xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision f1d1ca3d7434d2f50ff64cefc6155741a6e0bcd0)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetFrameLowering.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/Config/llvm-config.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/LaneBitmask.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/GraphWriter.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <limits>
66 #include <memory>
67 #include <string>
68 #include <tuple>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "machine-scheduler"
75 
76 STATISTIC(NumClustered, "Number of load/store pairs clustered");
77 
78 namespace llvm {
79 
80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
81                            cl::desc("Force top-down list scheduling"));
82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
83                             cl::desc("Force bottom-up list scheduling"));
84 cl::opt<bool>
85 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
86                        cl::desc("Print critical path length to stdout"));
87 
88 cl::opt<bool> VerifyScheduling(
89     "verify-misched", cl::Hidden,
90     cl::desc("Verify machine instrs before and after machine scheduling"));
91 
92 #ifndef NDEBUG
93 cl::opt<bool> ViewMISchedDAGs(
94     "view-misched-dags", cl::Hidden,
95     cl::desc("Pop up a window to show MISched dags after they are processed"));
96 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
97                         cl::desc("Print schedule DAGs"));
98 cl::opt<bool> MISchedDumpReservedCycles(
99     "misched-dump-reserved-cycles", cl::Hidden, cl::init(false),
100     cl::desc("Dump resource usage at schedule boundary."));
101 #else
102 const bool ViewMISchedDAGs = false;
103 const bool PrintDAGs = false;
104 #ifdef LLVM_ENABLE_DUMP
105 const bool MISchedDumpReservedCycles = false;
106 #endif // LLVM_ENABLE_DUMP
107 #endif // NDEBUG
108 
109 } // end namespace llvm
110 
111 #ifndef NDEBUG
112 /// In some situations a few uninteresting nodes depend on nearly all other
113 /// nodes in the graph, provide a cutoff to hide them.
114 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
115   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
116 
117 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
118   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
119 
120 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
121   cl::desc("Only schedule this function"));
122 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
123                                         cl::desc("Only schedule this MBB#"));
124 #endif // NDEBUG
125 
126 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
127 /// size of the ready lists.
128 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
129   cl::desc("Limit ready list to N instructions"), cl::init(256));
130 
131 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
132   cl::desc("Enable register pressure scheduling."), cl::init(true));
133 
134 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
135   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
136 
137 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
138                                         cl::desc("Enable memop clustering."),
139                                         cl::init(true));
140 static cl::opt<bool>
141     ForceFastCluster("force-fast-cluster", cl::Hidden,
142                      cl::desc("Switch to fast cluster algorithm with the lost "
143                               "of some fusion opportunities"),
144                      cl::init(false));
145 static cl::opt<unsigned>
146     FastClusterThreshold("fast-cluster-threshold", cl::Hidden,
147                          cl::desc("The threshold for fast cluster"),
148                          cl::init(1000));
149 
150 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
151 static cl::opt<bool> MISchedDumpScheduleTrace(
152     "misched-dump-schedule-trace", cl::Hidden, cl::init(false),
153     cl::desc("Dump resource usage at schedule boundary."));
154 static cl::opt<unsigned>
155     HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden,
156                    cl::desc("Set width of the columns with "
157                             "the resources and schedule units"),
158                    cl::init(19));
159 static cl::opt<unsigned>
160     ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden,
161              cl::desc("Set width of the columns showing resource booking."),
162              cl::init(5));
163 #endif
164 
165 // DAG subtrees must have at least this many nodes.
166 static const unsigned MinSubtreeSize = 8;
167 
168 // Pin the vtables to this file.
169 void MachineSchedStrategy::anchor() {}
170 
171 void ScheduleDAGMutation::anchor() {}
172 
173 //===----------------------------------------------------------------------===//
174 // Machine Instruction Scheduling Pass and Registry
175 //===----------------------------------------------------------------------===//
176 
177 MachineSchedContext::MachineSchedContext() {
178   RegClassInfo = new RegisterClassInfo();
179 }
180 
181 MachineSchedContext::~MachineSchedContext() {
182   delete RegClassInfo;
183 }
184 
185 namespace {
186 
187 /// Base class for a machine scheduler class that can run at any point.
188 class MachineSchedulerBase : public MachineSchedContext,
189                              public MachineFunctionPass {
190 public:
191   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
192 
193   void print(raw_ostream &O, const Module* = nullptr) const override;
194 
195 protected:
196   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
197 };
198 
199 /// MachineScheduler runs after coalescing and before register allocation.
200 class MachineScheduler : public MachineSchedulerBase {
201 public:
202   MachineScheduler();
203 
204   void getAnalysisUsage(AnalysisUsage &AU) const override;
205 
206   bool runOnMachineFunction(MachineFunction&) override;
207 
208   static char ID; // Class identification, replacement for typeinfo
209 
210 protected:
211   ScheduleDAGInstrs *createMachineScheduler();
212 };
213 
214 /// PostMachineScheduler runs after shortly before code emission.
215 class PostMachineScheduler : public MachineSchedulerBase {
216 public:
217   PostMachineScheduler();
218 
219   void getAnalysisUsage(AnalysisUsage &AU) const override;
220 
221   bool runOnMachineFunction(MachineFunction&) override;
222 
223   static char ID; // Class identification, replacement for typeinfo
224 
225 protected:
226   ScheduleDAGInstrs *createPostMachineScheduler();
227 };
228 
229 } // end anonymous namespace
230 
231 char MachineScheduler::ID = 0;
232 
233 char &llvm::MachineSchedulerID = MachineScheduler::ID;
234 
235 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
236                       "Machine Instruction Scheduler", false, false)
237 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
238 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
239 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
240 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
241 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
242 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
243                     "Machine Instruction Scheduler", false, false)
244 
245 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
246   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
247 }
248 
249 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
250   AU.setPreservesCFG();
251   AU.addRequired<MachineDominatorTree>();
252   AU.addRequired<MachineLoopInfo>();
253   AU.addRequired<AAResultsWrapperPass>();
254   AU.addRequired<TargetPassConfig>();
255   AU.addRequired<SlotIndexes>();
256   AU.addPreserved<SlotIndexes>();
257   AU.addRequired<LiveIntervals>();
258   AU.addPreserved<LiveIntervals>();
259   MachineFunctionPass::getAnalysisUsage(AU);
260 }
261 
262 char PostMachineScheduler::ID = 0;
263 
264 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
265 
266 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched",
267                       "PostRA Machine Instruction Scheduler", false, false)
268 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
269 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
270 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
271 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched",
272                     "PostRA Machine Instruction Scheduler", false, false)
273 
274 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
275   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
276 }
277 
278 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
279   AU.setPreservesCFG();
280   AU.addRequired<MachineDominatorTree>();
281   AU.addRequired<MachineLoopInfo>();
282   AU.addRequired<AAResultsWrapperPass>();
283   AU.addRequired<TargetPassConfig>();
284   MachineFunctionPass::getAnalysisUsage(AU);
285 }
286 
287 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
288     MachineSchedRegistry::Registry;
289 
290 /// A dummy default scheduler factory indicates whether the scheduler
291 /// is overridden on the command line.
292 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
293   return nullptr;
294 }
295 
296 /// MachineSchedOpt allows command line selection of the scheduler.
297 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
298                RegisterPassParser<MachineSchedRegistry>>
299 MachineSchedOpt("misched",
300                 cl::init(&useDefaultMachineSched), cl::Hidden,
301                 cl::desc("Machine instruction scheduler to use"));
302 
303 static MachineSchedRegistry
304 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
305                      useDefaultMachineSched);
306 
307 static cl::opt<bool> EnableMachineSched(
308     "enable-misched",
309     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
310     cl::Hidden);
311 
312 static cl::opt<bool> EnablePostRAMachineSched(
313     "enable-post-misched",
314     cl::desc("Enable the post-ra machine instruction scheduling pass."),
315     cl::init(true), cl::Hidden);
316 
317 /// Decrement this iterator until reaching the top or a non-debug instr.
318 static MachineBasicBlock::const_iterator
319 priorNonDebug(MachineBasicBlock::const_iterator I,
320               MachineBasicBlock::const_iterator Beg) {
321   assert(I != Beg && "reached the top of the region, cannot decrement");
322   while (--I != Beg) {
323     if (!I->isDebugOrPseudoInstr())
324       break;
325   }
326   return I;
327 }
328 
329 /// Non-const version.
330 static MachineBasicBlock::iterator
331 priorNonDebug(MachineBasicBlock::iterator I,
332               MachineBasicBlock::const_iterator Beg) {
333   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
334       .getNonConstIterator();
335 }
336 
337 /// If this iterator is a debug value, increment until reaching the End or a
338 /// non-debug instruction.
339 static MachineBasicBlock::const_iterator
340 nextIfDebug(MachineBasicBlock::const_iterator I,
341             MachineBasicBlock::const_iterator End) {
342   for(; I != End; ++I) {
343     if (!I->isDebugOrPseudoInstr())
344       break;
345   }
346   return I;
347 }
348 
349 /// Non-const version.
350 static MachineBasicBlock::iterator
351 nextIfDebug(MachineBasicBlock::iterator I,
352             MachineBasicBlock::const_iterator End) {
353   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
354       .getNonConstIterator();
355 }
356 
357 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
358 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
359   // Select the scheduler, or set the default.
360   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
361   if (Ctor != useDefaultMachineSched)
362     return Ctor(this);
363 
364   // Get the default scheduler set by the target for this function.
365   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
366   if (Scheduler)
367     return Scheduler;
368 
369   // Default to GenericScheduler.
370   return createGenericSchedLive(this);
371 }
372 
373 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
374 /// the caller. We don't have a command line option to override the postRA
375 /// scheduler. The Target must configure it.
376 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
377   // Get the postRA scheduler set by the target for this function.
378   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
379   if (Scheduler)
380     return Scheduler;
381 
382   // Default to GenericScheduler.
383   return createGenericSchedPostRA(this);
384 }
385 
386 /// Top-level MachineScheduler pass driver.
387 ///
388 /// Visit blocks in function order. Divide each block into scheduling regions
389 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
390 /// consistent with the DAG builder, which traverses the interior of the
391 /// scheduling regions bottom-up.
392 ///
393 /// This design avoids exposing scheduling boundaries to the DAG builder,
394 /// simplifying the DAG builder's support for "special" target instructions.
395 /// At the same time the design allows target schedulers to operate across
396 /// scheduling boundaries, for example to bundle the boundary instructions
397 /// without reordering them. This creates complexity, because the target
398 /// scheduler must update the RegionBegin and RegionEnd positions cached by
399 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
400 /// design would be to split blocks at scheduling boundaries, but LLVM has a
401 /// general bias against block splitting purely for implementation simplicity.
402 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
403   if (skipFunction(mf.getFunction()))
404     return false;
405 
406   if (EnableMachineSched.getNumOccurrences()) {
407     if (!EnableMachineSched)
408       return false;
409   } else if (!mf.getSubtarget().enableMachineScheduler())
410     return false;
411 
412   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
413 
414   // Initialize the context of the pass.
415   MF = &mf;
416   MLI = &getAnalysis<MachineLoopInfo>();
417   MDT = &getAnalysis<MachineDominatorTree>();
418   PassConfig = &getAnalysis<TargetPassConfig>();
419   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
420 
421   LIS = &getAnalysis<LiveIntervals>();
422 
423   if (VerifyScheduling) {
424     LLVM_DEBUG(LIS->dump());
425     MF->verify(this, "Before machine scheduling.");
426   }
427   RegClassInfo->runOnMachineFunction(*MF);
428 
429   // Instantiate the selected scheduler for this target, function, and
430   // optimization level.
431   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
432   scheduleRegions(*Scheduler, false);
433 
434   LLVM_DEBUG(LIS->dump());
435   if (VerifyScheduling)
436     MF->verify(this, "After machine scheduling.");
437   return true;
438 }
439 
440 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
441   if (skipFunction(mf.getFunction()))
442     return false;
443 
444   if (EnablePostRAMachineSched.getNumOccurrences()) {
445     if (!EnablePostRAMachineSched)
446       return false;
447   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
448     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
449     return false;
450   }
451   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
452 
453   // Initialize the context of the pass.
454   MF = &mf;
455   MLI = &getAnalysis<MachineLoopInfo>();
456   PassConfig = &getAnalysis<TargetPassConfig>();
457   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
458 
459   if (VerifyScheduling)
460     MF->verify(this, "Before post machine scheduling.");
461 
462   // Instantiate the selected scheduler for this target, function, and
463   // optimization level.
464   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
465   scheduleRegions(*Scheduler, true);
466 
467   if (VerifyScheduling)
468     MF->verify(this, "After post machine scheduling.");
469   return true;
470 }
471 
472 /// Return true of the given instruction should not be included in a scheduling
473 /// region.
474 ///
475 /// MachineScheduler does not currently support scheduling across calls. To
476 /// handle calls, the DAG builder needs to be modified to create register
477 /// anti/output dependencies on the registers clobbered by the call's regmask
478 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
479 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
480 /// the boundary, but there would be no benefit to postRA scheduling across
481 /// calls this late anyway.
482 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
483                             MachineBasicBlock *MBB,
484                             MachineFunction *MF,
485                             const TargetInstrInfo *TII) {
486   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
487 }
488 
489 /// A region of an MBB for scheduling.
490 namespace {
491 struct SchedRegion {
492   /// RegionBegin is the first instruction in the scheduling region, and
493   /// RegionEnd is either MBB->end() or the scheduling boundary after the
494   /// last instruction in the scheduling region. These iterators cannot refer
495   /// to instructions outside of the identified scheduling region because
496   /// those may be reordered before scheduling this region.
497   MachineBasicBlock::iterator RegionBegin;
498   MachineBasicBlock::iterator RegionEnd;
499   unsigned NumRegionInstrs;
500 
501   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
502               unsigned N) :
503     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
504 };
505 } // end anonymous namespace
506 
507 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
508 
509 static void
510 getSchedRegions(MachineBasicBlock *MBB,
511                 MBBRegionsVector &Regions,
512                 bool RegionsTopDown) {
513   MachineFunction *MF = MBB->getParent();
514   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
515 
516   MachineBasicBlock::iterator I = nullptr;
517   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
518       RegionEnd != MBB->begin(); RegionEnd = I) {
519 
520     // Avoid decrementing RegionEnd for blocks with no terminator.
521     if (RegionEnd != MBB->end() ||
522         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
523       --RegionEnd;
524     }
525 
526     // The next region starts above the previous region. Look backward in the
527     // instruction stream until we find the nearest boundary.
528     unsigned NumRegionInstrs = 0;
529     I = RegionEnd;
530     for (;I != MBB->begin(); --I) {
531       MachineInstr &MI = *std::prev(I);
532       if (isSchedBoundary(&MI, &*MBB, MF, TII))
533         break;
534       if (!MI.isDebugOrPseudoInstr()) {
535         // MBB::size() uses instr_iterator to count. Here we need a bundle to
536         // count as a single instruction.
537         ++NumRegionInstrs;
538       }
539     }
540 
541     // It's possible we found a scheduling region that only has debug
542     // instructions. Don't bother scheduling these.
543     if (NumRegionInstrs != 0)
544       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
545   }
546 
547   if (RegionsTopDown)
548     std::reverse(Regions.begin(), Regions.end());
549 }
550 
551 /// Main driver for both MachineScheduler and PostMachineScheduler.
552 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
553                                            bool FixKillFlags) {
554   // Visit all machine basic blocks.
555   //
556   // TODO: Visit blocks in global postorder or postorder within the bottom-up
557   // loop tree. Then we can optionally compute global RegPressure.
558   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
559        MBB != MBBEnd; ++MBB) {
560 
561     Scheduler.startBlock(&*MBB);
562 
563 #ifndef NDEBUG
564     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
565       continue;
566     if (SchedOnlyBlock.getNumOccurrences()
567         && (int)SchedOnlyBlock != MBB->getNumber())
568       continue;
569 #endif
570 
571     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
572     // points to the scheduling boundary at the bottom of the region. The DAG
573     // does not include RegionEnd, but the region does (i.e. the next
574     // RegionEnd is above the previous RegionBegin). If the current block has
575     // no terminator then RegionEnd == MBB->end() for the bottom region.
576     //
577     // All the regions of MBB are first found and stored in MBBRegions, which
578     // will be processed (MBB) top-down if initialized with true.
579     //
580     // The Scheduler may insert instructions during either schedule() or
581     // exitRegion(), even for empty regions. So the local iterators 'I' and
582     // 'RegionEnd' are invalid across these calls. Instructions must not be
583     // added to other regions than the current one without updating MBBRegions.
584 
585     MBBRegionsVector MBBRegions;
586     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
587     for (const SchedRegion &R : MBBRegions) {
588       MachineBasicBlock::iterator I = R.RegionBegin;
589       MachineBasicBlock::iterator RegionEnd = R.RegionEnd;
590       unsigned NumRegionInstrs = R.NumRegionInstrs;
591 
592       // Notify the scheduler of the region, even if we may skip scheduling
593       // it. Perhaps it still needs to be bundled.
594       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
595 
596       // Skip empty scheduling regions (0 or 1 schedulable instructions).
597       if (I == RegionEnd || I == std::prev(RegionEnd)) {
598         // Close the current region. Bundle the terminator if needed.
599         // This invalidates 'RegionEnd' and 'I'.
600         Scheduler.exitRegion();
601         continue;
602       }
603       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
604       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
605                         << " " << MBB->getName() << "\n  From: " << *I
606                         << "    To: ";
607                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
608                  else dbgs() << "End\n";
609                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
610       if (DumpCriticalPathLength) {
611         errs() << MF->getName();
612         errs() << ":%bb. " << MBB->getNumber();
613         errs() << " " << MBB->getName() << " \n";
614       }
615 
616       // Schedule a region: possibly reorder instructions.
617       // This invalidates the original region iterators.
618       Scheduler.schedule();
619 
620       // Close the current region.
621       Scheduler.exitRegion();
622     }
623     Scheduler.finishBlock();
624     // FIXME: Ideally, no further passes should rely on kill flags. However,
625     // thumb2 size reduction is currently an exception, so the PostMIScheduler
626     // needs to do this.
627     if (FixKillFlags)
628       Scheduler.fixupKills(*MBB);
629   }
630   Scheduler.finalizeSchedule();
631 }
632 
633 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
634   // unimplemented
635 }
636 
637 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
638 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
639   dbgs() << "Queue " << Name << ": ";
640   for (const SUnit *SU : Queue)
641     dbgs() << SU->NodeNum << " ";
642   dbgs() << "\n";
643 }
644 #endif
645 
646 //===----------------------------------------------------------------------===//
647 // ScheduleDAGMI - Basic machine instruction scheduling. This is
648 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
649 // virtual registers.
650 // ===----------------------------------------------------------------------===/
651 
652 // Provide a vtable anchor.
653 ScheduleDAGMI::~ScheduleDAGMI() = default;
654 
655 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
656 /// NumPredsLeft reaches zero, release the successor node.
657 ///
658 /// FIXME: Adjust SuccSU height based on MinLatency.
659 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
660   SUnit *SuccSU = SuccEdge->getSUnit();
661 
662   if (SuccEdge->isWeak()) {
663     --SuccSU->WeakPredsLeft;
664     if (SuccEdge->isCluster())
665       NextClusterSucc = SuccSU;
666     return;
667   }
668 #ifndef NDEBUG
669   if (SuccSU->NumPredsLeft == 0) {
670     dbgs() << "*** Scheduling failed! ***\n";
671     dumpNode(*SuccSU);
672     dbgs() << " has been released too many times!\n";
673     llvm_unreachable(nullptr);
674   }
675 #endif
676   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
677   // CurrCycle may have advanced since then.
678   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
679     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
680 
681   --SuccSU->NumPredsLeft;
682   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
683     SchedImpl->releaseTopNode(SuccSU);
684 }
685 
686 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
687 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
688   for (SDep &Succ : SU->Succs)
689     releaseSucc(SU, &Succ);
690 }
691 
692 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
693 /// NumSuccsLeft reaches zero, release the predecessor node.
694 ///
695 /// FIXME: Adjust PredSU height based on MinLatency.
696 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
697   SUnit *PredSU = PredEdge->getSUnit();
698 
699   if (PredEdge->isWeak()) {
700     --PredSU->WeakSuccsLeft;
701     if (PredEdge->isCluster())
702       NextClusterPred = PredSU;
703     return;
704   }
705 #ifndef NDEBUG
706   if (PredSU->NumSuccsLeft == 0) {
707     dbgs() << "*** Scheduling failed! ***\n";
708     dumpNode(*PredSU);
709     dbgs() << " has been released too many times!\n";
710     llvm_unreachable(nullptr);
711   }
712 #endif
713   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
714   // CurrCycle may have advanced since then.
715   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
716     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
717 
718   --PredSU->NumSuccsLeft;
719   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
720     SchedImpl->releaseBottomNode(PredSU);
721 }
722 
723 /// releasePredecessors - Call releasePred on each of SU's predecessors.
724 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
725   for (SDep &Pred : SU->Preds)
726     releasePred(SU, &Pred);
727 }
728 
729 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
730   ScheduleDAGInstrs::startBlock(bb);
731   SchedImpl->enterMBB(bb);
732 }
733 
734 void ScheduleDAGMI::finishBlock() {
735   SchedImpl->leaveMBB();
736   ScheduleDAGInstrs::finishBlock();
737 }
738 
739 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
740 /// crossing a scheduling boundary. [begin, end) includes all instructions in
741 /// the region, including the boundary itself and single-instruction regions
742 /// that don't get scheduled.
743 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
744                                      MachineBasicBlock::iterator begin,
745                                      MachineBasicBlock::iterator end,
746                                      unsigned regioninstrs)
747 {
748   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
749 
750   SchedImpl->initPolicy(begin, end, regioninstrs);
751 }
752 
753 /// This is normally called from the main scheduler loop but may also be invoked
754 /// by the scheduling strategy to perform additional code motion.
755 void ScheduleDAGMI::moveInstruction(
756   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
757   // Advance RegionBegin if the first instruction moves down.
758   if (&*RegionBegin == MI)
759     ++RegionBegin;
760 
761   // Update the instruction stream.
762   BB->splice(InsertPos, BB, MI);
763 
764   // Update LiveIntervals
765   if (LIS)
766     LIS->handleMove(*MI, /*UpdateFlags=*/true);
767 
768   // Recede RegionBegin if an instruction moves above the first.
769   if (RegionBegin == InsertPos)
770     RegionBegin = MI;
771 }
772 
773 bool ScheduleDAGMI::checkSchedLimit() {
774 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
775   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
776     CurrentTop = CurrentBottom;
777     return false;
778   }
779   ++NumInstrsScheduled;
780 #endif
781   return true;
782 }
783 
784 /// Per-region scheduling driver, called back from
785 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
786 /// does not consider liveness or register pressure. It is useful for PostRA
787 /// scheduling and potentially other custom schedulers.
788 void ScheduleDAGMI::schedule() {
789   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
790   LLVM_DEBUG(SchedImpl->dumpPolicy());
791 
792   // Build the DAG.
793   buildSchedGraph(AA);
794 
795   postProcessDAG();
796 
797   SmallVector<SUnit*, 8> TopRoots, BotRoots;
798   findRootsAndBiasEdges(TopRoots, BotRoots);
799 
800   LLVM_DEBUG(dump());
801   if (PrintDAGs) dump();
802   if (ViewMISchedDAGs) viewGraph();
803 
804   // Initialize the strategy before modifying the DAG.
805   // This may initialize a DFSResult to be used for queue priority.
806   SchedImpl->initialize(this);
807 
808   // Initialize ready queues now that the DAG and priority data are finalized.
809   initQueues(TopRoots, BotRoots);
810 
811   bool IsTopNode = false;
812   while (true) {
813     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
814     SUnit *SU = SchedImpl->pickNode(IsTopNode);
815     if (!SU) break;
816 
817     assert(!SU->isScheduled && "Node already scheduled");
818     if (!checkSchedLimit())
819       break;
820 
821     MachineInstr *MI = SU->getInstr();
822     if (IsTopNode) {
823       assert(SU->isTopReady() && "node still has unscheduled dependencies");
824       if (&*CurrentTop == MI)
825         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
826       else
827         moveInstruction(MI, CurrentTop);
828     } else {
829       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
830       MachineBasicBlock::iterator priorII =
831         priorNonDebug(CurrentBottom, CurrentTop);
832       if (&*priorII == MI)
833         CurrentBottom = priorII;
834       else {
835         if (&*CurrentTop == MI)
836           CurrentTop = nextIfDebug(++CurrentTop, priorII);
837         moveInstruction(MI, CurrentBottom);
838         CurrentBottom = MI;
839       }
840     }
841     // Notify the scheduling strategy before updating the DAG.
842     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
843     // runs, it can then use the accurate ReadyCycle time to determine whether
844     // newly released nodes can move to the readyQ.
845     SchedImpl->schedNode(SU, IsTopNode);
846 
847     updateQueues(SU, IsTopNode);
848   }
849   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
850 
851   placeDebugValues();
852 
853   LLVM_DEBUG({
854     dbgs() << "*** Final schedule for "
855            << printMBBReference(*begin()->getParent()) << " ***\n";
856     dumpSchedule();
857     dbgs() << '\n';
858   });
859 }
860 
861 /// Apply each ScheduleDAGMutation step in order.
862 void ScheduleDAGMI::postProcessDAG() {
863   for (auto &m : Mutations)
864     m->apply(this);
865 }
866 
867 void ScheduleDAGMI::
868 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
869                       SmallVectorImpl<SUnit*> &BotRoots) {
870   for (SUnit &SU : SUnits) {
871     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
872 
873     // Order predecessors so DFSResult follows the critical path.
874     SU.biasCriticalPath();
875 
876     // A SUnit is ready to top schedule if it has no predecessors.
877     if (!SU.NumPredsLeft)
878       TopRoots.push_back(&SU);
879     // A SUnit is ready to bottom schedule if it has no successors.
880     if (!SU.NumSuccsLeft)
881       BotRoots.push_back(&SU);
882   }
883   ExitSU.biasCriticalPath();
884 }
885 
886 /// Identify DAG roots and setup scheduler queues.
887 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
888                                ArrayRef<SUnit*> BotRoots) {
889   NextClusterSucc = nullptr;
890   NextClusterPred = nullptr;
891 
892   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
893   //
894   // Nodes with unreleased weak edges can still be roots.
895   // Release top roots in forward order.
896   for (SUnit *SU : TopRoots)
897     SchedImpl->releaseTopNode(SU);
898 
899   // Release bottom roots in reverse order so the higher priority nodes appear
900   // first. This is more natural and slightly more efficient.
901   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
902          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
903     SchedImpl->releaseBottomNode(*I);
904   }
905 
906   releaseSuccessors(&EntrySU);
907   releasePredecessors(&ExitSU);
908 
909   SchedImpl->registerRoots();
910 
911   // Advance past initial DebugValues.
912   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
913   CurrentBottom = RegionEnd;
914 }
915 
916 /// Update scheduler queues after scheduling an instruction.
917 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
918   // Release dependent instructions for scheduling.
919   if (IsTopNode)
920     releaseSuccessors(SU);
921   else
922     releasePredecessors(SU);
923 
924   SU->isScheduled = true;
925 }
926 
927 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
928 void ScheduleDAGMI::placeDebugValues() {
929   // If first instruction was a DBG_VALUE then put it back.
930   if (FirstDbgValue) {
931     BB->splice(RegionBegin, BB, FirstDbgValue);
932     RegionBegin = FirstDbgValue;
933   }
934 
935   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
936          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
937     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
938     MachineInstr *DbgValue = P.first;
939     MachineBasicBlock::iterator OrigPrevMI = P.second;
940     if (&*RegionBegin == DbgValue)
941       ++RegionBegin;
942     BB->splice(std::next(OrigPrevMI), BB, DbgValue);
943     if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd)
944       RegionEnd = DbgValue;
945   }
946 }
947 
948 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
949 static const char *scheduleTableLegend = "  i: issue\n  x: resource booked";
950 
951 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const {
952   //  Nothing to show if there is no or just one instruction.
953   if (BB->size() < 2)
954     return;
955 
956   dbgs() << " * Schedule table (TopDown):\n";
957   dbgs() << scheduleTableLegend << "\n";
958   const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle;
959   unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle;
960   for (MachineInstr &MI : *this) {
961     SUnit *SU = getSUnit(&MI);
962     if (!SU)
963       continue;
964     const MCSchedClassDesc *SC = getSchedClass(SU);
965     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
966                                        PE = SchedModel.getWriteProcResEnd(SC);
967          PI != PE; ++PI) {
968       if (SU->TopReadyCycle + PI->Cycles - 1 > LastCycle)
969         LastCycle = SU->TopReadyCycle + PI->Cycles - 1;
970     }
971   }
972   // Print the header with the cycles
973   dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
974   for (unsigned C = FirstCycle; C <= LastCycle; ++C)
975     dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
976   dbgs() << "|\n";
977 
978   for (MachineInstr &MI : *this) {
979     SUnit *SU = getSUnit(&MI);
980     if (!SU) {
981       dbgs() << "Missing SUnit\n";
982       continue;
983     }
984     std::string NodeName("SU(");
985     NodeName += std::to_string(SU->NodeNum) + ")";
986     dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
987     unsigned C = FirstCycle;
988     for (; C <= LastCycle; ++C) {
989       if (C == SU->TopReadyCycle)
990         dbgs() << llvm::left_justify("| i", ColWidth);
991       else
992         dbgs() << llvm::left_justify("|", ColWidth);
993     }
994     dbgs() << "|\n";
995     const MCSchedClassDesc *SC = getSchedClass(SU);
996     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
997                                        PE = SchedModel.getWriteProcResEnd(SC);
998          PI != PE; ++PI) {
999       C = FirstCycle;
1000       const std::string ResName =
1001           SchedModel.getResourceName(PI->ProcResourceIdx);
1002       dbgs() << llvm::left_justify(ResName, HeaderColWidth);
1003       for (; C < SU->TopReadyCycle; ++C) {
1004         dbgs() << llvm::left_justify("|", ColWidth);
1005       }
1006       for (unsigned i = 0; i < PI->Cycles; ++i, ++C)
1007         dbgs() << llvm::left_justify("| x", ColWidth);
1008       while (C++ <= LastCycle)
1009         dbgs() << llvm::left_justify("|", ColWidth);
1010       // Place end char
1011       dbgs() << "| \n";
1012     }
1013   }
1014 }
1015 
1016 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const {
1017   //  Nothing to show if there is no or just one instruction.
1018   if (BB->size() < 2)
1019     return;
1020 
1021   dbgs() << " * Schedule table (BottomUp):\n";
1022   dbgs() << scheduleTableLegend << "\n";
1023 
1024   const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle;
1025   int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle;
1026   for (MachineInstr &MI : *this) {
1027     SUnit *SU = getSUnit(&MI);
1028     if (!SU)
1029       continue;
1030     const MCSchedClassDesc *SC = getSchedClass(SU);
1031     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1032                                        PE = SchedModel.getWriteProcResEnd(SC);
1033          PI != PE; ++PI) {
1034       if ((int)SU->BotReadyCycle - PI->Cycles + 1 < LastCycle)
1035         LastCycle = (int)SU->BotReadyCycle - PI->Cycles + 1;
1036     }
1037   }
1038   // Print the header with the cycles
1039   dbgs() << llvm::left_justify("Cycle", HeaderColWidth);
1040   for (int C = FirstCycle; C >= LastCycle; --C)
1041     dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth);
1042   dbgs() << "|\n";
1043 
1044   for (MachineInstr &MI : *this) {
1045     SUnit *SU = getSUnit(&MI);
1046     if (!SU) {
1047       dbgs() << "Missing SUnit\n";
1048       continue;
1049     }
1050     std::string NodeName("SU(");
1051     NodeName += std::to_string(SU->NodeNum) + ")";
1052     dbgs() << llvm::left_justify(NodeName, HeaderColWidth);
1053     int C = FirstCycle;
1054     for (; C >= LastCycle; --C) {
1055       if (C == (int)SU->BotReadyCycle)
1056         dbgs() << llvm::left_justify("| i", ColWidth);
1057       else
1058         dbgs() << llvm::left_justify("|", ColWidth);
1059     }
1060     dbgs() << "|\n";
1061     const MCSchedClassDesc *SC = getSchedClass(SU);
1062     for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC),
1063                                        PE = SchedModel.getWriteProcResEnd(SC);
1064          PI != PE; ++PI) {
1065       C = FirstCycle;
1066       const std::string ResName =
1067           SchedModel.getResourceName(PI->ProcResourceIdx);
1068       dbgs() << llvm::left_justify(ResName, HeaderColWidth);
1069       for (; C > (int)SU->BotReadyCycle; --C) {
1070         dbgs() << llvm::left_justify("|", ColWidth);
1071       }
1072       for (unsigned i = 0; i < PI->Cycles; ++i, --C)
1073         dbgs() << llvm::left_justify("| x", ColWidth);
1074       while (C-- >= LastCycle)
1075         dbgs() << llvm::left_justify("|", ColWidth);
1076       // Place end char
1077       dbgs() << "| \n";
1078     }
1079   }
1080 }
1081 #endif
1082 
1083 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1084 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
1085   if (MISchedDumpScheduleTrace) {
1086     if (ForceTopDown)
1087       dumpScheduleTraceTopDown();
1088     else if (ForceBottomUp)
1089       dumpScheduleTraceBottomUp();
1090     else {
1091       dbgs() << "* Schedule table (Bidirectional): not implemented\n";
1092     }
1093   }
1094 
1095   for (MachineInstr &MI : *this) {
1096     if (SUnit *SU = getSUnit(&MI))
1097       dumpNode(*SU);
1098     else
1099       dbgs() << "Missing SUnit\n";
1100   }
1101 }
1102 #endif
1103 
1104 //===----------------------------------------------------------------------===//
1105 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
1106 // preservation.
1107 //===----------------------------------------------------------------------===//
1108 
1109 ScheduleDAGMILive::~ScheduleDAGMILive() {
1110   delete DFSResult;
1111 }
1112 
1113 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
1114   const MachineInstr &MI = *SU.getInstr();
1115   for (const MachineOperand &MO : MI.operands()) {
1116     if (!MO.isReg())
1117       continue;
1118     if (!MO.readsReg())
1119       continue;
1120     if (TrackLaneMasks && !MO.isUse())
1121       continue;
1122 
1123     Register Reg = MO.getReg();
1124     if (!Reg.isVirtual())
1125       continue;
1126 
1127     // Ignore re-defs.
1128     if (TrackLaneMasks) {
1129       bool FoundDef = false;
1130       for (const MachineOperand &MO2 : MI.all_defs()) {
1131         if (MO2.getReg() == Reg && !MO2.isDead()) {
1132           FoundDef = true;
1133           break;
1134         }
1135       }
1136       if (FoundDef)
1137         continue;
1138     }
1139 
1140     // Record this local VReg use.
1141     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
1142     for (; UI != VRegUses.end(); ++UI) {
1143       if (UI->SU == &SU)
1144         break;
1145     }
1146     if (UI == VRegUses.end())
1147       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
1148   }
1149 }
1150 
1151 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
1152 /// crossing a scheduling boundary. [begin, end) includes all instructions in
1153 /// the region, including the boundary itself and single-instruction regions
1154 /// that don't get scheduled.
1155 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
1156                                 MachineBasicBlock::iterator begin,
1157                                 MachineBasicBlock::iterator end,
1158                                 unsigned regioninstrs)
1159 {
1160   // ScheduleDAGMI initializes SchedImpl's per-region policy.
1161   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
1162 
1163   // For convenience remember the end of the liveness region.
1164   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
1165 
1166   SUPressureDiffs.clear();
1167 
1168   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1169   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1170 
1171   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1172          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1173 }
1174 
1175 // Setup the register pressure trackers for the top scheduled and bottom
1176 // scheduled regions.
1177 void ScheduleDAGMILive::initRegPressure() {
1178   VRegUses.clear();
1179   VRegUses.setUniverse(MRI.getNumVirtRegs());
1180   for (SUnit &SU : SUnits)
1181     collectVRegUses(SU);
1182 
1183   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1184                     ShouldTrackLaneMasks, false);
1185   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1186                     ShouldTrackLaneMasks, false);
1187 
1188   // Close the RPTracker to finalize live ins.
1189   RPTracker.closeRegion();
1190 
1191   LLVM_DEBUG(RPTracker.dump());
1192 
1193   // Initialize the live ins and live outs.
1194   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1195   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1196 
1197   // Close one end of the tracker so we can call
1198   // getMaxUpward/DownwardPressureDelta before advancing across any
1199   // instructions. This converts currently live regs into live ins/outs.
1200   TopRPTracker.closeTop();
1201   BotRPTracker.closeBottom();
1202 
1203   BotRPTracker.initLiveThru(RPTracker);
1204   if (!BotRPTracker.getLiveThru().empty()) {
1205     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1206     LLVM_DEBUG(dbgs() << "Live Thru: ";
1207                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1208   };
1209 
1210   // For each live out vreg reduce the pressure change associated with other
1211   // uses of the same vreg below the live-out reaching def.
1212   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1213 
1214   // Account for liveness generated by the region boundary.
1215   if (LiveRegionEnd != RegionEnd) {
1216     SmallVector<RegisterMaskPair, 8> LiveUses;
1217     BotRPTracker.recede(&LiveUses);
1218     updatePressureDiffs(LiveUses);
1219   }
1220 
1221   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1222              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1223              dbgs() << "Bottom Pressure:\n";
1224              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1225 
1226   assert((BotRPTracker.getPos() == RegionEnd ||
1227           (RegionEnd->isDebugInstr() &&
1228            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1229          "Can't find the region bottom");
1230 
1231   // Cache the list of excess pressure sets in this region. This will also track
1232   // the max pressure in the scheduled code for these sets.
1233   RegionCriticalPSets.clear();
1234   const std::vector<unsigned> &RegionPressure =
1235     RPTracker.getPressure().MaxSetPressure;
1236   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1237     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1238     if (RegionPressure[i] > Limit) {
1239       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1240                         << " Actual " << RegionPressure[i] << "\n");
1241       RegionCriticalPSets.push_back(PressureChange(i));
1242     }
1243   }
1244   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1245              for (const PressureChange &RCPS
1246                   : RegionCriticalPSets) dbgs()
1247              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1248              dbgs() << "\n");
1249 }
1250 
1251 void ScheduleDAGMILive::
1252 updateScheduledPressure(const SUnit *SU,
1253                         const std::vector<unsigned> &NewMaxPressure) {
1254   const PressureDiff &PDiff = getPressureDiff(SU);
1255   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1256   for (const PressureChange &PC : PDiff) {
1257     if (!PC.isValid())
1258       break;
1259     unsigned ID = PC.getPSet();
1260     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1261       ++CritIdx;
1262     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1263       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1264           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1265         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1266     }
1267     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1268     if (NewMaxPressure[ID] >= Limit - 2) {
1269       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1270                         << NewMaxPressure[ID]
1271                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1272                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1273                         << " livethru)\n");
1274     }
1275   }
1276 }
1277 
1278 /// Update the PressureDiff array for liveness after scheduling this
1279 /// instruction.
1280 void ScheduleDAGMILive::updatePressureDiffs(
1281     ArrayRef<RegisterMaskPair> LiveUses) {
1282   for (const RegisterMaskPair &P : LiveUses) {
1283     Register Reg = P.RegUnit;
1284     /// FIXME: Currently assuming single-use physregs.
1285     if (!Reg.isVirtual())
1286       continue;
1287 
1288     if (ShouldTrackLaneMasks) {
1289       // If the register has just become live then other uses won't change
1290       // this fact anymore => decrement pressure.
1291       // If the register has just become dead then other uses make it come
1292       // back to life => increment pressure.
1293       bool Decrement = P.LaneMask.any();
1294 
1295       for (const VReg2SUnit &V2SU
1296            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1297         SUnit &SU = *V2SU.SU;
1298         if (SU.isScheduled || &SU == &ExitSU)
1299           continue;
1300 
1301         PressureDiff &PDiff = getPressureDiff(&SU);
1302         PDiff.addPressureChange(Reg, Decrement, &MRI);
1303         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1304                           << printReg(Reg, TRI) << ':'
1305                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1306                    dbgs() << "              to "; PDiff.dump(*TRI););
1307       }
1308     } else {
1309       assert(P.LaneMask.any());
1310       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1311       // This may be called before CurrentBottom has been initialized. However,
1312       // BotRPTracker must have a valid position. We want the value live into the
1313       // instruction or live out of the block, so ask for the previous
1314       // instruction's live-out.
1315       const LiveInterval &LI = LIS->getInterval(Reg);
1316       VNInfo *VNI;
1317       MachineBasicBlock::const_iterator I =
1318         nextIfDebug(BotRPTracker.getPos(), BB->end());
1319       if (I == BB->end())
1320         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1321       else {
1322         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1323         VNI = LRQ.valueIn();
1324       }
1325       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1326       assert(VNI && "No live value at use.");
1327       for (const VReg2SUnit &V2SU
1328            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1329         SUnit *SU = V2SU.SU;
1330         // If this use comes before the reaching def, it cannot be a last use,
1331         // so decrease its pressure change.
1332         if (!SU->isScheduled && SU != &ExitSU) {
1333           LiveQueryResult LRQ =
1334               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1335           if (LRQ.valueIn() == VNI) {
1336             PressureDiff &PDiff = getPressureDiff(SU);
1337             PDiff.addPressureChange(Reg, true, &MRI);
1338             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1339                               << *SU->getInstr();
1340                        dbgs() << "              to "; PDiff.dump(*TRI););
1341           }
1342         }
1343       }
1344     }
1345   }
1346 }
1347 
1348 void ScheduleDAGMILive::dump() const {
1349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1350   if (EntrySU.getInstr() != nullptr)
1351     dumpNodeAll(EntrySU);
1352   for (const SUnit &SU : SUnits) {
1353     dumpNodeAll(SU);
1354     if (ShouldTrackPressure) {
1355       dbgs() << "  Pressure Diff      : ";
1356       getPressureDiff(&SU).dump(*TRI);
1357     }
1358     dbgs() << "  Single Issue       : ";
1359     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1360         SchedModel.mustEndGroup(SU.getInstr()))
1361       dbgs() << "true;";
1362     else
1363       dbgs() << "false;";
1364     dbgs() << '\n';
1365   }
1366   if (ExitSU.getInstr() != nullptr)
1367     dumpNodeAll(ExitSU);
1368 #endif
1369 }
1370 
1371 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1372 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1373 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1374 ///
1375 /// This is a skeletal driver, with all the functionality pushed into helpers,
1376 /// so that it can be easily extended by experimental schedulers. Generally,
1377 /// implementing MachineSchedStrategy should be sufficient to implement a new
1378 /// scheduling algorithm. However, if a scheduler further subclasses
1379 /// ScheduleDAGMILive then it will want to override this virtual method in order
1380 /// to update any specialized state.
1381 void ScheduleDAGMILive::schedule() {
1382   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1383   LLVM_DEBUG(SchedImpl->dumpPolicy());
1384   buildDAGWithRegPressure();
1385 
1386   postProcessDAG();
1387 
1388   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1389   findRootsAndBiasEdges(TopRoots, BotRoots);
1390 
1391   // Initialize the strategy before modifying the DAG.
1392   // This may initialize a DFSResult to be used for queue priority.
1393   SchedImpl->initialize(this);
1394 
1395   LLVM_DEBUG(dump());
1396   if (PrintDAGs) dump();
1397   if (ViewMISchedDAGs) viewGraph();
1398 
1399   // Initialize ready queues now that the DAG and priority data are finalized.
1400   initQueues(TopRoots, BotRoots);
1401 
1402   bool IsTopNode = false;
1403   while (true) {
1404     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1405     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1406     if (!SU) break;
1407 
1408     assert(!SU->isScheduled && "Node already scheduled");
1409     if (!checkSchedLimit())
1410       break;
1411 
1412     scheduleMI(SU, IsTopNode);
1413 
1414     if (DFSResult) {
1415       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1416       if (!ScheduledTrees.test(SubtreeID)) {
1417         ScheduledTrees.set(SubtreeID);
1418         DFSResult->scheduleTree(SubtreeID);
1419         SchedImpl->scheduleTree(SubtreeID);
1420       }
1421     }
1422 
1423     // Notify the scheduling strategy after updating the DAG.
1424     SchedImpl->schedNode(SU, IsTopNode);
1425 
1426     updateQueues(SU, IsTopNode);
1427   }
1428   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1429 
1430   placeDebugValues();
1431 
1432   LLVM_DEBUG({
1433     dbgs() << "*** Final schedule for "
1434            << printMBBReference(*begin()->getParent()) << " ***\n";
1435     dumpSchedule();
1436     dbgs() << '\n';
1437   });
1438 }
1439 
1440 /// Build the DAG and setup three register pressure trackers.
1441 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1442   if (!ShouldTrackPressure) {
1443     RPTracker.reset();
1444     RegionCriticalPSets.clear();
1445     buildSchedGraph(AA);
1446     return;
1447   }
1448 
1449   // Initialize the register pressure tracker used by buildSchedGraph.
1450   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1451                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1452 
1453   // Account for liveness generate by the region boundary.
1454   if (LiveRegionEnd != RegionEnd)
1455     RPTracker.recede();
1456 
1457   // Build the DAG, and compute current register pressure.
1458   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1459 
1460   // Initialize top/bottom trackers after computing region pressure.
1461   initRegPressure();
1462 }
1463 
1464 void ScheduleDAGMILive::computeDFSResult() {
1465   if (!DFSResult)
1466     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1467   DFSResult->clear();
1468   ScheduledTrees.clear();
1469   DFSResult->resize(SUnits.size());
1470   DFSResult->compute(SUnits);
1471   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1472 }
1473 
1474 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1475 /// only provides the critical path for single block loops. To handle loops that
1476 /// span blocks, we could use the vreg path latencies provided by
1477 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1478 /// available for use in the scheduler.
1479 ///
1480 /// The cyclic path estimation identifies a def-use pair that crosses the back
1481 /// edge and considers the depth and height of the nodes. For example, consider
1482 /// the following instruction sequence where each instruction has unit latency
1483 /// and defines an eponymous virtual register:
1484 ///
1485 /// a->b(a,c)->c(b)->d(c)->exit
1486 ///
1487 /// The cyclic critical path is a two cycles: b->c->b
1488 /// The acyclic critical path is four cycles: a->b->c->d->exit
1489 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1490 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1491 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1492 /// LiveInDepth = depth(b) = len(a->b) = 1
1493 ///
1494 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1495 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1496 /// CyclicCriticalPath = min(2, 2) = 2
1497 ///
1498 /// This could be relevant to PostRA scheduling, but is currently implemented
1499 /// assuming LiveIntervals.
1500 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1501   // This only applies to single block loop.
1502   if (!BB->isSuccessor(BB))
1503     return 0;
1504 
1505   unsigned MaxCyclicLatency = 0;
1506   // Visit each live out vreg def to find def/use pairs that cross iterations.
1507   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1508     Register Reg = P.RegUnit;
1509     if (!Reg.isVirtual())
1510       continue;
1511     const LiveInterval &LI = LIS->getInterval(Reg);
1512     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1513     if (!DefVNI)
1514       continue;
1515 
1516     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1517     const SUnit *DefSU = getSUnit(DefMI);
1518     if (!DefSU)
1519       continue;
1520 
1521     unsigned LiveOutHeight = DefSU->getHeight();
1522     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1523     // Visit all local users of the vreg def.
1524     for (const VReg2SUnit &V2SU
1525          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1526       SUnit *SU = V2SU.SU;
1527       if (SU == &ExitSU)
1528         continue;
1529 
1530       // Only consider uses of the phi.
1531       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1532       if (!LRQ.valueIn()->isPHIDef())
1533         continue;
1534 
1535       // Assume that a path spanning two iterations is a cycle, which could
1536       // overestimate in strange cases. This allows cyclic latency to be
1537       // estimated as the minimum slack of the vreg's depth or height.
1538       unsigned CyclicLatency = 0;
1539       if (LiveOutDepth > SU->getDepth())
1540         CyclicLatency = LiveOutDepth - SU->getDepth();
1541 
1542       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1543       if (LiveInHeight > LiveOutHeight) {
1544         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1545           CyclicLatency = LiveInHeight - LiveOutHeight;
1546       } else
1547         CyclicLatency = 0;
1548 
1549       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1550                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1551       if (CyclicLatency > MaxCyclicLatency)
1552         MaxCyclicLatency = CyclicLatency;
1553     }
1554   }
1555   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1556   return MaxCyclicLatency;
1557 }
1558 
1559 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1560 /// the Top RP tracker in case the region beginning has changed.
1561 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1562                                    ArrayRef<SUnit*> BotRoots) {
1563   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1564   if (ShouldTrackPressure) {
1565     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1566     TopRPTracker.setPos(CurrentTop);
1567   }
1568 }
1569 
1570 /// Move an instruction and update register pressure.
1571 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1572   // Move the instruction to its new location in the instruction stream.
1573   MachineInstr *MI = SU->getInstr();
1574 
1575   if (IsTopNode) {
1576     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1577     if (&*CurrentTop == MI)
1578       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1579     else {
1580       moveInstruction(MI, CurrentTop);
1581       TopRPTracker.setPos(MI);
1582     }
1583 
1584     if (ShouldTrackPressure) {
1585       // Update top scheduled pressure.
1586       RegisterOperands RegOpers;
1587       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1588       if (ShouldTrackLaneMasks) {
1589         // Adjust liveness and add missing dead+read-undef flags.
1590         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1591         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1592       } else {
1593         // Adjust for missing dead-def flags.
1594         RegOpers.detectDeadDefs(*MI, *LIS);
1595       }
1596 
1597       TopRPTracker.advance(RegOpers);
1598       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1599       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1600                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1601 
1602       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1603     }
1604   } else {
1605     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1606     MachineBasicBlock::iterator priorII =
1607       priorNonDebug(CurrentBottom, CurrentTop);
1608     if (&*priorII == MI)
1609       CurrentBottom = priorII;
1610     else {
1611       if (&*CurrentTop == MI) {
1612         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1613         TopRPTracker.setPos(CurrentTop);
1614       }
1615       moveInstruction(MI, CurrentBottom);
1616       CurrentBottom = MI;
1617       BotRPTracker.setPos(CurrentBottom);
1618     }
1619     if (ShouldTrackPressure) {
1620       RegisterOperands RegOpers;
1621       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1622       if (ShouldTrackLaneMasks) {
1623         // Adjust liveness and add missing dead+read-undef flags.
1624         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1625         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1626       } else {
1627         // Adjust for missing dead-def flags.
1628         RegOpers.detectDeadDefs(*MI, *LIS);
1629       }
1630 
1631       if (BotRPTracker.getPos() != CurrentBottom)
1632         BotRPTracker.recedeSkipDebugValues();
1633       SmallVector<RegisterMaskPair, 8> LiveUses;
1634       BotRPTracker.recede(RegOpers, &LiveUses);
1635       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1636       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1637                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1638 
1639       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1640       updatePressureDiffs(LiveUses);
1641     }
1642   }
1643 }
1644 
1645 //===----------------------------------------------------------------------===//
1646 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1647 //===----------------------------------------------------------------------===//
1648 
1649 namespace {
1650 
1651 /// Post-process the DAG to create cluster edges between neighboring
1652 /// loads or between neighboring stores.
1653 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1654   struct MemOpInfo {
1655     SUnit *SU;
1656     SmallVector<const MachineOperand *, 4> BaseOps;
1657     int64_t Offset;
1658     unsigned Width;
1659 
1660     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
1661               int64_t Offset, unsigned Width)
1662         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset),
1663           Width(Width) {}
1664 
1665     static bool Compare(const MachineOperand *const &A,
1666                         const MachineOperand *const &B) {
1667       if (A->getType() != B->getType())
1668         return A->getType() < B->getType();
1669       if (A->isReg())
1670         return A->getReg() < B->getReg();
1671       if (A->isFI()) {
1672         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
1673         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1674         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1675                               TargetFrameLowering::StackGrowsDown;
1676         return StackGrowsDown ? A->getIndex() > B->getIndex()
1677                               : A->getIndex() < B->getIndex();
1678       }
1679 
1680       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1681                        "index bases.");
1682     }
1683 
1684     bool operator<(const MemOpInfo &RHS) const {
1685       // FIXME: Don't compare everything twice. Maybe use C++20 three way
1686       // comparison instead when it's available.
1687       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
1688                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
1689                                        Compare))
1690         return true;
1691       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
1692                                        BaseOps.begin(), BaseOps.end(), Compare))
1693         return false;
1694       if (Offset != RHS.Offset)
1695         return Offset < RHS.Offset;
1696       return SU->NodeNum < RHS.SU->NodeNum;
1697     }
1698   };
1699 
1700   const TargetInstrInfo *TII;
1701   const TargetRegisterInfo *TRI;
1702   bool IsLoad;
1703 
1704 public:
1705   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1706                            const TargetRegisterInfo *tri, bool IsLoad)
1707       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1708 
1709   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1710 
1711 protected:
1712   void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster,
1713                                 ScheduleDAGInstrs *DAG);
1714   void collectMemOpRecords(std::vector<SUnit> &SUnits,
1715                            SmallVectorImpl<MemOpInfo> &MemOpRecords);
1716   bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1717                    DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups);
1718 };
1719 
1720 class StoreClusterMutation : public BaseMemOpClusterMutation {
1721 public:
1722   StoreClusterMutation(const TargetInstrInfo *tii,
1723                        const TargetRegisterInfo *tri)
1724       : BaseMemOpClusterMutation(tii, tri, false) {}
1725 };
1726 
1727 class LoadClusterMutation : public BaseMemOpClusterMutation {
1728 public:
1729   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1730       : BaseMemOpClusterMutation(tii, tri, true) {}
1731 };
1732 
1733 } // end anonymous namespace
1734 
1735 namespace llvm {
1736 
1737 std::unique_ptr<ScheduleDAGMutation>
1738 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1739                              const TargetRegisterInfo *TRI) {
1740   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1741                             : nullptr;
1742 }
1743 
1744 std::unique_ptr<ScheduleDAGMutation>
1745 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1746                               const TargetRegisterInfo *TRI) {
1747   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1748                             : nullptr;
1749 }
1750 
1751 } // end namespace llvm
1752 
1753 // Sorting all the loads/stores first, then for each load/store, checking the
1754 // following load/store one by one, until reach the first non-dependent one and
1755 // call target hook to see if they can cluster.
1756 // If FastCluster is enabled, we assume that, all the loads/stores have been
1757 // preprocessed and now, they didn't have dependencies on each other.
1758 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1759     ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster,
1760     ScheduleDAGInstrs *DAG) {
1761   // Keep track of the current cluster length and bytes for each SUnit.
1762   DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo;
1763 
1764   // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to
1765   // cluster mem ops collected within `MemOpRecords` array.
1766   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1767     // Decision to cluster mem ops is taken based on target dependent logic
1768     auto MemOpa = MemOpRecords[Idx];
1769 
1770     // Seek for the next load/store to do the cluster.
1771     unsigned NextIdx = Idx + 1;
1772     for (; NextIdx < End; ++NextIdx)
1773       // Skip if MemOpb has been clustered already or has dependency with
1774       // MemOpa.
1775       if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) &&
1776           (FastCluster ||
1777            (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
1778             !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
1779         break;
1780     if (NextIdx == End)
1781       continue;
1782 
1783     auto MemOpb = MemOpRecords[NextIdx];
1784     unsigned ClusterLength = 2;
1785     unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width;
1786     if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) {
1787       ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1;
1788       CurrentClusterBytes =
1789           SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width;
1790     }
1791 
1792     if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength,
1793                                   CurrentClusterBytes))
1794       continue;
1795 
1796     SUnit *SUa = MemOpa.SU;
1797     SUnit *SUb = MemOpb.SU;
1798     if (SUa->NodeNum > SUb->NodeNum)
1799       std::swap(SUa, SUb);
1800 
1801     // FIXME: Is this check really required?
1802     if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster)))
1803       continue;
1804 
1805     LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1806                       << SUb->NodeNum << ")\n");
1807     ++NumClustered;
1808 
1809     if (IsLoad) {
1810       // Copy successor edges from SUa to SUb. Interleaving computation
1811       // dependent on SUa can prevent load combining due to register reuse.
1812       // Predecessor edges do not need to be copied from SUb to SUa since
1813       // nearby loads should have effectively the same inputs.
1814       for (const SDep &Succ : SUa->Succs) {
1815         if (Succ.getSUnit() == SUb)
1816           continue;
1817         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1818                           << ")\n");
1819         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1820       }
1821     } else {
1822       // Copy predecessor edges from SUb to SUa to avoid the SUnits that
1823       // SUb dependent on scheduled in-between SUb and SUa. Successor edges
1824       // do not need to be copied from SUa to SUb since no one will depend
1825       // on stores.
1826       // Notice that, we don't need to care about the memory dependency as
1827       // we won't try to cluster them if they have any memory dependency.
1828       for (const SDep &Pred : SUb->Preds) {
1829         if (Pred.getSUnit() == SUa)
1830           continue;
1831         LLVM_DEBUG(dbgs() << "  Copy Pred SU(" << Pred.getSUnit()->NodeNum
1832                           << ")\n");
1833         DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial));
1834       }
1835     }
1836 
1837     SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
1838                                              CurrentClusterBytes};
1839 
1840     LLVM_DEBUG(dbgs() << "  Curr cluster length: " << ClusterLength
1841                       << ", Curr cluster bytes: " << CurrentClusterBytes
1842                       << "\n");
1843   }
1844 }
1845 
1846 void BaseMemOpClusterMutation::collectMemOpRecords(
1847     std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) {
1848   for (auto &SU : SUnits) {
1849     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1850         (!IsLoad && !SU.getInstr()->mayStore()))
1851       continue;
1852 
1853     const MachineInstr &MI = *SU.getInstr();
1854     SmallVector<const MachineOperand *, 4> BaseOps;
1855     int64_t Offset;
1856     bool OffsetIsScalable;
1857     unsigned Width;
1858     if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset,
1859                                            OffsetIsScalable, Width, TRI)) {
1860       MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width));
1861 
1862       LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: "
1863                         << Offset << ", OffsetIsScalable: " << OffsetIsScalable
1864                         << ", Width: " << Width << "\n");
1865     }
1866 #ifndef NDEBUG
1867     for (const auto *Op : BaseOps)
1868       assert(Op);
1869 #endif
1870   }
1871 }
1872 
1873 bool BaseMemOpClusterMutation::groupMemOps(
1874     ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG,
1875     DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) {
1876   bool FastCluster =
1877       ForceFastCluster ||
1878       MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold;
1879 
1880   for (const auto &MemOp : MemOps) {
1881     unsigned ChainPredID = DAG->SUnits.size();
1882     if (FastCluster) {
1883       for (const SDep &Pred : MemOp.SU->Preds) {
1884         // We only want to cluster the mem ops that have the same ctrl(non-data)
1885         // pred so that they didn't have ctrl dependency for each other. But for
1886         // store instrs, we can still cluster them if the pred is load instr.
1887         if ((Pred.isCtrl() &&
1888              (IsLoad ||
1889               (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) &&
1890             !Pred.isArtificial()) {
1891           ChainPredID = Pred.getSUnit()->NodeNum;
1892           break;
1893         }
1894       }
1895     } else
1896       ChainPredID = 0;
1897 
1898     Groups[ChainPredID].push_back(MemOp);
1899   }
1900   return FastCluster;
1901 }
1902 
1903 /// Callback from DAG postProcessing to create cluster edges for loads/stores.
1904 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1905   // Collect all the clusterable loads/stores
1906   SmallVector<MemOpInfo, 32> MemOpRecords;
1907   collectMemOpRecords(DAG->SUnits, MemOpRecords);
1908 
1909   if (MemOpRecords.size() < 2)
1910     return;
1911 
1912   // Put the loads/stores without dependency into the same group with some
1913   // heuristic if the DAG is too complex to avoid compiling time blow up.
1914   // Notice that, some fusion pair could be lost with this.
1915   DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups;
1916   bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups);
1917 
1918   for (auto &Group : Groups) {
1919     // Sorting the loads/stores, so that, we can stop the cluster as early as
1920     // possible.
1921     llvm::sort(Group.second);
1922 
1923     // Trying to cluster all the neighboring loads/stores.
1924     clusterNeighboringMemOps(Group.second, FastCluster, DAG);
1925   }
1926 }
1927 
1928 //===----------------------------------------------------------------------===//
1929 // CopyConstrain - DAG post-processing to encourage copy elimination.
1930 //===----------------------------------------------------------------------===//
1931 
1932 namespace {
1933 
1934 /// Post-process the DAG to create weak edges from all uses of a copy to
1935 /// the one use that defines the copy's source vreg, most likely an induction
1936 /// variable increment.
1937 class CopyConstrain : public ScheduleDAGMutation {
1938   // Transient state.
1939   SlotIndex RegionBeginIdx;
1940 
1941   // RegionEndIdx is the slot index of the last non-debug instruction in the
1942   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1943   SlotIndex RegionEndIdx;
1944 
1945 public:
1946   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1947 
1948   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1949 
1950 protected:
1951   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1952 };
1953 
1954 } // end anonymous namespace
1955 
1956 namespace llvm {
1957 
1958 std::unique_ptr<ScheduleDAGMutation>
1959 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1960                                const TargetRegisterInfo *TRI) {
1961   return std::make_unique<CopyConstrain>(TII, TRI);
1962 }
1963 
1964 } // end namespace llvm
1965 
1966 /// constrainLocalCopy handles two possibilities:
1967 /// 1) Local src:
1968 /// I0:     = dst
1969 /// I1: src = ...
1970 /// I2:     = dst
1971 /// I3: dst = src (copy)
1972 /// (create pred->succ edges I0->I1, I2->I1)
1973 ///
1974 /// 2) Local copy:
1975 /// I0: dst = src (copy)
1976 /// I1:     = dst
1977 /// I2: src = ...
1978 /// I3:     = dst
1979 /// (create pred->succ edges I1->I2, I3->I2)
1980 ///
1981 /// Although the MachineScheduler is currently constrained to single blocks,
1982 /// this algorithm should handle extended blocks. An EBB is a set of
1983 /// contiguously numbered blocks such that the previous block in the EBB is
1984 /// always the single predecessor.
1985 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1986   LiveIntervals *LIS = DAG->getLIS();
1987   MachineInstr *Copy = CopySU->getInstr();
1988 
1989   // Check for pure vreg copies.
1990   const MachineOperand &SrcOp = Copy->getOperand(1);
1991   Register SrcReg = SrcOp.getReg();
1992   if (!SrcReg.isVirtual() || !SrcOp.readsReg())
1993     return;
1994 
1995   const MachineOperand &DstOp = Copy->getOperand(0);
1996   Register DstReg = DstOp.getReg();
1997   if (!DstReg.isVirtual() || DstOp.isDead())
1998     return;
1999 
2000   // Check if either the dest or source is local. If it's live across a back
2001   // edge, it's not local. Note that if both vregs are live across the back
2002   // edge, we cannot successfully contrain the copy without cyclic scheduling.
2003   // If both the copy's source and dest are local live intervals, then we
2004   // should treat the dest as the global for the purpose of adding
2005   // constraints. This adds edges from source's other uses to the copy.
2006   unsigned LocalReg = SrcReg;
2007   unsigned GlobalReg = DstReg;
2008   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
2009   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
2010     LocalReg = DstReg;
2011     GlobalReg = SrcReg;
2012     LocalLI = &LIS->getInterval(LocalReg);
2013     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
2014       return;
2015   }
2016   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
2017 
2018   // Find the global segment after the start of the local LI.
2019   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
2020   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
2021   // local live range. We could create edges from other global uses to the local
2022   // start, but the coalescer should have already eliminated these cases, so
2023   // don't bother dealing with it.
2024   if (GlobalSegment == GlobalLI->end())
2025     return;
2026 
2027   // If GlobalSegment is killed at the LocalLI->start, the call to find()
2028   // returned the next global segment. But if GlobalSegment overlaps with
2029   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
2030   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
2031   if (GlobalSegment->contains(LocalLI->beginIndex()))
2032     ++GlobalSegment;
2033 
2034   if (GlobalSegment == GlobalLI->end())
2035     return;
2036 
2037   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
2038   if (GlobalSegment != GlobalLI->begin()) {
2039     // Two address defs have no hole.
2040     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
2041                                GlobalSegment->start)) {
2042       return;
2043     }
2044     // If the prior global segment may be defined by the same two-address
2045     // instruction that also defines LocalLI, then can't make a hole here.
2046     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
2047                                LocalLI->beginIndex())) {
2048       return;
2049     }
2050     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
2051     // it would be a disconnected component in the live range.
2052     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2053            "Disconnected LRG within the scheduling region.");
2054   }
2055   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
2056   if (!GlobalDef)
2057     return;
2058 
2059   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
2060   if (!GlobalSU)
2061     return;
2062 
2063   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
2064   // constraining the uses of the last local def to precede GlobalDef.
2065   SmallVector<SUnit*,8> LocalUses;
2066   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
2067   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
2068   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
2069   for (const SDep &Succ : LastLocalSU->Succs) {
2070     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
2071       continue;
2072     if (Succ.getSUnit() == GlobalSU)
2073       continue;
2074     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
2075       return;
2076     LocalUses.push_back(Succ.getSUnit());
2077   }
2078   // Open the top of the GlobalLI hole by constraining any earlier global uses
2079   // to precede the start of LocalLI.
2080   SmallVector<SUnit*,8> GlobalUses;
2081   MachineInstr *FirstLocalDef =
2082     LIS->getInstructionFromIndex(LocalLI->beginIndex());
2083   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
2084   for (const SDep &Pred : GlobalSU->Preds) {
2085     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
2086       continue;
2087     if (Pred.getSUnit() == FirstLocalSU)
2088       continue;
2089     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
2090       return;
2091     GlobalUses.push_back(Pred.getSUnit());
2092   }
2093   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
2094   // Add the weak edges.
2095   for (SUnit *LU : LocalUses) {
2096     LLVM_DEBUG(dbgs() << "  Local use SU(" << LU->NodeNum << ") -> SU("
2097                       << GlobalSU->NodeNum << ")\n");
2098     DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak));
2099   }
2100   for (SUnit *GU : GlobalUses) {
2101     LLVM_DEBUG(dbgs() << "  Global use SU(" << GU->NodeNum << ") -> SU("
2102                       << FirstLocalSU->NodeNum << ")\n");
2103     DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak));
2104   }
2105 }
2106 
2107 /// Callback from DAG postProcessing to create weak edges to encourage
2108 /// copy elimination.
2109 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
2110   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
2111   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
2112 
2113   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
2114   if (FirstPos == DAG->end())
2115     return;
2116   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
2117   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
2118       *priorNonDebug(DAG->end(), DAG->begin()));
2119 
2120   for (SUnit &SU : DAG->SUnits) {
2121     if (!SU.getInstr()->isCopy())
2122       continue;
2123 
2124     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
2125   }
2126 }
2127 
2128 //===----------------------------------------------------------------------===//
2129 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
2130 // and possibly other custom schedulers.
2131 //===----------------------------------------------------------------------===//
2132 
2133 static const unsigned InvalidCycle = ~0U;
2134 
2135 SchedBoundary::~SchedBoundary() { delete HazardRec; }
2136 
2137 /// Given a Count of resource usage and a Latency value, return true if a
2138 /// SchedBoundary becomes resource limited.
2139 /// If we are checking after scheduling a node, we should return true when
2140 /// we just reach the resource limit.
2141 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
2142                                unsigned Latency, bool AfterSchedNode) {
2143   int ResCntFactor = (int)(Count - (Latency * LFactor));
2144   if (AfterSchedNode)
2145     return ResCntFactor >= (int)LFactor;
2146   else
2147     return ResCntFactor > (int)LFactor;
2148 }
2149 
2150 void SchedBoundary::reset() {
2151   // A new HazardRec is created for each DAG and owned by SchedBoundary.
2152   // Destroying and reconstructing it is very expensive though. So keep
2153   // invalid, placeholder HazardRecs.
2154   if (HazardRec && HazardRec->isEnabled()) {
2155     delete HazardRec;
2156     HazardRec = nullptr;
2157   }
2158   Available.clear();
2159   Pending.clear();
2160   CheckPending = false;
2161   CurrCycle = 0;
2162   CurrMOps = 0;
2163   MinReadyCycle = std::numeric_limits<unsigned>::max();
2164   ExpectedLatency = 0;
2165   DependentLatency = 0;
2166   RetiredMOps = 0;
2167   MaxExecutedResCount = 0;
2168   ZoneCritResIdx = 0;
2169   IsResourceLimited = false;
2170   ReservedCycles.clear();
2171   ReservedCyclesIndex.clear();
2172   ResourceGroupSubUnitMasks.clear();
2173 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2174   // Track the maximum number of stall cycles that could arise either from the
2175   // latency of a DAG edge or the number of cycles that a processor resource is
2176   // reserved (SchedBoundary::ReservedCycles).
2177   MaxObservedStall = 0;
2178 #endif
2179   // Reserve a zero-count for invalid CritResIdx.
2180   ExecutedResCounts.resize(1);
2181   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
2182 }
2183 
2184 void SchedRemainder::
2185 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
2186   reset();
2187   if (!SchedModel->hasInstrSchedModel())
2188     return;
2189   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
2190   for (SUnit &SU : DAG->SUnits) {
2191     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
2192     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
2193       * SchedModel->getMicroOpFactor();
2194     for (TargetSchedModel::ProcResIter
2195            PI = SchedModel->getWriteProcResBegin(SC),
2196            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2197       unsigned PIdx = PI->ProcResourceIdx;
2198       unsigned Factor = SchedModel->getResourceFactor(PIdx);
2199       RemainingCounts[PIdx] += (Factor * PI->Cycles);
2200     }
2201   }
2202 }
2203 
2204 void SchedBoundary::
2205 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
2206   reset();
2207   DAG = dag;
2208   SchedModel = smodel;
2209   Rem = rem;
2210   if (SchedModel->hasInstrSchedModel()) {
2211     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2212     ReservedCyclesIndex.resize(ResourceCount);
2213     ExecutedResCounts.resize(ResourceCount);
2214     ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0));
2215     unsigned NumUnits = 0;
2216 
2217     for (unsigned i = 0; i < ResourceCount; ++i) {
2218       ReservedCyclesIndex[i] = NumUnits;
2219       NumUnits += SchedModel->getProcResource(i)->NumUnits;
2220       if (isUnbufferedGroup(i)) {
2221         auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2222         for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits;
2223              U != UE; ++U)
2224           ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2225       }
2226     }
2227 
2228     ReservedCycles.resize(NumUnits, InvalidCycle);
2229   }
2230 }
2231 
2232 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
2233 /// these "soft stalls" differently than the hard stall cycles based on CPU
2234 /// resources and computed by checkHazard(). A fully in-order model
2235 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
2236 /// available for scheduling until they are ready. However, a weaker in-order
2237 /// model may use this for heuristics. For example, if a processor has in-order
2238 /// behavior when reading certain resources, this may come into play.
2239 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
2240   if (!SU->isUnbuffered)
2241     return 0;
2242 
2243   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2244   if (ReadyCycle > CurrCycle)
2245     return ReadyCycle - CurrCycle;
2246   return 0;
2247 }
2248 
2249 /// Compute the next cycle at which the given processor resource unit
2250 /// can be scheduled.
2251 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
2252                                                        unsigned Cycles) {
2253   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2254   // If this resource has never been used, always return cycle zero.
2255   if (NextUnreserved == InvalidCycle)
2256     return 0;
2257   // For bottom-up scheduling add the cycles needed for the current operation.
2258   if (!isTop())
2259     NextUnreserved += Cycles;
2260   return NextUnreserved;
2261 }
2262 
2263 /// Compute the next cycle at which the given processor resource can be
2264 /// scheduled.  Returns the next cycle and the index of the processor resource
2265 /// instance in the reserved cycles vector.
2266 std::pair<unsigned, unsigned>
2267 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx,
2268                                     unsigned Cycles) {
2269 
2270   unsigned MinNextUnreserved = InvalidCycle;
2271   unsigned InstanceIdx = 0;
2272   unsigned StartIndex = ReservedCyclesIndex[PIdx];
2273   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
2274   assert(NumberOfInstances > 0 &&
2275          "Cannot have zero instances of a ProcResource");
2276 
2277   if (isUnbufferedGroup(PIdx)) {
2278     // If any subunits are used by the instruction, report that the resource
2279     // group is available at 0, effectively removing the group record from
2280     // hazarding and basing the hazarding decisions on the subunit records.
2281     // Otherwise, choose the first available instance from among the subunits.
2282     // Specifications which assign cycles to both the subunits and the group or
2283     // which use an unbuffered group with buffered subunits will appear to
2284     // schedule strangely. In the first case, the additional cycles for the
2285     // group will be ignored.  In the second, the group will be ignored
2286     // entirely.
2287     for (const MCWriteProcResEntry &PE :
2288          make_range(SchedModel->getWriteProcResBegin(SC),
2289                     SchedModel->getWriteProcResEnd(SC)))
2290       if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2291         return std::make_pair(0u, StartIndex);
2292 
2293     auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2294     for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) {
2295       unsigned NextUnreserved, NextInstanceIdx;
2296       std::tie(NextUnreserved, NextInstanceIdx) =
2297           getNextResourceCycle(SC, SubUnits[I], Cycles);
2298       if (MinNextUnreserved > NextUnreserved) {
2299         InstanceIdx = NextInstanceIdx;
2300         MinNextUnreserved = NextUnreserved;
2301       }
2302     }
2303     return std::make_pair(MinNextUnreserved, InstanceIdx);
2304   }
2305 
2306   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
2307        ++I) {
2308     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
2309     if (MinNextUnreserved > NextUnreserved) {
2310       InstanceIdx = I;
2311       MinNextUnreserved = NextUnreserved;
2312     }
2313   }
2314   return std::make_pair(MinNextUnreserved, InstanceIdx);
2315 }
2316 
2317 /// Does this SU have a hazard within the current instruction group.
2318 ///
2319 /// The scheduler supports two modes of hazard recognition. The first is the
2320 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
2321 /// supports highly complicated in-order reservation tables
2322 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
2323 ///
2324 /// The second is a streamlined mechanism that checks for hazards based on
2325 /// simple counters that the scheduler itself maintains. It explicitly checks
2326 /// for instruction dispatch limitations, including the number of micro-ops that
2327 /// can dispatch per cycle.
2328 ///
2329 /// TODO: Also check whether the SU must start a new group.
2330 bool SchedBoundary::checkHazard(SUnit *SU) {
2331   if (HazardRec->isEnabled()
2332       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
2333     return true;
2334   }
2335 
2336   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2337   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2338     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2339                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2340     return true;
2341   }
2342 
2343   if (CurrMOps > 0 &&
2344       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2345        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2346     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2347                       << (isTop() ? "begin" : "end") << " group\n");
2348     return true;
2349   }
2350 
2351   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2352     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2353     for (const MCWriteProcResEntry &PE :
2354           make_range(SchedModel->getWriteProcResBegin(SC),
2355                      SchedModel->getWriteProcResEnd(SC))) {
2356       unsigned ResIdx = PE.ProcResourceIdx;
2357       unsigned Cycles = PE.Cycles;
2358       unsigned NRCycle, InstanceIdx;
2359       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles);
2360       if (NRCycle > CurrCycle) {
2361 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2362         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2363 #endif
2364         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2365                           << SchedModel->getResourceName(ResIdx)
2366                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2367                           << "=" << NRCycle << "c\n");
2368         return true;
2369       }
2370     }
2371   }
2372   return false;
2373 }
2374 
2375 // Find the unscheduled node in ReadySUs with the highest latency.
2376 unsigned SchedBoundary::
2377 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2378   SUnit *LateSU = nullptr;
2379   unsigned RemLatency = 0;
2380   for (SUnit *SU : ReadySUs) {
2381     unsigned L = getUnscheduledLatency(SU);
2382     if (L > RemLatency) {
2383       RemLatency = L;
2384       LateSU = SU;
2385     }
2386   }
2387   if (LateSU) {
2388     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2389                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2390   }
2391   return RemLatency;
2392 }
2393 
2394 // Count resources in this zone and the remaining unscheduled
2395 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2396 // resource index, or zero if the zone is issue limited.
2397 unsigned SchedBoundary::
2398 getOtherResourceCount(unsigned &OtherCritIdx) {
2399   OtherCritIdx = 0;
2400   if (!SchedModel->hasInstrSchedModel())
2401     return 0;
2402 
2403   unsigned OtherCritCount = Rem->RemIssueCount
2404     + (RetiredMOps * SchedModel->getMicroOpFactor());
2405   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2406                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2407   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2408        PIdx != PEnd; ++PIdx) {
2409     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2410     if (OtherCount > OtherCritCount) {
2411       OtherCritCount = OtherCount;
2412       OtherCritIdx = PIdx;
2413     }
2414   }
2415   if (OtherCritIdx) {
2416     LLVM_DEBUG(
2417         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2418                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2419                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2420   }
2421   return OtherCritCount;
2422 }
2423 
2424 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
2425                                 unsigned Idx) {
2426   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2427 
2428 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
2429   // ReadyCycle was been bumped up to the CurrCycle when this node was
2430   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2431   // scheduling, so may now be greater than ReadyCycle.
2432   if (ReadyCycle > CurrCycle)
2433     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2434 #endif
2435 
2436   if (ReadyCycle < MinReadyCycle)
2437     MinReadyCycle = ReadyCycle;
2438 
2439   // Check for interlocks first. For the purpose of other heuristics, an
2440   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2441   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2442   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
2443                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
2444 
2445   if (!HazardDetected) {
2446     Available.push(SU);
2447 
2448     if (InPQueue)
2449       Pending.remove(Pending.begin() + Idx);
2450     return;
2451   }
2452 
2453   if (!InPQueue)
2454     Pending.push(SU);
2455 }
2456 
2457 /// Move the boundary of scheduled code by one cycle.
2458 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2459   if (SchedModel->getMicroOpBufferSize() == 0) {
2460     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2461            "MinReadyCycle uninitialized");
2462     if (MinReadyCycle > NextCycle)
2463       NextCycle = MinReadyCycle;
2464   }
2465   // Update the current micro-ops, which will issue in the next cycle.
2466   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2467   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2468 
2469   // Decrement DependentLatency based on the next cycle.
2470   if ((NextCycle - CurrCycle) > DependentLatency)
2471     DependentLatency = 0;
2472   else
2473     DependentLatency -= (NextCycle - CurrCycle);
2474 
2475   if (!HazardRec->isEnabled()) {
2476     // Bypass HazardRec virtual calls.
2477     CurrCycle = NextCycle;
2478   } else {
2479     // Bypass getHazardType calls in case of long latency.
2480     for (; CurrCycle != NextCycle; ++CurrCycle) {
2481       if (isTop())
2482         HazardRec->AdvanceCycle();
2483       else
2484         HazardRec->RecedeCycle();
2485     }
2486   }
2487   CheckPending = true;
2488   IsResourceLimited =
2489       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2490                          getScheduledLatency(), true);
2491 
2492   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2493                     << '\n');
2494 }
2495 
2496 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2497   ExecutedResCounts[PIdx] += Count;
2498   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2499     MaxExecutedResCount = ExecutedResCounts[PIdx];
2500 }
2501 
2502 /// Add the given processor resource to this scheduled zone.
2503 ///
2504 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2505 /// during which this resource is consumed.
2506 ///
2507 /// \return the next cycle at which the instruction may execute without
2508 /// oversubscribing resources.
2509 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx,
2510                                       unsigned Cycles, unsigned NextCycle) {
2511   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2512   unsigned Count = Factor * Cycles;
2513   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2514                     << Cycles << "x" << Factor << "u\n");
2515 
2516   // Update Executed resources counts.
2517   incExecutedResources(PIdx, Count);
2518   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2519   Rem->RemainingCounts[PIdx] -= Count;
2520 
2521   // Check if this resource exceeds the current critical resource. If so, it
2522   // becomes the critical resource.
2523   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2524     ZoneCritResIdx = PIdx;
2525     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2526                       << SchedModel->getResourceName(PIdx) << ": "
2527                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2528                       << "c\n");
2529   }
2530   // For reserved resources, record the highest cycle using the resource.
2531   unsigned NextAvailable, InstanceIdx;
2532   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles);
2533   if (NextAvailable > CurrCycle) {
2534     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2535                       << SchedModel->getResourceName(PIdx)
2536                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2537                       << " reserved until @" << NextAvailable << "\n");
2538   }
2539   return NextAvailable;
2540 }
2541 
2542 /// Move the boundary of scheduled code by one SUnit.
2543 void SchedBoundary::bumpNode(SUnit *SU) {
2544   // Update the reservation table.
2545   if (HazardRec->isEnabled()) {
2546     if (!isTop() && SU->isCall) {
2547       // Calls are scheduled with their preceding instructions. For bottom-up
2548       // scheduling, clear the pipeline state before emitting.
2549       HazardRec->Reset();
2550     }
2551     HazardRec->EmitInstruction(SU);
2552     // Scheduling an instruction may have made pending instructions available.
2553     CheckPending = true;
2554   }
2555   // checkHazard should prevent scheduling multiple instructions per cycle that
2556   // exceed the issue width.
2557   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2558   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2559   assert(
2560       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2561       "Cannot schedule this instruction's MicroOps in the current cycle.");
2562 
2563   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2564   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2565 
2566   unsigned NextCycle = CurrCycle;
2567   switch (SchedModel->getMicroOpBufferSize()) {
2568   case 0:
2569     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2570     break;
2571   case 1:
2572     if (ReadyCycle > NextCycle) {
2573       NextCycle = ReadyCycle;
2574       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2575     }
2576     break;
2577   default:
2578     // We don't currently model the OOO reorder buffer, so consider all
2579     // scheduled MOps to be "retired". We do loosely model in-order resource
2580     // latency. If this instruction uses an in-order resource, account for any
2581     // likely stall cycles.
2582     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2583       NextCycle = ReadyCycle;
2584     break;
2585   }
2586   RetiredMOps += IncMOps;
2587 
2588   // Update resource counts and critical resource.
2589   if (SchedModel->hasInstrSchedModel()) {
2590     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2591     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2592     Rem->RemIssueCount -= DecRemIssue;
2593     if (ZoneCritResIdx) {
2594       // Scale scheduled micro-ops for comparing with the critical resource.
2595       unsigned ScaledMOps =
2596         RetiredMOps * SchedModel->getMicroOpFactor();
2597 
2598       // If scaled micro-ops are now more than the previous critical resource by
2599       // a full cycle, then micro-ops issue becomes critical.
2600       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2601           >= (int)SchedModel->getLatencyFactor()) {
2602         ZoneCritResIdx = 0;
2603         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2604                           << ScaledMOps / SchedModel->getLatencyFactor()
2605                           << "c\n");
2606       }
2607     }
2608     for (TargetSchedModel::ProcResIter
2609            PI = SchedModel->getWriteProcResBegin(SC),
2610            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2611       unsigned RCycle =
2612         countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle);
2613       if (RCycle > NextCycle)
2614         NextCycle = RCycle;
2615     }
2616     if (SU->hasReservedResource) {
2617       // For reserved resources, record the highest cycle using the resource.
2618       // For top-down scheduling, this is the cycle in which we schedule this
2619       // instruction plus the number of cycles the operations reserves the
2620       // resource. For bottom-up is it simply the instruction's cycle.
2621       for (TargetSchedModel::ProcResIter
2622              PI = SchedModel->getWriteProcResBegin(SC),
2623              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2624         unsigned PIdx = PI->ProcResourceIdx;
2625         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2626           unsigned ReservedUntil, InstanceIdx;
2627           std::tie(ReservedUntil, InstanceIdx) =
2628               getNextResourceCycle(SC, PIdx, 0);
2629           if (isTop()) {
2630             ReservedCycles[InstanceIdx] =
2631                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2632           } else
2633             ReservedCycles[InstanceIdx] = NextCycle;
2634         }
2635       }
2636     }
2637   }
2638   // Update ExpectedLatency and DependentLatency.
2639   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2640   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2641   if (SU->getDepth() > TopLatency) {
2642     TopLatency = SU->getDepth();
2643     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2644                       << SU->NodeNum << ") " << TopLatency << "c\n");
2645   }
2646   if (SU->getHeight() > BotLatency) {
2647     BotLatency = SU->getHeight();
2648     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2649                       << SU->NodeNum << ") " << BotLatency << "c\n");
2650   }
2651   // If we stall for any reason, bump the cycle.
2652   if (NextCycle > CurrCycle)
2653     bumpCycle(NextCycle);
2654   else
2655     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2656     // resource limited. If a stall occurred, bumpCycle does this.
2657     IsResourceLimited =
2658         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2659                            getScheduledLatency(), true);
2660 
2661   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2662   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2663   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2664   // bump the cycle to avoid uselessly checking everything in the readyQ.
2665   CurrMOps += IncMOps;
2666 
2667   // Bump the cycle count for issue group constraints.
2668   // This must be done after NextCycle has been adjust for all other stalls.
2669   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2670   // currCycle to X.
2671   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2672       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2673     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2674                       << " group\n");
2675     bumpCycle(++NextCycle);
2676   }
2677 
2678   while (CurrMOps >= SchedModel->getIssueWidth()) {
2679     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2680                       << CurrCycle << '\n');
2681     bumpCycle(++NextCycle);
2682   }
2683   LLVM_DEBUG(dumpScheduledState());
2684 }
2685 
2686 /// Release pending ready nodes in to the available queue. This makes them
2687 /// visible to heuristics.
2688 void SchedBoundary::releasePending() {
2689   // If the available queue is empty, it is safe to reset MinReadyCycle.
2690   if (Available.empty())
2691     MinReadyCycle = std::numeric_limits<unsigned>::max();
2692 
2693   // Check to see if any of the pending instructions are ready to issue.  If
2694   // so, add them to the available queue.
2695   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
2696     SUnit *SU = *(Pending.begin() + I);
2697     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2698 
2699     if (ReadyCycle < MinReadyCycle)
2700       MinReadyCycle = ReadyCycle;
2701 
2702     if (Available.size() >= ReadyListLimit)
2703       break;
2704 
2705     releaseNode(SU, ReadyCycle, true, I);
2706     if (E != Pending.size()) {
2707       --I;
2708       --E;
2709     }
2710   }
2711   CheckPending = false;
2712 }
2713 
2714 /// Remove SU from the ready set for this boundary.
2715 void SchedBoundary::removeReady(SUnit *SU) {
2716   if (Available.isInQueue(SU))
2717     Available.remove(Available.find(SU));
2718   else {
2719     assert(Pending.isInQueue(SU) && "bad ready count");
2720     Pending.remove(Pending.find(SU));
2721   }
2722 }
2723 
2724 /// If this queue only has one ready candidate, return it. As a side effect,
2725 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2726 /// one node is ready. If multiple instructions are ready, return NULL.
2727 SUnit *SchedBoundary::pickOnlyChoice() {
2728   if (CheckPending)
2729     releasePending();
2730 
2731   // Defer any ready instrs that now have a hazard.
2732   for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2733     if (checkHazard(*I)) {
2734       Pending.push(*I);
2735       I = Available.remove(I);
2736       continue;
2737     }
2738     ++I;
2739   }
2740   for (unsigned i = 0; Available.empty(); ++i) {
2741 //  FIXME: Re-enable assert once PR20057 is resolved.
2742 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2743 //           "permanent hazard");
2744     (void)i;
2745     bumpCycle(CurrCycle + 1);
2746     releasePending();
2747   }
2748 
2749   LLVM_DEBUG(Pending.dump());
2750   LLVM_DEBUG(Available.dump());
2751 
2752   if (Available.size() == 1)
2753     return *Available.begin();
2754   return nullptr;
2755 }
2756 
2757 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2758 
2759 /// Dump the content of the \ref ReservedCycles vector for the
2760 /// resources that are used in the basic block.
2761 ///
2762 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const {
2763   if (!SchedModel->hasInstrSchedModel())
2764     return;
2765 
2766   unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
2767   unsigned StartIdx = 0;
2768 
2769   for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
2770     const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits;
2771     std::string ResName = SchedModel->getResourceName(ResIdx);
2772     for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
2773       dbgs() << ResName << "(" << UnitIdx
2774              << ") = " << ReservedCycles[StartIdx + UnitIdx] << "\n";
2775     }
2776     StartIdx += NumUnits;
2777   }
2778 }
2779 
2780 // This is useful information to dump after bumpNode.
2781 // Note that the Queue contents are more useful before pickNodeFromQueue.
2782 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2783   unsigned ResFactor;
2784   unsigned ResCount;
2785   if (ZoneCritResIdx) {
2786     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2787     ResCount = getResourceCount(ZoneCritResIdx);
2788   } else {
2789     ResFactor = SchedModel->getMicroOpFactor();
2790     ResCount = RetiredMOps * ResFactor;
2791   }
2792   unsigned LFactor = SchedModel->getLatencyFactor();
2793   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2794          << "  Retired: " << RetiredMOps;
2795   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2796   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2797          << ResCount / ResFactor << " "
2798          << SchedModel->getResourceName(ZoneCritResIdx)
2799          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2800          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2801          << " limited.\n";
2802   if (MISchedDumpReservedCycles)
2803     dumpReservedCycles();
2804 }
2805 #endif
2806 
2807 //===----------------------------------------------------------------------===//
2808 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2809 //===----------------------------------------------------------------------===//
2810 
2811 void GenericSchedulerBase::SchedCandidate::
2812 initResourceDelta(const ScheduleDAGMI *DAG,
2813                   const TargetSchedModel *SchedModel) {
2814   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2815     return;
2816 
2817   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2818   for (TargetSchedModel::ProcResIter
2819          PI = SchedModel->getWriteProcResBegin(SC),
2820          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2821     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2822       ResDelta.CritResources += PI->Cycles;
2823     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2824       ResDelta.DemandedResources += PI->Cycles;
2825   }
2826 }
2827 
2828 /// Compute remaining latency. We need this both to determine whether the
2829 /// overall schedule has become latency-limited and whether the instructions
2830 /// outside this zone are resource or latency limited.
2831 ///
2832 /// The "dependent" latency is updated incrementally during scheduling as the
2833 /// max height/depth of scheduled nodes minus the cycles since it was
2834 /// scheduled:
2835 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2836 ///
2837 /// The "independent" latency is the max ready queue depth:
2838 ///   ILat = max N.depth for N in Available|Pending
2839 ///
2840 /// RemainingLatency is the greater of independent and dependent latency.
2841 ///
2842 /// These computations are expensive, especially in DAGs with many edges, so
2843 /// only do them if necessary.
2844 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2845   unsigned RemLatency = CurrZone.getDependentLatency();
2846   RemLatency = std::max(RemLatency,
2847                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2848   RemLatency = std::max(RemLatency,
2849                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2850   return RemLatency;
2851 }
2852 
2853 /// Returns true if the current cycle plus remaning latency is greater than
2854 /// the critical path in the scheduling region.
2855 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2856                                                SchedBoundary &CurrZone,
2857                                                bool ComputeRemLatency,
2858                                                unsigned &RemLatency) const {
2859   // The current cycle is already greater than the critical path, so we are
2860   // already latency limited and don't need to compute the remaining latency.
2861   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2862     return true;
2863 
2864   // If we haven't scheduled anything yet, then we aren't latency limited.
2865   if (CurrZone.getCurrCycle() == 0)
2866     return false;
2867 
2868   if (ComputeRemLatency)
2869     RemLatency = computeRemLatency(CurrZone);
2870 
2871   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2872 }
2873 
2874 /// Set the CandPolicy given a scheduling zone given the current resources and
2875 /// latencies inside and outside the zone.
2876 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2877                                      SchedBoundary &CurrZone,
2878                                      SchedBoundary *OtherZone) {
2879   // Apply preemptive heuristics based on the total latency and resources
2880   // inside and outside this zone. Potential stalls should be considered before
2881   // following this policy.
2882 
2883   // Compute the critical resource outside the zone.
2884   unsigned OtherCritIdx = 0;
2885   unsigned OtherCount =
2886     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2887 
2888   bool OtherResLimited = false;
2889   unsigned RemLatency = 0;
2890   bool RemLatencyComputed = false;
2891   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2892     RemLatency = computeRemLatency(CurrZone);
2893     RemLatencyComputed = true;
2894     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2895                                          OtherCount, RemLatency, false);
2896   }
2897 
2898   // Schedule aggressively for latency in PostRA mode. We don't check for
2899   // acyclic latency during PostRA, and highly out-of-order processors will
2900   // skip PostRA scheduling.
2901   if (!OtherResLimited &&
2902       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2903                                        RemLatency))) {
2904     Policy.ReduceLatency |= true;
2905     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2906                       << " RemainingLatency " << RemLatency << " + "
2907                       << CurrZone.getCurrCycle() << "c > CritPath "
2908                       << Rem.CriticalPath << "\n");
2909   }
2910   // If the same resource is limiting inside and outside the zone, do nothing.
2911   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2912     return;
2913 
2914   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2915     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2916            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2917   } if (OtherResLimited) dbgs()
2918                  << "  RemainingLimit: "
2919                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2920              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2921              << "  Latency limited both directions.\n");
2922 
2923   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2924     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2925 
2926   if (OtherResLimited)
2927     Policy.DemandResIdx = OtherCritIdx;
2928 }
2929 
2930 #ifndef NDEBUG
2931 const char *GenericSchedulerBase::getReasonStr(
2932   GenericSchedulerBase::CandReason Reason) {
2933   switch (Reason) {
2934   case NoCand:         return "NOCAND    ";
2935   case Only1:          return "ONLY1     ";
2936   case PhysReg:        return "PHYS-REG  ";
2937   case RegExcess:      return "REG-EXCESS";
2938   case RegCritical:    return "REG-CRIT  ";
2939   case Stall:          return "STALL     ";
2940   case Cluster:        return "CLUSTER   ";
2941   case Weak:           return "WEAK      ";
2942   case RegMax:         return "REG-MAX   ";
2943   case ResourceReduce: return "RES-REDUCE";
2944   case ResourceDemand: return "RES-DEMAND";
2945   case TopDepthReduce: return "TOP-DEPTH ";
2946   case TopPathReduce:  return "TOP-PATH  ";
2947   case BotHeightReduce:return "BOT-HEIGHT";
2948   case BotPathReduce:  return "BOT-PATH  ";
2949   case NextDefUse:     return "DEF-USE   ";
2950   case NodeOrder:      return "ORDER     ";
2951   };
2952   llvm_unreachable("Unknown reason!");
2953 }
2954 
2955 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2956   PressureChange P;
2957   unsigned ResIdx = 0;
2958   unsigned Latency = 0;
2959   switch (Cand.Reason) {
2960   default:
2961     break;
2962   case RegExcess:
2963     P = Cand.RPDelta.Excess;
2964     break;
2965   case RegCritical:
2966     P = Cand.RPDelta.CriticalMax;
2967     break;
2968   case RegMax:
2969     P = Cand.RPDelta.CurrentMax;
2970     break;
2971   case ResourceReduce:
2972     ResIdx = Cand.Policy.ReduceResIdx;
2973     break;
2974   case ResourceDemand:
2975     ResIdx = Cand.Policy.DemandResIdx;
2976     break;
2977   case TopDepthReduce:
2978     Latency = Cand.SU->getDepth();
2979     break;
2980   case TopPathReduce:
2981     Latency = Cand.SU->getHeight();
2982     break;
2983   case BotHeightReduce:
2984     Latency = Cand.SU->getHeight();
2985     break;
2986   case BotPathReduce:
2987     Latency = Cand.SU->getDepth();
2988     break;
2989   }
2990   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2991   if (P.isValid())
2992     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2993            << ":" << P.getUnitInc() << " ";
2994   else
2995     dbgs() << "      ";
2996   if (ResIdx)
2997     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2998   else
2999     dbgs() << "         ";
3000   if (Latency)
3001     dbgs() << " " << Latency << " cycles ";
3002   else
3003     dbgs() << "          ";
3004   dbgs() << '\n';
3005 }
3006 #endif
3007 
3008 namespace llvm {
3009 /// Return true if this heuristic determines order.
3010 /// TODO: Consider refactor return type of these functions as integer or enum,
3011 /// as we may need to differentiate whether TryCand is better than Cand.
3012 bool tryLess(int TryVal, int CandVal,
3013              GenericSchedulerBase::SchedCandidate &TryCand,
3014              GenericSchedulerBase::SchedCandidate &Cand,
3015              GenericSchedulerBase::CandReason Reason) {
3016   if (TryVal < CandVal) {
3017     TryCand.Reason = Reason;
3018     return true;
3019   }
3020   if (TryVal > CandVal) {
3021     if (Cand.Reason > Reason)
3022       Cand.Reason = Reason;
3023     return true;
3024   }
3025   return false;
3026 }
3027 
3028 bool tryGreater(int TryVal, int CandVal,
3029                 GenericSchedulerBase::SchedCandidate &TryCand,
3030                 GenericSchedulerBase::SchedCandidate &Cand,
3031                 GenericSchedulerBase::CandReason Reason) {
3032   if (TryVal > CandVal) {
3033     TryCand.Reason = Reason;
3034     return true;
3035   }
3036   if (TryVal < CandVal) {
3037     if (Cand.Reason > Reason)
3038       Cand.Reason = Reason;
3039     return true;
3040   }
3041   return false;
3042 }
3043 
3044 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
3045                 GenericSchedulerBase::SchedCandidate &Cand,
3046                 SchedBoundary &Zone) {
3047   if (Zone.isTop()) {
3048     // Prefer the candidate with the lesser depth, but only if one of them has
3049     // depth greater than the total latency scheduled so far, otherwise either
3050     // of them could be scheduled now with no stall.
3051     if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) >
3052         Zone.getScheduledLatency()) {
3053       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3054                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
3055         return true;
3056     }
3057     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3058                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
3059       return true;
3060   } else {
3061     // Prefer the candidate with the lesser height, but only if one of them has
3062     // height greater than the total latency scheduled so far, otherwise either
3063     // of them could be scheduled now with no stall.
3064     if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) >
3065         Zone.getScheduledLatency()) {
3066       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
3067                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
3068         return true;
3069     }
3070     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
3071                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
3072       return true;
3073   }
3074   return false;
3075 }
3076 } // end namespace llvm
3077 
3078 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
3079   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
3080                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
3081 }
3082 
3083 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
3084   tracePick(Cand.Reason, Cand.AtTop);
3085 }
3086 
3087 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
3088   assert(dag->hasVRegLiveness() &&
3089          "(PreRA)GenericScheduler needs vreg liveness");
3090   DAG = static_cast<ScheduleDAGMILive*>(dag);
3091   SchedModel = DAG->getSchedModel();
3092   TRI = DAG->TRI;
3093 
3094   if (RegionPolicy.ComputeDFSResult)
3095     DAG->computeDFSResult();
3096 
3097   Rem.init(DAG, SchedModel);
3098   Top.init(DAG, SchedModel, &Rem);
3099   Bot.init(DAG, SchedModel, &Rem);
3100 
3101   // Initialize resource counts.
3102 
3103   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
3104   // are disabled, then these HazardRecs will be disabled.
3105   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3106   if (!Top.HazardRec) {
3107     Top.HazardRec =
3108         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3109             Itin, DAG);
3110   }
3111   if (!Bot.HazardRec) {
3112     Bot.HazardRec =
3113         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3114             Itin, DAG);
3115   }
3116   TopCand.SU = nullptr;
3117   BotCand.SU = nullptr;
3118 }
3119 
3120 /// Initialize the per-region scheduling policy.
3121 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
3122                                   MachineBasicBlock::iterator End,
3123                                   unsigned NumRegionInstrs) {
3124   const MachineFunction &MF = *Begin->getMF();
3125   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
3126 
3127   // Avoid setting up the register pressure tracker for small regions to save
3128   // compile time. As a rough heuristic, only track pressure when the number of
3129   // schedulable instructions exceeds half the integer register file.
3130   RegionPolicy.ShouldTrackPressure = true;
3131   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
3132     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
3133     if (TLI->isTypeLegal(LegalIntVT)) {
3134       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
3135         TLI->getRegClassFor(LegalIntVT));
3136       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
3137     }
3138   }
3139 
3140   // For generic targets, we default to bottom-up, because it's simpler and more
3141   // compile-time optimizations have been implemented in that direction.
3142   RegionPolicy.OnlyBottomUp = true;
3143 
3144   // Allow the subtarget to override default policy.
3145   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
3146 
3147   // After subtarget overrides, apply command line options.
3148   if (!EnableRegPressure) {
3149     RegionPolicy.ShouldTrackPressure = false;
3150     RegionPolicy.ShouldTrackLaneMasks = false;
3151   }
3152 
3153   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
3154   // e.g. -misched-bottomup=false allows scheduling in both directions.
3155   assert((!ForceTopDown || !ForceBottomUp) &&
3156          "-misched-topdown incompatible with -misched-bottomup");
3157   if (ForceBottomUp.getNumOccurrences() > 0) {
3158     RegionPolicy.OnlyBottomUp = ForceBottomUp;
3159     if (RegionPolicy.OnlyBottomUp)
3160       RegionPolicy.OnlyTopDown = false;
3161   }
3162   if (ForceTopDown.getNumOccurrences() > 0) {
3163     RegionPolicy.OnlyTopDown = ForceTopDown;
3164     if (RegionPolicy.OnlyTopDown)
3165       RegionPolicy.OnlyBottomUp = false;
3166   }
3167 }
3168 
3169 void GenericScheduler::dumpPolicy() const {
3170   // Cannot completely remove virtual function even in release mode.
3171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3172   dbgs() << "GenericScheduler RegionPolicy: "
3173          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
3174          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
3175          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
3176          << "\n";
3177 #endif
3178 }
3179 
3180 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
3181 /// critical path by more cycles than it takes to drain the instruction buffer.
3182 /// We estimate an upper bounds on in-flight instructions as:
3183 ///
3184 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
3185 /// InFlightIterations = AcyclicPath / CyclesPerIteration
3186 /// InFlightResources = InFlightIterations * LoopResources
3187 ///
3188 /// TODO: Check execution resources in addition to IssueCount.
3189 void GenericScheduler::checkAcyclicLatency() {
3190   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
3191     return;
3192 
3193   // Scaled number of cycles per loop iteration.
3194   unsigned IterCount =
3195     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
3196              Rem.RemIssueCount);
3197   // Scaled acyclic critical path.
3198   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
3199   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
3200   unsigned InFlightCount =
3201     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
3202   unsigned BufferLimit =
3203     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
3204 
3205   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3206 
3207   LLVM_DEBUG(
3208       dbgs() << "IssueCycles="
3209              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
3210              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
3211              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3212              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
3213              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
3214       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
3215 }
3216 
3217 void GenericScheduler::registerRoots() {
3218   Rem.CriticalPath = DAG->ExitSU.getDepth();
3219 
3220   // Some roots may not feed into ExitSU. Check all of them in case.
3221   for (const SUnit *SU : Bot.Available) {
3222     if (SU->getDepth() > Rem.CriticalPath)
3223       Rem.CriticalPath = SU->getDepth();
3224   }
3225   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
3226   if (DumpCriticalPathLength) {
3227     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
3228   }
3229 
3230   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
3231     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
3232     checkAcyclicLatency();
3233   }
3234 }
3235 
3236 namespace llvm {
3237 bool tryPressure(const PressureChange &TryP,
3238                  const PressureChange &CandP,
3239                  GenericSchedulerBase::SchedCandidate &TryCand,
3240                  GenericSchedulerBase::SchedCandidate &Cand,
3241                  GenericSchedulerBase::CandReason Reason,
3242                  const TargetRegisterInfo *TRI,
3243                  const MachineFunction &MF) {
3244   // If one candidate decreases and the other increases, go with it.
3245   // Invalid candidates have UnitInc==0.
3246   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
3247                  Reason)) {
3248     return true;
3249   }
3250   // Do not compare the magnitude of pressure changes between top and bottom
3251   // boundary.
3252   if (Cand.AtTop != TryCand.AtTop)
3253     return false;
3254 
3255   // If both candidates affect the same set in the same boundary, go with the
3256   // smallest increase.
3257   unsigned TryPSet = TryP.getPSetOrMax();
3258   unsigned CandPSet = CandP.getPSetOrMax();
3259   if (TryPSet == CandPSet) {
3260     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
3261                    Reason);
3262   }
3263 
3264   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
3265                                  std::numeric_limits<int>::max();
3266 
3267   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
3268                                    std::numeric_limits<int>::max();
3269 
3270   // If the candidates are decreasing pressure, reverse priority.
3271   if (TryP.getUnitInc() < 0)
3272     std::swap(TryRank, CandRank);
3273   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3274 }
3275 
3276 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
3277   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
3278 }
3279 
3280 /// Minimize physical register live ranges. Regalloc wants them adjacent to
3281 /// their physreg def/use.
3282 ///
3283 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
3284 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
3285 /// with the operation that produces or consumes the physreg. We'll do this when
3286 /// regalloc has support for parallel copies.
3287 int biasPhysReg(const SUnit *SU, bool isTop) {
3288   const MachineInstr *MI = SU->getInstr();
3289 
3290   if (MI->isCopy()) {
3291     unsigned ScheduledOper = isTop ? 1 : 0;
3292     unsigned UnscheduledOper = isTop ? 0 : 1;
3293     // If we have already scheduled the physreg produce/consumer, immediately
3294     // schedule the copy.
3295     if (MI->getOperand(ScheduledOper).getReg().isPhysical())
3296       return 1;
3297     // If the physreg is at the boundary, defer it. Otherwise schedule it
3298     // immediately to free the dependent. We can hoist the copy later.
3299     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
3300     if (MI->getOperand(UnscheduledOper).getReg().isPhysical())
3301       return AtBoundary ? -1 : 1;
3302   }
3303 
3304   if (MI->isMoveImmediate()) {
3305     // If we have a move immediate and all successors have been assigned, bias
3306     // towards scheduling this later. Make sure all register defs are to
3307     // physical registers.
3308     bool DoBias = true;
3309     for (const MachineOperand &Op : MI->defs()) {
3310       if (Op.isReg() && !Op.getReg().isPhysical()) {
3311         DoBias = false;
3312         break;
3313       }
3314     }
3315 
3316     if (DoBias)
3317       return isTop ? -1 : 1;
3318   }
3319 
3320   return 0;
3321 }
3322 } // end namespace llvm
3323 
3324 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
3325                                      bool AtTop,
3326                                      const RegPressureTracker &RPTracker,
3327                                      RegPressureTracker &TempTracker) {
3328   Cand.SU = SU;
3329   Cand.AtTop = AtTop;
3330   if (DAG->isTrackingPressure()) {
3331     if (AtTop) {
3332       TempTracker.getMaxDownwardPressureDelta(
3333         Cand.SU->getInstr(),
3334         Cand.RPDelta,
3335         DAG->getRegionCriticalPSets(),
3336         DAG->getRegPressure().MaxSetPressure);
3337     } else {
3338       if (VerifyScheduling) {
3339         TempTracker.getMaxUpwardPressureDelta(
3340           Cand.SU->getInstr(),
3341           &DAG->getPressureDiff(Cand.SU),
3342           Cand.RPDelta,
3343           DAG->getRegionCriticalPSets(),
3344           DAG->getRegPressure().MaxSetPressure);
3345       } else {
3346         RPTracker.getUpwardPressureDelta(
3347           Cand.SU->getInstr(),
3348           DAG->getPressureDiff(Cand.SU),
3349           Cand.RPDelta,
3350           DAG->getRegionCriticalPSets(),
3351           DAG->getRegPressure().MaxSetPressure);
3352       }
3353     }
3354   }
3355   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
3356              << "  Try  SU(" << Cand.SU->NodeNum << ") "
3357              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
3358              << Cand.RPDelta.Excess.getUnitInc() << "\n");
3359 }
3360 
3361 /// Apply a set of heuristics to a new candidate. Heuristics are currently
3362 /// hierarchical. This may be more efficient than a graduated cost model because
3363 /// we don't need to evaluate all aspects of the model for each node in the
3364 /// queue. But it's really done to make the heuristics easier to debug and
3365 /// statistically analyze.
3366 ///
3367 /// \param Cand provides the policy and current best candidate.
3368 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3369 /// \param Zone describes the scheduled zone that we are extending, or nullptr
3370 ///             if Cand is from a different zone than TryCand.
3371 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3372 bool GenericScheduler::tryCandidate(SchedCandidate &Cand,
3373                                     SchedCandidate &TryCand,
3374                                     SchedBoundary *Zone) const {
3375   // Initialize the candidate if needed.
3376   if (!Cand.isValid()) {
3377     TryCand.Reason = NodeOrder;
3378     return true;
3379   }
3380 
3381   // Bias PhysReg Defs and copies to their uses and defined respectively.
3382   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3383                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3384     return TryCand.Reason != NoCand;
3385 
3386   // Avoid exceeding the target's limit.
3387   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3388                                                Cand.RPDelta.Excess,
3389                                                TryCand, Cand, RegExcess, TRI,
3390                                                DAG->MF))
3391     return TryCand.Reason != NoCand;
3392 
3393   // Avoid increasing the max critical pressure in the scheduled region.
3394   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3395                                                Cand.RPDelta.CriticalMax,
3396                                                TryCand, Cand, RegCritical, TRI,
3397                                                DAG->MF))
3398     return TryCand.Reason != NoCand;
3399 
3400   // We only compare a subset of features when comparing nodes between
3401   // Top and Bottom boundary. Some properties are simply incomparable, in many
3402   // other instances we should only override the other boundary if something
3403   // is a clear good pick on one boundary. Skip heuristics that are more
3404   // "tie-breaking" in nature.
3405   bool SameBoundary = Zone != nullptr;
3406   if (SameBoundary) {
3407     // For loops that are acyclic path limited, aggressively schedule for
3408     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3409     // heuristics to take precedence.
3410     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3411         tryLatency(TryCand, Cand, *Zone))
3412       return TryCand.Reason != NoCand;
3413 
3414     // Prioritize instructions that read unbuffered resources by stall cycles.
3415     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3416                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3417       return TryCand.Reason != NoCand;
3418   }
3419 
3420   // Keep clustered nodes together to encourage downstream peephole
3421   // optimizations which may reduce resource requirements.
3422   //
3423   // This is a best effort to set things up for a post-RA pass. Optimizations
3424   // like generating loads of multiple registers should ideally be done within
3425   // the scheduler pass by combining the loads during DAG postprocessing.
3426   const SUnit *CandNextClusterSU =
3427     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3428   const SUnit *TryCandNextClusterSU =
3429     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3430   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3431                  Cand.SU == CandNextClusterSU,
3432                  TryCand, Cand, Cluster))
3433     return TryCand.Reason != NoCand;
3434 
3435   if (SameBoundary) {
3436     // Weak edges are for clustering and other constraints.
3437     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3438                 getWeakLeft(Cand.SU, Cand.AtTop),
3439                 TryCand, Cand, Weak))
3440       return TryCand.Reason != NoCand;
3441   }
3442 
3443   // Avoid increasing the max pressure of the entire region.
3444   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3445                                                Cand.RPDelta.CurrentMax,
3446                                                TryCand, Cand, RegMax, TRI,
3447                                                DAG->MF))
3448     return TryCand.Reason != NoCand;
3449 
3450   if (SameBoundary) {
3451     // Avoid critical resource consumption and balance the schedule.
3452     TryCand.initResourceDelta(DAG, SchedModel);
3453     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3454                 TryCand, Cand, ResourceReduce))
3455       return TryCand.Reason != NoCand;
3456     if (tryGreater(TryCand.ResDelta.DemandedResources,
3457                    Cand.ResDelta.DemandedResources,
3458                    TryCand, Cand, ResourceDemand))
3459       return TryCand.Reason != NoCand;
3460 
3461     // Avoid serializing long latency dependence chains.
3462     // For acyclic path limited loops, latency was already checked above.
3463     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3464         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3465       return TryCand.Reason != NoCand;
3466 
3467     // Fall through to original instruction order.
3468     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3469         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3470       TryCand.Reason = NodeOrder;
3471       return true;
3472     }
3473   }
3474 
3475   return false;
3476 }
3477 
3478 /// Pick the best candidate from the queue.
3479 ///
3480 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3481 /// DAG building. To adjust for the current scheduling location we need to
3482 /// maintain the number of vreg uses remaining to be top-scheduled.
3483 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3484                                          const CandPolicy &ZonePolicy,
3485                                          const RegPressureTracker &RPTracker,
3486                                          SchedCandidate &Cand) {
3487   // getMaxPressureDelta temporarily modifies the tracker.
3488   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3489 
3490   ReadyQueue &Q = Zone.Available;
3491   for (SUnit *SU : Q) {
3492 
3493     SchedCandidate TryCand(ZonePolicy);
3494     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3495     // Pass SchedBoundary only when comparing nodes from the same boundary.
3496     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3497     if (tryCandidate(Cand, TryCand, ZoneArg)) {
3498       // Initialize resource delta if needed in case future heuristics query it.
3499       if (TryCand.ResDelta == SchedResourceDelta())
3500         TryCand.initResourceDelta(DAG, SchedModel);
3501       Cand.setBest(TryCand);
3502       LLVM_DEBUG(traceCandidate(Cand));
3503     }
3504   }
3505 }
3506 
3507 /// Pick the best candidate node from either the top or bottom queue.
3508 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3509   // Schedule as far as possible in the direction of no choice. This is most
3510   // efficient, but also provides the best heuristics for CriticalPSets.
3511   if (SUnit *SU = Bot.pickOnlyChoice()) {
3512     IsTopNode = false;
3513     tracePick(Only1, false);
3514     return SU;
3515   }
3516   if (SUnit *SU = Top.pickOnlyChoice()) {
3517     IsTopNode = true;
3518     tracePick(Only1, true);
3519     return SU;
3520   }
3521   // Set the bottom-up policy based on the state of the current bottom zone and
3522   // the instructions outside the zone, including the top zone.
3523   CandPolicy BotPolicy;
3524   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3525   // Set the top-down policy based on the state of the current top zone and
3526   // the instructions outside the zone, including the bottom zone.
3527   CandPolicy TopPolicy;
3528   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3529 
3530   // See if BotCand is still valid (because we previously scheduled from Top).
3531   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3532   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3533       BotCand.Policy != BotPolicy) {
3534     BotCand.reset(CandPolicy());
3535     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3536     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3537   } else {
3538     LLVM_DEBUG(traceCandidate(BotCand));
3539 #ifndef NDEBUG
3540     if (VerifyScheduling) {
3541       SchedCandidate TCand;
3542       TCand.reset(CandPolicy());
3543       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3544       assert(TCand.SU == BotCand.SU &&
3545              "Last pick result should correspond to re-picking right now");
3546     }
3547 #endif
3548   }
3549 
3550   // Check if the top Q has a better candidate.
3551   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3552   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3553       TopCand.Policy != TopPolicy) {
3554     TopCand.reset(CandPolicy());
3555     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3556     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3557   } else {
3558     LLVM_DEBUG(traceCandidate(TopCand));
3559 #ifndef NDEBUG
3560     if (VerifyScheduling) {
3561       SchedCandidate TCand;
3562       TCand.reset(CandPolicy());
3563       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3564       assert(TCand.SU == TopCand.SU &&
3565            "Last pick result should correspond to re-picking right now");
3566     }
3567 #endif
3568   }
3569 
3570   // Pick best from BotCand and TopCand.
3571   assert(BotCand.isValid());
3572   assert(TopCand.isValid());
3573   SchedCandidate Cand = BotCand;
3574   TopCand.Reason = NoCand;
3575   if (tryCandidate(Cand, TopCand, nullptr)) {
3576     Cand.setBest(TopCand);
3577     LLVM_DEBUG(traceCandidate(Cand));
3578   }
3579 
3580   IsTopNode = Cand.AtTop;
3581   tracePick(Cand);
3582   return Cand.SU;
3583 }
3584 
3585 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3586 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3587   if (DAG->top() == DAG->bottom()) {
3588     assert(Top.Available.empty() && Top.Pending.empty() &&
3589            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3590     return nullptr;
3591   }
3592   SUnit *SU;
3593   do {
3594     if (RegionPolicy.OnlyTopDown) {
3595       SU = Top.pickOnlyChoice();
3596       if (!SU) {
3597         CandPolicy NoPolicy;
3598         TopCand.reset(NoPolicy);
3599         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3600         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3601         tracePick(TopCand);
3602         SU = TopCand.SU;
3603       }
3604       IsTopNode = true;
3605     } else if (RegionPolicy.OnlyBottomUp) {
3606       SU = Bot.pickOnlyChoice();
3607       if (!SU) {
3608         CandPolicy NoPolicy;
3609         BotCand.reset(NoPolicy);
3610         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3611         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3612         tracePick(BotCand);
3613         SU = BotCand.SU;
3614       }
3615       IsTopNode = false;
3616     } else {
3617       SU = pickNodeBidirectional(IsTopNode);
3618     }
3619   } while (SU->isScheduled);
3620 
3621   if (SU->isTopReady())
3622     Top.removeReady(SU);
3623   if (SU->isBottomReady())
3624     Bot.removeReady(SU);
3625 
3626   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3627                     << *SU->getInstr());
3628   return SU;
3629 }
3630 
3631 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3632   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3633   if (!isTop)
3634     ++InsertPos;
3635   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3636 
3637   // Find already scheduled copies with a single physreg dependence and move
3638   // them just above the scheduled instruction.
3639   for (SDep &Dep : Deps) {
3640     if (Dep.getKind() != SDep::Data ||
3641         !Register::isPhysicalRegister(Dep.getReg()))
3642       continue;
3643     SUnit *DepSU = Dep.getSUnit();
3644     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3645       continue;
3646     MachineInstr *Copy = DepSU->getInstr();
3647     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3648       continue;
3649     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3650                DAG->dumpNode(*Dep.getSUnit()));
3651     DAG->moveInstruction(Copy, InsertPos);
3652   }
3653 }
3654 
3655 /// Update the scheduler's state after scheduling a node. This is the same node
3656 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3657 /// update it's state based on the current cycle before MachineSchedStrategy
3658 /// does.
3659 ///
3660 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3661 /// them here. See comments in biasPhysReg.
3662 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3663   if (IsTopNode) {
3664     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3665     Top.bumpNode(SU);
3666     if (SU->hasPhysRegUses)
3667       reschedulePhysReg(SU, true);
3668   } else {
3669     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3670     Bot.bumpNode(SU);
3671     if (SU->hasPhysRegDefs)
3672       reschedulePhysReg(SU, false);
3673   }
3674 }
3675 
3676 /// Create the standard converging machine scheduler. This will be used as the
3677 /// default scheduler if the target does not set a default.
3678 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3679   ScheduleDAGMILive *DAG =
3680       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3681   // Register DAG post-processors.
3682   //
3683   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3684   // data and pass it to later mutations. Have a single mutation that gathers
3685   // the interesting nodes in one pass.
3686   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3687   return DAG;
3688 }
3689 
3690 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
3691   return createGenericSchedLive(C);
3692 }
3693 
3694 static MachineSchedRegistry
3695 GenericSchedRegistry("converge", "Standard converging scheduler.",
3696                      createConvergingSched);
3697 
3698 //===----------------------------------------------------------------------===//
3699 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3700 //===----------------------------------------------------------------------===//
3701 
3702 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3703   DAG = Dag;
3704   SchedModel = DAG->getSchedModel();
3705   TRI = DAG->TRI;
3706 
3707   Rem.init(DAG, SchedModel);
3708   Top.init(DAG, SchedModel, &Rem);
3709   BotRoots.clear();
3710 
3711   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3712   // or are disabled, then these HazardRecs will be disabled.
3713   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3714   if (!Top.HazardRec) {
3715     Top.HazardRec =
3716         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3717             Itin, DAG);
3718   }
3719 }
3720 
3721 void PostGenericScheduler::registerRoots() {
3722   Rem.CriticalPath = DAG->ExitSU.getDepth();
3723 
3724   // Some roots may not feed into ExitSU. Check all of them in case.
3725   for (const SUnit *SU : BotRoots) {
3726     if (SU->getDepth() > Rem.CriticalPath)
3727       Rem.CriticalPath = SU->getDepth();
3728   }
3729   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3730   if (DumpCriticalPathLength) {
3731     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3732   }
3733 }
3734 
3735 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3736 ///
3737 /// \param Cand provides the policy and current best candidate.
3738 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3739 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
3740 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3741                                         SchedCandidate &TryCand) {
3742   // Initialize the candidate if needed.
3743   if (!Cand.isValid()) {
3744     TryCand.Reason = NodeOrder;
3745     return true;
3746   }
3747 
3748   // Prioritize instructions that read unbuffered resources by stall cycles.
3749   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3750               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3751     return TryCand.Reason != NoCand;
3752 
3753   // Keep clustered nodes together.
3754   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3755                  Cand.SU == DAG->getNextClusterSucc(),
3756                  TryCand, Cand, Cluster))
3757     return TryCand.Reason != NoCand;
3758 
3759   // Avoid critical resource consumption and balance the schedule.
3760   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3761               TryCand, Cand, ResourceReduce))
3762     return TryCand.Reason != NoCand;
3763   if (tryGreater(TryCand.ResDelta.DemandedResources,
3764                  Cand.ResDelta.DemandedResources,
3765                  TryCand, Cand, ResourceDemand))
3766     return TryCand.Reason != NoCand;
3767 
3768   // Avoid serializing long latency dependence chains.
3769   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3770     return TryCand.Reason != NoCand;
3771   }
3772 
3773   // Fall through to original instruction order.
3774   if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
3775     TryCand.Reason = NodeOrder;
3776     return true;
3777   }
3778 
3779   return false;
3780 }
3781 
3782 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3783   ReadyQueue &Q = Top.Available;
3784   for (SUnit *SU : Q) {
3785     SchedCandidate TryCand(Cand.Policy);
3786     TryCand.SU = SU;
3787     TryCand.AtTop = true;
3788     TryCand.initResourceDelta(DAG, SchedModel);
3789     if (tryCandidate(Cand, TryCand)) {
3790       Cand.setBest(TryCand);
3791       LLVM_DEBUG(traceCandidate(Cand));
3792     }
3793   }
3794 }
3795 
3796 /// Pick the next node to schedule.
3797 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3798   if (DAG->top() == DAG->bottom()) {
3799     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3800     return nullptr;
3801   }
3802   SUnit *SU;
3803   do {
3804     SU = Top.pickOnlyChoice();
3805     if (SU) {
3806       tracePick(Only1, true);
3807     } else {
3808       CandPolicy NoPolicy;
3809       SchedCandidate TopCand(NoPolicy);
3810       // Set the top-down policy based on the state of the current top zone and
3811       // the instructions outside the zone, including the bottom zone.
3812       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3813       pickNodeFromQueue(TopCand);
3814       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3815       tracePick(TopCand);
3816       SU = TopCand.SU;
3817     }
3818   } while (SU->isScheduled);
3819 
3820   IsTopNode = true;
3821   Top.removeReady(SU);
3822 
3823   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3824                     << *SU->getInstr());
3825   return SU;
3826 }
3827 
3828 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3829 /// scheduled/remaining flags in the DAG nodes.
3830 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3831   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3832   Top.bumpNode(SU);
3833 }
3834 
3835 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3836   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3837                            /*RemoveKillFlags=*/true);
3838 }
3839 
3840 //===----------------------------------------------------------------------===//
3841 // ILP Scheduler. Currently for experimental analysis of heuristics.
3842 //===----------------------------------------------------------------------===//
3843 
3844 namespace {
3845 
3846 /// Order nodes by the ILP metric.
3847 struct ILPOrder {
3848   const SchedDFSResult *DFSResult = nullptr;
3849   const BitVector *ScheduledTrees = nullptr;
3850   bool MaximizeILP;
3851 
3852   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3853 
3854   /// Apply a less-than relation on node priority.
3855   ///
3856   /// (Return true if A comes after B in the Q.)
3857   bool operator()(const SUnit *A, const SUnit *B) const {
3858     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3859     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3860     if (SchedTreeA != SchedTreeB) {
3861       // Unscheduled trees have lower priority.
3862       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3863         return ScheduledTrees->test(SchedTreeB);
3864 
3865       // Trees with shallower connections have have lower priority.
3866       if (DFSResult->getSubtreeLevel(SchedTreeA)
3867           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3868         return DFSResult->getSubtreeLevel(SchedTreeA)
3869           < DFSResult->getSubtreeLevel(SchedTreeB);
3870       }
3871     }
3872     if (MaximizeILP)
3873       return DFSResult->getILP(A) < DFSResult->getILP(B);
3874     else
3875       return DFSResult->getILP(A) > DFSResult->getILP(B);
3876   }
3877 };
3878 
3879 /// Schedule based on the ILP metric.
3880 class ILPScheduler : public MachineSchedStrategy {
3881   ScheduleDAGMILive *DAG = nullptr;
3882   ILPOrder Cmp;
3883 
3884   std::vector<SUnit*> ReadyQ;
3885 
3886 public:
3887   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3888 
3889   void initialize(ScheduleDAGMI *dag) override {
3890     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3891     DAG = static_cast<ScheduleDAGMILive*>(dag);
3892     DAG->computeDFSResult();
3893     Cmp.DFSResult = DAG->getDFSResult();
3894     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3895     ReadyQ.clear();
3896   }
3897 
3898   void registerRoots() override {
3899     // Restore the heap in ReadyQ with the updated DFS results.
3900     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3901   }
3902 
3903   /// Implement MachineSchedStrategy interface.
3904   /// -----------------------------------------
3905 
3906   /// Callback to select the highest priority node from the ready Q.
3907   SUnit *pickNode(bool &IsTopNode) override {
3908     if (ReadyQ.empty()) return nullptr;
3909     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3910     SUnit *SU = ReadyQ.back();
3911     ReadyQ.pop_back();
3912     IsTopNode = false;
3913     LLVM_DEBUG(dbgs() << "Pick node "
3914                       << "SU(" << SU->NodeNum << ") "
3915                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3916                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3917                       << " @"
3918                       << DAG->getDFSResult()->getSubtreeLevel(
3919                              DAG->getDFSResult()->getSubtreeID(SU))
3920                       << '\n'
3921                       << "Scheduling " << *SU->getInstr());
3922     return SU;
3923   }
3924 
3925   /// Scheduler callback to notify that a new subtree is scheduled.
3926   void scheduleTree(unsigned SubtreeID) override {
3927     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3928   }
3929 
3930   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3931   /// DFSResults, and resort the priority Q.
3932   void schedNode(SUnit *SU, bool IsTopNode) override {
3933     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3934   }
3935 
3936   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3937 
3938   void releaseBottomNode(SUnit *SU) override {
3939     ReadyQ.push_back(SU);
3940     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3941   }
3942 };
3943 
3944 } // end anonymous namespace
3945 
3946 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3947   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3948 }
3949 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3950   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3951 }
3952 
3953 static MachineSchedRegistry ILPMaxRegistry(
3954   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3955 static MachineSchedRegistry ILPMinRegistry(
3956   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3957 
3958 //===----------------------------------------------------------------------===//
3959 // Machine Instruction Shuffler for Correctness Testing
3960 //===----------------------------------------------------------------------===//
3961 
3962 #ifndef NDEBUG
3963 namespace {
3964 
3965 /// Apply a less-than relation on the node order, which corresponds to the
3966 /// instruction order prior to scheduling. IsReverse implements greater-than.
3967 template<bool IsReverse>
3968 struct SUnitOrder {
3969   bool operator()(SUnit *A, SUnit *B) const {
3970     if (IsReverse)
3971       return A->NodeNum > B->NodeNum;
3972     else
3973       return A->NodeNum < B->NodeNum;
3974   }
3975 };
3976 
3977 /// Reorder instructions as much as possible.
3978 class InstructionShuffler : public MachineSchedStrategy {
3979   bool IsAlternating;
3980   bool IsTopDown;
3981 
3982   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3983   // gives nodes with a higher number higher priority causing the latest
3984   // instructions to be scheduled first.
3985   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3986     TopQ;
3987 
3988   // When scheduling bottom-up, use greater-than as the queue priority.
3989   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3990     BottomQ;
3991 
3992 public:
3993   InstructionShuffler(bool alternate, bool topdown)
3994     : IsAlternating(alternate), IsTopDown(topdown) {}
3995 
3996   void initialize(ScheduleDAGMI*) override {
3997     TopQ.clear();
3998     BottomQ.clear();
3999   }
4000 
4001   /// Implement MachineSchedStrategy interface.
4002   /// -----------------------------------------
4003 
4004   SUnit *pickNode(bool &IsTopNode) override {
4005     SUnit *SU;
4006     if (IsTopDown) {
4007       do {
4008         if (TopQ.empty()) return nullptr;
4009         SU = TopQ.top();
4010         TopQ.pop();
4011       } while (SU->isScheduled);
4012       IsTopNode = true;
4013     } else {
4014       do {
4015         if (BottomQ.empty()) return nullptr;
4016         SU = BottomQ.top();
4017         BottomQ.pop();
4018       } while (SU->isScheduled);
4019       IsTopNode = false;
4020     }
4021     if (IsAlternating)
4022       IsTopDown = !IsTopDown;
4023     return SU;
4024   }
4025 
4026   void schedNode(SUnit *SU, bool IsTopNode) override {}
4027 
4028   void releaseTopNode(SUnit *SU) override {
4029     TopQ.push(SU);
4030   }
4031   void releaseBottomNode(SUnit *SU) override {
4032     BottomQ.push(SU);
4033   }
4034 };
4035 
4036 } // end anonymous namespace
4037 
4038 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
4039   bool Alternate = !ForceTopDown && !ForceBottomUp;
4040   bool TopDown = !ForceBottomUp;
4041   assert((TopDown || !ForceTopDown) &&
4042          "-misched-topdown incompatible with -misched-bottomup");
4043   return new ScheduleDAGMILive(
4044       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4045 }
4046 
4047 static MachineSchedRegistry ShufflerRegistry(
4048   "shuffle", "Shuffle machine instructions alternating directions",
4049   createInstructionShuffler);
4050 #endif // !NDEBUG
4051 
4052 //===----------------------------------------------------------------------===//
4053 // GraphWriter support for ScheduleDAGMILive.
4054 //===----------------------------------------------------------------------===//
4055 
4056 #ifndef NDEBUG
4057 namespace llvm {
4058 
4059 template<> struct GraphTraits<
4060   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
4061 
4062 template<>
4063 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
4064   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4065 
4066   static std::string getGraphName(const ScheduleDAG *G) {
4067     return std::string(G->MF.getName());
4068   }
4069 
4070   static bool renderGraphFromBottomUp() {
4071     return true;
4072   }
4073 
4074   static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) {
4075     if (ViewMISchedCutoff == 0)
4076       return false;
4077     return (Node->Preds.size() > ViewMISchedCutoff
4078          || Node->Succs.size() > ViewMISchedCutoff);
4079   }
4080 
4081   /// If you want to override the dot attributes printed for a particular
4082   /// edge, override this method.
4083   static std::string getEdgeAttributes(const SUnit *Node,
4084                                        SUnitIterator EI,
4085                                        const ScheduleDAG *Graph) {
4086     if (EI.isArtificialDep())
4087       return "color=cyan,style=dashed";
4088     if (EI.isCtrlDep())
4089       return "color=blue,style=dashed";
4090     return "";
4091   }
4092 
4093   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
4094     std::string Str;
4095     raw_string_ostream SS(Str);
4096     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4097     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4098       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4099     SS << "SU:" << SU->NodeNum;
4100     if (DFS)
4101       SS << " I:" << DFS->getNumInstrs(SU);
4102     return SS.str();
4103   }
4104 
4105   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
4106     return G->getGraphNodeLabel(SU);
4107   }
4108 
4109   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
4110     std::string Str("shape=Mrecord");
4111     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
4112     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
4113       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
4114     if (DFS) {
4115       Str += ",style=filled,fillcolor=\"#";
4116       Str += DOT::getColorString(DFS->getSubtreeID(N));
4117       Str += '"';
4118     }
4119     return Str;
4120   }
4121 };
4122 
4123 } // end namespace llvm
4124 #endif // NDEBUG
4125 
4126 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
4127 /// rendered using 'dot'.
4128 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
4129 #ifndef NDEBUG
4130   ViewGraph(this, Name, false, Title);
4131 #else
4132   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
4133          << "systems with Graphviz or gv!\n";
4134 #endif  // NDEBUG
4135 }
4136 
4137 /// Out-of-line implementation with no arguments is handy for gdb.
4138 void ScheduleDAGMI::viewGraph() {
4139   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
4140 }
4141