xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision f842297d50ecb5dceeb89c624744fc2531c2776c)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/RegisterPressure.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
41 #include "llvm/CodeGen/ScheduleDAGMutation.h"
42 #include "llvm/CodeGen/ScheduleDFS.h"
43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
44 #include "llvm/CodeGen/SlotIndexes.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <tuple>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "machine-scheduler"
73 
74 namespace llvm {
75 
76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
77                            cl::desc("Force top-down list scheduling"));
78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
79                             cl::desc("Force bottom-up list scheduling"));
80 cl::opt<bool>
81 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
82                        cl::desc("Print critical path length to stdout"));
83 
84 } // end namespace llvm
85 
86 #ifndef NDEBUG
87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
88   cl::desc("Pop up a window to show MISched dags after they are processed"));
89 
90 /// In some situations a few uninteresting nodes depend on nearly all other
91 /// nodes in the graph, provide a cutoff to hide them.
92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
93   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
94 
95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
96   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
97 
98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
99   cl::desc("Only schedule this function"));
100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
101                                         cl::desc("Only schedule this MBB#"));
102 #else
103 static bool ViewMISchedDAGs = false;
104 #endif // NDEBUG
105 
106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
107 /// size of the ready lists.
108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
109   cl::desc("Limit ready list to N instructions"), cl::init(256));
110 
111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
112   cl::desc("Enable register pressure scheduling."), cl::init(true));
113 
114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
115   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
116 
117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
118                                         cl::desc("Enable memop clustering."),
119                                         cl::init(true));
120 
121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
122   cl::desc("Verify machine instrs before and after machine scheduling"));
123 
124 // DAG subtrees must have at least this many nodes.
125 static const unsigned MinSubtreeSize = 8;
126 
127 // Pin the vtables to this file.
128 void MachineSchedStrategy::anchor() {}
129 
130 void ScheduleDAGMutation::anchor() {}
131 
132 //===----------------------------------------------------------------------===//
133 // Machine Instruction Scheduling Pass and Registry
134 //===----------------------------------------------------------------------===//
135 
136 MachineSchedContext::MachineSchedContext() {
137   RegClassInfo = new RegisterClassInfo();
138 }
139 
140 MachineSchedContext::~MachineSchedContext() {
141   delete RegClassInfo;
142 }
143 
144 namespace {
145 
146 /// Base class for a machine scheduler class that can run at any point.
147 class MachineSchedulerBase : public MachineSchedContext,
148                              public MachineFunctionPass {
149 public:
150   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
151 
152   void print(raw_ostream &O, const Module* = nullptr) const override;
153 
154 protected:
155   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
156 };
157 
158 /// MachineScheduler runs after coalescing and before register allocation.
159 class MachineScheduler : public MachineSchedulerBase {
160 public:
161   MachineScheduler();
162 
163   void getAnalysisUsage(AnalysisUsage &AU) const override;
164 
165   bool runOnMachineFunction(MachineFunction&) override;
166 
167   static char ID; // Class identification, replacement for typeinfo
168 
169 protected:
170   ScheduleDAGInstrs *createMachineScheduler();
171 };
172 
173 /// PostMachineScheduler runs after shortly before code emission.
174 class PostMachineScheduler : public MachineSchedulerBase {
175 public:
176   PostMachineScheduler();
177 
178   void getAnalysisUsage(AnalysisUsage &AU) const override;
179 
180   bool runOnMachineFunction(MachineFunction&) override;
181 
182   static char ID; // Class identification, replacement for typeinfo
183 
184 protected:
185   ScheduleDAGInstrs *createPostMachineScheduler();
186 };
187 
188 } // end anonymous namespace
189 
190 char MachineScheduler::ID = 0;
191 
192 char &llvm::MachineSchedulerID = MachineScheduler::ID;
193 
194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
195                       "Machine Instruction Scheduler", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
201                     "Machine Instruction Scheduler", false, false)
202 
203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
204   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
205 }
206 
207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
208   AU.setPreservesCFG();
209   AU.addRequiredID(MachineDominatorsID);
210   AU.addRequired<MachineLoopInfo>();
211   AU.addRequired<AAResultsWrapperPass>();
212   AU.addRequired<TargetPassConfig>();
213   AU.addRequired<SlotIndexes>();
214   AU.addPreserved<SlotIndexes>();
215   AU.addRequired<LiveIntervals>();
216   AU.addPreserved<LiveIntervals>();
217   MachineFunctionPass::getAnalysisUsage(AU);
218 }
219 
220 char PostMachineScheduler::ID = 0;
221 
222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
223 
224 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
225                 "PostRA Machine Instruction Scheduler", false, false)
226 
227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
228   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
229 }
230 
231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesCFG();
233   AU.addRequiredID(MachineDominatorsID);
234   AU.addRequired<MachineLoopInfo>();
235   AU.addRequired<TargetPassConfig>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 MachinePassRegistry MachineSchedRegistry::Registry;
240 
241 /// A dummy default scheduler factory indicates whether the scheduler
242 /// is overridden on the command line.
243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
244   return nullptr;
245 }
246 
247 /// MachineSchedOpt allows command line selection of the scheduler.
248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
249                RegisterPassParser<MachineSchedRegistry>>
250 MachineSchedOpt("misched",
251                 cl::init(&useDefaultMachineSched), cl::Hidden,
252                 cl::desc("Machine instruction scheduler to use"));
253 
254 static MachineSchedRegistry
255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
256                      useDefaultMachineSched);
257 
258 static cl::opt<bool> EnableMachineSched(
259     "enable-misched",
260     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
261     cl::Hidden);
262 
263 static cl::opt<bool> EnablePostRAMachineSched(
264     "enable-post-misched",
265     cl::desc("Enable the post-ra machine instruction scheduling pass."),
266     cl::init(true), cl::Hidden);
267 
268 /// Decrement this iterator until reaching the top or a non-debug instr.
269 static MachineBasicBlock::const_iterator
270 priorNonDebug(MachineBasicBlock::const_iterator I,
271               MachineBasicBlock::const_iterator Beg) {
272   assert(I != Beg && "reached the top of the region, cannot decrement");
273   while (--I != Beg) {
274     if (!I->isDebugValue())
275       break;
276   }
277   return I;
278 }
279 
280 /// Non-const version.
281 static MachineBasicBlock::iterator
282 priorNonDebug(MachineBasicBlock::iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
285       .getNonConstIterator();
286 }
287 
288 /// If this iterator is a debug value, increment until reaching the End or a
289 /// non-debug instruction.
290 static MachineBasicBlock::const_iterator
291 nextIfDebug(MachineBasicBlock::const_iterator I,
292             MachineBasicBlock::const_iterator End) {
293   for(; I != End; ++I) {
294     if (!I->isDebugValue())
295       break;
296   }
297   return I;
298 }
299 
300 /// Non-const version.
301 static MachineBasicBlock::iterator
302 nextIfDebug(MachineBasicBlock::iterator I,
303             MachineBasicBlock::const_iterator End) {
304   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
305       .getNonConstIterator();
306 }
307 
308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
310   // Select the scheduler, or set the default.
311   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
312   if (Ctor != useDefaultMachineSched)
313     return Ctor(this);
314 
315   // Get the default scheduler set by the target for this function.
316   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
317   if (Scheduler)
318     return Scheduler;
319 
320   // Default to GenericScheduler.
321   return createGenericSchedLive(this);
322 }
323 
324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
325 /// the caller. We don't have a command line option to override the postRA
326 /// scheduler. The Target must configure it.
327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
328   // Get the postRA scheduler set by the target for this function.
329   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
330   if (Scheduler)
331     return Scheduler;
332 
333   // Default to GenericScheduler.
334   return createGenericSchedPostRA(this);
335 }
336 
337 /// Top-level MachineScheduler pass driver.
338 ///
339 /// Visit blocks in function order. Divide each block into scheduling regions
340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
341 /// consistent with the DAG builder, which traverses the interior of the
342 /// scheduling regions bottom-up.
343 ///
344 /// This design avoids exposing scheduling boundaries to the DAG builder,
345 /// simplifying the DAG builder's support for "special" target instructions.
346 /// At the same time the design allows target schedulers to operate across
347 /// scheduling boundaries, for example to bundle the boudary instructions
348 /// without reordering them. This creates complexity, because the target
349 /// scheduler must update the RegionBegin and RegionEnd positions cached by
350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
351 /// design would be to split blocks at scheduling boundaries, but LLVM has a
352 /// general bias against block splitting purely for implementation simplicity.
353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
354   if (skipFunction(*mf.getFunction()))
355     return false;
356 
357   if (EnableMachineSched.getNumOccurrences()) {
358     if (!EnableMachineSched)
359       return false;
360   } else if (!mf.getSubtarget().enableMachineScheduler())
361     return false;
362 
363   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
364 
365   // Initialize the context of the pass.
366   MF = &mf;
367   MLI = &getAnalysis<MachineLoopInfo>();
368   MDT = &getAnalysis<MachineDominatorTree>();
369   PassConfig = &getAnalysis<TargetPassConfig>();
370   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
371 
372   LIS = &getAnalysis<LiveIntervals>();
373 
374   if (VerifyScheduling) {
375     DEBUG(LIS->dump());
376     MF->verify(this, "Before machine scheduling.");
377   }
378   RegClassInfo->runOnMachineFunction(*MF);
379 
380   // Instantiate the selected scheduler for this target, function, and
381   // optimization level.
382   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
383   scheduleRegions(*Scheduler, false);
384 
385   DEBUG(LIS->dump());
386   if (VerifyScheduling)
387     MF->verify(this, "After machine scheduling.");
388   return true;
389 }
390 
391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
392   if (skipFunction(*mf.getFunction()))
393     return false;
394 
395   if (EnablePostRAMachineSched.getNumOccurrences()) {
396     if (!EnablePostRAMachineSched)
397       return false;
398   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
399     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
400     return false;
401   }
402   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
403 
404   // Initialize the context of the pass.
405   MF = &mf;
406   MLI = &getAnalysis<MachineLoopInfo>();
407   PassConfig = &getAnalysis<TargetPassConfig>();
408 
409   if (VerifyScheduling)
410     MF->verify(this, "Before post machine scheduling.");
411 
412   // Instantiate the selected scheduler for this target, function, and
413   // optimization level.
414   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
415   scheduleRegions(*Scheduler, true);
416 
417   if (VerifyScheduling)
418     MF->verify(this, "After post machine scheduling.");
419   return true;
420 }
421 
422 /// Return true of the given instruction should not be included in a scheduling
423 /// region.
424 ///
425 /// MachineScheduler does not currently support scheduling across calls. To
426 /// handle calls, the DAG builder needs to be modified to create register
427 /// anti/output dependencies on the registers clobbered by the call's regmask
428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
430 /// the boundary, but there would be no benefit to postRA scheduling across
431 /// calls this late anyway.
432 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
433                             MachineBasicBlock *MBB,
434                             MachineFunction *MF,
435                             const TargetInstrInfo *TII) {
436   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
437 }
438 
439 /// A region of an MBB for scheduling.
440 namespace {
441 struct SchedRegion {
442   /// RegionBegin is the first instruction in the scheduling region, and
443   /// RegionEnd is either MBB->end() or the scheduling boundary after the
444   /// last instruction in the scheduling region. These iterators cannot refer
445   /// to instructions outside of the identified scheduling region because
446   /// those may be reordered before scheduling this region.
447   MachineBasicBlock::iterator RegionBegin;
448   MachineBasicBlock::iterator RegionEnd;
449   unsigned NumRegionInstrs;
450 
451   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
452               unsigned N) :
453     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
454 };
455 } // end anonymous namespace
456 
457 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
458 
459 static void
460 getSchedRegions(MachineBasicBlock *MBB,
461                 MBBRegionsVector &Regions,
462                 bool RegionsTopDown) {
463   MachineFunction *MF = MBB->getParent();
464   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
465 
466   MachineBasicBlock::iterator I = nullptr;
467   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
468       RegionEnd != MBB->begin(); RegionEnd = I) {
469 
470     // Avoid decrementing RegionEnd for blocks with no terminator.
471     if (RegionEnd != MBB->end() ||
472         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
473       --RegionEnd;
474     }
475 
476     // The next region starts above the previous region. Look backward in the
477     // instruction stream until we find the nearest boundary.
478     unsigned NumRegionInstrs = 0;
479     I = RegionEnd;
480     for (;I != MBB->begin(); --I) {
481       MachineInstr &MI = *std::prev(I);
482       if (isSchedBoundary(&MI, &*MBB, MF, TII))
483         break;
484       if (!MI.isDebugValue())
485         // MBB::size() uses instr_iterator to count. Here we need a bundle to
486         // count as a single instruction.
487         ++NumRegionInstrs;
488     }
489 
490     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
491   }
492 
493   if (RegionsTopDown)
494     std::reverse(Regions.begin(), Regions.end());
495 }
496 
497 /// Main driver for both MachineScheduler and PostMachineScheduler.
498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
499                                            bool FixKillFlags) {
500   // Visit all machine basic blocks.
501   //
502   // TODO: Visit blocks in global postorder or postorder within the bottom-up
503   // loop tree. Then we can optionally compute global RegPressure.
504   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
505        MBB != MBBEnd; ++MBB) {
506 
507     Scheduler.startBlock(&*MBB);
508 
509 #ifndef NDEBUG
510     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
511       continue;
512     if (SchedOnlyBlock.getNumOccurrences()
513         && (int)SchedOnlyBlock != MBB->getNumber())
514       continue;
515 #endif
516 
517     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
518     // points to the scheduling boundary at the bottom of the region. The DAG
519     // does not include RegionEnd, but the region does (i.e. the next
520     // RegionEnd is above the previous RegionBegin). If the current block has
521     // no terminator then RegionEnd == MBB->end() for the bottom region.
522     //
523     // All the regions of MBB are first found and stored in MBBRegions, which
524     // will be processed (MBB) top-down if initialized with true.
525     //
526     // The Scheduler may insert instructions during either schedule() or
527     // exitRegion(), even for empty regions. So the local iterators 'I' and
528     // 'RegionEnd' are invalid across these calls. Instructions must not be
529     // added to other regions than the current one without updating MBBRegions.
530 
531     MBBRegionsVector MBBRegions;
532     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
533     for (MBBRegionsVector::iterator R = MBBRegions.begin();
534          R != MBBRegions.end(); ++R) {
535       MachineBasicBlock::iterator I = R->RegionBegin;
536       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
537       unsigned NumRegionInstrs = R->NumRegionInstrs;
538 
539       // Notify the scheduler of the region, even if we may skip scheduling
540       // it. Perhaps it still needs to be bundled.
541       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
542 
543       // Skip empty scheduling regions (0 or 1 schedulable instructions).
544       if (I == RegionEnd || I == std::prev(RegionEnd)) {
545         // Close the current region. Bundle the terminator if needed.
546         // This invalidates 'RegionEnd' and 'I'.
547         Scheduler.exitRegion();
548         continue;
549       }
550       DEBUG(dbgs() << "********** MI Scheduling **********\n");
551       DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " "
552                    << MBB->getName() << "\n  From: " << *I << "    To: ";
553             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
554             else dbgs() << "End";
555             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
556       if (DumpCriticalPathLength) {
557         errs() << MF->getName();
558         errs() << ":%bb. " << MBB->getNumber();
559         errs() << " " << MBB->getName() << " \n";
560       }
561 
562       // Schedule a region: possibly reorder instructions.
563       // This invalidates the original region iterators.
564       Scheduler.schedule();
565 
566       // Close the current region.
567       Scheduler.exitRegion();
568     }
569     Scheduler.finishBlock();
570     // FIXME: Ideally, no further passes should rely on kill flags. However,
571     // thumb2 size reduction is currently an exception, so the PostMIScheduler
572     // needs to do this.
573     if (FixKillFlags)
574       Scheduler.fixupKills(*MBB);
575   }
576   Scheduler.finalizeSchedule();
577 }
578 
579 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
580   // unimplemented
581 }
582 
583 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
584 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
585   dbgs() << "Queue " << Name << ": ";
586   for (const SUnit *SU : Queue)
587     dbgs() << SU->NodeNum << " ";
588   dbgs() << "\n";
589 }
590 #endif
591 
592 //===----------------------------------------------------------------------===//
593 // ScheduleDAGMI - Basic machine instruction scheduling. This is
594 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
595 // virtual registers.
596 // ===----------------------------------------------------------------------===/
597 
598 // Provide a vtable anchor.
599 ScheduleDAGMI::~ScheduleDAGMI() = default;
600 
601 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
602   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
603 }
604 
605 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
606   if (SuccSU != &ExitSU) {
607     // Do not use WillCreateCycle, it assumes SD scheduling.
608     // If Pred is reachable from Succ, then the edge creates a cycle.
609     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
610       return false;
611     Topo.AddPred(SuccSU, PredDep.getSUnit());
612   }
613   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
614   // Return true regardless of whether a new edge needed to be inserted.
615   return true;
616 }
617 
618 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
619 /// NumPredsLeft reaches zero, release the successor node.
620 ///
621 /// FIXME: Adjust SuccSU height based on MinLatency.
622 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
623   SUnit *SuccSU = SuccEdge->getSUnit();
624 
625   if (SuccEdge->isWeak()) {
626     --SuccSU->WeakPredsLeft;
627     if (SuccEdge->isCluster())
628       NextClusterSucc = SuccSU;
629     return;
630   }
631 #ifndef NDEBUG
632   if (SuccSU->NumPredsLeft == 0) {
633     dbgs() << "*** Scheduling failed! ***\n";
634     SuccSU->dump(this);
635     dbgs() << " has been released too many times!\n";
636     llvm_unreachable(nullptr);
637   }
638 #endif
639   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
640   // CurrCycle may have advanced since then.
641   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
642     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
643 
644   --SuccSU->NumPredsLeft;
645   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
646     SchedImpl->releaseTopNode(SuccSU);
647 }
648 
649 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
650 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
651   for (SDep &Succ : SU->Succs)
652     releaseSucc(SU, &Succ);
653 }
654 
655 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
656 /// NumSuccsLeft reaches zero, release the predecessor node.
657 ///
658 /// FIXME: Adjust PredSU height based on MinLatency.
659 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
660   SUnit *PredSU = PredEdge->getSUnit();
661 
662   if (PredEdge->isWeak()) {
663     --PredSU->WeakSuccsLeft;
664     if (PredEdge->isCluster())
665       NextClusterPred = PredSU;
666     return;
667   }
668 #ifndef NDEBUG
669   if (PredSU->NumSuccsLeft == 0) {
670     dbgs() << "*** Scheduling failed! ***\n";
671     PredSU->dump(this);
672     dbgs() << " has been released too many times!\n";
673     llvm_unreachable(nullptr);
674   }
675 #endif
676   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
677   // CurrCycle may have advanced since then.
678   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
679     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
680 
681   --PredSU->NumSuccsLeft;
682   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
683     SchedImpl->releaseBottomNode(PredSU);
684 }
685 
686 /// releasePredecessors - Call releasePred on each of SU's predecessors.
687 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
688   for (SDep &Pred : SU->Preds)
689     releasePred(SU, &Pred);
690 }
691 
692 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
693   ScheduleDAGInstrs::startBlock(bb);
694   SchedImpl->enterMBB(bb);
695 }
696 
697 void ScheduleDAGMI::finishBlock() {
698   SchedImpl->leaveMBB();
699   ScheduleDAGInstrs::finishBlock();
700 }
701 
702 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
703 /// crossing a scheduling boundary. [begin, end) includes all instructions in
704 /// the region, including the boundary itself and single-instruction regions
705 /// that don't get scheduled.
706 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
707                                      MachineBasicBlock::iterator begin,
708                                      MachineBasicBlock::iterator end,
709                                      unsigned regioninstrs)
710 {
711   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
712 
713   SchedImpl->initPolicy(begin, end, regioninstrs);
714 }
715 
716 /// This is normally called from the main scheduler loop but may also be invoked
717 /// by the scheduling strategy to perform additional code motion.
718 void ScheduleDAGMI::moveInstruction(
719   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
720   // Advance RegionBegin if the first instruction moves down.
721   if (&*RegionBegin == MI)
722     ++RegionBegin;
723 
724   // Update the instruction stream.
725   BB->splice(InsertPos, BB, MI);
726 
727   // Update LiveIntervals
728   if (LIS)
729     LIS->handleMove(*MI, /*UpdateFlags=*/true);
730 
731   // Recede RegionBegin if an instruction moves above the first.
732   if (RegionBegin == InsertPos)
733     RegionBegin = MI;
734 }
735 
736 bool ScheduleDAGMI::checkSchedLimit() {
737 #ifndef NDEBUG
738   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
739     CurrentTop = CurrentBottom;
740     return false;
741   }
742   ++NumInstrsScheduled;
743 #endif
744   return true;
745 }
746 
747 /// Per-region scheduling driver, called back from
748 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
749 /// does not consider liveness or register pressure. It is useful for PostRA
750 /// scheduling and potentially other custom schedulers.
751 void ScheduleDAGMI::schedule() {
752   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
753   DEBUG(SchedImpl->dumpPolicy());
754 
755   // Build the DAG.
756   buildSchedGraph(AA);
757 
758   Topo.InitDAGTopologicalSorting();
759 
760   postprocessDAG();
761 
762   SmallVector<SUnit*, 8> TopRoots, BotRoots;
763   findRootsAndBiasEdges(TopRoots, BotRoots);
764 
765   // Initialize the strategy before modifying the DAG.
766   // This may initialize a DFSResult to be used for queue priority.
767   SchedImpl->initialize(this);
768 
769   DEBUG(
770     if (EntrySU.getInstr() != nullptr)
771       EntrySU.dumpAll(this);
772     for (const SUnit &SU : SUnits)
773       SU.dumpAll(this);
774     if (ExitSU.getInstr() != nullptr)
775       ExitSU.dumpAll(this);
776   );
777   if (ViewMISchedDAGs) viewGraph();
778 
779   // Initialize ready queues now that the DAG and priority data are finalized.
780   initQueues(TopRoots, BotRoots);
781 
782   bool IsTopNode = false;
783   while (true) {
784     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
785     SUnit *SU = SchedImpl->pickNode(IsTopNode);
786     if (!SU) break;
787 
788     assert(!SU->isScheduled && "Node already scheduled");
789     if (!checkSchedLimit())
790       break;
791 
792     MachineInstr *MI = SU->getInstr();
793     if (IsTopNode) {
794       assert(SU->isTopReady() && "node still has unscheduled dependencies");
795       if (&*CurrentTop == MI)
796         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
797       else
798         moveInstruction(MI, CurrentTop);
799     } else {
800       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
801       MachineBasicBlock::iterator priorII =
802         priorNonDebug(CurrentBottom, CurrentTop);
803       if (&*priorII == MI)
804         CurrentBottom = priorII;
805       else {
806         if (&*CurrentTop == MI)
807           CurrentTop = nextIfDebug(++CurrentTop, priorII);
808         moveInstruction(MI, CurrentBottom);
809         CurrentBottom = MI;
810       }
811     }
812     // Notify the scheduling strategy before updating the DAG.
813     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
814     // runs, it can then use the accurate ReadyCycle time to determine whether
815     // newly released nodes can move to the readyQ.
816     SchedImpl->schedNode(SU, IsTopNode);
817 
818     updateQueues(SU, IsTopNode);
819   }
820   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
821 
822   placeDebugValues();
823 
824   DEBUG({
825     dbgs() << "*** Final schedule for "
826            << printMBBReference(*begin()->getParent()) << " ***\n";
827     dumpSchedule();
828     dbgs() << '\n';
829   });
830 }
831 
832 /// Apply each ScheduleDAGMutation step in order.
833 void ScheduleDAGMI::postprocessDAG() {
834   for (auto &m : Mutations)
835     m->apply(this);
836 }
837 
838 void ScheduleDAGMI::
839 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
840                       SmallVectorImpl<SUnit*> &BotRoots) {
841   for (SUnit &SU : SUnits) {
842     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
843 
844     // Order predecessors so DFSResult follows the critical path.
845     SU.biasCriticalPath();
846 
847     // A SUnit is ready to top schedule if it has no predecessors.
848     if (!SU.NumPredsLeft)
849       TopRoots.push_back(&SU);
850     // A SUnit is ready to bottom schedule if it has no successors.
851     if (!SU.NumSuccsLeft)
852       BotRoots.push_back(&SU);
853   }
854   ExitSU.biasCriticalPath();
855 }
856 
857 /// Identify DAG roots and setup scheduler queues.
858 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
859                                ArrayRef<SUnit*> BotRoots) {
860   NextClusterSucc = nullptr;
861   NextClusterPred = nullptr;
862 
863   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
864   //
865   // Nodes with unreleased weak edges can still be roots.
866   // Release top roots in forward order.
867   for (SUnit *SU : TopRoots)
868     SchedImpl->releaseTopNode(SU);
869 
870   // Release bottom roots in reverse order so the higher priority nodes appear
871   // first. This is more natural and slightly more efficient.
872   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
873          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
874     SchedImpl->releaseBottomNode(*I);
875   }
876 
877   releaseSuccessors(&EntrySU);
878   releasePredecessors(&ExitSU);
879 
880   SchedImpl->registerRoots();
881 
882   // Advance past initial DebugValues.
883   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
884   CurrentBottom = RegionEnd;
885 }
886 
887 /// Update scheduler queues after scheduling an instruction.
888 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
889   // Release dependent instructions for scheduling.
890   if (IsTopNode)
891     releaseSuccessors(SU);
892   else
893     releasePredecessors(SU);
894 
895   SU->isScheduled = true;
896 }
897 
898 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
899 void ScheduleDAGMI::placeDebugValues() {
900   // If first instruction was a DBG_VALUE then put it back.
901   if (FirstDbgValue) {
902     BB->splice(RegionBegin, BB, FirstDbgValue);
903     RegionBegin = FirstDbgValue;
904   }
905 
906   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
907          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
908     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
909     MachineInstr *DbgValue = P.first;
910     MachineBasicBlock::iterator OrigPrevMI = P.second;
911     if (&*RegionBegin == DbgValue)
912       ++RegionBegin;
913     BB->splice(++OrigPrevMI, BB, DbgValue);
914     if (OrigPrevMI == std::prev(RegionEnd))
915       RegionEnd = DbgValue;
916   }
917   DbgValues.clear();
918   FirstDbgValue = nullptr;
919 }
920 
921 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
922 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
923   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
924     if (SUnit *SU = getSUnit(&(*MI)))
925       SU->dump(this);
926     else
927       dbgs() << "Missing SUnit\n";
928   }
929 }
930 #endif
931 
932 //===----------------------------------------------------------------------===//
933 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
934 // preservation.
935 //===----------------------------------------------------------------------===//
936 
937 ScheduleDAGMILive::~ScheduleDAGMILive() {
938   delete DFSResult;
939 }
940 
941 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
942   const MachineInstr &MI = *SU.getInstr();
943   for (const MachineOperand &MO : MI.operands()) {
944     if (!MO.isReg())
945       continue;
946     if (!MO.readsReg())
947       continue;
948     if (TrackLaneMasks && !MO.isUse())
949       continue;
950 
951     unsigned Reg = MO.getReg();
952     if (!TargetRegisterInfo::isVirtualRegister(Reg))
953       continue;
954 
955     // Ignore re-defs.
956     if (TrackLaneMasks) {
957       bool FoundDef = false;
958       for (const MachineOperand &MO2 : MI.operands()) {
959         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
960           FoundDef = true;
961           break;
962         }
963       }
964       if (FoundDef)
965         continue;
966     }
967 
968     // Record this local VReg use.
969     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
970     for (; UI != VRegUses.end(); ++UI) {
971       if (UI->SU == &SU)
972         break;
973     }
974     if (UI == VRegUses.end())
975       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
976   }
977 }
978 
979 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
980 /// crossing a scheduling boundary. [begin, end) includes all instructions in
981 /// the region, including the boundary itself and single-instruction regions
982 /// that don't get scheduled.
983 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
984                                 MachineBasicBlock::iterator begin,
985                                 MachineBasicBlock::iterator end,
986                                 unsigned regioninstrs)
987 {
988   // ScheduleDAGMI initializes SchedImpl's per-region policy.
989   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
990 
991   // For convenience remember the end of the liveness region.
992   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
993 
994   SUPressureDiffs.clear();
995 
996   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
997   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
998 
999   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1000          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1001 }
1002 
1003 // Setup the register pressure trackers for the top scheduled top and bottom
1004 // scheduled regions.
1005 void ScheduleDAGMILive::initRegPressure() {
1006   VRegUses.clear();
1007   VRegUses.setUniverse(MRI.getNumVirtRegs());
1008   for (SUnit &SU : SUnits)
1009     collectVRegUses(SU);
1010 
1011   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1012                     ShouldTrackLaneMasks, false);
1013   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1014                     ShouldTrackLaneMasks, false);
1015 
1016   // Close the RPTracker to finalize live ins.
1017   RPTracker.closeRegion();
1018 
1019   DEBUG(RPTracker.dump());
1020 
1021   // Initialize the live ins and live outs.
1022   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1023   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1024 
1025   // Close one end of the tracker so we can call
1026   // getMaxUpward/DownwardPressureDelta before advancing across any
1027   // instructions. This converts currently live regs into live ins/outs.
1028   TopRPTracker.closeTop();
1029   BotRPTracker.closeBottom();
1030 
1031   BotRPTracker.initLiveThru(RPTracker);
1032   if (!BotRPTracker.getLiveThru().empty()) {
1033     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1034     DEBUG(dbgs() << "Live Thru: ";
1035           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1036   };
1037 
1038   // For each live out vreg reduce the pressure change associated with other
1039   // uses of the same vreg below the live-out reaching def.
1040   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1041 
1042   // Account for liveness generated by the region boundary.
1043   if (LiveRegionEnd != RegionEnd) {
1044     SmallVector<RegisterMaskPair, 8> LiveUses;
1045     BotRPTracker.recede(&LiveUses);
1046     updatePressureDiffs(LiveUses);
1047   }
1048 
1049   DEBUG(
1050     dbgs() << "Top Pressure:\n";
1051     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1052     dbgs() << "Bottom Pressure:\n";
1053     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1054   );
1055 
1056   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
1057 
1058   // Cache the list of excess pressure sets in this region. This will also track
1059   // the max pressure in the scheduled code for these sets.
1060   RegionCriticalPSets.clear();
1061   const std::vector<unsigned> &RegionPressure =
1062     RPTracker.getPressure().MaxSetPressure;
1063   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1064     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1065     if (RegionPressure[i] > Limit) {
1066       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
1067             << " Limit " << Limit
1068             << " Actual " << RegionPressure[i] << "\n");
1069       RegionCriticalPSets.push_back(PressureChange(i));
1070     }
1071   }
1072   DEBUG(dbgs() << "Excess PSets: ";
1073         for (const PressureChange &RCPS : RegionCriticalPSets)
1074           dbgs() << TRI->getRegPressureSetName(
1075             RCPS.getPSet()) << " ";
1076         dbgs() << "\n");
1077 }
1078 
1079 void ScheduleDAGMILive::
1080 updateScheduledPressure(const SUnit *SU,
1081                         const std::vector<unsigned> &NewMaxPressure) {
1082   const PressureDiff &PDiff = getPressureDiff(SU);
1083   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1084   for (const PressureChange &PC : PDiff) {
1085     if (!PC.isValid())
1086       break;
1087     unsigned ID = PC.getPSet();
1088     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1089       ++CritIdx;
1090     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1091       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1092           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1093         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1094     }
1095     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1096     if (NewMaxPressure[ID] >= Limit - 2) {
1097       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1098             << NewMaxPressure[ID]
1099             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
1100             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
1101     }
1102   }
1103 }
1104 
1105 /// Update the PressureDiff array for liveness after scheduling this
1106 /// instruction.
1107 void ScheduleDAGMILive::updatePressureDiffs(
1108     ArrayRef<RegisterMaskPair> LiveUses) {
1109   for (const RegisterMaskPair &P : LiveUses) {
1110     unsigned Reg = P.RegUnit;
1111     /// FIXME: Currently assuming single-use physregs.
1112     if (!TRI->isVirtualRegister(Reg))
1113       continue;
1114 
1115     if (ShouldTrackLaneMasks) {
1116       // If the register has just become live then other uses won't change
1117       // this fact anymore => decrement pressure.
1118       // If the register has just become dead then other uses make it come
1119       // back to life => increment pressure.
1120       bool Decrement = P.LaneMask.any();
1121 
1122       for (const VReg2SUnit &V2SU
1123            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1124         SUnit &SU = *V2SU.SU;
1125         if (SU.isScheduled || &SU == &ExitSU)
1126           continue;
1127 
1128         PressureDiff &PDiff = getPressureDiff(&SU);
1129         PDiff.addPressureChange(Reg, Decrement, &MRI);
1130         DEBUG(
1131           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1132                  << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1133                  << ' ' << *SU.getInstr();
1134           dbgs() << "              to ";
1135           PDiff.dump(*TRI);
1136         );
1137       }
1138     } else {
1139       assert(P.LaneMask.any());
1140       DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1141       // This may be called before CurrentBottom has been initialized. However,
1142       // BotRPTracker must have a valid position. We want the value live into the
1143       // instruction or live out of the block, so ask for the previous
1144       // instruction's live-out.
1145       const LiveInterval &LI = LIS->getInterval(Reg);
1146       VNInfo *VNI;
1147       MachineBasicBlock::const_iterator I =
1148         nextIfDebug(BotRPTracker.getPos(), BB->end());
1149       if (I == BB->end())
1150         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1151       else {
1152         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1153         VNI = LRQ.valueIn();
1154       }
1155       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1156       assert(VNI && "No live value at use.");
1157       for (const VReg2SUnit &V2SU
1158            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1159         SUnit *SU = V2SU.SU;
1160         // If this use comes before the reaching def, it cannot be a last use,
1161         // so decrease its pressure change.
1162         if (!SU->isScheduled && SU != &ExitSU) {
1163           LiveQueryResult LRQ =
1164               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1165           if (LRQ.valueIn() == VNI) {
1166             PressureDiff &PDiff = getPressureDiff(SU);
1167             PDiff.addPressureChange(Reg, true, &MRI);
1168             DEBUG(
1169               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1170                      << *SU->getInstr();
1171               dbgs() << "              to ";
1172               PDiff.dump(*TRI);
1173             );
1174           }
1175         }
1176       }
1177     }
1178   }
1179 }
1180 
1181 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1182 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1183 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1184 ///
1185 /// This is a skeletal driver, with all the functionality pushed into helpers,
1186 /// so that it can be easily extended by experimental schedulers. Generally,
1187 /// implementing MachineSchedStrategy should be sufficient to implement a new
1188 /// scheduling algorithm. However, if a scheduler further subclasses
1189 /// ScheduleDAGMILive then it will want to override this virtual method in order
1190 /// to update any specialized state.
1191 void ScheduleDAGMILive::schedule() {
1192   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1193   DEBUG(SchedImpl->dumpPolicy());
1194   buildDAGWithRegPressure();
1195 
1196   Topo.InitDAGTopologicalSorting();
1197 
1198   postprocessDAG();
1199 
1200   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1201   findRootsAndBiasEdges(TopRoots, BotRoots);
1202 
1203   // Initialize the strategy before modifying the DAG.
1204   // This may initialize a DFSResult to be used for queue priority.
1205   SchedImpl->initialize(this);
1206 
1207   DEBUG(
1208     if (EntrySU.getInstr() != nullptr)
1209       EntrySU.dumpAll(this);
1210     for (const SUnit &SU : SUnits) {
1211       SU.dumpAll(this);
1212       if (ShouldTrackPressure) {
1213         dbgs() << "  Pressure Diff      : ";
1214         getPressureDiff(&SU).dump(*TRI);
1215       }
1216       dbgs() << "  Single Issue       : ";
1217       if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1218          SchedModel.mustEndGroup(SU.getInstr()))
1219         dbgs() << "true;";
1220       else
1221         dbgs() << "false;";
1222       dbgs() << '\n';
1223     }
1224     if (ExitSU.getInstr() != nullptr)
1225       ExitSU.dumpAll(this);
1226   );
1227   if (ViewMISchedDAGs) viewGraph();
1228 
1229   // Initialize ready queues now that the DAG and priority data are finalized.
1230   initQueues(TopRoots, BotRoots);
1231 
1232   bool IsTopNode = false;
1233   while (true) {
1234     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1235     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1236     if (!SU) break;
1237 
1238     assert(!SU->isScheduled && "Node already scheduled");
1239     if (!checkSchedLimit())
1240       break;
1241 
1242     scheduleMI(SU, IsTopNode);
1243 
1244     if (DFSResult) {
1245       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1246       if (!ScheduledTrees.test(SubtreeID)) {
1247         ScheduledTrees.set(SubtreeID);
1248         DFSResult->scheduleTree(SubtreeID);
1249         SchedImpl->scheduleTree(SubtreeID);
1250       }
1251     }
1252 
1253     // Notify the scheduling strategy after updating the DAG.
1254     SchedImpl->schedNode(SU, IsTopNode);
1255 
1256     updateQueues(SU, IsTopNode);
1257   }
1258   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1259 
1260   placeDebugValues();
1261 
1262   DEBUG({
1263     dbgs() << "*** Final schedule for "
1264            << printMBBReference(*begin()->getParent()) << " ***\n";
1265     dumpSchedule();
1266     dbgs() << '\n';
1267   });
1268 }
1269 
1270 /// Build the DAG and setup three register pressure trackers.
1271 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1272   if (!ShouldTrackPressure) {
1273     RPTracker.reset();
1274     RegionCriticalPSets.clear();
1275     buildSchedGraph(AA);
1276     return;
1277   }
1278 
1279   // Initialize the register pressure tracker used by buildSchedGraph.
1280   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1281                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1282 
1283   // Account for liveness generate by the region boundary.
1284   if (LiveRegionEnd != RegionEnd)
1285     RPTracker.recede();
1286 
1287   // Build the DAG, and compute current register pressure.
1288   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1289 
1290   // Initialize top/bottom trackers after computing region pressure.
1291   initRegPressure();
1292 }
1293 
1294 void ScheduleDAGMILive::computeDFSResult() {
1295   if (!DFSResult)
1296     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1297   DFSResult->clear();
1298   ScheduledTrees.clear();
1299   DFSResult->resize(SUnits.size());
1300   DFSResult->compute(SUnits);
1301   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1302 }
1303 
1304 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1305 /// only provides the critical path for single block loops. To handle loops that
1306 /// span blocks, we could use the vreg path latencies provided by
1307 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1308 /// available for use in the scheduler.
1309 ///
1310 /// The cyclic path estimation identifies a def-use pair that crosses the back
1311 /// edge and considers the depth and height of the nodes. For example, consider
1312 /// the following instruction sequence where each instruction has unit latency
1313 /// and defines an epomymous virtual register:
1314 ///
1315 /// a->b(a,c)->c(b)->d(c)->exit
1316 ///
1317 /// The cyclic critical path is a two cycles: b->c->b
1318 /// The acyclic critical path is four cycles: a->b->c->d->exit
1319 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1320 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1321 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1322 /// LiveInDepth = depth(b) = len(a->b) = 1
1323 ///
1324 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1325 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1326 /// CyclicCriticalPath = min(2, 2) = 2
1327 ///
1328 /// This could be relevant to PostRA scheduling, but is currently implemented
1329 /// assuming LiveIntervals.
1330 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1331   // This only applies to single block loop.
1332   if (!BB->isSuccessor(BB))
1333     return 0;
1334 
1335   unsigned MaxCyclicLatency = 0;
1336   // Visit each live out vreg def to find def/use pairs that cross iterations.
1337   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1338     unsigned Reg = P.RegUnit;
1339     if (!TRI->isVirtualRegister(Reg))
1340         continue;
1341     const LiveInterval &LI = LIS->getInterval(Reg);
1342     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1343     if (!DefVNI)
1344       continue;
1345 
1346     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1347     const SUnit *DefSU = getSUnit(DefMI);
1348     if (!DefSU)
1349       continue;
1350 
1351     unsigned LiveOutHeight = DefSU->getHeight();
1352     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1353     // Visit all local users of the vreg def.
1354     for (const VReg2SUnit &V2SU
1355          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1356       SUnit *SU = V2SU.SU;
1357       if (SU == &ExitSU)
1358         continue;
1359 
1360       // Only consider uses of the phi.
1361       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1362       if (!LRQ.valueIn()->isPHIDef())
1363         continue;
1364 
1365       // Assume that a path spanning two iterations is a cycle, which could
1366       // overestimate in strange cases. This allows cyclic latency to be
1367       // estimated as the minimum slack of the vreg's depth or height.
1368       unsigned CyclicLatency = 0;
1369       if (LiveOutDepth > SU->getDepth())
1370         CyclicLatency = LiveOutDepth - SU->getDepth();
1371 
1372       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1373       if (LiveInHeight > LiveOutHeight) {
1374         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1375           CyclicLatency = LiveInHeight - LiveOutHeight;
1376       } else
1377         CyclicLatency = 0;
1378 
1379       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1380             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1381       if (CyclicLatency > MaxCyclicLatency)
1382         MaxCyclicLatency = CyclicLatency;
1383     }
1384   }
1385   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1386   return MaxCyclicLatency;
1387 }
1388 
1389 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1390 /// the Top RP tracker in case the region beginning has changed.
1391 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1392                                    ArrayRef<SUnit*> BotRoots) {
1393   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1394   if (ShouldTrackPressure) {
1395     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1396     TopRPTracker.setPos(CurrentTop);
1397   }
1398 }
1399 
1400 /// Move an instruction and update register pressure.
1401 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1402   // Move the instruction to its new location in the instruction stream.
1403   MachineInstr *MI = SU->getInstr();
1404 
1405   if (IsTopNode) {
1406     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1407     if (&*CurrentTop == MI)
1408       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1409     else {
1410       moveInstruction(MI, CurrentTop);
1411       TopRPTracker.setPos(MI);
1412     }
1413 
1414     if (ShouldTrackPressure) {
1415       // Update top scheduled pressure.
1416       RegisterOperands RegOpers;
1417       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1418       if (ShouldTrackLaneMasks) {
1419         // Adjust liveness and add missing dead+read-undef flags.
1420         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1421         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1422       } else {
1423         // Adjust for missing dead-def flags.
1424         RegOpers.detectDeadDefs(*MI, *LIS);
1425       }
1426 
1427       TopRPTracker.advance(RegOpers);
1428       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1429       DEBUG(
1430         dbgs() << "Top Pressure:\n";
1431         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1432       );
1433 
1434       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1435     }
1436   } else {
1437     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1438     MachineBasicBlock::iterator priorII =
1439       priorNonDebug(CurrentBottom, CurrentTop);
1440     if (&*priorII == MI)
1441       CurrentBottom = priorII;
1442     else {
1443       if (&*CurrentTop == MI) {
1444         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1445         TopRPTracker.setPos(CurrentTop);
1446       }
1447       moveInstruction(MI, CurrentBottom);
1448       CurrentBottom = MI;
1449     }
1450     if (ShouldTrackPressure) {
1451       RegisterOperands RegOpers;
1452       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1453       if (ShouldTrackLaneMasks) {
1454         // Adjust liveness and add missing dead+read-undef flags.
1455         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1456         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1457       } else {
1458         // Adjust for missing dead-def flags.
1459         RegOpers.detectDeadDefs(*MI, *LIS);
1460       }
1461 
1462       BotRPTracker.recedeSkipDebugValues();
1463       SmallVector<RegisterMaskPair, 8> LiveUses;
1464       BotRPTracker.recede(RegOpers, &LiveUses);
1465       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1466       DEBUG(
1467         dbgs() << "Bottom Pressure:\n";
1468         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1469       );
1470 
1471       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1472       updatePressureDiffs(LiveUses);
1473     }
1474   }
1475 }
1476 
1477 //===----------------------------------------------------------------------===//
1478 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1479 //===----------------------------------------------------------------------===//
1480 
1481 namespace {
1482 
1483 /// \brief Post-process the DAG to create cluster edges between neighboring
1484 /// loads or between neighboring stores.
1485 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1486   struct MemOpInfo {
1487     SUnit *SU;
1488     unsigned BaseReg;
1489     int64_t Offset;
1490 
1491     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1492         : SU(su), BaseReg(reg), Offset(ofs) {}
1493 
1494     bool operator<(const MemOpInfo&RHS) const {
1495       return std::tie(BaseReg, Offset, SU->NodeNum) <
1496              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1497     }
1498   };
1499 
1500   const TargetInstrInfo *TII;
1501   const TargetRegisterInfo *TRI;
1502   bool IsLoad;
1503 
1504 public:
1505   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1506                            const TargetRegisterInfo *tri, bool IsLoad)
1507       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1508 
1509   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1510 
1511 protected:
1512   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1513 };
1514 
1515 class StoreClusterMutation : public BaseMemOpClusterMutation {
1516 public:
1517   StoreClusterMutation(const TargetInstrInfo *tii,
1518                        const TargetRegisterInfo *tri)
1519       : BaseMemOpClusterMutation(tii, tri, false) {}
1520 };
1521 
1522 class LoadClusterMutation : public BaseMemOpClusterMutation {
1523 public:
1524   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1525       : BaseMemOpClusterMutation(tii, tri, true) {}
1526 };
1527 
1528 } // end anonymous namespace
1529 
1530 namespace llvm {
1531 
1532 std::unique_ptr<ScheduleDAGMutation>
1533 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1534                              const TargetRegisterInfo *TRI) {
1535   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1536                             : nullptr;
1537 }
1538 
1539 std::unique_ptr<ScheduleDAGMutation>
1540 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1541                               const TargetRegisterInfo *TRI) {
1542   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1543                             : nullptr;
1544 }
1545 
1546 } // end namespace llvm
1547 
1548 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1549     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1550   SmallVector<MemOpInfo, 32> MemOpRecords;
1551   for (SUnit *SU : MemOps) {
1552     unsigned BaseReg;
1553     int64_t Offset;
1554     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1555       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1556   }
1557   if (MemOpRecords.size() < 2)
1558     return;
1559 
1560   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1561   unsigned ClusterLength = 1;
1562   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1563     SUnit *SUa = MemOpRecords[Idx].SU;
1564     SUnit *SUb = MemOpRecords[Idx+1].SU;
1565     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1566                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1567                                  ClusterLength) &&
1568         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1569       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1570             << SUb->NodeNum << ")\n");
1571       // Copy successor edges from SUa to SUb. Interleaving computation
1572       // dependent on SUa can prevent load combining due to register reuse.
1573       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1574       // loads should have effectively the same inputs.
1575       for (const SDep &Succ : SUa->Succs) {
1576         if (Succ.getSUnit() == SUb)
1577           continue;
1578         DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n");
1579         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1580       }
1581       ++ClusterLength;
1582     } else
1583       ClusterLength = 1;
1584   }
1585 }
1586 
1587 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1588 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1589   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1590 
1591   // Map DAG NodeNum to store chain ID.
1592   DenseMap<unsigned, unsigned> StoreChainIDs;
1593   // Map each store chain to a set of dependent MemOps.
1594   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1595   for (SUnit &SU : DAG->SUnits) {
1596     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1597         (!IsLoad && !SU.getInstr()->mayStore()))
1598       continue;
1599 
1600     unsigned ChainPredID = DAG->SUnits.size();
1601     for (const SDep &Pred : SU.Preds) {
1602       if (Pred.isCtrl()) {
1603         ChainPredID = Pred.getSUnit()->NodeNum;
1604         break;
1605       }
1606     }
1607     // Check if this chain-like pred has been seen
1608     // before. ChainPredID==MaxNodeID at the top of the schedule.
1609     unsigned NumChains = StoreChainDependents.size();
1610     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1611       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1612     if (Result.second)
1613       StoreChainDependents.resize(NumChains + 1);
1614     StoreChainDependents[Result.first->second].push_back(&SU);
1615   }
1616 
1617   // Iterate over the store chains.
1618   for (auto &SCD : StoreChainDependents)
1619     clusterNeighboringMemOps(SCD, DAG);
1620 }
1621 
1622 //===----------------------------------------------------------------------===//
1623 // CopyConstrain - DAG post-processing to encourage copy elimination.
1624 //===----------------------------------------------------------------------===//
1625 
1626 namespace {
1627 
1628 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1629 /// the one use that defines the copy's source vreg, most likely an induction
1630 /// variable increment.
1631 class CopyConstrain : public ScheduleDAGMutation {
1632   // Transient state.
1633   SlotIndex RegionBeginIdx;
1634 
1635   // RegionEndIdx is the slot index of the last non-debug instruction in the
1636   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1637   SlotIndex RegionEndIdx;
1638 
1639 public:
1640   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1641 
1642   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1643 
1644 protected:
1645   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1646 };
1647 
1648 } // end anonymous namespace
1649 
1650 namespace llvm {
1651 
1652 std::unique_ptr<ScheduleDAGMutation>
1653 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1654                                const TargetRegisterInfo *TRI) {
1655   return llvm::make_unique<CopyConstrain>(TII, TRI);
1656 }
1657 
1658 } // end namespace llvm
1659 
1660 /// constrainLocalCopy handles two possibilities:
1661 /// 1) Local src:
1662 /// I0:     = dst
1663 /// I1: src = ...
1664 /// I2:     = dst
1665 /// I3: dst = src (copy)
1666 /// (create pred->succ edges I0->I1, I2->I1)
1667 ///
1668 /// 2) Local copy:
1669 /// I0: dst = src (copy)
1670 /// I1:     = dst
1671 /// I2: src = ...
1672 /// I3:     = dst
1673 /// (create pred->succ edges I1->I2, I3->I2)
1674 ///
1675 /// Although the MachineScheduler is currently constrained to single blocks,
1676 /// this algorithm should handle extended blocks. An EBB is a set of
1677 /// contiguously numbered blocks such that the previous block in the EBB is
1678 /// always the single predecessor.
1679 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1680   LiveIntervals *LIS = DAG->getLIS();
1681   MachineInstr *Copy = CopySU->getInstr();
1682 
1683   // Check for pure vreg copies.
1684   const MachineOperand &SrcOp = Copy->getOperand(1);
1685   unsigned SrcReg = SrcOp.getReg();
1686   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1687     return;
1688 
1689   const MachineOperand &DstOp = Copy->getOperand(0);
1690   unsigned DstReg = DstOp.getReg();
1691   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1692     return;
1693 
1694   // Check if either the dest or source is local. If it's live across a back
1695   // edge, it's not local. Note that if both vregs are live across the back
1696   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1697   // If both the copy's source and dest are local live intervals, then we
1698   // should treat the dest as the global for the purpose of adding
1699   // constraints. This adds edges from source's other uses to the copy.
1700   unsigned LocalReg = SrcReg;
1701   unsigned GlobalReg = DstReg;
1702   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1703   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1704     LocalReg = DstReg;
1705     GlobalReg = SrcReg;
1706     LocalLI = &LIS->getInterval(LocalReg);
1707     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1708       return;
1709   }
1710   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1711 
1712   // Find the global segment after the start of the local LI.
1713   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1714   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1715   // local live range. We could create edges from other global uses to the local
1716   // start, but the coalescer should have already eliminated these cases, so
1717   // don't bother dealing with it.
1718   if (GlobalSegment == GlobalLI->end())
1719     return;
1720 
1721   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1722   // returned the next global segment. But if GlobalSegment overlaps with
1723   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1724   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1725   if (GlobalSegment->contains(LocalLI->beginIndex()))
1726     ++GlobalSegment;
1727 
1728   if (GlobalSegment == GlobalLI->end())
1729     return;
1730 
1731   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1732   if (GlobalSegment != GlobalLI->begin()) {
1733     // Two address defs have no hole.
1734     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1735                                GlobalSegment->start)) {
1736       return;
1737     }
1738     // If the prior global segment may be defined by the same two-address
1739     // instruction that also defines LocalLI, then can't make a hole here.
1740     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1741                                LocalLI->beginIndex())) {
1742       return;
1743     }
1744     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1745     // it would be a disconnected component in the live range.
1746     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1747            "Disconnected LRG within the scheduling region.");
1748   }
1749   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1750   if (!GlobalDef)
1751     return;
1752 
1753   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1754   if (!GlobalSU)
1755     return;
1756 
1757   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1758   // constraining the uses of the last local def to precede GlobalDef.
1759   SmallVector<SUnit*,8> LocalUses;
1760   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1761   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1762   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1763   for (const SDep &Succ : LastLocalSU->Succs) {
1764     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1765       continue;
1766     if (Succ.getSUnit() == GlobalSU)
1767       continue;
1768     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1769       return;
1770     LocalUses.push_back(Succ.getSUnit());
1771   }
1772   // Open the top of the GlobalLI hole by constraining any earlier global uses
1773   // to precede the start of LocalLI.
1774   SmallVector<SUnit*,8> GlobalUses;
1775   MachineInstr *FirstLocalDef =
1776     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1777   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1778   for (const SDep &Pred : GlobalSU->Preds) {
1779     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1780       continue;
1781     if (Pred.getSUnit() == FirstLocalSU)
1782       continue;
1783     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1784       return;
1785     GlobalUses.push_back(Pred.getSUnit());
1786   }
1787   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1788   // Add the weak edges.
1789   for (SmallVectorImpl<SUnit*>::const_iterator
1790          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1791     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1792           << GlobalSU->NodeNum << ")\n");
1793     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1794   }
1795   for (SmallVectorImpl<SUnit*>::const_iterator
1796          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1797     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1798           << FirstLocalSU->NodeNum << ")\n");
1799     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1800   }
1801 }
1802 
1803 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1804 /// copy elimination.
1805 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1806   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1807   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1808 
1809   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1810   if (FirstPos == DAG->end())
1811     return;
1812   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1813   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1814       *priorNonDebug(DAG->end(), DAG->begin()));
1815 
1816   for (SUnit &SU : DAG->SUnits) {
1817     if (!SU.getInstr()->isCopy())
1818       continue;
1819 
1820     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1821   }
1822 }
1823 
1824 //===----------------------------------------------------------------------===//
1825 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1826 // and possibly other custom schedulers.
1827 //===----------------------------------------------------------------------===//
1828 
1829 static const unsigned InvalidCycle = ~0U;
1830 
1831 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1832 
1833 /// Given a Count of resource usage and a Latency value, return true if a
1834 /// SchedBoundary becomes resource limited.
1835 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1836                                unsigned Latency) {
1837   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1838 }
1839 
1840 void SchedBoundary::reset() {
1841   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1842   // Destroying and reconstructing it is very expensive though. So keep
1843   // invalid, placeholder HazardRecs.
1844   if (HazardRec && HazardRec->isEnabled()) {
1845     delete HazardRec;
1846     HazardRec = nullptr;
1847   }
1848   Available.clear();
1849   Pending.clear();
1850   CheckPending = false;
1851   CurrCycle = 0;
1852   CurrMOps = 0;
1853   MinReadyCycle = std::numeric_limits<unsigned>::max();
1854   ExpectedLatency = 0;
1855   DependentLatency = 0;
1856   RetiredMOps = 0;
1857   MaxExecutedResCount = 0;
1858   ZoneCritResIdx = 0;
1859   IsResourceLimited = false;
1860   ReservedCycles.clear();
1861 #ifndef NDEBUG
1862   // Track the maximum number of stall cycles that could arise either from the
1863   // latency of a DAG edge or the number of cycles that a processor resource is
1864   // reserved (SchedBoundary::ReservedCycles).
1865   MaxObservedStall = 0;
1866 #endif
1867   // Reserve a zero-count for invalid CritResIdx.
1868   ExecutedResCounts.resize(1);
1869   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1870 }
1871 
1872 void SchedRemainder::
1873 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1874   reset();
1875   if (!SchedModel->hasInstrSchedModel())
1876     return;
1877   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1878   for (SUnit &SU : DAG->SUnits) {
1879     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1880     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1881       * SchedModel->getMicroOpFactor();
1882     for (TargetSchedModel::ProcResIter
1883            PI = SchedModel->getWriteProcResBegin(SC),
1884            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1885       unsigned PIdx = PI->ProcResourceIdx;
1886       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1887       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1888     }
1889   }
1890 }
1891 
1892 void SchedBoundary::
1893 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1894   reset();
1895   DAG = dag;
1896   SchedModel = smodel;
1897   Rem = rem;
1898   if (SchedModel->hasInstrSchedModel()) {
1899     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1900     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1901   }
1902 }
1903 
1904 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1905 /// these "soft stalls" differently than the hard stall cycles based on CPU
1906 /// resources and computed by checkHazard(). A fully in-order model
1907 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1908 /// available for scheduling until they are ready. However, a weaker in-order
1909 /// model may use this for heuristics. For example, if a processor has in-order
1910 /// behavior when reading certain resources, this may come into play.
1911 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1912   if (!SU->isUnbuffered)
1913     return 0;
1914 
1915   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1916   if (ReadyCycle > CurrCycle)
1917     return ReadyCycle - CurrCycle;
1918   return 0;
1919 }
1920 
1921 /// Compute the next cycle at which the given processor resource can be
1922 /// scheduled.
1923 unsigned SchedBoundary::
1924 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1925   unsigned NextUnreserved = ReservedCycles[PIdx];
1926   // If this resource has never been used, always return cycle zero.
1927   if (NextUnreserved == InvalidCycle)
1928     return 0;
1929   // For bottom-up scheduling add the cycles needed for the current operation.
1930   if (!isTop())
1931     NextUnreserved += Cycles;
1932   return NextUnreserved;
1933 }
1934 
1935 /// Does this SU have a hazard within the current instruction group.
1936 ///
1937 /// The scheduler supports two modes of hazard recognition. The first is the
1938 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1939 /// supports highly complicated in-order reservation tables
1940 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1941 ///
1942 /// The second is a streamlined mechanism that checks for hazards based on
1943 /// simple counters that the scheduler itself maintains. It explicitly checks
1944 /// for instruction dispatch limitations, including the number of micro-ops that
1945 /// can dispatch per cycle.
1946 ///
1947 /// TODO: Also check whether the SU must start a new group.
1948 bool SchedBoundary::checkHazard(SUnit *SU) {
1949   if (HazardRec->isEnabled()
1950       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1951     return true;
1952   }
1953 
1954   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1955   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1956     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1957           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1958     return true;
1959   }
1960 
1961   if (CurrMOps > 0 &&
1962       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1963        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1964     DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1965                  << (isTop()? "begin" : "end") << " group\n");
1966     return true;
1967   }
1968 
1969   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1970     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1971     for (const MCWriteProcResEntry &PE :
1972           make_range(SchedModel->getWriteProcResBegin(SC),
1973                      SchedModel->getWriteProcResEnd(SC))) {
1974       unsigned ResIdx = PE.ProcResourceIdx;
1975       unsigned Cycles = PE.Cycles;
1976       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1977       if (NRCycle > CurrCycle) {
1978 #ifndef NDEBUG
1979         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1980 #endif
1981         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1982               << SchedModel->getResourceName(ResIdx)
1983               << "=" << NRCycle << "c\n");
1984         return true;
1985       }
1986     }
1987   }
1988   return false;
1989 }
1990 
1991 // Find the unscheduled node in ReadySUs with the highest latency.
1992 unsigned SchedBoundary::
1993 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1994   SUnit *LateSU = nullptr;
1995   unsigned RemLatency = 0;
1996   for (SUnit *SU : ReadySUs) {
1997     unsigned L = getUnscheduledLatency(SU);
1998     if (L > RemLatency) {
1999       RemLatency = L;
2000       LateSU = SU;
2001     }
2002   }
2003   if (LateSU) {
2004     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2005           << LateSU->NodeNum << ") " << RemLatency << "c\n");
2006   }
2007   return RemLatency;
2008 }
2009 
2010 // Count resources in this zone and the remaining unscheduled
2011 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2012 // resource index, or zero if the zone is issue limited.
2013 unsigned SchedBoundary::
2014 getOtherResourceCount(unsigned &OtherCritIdx) {
2015   OtherCritIdx = 0;
2016   if (!SchedModel->hasInstrSchedModel())
2017     return 0;
2018 
2019   unsigned OtherCritCount = Rem->RemIssueCount
2020     + (RetiredMOps * SchedModel->getMicroOpFactor());
2021   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2022         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2023   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2024        PIdx != PEnd; ++PIdx) {
2025     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2026     if (OtherCount > OtherCritCount) {
2027       OtherCritCount = OtherCount;
2028       OtherCritIdx = PIdx;
2029     }
2030   }
2031   if (OtherCritIdx) {
2032     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2033           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2034           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2035   }
2036   return OtherCritCount;
2037 }
2038 
2039 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2040   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2041 
2042 #ifndef NDEBUG
2043   // ReadyCycle was been bumped up to the CurrCycle when this node was
2044   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2045   // scheduling, so may now be greater than ReadyCycle.
2046   if (ReadyCycle > CurrCycle)
2047     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2048 #endif
2049 
2050   if (ReadyCycle < MinReadyCycle)
2051     MinReadyCycle = ReadyCycle;
2052 
2053   // Check for interlocks first. For the purpose of other heuristics, an
2054   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2055   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2056   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2057       Available.size() >= ReadyListLimit)
2058     Pending.push(SU);
2059   else
2060     Available.push(SU);
2061 }
2062 
2063 /// Move the boundary of scheduled code by one cycle.
2064 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2065   if (SchedModel->getMicroOpBufferSize() == 0) {
2066     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2067            "MinReadyCycle uninitialized");
2068     if (MinReadyCycle > NextCycle)
2069       NextCycle = MinReadyCycle;
2070   }
2071   // Update the current micro-ops, which will issue in the next cycle.
2072   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2073   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2074 
2075   // Decrement DependentLatency based on the next cycle.
2076   if ((NextCycle - CurrCycle) > DependentLatency)
2077     DependentLatency = 0;
2078   else
2079     DependentLatency -= (NextCycle - CurrCycle);
2080 
2081   if (!HazardRec->isEnabled()) {
2082     // Bypass HazardRec virtual calls.
2083     CurrCycle = NextCycle;
2084   } else {
2085     // Bypass getHazardType calls in case of long latency.
2086     for (; CurrCycle != NextCycle; ++CurrCycle) {
2087       if (isTop())
2088         HazardRec->AdvanceCycle();
2089       else
2090         HazardRec->RecedeCycle();
2091     }
2092   }
2093   CheckPending = true;
2094   IsResourceLimited =
2095       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2096                          getScheduledLatency());
2097 
2098   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2099 }
2100 
2101 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2102   ExecutedResCounts[PIdx] += Count;
2103   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2104     MaxExecutedResCount = ExecutedResCounts[PIdx];
2105 }
2106 
2107 /// Add the given processor resource to this scheduled zone.
2108 ///
2109 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2110 /// during which this resource is consumed.
2111 ///
2112 /// \return the next cycle at which the instruction may execute without
2113 /// oversubscribing resources.
2114 unsigned SchedBoundary::
2115 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2116   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2117   unsigned Count = Factor * Cycles;
2118   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2119         << " +" << Cycles << "x" << Factor << "u\n");
2120 
2121   // Update Executed resources counts.
2122   incExecutedResources(PIdx, Count);
2123   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2124   Rem->RemainingCounts[PIdx] -= Count;
2125 
2126   // Check if this resource exceeds the current critical resource. If so, it
2127   // becomes the critical resource.
2128   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2129     ZoneCritResIdx = PIdx;
2130     DEBUG(dbgs() << "  *** Critical resource "
2131           << SchedModel->getResourceName(PIdx) << ": "
2132           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2133   }
2134   // For reserved resources, record the highest cycle using the resource.
2135   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2136   if (NextAvailable > CurrCycle) {
2137     DEBUG(dbgs() << "  Resource conflict: "
2138           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2139           << NextAvailable << "\n");
2140   }
2141   return NextAvailable;
2142 }
2143 
2144 /// Move the boundary of scheduled code by one SUnit.
2145 void SchedBoundary::bumpNode(SUnit *SU) {
2146   // Update the reservation table.
2147   if (HazardRec->isEnabled()) {
2148     if (!isTop() && SU->isCall) {
2149       // Calls are scheduled with their preceding instructions. For bottom-up
2150       // scheduling, clear the pipeline state before emitting.
2151       HazardRec->Reset();
2152     }
2153     HazardRec->EmitInstruction(SU);
2154   }
2155   // checkHazard should prevent scheduling multiple instructions per cycle that
2156   // exceed the issue width.
2157   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2158   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2159   assert(
2160       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2161       "Cannot schedule this instruction's MicroOps in the current cycle.");
2162 
2163   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2164   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2165 
2166   unsigned NextCycle = CurrCycle;
2167   switch (SchedModel->getMicroOpBufferSize()) {
2168   case 0:
2169     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2170     break;
2171   case 1:
2172     if (ReadyCycle > NextCycle) {
2173       NextCycle = ReadyCycle;
2174       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2175     }
2176     break;
2177   default:
2178     // We don't currently model the OOO reorder buffer, so consider all
2179     // scheduled MOps to be "retired". We do loosely model in-order resource
2180     // latency. If this instruction uses an in-order resource, account for any
2181     // likely stall cycles.
2182     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2183       NextCycle = ReadyCycle;
2184     break;
2185   }
2186   RetiredMOps += IncMOps;
2187 
2188   // Update resource counts and critical resource.
2189   if (SchedModel->hasInstrSchedModel()) {
2190     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2191     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2192     Rem->RemIssueCount -= DecRemIssue;
2193     if (ZoneCritResIdx) {
2194       // Scale scheduled micro-ops for comparing with the critical resource.
2195       unsigned ScaledMOps =
2196         RetiredMOps * SchedModel->getMicroOpFactor();
2197 
2198       // If scaled micro-ops are now more than the previous critical resource by
2199       // a full cycle, then micro-ops issue becomes critical.
2200       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2201           >= (int)SchedModel->getLatencyFactor()) {
2202         ZoneCritResIdx = 0;
2203         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2204               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2205       }
2206     }
2207     for (TargetSchedModel::ProcResIter
2208            PI = SchedModel->getWriteProcResBegin(SC),
2209            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2210       unsigned RCycle =
2211         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2212       if (RCycle > NextCycle)
2213         NextCycle = RCycle;
2214     }
2215     if (SU->hasReservedResource) {
2216       // For reserved resources, record the highest cycle using the resource.
2217       // For top-down scheduling, this is the cycle in which we schedule this
2218       // instruction plus the number of cycles the operations reserves the
2219       // resource. For bottom-up is it simply the instruction's cycle.
2220       for (TargetSchedModel::ProcResIter
2221              PI = SchedModel->getWriteProcResBegin(SC),
2222              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2223         unsigned PIdx = PI->ProcResourceIdx;
2224         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2225           if (isTop()) {
2226             ReservedCycles[PIdx] =
2227               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2228           }
2229           else
2230             ReservedCycles[PIdx] = NextCycle;
2231         }
2232       }
2233     }
2234   }
2235   // Update ExpectedLatency and DependentLatency.
2236   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2237   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2238   if (SU->getDepth() > TopLatency) {
2239     TopLatency = SU->getDepth();
2240     DEBUG(dbgs() << "  " << Available.getName()
2241           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2242   }
2243   if (SU->getHeight() > BotLatency) {
2244     BotLatency = SU->getHeight();
2245     DEBUG(dbgs() << "  " << Available.getName()
2246           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2247   }
2248   // If we stall for any reason, bump the cycle.
2249   if (NextCycle > CurrCycle)
2250     bumpCycle(NextCycle);
2251   else
2252     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2253     // resource limited. If a stall occurred, bumpCycle does this.
2254     IsResourceLimited =
2255         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2256                            getScheduledLatency());
2257 
2258   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2259   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2260   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2261   // bump the cycle to avoid uselessly checking everything in the readyQ.
2262   CurrMOps += IncMOps;
2263 
2264   // Bump the cycle count for issue group constraints.
2265   // This must be done after NextCycle has been adjust for all other stalls.
2266   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2267   // currCycle to X.
2268   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2269       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2270     DEBUG(dbgs() << "  Bump cycle to "
2271                  << (isTop() ? "end" : "begin") << " group\n");
2272     bumpCycle(++NextCycle);
2273   }
2274 
2275   while (CurrMOps >= SchedModel->getIssueWidth()) {
2276     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2277           << " at cycle " << CurrCycle << '\n');
2278     bumpCycle(++NextCycle);
2279   }
2280   DEBUG(dumpScheduledState());
2281 }
2282 
2283 /// Release pending ready nodes in to the available queue. This makes them
2284 /// visible to heuristics.
2285 void SchedBoundary::releasePending() {
2286   // If the available queue is empty, it is safe to reset MinReadyCycle.
2287   if (Available.empty())
2288     MinReadyCycle = std::numeric_limits<unsigned>::max();
2289 
2290   // Check to see if any of the pending instructions are ready to issue.  If
2291   // so, add them to the available queue.
2292   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2293   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2294     SUnit *SU = *(Pending.begin()+i);
2295     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2296 
2297     if (ReadyCycle < MinReadyCycle)
2298       MinReadyCycle = ReadyCycle;
2299 
2300     if (!IsBuffered && ReadyCycle > CurrCycle)
2301       continue;
2302 
2303     if (checkHazard(SU))
2304       continue;
2305 
2306     if (Available.size() >= ReadyListLimit)
2307       break;
2308 
2309     Available.push(SU);
2310     Pending.remove(Pending.begin()+i);
2311     --i; --e;
2312   }
2313   CheckPending = false;
2314 }
2315 
2316 /// Remove SU from the ready set for this boundary.
2317 void SchedBoundary::removeReady(SUnit *SU) {
2318   if (Available.isInQueue(SU))
2319     Available.remove(Available.find(SU));
2320   else {
2321     assert(Pending.isInQueue(SU) && "bad ready count");
2322     Pending.remove(Pending.find(SU));
2323   }
2324 }
2325 
2326 /// If this queue only has one ready candidate, return it. As a side effect,
2327 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2328 /// one node is ready. If multiple instructions are ready, return NULL.
2329 SUnit *SchedBoundary::pickOnlyChoice() {
2330   if (CheckPending)
2331     releasePending();
2332 
2333   if (CurrMOps > 0) {
2334     // Defer any ready instrs that now have a hazard.
2335     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2336       if (checkHazard(*I)) {
2337         Pending.push(*I);
2338         I = Available.remove(I);
2339         continue;
2340       }
2341       ++I;
2342     }
2343   }
2344   for (unsigned i = 0; Available.empty(); ++i) {
2345 //  FIXME: Re-enable assert once PR20057 is resolved.
2346 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2347 //           "permanent hazard");
2348     (void)i;
2349     bumpCycle(CurrCycle + 1);
2350     releasePending();
2351   }
2352 
2353   DEBUG(Pending.dump());
2354   DEBUG(Available.dump());
2355 
2356   if (Available.size() == 1)
2357     return *Available.begin();
2358   return nullptr;
2359 }
2360 
2361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2362 // This is useful information to dump after bumpNode.
2363 // Note that the Queue contents are more useful before pickNodeFromQueue.
2364 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2365   unsigned ResFactor;
2366   unsigned ResCount;
2367   if (ZoneCritResIdx) {
2368     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2369     ResCount = getResourceCount(ZoneCritResIdx);
2370   } else {
2371     ResFactor = SchedModel->getMicroOpFactor();
2372     ResCount = RetiredMOps * ResFactor;
2373   }
2374   unsigned LFactor = SchedModel->getLatencyFactor();
2375   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2376          << "  Retired: " << RetiredMOps;
2377   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2378   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2379          << ResCount / ResFactor << " "
2380          << SchedModel->getResourceName(ZoneCritResIdx)
2381          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2382          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2383          << " limited.\n";
2384 }
2385 #endif
2386 
2387 //===----------------------------------------------------------------------===//
2388 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2389 //===----------------------------------------------------------------------===//
2390 
2391 void GenericSchedulerBase::SchedCandidate::
2392 initResourceDelta(const ScheduleDAGMI *DAG,
2393                   const TargetSchedModel *SchedModel) {
2394   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2395     return;
2396 
2397   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2398   for (TargetSchedModel::ProcResIter
2399          PI = SchedModel->getWriteProcResBegin(SC),
2400          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2401     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2402       ResDelta.CritResources += PI->Cycles;
2403     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2404       ResDelta.DemandedResources += PI->Cycles;
2405   }
2406 }
2407 
2408 /// Set the CandPolicy given a scheduling zone given the current resources and
2409 /// latencies inside and outside the zone.
2410 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2411                                      SchedBoundary &CurrZone,
2412                                      SchedBoundary *OtherZone) {
2413   // Apply preemptive heuristics based on the total latency and resources
2414   // inside and outside this zone. Potential stalls should be considered before
2415   // following this policy.
2416 
2417   // Compute remaining latency. We need this both to determine whether the
2418   // overall schedule has become latency-limited and whether the instructions
2419   // outside this zone are resource or latency limited.
2420   //
2421   // The "dependent" latency is updated incrementally during scheduling as the
2422   // max height/depth of scheduled nodes minus the cycles since it was
2423   // scheduled:
2424   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2425   //
2426   // The "independent" latency is the max ready queue depth:
2427   //   ILat = max N.depth for N in Available|Pending
2428   //
2429   // RemainingLatency is the greater of independent and dependent latency.
2430   unsigned RemLatency = CurrZone.getDependentLatency();
2431   RemLatency = std::max(RemLatency,
2432                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2433   RemLatency = std::max(RemLatency,
2434                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2435 
2436   // Compute the critical resource outside the zone.
2437   unsigned OtherCritIdx = 0;
2438   unsigned OtherCount =
2439     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2440 
2441   bool OtherResLimited = false;
2442   if (SchedModel->hasInstrSchedModel())
2443     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2444                                          OtherCount, RemLatency);
2445 
2446   // Schedule aggressively for latency in PostRA mode. We don't check for
2447   // acyclic latency during PostRA, and highly out-of-order processors will
2448   // skip PostRA scheduling.
2449   if (!OtherResLimited) {
2450     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2451       Policy.ReduceLatency |= true;
2452       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2453             << " RemainingLatency " << RemLatency << " + "
2454             << CurrZone.getCurrCycle() << "c > CritPath "
2455             << Rem.CriticalPath << "\n");
2456     }
2457   }
2458   // If the same resource is limiting inside and outside the zone, do nothing.
2459   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2460     return;
2461 
2462   DEBUG(
2463     if (CurrZone.isResourceLimited()) {
2464       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2465              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2466              << "\n";
2467     }
2468     if (OtherResLimited)
2469       dbgs() << "  RemainingLimit: "
2470              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2471     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2472       dbgs() << "  Latency limited both directions.\n");
2473 
2474   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2475     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2476 
2477   if (OtherResLimited)
2478     Policy.DemandResIdx = OtherCritIdx;
2479 }
2480 
2481 #ifndef NDEBUG
2482 const char *GenericSchedulerBase::getReasonStr(
2483   GenericSchedulerBase::CandReason Reason) {
2484   switch (Reason) {
2485   case NoCand:         return "NOCAND    ";
2486   case Only1:          return "ONLY1     ";
2487   case PhysRegCopy:    return "PREG-COPY ";
2488   case RegExcess:      return "REG-EXCESS";
2489   case RegCritical:    return "REG-CRIT  ";
2490   case Stall:          return "STALL     ";
2491   case Cluster:        return "CLUSTER   ";
2492   case Weak:           return "WEAK      ";
2493   case RegMax:         return "REG-MAX   ";
2494   case ResourceReduce: return "RES-REDUCE";
2495   case ResourceDemand: return "RES-DEMAND";
2496   case TopDepthReduce: return "TOP-DEPTH ";
2497   case TopPathReduce:  return "TOP-PATH  ";
2498   case BotHeightReduce:return "BOT-HEIGHT";
2499   case BotPathReduce:  return "BOT-PATH  ";
2500   case NextDefUse:     return "DEF-USE   ";
2501   case NodeOrder:      return "ORDER     ";
2502   };
2503   llvm_unreachable("Unknown reason!");
2504 }
2505 
2506 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2507   PressureChange P;
2508   unsigned ResIdx = 0;
2509   unsigned Latency = 0;
2510   switch (Cand.Reason) {
2511   default:
2512     break;
2513   case RegExcess:
2514     P = Cand.RPDelta.Excess;
2515     break;
2516   case RegCritical:
2517     P = Cand.RPDelta.CriticalMax;
2518     break;
2519   case RegMax:
2520     P = Cand.RPDelta.CurrentMax;
2521     break;
2522   case ResourceReduce:
2523     ResIdx = Cand.Policy.ReduceResIdx;
2524     break;
2525   case ResourceDemand:
2526     ResIdx = Cand.Policy.DemandResIdx;
2527     break;
2528   case TopDepthReduce:
2529     Latency = Cand.SU->getDepth();
2530     break;
2531   case TopPathReduce:
2532     Latency = Cand.SU->getHeight();
2533     break;
2534   case BotHeightReduce:
2535     Latency = Cand.SU->getHeight();
2536     break;
2537   case BotPathReduce:
2538     Latency = Cand.SU->getDepth();
2539     break;
2540   }
2541   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2542   if (P.isValid())
2543     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2544            << ":" << P.getUnitInc() << " ";
2545   else
2546     dbgs() << "      ";
2547   if (ResIdx)
2548     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2549   else
2550     dbgs() << "         ";
2551   if (Latency)
2552     dbgs() << " " << Latency << " cycles ";
2553   else
2554     dbgs() << "          ";
2555   dbgs() << '\n';
2556 }
2557 #endif
2558 
2559 /// Return true if this heuristic determines order.
2560 static bool tryLess(int TryVal, int CandVal,
2561                     GenericSchedulerBase::SchedCandidate &TryCand,
2562                     GenericSchedulerBase::SchedCandidate &Cand,
2563                     GenericSchedulerBase::CandReason Reason) {
2564   if (TryVal < CandVal) {
2565     TryCand.Reason = Reason;
2566     return true;
2567   }
2568   if (TryVal > CandVal) {
2569     if (Cand.Reason > Reason)
2570       Cand.Reason = Reason;
2571     return true;
2572   }
2573   return false;
2574 }
2575 
2576 static bool tryGreater(int TryVal, int CandVal,
2577                        GenericSchedulerBase::SchedCandidate &TryCand,
2578                        GenericSchedulerBase::SchedCandidate &Cand,
2579                        GenericSchedulerBase::CandReason Reason) {
2580   if (TryVal > CandVal) {
2581     TryCand.Reason = Reason;
2582     return true;
2583   }
2584   if (TryVal < CandVal) {
2585     if (Cand.Reason > Reason)
2586       Cand.Reason = Reason;
2587     return true;
2588   }
2589   return false;
2590 }
2591 
2592 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2593                        GenericSchedulerBase::SchedCandidate &Cand,
2594                        SchedBoundary &Zone) {
2595   if (Zone.isTop()) {
2596     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2597       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2598                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2599         return true;
2600     }
2601     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2602                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2603       return true;
2604   } else {
2605     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2606       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2607                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2608         return true;
2609     }
2610     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2611                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2612       return true;
2613   }
2614   return false;
2615 }
2616 
2617 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2618   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2619         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2620 }
2621 
2622 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2623   tracePick(Cand.Reason, Cand.AtTop);
2624 }
2625 
2626 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2627   assert(dag->hasVRegLiveness() &&
2628          "(PreRA)GenericScheduler needs vreg liveness");
2629   DAG = static_cast<ScheduleDAGMILive*>(dag);
2630   SchedModel = DAG->getSchedModel();
2631   TRI = DAG->TRI;
2632 
2633   Rem.init(DAG, SchedModel);
2634   Top.init(DAG, SchedModel, &Rem);
2635   Bot.init(DAG, SchedModel, &Rem);
2636 
2637   // Initialize resource counts.
2638 
2639   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2640   // are disabled, then these HazardRecs will be disabled.
2641   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2642   if (!Top.HazardRec) {
2643     Top.HazardRec =
2644         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2645             Itin, DAG);
2646   }
2647   if (!Bot.HazardRec) {
2648     Bot.HazardRec =
2649         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2650             Itin, DAG);
2651   }
2652   TopCand.SU = nullptr;
2653   BotCand.SU = nullptr;
2654 }
2655 
2656 /// Initialize the per-region scheduling policy.
2657 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2658                                   MachineBasicBlock::iterator End,
2659                                   unsigned NumRegionInstrs) {
2660   const MachineFunction &MF = *Begin->getMF();
2661   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2662 
2663   // Avoid setting up the register pressure tracker for small regions to save
2664   // compile time. As a rough heuristic, only track pressure when the number of
2665   // schedulable instructions exceeds half the integer register file.
2666   RegionPolicy.ShouldTrackPressure = true;
2667   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2668     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2669     if (TLI->isTypeLegal(LegalIntVT)) {
2670       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2671         TLI->getRegClassFor(LegalIntVT));
2672       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2673     }
2674   }
2675 
2676   // For generic targets, we default to bottom-up, because it's simpler and more
2677   // compile-time optimizations have been implemented in that direction.
2678   RegionPolicy.OnlyBottomUp = true;
2679 
2680   // Allow the subtarget to override default policy.
2681   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2682 
2683   // After subtarget overrides, apply command line options.
2684   if (!EnableRegPressure)
2685     RegionPolicy.ShouldTrackPressure = false;
2686 
2687   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2688   // e.g. -misched-bottomup=false allows scheduling in both directions.
2689   assert((!ForceTopDown || !ForceBottomUp) &&
2690          "-misched-topdown incompatible with -misched-bottomup");
2691   if (ForceBottomUp.getNumOccurrences() > 0) {
2692     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2693     if (RegionPolicy.OnlyBottomUp)
2694       RegionPolicy.OnlyTopDown = false;
2695   }
2696   if (ForceTopDown.getNumOccurrences() > 0) {
2697     RegionPolicy.OnlyTopDown = ForceTopDown;
2698     if (RegionPolicy.OnlyTopDown)
2699       RegionPolicy.OnlyBottomUp = false;
2700   }
2701 }
2702 
2703 void GenericScheduler::dumpPolicy() const {
2704   // Cannot completely remove virtual function even in release mode.
2705 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2706   dbgs() << "GenericScheduler RegionPolicy: "
2707          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2708          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2709          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2710          << "\n";
2711 #endif
2712 }
2713 
2714 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2715 /// critical path by more cycles than it takes to drain the instruction buffer.
2716 /// We estimate an upper bounds on in-flight instructions as:
2717 ///
2718 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2719 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2720 /// InFlightResources = InFlightIterations * LoopResources
2721 ///
2722 /// TODO: Check execution resources in addition to IssueCount.
2723 void GenericScheduler::checkAcyclicLatency() {
2724   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2725     return;
2726 
2727   // Scaled number of cycles per loop iteration.
2728   unsigned IterCount =
2729     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2730              Rem.RemIssueCount);
2731   // Scaled acyclic critical path.
2732   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2733   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2734   unsigned InFlightCount =
2735     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2736   unsigned BufferLimit =
2737     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2738 
2739   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2740 
2741   DEBUG(dbgs() << "IssueCycles="
2742         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2743         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2744         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2745         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2746         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2747         if (Rem.IsAcyclicLatencyLimited)
2748           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2749 }
2750 
2751 void GenericScheduler::registerRoots() {
2752   Rem.CriticalPath = DAG->ExitSU.getDepth();
2753 
2754   // Some roots may not feed into ExitSU. Check all of them in case.
2755   for (const SUnit *SU : Bot.Available) {
2756     if (SU->getDepth() > Rem.CriticalPath)
2757       Rem.CriticalPath = SU->getDepth();
2758   }
2759   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2760   if (DumpCriticalPathLength) {
2761     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2762   }
2763 
2764   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2765     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2766     checkAcyclicLatency();
2767   }
2768 }
2769 
2770 static bool tryPressure(const PressureChange &TryP,
2771                         const PressureChange &CandP,
2772                         GenericSchedulerBase::SchedCandidate &TryCand,
2773                         GenericSchedulerBase::SchedCandidate &Cand,
2774                         GenericSchedulerBase::CandReason Reason,
2775                         const TargetRegisterInfo *TRI,
2776                         const MachineFunction &MF) {
2777   // If one candidate decreases and the other increases, go with it.
2778   // Invalid candidates have UnitInc==0.
2779   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2780                  Reason)) {
2781     return true;
2782   }
2783   // Do not compare the magnitude of pressure changes between top and bottom
2784   // boundary.
2785   if (Cand.AtTop != TryCand.AtTop)
2786     return false;
2787 
2788   // If both candidates affect the same set in the same boundary, go with the
2789   // smallest increase.
2790   unsigned TryPSet = TryP.getPSetOrMax();
2791   unsigned CandPSet = CandP.getPSetOrMax();
2792   if (TryPSet == CandPSet) {
2793     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2794                    Reason);
2795   }
2796 
2797   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2798                                  std::numeric_limits<int>::max();
2799 
2800   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2801                                    std::numeric_limits<int>::max();
2802 
2803   // If the candidates are decreasing pressure, reverse priority.
2804   if (TryP.getUnitInc() < 0)
2805     std::swap(TryRank, CandRank);
2806   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2807 }
2808 
2809 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2810   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2811 }
2812 
2813 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2814 /// their physreg def/use.
2815 ///
2816 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2817 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2818 /// with the operation that produces or consumes the physreg. We'll do this when
2819 /// regalloc has support for parallel copies.
2820 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2821   const MachineInstr *MI = SU->getInstr();
2822   if (!MI->isCopy())
2823     return 0;
2824 
2825   unsigned ScheduledOper = isTop ? 1 : 0;
2826   unsigned UnscheduledOper = isTop ? 0 : 1;
2827   // If we have already scheduled the physreg produce/consumer, immediately
2828   // schedule the copy.
2829   if (TargetRegisterInfo::isPhysicalRegister(
2830         MI->getOperand(ScheduledOper).getReg()))
2831     return 1;
2832   // If the physreg is at the boundary, defer it. Otherwise schedule it
2833   // immediately to free the dependent. We can hoist the copy later.
2834   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2835   if (TargetRegisterInfo::isPhysicalRegister(
2836         MI->getOperand(UnscheduledOper).getReg()))
2837     return AtBoundary ? -1 : 1;
2838   return 0;
2839 }
2840 
2841 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2842                                      bool AtTop,
2843                                      const RegPressureTracker &RPTracker,
2844                                      RegPressureTracker &TempTracker) {
2845   Cand.SU = SU;
2846   Cand.AtTop = AtTop;
2847   if (DAG->isTrackingPressure()) {
2848     if (AtTop) {
2849       TempTracker.getMaxDownwardPressureDelta(
2850         Cand.SU->getInstr(),
2851         Cand.RPDelta,
2852         DAG->getRegionCriticalPSets(),
2853         DAG->getRegPressure().MaxSetPressure);
2854     } else {
2855       if (VerifyScheduling) {
2856         TempTracker.getMaxUpwardPressureDelta(
2857           Cand.SU->getInstr(),
2858           &DAG->getPressureDiff(Cand.SU),
2859           Cand.RPDelta,
2860           DAG->getRegionCriticalPSets(),
2861           DAG->getRegPressure().MaxSetPressure);
2862       } else {
2863         RPTracker.getUpwardPressureDelta(
2864           Cand.SU->getInstr(),
2865           DAG->getPressureDiff(Cand.SU),
2866           Cand.RPDelta,
2867           DAG->getRegionCriticalPSets(),
2868           DAG->getRegPressure().MaxSetPressure);
2869       }
2870     }
2871   }
2872   DEBUG(if (Cand.RPDelta.Excess.isValid())
2873           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2874                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2875                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2876 }
2877 
2878 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2879 /// hierarchical. This may be more efficient than a graduated cost model because
2880 /// we don't need to evaluate all aspects of the model for each node in the
2881 /// queue. But it's really done to make the heuristics easier to debug and
2882 /// statistically analyze.
2883 ///
2884 /// \param Cand provides the policy and current best candidate.
2885 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2886 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2887 //              if Cand is from a different zone than TryCand.
2888 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2889                                     SchedCandidate &TryCand,
2890                                     SchedBoundary *Zone) {
2891   // Initialize the candidate if needed.
2892   if (!Cand.isValid()) {
2893     TryCand.Reason = NodeOrder;
2894     return;
2895   }
2896 
2897   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2898                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2899                  TryCand, Cand, PhysRegCopy))
2900     return;
2901 
2902   // Avoid exceeding the target's limit.
2903   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2904                                                Cand.RPDelta.Excess,
2905                                                TryCand, Cand, RegExcess, TRI,
2906                                                DAG->MF))
2907     return;
2908 
2909   // Avoid increasing the max critical pressure in the scheduled region.
2910   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2911                                                Cand.RPDelta.CriticalMax,
2912                                                TryCand, Cand, RegCritical, TRI,
2913                                                DAG->MF))
2914     return;
2915 
2916   // We only compare a subset of features when comparing nodes between
2917   // Top and Bottom boundary. Some properties are simply incomparable, in many
2918   // other instances we should only override the other boundary if something
2919   // is a clear good pick on one boundary. Skip heuristics that are more
2920   // "tie-breaking" in nature.
2921   bool SameBoundary = Zone != nullptr;
2922   if (SameBoundary) {
2923     // For loops that are acyclic path limited, aggressively schedule for
2924     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2925     // heuristics to take precedence.
2926     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2927         tryLatency(TryCand, Cand, *Zone))
2928       return;
2929 
2930     // Prioritize instructions that read unbuffered resources by stall cycles.
2931     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2932                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2933       return;
2934   }
2935 
2936   // Keep clustered nodes together to encourage downstream peephole
2937   // optimizations which may reduce resource requirements.
2938   //
2939   // This is a best effort to set things up for a post-RA pass. Optimizations
2940   // like generating loads of multiple registers should ideally be done within
2941   // the scheduler pass by combining the loads during DAG postprocessing.
2942   const SUnit *CandNextClusterSU =
2943     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2944   const SUnit *TryCandNextClusterSU =
2945     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2946   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2947                  Cand.SU == CandNextClusterSU,
2948                  TryCand, Cand, Cluster))
2949     return;
2950 
2951   if (SameBoundary) {
2952     // Weak edges are for clustering and other constraints.
2953     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2954                 getWeakLeft(Cand.SU, Cand.AtTop),
2955                 TryCand, Cand, Weak))
2956       return;
2957   }
2958 
2959   // Avoid increasing the max pressure of the entire region.
2960   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2961                                                Cand.RPDelta.CurrentMax,
2962                                                TryCand, Cand, RegMax, TRI,
2963                                                DAG->MF))
2964     return;
2965 
2966   if (SameBoundary) {
2967     // Avoid critical resource consumption and balance the schedule.
2968     TryCand.initResourceDelta(DAG, SchedModel);
2969     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2970                 TryCand, Cand, ResourceReduce))
2971       return;
2972     if (tryGreater(TryCand.ResDelta.DemandedResources,
2973                    Cand.ResDelta.DemandedResources,
2974                    TryCand, Cand, ResourceDemand))
2975       return;
2976 
2977     // Avoid serializing long latency dependence chains.
2978     // For acyclic path limited loops, latency was already checked above.
2979     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2980         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2981       return;
2982 
2983     // Fall through to original instruction order.
2984     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2985         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2986       TryCand.Reason = NodeOrder;
2987     }
2988   }
2989 }
2990 
2991 /// Pick the best candidate from the queue.
2992 ///
2993 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2994 /// DAG building. To adjust for the current scheduling location we need to
2995 /// maintain the number of vreg uses remaining to be top-scheduled.
2996 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2997                                          const CandPolicy &ZonePolicy,
2998                                          const RegPressureTracker &RPTracker,
2999                                          SchedCandidate &Cand) {
3000   // getMaxPressureDelta temporarily modifies the tracker.
3001   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3002 
3003   ReadyQueue &Q = Zone.Available;
3004   for (SUnit *SU : Q) {
3005 
3006     SchedCandidate TryCand(ZonePolicy);
3007     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3008     // Pass SchedBoundary only when comparing nodes from the same boundary.
3009     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3010     tryCandidate(Cand, TryCand, ZoneArg);
3011     if (TryCand.Reason != NoCand) {
3012       // Initialize resource delta if needed in case future heuristics query it.
3013       if (TryCand.ResDelta == SchedResourceDelta())
3014         TryCand.initResourceDelta(DAG, SchedModel);
3015       Cand.setBest(TryCand);
3016       DEBUG(traceCandidate(Cand));
3017     }
3018   }
3019 }
3020 
3021 /// Pick the best candidate node from either the top or bottom queue.
3022 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3023   // Schedule as far as possible in the direction of no choice. This is most
3024   // efficient, but also provides the best heuristics for CriticalPSets.
3025   if (SUnit *SU = Bot.pickOnlyChoice()) {
3026     IsTopNode = false;
3027     tracePick(Only1, false);
3028     return SU;
3029   }
3030   if (SUnit *SU = Top.pickOnlyChoice()) {
3031     IsTopNode = true;
3032     tracePick(Only1, true);
3033     return SU;
3034   }
3035   // Set the bottom-up policy based on the state of the current bottom zone and
3036   // the instructions outside the zone, including the top zone.
3037   CandPolicy BotPolicy;
3038   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3039   // Set the top-down policy based on the state of the current top zone and
3040   // the instructions outside the zone, including the bottom zone.
3041   CandPolicy TopPolicy;
3042   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3043 
3044   // See if BotCand is still valid (because we previously scheduled from Top).
3045   DEBUG(dbgs() << "Picking from Bot:\n");
3046   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3047       BotCand.Policy != BotPolicy) {
3048     BotCand.reset(CandPolicy());
3049     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3050     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3051   } else {
3052     DEBUG(traceCandidate(BotCand));
3053 #ifndef NDEBUG
3054     if (VerifyScheduling) {
3055       SchedCandidate TCand;
3056       TCand.reset(CandPolicy());
3057       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3058       assert(TCand.SU == BotCand.SU &&
3059              "Last pick result should correspond to re-picking right now");
3060     }
3061 #endif
3062   }
3063 
3064   // Check if the top Q has a better candidate.
3065   DEBUG(dbgs() << "Picking from Top:\n");
3066   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3067       TopCand.Policy != TopPolicy) {
3068     TopCand.reset(CandPolicy());
3069     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3070     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3071   } else {
3072     DEBUG(traceCandidate(TopCand));
3073 #ifndef NDEBUG
3074     if (VerifyScheduling) {
3075       SchedCandidate TCand;
3076       TCand.reset(CandPolicy());
3077       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3078       assert(TCand.SU == TopCand.SU &&
3079            "Last pick result should correspond to re-picking right now");
3080     }
3081 #endif
3082   }
3083 
3084   // Pick best from BotCand and TopCand.
3085   assert(BotCand.isValid());
3086   assert(TopCand.isValid());
3087   SchedCandidate Cand = BotCand;
3088   TopCand.Reason = NoCand;
3089   tryCandidate(Cand, TopCand, nullptr);
3090   if (TopCand.Reason != NoCand) {
3091     Cand.setBest(TopCand);
3092     DEBUG(traceCandidate(Cand));
3093   }
3094 
3095   IsTopNode = Cand.AtTop;
3096   tracePick(Cand);
3097   return Cand.SU;
3098 }
3099 
3100 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3101 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3102   if (DAG->top() == DAG->bottom()) {
3103     assert(Top.Available.empty() && Top.Pending.empty() &&
3104            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3105     return nullptr;
3106   }
3107   SUnit *SU;
3108   do {
3109     if (RegionPolicy.OnlyTopDown) {
3110       SU = Top.pickOnlyChoice();
3111       if (!SU) {
3112         CandPolicy NoPolicy;
3113         TopCand.reset(NoPolicy);
3114         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3115         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3116         tracePick(TopCand);
3117         SU = TopCand.SU;
3118       }
3119       IsTopNode = true;
3120     } else if (RegionPolicy.OnlyBottomUp) {
3121       SU = Bot.pickOnlyChoice();
3122       if (!SU) {
3123         CandPolicy NoPolicy;
3124         BotCand.reset(NoPolicy);
3125         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3126         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3127         tracePick(BotCand);
3128         SU = BotCand.SU;
3129       }
3130       IsTopNode = false;
3131     } else {
3132       SU = pickNodeBidirectional(IsTopNode);
3133     }
3134   } while (SU->isScheduled);
3135 
3136   if (SU->isTopReady())
3137     Top.removeReady(SU);
3138   if (SU->isBottomReady())
3139     Bot.removeReady(SU);
3140 
3141   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3142   return SU;
3143 }
3144 
3145 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3146   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3147   if (!isTop)
3148     ++InsertPos;
3149   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3150 
3151   // Find already scheduled copies with a single physreg dependence and move
3152   // them just above the scheduled instruction.
3153   for (SDep &Dep : Deps) {
3154     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3155       continue;
3156     SUnit *DepSU = Dep.getSUnit();
3157     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3158       continue;
3159     MachineInstr *Copy = DepSU->getInstr();
3160     if (!Copy->isCopy())
3161       continue;
3162     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3163           Dep.getSUnit()->dump(DAG));
3164     DAG->moveInstruction(Copy, InsertPos);
3165   }
3166 }
3167 
3168 /// Update the scheduler's state after scheduling a node. This is the same node
3169 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3170 /// update it's state based on the current cycle before MachineSchedStrategy
3171 /// does.
3172 ///
3173 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3174 /// them here. See comments in biasPhysRegCopy.
3175 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3176   if (IsTopNode) {
3177     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3178     Top.bumpNode(SU);
3179     if (SU->hasPhysRegUses)
3180       reschedulePhysRegCopies(SU, true);
3181   } else {
3182     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3183     Bot.bumpNode(SU);
3184     if (SU->hasPhysRegDefs)
3185       reschedulePhysRegCopies(SU, false);
3186   }
3187 }
3188 
3189 /// Create the standard converging machine scheduler. This will be used as the
3190 /// default scheduler if the target does not set a default.
3191 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3192   ScheduleDAGMILive *DAG =
3193       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3194   // Register DAG post-processors.
3195   //
3196   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3197   // data and pass it to later mutations. Have a single mutation that gathers
3198   // the interesting nodes in one pass.
3199   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3200   return DAG;
3201 }
3202 
3203 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3204   return createGenericSchedLive(C);
3205 }
3206 
3207 static MachineSchedRegistry
3208 GenericSchedRegistry("converge", "Standard converging scheduler.",
3209                      createConveringSched);
3210 
3211 //===----------------------------------------------------------------------===//
3212 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3213 //===----------------------------------------------------------------------===//
3214 
3215 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3216   DAG = Dag;
3217   SchedModel = DAG->getSchedModel();
3218   TRI = DAG->TRI;
3219 
3220   Rem.init(DAG, SchedModel);
3221   Top.init(DAG, SchedModel, &Rem);
3222   BotRoots.clear();
3223 
3224   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3225   // or are disabled, then these HazardRecs will be disabled.
3226   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3227   if (!Top.HazardRec) {
3228     Top.HazardRec =
3229         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3230             Itin, DAG);
3231   }
3232 }
3233 
3234 void PostGenericScheduler::registerRoots() {
3235   Rem.CriticalPath = DAG->ExitSU.getDepth();
3236 
3237   // Some roots may not feed into ExitSU. Check all of them in case.
3238   for (const SUnit *SU : BotRoots) {
3239     if (SU->getDepth() > Rem.CriticalPath)
3240       Rem.CriticalPath = SU->getDepth();
3241   }
3242   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3243   if (DumpCriticalPathLength) {
3244     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3245   }
3246 }
3247 
3248 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3249 ///
3250 /// \param Cand provides the policy and current best candidate.
3251 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3252 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3253                                         SchedCandidate &TryCand) {
3254   // Initialize the candidate if needed.
3255   if (!Cand.isValid()) {
3256     TryCand.Reason = NodeOrder;
3257     return;
3258   }
3259 
3260   // Prioritize instructions that read unbuffered resources by stall cycles.
3261   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3262               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3263     return;
3264 
3265   // Keep clustered nodes together.
3266   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3267                  Cand.SU == DAG->getNextClusterSucc(),
3268                  TryCand, Cand, Cluster))
3269     return;
3270 
3271   // Avoid critical resource consumption and balance the schedule.
3272   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3273               TryCand, Cand, ResourceReduce))
3274     return;
3275   if (tryGreater(TryCand.ResDelta.DemandedResources,
3276                  Cand.ResDelta.DemandedResources,
3277                  TryCand, Cand, ResourceDemand))
3278     return;
3279 
3280   // Avoid serializing long latency dependence chains.
3281   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3282     return;
3283   }
3284 
3285   // Fall through to original instruction order.
3286   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3287     TryCand.Reason = NodeOrder;
3288 }
3289 
3290 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3291   ReadyQueue &Q = Top.Available;
3292   for (SUnit *SU : Q) {
3293     SchedCandidate TryCand(Cand.Policy);
3294     TryCand.SU = SU;
3295     TryCand.AtTop = true;
3296     TryCand.initResourceDelta(DAG, SchedModel);
3297     tryCandidate(Cand, TryCand);
3298     if (TryCand.Reason != NoCand) {
3299       Cand.setBest(TryCand);
3300       DEBUG(traceCandidate(Cand));
3301     }
3302   }
3303 }
3304 
3305 /// Pick the next node to schedule.
3306 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3307   if (DAG->top() == DAG->bottom()) {
3308     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3309     return nullptr;
3310   }
3311   SUnit *SU;
3312   do {
3313     SU = Top.pickOnlyChoice();
3314     if (SU) {
3315       tracePick(Only1, true);
3316     } else {
3317       CandPolicy NoPolicy;
3318       SchedCandidate TopCand(NoPolicy);
3319       // Set the top-down policy based on the state of the current top zone and
3320       // the instructions outside the zone, including the bottom zone.
3321       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3322       pickNodeFromQueue(TopCand);
3323       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3324       tracePick(TopCand);
3325       SU = TopCand.SU;
3326     }
3327   } while (SU->isScheduled);
3328 
3329   IsTopNode = true;
3330   Top.removeReady(SU);
3331 
3332   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3333   return SU;
3334 }
3335 
3336 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3337 /// scheduled/remaining flags in the DAG nodes.
3338 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3339   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3340   Top.bumpNode(SU);
3341 }
3342 
3343 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3344   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3345                            /*RemoveKillFlags=*/true);
3346 }
3347 
3348 //===----------------------------------------------------------------------===//
3349 // ILP Scheduler. Currently for experimental analysis of heuristics.
3350 //===----------------------------------------------------------------------===//
3351 
3352 namespace {
3353 
3354 /// \brief Order nodes by the ILP metric.
3355 struct ILPOrder {
3356   const SchedDFSResult *DFSResult = nullptr;
3357   const BitVector *ScheduledTrees = nullptr;
3358   bool MaximizeILP;
3359 
3360   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3361 
3362   /// \brief Apply a less-than relation on node priority.
3363   ///
3364   /// (Return true if A comes after B in the Q.)
3365   bool operator()(const SUnit *A, const SUnit *B) const {
3366     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3367     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3368     if (SchedTreeA != SchedTreeB) {
3369       // Unscheduled trees have lower priority.
3370       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3371         return ScheduledTrees->test(SchedTreeB);
3372 
3373       // Trees with shallower connections have have lower priority.
3374       if (DFSResult->getSubtreeLevel(SchedTreeA)
3375           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3376         return DFSResult->getSubtreeLevel(SchedTreeA)
3377           < DFSResult->getSubtreeLevel(SchedTreeB);
3378       }
3379     }
3380     if (MaximizeILP)
3381       return DFSResult->getILP(A) < DFSResult->getILP(B);
3382     else
3383       return DFSResult->getILP(A) > DFSResult->getILP(B);
3384   }
3385 };
3386 
3387 /// \brief Schedule based on the ILP metric.
3388 class ILPScheduler : public MachineSchedStrategy {
3389   ScheduleDAGMILive *DAG = nullptr;
3390   ILPOrder Cmp;
3391 
3392   std::vector<SUnit*> ReadyQ;
3393 
3394 public:
3395   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3396 
3397   void initialize(ScheduleDAGMI *dag) override {
3398     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3399     DAG = static_cast<ScheduleDAGMILive*>(dag);
3400     DAG->computeDFSResult();
3401     Cmp.DFSResult = DAG->getDFSResult();
3402     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3403     ReadyQ.clear();
3404   }
3405 
3406   void registerRoots() override {
3407     // Restore the heap in ReadyQ with the updated DFS results.
3408     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3409   }
3410 
3411   /// Implement MachineSchedStrategy interface.
3412   /// -----------------------------------------
3413 
3414   /// Callback to select the highest priority node from the ready Q.
3415   SUnit *pickNode(bool &IsTopNode) override {
3416     if (ReadyQ.empty()) return nullptr;
3417     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3418     SUnit *SU = ReadyQ.back();
3419     ReadyQ.pop_back();
3420     IsTopNode = false;
3421     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3422           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3423           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3424           << DAG->getDFSResult()->getSubtreeLevel(
3425             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3426           << "Scheduling " << *SU->getInstr());
3427     return SU;
3428   }
3429 
3430   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3431   void scheduleTree(unsigned SubtreeID) override {
3432     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3433   }
3434 
3435   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3436   /// DFSResults, and resort the priority Q.
3437   void schedNode(SUnit *SU, bool IsTopNode) override {
3438     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3439   }
3440 
3441   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3442 
3443   void releaseBottomNode(SUnit *SU) override {
3444     ReadyQ.push_back(SU);
3445     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3446   }
3447 };
3448 
3449 } // end anonymous namespace
3450 
3451 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3452   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3453 }
3454 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3455   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3456 }
3457 
3458 static MachineSchedRegistry ILPMaxRegistry(
3459   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3460 static MachineSchedRegistry ILPMinRegistry(
3461   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3462 
3463 //===----------------------------------------------------------------------===//
3464 // Machine Instruction Shuffler for Correctness Testing
3465 //===----------------------------------------------------------------------===//
3466 
3467 #ifndef NDEBUG
3468 namespace {
3469 
3470 /// Apply a less-than relation on the node order, which corresponds to the
3471 /// instruction order prior to scheduling. IsReverse implements greater-than.
3472 template<bool IsReverse>
3473 struct SUnitOrder {
3474   bool operator()(SUnit *A, SUnit *B) const {
3475     if (IsReverse)
3476       return A->NodeNum > B->NodeNum;
3477     else
3478       return A->NodeNum < B->NodeNum;
3479   }
3480 };
3481 
3482 /// Reorder instructions as much as possible.
3483 class InstructionShuffler : public MachineSchedStrategy {
3484   bool IsAlternating;
3485   bool IsTopDown;
3486 
3487   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3488   // gives nodes with a higher number higher priority causing the latest
3489   // instructions to be scheduled first.
3490   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3491     TopQ;
3492 
3493   // When scheduling bottom-up, use greater-than as the queue priority.
3494   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3495     BottomQ;
3496 
3497 public:
3498   InstructionShuffler(bool alternate, bool topdown)
3499     : IsAlternating(alternate), IsTopDown(topdown) {}
3500 
3501   void initialize(ScheduleDAGMI*) override {
3502     TopQ.clear();
3503     BottomQ.clear();
3504   }
3505 
3506   /// Implement MachineSchedStrategy interface.
3507   /// -----------------------------------------
3508 
3509   SUnit *pickNode(bool &IsTopNode) override {
3510     SUnit *SU;
3511     if (IsTopDown) {
3512       do {
3513         if (TopQ.empty()) return nullptr;
3514         SU = TopQ.top();
3515         TopQ.pop();
3516       } while (SU->isScheduled);
3517       IsTopNode = true;
3518     } else {
3519       do {
3520         if (BottomQ.empty()) return nullptr;
3521         SU = BottomQ.top();
3522         BottomQ.pop();
3523       } while (SU->isScheduled);
3524       IsTopNode = false;
3525     }
3526     if (IsAlternating)
3527       IsTopDown = !IsTopDown;
3528     return SU;
3529   }
3530 
3531   void schedNode(SUnit *SU, bool IsTopNode) override {}
3532 
3533   void releaseTopNode(SUnit *SU) override {
3534     TopQ.push(SU);
3535   }
3536   void releaseBottomNode(SUnit *SU) override {
3537     BottomQ.push(SU);
3538   }
3539 };
3540 
3541 } // end anonymous namespace
3542 
3543 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3544   bool Alternate = !ForceTopDown && !ForceBottomUp;
3545   bool TopDown = !ForceBottomUp;
3546   assert((TopDown || !ForceTopDown) &&
3547          "-misched-topdown incompatible with -misched-bottomup");
3548   return new ScheduleDAGMILive(
3549       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3550 }
3551 
3552 static MachineSchedRegistry ShufflerRegistry(
3553   "shuffle", "Shuffle machine instructions alternating directions",
3554   createInstructionShuffler);
3555 #endif // !NDEBUG
3556 
3557 //===----------------------------------------------------------------------===//
3558 // GraphWriter support for ScheduleDAGMILive.
3559 //===----------------------------------------------------------------------===//
3560 
3561 #ifndef NDEBUG
3562 namespace llvm {
3563 
3564 template<> struct GraphTraits<
3565   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3566 
3567 template<>
3568 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3569   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3570 
3571   static std::string getGraphName(const ScheduleDAG *G) {
3572     return G->MF.getName();
3573   }
3574 
3575   static bool renderGraphFromBottomUp() {
3576     return true;
3577   }
3578 
3579   static bool isNodeHidden(const SUnit *Node) {
3580     if (ViewMISchedCutoff == 0)
3581       return false;
3582     return (Node->Preds.size() > ViewMISchedCutoff
3583          || Node->Succs.size() > ViewMISchedCutoff);
3584   }
3585 
3586   /// If you want to override the dot attributes printed for a particular
3587   /// edge, override this method.
3588   static std::string getEdgeAttributes(const SUnit *Node,
3589                                        SUnitIterator EI,
3590                                        const ScheduleDAG *Graph) {
3591     if (EI.isArtificialDep())
3592       return "color=cyan,style=dashed";
3593     if (EI.isCtrlDep())
3594       return "color=blue,style=dashed";
3595     return "";
3596   }
3597 
3598   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3599     std::string Str;
3600     raw_string_ostream SS(Str);
3601     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3602     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3603       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3604     SS << "SU:" << SU->NodeNum;
3605     if (DFS)
3606       SS << " I:" << DFS->getNumInstrs(SU);
3607     return SS.str();
3608   }
3609 
3610   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3611     return G->getGraphNodeLabel(SU);
3612   }
3613 
3614   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3615     std::string Str("shape=Mrecord");
3616     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3617     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3618       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3619     if (DFS) {
3620       Str += ",style=filled,fillcolor=\"#";
3621       Str += DOT::getColorString(DFS->getSubtreeID(N));
3622       Str += '"';
3623     }
3624     return Str;
3625   }
3626 };
3627 
3628 } // end namespace llvm
3629 #endif // NDEBUG
3630 
3631 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3632 /// rendered using 'dot'.
3633 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3634 #ifndef NDEBUG
3635   ViewGraph(this, Name, false, Title);
3636 #else
3637   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3638          << "systems with Graphviz or gv!\n";
3639 #endif  // NDEBUG
3640 }
3641 
3642 /// Out-of-line implementation with no arguments is handy for gdb.
3643 void ScheduleDAGMI::viewGraph() {
3644   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3645 }
3646