreachable("Unknown reason!"); 2504 } 2505 2506 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2507 PressureChange P; 2508 unsigned ResIdx = 0; 2509 unsigned Latency = 0; 2510 switch (Cand.Reason) { 2511 default: 2512 break; 2513 case RegExcess: 2514 P = Cand.RPDelta.Excess; 2515 break; 2516 case RegCritical: 2517 P = Cand.RPDelta.CriticalMax; 2518 break; 2519 case RegMax: 2520 P = Cand.RPDelta.CurrentMax; 2521 break; 2522 case ResourceReduce: 2523 ResIdx = Cand.Policy.ReduceResIdx; 2524 break; 2525 case ResourceDemand: 2526 ResIdx = Cand.Policy.DemandResIdx; 2527 break; 2528 case TopDepthReduce: 2529 Latency = Cand.SU->getDepth(); 2530 break; 2531 case TopPathReduce: 2532 Latency = Cand.SU->getHeight(); 2533 break; 2534 case BotHeightReduce: 2535 Latency = Cand.SU->getHeight(); 2536 break; 2537 case BotPathReduce: 2538 Latency = Cand.SU->getDepth(); 2539 break; 2540 } 2541 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2542 if (P.isValid()) 2543 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2544 << ":" << P.getUnitInc() << " "; 2545 else 2546 dbgs() << " "; 2547 if (ResIdx) 2548 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2549 else 2550 dbgs() << " "; 2551 if (Latency) 2552 dbgs() << " " << Latency << " cycles "; 2553 else 2554 dbgs() << " "; 2555 dbgs() << '\n'; 2556 } 2557 #endif 2558 2559 /// Return true if this heuristic determines order. 2560 static bool tryLess(int TryVal, int CandVal, 2561 GenericSchedulerBase::SchedCandidate &TryCand, 2562 GenericSchedulerBase::SchedCandidate &Cand, 2563 GenericSchedulerBase::CandReason Reason) { 2564 if (TryVal < CandVal) { 2565 TryCand.Reason = Reason; 2566 return true; 2567 } 2568 if (TryVal > CandVal) { 2569 if (Cand.Reason > Reason) 2570 Cand.Reason = Reason; 2571 return true; 2572 } 2573 return false; 2574 } 2575 2576 static bool tryGreater(int TryVal, int CandVal, 2577 GenericSchedulerBase::SchedCandidate &TryCand, 2578 GenericSchedulerBase::SchedCandidate &Cand, 2579 GenericSchedulerBase::CandReason Reason) { 2580 if (TryVal > CandVal) { 2581 TryCand.Reason = Reason; 2582 return true; 2583 } 2584 if (TryVal < CandVal) { 2585 if (Cand.Reason > Reason) 2586 Cand.Reason = Reason; 2587 return true; 2588 } 2589 return false; 2590 } 2591 2592 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2593 GenericSchedulerBase::SchedCandidate &Cand, 2594 SchedBoundary &Zone) { 2595 if (Zone.isTop()) { 2596 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2597 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2598 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2599 return true; 2600 } 2601 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2602 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2603 return true; 2604 } else { 2605 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2606 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2607 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2608 return true; 2609 } 2610 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2611 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2612 return true; 2613 } 2614 return false; 2615 } 2616 2617 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2618 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2619 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2620 } 2621 2622 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2623 tracePick(Cand.Reason, Cand.AtTop); 2624 } 2625 2626 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2627 assert(dag->hasVRegLiveness() && 2628 "(PreRA)GenericScheduler needs vreg liveness"); 2629 DAG = static_cast<ScheduleDAGMILive*>(dag); 2630 SchedModel = DAG->getSchedModel(); 2631 TRI = DAG->TRI; 2632 2633 Rem.init(DAG, SchedModel); 2634 Top.init(DAG, SchedModel, &Rem); 2635 Bot.init(DAG, SchedModel, &Rem); 2636 2637 // Initialize resource counts. 2638 2639 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2640 // are disabled, then these HazardRecs will be disabled. 2641 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2642 if (!Top.HazardRec) { 2643 Top.HazardRec = 2644 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2645 Itin, DAG); 2646 } 2647 if (!Bot.HazardRec) { 2648 Bot.HazardRec = 2649 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2650 Itin, DAG); 2651 } 2652 TopCand.SU = nullptr; 2653 BotCand.SU = nullptr; 2654 } 2655 2656 /// Initialize the per-region scheduling policy. 2657 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2658 MachineBasicBlock::iterator End, 2659 unsigned NumRegionInstrs) { 2660 const MachineFunction &MF = *Begin->getMF(); 2661 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2662 2663 // Avoid setting up the register pressure tracker for small regions to save 2664 // compile time. As a rough heuristic, only track pressure when the number of 2665 // schedulable instructions exceeds half the integer register file. 2666 RegionPolicy.ShouldTrackPressure = true; 2667 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2668 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2669 if (TLI->isTypeLegal(LegalIntVT)) { 2670 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2671 TLI->getRegClassFor(LegalIntVT)); 2672 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2673 } 2674 } 2675 2676 // For generic targets, we default to bottom-up, because it's simpler and more 2677 // compile-time optimizations have been implemented in that direction. 2678 RegionPolicy.OnlyBottomUp = true; 2679 2680 // Allow the subtarget to override default policy. 2681 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2682 2683 // After subtarget overrides, apply command line options. 2684 if (!EnableRegPressure) 2685 RegionPolicy.ShouldTrackPressure = false; 2686 2687 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2688 // e.g. -misched-bottomup=false allows scheduling in both directions. 2689 assert((!ForceTopDown || !ForceBottomUp) && 2690 "-misched-topdown incompatible with -misched-bottomup"); 2691 if (ForceBottomUp.getNumOccurrences() > 0) { 2692 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2693 if (RegionPolicy.OnlyBottomUp) 2694 RegionPolicy.OnlyTopDown = false; 2695 } 2696 if (ForceTopDown.getNumOccurrences() > 0) { 2697 RegionPolicy.OnlyTopDown = ForceTopDown; 2698 if (RegionPolicy.OnlyTopDown) 2699 RegionPolicy.OnlyBottomUp = false; 2700 } 2701 } 2702 2703 void GenericScheduler::dumpPolicy() const { 2704 // Cannot completely remove virtual function even in release mode. 2705 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2706 dbgs() << "GenericScheduler RegionPolicy: " 2707 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2708 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2709 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2710 << "\n"; 2711 #endif 2712 } 2713 2714 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2715 /// critical path by more cycles than it takes to drain the instruction buffer. 2716 /// We estimate an upper bounds on in-flight instructions as: 2717 /// 2718 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2719 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2720 /// InFlightResources = InFlightIterations * LoopResources 2721 /// 2722 /// TODO: Check execution resources in addition to IssueCount. 2723 void GenericScheduler::checkAcyclicLatency() { 2724 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2725 return; 2726 2727 // Scaled number of cycles per loop iteration. 2728 unsigned IterCount = 2729 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2730 Rem.RemIssueCount); 2731 // Scaled acyclic critical path. 2732 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2733 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2734 unsigned InFlightCount = 2735 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2736 unsigned BufferLimit = 2737 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2738 2739 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2740 2741 DEBUG(dbgs() << "IssueCycles=" 2742 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2743 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2744 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2745 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2746 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2747 if (Rem.IsAcyclicLatencyLimited) 2748 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2749 } 2750 2751 void GenericScheduler::registerRoots() { 2752 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2753 2754 // Some roots may not feed into ExitSU. Check all of them in case. 2755 for (const SUnit *SU : Bot.Available) { 2756 if (SU->getDepth() > Rem.CriticalPath) 2757 Rem.CriticalPath = SU->getDepth(); 2758 } 2759 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2760 if (DumpCriticalPathLength) { 2761 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2762 } 2763 2764 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2765 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2766 checkAcyclicLatency(); 2767 } 2768 } 2769 2770 static bool tryPressure(const PressureChange &TryP, 2771 const PressureChange &CandP, 2772 GenericSchedulerBase::SchedCandidate &TryCand, 2773 GenericSchedulerBase::SchedCandidate &Cand, 2774 GenericSchedulerBase::CandReason Reason, 2775 const TargetRegisterInfo *TRI, 2776 const MachineFunction &MF) { 2777 // If one candidate decreases and the other increases, go with it. 2778 // Invalid candidates have UnitInc==0. 2779 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2780 Reason)) { 2781 return true; 2782 } 2783 // Do not compare the magnitude of pressure changes between top and bottom 2784 // boundary. 2785 if (Cand.AtTop != TryCand.AtTop) 2786 return false; 2787 2788 // If both candidates affect the same set in the same boundary, go with the 2789 // smallest increase. 2790 unsigned TryPSet = TryP.getPSetOrMax(); 2791 unsigned CandPSet = CandP.getPSetOrMax(); 2792 if (TryPSet == CandPSet) { 2793 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2794 Reason); 2795 } 2796 2797 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2798 std::numeric_limits<int>::max(); 2799 2800 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2801 std::numeric_limits<int>::max(); 2802 2803 // If the candidates are decreasing pressure, reverse priority. 2804 if (TryP.getUnitInc() < 0) 2805 std::swap(TryRank, CandRank); 2806 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2807 } 2808 2809 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2810 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2811 } 2812 2813 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2814 /// their physreg def/use. 2815 /// 2816 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2817 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2818 /// with the operation that produces or consumes the physreg. We'll do this when 2819 /// regalloc has support for parallel copies. 2820 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2821 const MachineInstr *MI = SU->getInstr(); 2822 if (!MI->isCopy()) 2823 return 0; 2824 2825 unsigned ScheduledOper = isTop ? 1 : 0; 2826 unsigned UnscheduledOper = isTop ? 0 : 1; 2827 // If we have already scheduled the physreg produce/consumer, immediately 2828 // schedule the copy. 2829 if (TargetRegisterInfo::isPhysicalRegister( 2830 MI->getOperand(ScheduledOper).getReg())) 2831 return 1; 2832 // If the physreg is at the boundary, defer it. Otherwise schedule it 2833 // immediately to free the dependent. We can hoist the copy later. 2834 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2835 if (TargetRegisterInfo::isPhysicalRegister( 2836 MI->getOperand(UnscheduledOper).getReg())) 2837 return AtBoundary ? -1 : 1; 2838 return 0; 2839 } 2840 2841 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2842 bool AtTop, 2843 const RegPressureTracker &RPTracker, 2844 RegPressureTracker &TempTracker) { 2845 Cand.SU = SU; 2846 Cand.AtTop = AtTop; 2847 if (DAG->isTrackingPressure()) { 2848 if (AtTop) { 2849 TempTracker.getMaxDownwardPressureDelta( 2850 Cand.SU->getInstr(), 2851 Cand.RPDelta, 2852 DAG->getRegionCriticalPSets(), 2853 DAG->getRegPressure().MaxSetPressure); 2854 } else { 2855 if (VerifyScheduling) { 2856 TempTracker.getMaxUpwardPressureDelta( 2857 Cand.SU->getInstr(), 2858 &DAG->getPressureDiff(Cand.SU), 2859 Cand.RPDelta, 2860 DAG->getRegionCriticalPSets(), 2861 DAG->getRegPressure().MaxSetPressure); 2862 } else { 2863 RPTracker.getUpwardPressureDelta( 2864 Cand.SU->getInstr(), 2865 DAG->getPressureDiff(Cand.SU), 2866 Cand.RPDelta, 2867 DAG->getRegionCriticalPSets(), 2868 DAG->getRegPressure().MaxSetPressure); 2869 } 2870 } 2871 } 2872 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2873 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2874 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2875 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2876 } 2877 2878 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2879 /// hierarchical. This may be more efficient than a graduated cost model because 2880 /// we don't need to evaluate all aspects of the model for each node in the 2881 /// queue. But it's really done to make the heuristics easier to debug and 2882 /// statistically analyze. 2883 /// 2884 /// \param Cand provides the policy and current best candidate. 2885 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2886 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2887 // if Cand is from a different zone than TryCand. 2888 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2889 SchedCandidate &TryCand, 2890 SchedBoundary *Zone) { 2891 // Initialize the candidate if needed. 2892 if (!Cand.isValid()) { 2893 TryCand.Reason = NodeOrder; 2894 return; 2895 } 2896 2897 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2898 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2899 TryCand, Cand, PhysRegCopy)) 2900 return; 2901 2902 // Avoid exceeding the target's limit. 2903 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2904 Cand.RPDelta.Excess, 2905 TryCand, Cand, RegExcess, TRI, 2906 DAG->MF)) 2907 return; 2908 2909 // Avoid increasing the max critical pressure in the scheduled region. 2910 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2911 Cand.RPDelta.CriticalMax, 2912 TryCand, Cand, RegCritical, TRI, 2913 DAG->MF)) 2914 return; 2915 2916 // We only compare a subset of features when comparing nodes between 2917 // Top and Bottom boundary. Some properties are simply incomparable, in many 2918 // other instances we should only override the other boundary if something 2919 // is a clear good pick on one boundary. Skip heuristics that are more 2920 // "tie-breaking" in nature. 2921 bool SameBoundary = Zone != nullptr; 2922 if (SameBoundary) { 2923 // For loops that are acyclic path limited, aggressively schedule for 2924 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2925 // heuristics to take precedence. 2926 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2927 tryLatency(TryCand, Cand, *Zone)) 2928 return; 2929 2930 // Prioritize instructions that read unbuffered resources by stall cycles. 2931 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2932 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2933 return; 2934 } 2935 2936 // Keep clustered nodes together to encourage downstream peephole 2937 // optimizations which may reduce resource requirements. 2938 // 2939 // This is a best effort to set things up for a post-RA pass. Optimizations 2940 // like generating loads of multiple registers should ideally be done within 2941 // the scheduler pass by combining the loads during DAG postprocessing. 2942 const SUnit *CandNextClusterSU = 2943 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2944 const SUnit *TryCandNextClusterSU = 2945 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2946 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2947 Cand.SU == CandNextClusterSU, 2948 TryCand, Cand, Cluster)) 2949 return; 2950 2951 if (SameBoundary) { 2952 // Weak edges are for clustering and other constraints. 2953 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2954 getWeakLeft(Cand.SU, Cand.AtTop), 2955 TryCand, Cand, Weak)) 2956 return; 2957 } 2958 2959 // Avoid increasing the max pressure of the entire region. 2960 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2961 Cand.RPDelta.CurrentMax, 2962 TryCand, Cand, RegMax, TRI, 2963 DAG->MF)) 2964 return; 2965 2966 if (SameBoundary) { 2967 // Avoid critical resource consumption and balance the schedule. 2968 TryCand.initResourceDelta(DAG, SchedModel); 2969 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2970 TryCand, Cand, ResourceReduce)) 2971 return; 2972 if (tryGreater(TryCand.ResDelta.DemandedResources, 2973 Cand.ResDelta.DemandedResources, 2974 TryCand, Cand, ResourceDemand)) 2975 return; 2976 2977 // Avoid serializing long latency dependence chains. 2978 // For acyclic path limited loops, latency was already checked above. 2979 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2980 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2981 return; 2982 2983 // Fall through to original instruction order. 2984 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2985 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2986 TryCand.Reason = NodeOrder; 2987 } 2988 } 2989 } 2990 2991 /// Pick the best candidate from the queue. 2992 /// 2993 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2994 /// DAG building. To adjust for the current scheduling location we need to 2995 /// maintain the number of vreg uses remaining to be top-scheduled. 2996 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2997 const CandPolicy &ZonePolicy, 2998 const RegPressureTracker &RPTracker, 2999 SchedCandidate &Cand) { 3000 // getMaxPressureDelta temporarily modifies the tracker. 3001 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3002 3003 ReadyQueue &Q = Zone.Available; 3004 for (SUnit *SU : Q) { 3005 3006 SchedCandidate TryCand(ZonePolicy); 3007 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3008 // Pass SchedBoundary only when comparing nodes from the same boundary. 3009 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3010 tryCandidate(Cand, TryCand, ZoneArg); 3011 if (TryCand.Reason != NoCand) { 3012 // Initialize resource delta if needed in case future heuristics query it. 3013 if (TryCand.ResDelta == SchedResourceDelta()) 3014 TryCand.initResourceDelta(DAG, SchedModel); 3015 Cand.setBest(TryCand); 3016 DEBUG(traceCandidate(Cand)); 3017 } 3018 } 3019 } 3020 3021 /// Pick the best candidate node from either the top or bottom queue. 3022 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3023 // Schedule as far as possible in the direction of no choice. This is most 3024 // efficient, but also provides the best heuristics for CriticalPSets. 3025 if (SUnit *SU = Bot.pickOnlyChoice()) { 3026 IsTopNode = false; 3027 tracePick(Only1, false); 3028 return SU; 3029 } 3030 if (SUnit *SU = Top.pickOnlyChoice()) { 3031 IsTopNode = true; 3032 tracePick(Only1, true); 3033 return SU; 3034 } 3035 // Set the bottom-up policy based on the state of the current bottom zone and 3036 // the instructions outside the zone, including the top zone. 3037 CandPolicy BotPolicy; 3038 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3039 // Set the top-down policy based on the state of the current top zone and 3040 // the instructions outside the zone, including the bottom zone. 3041 CandPolicy TopPolicy; 3042 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3043 3044 // See if BotCand is still valid (because we previously scheduled from Top). 3045 DEBUG(dbgs() << "Picking from Bot:\n"); 3046 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3047 BotCand.Policy != BotPolicy) { 3048 BotCand.reset(CandPolicy()); 3049 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3050 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3051 } else { 3052 DEBUG(traceCandidate(BotCand)); 3053 #ifndef NDEBUG 3054 if (VerifyScheduling) { 3055 SchedCandidate TCand; 3056 TCand.reset(CandPolicy()); 3057 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3058 assert(TCand.SU == BotCand.SU && 3059 "Last pick result should correspond to re-picking right now"); 3060 } 3061 #endif 3062 } 3063 3064 // Check if the top Q has a better candidate. 3065 DEBUG(dbgs() << "Picking from Top:\n"); 3066 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3067 TopCand.Policy != TopPolicy) { 3068 TopCand.reset(CandPolicy()); 3069 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3070 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3071 } else { 3072 DEBUG(traceCandidate(TopCand)); 3073 #ifndef NDEBUG 3074 if (VerifyScheduling) { 3075 SchedCandidate TCand; 3076 TCand.reset(CandPolicy()); 3077 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3078 assert(TCand.SU == TopCand.SU && 3079 "Last pick result should correspond to re-picking right now"); 3080 } 3081 #endif 3082 } 3083 3084 // Pick best from BotCand and TopCand. 3085 assert(BotCand.isValid()); 3086 assert(TopCand.isValid()); 3087 SchedCandidate Cand = BotCand; 3088 TopCand.Reason = NoCand; 3089 tryCandidate(Cand, TopCand, nullptr); 3090 if (TopCand.Reason != NoCand) { 3091 Cand.setBest(TopCand); 3092 DEBUG(traceCandidate(Cand)); 3093 } 3094 3095 IsTopNode = Cand.AtTop; 3096 tracePick(Cand); 3097 return Cand.SU; 3098 } 3099 3100 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3101 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3102 if (DAG->top() == DAG->bottom()) { 3103 assert(Top.Available.empty() && Top.Pending.empty() && 3104 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3105 return nullptr; 3106 } 3107 SUnit *SU; 3108 do { 3109 if (RegionPolicy.OnlyTopDown) { 3110 SU = Top.pickOnlyChoice(); 3111 if (!SU) { 3112 CandPolicy NoPolicy; 3113 TopCand.reset(NoPolicy); 3114 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3115 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3116 tracePick(TopCand); 3117 SU = TopCand.SU; 3118 } 3119 IsTopNode = true; 3120 } else if (RegionPolicy.OnlyBottomUp) { 3121 SU = Bot.pickOnlyChoice(); 3122 if (!SU) { 3123 CandPolicy NoPolicy; 3124 BotCand.reset(NoPolicy); 3125 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3126 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3127 tracePick(BotCand); 3128 SU = BotCand.SU; 3129 } 3130 IsTopNode = false; 3131 } else { 3132 SU = pickNodeBidirectional(IsTopNode); 3133 } 3134 } while (SU->isScheduled); 3135 3136 if (SU->isTopReady()) 3137 Top.removeReady(SU); 3138 if (SU->isBottomReady()) 3139 Bot.removeReady(SU); 3140 3141 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3142 return SU; 3143 } 3144 3145 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3146 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3147 if (!isTop) 3148 ++InsertPos; 3149 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3150 3151 // Find already scheduled copies with a single physreg dependence and move 3152 // them just above the scheduled instruction. 3153 for (SDep &Dep : Deps) { 3154 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3155 continue; 3156 SUnit *DepSU = Dep.getSUnit(); 3157 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3158 continue; 3159 MachineInstr *Copy = DepSU->getInstr(); 3160 if (!Copy->isCopy()) 3161 continue; 3162 DEBUG(dbgs() << " Rescheduling physreg copy "; 3163 Dep.getSUnit()->dump(DAG)); 3164 DAG->moveInstruction(Copy, InsertPos); 3165 } 3166 } 3167 3168 /// Update the scheduler's state after scheduling a node. This is the same node 3169 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3170 /// update it's state based on the current cycle before MachineSchedStrategy 3171 /// does. 3172 /// 3173 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3174 /// them here. See comments in biasPhysRegCopy. 3175 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3176 if (IsTopNode) { 3177 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3178 Top.bumpNode(SU); 3179 if (SU->hasPhysRegUses) 3180 reschedulePhysRegCopies(SU, true); 3181 } else { 3182 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3183 Bot.bumpNode(SU); 3184 if (SU->hasPhysRegDefs) 3185 reschedulePhysRegCopies(SU, false); 3186 } 3187 } 3188 3189 /// Create the standard converging machine scheduler. This will be used as the 3190 /// default scheduler if the target does not set a default. 3191 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3192 ScheduleDAGMILive *DAG = 3193 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3194 // Register DAG post-processors. 3195 // 3196 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3197 // data and pass it to later mutations. Have a single mutation that gathers 3198 // the interesting nodes in one pass. 3199 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3200 return DAG; 3201 } 3202 3203 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3204 return createGenericSchedLive(C); 3205 } 3206 3207 static MachineSchedRegistry 3208 GenericSchedRegistry("converge", "Standard converging scheduler.", 3209 createConveringSched); 3210 3211 //===----------------------------------------------------------------------===// 3212 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3213 //===----------------------------------------------------------------------===// 3214 3215 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3216 DAG = Dag; 3217 SchedModel = DAG->getSchedModel(); 3218 TRI = DAG->TRI; 3219 3220 Rem.init(DAG, SchedModel); 3221 Top.init(DAG, SchedModel, &Rem); 3222 BotRoots.clear(); 3223 3224 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3225 // or are disabled, then these HazardRecs will be disabled. 3226 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3227 if (!Top.HazardRec) { 3228 Top.HazardRec = 3229 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3230 Itin, DAG); 3231 } 3232 } 3233 3234 void PostGenericScheduler::registerRoots() { 3235 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3236 3237 // Some roots may not feed into ExitSU. Check all of them in case. 3238 for (const SUnit *SU : BotRoots) { 3239 if (SU->getDepth() > Rem.CriticalPath) 3240 Rem.CriticalPath = SU->getDepth(); 3241 } 3242 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3243 if (DumpCriticalPathLength) { 3244 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3245 } 3246 } 3247 3248 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3249 /// 3250 /// \param Cand provides the policy and current best candidate. 3251 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3252 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3253 SchedCandidate &TryCand) { 3254 // Initialize the candidate if needed. 3255 if (!Cand.isValid()) { 3256 TryCand.Reason = NodeOrder; 3257 return; 3258 } 3259 3260 // Prioritize instructions that read unbuffered resources by stall cycles. 3261 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3262 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3263 return; 3264 3265 // Keep clustered nodes together. 3266 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3267 Cand.SU == DAG->getNextClusterSucc(), 3268 TryCand, Cand, Cluster)) 3269 return; 3270 3271 // Avoid critical resource consumption and balance the schedule. 3272 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3273 TryCand, Cand, ResourceReduce)) 3274 return; 3275 if (tryGreater(TryCand.ResDelta.DemandedResources, 3276 Cand.ResDelta.DemandedResources, 3277 TryCand, Cand, ResourceDemand)) 3278 return; 3279 3280 // Avoid serializing long latency dependence chains. 3281 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3282 return; 3283 } 3284 3285 // Fall through to original instruction order. 3286 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3287 TryCand.Reason = NodeOrder; 3288 } 3289 3290 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3291 ReadyQueue &Q = Top.Available; 3292 for (SUnit *SU : Q) { 3293 SchedCandidate TryCand(Cand.Policy); 3294 TryCand.SU = SU; 3295 TryCand.AtTop = true; 3296 TryCand.initResourceDelta(DAG, SchedModel); 3297 tryCandidate(Cand, TryCand); 3298 if (TryCand.Reason != NoCand) { 3299 Cand.setBest(TryCand); 3300 DEBUG(traceCandidate(Cand)); 3301 } 3302 } 3303 } 3304 3305 /// Pick the next node to schedule. 3306 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3307 if (DAG->top() == DAG->bottom()) { 3308 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3309 return nullptr; 3310 } 3311 SUnit *SU; 3312 do { 3313 SU = Top.pickOnlyChoice(); 3314 if (SU) { 3315 tracePick(Only1, true); 3316 } else { 3317 CandPolicy NoPolicy; 3318 SchedCandidate TopCand(NoPolicy); 3319 // Set the top-down policy based on the state of the current top zone and 3320 // the instructions outside the zone, including the bottom zone. 3321 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3322 pickNodeFromQueue(TopCand); 3323 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3324 tracePick(TopCand); 3325 SU = TopCand.SU; 3326 } 3327 } while (SU->isScheduled); 3328 3329 IsTopNode = true; 3330 Top.removeReady(SU); 3331 3332 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3333 return SU; 3334 } 3335 3336 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3337 /// scheduled/remaining flags in the DAG nodes. 3338 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3339 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3340 Top.bumpNode(SU); 3341 } 3342 3343 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3344 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3345 /*RemoveKillFlags=*/true); 3346 } 3347 3348 //===----------------------------------------------------------------------===// 3349 // ILP Scheduler. Currently for experimental analysis of heuristics. 3350 //===----------------------------------------------------------------------===// 3351 3352 namespace { 3353 3354 /// \brief Order nodes by the ILP metric. 3355 struct ILPOrder { 3356 const SchedDFSResult *DFSResult = nullptr; 3357 const BitVector *ScheduledTrees = nullptr; 3358 bool MaximizeILP; 3359 3360 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3361 3362 /// \brief Apply a less-than relation on node priority. 3363 /// 3364 /// (Return true if A comes after B in the Q.) 3365 bool operator()(const SUnit *A, const SUnit *B) const { 3366 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3367 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3368 if (SchedTreeA != SchedTreeB) { 3369 // Unscheduled trees have lower priority. 3370 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3371 return ScheduledTrees->test(SchedTreeB); 3372 3373 // Trees with shallower connections have have lower priority. 3374 if (DFSResult->getSubtreeLevel(SchedTreeA) 3375 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3376 return DFSResult->getSubtreeLevel(SchedTreeA) 3377 < DFSResult->getSubtreeLevel(SchedTreeB); 3378 } 3379 } 3380 if (MaximizeILP) 3381 return DFSResult->getILP(A) < DFSResult->getILP(B); 3382 else 3383 return DFSResult->getILP(A) > DFSResult->getILP(B); 3384 } 3385 }; 3386 3387 /// \brief Schedule based on the ILP metric. 3388 class ILPScheduler : public MachineSchedStrategy { 3389 ScheduleDAGMILive *DAG = nullptr; 3390 ILPOrder Cmp; 3391 3392 std::vector<SUnit*> ReadyQ; 3393 3394 public: 3395 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3396 3397 void initialize(ScheduleDAGMI *dag) override { 3398 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3399 DAG = static_cast<ScheduleDAGMILive*>(dag); 3400 DAG->computeDFSResult(); 3401 Cmp.DFSResult = DAG->getDFSResult(); 3402 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3403 ReadyQ.clear(); 3404 } 3405 3406 void registerRoots() override { 3407 // Restore the heap in ReadyQ with the updated DFS results. 3408 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3409 } 3410 3411 /// Implement MachineSchedStrategy interface. 3412 /// ----------------------------------------- 3413 3414 /// Callback to select the highest priority node from the ready Q. 3415 SUnit *pickNode(bool &IsTopNode) override { 3416 if (ReadyQ.empty()) return nullptr; 3417 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3418 SUnit *SU = ReadyQ.back(); 3419 ReadyQ.pop_back(); 3420 IsTopNode = false; 3421 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3422 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3423 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3424 << DAG->getDFSResult()->getSubtreeLevel( 3425 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3426 << "Scheduling " << *SU->getInstr()); 3427 return SU; 3428 } 3429 3430 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3431 void scheduleTree(unsigned SubtreeID) override { 3432 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3433 } 3434 3435 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3436 /// DFSResults, and resort the priority Q. 3437 void schedNode(SUnit *SU, bool IsTopNode) override { 3438 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3439 } 3440 3441 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3442 3443 void releaseBottomNode(SUnit *SU) override { 3444 ReadyQ.push_back(SU); 3445 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3446 } 3447 }; 3448 3449 } // end anonymous namespace 3450 3451 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3452 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3453 } 3454 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3455 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3456 } 3457 3458 static MachineSchedRegistry ILPMaxRegistry( 3459 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3460 static MachineSchedRegistry ILPMinRegistry( 3461 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3462 3463 //===----------------------------------------------------------------------===// 3464 // Machine Instruction Shuffler for Correctness Testing 3465 //===----------------------------------------------------------------------===// 3466 3467 #ifndef NDEBUG 3468 namespace { 3469 3470 /// Apply a less-than relation on the node order, which corresponds to the 3471 /// instruction order prior to scheduling. IsReverse implements greater-than. 3472 template<bool IsReverse> 3473 struct SUnitOrder { 3474 bool operator()(SUnit *A, SUnit *B) const { 3475 if (IsReverse) 3476 return A->NodeNum > B->NodeNum; 3477 else 3478 return A->NodeNum < B->NodeNum; 3479 } 3480 }; 3481 3482 /// Reorder instructions as much as possible. 3483 class InstructionShuffler : public MachineSchedStrategy { 3484 bool IsAlternating; 3485 bool IsTopDown; 3486 3487 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3488 // gives nodes with a higher number higher priority causing the latest 3489 // instructions to be scheduled first. 3490 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3491 TopQ; 3492 3493 // When scheduling bottom-up, use greater-than as the queue priority. 3494 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3495 BottomQ; 3496 3497 public: 3498 InstructionShuffler(bool alternate, bool topdown) 3499 : IsAlternating(alternate), IsTopDown(topdown) {} 3500 3501 void initialize(ScheduleDAGMI*) override { 3502 TopQ.clear(); 3503 BottomQ.clear(); 3504 } 3505 3506 /// Implement MachineSchedStrategy interface. 3507 /// ----------------------------------------- 3508 3509 SUnit *pickNode(bool &IsTopNode) override { 3510 SUnit *SU; 3511 if (IsTopDown) { 3512 do { 3513 if (TopQ.empty()) return nullptr; 3514 SU = TopQ.top(); 3515 TopQ.pop(); 3516 } while (SU->isScheduled); 3517 IsTopNode = true; 3518 } else { 3519 do { 3520 if (BottomQ.empty()) return nullptr; 3521 SU = BottomQ.top(); 3522 BottomQ.pop(); 3523 } while (SU->isScheduled); 3524 IsTopNode = false; 3525 } 3526 if (IsAlternating) 3527 IsTopDown = !IsTopDown; 3528 return SU; 3529 } 3530 3531 void schedNode(SUnit *SU, bool IsTopNode) override {} 3532 3533 void releaseTopNode(SUnit *SU) override { 3534 TopQ.push(SU); 3535 } 3536 void releaseBottomNode(SUnit *SU) override { 3537 BottomQ.push(SU); 3538 } 3539 }; 3540 3541 } // end anonymous namespace 3542 3543 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3544 bool Alternate = !ForceTopDown && !ForceBottomUp; 3545 bool TopDown = !ForceBottomUp; 3546 assert((TopDown || !ForceTopDown) && 3547 "-misched-topdown incompatible with -misched-bottomup"); 3548 return new ScheduleDAGMILive( 3549 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3550 } 3551 3552 static MachineSchedRegistry ShufflerRegistry( 3553 "shuffle", "Shuffle machine instructions alternating directions", 3554 createInstructionShuffler); 3555 #endif // !NDEBUG 3556 3557 //===----------------------------------------------------------------------===// 3558 // GraphWriter support for ScheduleDAGMILive. 3559 //===----------------------------------------------------------------------===// 3560 3561 #ifndef NDEBUG 3562 namespace llvm { 3563 3564 template<> struct GraphTraits< 3565 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3566 3567 template<> 3568 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3569 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3570 3571 static std::string getGraphName(const ScheduleDAG *G) { 3572 return G->MF.getName(); 3573 } 3574 3575 static bool renderGraphFromBottomUp() { 3576 return true; 3577 } 3578 3579 static bool isNodeHidden(const SUnit *Node) { 3580 if (ViewMISchedCutoff == 0) 3581 return false; 3582 return (Node->Preds.size() > ViewMISchedCutoff 3583 || Node->Succs.size() > ViewMISchedCutoff); 3584 } 3585 3586 /// If you want to override the dot attributes printed for a particular 3587 /// edge, override this method. 3588 static std::string getEdgeAttributes(const SUnit *Node, 3589 SUnitIterator EI, 3590 const ScheduleDAG *Graph) { 3591 if (EI.isArtificialDep()) 3592 return "color=cyan,style=dashed"; 3593 if (EI.isCtrlDep()) 3594 return "color=blue,style=dashed"; 3595 return ""; 3596 } 3597 3598 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3599 std::string Str; 3600 raw_string_ostream SS(Str); 3601 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3602 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3603 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3604 SS << "SU:" << SU->NodeNum; 3605 if (DFS) 3606 SS << " I:" << DFS->getNumInstrs(SU); 3607 return SS.str(); 3608 } 3609 3610 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3611 return G->getGraphNodeLabel(SU); 3612 } 3613 3614 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3615 std::string Str("shape=Mrecord"); 3616 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3617 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3618 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3619 if (DFS) { 3620 Str += ",style=filled,fillcolor=\"#"; 3621 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3622 Str += '"'; 3623 } 3624 return Str; 3625 } 3626 }; 3627 3628 } // end namespace llvm 3629 #endif // NDEBUG 3630 3631 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3632 /// rendered using 'dot'. 3633 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3634 #ifndef NDEBUG 3635 ViewGraph(this, Name, false, Title); 3636 #else 3637 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3638 << "systems with Graphviz or gv!\n"; 3639 #endif // NDEBUG 3640 } 3641 3642 /// Out-of-line implementation with no arguments is handy for gdb. 3643 void ScheduleDAGMI::viewGraph() { 3644 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3645 } 3646