1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 } 44 45 #ifndef NDEBUG 46 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 47 cl::desc("Pop up a window to show MISched dags after they are processed")); 48 49 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 50 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 51 52 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 53 cl::desc("Only schedule this function")); 54 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 55 cl::desc("Only schedule this MBB#")); 56 #else 57 static bool ViewMISchedDAGs = false; 58 #endif // NDEBUG 59 60 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 61 cl::desc("Enable register pressure scheduling."), cl::init(true)); 62 63 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 64 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 65 66 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 67 cl::desc("Enable load clustering."), cl::init(true)); 68 69 // Experimental heuristics 70 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 71 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 72 73 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 74 cl::desc("Verify machine instrs before and after machine scheduling")); 75 76 // DAG subtrees must have at least this many nodes. 77 static const unsigned MinSubtreeSize = 8; 78 79 // Pin the vtables to this file. 80 void MachineSchedStrategy::anchor() {} 81 void ScheduleDAGMutation::anchor() {} 82 83 //===----------------------------------------------------------------------===// 84 // Machine Instruction Scheduling Pass and Registry 85 //===----------------------------------------------------------------------===// 86 87 MachineSchedContext::MachineSchedContext(): 88 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 89 RegClassInfo = new RegisterClassInfo(); 90 } 91 92 MachineSchedContext::~MachineSchedContext() { 93 delete RegClassInfo; 94 } 95 96 namespace { 97 /// Base class for a machine scheduler class that can run at any point. 98 class MachineSchedulerBase : public MachineSchedContext, 99 public MachineFunctionPass { 100 public: 101 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 102 103 void print(raw_ostream &O, const Module* = nullptr) const override; 104 105 protected: 106 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 107 }; 108 109 /// MachineScheduler runs after coalescing and before register allocation. 110 class MachineScheduler : public MachineSchedulerBase { 111 public: 112 MachineScheduler(); 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override; 115 116 bool runOnMachineFunction(MachineFunction&) override; 117 118 static char ID; // Class identification, replacement for typeinfo 119 120 protected: 121 ScheduleDAGInstrs *createMachineScheduler(); 122 }; 123 124 /// PostMachineScheduler runs after shortly before code emission. 125 class PostMachineScheduler : public MachineSchedulerBase { 126 public: 127 PostMachineScheduler(); 128 129 void getAnalysisUsage(AnalysisUsage &AU) const override; 130 131 bool runOnMachineFunction(MachineFunction&) override; 132 133 static char ID; // Class identification, replacement for typeinfo 134 135 protected: 136 ScheduleDAGInstrs *createPostMachineScheduler(); 137 }; 138 } // namespace 139 140 char MachineScheduler::ID = 0; 141 142 char &llvm::MachineSchedulerID = MachineScheduler::ID; 143 144 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 145 "Machine Instruction Scheduler", false, false) 146 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_END(MachineScheduler, "misched", 150 "Machine Instruction Scheduler", false, false) 151 152 MachineScheduler::MachineScheduler() 153 : MachineSchedulerBase(ID) { 154 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 155 } 156 157 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 158 AU.setPreservesCFG(); 159 AU.addRequiredID(MachineDominatorsID); 160 AU.addRequired<MachineLoopInfo>(); 161 AU.addRequired<AliasAnalysis>(); 162 AU.addRequired<TargetPassConfig>(); 163 AU.addRequired<SlotIndexes>(); 164 AU.addPreserved<SlotIndexes>(); 165 AU.addRequired<LiveIntervals>(); 166 AU.addPreserved<LiveIntervals>(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 } 169 170 char PostMachineScheduler::ID = 0; 171 172 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 173 174 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 175 "PostRA Machine Instruction Scheduler", false, false) 176 177 PostMachineScheduler::PostMachineScheduler() 178 : MachineSchedulerBase(ID) { 179 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 180 } 181 182 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 183 AU.setPreservesCFG(); 184 AU.addRequiredID(MachineDominatorsID); 185 AU.addRequired<MachineLoopInfo>(); 186 AU.addRequired<TargetPassConfig>(); 187 MachineFunctionPass::getAnalysisUsage(AU); 188 } 189 190 MachinePassRegistry MachineSchedRegistry::Registry; 191 192 /// A dummy default scheduler factory indicates whether the scheduler 193 /// is overridden on the command line. 194 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 195 return nullptr; 196 } 197 198 /// MachineSchedOpt allows command line selection of the scheduler. 199 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 200 RegisterPassParser<MachineSchedRegistry> > 201 MachineSchedOpt("misched", 202 cl::init(&useDefaultMachineSched), cl::Hidden, 203 cl::desc("Machine instruction scheduler to use")); 204 205 static MachineSchedRegistry 206 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 207 useDefaultMachineSched); 208 209 /// Forward declare the standard machine scheduler. This will be used as the 210 /// default scheduler if the target does not set a default. 211 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 212 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 213 214 /// Decrement this iterator until reaching the top or a non-debug instr. 215 static MachineBasicBlock::const_iterator 216 priorNonDebug(MachineBasicBlock::const_iterator I, 217 MachineBasicBlock::const_iterator Beg) { 218 assert(I != Beg && "reached the top of the region, cannot decrement"); 219 while (--I != Beg) { 220 if (!I->isDebugValue()) 221 break; 222 } 223 return I; 224 } 225 226 /// Non-const version. 227 static MachineBasicBlock::iterator 228 priorNonDebug(MachineBasicBlock::iterator I, 229 MachineBasicBlock::const_iterator Beg) { 230 return const_cast<MachineInstr*>( 231 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 232 } 233 234 /// If this iterator is a debug value, increment until reaching the End or a 235 /// non-debug instruction. 236 static MachineBasicBlock::const_iterator 237 nextIfDebug(MachineBasicBlock::const_iterator I, 238 MachineBasicBlock::const_iterator End) { 239 for(; I != End; ++I) { 240 if (!I->isDebugValue()) 241 break; 242 } 243 return I; 244 } 245 246 /// Non-const version. 247 static MachineBasicBlock::iterator 248 nextIfDebug(MachineBasicBlock::iterator I, 249 MachineBasicBlock::const_iterator End) { 250 // Cast the return value to nonconst MachineInstr, then cast to an 251 // instr_iterator, which does not check for null, finally return a 252 // bundle_iterator. 253 return MachineBasicBlock::instr_iterator( 254 const_cast<MachineInstr*>( 255 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 256 } 257 258 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 259 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 260 // Select the scheduler, or set the default. 261 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 262 if (Ctor != useDefaultMachineSched) 263 return Ctor(this); 264 265 // Get the default scheduler set by the target for this function. 266 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 267 if (Scheduler) 268 return Scheduler; 269 270 // Default to GenericScheduler. 271 return createGenericSchedLive(this); 272 } 273 274 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 275 /// the caller. We don't have a command line option to override the postRA 276 /// scheduler. The Target must configure it. 277 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 278 // Get the postRA scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedPostRA(this); 285 } 286 287 /// Top-level MachineScheduler pass driver. 288 /// 289 /// Visit blocks in function order. Divide each block into scheduling regions 290 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 291 /// consistent with the DAG builder, which traverses the interior of the 292 /// scheduling regions bottom-up. 293 /// 294 /// This design avoids exposing scheduling boundaries to the DAG builder, 295 /// simplifying the DAG builder's support for "special" target instructions. 296 /// At the same time the design allows target schedulers to operate across 297 /// scheduling boundaries, for example to bundle the boudary instructions 298 /// without reordering them. This creates complexity, because the target 299 /// scheduler must update the RegionBegin and RegionEnd positions cached by 300 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 301 /// design would be to split blocks at scheduling boundaries, but LLVM has a 302 /// general bias against block splitting purely for implementation simplicity. 303 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 304 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 305 306 // Initialize the context of the pass. 307 MF = &mf; 308 MLI = &getAnalysis<MachineLoopInfo>(); 309 MDT = &getAnalysis<MachineDominatorTree>(); 310 PassConfig = &getAnalysis<TargetPassConfig>(); 311 AA = &getAnalysis<AliasAnalysis>(); 312 313 LIS = &getAnalysis<LiveIntervals>(); 314 315 if (VerifyScheduling) { 316 DEBUG(LIS->dump()); 317 MF->verify(this, "Before machine scheduling."); 318 } 319 RegClassInfo->runOnMachineFunction(*MF); 320 321 // Instantiate the selected scheduler for this target, function, and 322 // optimization level. 323 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 324 scheduleRegions(*Scheduler); 325 326 DEBUG(LIS->dump()); 327 if (VerifyScheduling) 328 MF->verify(this, "After machine scheduling."); 329 return true; 330 } 331 332 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 333 if (skipOptnoneFunction(*mf.getFunction())) 334 return false; 335 336 const TargetSubtargetInfo &ST = 337 mf.getTarget().getSubtarget<TargetSubtargetInfo>(); 338 if (!ST.enablePostMachineScheduler()) { 339 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 340 return false; 341 } 342 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 343 344 // Initialize the context of the pass. 345 MF = &mf; 346 PassConfig = &getAnalysis<TargetPassConfig>(); 347 348 if (VerifyScheduling) 349 MF->verify(this, "Before post machine scheduling."); 350 351 // Instantiate the selected scheduler for this target, function, and 352 // optimization level. 353 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 354 scheduleRegions(*Scheduler); 355 356 if (VerifyScheduling) 357 MF->verify(this, "After post machine scheduling."); 358 return true; 359 } 360 361 /// Return true of the given instruction should not be included in a scheduling 362 /// region. 363 /// 364 /// MachineScheduler does not currently support scheduling across calls. To 365 /// handle calls, the DAG builder needs to be modified to create register 366 /// anti/output dependencies on the registers clobbered by the call's regmask 367 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 368 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 369 /// the boundary, but there would be no benefit to postRA scheduling across 370 /// calls this late anyway. 371 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 372 MachineBasicBlock *MBB, 373 MachineFunction *MF, 374 const TargetInstrInfo *TII, 375 bool IsPostRA) { 376 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 377 } 378 379 /// Main driver for both MachineScheduler and PostMachineScheduler. 380 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 381 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 382 bool IsPostRA = Scheduler.isPostRA(); 383 384 // Visit all machine basic blocks. 385 // 386 // TODO: Visit blocks in global postorder or postorder within the bottom-up 387 // loop tree. Then we can optionally compute global RegPressure. 388 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 389 MBB != MBBEnd; ++MBB) { 390 391 Scheduler.startBlock(MBB); 392 393 #ifndef NDEBUG 394 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 395 continue; 396 if (SchedOnlyBlock.getNumOccurrences() 397 && (int)SchedOnlyBlock != MBB->getNumber()) 398 continue; 399 #endif 400 401 // Break the block into scheduling regions [I, RegionEnd), and schedule each 402 // region as soon as it is discovered. RegionEnd points the scheduling 403 // boundary at the bottom of the region. The DAG does not include RegionEnd, 404 // but the region does (i.e. the next RegionEnd is above the previous 405 // RegionBegin). If the current block has no terminator then RegionEnd == 406 // MBB->end() for the bottom region. 407 // 408 // The Scheduler may insert instructions during either schedule() or 409 // exitRegion(), even for empty regions. So the local iterators 'I' and 410 // 'RegionEnd' are invalid across these calls. 411 // 412 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 413 // as a single instruction. 414 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 415 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 416 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 417 418 // Avoid decrementing RegionEnd for blocks with no terminator. 419 if (RegionEnd != MBB->end() || 420 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { 421 --RegionEnd; 422 // Count the boundary instruction. 423 --RemainingInstrs; 424 } 425 426 // The next region starts above the previous region. Look backward in the 427 // instruction stream until we find the nearest boundary. 428 unsigned NumRegionInstrs = 0; 429 MachineBasicBlock::iterator I = RegionEnd; 430 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 431 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) 432 break; 433 } 434 // Notify the scheduler of the region, even if we may skip scheduling 435 // it. Perhaps it still needs to be bundled. 436 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 437 438 // Skip empty scheduling regions (0 or 1 schedulable instructions). 439 if (I == RegionEnd || I == std::prev(RegionEnd)) { 440 // Close the current region. Bundle the terminator if needed. 441 // This invalidates 'RegionEnd' and 'I'. 442 Scheduler.exitRegion(); 443 continue; 444 } 445 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 446 << "MI Scheduling **********\n"); 447 DEBUG(dbgs() << MF->getName() 448 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 449 << "\n From: " << *I << " To: "; 450 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 451 else dbgs() << "End"; 452 dbgs() << " RegionInstrs: " << NumRegionInstrs 453 << " Remaining: " << RemainingInstrs << "\n"); 454 455 // Schedule a region: possibly reorder instructions. 456 // This invalidates 'RegionEnd' and 'I'. 457 Scheduler.schedule(); 458 459 // Close the current region. 460 Scheduler.exitRegion(); 461 462 // Scheduling has invalidated the current iterator 'I'. Ask the 463 // scheduler for the top of it's scheduled region. 464 RegionEnd = Scheduler.begin(); 465 } 466 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 467 Scheduler.finishBlock(); 468 if (Scheduler.isPostRA()) { 469 // FIXME: Ideally, no further passes should rely on kill flags. However, 470 // thumb2 size reduction is currently an exception. 471 Scheduler.fixupKills(MBB); 472 } 473 } 474 Scheduler.finalizeSchedule(); 475 } 476 477 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 478 // unimplemented 479 } 480 481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 482 void ReadyQueue::dump() { 483 dbgs() << Name << ": "; 484 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 485 dbgs() << Queue[i]->NodeNum << " "; 486 dbgs() << "\n"; 487 } 488 #endif 489 490 //===----------------------------------------------------------------------===// 491 // ScheduleDAGMI - Basic machine instruction scheduling. This is 492 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 493 // virtual registers. 494 // ===----------------------------------------------------------------------===/ 495 496 // Provide a vtable anchor. 497 ScheduleDAGMI::~ScheduleDAGMI() { 498 } 499 500 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 501 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 502 } 503 504 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 505 if (SuccSU != &ExitSU) { 506 // Do not use WillCreateCycle, it assumes SD scheduling. 507 // If Pred is reachable from Succ, then the edge creates a cycle. 508 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 509 return false; 510 Topo.AddPred(SuccSU, PredDep.getSUnit()); 511 } 512 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 513 // Return true regardless of whether a new edge needed to be inserted. 514 return true; 515 } 516 517 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 518 /// NumPredsLeft reaches zero, release the successor node. 519 /// 520 /// FIXME: Adjust SuccSU height based on MinLatency. 521 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 522 SUnit *SuccSU = SuccEdge->getSUnit(); 523 524 if (SuccEdge->isWeak()) { 525 --SuccSU->WeakPredsLeft; 526 if (SuccEdge->isCluster()) 527 NextClusterSucc = SuccSU; 528 return; 529 } 530 #ifndef NDEBUG 531 if (SuccSU->NumPredsLeft == 0) { 532 dbgs() << "*** Scheduling failed! ***\n"; 533 SuccSU->dump(this); 534 dbgs() << " has been released too many times!\n"; 535 llvm_unreachable(nullptr); 536 } 537 #endif 538 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 539 // CurrCycle may have advanced since then. 540 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 541 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 542 543 --SuccSU->NumPredsLeft; 544 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 545 SchedImpl->releaseTopNode(SuccSU); 546 } 547 548 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 549 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 550 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 551 I != E; ++I) { 552 releaseSucc(SU, &*I); 553 } 554 } 555 556 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 557 /// NumSuccsLeft reaches zero, release the predecessor node. 558 /// 559 /// FIXME: Adjust PredSU height based on MinLatency. 560 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 561 SUnit *PredSU = PredEdge->getSUnit(); 562 563 if (PredEdge->isWeak()) { 564 --PredSU->WeakSuccsLeft; 565 if (PredEdge->isCluster()) 566 NextClusterPred = PredSU; 567 return; 568 } 569 #ifndef NDEBUG 570 if (PredSU->NumSuccsLeft == 0) { 571 dbgs() << "*** Scheduling failed! ***\n"; 572 PredSU->dump(this); 573 dbgs() << " has been released too many times!\n"; 574 llvm_unreachable(nullptr); 575 } 576 #endif 577 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 578 // CurrCycle may have advanced since then. 579 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 580 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 581 582 --PredSU->NumSuccsLeft; 583 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 584 SchedImpl->releaseBottomNode(PredSU); 585 } 586 587 /// releasePredecessors - Call releasePred on each of SU's predecessors. 588 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 589 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 590 I != E; ++I) { 591 releasePred(SU, &*I); 592 } 593 } 594 595 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 596 /// crossing a scheduling boundary. [begin, end) includes all instructions in 597 /// the region, including the boundary itself and single-instruction regions 598 /// that don't get scheduled. 599 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 600 MachineBasicBlock::iterator begin, 601 MachineBasicBlock::iterator end, 602 unsigned regioninstrs) 603 { 604 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 605 606 SchedImpl->initPolicy(begin, end, regioninstrs); 607 } 608 609 /// This is normally called from the main scheduler loop but may also be invoked 610 /// by the scheduling strategy to perform additional code motion. 611 void ScheduleDAGMI::moveInstruction( 612 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 613 // Advance RegionBegin if the first instruction moves down. 614 if (&*RegionBegin == MI) 615 ++RegionBegin; 616 617 // Update the instruction stream. 618 BB->splice(InsertPos, BB, MI); 619 620 // Update LiveIntervals 621 if (LIS) 622 LIS->handleMove(MI, /*UpdateFlags=*/true); 623 624 // Recede RegionBegin if an instruction moves above the first. 625 if (RegionBegin == InsertPos) 626 RegionBegin = MI; 627 } 628 629 bool ScheduleDAGMI::checkSchedLimit() { 630 #ifndef NDEBUG 631 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 632 CurrentTop = CurrentBottom; 633 return false; 634 } 635 ++NumInstrsScheduled; 636 #endif 637 return true; 638 } 639 640 /// Per-region scheduling driver, called back from 641 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 642 /// does not consider liveness or register pressure. It is useful for PostRA 643 /// scheduling and potentially other custom schedulers. 644 void ScheduleDAGMI::schedule() { 645 // Build the DAG. 646 buildSchedGraph(AA); 647 648 Topo.InitDAGTopologicalSorting(); 649 650 postprocessDAG(); 651 652 SmallVector<SUnit*, 8> TopRoots, BotRoots; 653 findRootsAndBiasEdges(TopRoots, BotRoots); 654 655 // Initialize the strategy before modifying the DAG. 656 // This may initialize a DFSResult to be used for queue priority. 657 SchedImpl->initialize(this); 658 659 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 660 SUnits[su].dumpAll(this)); 661 if (ViewMISchedDAGs) viewGraph(); 662 663 // Initialize ready queues now that the DAG and priority data are finalized. 664 initQueues(TopRoots, BotRoots); 665 666 bool IsTopNode = false; 667 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 668 assert(!SU->isScheduled && "Node already scheduled"); 669 if (!checkSchedLimit()) 670 break; 671 672 MachineInstr *MI = SU->getInstr(); 673 if (IsTopNode) { 674 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 675 if (&*CurrentTop == MI) 676 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 677 else 678 moveInstruction(MI, CurrentTop); 679 } 680 else { 681 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 682 MachineBasicBlock::iterator priorII = 683 priorNonDebug(CurrentBottom, CurrentTop); 684 if (&*priorII == MI) 685 CurrentBottom = priorII; 686 else { 687 if (&*CurrentTop == MI) 688 CurrentTop = nextIfDebug(++CurrentTop, priorII); 689 moveInstruction(MI, CurrentBottom); 690 CurrentBottom = MI; 691 } 692 } 693 // Notify the scheduling strategy before updating the DAG. 694 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 695 // runs, it can then use the accurate ReadyCycle time to determine whether 696 // newly released nodes can move to the readyQ. 697 SchedImpl->schedNode(SU, IsTopNode); 698 699 updateQueues(SU, IsTopNode); 700 } 701 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 702 703 placeDebugValues(); 704 705 DEBUG({ 706 unsigned BBNum = begin()->getParent()->getNumber(); 707 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 708 dumpSchedule(); 709 dbgs() << '\n'; 710 }); 711 } 712 713 /// Apply each ScheduleDAGMutation step in order. 714 void ScheduleDAGMI::postprocessDAG() { 715 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 716 Mutations[i]->apply(this); 717 } 718 } 719 720 void ScheduleDAGMI:: 721 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 722 SmallVectorImpl<SUnit*> &BotRoots) { 723 for (std::vector<SUnit>::iterator 724 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 725 SUnit *SU = &(*I); 726 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 727 728 // Order predecessors so DFSResult follows the critical path. 729 SU->biasCriticalPath(); 730 731 // A SUnit is ready to top schedule if it has no predecessors. 732 if (!I->NumPredsLeft) 733 TopRoots.push_back(SU); 734 // A SUnit is ready to bottom schedule if it has no successors. 735 if (!I->NumSuccsLeft) 736 BotRoots.push_back(SU); 737 } 738 ExitSU.biasCriticalPath(); 739 } 740 741 /// Identify DAG roots and setup scheduler queues. 742 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 743 ArrayRef<SUnit*> BotRoots) { 744 NextClusterSucc = nullptr; 745 NextClusterPred = nullptr; 746 747 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 748 // 749 // Nodes with unreleased weak edges can still be roots. 750 // Release top roots in forward order. 751 for (SmallVectorImpl<SUnit*>::const_iterator 752 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 753 SchedImpl->releaseTopNode(*I); 754 } 755 // Release bottom roots in reverse order so the higher priority nodes appear 756 // first. This is more natural and slightly more efficient. 757 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 758 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 759 SchedImpl->releaseBottomNode(*I); 760 } 761 762 releaseSuccessors(&EntrySU); 763 releasePredecessors(&ExitSU); 764 765 SchedImpl->registerRoots(); 766 767 // Advance past initial DebugValues. 768 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 769 CurrentBottom = RegionEnd; 770 } 771 772 /// Update scheduler queues after scheduling an instruction. 773 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 774 // Release dependent instructions for scheduling. 775 if (IsTopNode) 776 releaseSuccessors(SU); 777 else 778 releasePredecessors(SU); 779 780 SU->isScheduled = true; 781 } 782 783 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 784 void ScheduleDAGMI::placeDebugValues() { 785 // If first instruction was a DBG_VALUE then put it back. 786 if (FirstDbgValue) { 787 BB->splice(RegionBegin, BB, FirstDbgValue); 788 RegionBegin = FirstDbgValue; 789 } 790 791 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 792 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 793 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 794 MachineInstr *DbgValue = P.first; 795 MachineBasicBlock::iterator OrigPrevMI = P.second; 796 if (&*RegionBegin == DbgValue) 797 ++RegionBegin; 798 BB->splice(++OrigPrevMI, BB, DbgValue); 799 if (OrigPrevMI == std::prev(RegionEnd)) 800 RegionEnd = DbgValue; 801 } 802 DbgValues.clear(); 803 FirstDbgValue = nullptr; 804 } 805 806 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 807 void ScheduleDAGMI::dumpSchedule() const { 808 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 809 if (SUnit *SU = getSUnit(&(*MI))) 810 SU->dump(this); 811 else 812 dbgs() << "Missing SUnit\n"; 813 } 814 } 815 #endif 816 817 //===----------------------------------------------------------------------===// 818 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 819 // preservation. 820 //===----------------------------------------------------------------------===// 821 822 ScheduleDAGMILive::~ScheduleDAGMILive() { 823 delete DFSResult; 824 } 825 826 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 827 /// crossing a scheduling boundary. [begin, end) includes all instructions in 828 /// the region, including the boundary itself and single-instruction regions 829 /// that don't get scheduled. 830 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 831 MachineBasicBlock::iterator begin, 832 MachineBasicBlock::iterator end, 833 unsigned regioninstrs) 834 { 835 // ScheduleDAGMI initializes SchedImpl's per-region policy. 836 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 837 838 // For convenience remember the end of the liveness region. 839 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 840 841 SUPressureDiffs.clear(); 842 843 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 844 } 845 846 // Setup the register pressure trackers for the top scheduled top and bottom 847 // scheduled regions. 848 void ScheduleDAGMILive::initRegPressure() { 849 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 850 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 851 852 // Close the RPTracker to finalize live ins. 853 RPTracker.closeRegion(); 854 855 DEBUG(RPTracker.dump()); 856 857 // Initialize the live ins and live outs. 858 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 859 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 860 861 // Close one end of the tracker so we can call 862 // getMaxUpward/DownwardPressureDelta before advancing across any 863 // instructions. This converts currently live regs into live ins/outs. 864 TopRPTracker.closeTop(); 865 BotRPTracker.closeBottom(); 866 867 BotRPTracker.initLiveThru(RPTracker); 868 if (!BotRPTracker.getLiveThru().empty()) { 869 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 870 DEBUG(dbgs() << "Live Thru: "; 871 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 872 }; 873 874 // For each live out vreg reduce the pressure change associated with other 875 // uses of the same vreg below the live-out reaching def. 876 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 877 878 // Account for liveness generated by the region boundary. 879 if (LiveRegionEnd != RegionEnd) { 880 SmallVector<unsigned, 8> LiveUses; 881 BotRPTracker.recede(&LiveUses); 882 updatePressureDiffs(LiveUses); 883 } 884 885 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 886 887 // Cache the list of excess pressure sets in this region. This will also track 888 // the max pressure in the scheduled code for these sets. 889 RegionCriticalPSets.clear(); 890 const std::vector<unsigned> &RegionPressure = 891 RPTracker.getPressure().MaxSetPressure; 892 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 893 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 894 if (RegionPressure[i] > Limit) { 895 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 896 << " Limit " << Limit 897 << " Actual " << RegionPressure[i] << "\n"); 898 RegionCriticalPSets.push_back(PressureChange(i)); 899 } 900 } 901 DEBUG(dbgs() << "Excess PSets: "; 902 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 903 dbgs() << TRI->getRegPressureSetName( 904 RegionCriticalPSets[i].getPSet()) << " "; 905 dbgs() << "\n"); 906 } 907 908 void ScheduleDAGMILive:: 909 updateScheduledPressure(const SUnit *SU, 910 const std::vector<unsigned> &NewMaxPressure) { 911 const PressureDiff &PDiff = getPressureDiff(SU); 912 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 913 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 914 I != E; ++I) { 915 if (!I->isValid()) 916 break; 917 unsigned ID = I->getPSet(); 918 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 919 ++CritIdx; 920 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 921 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 922 && NewMaxPressure[ID] <= INT16_MAX) 923 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 924 } 925 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 926 if (NewMaxPressure[ID] >= Limit - 2) { 927 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 928 << NewMaxPressure[ID] << " > " << Limit << "(+ " 929 << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 930 } 931 } 932 } 933 934 /// Update the PressureDiff array for liveness after scheduling this 935 /// instruction. 936 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 937 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 938 /// FIXME: Currently assuming single-use physregs. 939 unsigned Reg = LiveUses[LUIdx]; 940 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 941 if (!TRI->isVirtualRegister(Reg)) 942 continue; 943 944 // This may be called before CurrentBottom has been initialized. However, 945 // BotRPTracker must have a valid position. We want the value live into the 946 // instruction or live out of the block, so ask for the previous 947 // instruction's live-out. 948 const LiveInterval &LI = LIS->getInterval(Reg); 949 VNInfo *VNI; 950 MachineBasicBlock::const_iterator I = 951 nextIfDebug(BotRPTracker.getPos(), BB->end()); 952 if (I == BB->end()) 953 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 954 else { 955 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 956 VNI = LRQ.valueIn(); 957 } 958 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 959 assert(VNI && "No live value at use."); 960 for (VReg2UseMap::iterator 961 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 962 SUnit *SU = UI->SU; 963 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 964 << *SU->getInstr()); 965 // If this use comes before the reaching def, it cannot be a last use, so 966 // descrease its pressure change. 967 if (!SU->isScheduled && SU != &ExitSU) { 968 LiveQueryResult LRQ 969 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 970 if (LRQ.valueIn() == VNI) 971 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 972 } 973 } 974 } 975 } 976 977 /// schedule - Called back from MachineScheduler::runOnMachineFunction 978 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 979 /// only includes instructions that have DAG nodes, not scheduling boundaries. 980 /// 981 /// This is a skeletal driver, with all the functionality pushed into helpers, 982 /// so that it can be easilly extended by experimental schedulers. Generally, 983 /// implementing MachineSchedStrategy should be sufficient to implement a new 984 /// scheduling algorithm. However, if a scheduler further subclasses 985 /// ScheduleDAGMILive then it will want to override this virtual method in order 986 /// to update any specialized state. 987 void ScheduleDAGMILive::schedule() { 988 buildDAGWithRegPressure(); 989 990 Topo.InitDAGTopologicalSorting(); 991 992 postprocessDAG(); 993 994 SmallVector<SUnit*, 8> TopRoots, BotRoots; 995 findRootsAndBiasEdges(TopRoots, BotRoots); 996 997 // Initialize the strategy before modifying the DAG. 998 // This may initialize a DFSResult to be used for queue priority. 999 SchedImpl->initialize(this); 1000 1001 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 1002 SUnits[su].dumpAll(this)); 1003 if (ViewMISchedDAGs) viewGraph(); 1004 1005 // Initialize ready queues now that the DAG and priority data are finalized. 1006 initQueues(TopRoots, BotRoots); 1007 1008 if (ShouldTrackPressure) { 1009 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1010 TopRPTracker.setPos(CurrentTop); 1011 } 1012 1013 bool IsTopNode = false; 1014 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 1015 assert(!SU->isScheduled && "Node already scheduled"); 1016 if (!checkSchedLimit()) 1017 break; 1018 1019 scheduleMI(SU, IsTopNode); 1020 1021 updateQueues(SU, IsTopNode); 1022 1023 if (DFSResult) { 1024 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1025 if (!ScheduledTrees.test(SubtreeID)) { 1026 ScheduledTrees.set(SubtreeID); 1027 DFSResult->scheduleTree(SubtreeID); 1028 SchedImpl->scheduleTree(SubtreeID); 1029 } 1030 } 1031 1032 // Notify the scheduling strategy after updating the DAG. 1033 SchedImpl->schedNode(SU, IsTopNode); 1034 } 1035 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1036 1037 placeDebugValues(); 1038 1039 DEBUG({ 1040 unsigned BBNum = begin()->getParent()->getNumber(); 1041 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1042 dumpSchedule(); 1043 dbgs() << '\n'; 1044 }); 1045 } 1046 1047 /// Build the DAG and setup three register pressure trackers. 1048 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1049 if (!ShouldTrackPressure) { 1050 RPTracker.reset(); 1051 RegionCriticalPSets.clear(); 1052 buildSchedGraph(AA); 1053 return; 1054 } 1055 1056 // Initialize the register pressure tracker used by buildSchedGraph. 1057 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1058 /*TrackUntiedDefs=*/true); 1059 1060 // Account for liveness generate by the region boundary. 1061 if (LiveRegionEnd != RegionEnd) 1062 RPTracker.recede(); 1063 1064 // Build the DAG, and compute current register pressure. 1065 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1066 1067 // Initialize top/bottom trackers after computing region pressure. 1068 initRegPressure(); 1069 } 1070 1071 void ScheduleDAGMILive::computeDFSResult() { 1072 if (!DFSResult) 1073 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1074 DFSResult->clear(); 1075 ScheduledTrees.clear(); 1076 DFSResult->resize(SUnits.size()); 1077 DFSResult->compute(SUnits); 1078 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1079 } 1080 1081 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1082 /// only provides the critical path for single block loops. To handle loops that 1083 /// span blocks, we could use the vreg path latencies provided by 1084 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1085 /// available for use in the scheduler. 1086 /// 1087 /// The cyclic path estimation identifies a def-use pair that crosses the back 1088 /// edge and considers the depth and height of the nodes. For example, consider 1089 /// the following instruction sequence where each instruction has unit latency 1090 /// and defines an epomymous virtual register: 1091 /// 1092 /// a->b(a,c)->c(b)->d(c)->exit 1093 /// 1094 /// The cyclic critical path is a two cycles: b->c->b 1095 /// The acyclic critical path is four cycles: a->b->c->d->exit 1096 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1097 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1098 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1099 /// LiveInDepth = depth(b) = len(a->b) = 1 1100 /// 1101 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1102 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1103 /// CyclicCriticalPath = min(2, 2) = 2 1104 /// 1105 /// This could be relevant to PostRA scheduling, but is currently implemented 1106 /// assuming LiveIntervals. 1107 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1108 // This only applies to single block loop. 1109 if (!BB->isSuccessor(BB)) 1110 return 0; 1111 1112 unsigned MaxCyclicLatency = 0; 1113 // Visit each live out vreg def to find def/use pairs that cross iterations. 1114 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1115 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1116 RI != RE; ++RI) { 1117 unsigned Reg = *RI; 1118 if (!TRI->isVirtualRegister(Reg)) 1119 continue; 1120 const LiveInterval &LI = LIS->getInterval(Reg); 1121 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1122 if (!DefVNI) 1123 continue; 1124 1125 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1126 const SUnit *DefSU = getSUnit(DefMI); 1127 if (!DefSU) 1128 continue; 1129 1130 unsigned LiveOutHeight = DefSU->getHeight(); 1131 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1132 // Visit all local users of the vreg def. 1133 for (VReg2UseMap::iterator 1134 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1135 if (UI->SU == &ExitSU) 1136 continue; 1137 1138 // Only consider uses of the phi. 1139 LiveQueryResult LRQ = 1140 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1141 if (!LRQ.valueIn()->isPHIDef()) 1142 continue; 1143 1144 // Assume that a path spanning two iterations is a cycle, which could 1145 // overestimate in strange cases. This allows cyclic latency to be 1146 // estimated as the minimum slack of the vreg's depth or height. 1147 unsigned CyclicLatency = 0; 1148 if (LiveOutDepth > UI->SU->getDepth()) 1149 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1150 1151 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1152 if (LiveInHeight > LiveOutHeight) { 1153 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1154 CyclicLatency = LiveInHeight - LiveOutHeight; 1155 } 1156 else 1157 CyclicLatency = 0; 1158 1159 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1160 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1161 if (CyclicLatency > MaxCyclicLatency) 1162 MaxCyclicLatency = CyclicLatency; 1163 } 1164 } 1165 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1166 return MaxCyclicLatency; 1167 } 1168 1169 /// Move an instruction and update register pressure. 1170 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1171 // Move the instruction to its new location in the instruction stream. 1172 MachineInstr *MI = SU->getInstr(); 1173 1174 if (IsTopNode) { 1175 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1176 if (&*CurrentTop == MI) 1177 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1178 else { 1179 moveInstruction(MI, CurrentTop); 1180 TopRPTracker.setPos(MI); 1181 } 1182 1183 if (ShouldTrackPressure) { 1184 // Update top scheduled pressure. 1185 TopRPTracker.advance(); 1186 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1187 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1188 } 1189 } 1190 else { 1191 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1192 MachineBasicBlock::iterator priorII = 1193 priorNonDebug(CurrentBottom, CurrentTop); 1194 if (&*priorII == MI) 1195 CurrentBottom = priorII; 1196 else { 1197 if (&*CurrentTop == MI) { 1198 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1199 TopRPTracker.setPos(CurrentTop); 1200 } 1201 moveInstruction(MI, CurrentBottom); 1202 CurrentBottom = MI; 1203 } 1204 if (ShouldTrackPressure) { 1205 // Update bottom scheduled pressure. 1206 SmallVector<unsigned, 8> LiveUses; 1207 BotRPTracker.recede(&LiveUses); 1208 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1209 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1210 updatePressureDiffs(LiveUses); 1211 } 1212 } 1213 } 1214 1215 //===----------------------------------------------------------------------===// 1216 // LoadClusterMutation - DAG post-processing to cluster loads. 1217 //===----------------------------------------------------------------------===// 1218 1219 namespace { 1220 /// \brief Post-process the DAG to create cluster edges between neighboring 1221 /// loads. 1222 class LoadClusterMutation : public ScheduleDAGMutation { 1223 struct LoadInfo { 1224 SUnit *SU; 1225 unsigned BaseReg; 1226 unsigned Offset; 1227 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1228 : SU(su), BaseReg(reg), Offset(ofs) {} 1229 1230 bool operator<(const LoadInfo &RHS) const { 1231 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1232 } 1233 }; 1234 1235 const TargetInstrInfo *TII; 1236 const TargetRegisterInfo *TRI; 1237 public: 1238 LoadClusterMutation(const TargetInstrInfo *tii, 1239 const TargetRegisterInfo *tri) 1240 : TII(tii), TRI(tri) {} 1241 1242 void apply(ScheduleDAGMI *DAG) override; 1243 protected: 1244 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1245 }; 1246 } // anonymous 1247 1248 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1249 ScheduleDAGMI *DAG) { 1250 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1251 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1252 SUnit *SU = Loads[Idx]; 1253 unsigned BaseReg; 1254 unsigned Offset; 1255 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1256 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1257 } 1258 if (LoadRecords.size() < 2) 1259 return; 1260 std::sort(LoadRecords.begin(), LoadRecords.end()); 1261 unsigned ClusterLength = 1; 1262 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1263 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1264 ClusterLength = 1; 1265 continue; 1266 } 1267 1268 SUnit *SUa = LoadRecords[Idx].SU; 1269 SUnit *SUb = LoadRecords[Idx+1].SU; 1270 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1271 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1272 1273 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1274 << SUb->NodeNum << ")\n"); 1275 // Copy successor edges from SUa to SUb. Interleaving computation 1276 // dependent on SUa can prevent load combining due to register reuse. 1277 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1278 // loads should have effectively the same inputs. 1279 for (SUnit::const_succ_iterator 1280 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1281 if (SI->getSUnit() == SUb) 1282 continue; 1283 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1284 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1285 } 1286 ++ClusterLength; 1287 } 1288 else 1289 ClusterLength = 1; 1290 } 1291 } 1292 1293 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1294 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1295 // Map DAG NodeNum to store chain ID. 1296 DenseMap<unsigned, unsigned> StoreChainIDs; 1297 // Map each store chain to a set of dependent loads. 1298 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1299 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1300 SUnit *SU = &DAG->SUnits[Idx]; 1301 if (!SU->getInstr()->mayLoad()) 1302 continue; 1303 unsigned ChainPredID = DAG->SUnits.size(); 1304 for (SUnit::const_pred_iterator 1305 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1306 if (PI->isCtrl()) { 1307 ChainPredID = PI->getSUnit()->NodeNum; 1308 break; 1309 } 1310 } 1311 // Check if this chain-like pred has been seen 1312 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1313 unsigned NumChains = StoreChainDependents.size(); 1314 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1315 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1316 if (Result.second) 1317 StoreChainDependents.resize(NumChains + 1); 1318 StoreChainDependents[Result.first->second].push_back(SU); 1319 } 1320 // Iterate over the store chains. 1321 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1322 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1323 } 1324 1325 //===----------------------------------------------------------------------===// 1326 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1327 //===----------------------------------------------------------------------===// 1328 1329 namespace { 1330 /// \brief Post-process the DAG to create cluster edges between instructions 1331 /// that may be fused by the processor into a single operation. 1332 class MacroFusion : public ScheduleDAGMutation { 1333 const TargetInstrInfo *TII; 1334 public: 1335 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 1336 1337 void apply(ScheduleDAGMI *DAG) override; 1338 }; 1339 } // anonymous 1340 1341 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1342 /// fused operations. 1343 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1344 // For now, assume targets can only fuse with the branch. 1345 MachineInstr *Branch = DAG->ExitSU.getInstr(); 1346 if (!Branch) 1347 return; 1348 1349 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1350 SUnit *SU = &DAG->SUnits[--Idx]; 1351 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1352 continue; 1353 1354 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1355 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1356 // need to copy predecessor edges from ExitSU to SU, since top-down 1357 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1358 // of SU, we could create an artificial edge from the deepest root, but it 1359 // hasn't been needed yet. 1360 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1361 (void)Success; 1362 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1363 1364 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1365 break; 1366 } 1367 } 1368 1369 //===----------------------------------------------------------------------===// 1370 // CopyConstrain - DAG post-processing to encourage copy elimination. 1371 //===----------------------------------------------------------------------===// 1372 1373 namespace { 1374 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1375 /// the one use that defines the copy's source vreg, most likely an induction 1376 /// variable increment. 1377 class CopyConstrain : public ScheduleDAGMutation { 1378 // Transient state. 1379 SlotIndex RegionBeginIdx; 1380 // RegionEndIdx is the slot index of the last non-debug instruction in the 1381 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1382 SlotIndex RegionEndIdx; 1383 public: 1384 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1385 1386 void apply(ScheduleDAGMI *DAG) override; 1387 1388 protected: 1389 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1390 }; 1391 } // anonymous 1392 1393 /// constrainLocalCopy handles two possibilities: 1394 /// 1) Local src: 1395 /// I0: = dst 1396 /// I1: src = ... 1397 /// I2: = dst 1398 /// I3: dst = src (copy) 1399 /// (create pred->succ edges I0->I1, I2->I1) 1400 /// 1401 /// 2) Local copy: 1402 /// I0: dst = src (copy) 1403 /// I1: = dst 1404 /// I2: src = ... 1405 /// I3: = dst 1406 /// (create pred->succ edges I1->I2, I3->I2) 1407 /// 1408 /// Although the MachineScheduler is currently constrained to single blocks, 1409 /// this algorithm should handle extended blocks. An EBB is a set of 1410 /// contiguously numbered blocks such that the previous block in the EBB is 1411 /// always the single predecessor. 1412 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1413 LiveIntervals *LIS = DAG->getLIS(); 1414 MachineInstr *Copy = CopySU->getInstr(); 1415 1416 // Check for pure vreg copies. 1417 unsigned SrcReg = Copy->getOperand(1).getReg(); 1418 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1419 return; 1420 1421 unsigned DstReg = Copy->getOperand(0).getReg(); 1422 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1423 return; 1424 1425 // Check if either the dest or source is local. If it's live across a back 1426 // edge, it's not local. Note that if both vregs are live across the back 1427 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1428 unsigned LocalReg = DstReg; 1429 unsigned GlobalReg = SrcReg; 1430 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1431 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1432 LocalReg = SrcReg; 1433 GlobalReg = DstReg; 1434 LocalLI = &LIS->getInterval(LocalReg); 1435 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1436 return; 1437 } 1438 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1439 1440 // Find the global segment after the start of the local LI. 1441 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1442 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1443 // local live range. We could create edges from other global uses to the local 1444 // start, but the coalescer should have already eliminated these cases, so 1445 // don't bother dealing with it. 1446 if (GlobalSegment == GlobalLI->end()) 1447 return; 1448 1449 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1450 // returned the next global segment. But if GlobalSegment overlaps with 1451 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1452 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1453 if (GlobalSegment->contains(LocalLI->beginIndex())) 1454 ++GlobalSegment; 1455 1456 if (GlobalSegment == GlobalLI->end()) 1457 return; 1458 1459 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1460 if (GlobalSegment != GlobalLI->begin()) { 1461 // Two address defs have no hole. 1462 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1463 GlobalSegment->start)) { 1464 return; 1465 } 1466 // If the prior global segment may be defined by the same two-address 1467 // instruction that also defines LocalLI, then can't make a hole here. 1468 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1469 LocalLI->beginIndex())) { 1470 return; 1471 } 1472 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1473 // it would be a disconnected component in the live range. 1474 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1475 "Disconnected LRG within the scheduling region."); 1476 } 1477 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1478 if (!GlobalDef) 1479 return; 1480 1481 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1482 if (!GlobalSU) 1483 return; 1484 1485 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1486 // constraining the uses of the last local def to precede GlobalDef. 1487 SmallVector<SUnit*,8> LocalUses; 1488 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1489 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1490 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1491 for (SUnit::const_succ_iterator 1492 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1493 I != E; ++I) { 1494 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1495 continue; 1496 if (I->getSUnit() == GlobalSU) 1497 continue; 1498 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1499 return; 1500 LocalUses.push_back(I->getSUnit()); 1501 } 1502 // Open the top of the GlobalLI hole by constraining any earlier global uses 1503 // to precede the start of LocalLI. 1504 SmallVector<SUnit*,8> GlobalUses; 1505 MachineInstr *FirstLocalDef = 1506 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1507 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1508 for (SUnit::const_pred_iterator 1509 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1510 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1511 continue; 1512 if (I->getSUnit() == FirstLocalSU) 1513 continue; 1514 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1515 return; 1516 GlobalUses.push_back(I->getSUnit()); 1517 } 1518 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1519 // Add the weak edges. 1520 for (SmallVectorImpl<SUnit*>::const_iterator 1521 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1522 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1523 << GlobalSU->NodeNum << ")\n"); 1524 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1525 } 1526 for (SmallVectorImpl<SUnit*>::const_iterator 1527 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1528 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1529 << FirstLocalSU->NodeNum << ")\n"); 1530 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1531 } 1532 } 1533 1534 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1535 /// copy elimination. 1536 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1537 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1538 1539 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1540 if (FirstPos == DAG->end()) 1541 return; 1542 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1543 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1544 &*priorNonDebug(DAG->end(), DAG->begin())); 1545 1546 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1547 SUnit *SU = &DAG->SUnits[Idx]; 1548 if (!SU->getInstr()->isCopy()) 1549 continue; 1550 1551 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1552 } 1553 } 1554 1555 //===----------------------------------------------------------------------===// 1556 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1557 // and possibly other custom schedulers. 1558 //===----------------------------------------------------------------------===// 1559 1560 static const unsigned InvalidCycle = ~0U; 1561 1562 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1563 1564 void SchedBoundary::reset() { 1565 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1566 // Destroying and reconstructing it is very expensive though. So keep 1567 // invalid, placeholder HazardRecs. 1568 if (HazardRec && HazardRec->isEnabled()) { 1569 delete HazardRec; 1570 HazardRec = nullptr; 1571 } 1572 Available.clear(); 1573 Pending.clear(); 1574 CheckPending = false; 1575 NextSUs.clear(); 1576 CurrCycle = 0; 1577 CurrMOps = 0; 1578 MinReadyCycle = UINT_MAX; 1579 ExpectedLatency = 0; 1580 DependentLatency = 0; 1581 RetiredMOps = 0; 1582 MaxExecutedResCount = 0; 1583 ZoneCritResIdx = 0; 1584 IsResourceLimited = false; 1585 ReservedCycles.clear(); 1586 #ifndef NDEBUG 1587 // Track the maximum number of stall cycles that could arise either from the 1588 // latency of a DAG edge or the number of cycles that a processor resource is 1589 // reserved (SchedBoundary::ReservedCycles). 1590 MaxObservedStall = 0; 1591 #endif 1592 // Reserve a zero-count for invalid CritResIdx. 1593 ExecutedResCounts.resize(1); 1594 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1595 } 1596 1597 void SchedRemainder:: 1598 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1599 reset(); 1600 if (!SchedModel->hasInstrSchedModel()) 1601 return; 1602 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1603 for (std::vector<SUnit>::iterator 1604 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1605 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1606 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1607 * SchedModel->getMicroOpFactor(); 1608 for (TargetSchedModel::ProcResIter 1609 PI = SchedModel->getWriteProcResBegin(SC), 1610 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1611 unsigned PIdx = PI->ProcResourceIdx; 1612 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1613 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1614 } 1615 } 1616 } 1617 1618 void SchedBoundary:: 1619 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1620 reset(); 1621 DAG = dag; 1622 SchedModel = smodel; 1623 Rem = rem; 1624 if (SchedModel->hasInstrSchedModel()) { 1625 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1626 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1627 } 1628 } 1629 1630 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1631 /// these "soft stalls" differently than the hard stall cycles based on CPU 1632 /// resources and computed by checkHazard(). A fully in-order model 1633 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1634 /// available for scheduling until they are ready. However, a weaker in-order 1635 /// model may use this for heuristics. For example, if a processor has in-order 1636 /// behavior when reading certain resources, this may come into play. 1637 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1638 if (!SU->isUnbuffered) 1639 return 0; 1640 1641 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1642 if (ReadyCycle > CurrCycle) 1643 return ReadyCycle - CurrCycle; 1644 return 0; 1645 } 1646 1647 /// Compute the next cycle at which the given processor resource can be 1648 /// scheduled. 1649 unsigned SchedBoundary:: 1650 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1651 unsigned NextUnreserved = ReservedCycles[PIdx]; 1652 // If this resource has never been used, always return cycle zero. 1653 if (NextUnreserved == InvalidCycle) 1654 return 0; 1655 // For bottom-up scheduling add the cycles needed for the current operation. 1656 if (!isTop()) 1657 NextUnreserved += Cycles; 1658 return NextUnreserved; 1659 } 1660 1661 /// Does this SU have a hazard within the current instruction group. 1662 /// 1663 /// The scheduler supports two modes of hazard recognition. The first is the 1664 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1665 /// supports highly complicated in-order reservation tables 1666 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1667 /// 1668 /// The second is a streamlined mechanism that checks for hazards based on 1669 /// simple counters that the scheduler itself maintains. It explicitly checks 1670 /// for instruction dispatch limitations, including the number of micro-ops that 1671 /// can dispatch per cycle. 1672 /// 1673 /// TODO: Also check whether the SU must start a new group. 1674 bool SchedBoundary::checkHazard(SUnit *SU) { 1675 if (HazardRec->isEnabled() 1676 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1677 return true; 1678 } 1679 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1680 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1681 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1682 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1683 return true; 1684 } 1685 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1686 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1687 for (TargetSchedModel::ProcResIter 1688 PI = SchedModel->getWriteProcResBegin(SC), 1689 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1690 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1691 if (NRCycle > CurrCycle) { 1692 #ifndef NDEBUG 1693 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1694 #endif 1695 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1696 << SchedModel->getResourceName(PI->ProcResourceIdx) 1697 << "=" << NRCycle << "c\n"); 1698 return true; 1699 } 1700 } 1701 } 1702 return false; 1703 } 1704 1705 // Find the unscheduled node in ReadySUs with the highest latency. 1706 unsigned SchedBoundary:: 1707 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1708 SUnit *LateSU = nullptr; 1709 unsigned RemLatency = 0; 1710 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1711 I != E; ++I) { 1712 unsigned L = getUnscheduledLatency(*I); 1713 if (L > RemLatency) { 1714 RemLatency = L; 1715 LateSU = *I; 1716 } 1717 } 1718 if (LateSU) { 1719 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1720 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1721 } 1722 return RemLatency; 1723 } 1724 1725 // Count resources in this zone and the remaining unscheduled 1726 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1727 // resource index, or zero if the zone is issue limited. 1728 unsigned SchedBoundary:: 1729 getOtherResourceCount(unsigned &OtherCritIdx) { 1730 OtherCritIdx = 0; 1731 if (!SchedModel->hasInstrSchedModel()) 1732 return 0; 1733 1734 unsigned OtherCritCount = Rem->RemIssueCount 1735 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1736 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1737 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1738 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1739 PIdx != PEnd; ++PIdx) { 1740 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1741 if (OtherCount > OtherCritCount) { 1742 OtherCritCount = OtherCount; 1743 OtherCritIdx = PIdx; 1744 } 1745 } 1746 if (OtherCritIdx) { 1747 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1748 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1749 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1750 } 1751 return OtherCritCount; 1752 } 1753 1754 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1755 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1756 1757 #ifndef NDEBUG 1758 // ReadyCycle was been bumped up to the CurrCycle when this node was 1759 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1760 // scheduling, so may now be greater than ReadyCycle. 1761 if (ReadyCycle > CurrCycle) 1762 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1763 #endif 1764 1765 if (ReadyCycle < MinReadyCycle) 1766 MinReadyCycle = ReadyCycle; 1767 1768 // Check for interlocks first. For the purpose of other heuristics, an 1769 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1770 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1771 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1772 Pending.push(SU); 1773 else 1774 Available.push(SU); 1775 1776 // Record this node as an immediate dependent of the scheduled node. 1777 NextSUs.insert(SU); 1778 } 1779 1780 void SchedBoundary::releaseTopNode(SUnit *SU) { 1781 if (SU->isScheduled) 1782 return; 1783 1784 releaseNode(SU, SU->TopReadyCycle); 1785 } 1786 1787 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1788 if (SU->isScheduled) 1789 return; 1790 1791 releaseNode(SU, SU->BotReadyCycle); 1792 } 1793 1794 /// Move the boundary of scheduled code by one cycle. 1795 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1796 if (SchedModel->getMicroOpBufferSize() == 0) { 1797 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1798 if (MinReadyCycle > NextCycle) 1799 NextCycle = MinReadyCycle; 1800 } 1801 // Update the current micro-ops, which will issue in the next cycle. 1802 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1803 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1804 1805 // Decrement DependentLatency based on the next cycle. 1806 if ((NextCycle - CurrCycle) > DependentLatency) 1807 DependentLatency = 0; 1808 else 1809 DependentLatency -= (NextCycle - CurrCycle); 1810 1811 if (!HazardRec->isEnabled()) { 1812 // Bypass HazardRec virtual calls. 1813 CurrCycle = NextCycle; 1814 } 1815 else { 1816 // Bypass getHazardType calls in case of long latency. 1817 for (; CurrCycle != NextCycle; ++CurrCycle) { 1818 if (isTop()) 1819 HazardRec->AdvanceCycle(); 1820 else 1821 HazardRec->RecedeCycle(); 1822 } 1823 } 1824 CheckPending = true; 1825 unsigned LFactor = SchedModel->getLatencyFactor(); 1826 IsResourceLimited = 1827 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1828 > (int)LFactor; 1829 1830 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1831 } 1832 1833 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1834 ExecutedResCounts[PIdx] += Count; 1835 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1836 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1837 } 1838 1839 /// Add the given processor resource to this scheduled zone. 1840 /// 1841 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1842 /// during which this resource is consumed. 1843 /// 1844 /// \return the next cycle at which the instruction may execute without 1845 /// oversubscribing resources. 1846 unsigned SchedBoundary:: 1847 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1848 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1849 unsigned Count = Factor * Cycles; 1850 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1851 << " +" << Cycles << "x" << Factor << "u\n"); 1852 1853 // Update Executed resources counts. 1854 incExecutedResources(PIdx, Count); 1855 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1856 Rem->RemainingCounts[PIdx] -= Count; 1857 1858 // Check if this resource exceeds the current critical resource. If so, it 1859 // becomes the critical resource. 1860 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1861 ZoneCritResIdx = PIdx; 1862 DEBUG(dbgs() << " *** Critical resource " 1863 << SchedModel->getResourceName(PIdx) << ": " 1864 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1865 } 1866 // For reserved resources, record the highest cycle using the resource. 1867 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1868 if (NextAvailable > CurrCycle) { 1869 DEBUG(dbgs() << " Resource conflict: " 1870 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1871 << NextAvailable << "\n"); 1872 } 1873 return NextAvailable; 1874 } 1875 1876 /// Move the boundary of scheduled code by one SUnit. 1877 void SchedBoundary::bumpNode(SUnit *SU) { 1878 // Update the reservation table. 1879 if (HazardRec->isEnabled()) { 1880 if (!isTop() && SU->isCall) { 1881 // Calls are scheduled with their preceding instructions. For bottom-up 1882 // scheduling, clear the pipeline state before emitting. 1883 HazardRec->Reset(); 1884 } 1885 HazardRec->EmitInstruction(SU); 1886 } 1887 // checkHazard should prevent scheduling multiple instructions per cycle that 1888 // exceed the issue width. 1889 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1890 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1891 assert( 1892 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1893 "Cannot schedule this instruction's MicroOps in the current cycle."); 1894 1895 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1896 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1897 1898 unsigned NextCycle = CurrCycle; 1899 switch (SchedModel->getMicroOpBufferSize()) { 1900 case 0: 1901 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1902 break; 1903 case 1: 1904 if (ReadyCycle > NextCycle) { 1905 NextCycle = ReadyCycle; 1906 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1907 } 1908 break; 1909 default: 1910 // We don't currently model the OOO reorder buffer, so consider all 1911 // scheduled MOps to be "retired". We do loosely model in-order resource 1912 // latency. If this instruction uses an in-order resource, account for any 1913 // likely stall cycles. 1914 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1915 NextCycle = ReadyCycle; 1916 break; 1917 } 1918 RetiredMOps += IncMOps; 1919 1920 // Update resource counts and critical resource. 1921 if (SchedModel->hasInstrSchedModel()) { 1922 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1923 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1924 Rem->RemIssueCount -= DecRemIssue; 1925 if (ZoneCritResIdx) { 1926 // Scale scheduled micro-ops for comparing with the critical resource. 1927 unsigned ScaledMOps = 1928 RetiredMOps * SchedModel->getMicroOpFactor(); 1929 1930 // If scaled micro-ops are now more than the previous critical resource by 1931 // a full cycle, then micro-ops issue becomes critical. 1932 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1933 >= (int)SchedModel->getLatencyFactor()) { 1934 ZoneCritResIdx = 0; 1935 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1936 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1937 } 1938 } 1939 for (TargetSchedModel::ProcResIter 1940 PI = SchedModel->getWriteProcResBegin(SC), 1941 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1942 unsigned RCycle = 1943 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 1944 if (RCycle > NextCycle) 1945 NextCycle = RCycle; 1946 } 1947 if (SU->hasReservedResource) { 1948 // For reserved resources, record the highest cycle using the resource. 1949 // For top-down scheduling, this is the cycle in which we schedule this 1950 // instruction plus the number of cycles the operations reserves the 1951 // resource. For bottom-up is it simply the instruction's cycle. 1952 for (TargetSchedModel::ProcResIter 1953 PI = SchedModel->getWriteProcResBegin(SC), 1954 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1955 unsigned PIdx = PI->ProcResourceIdx; 1956 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 1957 if (isTop()) { 1958 ReservedCycles[PIdx] = 1959 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 1960 } 1961 else 1962 ReservedCycles[PIdx] = NextCycle; 1963 } 1964 } 1965 } 1966 } 1967 // Update ExpectedLatency and DependentLatency. 1968 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 1969 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 1970 if (SU->getDepth() > TopLatency) { 1971 TopLatency = SU->getDepth(); 1972 DEBUG(dbgs() << " " << Available.getName() 1973 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 1974 } 1975 if (SU->getHeight() > BotLatency) { 1976 BotLatency = SU->getHeight(); 1977 DEBUG(dbgs() << " " << Available.getName() 1978 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 1979 } 1980 // If we stall for any reason, bump the cycle. 1981 if (NextCycle > CurrCycle) { 1982 bumpCycle(NextCycle); 1983 } 1984 else { 1985 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 1986 // resource limited. If a stall occurred, bumpCycle does this. 1987 unsigned LFactor = SchedModel->getLatencyFactor(); 1988 IsResourceLimited = 1989 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1990 > (int)LFactor; 1991 } 1992 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 1993 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 1994 // one cycle. Since we commonly reach the max MOps here, opportunistically 1995 // bump the cycle to avoid uselessly checking everything in the readyQ. 1996 CurrMOps += IncMOps; 1997 while (CurrMOps >= SchedModel->getIssueWidth()) { 1998 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 1999 << " at cycle " << CurrCycle << '\n'); 2000 bumpCycle(++NextCycle); 2001 } 2002 DEBUG(dumpScheduledState()); 2003 } 2004 2005 /// Release pending ready nodes in to the available queue. This makes them 2006 /// visible to heuristics. 2007 void SchedBoundary::releasePending() { 2008 // If the available queue is empty, it is safe to reset MinReadyCycle. 2009 if (Available.empty()) 2010 MinReadyCycle = UINT_MAX; 2011 2012 // Check to see if any of the pending instructions are ready to issue. If 2013 // so, add them to the available queue. 2014 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2015 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2016 SUnit *SU = *(Pending.begin()+i); 2017 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2018 2019 if (ReadyCycle < MinReadyCycle) 2020 MinReadyCycle = ReadyCycle; 2021 2022 if (!IsBuffered && ReadyCycle > CurrCycle) 2023 continue; 2024 2025 if (checkHazard(SU)) 2026 continue; 2027 2028 Available.push(SU); 2029 Pending.remove(Pending.begin()+i); 2030 --i; --e; 2031 } 2032 DEBUG(if (!Pending.empty()) Pending.dump()); 2033 CheckPending = false; 2034 } 2035 2036 /// Remove SU from the ready set for this boundary. 2037 void SchedBoundary::removeReady(SUnit *SU) { 2038 if (Available.isInQueue(SU)) 2039 Available.remove(Available.find(SU)); 2040 else { 2041 assert(Pending.isInQueue(SU) && "bad ready count"); 2042 Pending.remove(Pending.find(SU)); 2043 } 2044 } 2045 2046 /// If this queue only has one ready candidate, return it. As a side effect, 2047 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2048 /// one node is ready. If multiple instructions are ready, return NULL. 2049 SUnit *SchedBoundary::pickOnlyChoice() { 2050 if (CheckPending) 2051 releasePending(); 2052 2053 if (CurrMOps > 0) { 2054 // Defer any ready instrs that now have a hazard. 2055 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2056 if (checkHazard(*I)) { 2057 Pending.push(*I); 2058 I = Available.remove(I); 2059 continue; 2060 } 2061 ++I; 2062 } 2063 } 2064 for (unsigned i = 0; Available.empty(); ++i) { 2065 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2066 "permanent hazard"); (void)i; 2067 bumpCycle(CurrCycle + 1); 2068 releasePending(); 2069 } 2070 if (Available.size() == 1) 2071 return *Available.begin(); 2072 return nullptr; 2073 } 2074 2075 #ifndef NDEBUG 2076 // This is useful information to dump after bumpNode. 2077 // Note that the Queue contents are more useful before pickNodeFromQueue. 2078 void SchedBoundary::dumpScheduledState() { 2079 unsigned ResFactor; 2080 unsigned ResCount; 2081 if (ZoneCritResIdx) { 2082 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2083 ResCount = getResourceCount(ZoneCritResIdx); 2084 } 2085 else { 2086 ResFactor = SchedModel->getMicroOpFactor(); 2087 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2088 } 2089 unsigned LFactor = SchedModel->getLatencyFactor(); 2090 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2091 << " Retired: " << RetiredMOps; 2092 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2093 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2094 << ResCount / ResFactor << " " 2095 << SchedModel->getResourceName(ZoneCritResIdx) 2096 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2097 << (IsResourceLimited ? " - Resource" : " - Latency") 2098 << " limited.\n"; 2099 } 2100 #endif 2101 2102 //===----------------------------------------------------------------------===// 2103 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2104 //===----------------------------------------------------------------------===// 2105 2106 void GenericSchedulerBase::SchedCandidate:: 2107 initResourceDelta(const ScheduleDAGMI *DAG, 2108 const TargetSchedModel *SchedModel) { 2109 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2110 return; 2111 2112 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2113 for (TargetSchedModel::ProcResIter 2114 PI = SchedModel->getWriteProcResBegin(SC), 2115 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2116 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2117 ResDelta.CritResources += PI->Cycles; 2118 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2119 ResDelta.DemandedResources += PI->Cycles; 2120 } 2121 } 2122 2123 /// Set the CandPolicy given a scheduling zone given the current resources and 2124 /// latencies inside and outside the zone. 2125 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2126 bool IsPostRA, 2127 SchedBoundary &CurrZone, 2128 SchedBoundary *OtherZone) { 2129 // Apply preemptive heuristics based on the the total latency and resources 2130 // inside and outside this zone. Potential stalls should be considered before 2131 // following this policy. 2132 2133 // Compute remaining latency. We need this both to determine whether the 2134 // overall schedule has become latency-limited and whether the instructions 2135 // outside this zone are resource or latency limited. 2136 // 2137 // The "dependent" latency is updated incrementally during scheduling as the 2138 // max height/depth of scheduled nodes minus the cycles since it was 2139 // scheduled: 2140 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2141 // 2142 // The "independent" latency is the max ready queue depth: 2143 // ILat = max N.depth for N in Available|Pending 2144 // 2145 // RemainingLatency is the greater of independent and dependent latency. 2146 unsigned RemLatency = CurrZone.getDependentLatency(); 2147 RemLatency = std::max(RemLatency, 2148 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2149 RemLatency = std::max(RemLatency, 2150 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2151 2152 // Compute the critical resource outside the zone. 2153 unsigned OtherCritIdx = 0; 2154 unsigned OtherCount = 2155 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2156 2157 bool OtherResLimited = false; 2158 if (SchedModel->hasInstrSchedModel()) { 2159 unsigned LFactor = SchedModel->getLatencyFactor(); 2160 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2161 } 2162 // Schedule aggressively for latency in PostRA mode. We don't check for 2163 // acyclic latency during PostRA, and highly out-of-order processors will 2164 // skip PostRA scheduling. 2165 if (!OtherResLimited) { 2166 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2167 Policy.ReduceLatency |= true; 2168 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2169 << " RemainingLatency " << RemLatency << " + " 2170 << CurrZone.getCurrCycle() << "c > CritPath " 2171 << Rem.CriticalPath << "\n"); 2172 } 2173 } 2174 // If the same resource is limiting inside and outside the zone, do nothing. 2175 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2176 return; 2177 2178 DEBUG( 2179 if (CurrZone.isResourceLimited()) { 2180 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2181 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2182 << "\n"; 2183 } 2184 if (OtherResLimited) 2185 dbgs() << " RemainingLimit: " 2186 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2187 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2188 dbgs() << " Latency limited both directions.\n"); 2189 2190 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2191 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2192 2193 if (OtherResLimited) 2194 Policy.DemandResIdx = OtherCritIdx; 2195 } 2196 2197 #ifndef NDEBUG 2198 const char *GenericSchedulerBase::getReasonStr( 2199 GenericSchedulerBase::CandReason Reason) { 2200 switch (Reason) { 2201 case NoCand: return "NOCAND "; 2202 case PhysRegCopy: return "PREG-COPY"; 2203 case RegExcess: return "REG-EXCESS"; 2204 case RegCritical: return "REG-CRIT "; 2205 case Stall: return "STALL "; 2206 case Cluster: return "CLUSTER "; 2207 case Weak: return "WEAK "; 2208 case RegMax: return "REG-MAX "; 2209 case ResourceReduce: return "RES-REDUCE"; 2210 case ResourceDemand: return "RES-DEMAND"; 2211 case TopDepthReduce: return "TOP-DEPTH "; 2212 case TopPathReduce: return "TOP-PATH "; 2213 case BotHeightReduce:return "BOT-HEIGHT"; 2214 case BotPathReduce: return "BOT-PATH "; 2215 case NextDefUse: return "DEF-USE "; 2216 case NodeOrder: return "ORDER "; 2217 }; 2218 llvm_unreachable("Unknown reason!"); 2219 } 2220 2221 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2222 PressureChange P; 2223 unsigned ResIdx = 0; 2224 unsigned Latency = 0; 2225 switch (Cand.Reason) { 2226 default: 2227 break; 2228 case RegExcess: 2229 P = Cand.RPDelta.Excess; 2230 break; 2231 case RegCritical: 2232 P = Cand.RPDelta.CriticalMax; 2233 break; 2234 case RegMax: 2235 P = Cand.RPDelta.CurrentMax; 2236 break; 2237 case ResourceReduce: 2238 ResIdx = Cand.Policy.ReduceResIdx; 2239 break; 2240 case ResourceDemand: 2241 ResIdx = Cand.Policy.DemandResIdx; 2242 break; 2243 case TopDepthReduce: 2244 Latency = Cand.SU->getDepth(); 2245 break; 2246 case TopPathReduce: 2247 Latency = Cand.SU->getHeight(); 2248 break; 2249 case BotHeightReduce: 2250 Latency = Cand.SU->getHeight(); 2251 break; 2252 case BotPathReduce: 2253 Latency = Cand.SU->getDepth(); 2254 break; 2255 } 2256 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2257 if (P.isValid()) 2258 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2259 << ":" << P.getUnitInc() << " "; 2260 else 2261 dbgs() << " "; 2262 if (ResIdx) 2263 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2264 else 2265 dbgs() << " "; 2266 if (Latency) 2267 dbgs() << " " << Latency << " cycles "; 2268 else 2269 dbgs() << " "; 2270 dbgs() << '\n'; 2271 } 2272 #endif 2273 2274 /// Return true if this heuristic determines order. 2275 static bool tryLess(int TryVal, int CandVal, 2276 GenericSchedulerBase::SchedCandidate &TryCand, 2277 GenericSchedulerBase::SchedCandidate &Cand, 2278 GenericSchedulerBase::CandReason Reason) { 2279 if (TryVal < CandVal) { 2280 TryCand.Reason = Reason; 2281 return true; 2282 } 2283 if (TryVal > CandVal) { 2284 if (Cand.Reason > Reason) 2285 Cand.Reason = Reason; 2286 return true; 2287 } 2288 Cand.setRepeat(Reason); 2289 return false; 2290 } 2291 2292 static bool tryGreater(int TryVal, int CandVal, 2293 GenericSchedulerBase::SchedCandidate &TryCand, 2294 GenericSchedulerBase::SchedCandidate &Cand, 2295 GenericSchedulerBase::CandReason Reason) { 2296 if (TryVal > CandVal) { 2297 TryCand.Reason = Reason; 2298 return true; 2299 } 2300 if (TryVal < CandVal) { 2301 if (Cand.Reason > Reason) 2302 Cand.Reason = Reason; 2303 return true; 2304 } 2305 Cand.setRepeat(Reason); 2306 return false; 2307 } 2308 2309 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2310 GenericSchedulerBase::SchedCandidate &Cand, 2311 SchedBoundary &Zone) { 2312 if (Zone.isTop()) { 2313 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2314 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2315 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2316 return true; 2317 } 2318 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2319 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2320 return true; 2321 } 2322 else { 2323 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2324 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2325 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2326 return true; 2327 } 2328 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2329 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2330 return true; 2331 } 2332 return false; 2333 } 2334 2335 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2336 bool IsTop) { 2337 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2338 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2339 } 2340 2341 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2342 assert(dag->hasVRegLiveness() && 2343 "(PreRA)GenericScheduler needs vreg liveness"); 2344 DAG = static_cast<ScheduleDAGMILive*>(dag); 2345 SchedModel = DAG->getSchedModel(); 2346 TRI = DAG->TRI; 2347 2348 Rem.init(DAG, SchedModel); 2349 Top.init(DAG, SchedModel, &Rem); 2350 Bot.init(DAG, SchedModel, &Rem); 2351 2352 // Initialize resource counts. 2353 2354 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2355 // are disabled, then these HazardRecs will be disabled. 2356 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2357 const TargetMachine &TM = DAG->MF.getTarget(); 2358 if (!Top.HazardRec) { 2359 Top.HazardRec = 2360 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2361 } 2362 if (!Bot.HazardRec) { 2363 Bot.HazardRec = 2364 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2365 } 2366 } 2367 2368 /// Initialize the per-region scheduling policy. 2369 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2370 MachineBasicBlock::iterator End, 2371 unsigned NumRegionInstrs) { 2372 const TargetMachine &TM = Context->MF->getTarget(); 2373 const TargetLowering *TLI = TM.getTargetLowering(); 2374 2375 // Avoid setting up the register pressure tracker for small regions to save 2376 // compile time. As a rough heuristic, only track pressure when the number of 2377 // schedulable instructions exceeds half the integer register file. 2378 RegionPolicy.ShouldTrackPressure = true; 2379 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2380 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2381 if (TLI->isTypeLegal(LegalIntVT)) { 2382 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2383 TLI->getRegClassFor(LegalIntVT)); 2384 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2385 } 2386 } 2387 2388 // For generic targets, we default to bottom-up, because it's simpler and more 2389 // compile-time optimizations have been implemented in that direction. 2390 RegionPolicy.OnlyBottomUp = true; 2391 2392 // Allow the subtarget to override default policy. 2393 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 2394 ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs); 2395 2396 // After subtarget overrides, apply command line options. 2397 if (!EnableRegPressure) 2398 RegionPolicy.ShouldTrackPressure = false; 2399 2400 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2401 // e.g. -misched-bottomup=false allows scheduling in both directions. 2402 assert((!ForceTopDown || !ForceBottomUp) && 2403 "-misched-topdown incompatible with -misched-bottomup"); 2404 if (ForceBottomUp.getNumOccurrences() > 0) { 2405 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2406 if (RegionPolicy.OnlyBottomUp) 2407 RegionPolicy.OnlyTopDown = false; 2408 } 2409 if (ForceTopDown.getNumOccurrences() > 0) { 2410 RegionPolicy.OnlyTopDown = ForceTopDown; 2411 if (RegionPolicy.OnlyTopDown) 2412 RegionPolicy.OnlyBottomUp = false; 2413 } 2414 } 2415 2416 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2417 /// critical path by more cycles than it takes to drain the instruction buffer. 2418 /// We estimate an upper bounds on in-flight instructions as: 2419 /// 2420 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2421 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2422 /// InFlightResources = InFlightIterations * LoopResources 2423 /// 2424 /// TODO: Check execution resources in addition to IssueCount. 2425 void GenericScheduler::checkAcyclicLatency() { 2426 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2427 return; 2428 2429 // Scaled number of cycles per loop iteration. 2430 unsigned IterCount = 2431 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2432 Rem.RemIssueCount); 2433 // Scaled acyclic critical path. 2434 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2435 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2436 unsigned InFlightCount = 2437 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2438 unsigned BufferLimit = 2439 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2440 2441 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2442 2443 DEBUG(dbgs() << "IssueCycles=" 2444 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2445 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2446 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2447 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2448 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2449 if (Rem.IsAcyclicLatencyLimited) 2450 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2451 } 2452 2453 void GenericScheduler::registerRoots() { 2454 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2455 2456 // Some roots may not feed into ExitSU. Check all of them in case. 2457 for (std::vector<SUnit*>::const_iterator 2458 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2459 if ((*I)->getDepth() > Rem.CriticalPath) 2460 Rem.CriticalPath = (*I)->getDepth(); 2461 } 2462 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 2463 2464 if (EnableCyclicPath) { 2465 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2466 checkAcyclicLatency(); 2467 } 2468 } 2469 2470 static bool tryPressure(const PressureChange &TryP, 2471 const PressureChange &CandP, 2472 GenericSchedulerBase::SchedCandidate &TryCand, 2473 GenericSchedulerBase::SchedCandidate &Cand, 2474 GenericSchedulerBase::CandReason Reason) { 2475 int TryRank = TryP.getPSetOrMax(); 2476 int CandRank = CandP.getPSetOrMax(); 2477 // If both candidates affect the same set, go with the smallest increase. 2478 if (TryRank == CandRank) { 2479 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2480 Reason); 2481 } 2482 // If one candidate decreases and the other increases, go with it. 2483 // Invalid candidates have UnitInc==0. 2484 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2485 Reason)) { 2486 return true; 2487 } 2488 // If the candidates are decreasing pressure, reverse priority. 2489 if (TryP.getUnitInc() < 0) 2490 std::swap(TryRank, CandRank); 2491 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2492 } 2493 2494 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2495 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2496 } 2497 2498 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2499 /// their physreg def/use. 2500 /// 2501 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2502 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2503 /// with the operation that produces or consumes the physreg. We'll do this when 2504 /// regalloc has support for parallel copies. 2505 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2506 const MachineInstr *MI = SU->getInstr(); 2507 if (!MI->isCopy()) 2508 return 0; 2509 2510 unsigned ScheduledOper = isTop ? 1 : 0; 2511 unsigned UnscheduledOper = isTop ? 0 : 1; 2512 // If we have already scheduled the physreg produce/consumer, immediately 2513 // schedule the copy. 2514 if (TargetRegisterInfo::isPhysicalRegister( 2515 MI->getOperand(ScheduledOper).getReg())) 2516 return 1; 2517 // If the physreg is at the boundary, defer it. Otherwise schedule it 2518 // immediately to free the dependent. We can hoist the copy later. 2519 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2520 if (TargetRegisterInfo::isPhysicalRegister( 2521 MI->getOperand(UnscheduledOper).getReg())) 2522 return AtBoundary ? -1 : 1; 2523 return 0; 2524 } 2525 2526 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2527 /// hierarchical. This may be more efficient than a graduated cost model because 2528 /// we don't need to evaluate all aspects of the model for each node in the 2529 /// queue. But it's really done to make the heuristics easier to debug and 2530 /// statistically analyze. 2531 /// 2532 /// \param Cand provides the policy and current best candidate. 2533 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2534 /// \param Zone describes the scheduled zone that we are extending. 2535 /// \param RPTracker describes reg pressure within the scheduled zone. 2536 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2537 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2538 SchedCandidate &TryCand, 2539 SchedBoundary &Zone, 2540 const RegPressureTracker &RPTracker, 2541 RegPressureTracker &TempTracker) { 2542 2543 if (DAG->isTrackingPressure()) { 2544 // Always initialize TryCand's RPDelta. 2545 if (Zone.isTop()) { 2546 TempTracker.getMaxDownwardPressureDelta( 2547 TryCand.SU->getInstr(), 2548 TryCand.RPDelta, 2549 DAG->getRegionCriticalPSets(), 2550 DAG->getRegPressure().MaxSetPressure); 2551 } 2552 else { 2553 if (VerifyScheduling) { 2554 TempTracker.getMaxUpwardPressureDelta( 2555 TryCand.SU->getInstr(), 2556 &DAG->getPressureDiff(TryCand.SU), 2557 TryCand.RPDelta, 2558 DAG->getRegionCriticalPSets(), 2559 DAG->getRegPressure().MaxSetPressure); 2560 } 2561 else { 2562 RPTracker.getUpwardPressureDelta( 2563 TryCand.SU->getInstr(), 2564 DAG->getPressureDiff(TryCand.SU), 2565 TryCand.RPDelta, 2566 DAG->getRegionCriticalPSets(), 2567 DAG->getRegPressure().MaxSetPressure); 2568 } 2569 } 2570 } 2571 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2572 dbgs() << " SU(" << TryCand.SU->NodeNum << ") " 2573 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2574 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2575 2576 // Initialize the candidate if needed. 2577 if (!Cand.isValid()) { 2578 TryCand.Reason = NodeOrder; 2579 return; 2580 } 2581 2582 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2583 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2584 TryCand, Cand, PhysRegCopy)) 2585 return; 2586 2587 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2588 // invalid; convert it to INT_MAX to give it lowest priority. 2589 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2590 Cand.RPDelta.Excess, 2591 TryCand, Cand, RegExcess)) 2592 return; 2593 2594 // Avoid increasing the max critical pressure in the scheduled region. 2595 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2596 Cand.RPDelta.CriticalMax, 2597 TryCand, Cand, RegCritical)) 2598 return; 2599 2600 // For loops that are acyclic path limited, aggressively schedule for latency. 2601 // This can result in very long dependence chains scheduled in sequence, so 2602 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2603 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2604 && tryLatency(TryCand, Cand, Zone)) 2605 return; 2606 2607 // Prioritize instructions that read unbuffered resources by stall cycles. 2608 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2609 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2610 return; 2611 2612 // Keep clustered nodes together to encourage downstream peephole 2613 // optimizations which may reduce resource requirements. 2614 // 2615 // This is a best effort to set things up for a post-RA pass. Optimizations 2616 // like generating loads of multiple registers should ideally be done within 2617 // the scheduler pass by combining the loads during DAG postprocessing. 2618 const SUnit *NextClusterSU = 2619 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2620 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2621 TryCand, Cand, Cluster)) 2622 return; 2623 2624 // Weak edges are for clustering and other constraints. 2625 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2626 getWeakLeft(Cand.SU, Zone.isTop()), 2627 TryCand, Cand, Weak)) { 2628 return; 2629 } 2630 // Avoid increasing the max pressure of the entire region. 2631 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2632 Cand.RPDelta.CurrentMax, 2633 TryCand, Cand, RegMax)) 2634 return; 2635 2636 // Avoid critical resource consumption and balance the schedule. 2637 TryCand.initResourceDelta(DAG, SchedModel); 2638 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2639 TryCand, Cand, ResourceReduce)) 2640 return; 2641 if (tryGreater(TryCand.ResDelta.DemandedResources, 2642 Cand.ResDelta.DemandedResources, 2643 TryCand, Cand, ResourceDemand)) 2644 return; 2645 2646 // Avoid serializing long latency dependence chains. 2647 // For acyclic path limited loops, latency was already checked above. 2648 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2649 && tryLatency(TryCand, Cand, Zone)) { 2650 return; 2651 } 2652 2653 // Prefer immediate defs/users of the last scheduled instruction. This is a 2654 // local pressure avoidance strategy that also makes the machine code 2655 // readable. 2656 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2657 TryCand, Cand, NextDefUse)) 2658 return; 2659 2660 // Fall through to original instruction order. 2661 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2662 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2663 TryCand.Reason = NodeOrder; 2664 } 2665 } 2666 2667 /// Pick the best candidate from the queue. 2668 /// 2669 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2670 /// DAG building. To adjust for the current scheduling location we need to 2671 /// maintain the number of vreg uses remaining to be top-scheduled. 2672 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2673 const RegPressureTracker &RPTracker, 2674 SchedCandidate &Cand) { 2675 ReadyQueue &Q = Zone.Available; 2676 2677 DEBUG(Q.dump()); 2678 2679 // getMaxPressureDelta temporarily modifies the tracker. 2680 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2681 2682 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2683 2684 SchedCandidate TryCand(Cand.Policy); 2685 TryCand.SU = *I; 2686 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2687 if (TryCand.Reason != NoCand) { 2688 // Initialize resource delta if needed in case future heuristics query it. 2689 if (TryCand.ResDelta == SchedResourceDelta()) 2690 TryCand.initResourceDelta(DAG, SchedModel); 2691 Cand.setBest(TryCand); 2692 DEBUG(traceCandidate(Cand)); 2693 } 2694 } 2695 } 2696 2697 /// Pick the best candidate node from either the top or bottom queue. 2698 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2699 // Schedule as far as possible in the direction of no choice. This is most 2700 // efficient, but also provides the best heuristics for CriticalPSets. 2701 if (SUnit *SU = Bot.pickOnlyChoice()) { 2702 IsTopNode = false; 2703 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2704 return SU; 2705 } 2706 if (SUnit *SU = Top.pickOnlyChoice()) { 2707 IsTopNode = true; 2708 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2709 return SU; 2710 } 2711 CandPolicy NoPolicy; 2712 SchedCandidate BotCand(NoPolicy); 2713 SchedCandidate TopCand(NoPolicy); 2714 // Set the bottom-up policy based on the state of the current bottom zone and 2715 // the instructions outside the zone, including the top zone. 2716 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2717 // Set the top-down policy based on the state of the current top zone and 2718 // the instructions outside the zone, including the bottom zone. 2719 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2720 2721 // Prefer bottom scheduling when heuristics are silent. 2722 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2723 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2724 2725 // If either Q has a single candidate that provides the least increase in 2726 // Excess pressure, we can immediately schedule from that Q. 2727 // 2728 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2729 // affects picking from either Q. If scheduling in one direction must 2730 // increase pressure for one of the excess PSets, then schedule in that 2731 // direction first to provide more freedom in the other direction. 2732 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2733 || (BotCand.Reason == RegCritical 2734 && !BotCand.isRepeat(RegCritical))) 2735 { 2736 IsTopNode = false; 2737 tracePick(BotCand, IsTopNode); 2738 return BotCand.SU; 2739 } 2740 // Check if the top Q has a better candidate. 2741 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2742 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2743 2744 // Choose the queue with the most important (lowest enum) reason. 2745 if (TopCand.Reason < BotCand.Reason) { 2746 IsTopNode = true; 2747 tracePick(TopCand, IsTopNode); 2748 return TopCand.SU; 2749 } 2750 // Otherwise prefer the bottom candidate, in node order if all else failed. 2751 IsTopNode = false; 2752 tracePick(BotCand, IsTopNode); 2753 return BotCand.SU; 2754 } 2755 2756 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2757 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2758 if (DAG->top() == DAG->bottom()) { 2759 assert(Top.Available.empty() && Top.Pending.empty() && 2760 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2761 return nullptr; 2762 } 2763 SUnit *SU; 2764 do { 2765 if (RegionPolicy.OnlyTopDown) { 2766 SU = Top.pickOnlyChoice(); 2767 if (!SU) { 2768 CandPolicy NoPolicy; 2769 SchedCandidate TopCand(NoPolicy); 2770 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2771 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2772 tracePick(TopCand, true); 2773 SU = TopCand.SU; 2774 } 2775 IsTopNode = true; 2776 } 2777 else if (RegionPolicy.OnlyBottomUp) { 2778 SU = Bot.pickOnlyChoice(); 2779 if (!SU) { 2780 CandPolicy NoPolicy; 2781 SchedCandidate BotCand(NoPolicy); 2782 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2783 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2784 tracePick(BotCand, false); 2785 SU = BotCand.SU; 2786 } 2787 IsTopNode = false; 2788 } 2789 else { 2790 SU = pickNodeBidirectional(IsTopNode); 2791 } 2792 } while (SU->isScheduled); 2793 2794 if (SU->isTopReady()) 2795 Top.removeReady(SU); 2796 if (SU->isBottomReady()) 2797 Bot.removeReady(SU); 2798 2799 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2800 return SU; 2801 } 2802 2803 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2804 2805 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2806 if (!isTop) 2807 ++InsertPos; 2808 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2809 2810 // Find already scheduled copies with a single physreg dependence and move 2811 // them just above the scheduled instruction. 2812 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2813 I != E; ++I) { 2814 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2815 continue; 2816 SUnit *DepSU = I->getSUnit(); 2817 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2818 continue; 2819 MachineInstr *Copy = DepSU->getInstr(); 2820 if (!Copy->isCopy()) 2821 continue; 2822 DEBUG(dbgs() << " Rescheduling physreg copy "; 2823 I->getSUnit()->dump(DAG)); 2824 DAG->moveInstruction(Copy, InsertPos); 2825 } 2826 } 2827 2828 /// Update the scheduler's state after scheduling a node. This is the same node 2829 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2830 /// update it's state based on the current cycle before MachineSchedStrategy 2831 /// does. 2832 /// 2833 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2834 /// them here. See comments in biasPhysRegCopy. 2835 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2836 if (IsTopNode) { 2837 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2838 Top.bumpNode(SU); 2839 if (SU->hasPhysRegUses) 2840 reschedulePhysRegCopies(SU, true); 2841 } 2842 else { 2843 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2844 Bot.bumpNode(SU); 2845 if (SU->hasPhysRegDefs) 2846 reschedulePhysRegCopies(SU, false); 2847 } 2848 } 2849 2850 /// Create the standard converging machine scheduler. This will be used as the 2851 /// default scheduler if the target does not set a default. 2852 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 2853 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 2854 // Register DAG post-processors. 2855 // 2856 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2857 // data and pass it to later mutations. Have a single mutation that gathers 2858 // the interesting nodes in one pass. 2859 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 2860 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2861 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 2862 if (EnableMacroFusion) 2863 DAG->addMutation(make_unique<MacroFusion>(DAG->TII)); 2864 return DAG; 2865 } 2866 2867 static MachineSchedRegistry 2868 GenericSchedRegistry("converge", "Standard converging scheduler.", 2869 createGenericSchedLive); 2870 2871 //===----------------------------------------------------------------------===// 2872 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 2873 //===----------------------------------------------------------------------===// 2874 2875 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 2876 DAG = Dag; 2877 SchedModel = DAG->getSchedModel(); 2878 TRI = DAG->TRI; 2879 2880 Rem.init(DAG, SchedModel); 2881 Top.init(DAG, SchedModel, &Rem); 2882 BotRoots.clear(); 2883 2884 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 2885 // or are disabled, then these HazardRecs will be disabled. 2886 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2887 const TargetMachine &TM = DAG->MF.getTarget(); 2888 if (!Top.HazardRec) { 2889 Top.HazardRec = 2890 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2891 } 2892 } 2893 2894 2895 void PostGenericScheduler::registerRoots() { 2896 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2897 2898 // Some roots may not feed into ExitSU. Check all of them in case. 2899 for (SmallVectorImpl<SUnit*>::const_iterator 2900 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 2901 if ((*I)->getDepth() > Rem.CriticalPath) 2902 Rem.CriticalPath = (*I)->getDepth(); 2903 } 2904 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 2905 } 2906 2907 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 2908 /// 2909 /// \param Cand provides the policy and current best candidate. 2910 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2911 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 2912 SchedCandidate &TryCand) { 2913 2914 // Initialize the candidate if needed. 2915 if (!Cand.isValid()) { 2916 TryCand.Reason = NodeOrder; 2917 return; 2918 } 2919 2920 // Prioritize instructions that read unbuffered resources by stall cycles. 2921 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 2922 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2923 return; 2924 2925 // Avoid critical resource consumption and balance the schedule. 2926 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2927 TryCand, Cand, ResourceReduce)) 2928 return; 2929 if (tryGreater(TryCand.ResDelta.DemandedResources, 2930 Cand.ResDelta.DemandedResources, 2931 TryCand, Cand, ResourceDemand)) 2932 return; 2933 2934 // Avoid serializing long latency dependence chains. 2935 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 2936 return; 2937 } 2938 2939 // Fall through to original instruction order. 2940 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 2941 TryCand.Reason = NodeOrder; 2942 } 2943 2944 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 2945 ReadyQueue &Q = Top.Available; 2946 2947 DEBUG(Q.dump()); 2948 2949 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2950 SchedCandidate TryCand(Cand.Policy); 2951 TryCand.SU = *I; 2952 TryCand.initResourceDelta(DAG, SchedModel); 2953 tryCandidate(Cand, TryCand); 2954 if (TryCand.Reason != NoCand) { 2955 Cand.setBest(TryCand); 2956 DEBUG(traceCandidate(Cand)); 2957 } 2958 } 2959 } 2960 2961 /// Pick the next node to schedule. 2962 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 2963 if (DAG->top() == DAG->bottom()) { 2964 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 2965 return nullptr; 2966 } 2967 SUnit *SU; 2968 do { 2969 SU = Top.pickOnlyChoice(); 2970 if (!SU) { 2971 CandPolicy NoPolicy; 2972 SchedCandidate TopCand(NoPolicy); 2973 // Set the top-down policy based on the state of the current top zone and 2974 // the instructions outside the zone, including the bottom zone. 2975 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 2976 pickNodeFromQueue(TopCand); 2977 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2978 tracePick(TopCand, true); 2979 SU = TopCand.SU; 2980 } 2981 } while (SU->isScheduled); 2982 2983 IsTopNode = true; 2984 Top.removeReady(SU); 2985 2986 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2987 return SU; 2988 } 2989 2990 /// Called after ScheduleDAGMI has scheduled an instruction and updated 2991 /// scheduled/remaining flags in the DAG nodes. 2992 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2993 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2994 Top.bumpNode(SU); 2995 } 2996 2997 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 2998 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 2999 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3000 } 3001 3002 //===----------------------------------------------------------------------===// 3003 // ILP Scheduler. Currently for experimental analysis of heuristics. 3004 //===----------------------------------------------------------------------===// 3005 3006 namespace { 3007 /// \brief Order nodes by the ILP metric. 3008 struct ILPOrder { 3009 const SchedDFSResult *DFSResult; 3010 const BitVector *ScheduledTrees; 3011 bool MaximizeILP; 3012 3013 ILPOrder(bool MaxILP) 3014 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3015 3016 /// \brief Apply a less-than relation on node priority. 3017 /// 3018 /// (Return true if A comes after B in the Q.) 3019 bool operator()(const SUnit *A, const SUnit *B) const { 3020 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3021 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3022 if (SchedTreeA != SchedTreeB) { 3023 // Unscheduled trees have lower priority. 3024 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3025 return ScheduledTrees->test(SchedTreeB); 3026 3027 // Trees with shallower connections have have lower priority. 3028 if (DFSResult->getSubtreeLevel(SchedTreeA) 3029 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3030 return DFSResult->getSubtreeLevel(SchedTreeA) 3031 < DFSResult->getSubtreeLevel(SchedTreeB); 3032 } 3033 } 3034 if (MaximizeILP) 3035 return DFSResult->getILP(A) < DFSResult->getILP(B); 3036 else 3037 return DFSResult->getILP(A) > DFSResult->getILP(B); 3038 } 3039 }; 3040 3041 /// \brief Schedule based on the ILP metric. 3042 class ILPScheduler : public MachineSchedStrategy { 3043 ScheduleDAGMILive *DAG; 3044 ILPOrder Cmp; 3045 3046 std::vector<SUnit*> ReadyQ; 3047 public: 3048 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3049 3050 void initialize(ScheduleDAGMI *dag) override { 3051 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3052 DAG = static_cast<ScheduleDAGMILive*>(dag); 3053 DAG->computeDFSResult(); 3054 Cmp.DFSResult = DAG->getDFSResult(); 3055 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3056 ReadyQ.clear(); 3057 } 3058 3059 void registerRoots() override { 3060 // Restore the heap in ReadyQ with the updated DFS results. 3061 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3062 } 3063 3064 /// Implement MachineSchedStrategy interface. 3065 /// ----------------------------------------- 3066 3067 /// Callback to select the highest priority node from the ready Q. 3068 SUnit *pickNode(bool &IsTopNode) override { 3069 if (ReadyQ.empty()) return nullptr; 3070 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3071 SUnit *SU = ReadyQ.back(); 3072 ReadyQ.pop_back(); 3073 IsTopNode = false; 3074 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3075 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3076 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3077 << DAG->getDFSResult()->getSubtreeLevel( 3078 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3079 << "Scheduling " << *SU->getInstr()); 3080 return SU; 3081 } 3082 3083 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3084 void scheduleTree(unsigned SubtreeID) override { 3085 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3086 } 3087 3088 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3089 /// DFSResults, and resort the priority Q. 3090 void schedNode(SUnit *SU, bool IsTopNode) override { 3091 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3092 } 3093 3094 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3095 3096 void releaseBottomNode(SUnit *SU) override { 3097 ReadyQ.push_back(SU); 3098 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3099 } 3100 }; 3101 } // namespace 3102 3103 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3104 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3105 } 3106 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3107 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3108 } 3109 static MachineSchedRegistry ILPMaxRegistry( 3110 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3111 static MachineSchedRegistry ILPMinRegistry( 3112 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3113 3114 //===----------------------------------------------------------------------===// 3115 // Machine Instruction Shuffler for Correctness Testing 3116 //===----------------------------------------------------------------------===// 3117 3118 #ifndef NDEBUG 3119 namespace { 3120 /// Apply a less-than relation on the node order, which corresponds to the 3121 /// instruction order prior to scheduling. IsReverse implements greater-than. 3122 template<bool IsReverse> 3123 struct SUnitOrder { 3124 bool operator()(SUnit *A, SUnit *B) const { 3125 if (IsReverse) 3126 return A->NodeNum > B->NodeNum; 3127 else 3128 return A->NodeNum < B->NodeNum; 3129 } 3130 }; 3131 3132 /// Reorder instructions as much as possible. 3133 class InstructionShuffler : public MachineSchedStrategy { 3134 bool IsAlternating; 3135 bool IsTopDown; 3136 3137 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3138 // gives nodes with a higher number higher priority causing the latest 3139 // instructions to be scheduled first. 3140 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3141 TopQ; 3142 // When scheduling bottom-up, use greater-than as the queue priority. 3143 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3144 BottomQ; 3145 public: 3146 InstructionShuffler(bool alternate, bool topdown) 3147 : IsAlternating(alternate), IsTopDown(topdown) {} 3148 3149 void initialize(ScheduleDAGMI*) override { 3150 TopQ.clear(); 3151 BottomQ.clear(); 3152 } 3153 3154 /// Implement MachineSchedStrategy interface. 3155 /// ----------------------------------------- 3156 3157 SUnit *pickNode(bool &IsTopNode) override { 3158 SUnit *SU; 3159 if (IsTopDown) { 3160 do { 3161 if (TopQ.empty()) return nullptr; 3162 SU = TopQ.top(); 3163 TopQ.pop(); 3164 } while (SU->isScheduled); 3165 IsTopNode = true; 3166 } 3167 else { 3168 do { 3169 if (BottomQ.empty()) return nullptr; 3170 SU = BottomQ.top(); 3171 BottomQ.pop(); 3172 } while (SU->isScheduled); 3173 IsTopNode = false; 3174 } 3175 if (IsAlternating) 3176 IsTopDown = !IsTopDown; 3177 return SU; 3178 } 3179 3180 void schedNode(SUnit *SU, bool IsTopNode) override {} 3181 3182 void releaseTopNode(SUnit *SU) override { 3183 TopQ.push(SU); 3184 } 3185 void releaseBottomNode(SUnit *SU) override { 3186 BottomQ.push(SU); 3187 } 3188 }; 3189 } // namespace 3190 3191 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3192 bool Alternate = !ForceTopDown && !ForceBottomUp; 3193 bool TopDown = !ForceBottomUp; 3194 assert((TopDown || !ForceTopDown) && 3195 "-misched-topdown incompatible with -misched-bottomup"); 3196 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3197 } 3198 static MachineSchedRegistry ShufflerRegistry( 3199 "shuffle", "Shuffle machine instructions alternating directions", 3200 createInstructionShuffler); 3201 #endif // !NDEBUG 3202 3203 //===----------------------------------------------------------------------===// 3204 // GraphWriter support for ScheduleDAGMILive. 3205 //===----------------------------------------------------------------------===// 3206 3207 #ifndef NDEBUG 3208 namespace llvm { 3209 3210 template<> struct GraphTraits< 3211 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3212 3213 template<> 3214 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3215 3216 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3217 3218 static std::string getGraphName(const ScheduleDAG *G) { 3219 return G->MF.getName(); 3220 } 3221 3222 static bool renderGraphFromBottomUp() { 3223 return true; 3224 } 3225 3226 static bool isNodeHidden(const SUnit *Node) { 3227 return (Node->Preds.size() > 10 || Node->Succs.size() > 10); 3228 } 3229 3230 static bool hasNodeAddressLabel(const SUnit *Node, 3231 const ScheduleDAG *Graph) { 3232 return false; 3233 } 3234 3235 /// If you want to override the dot attributes printed for a particular 3236 /// edge, override this method. 3237 static std::string getEdgeAttributes(const SUnit *Node, 3238 SUnitIterator EI, 3239 const ScheduleDAG *Graph) { 3240 if (EI.isArtificialDep()) 3241 return "color=cyan,style=dashed"; 3242 if (EI.isCtrlDep()) 3243 return "color=blue,style=dashed"; 3244 return ""; 3245 } 3246 3247 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3248 std::string Str; 3249 raw_string_ostream SS(Str); 3250 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3251 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3252 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3253 SS << "SU:" << SU->NodeNum; 3254 if (DFS) 3255 SS << " I:" << DFS->getNumInstrs(SU); 3256 return SS.str(); 3257 } 3258 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3259 return G->getGraphNodeLabel(SU); 3260 } 3261 3262 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3263 std::string Str("shape=Mrecord"); 3264 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3265 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3266 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3267 if (DFS) { 3268 Str += ",style=filled,fillcolor=\"#"; 3269 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3270 Str += '"'; 3271 } 3272 return Str; 3273 } 3274 }; 3275 } // namespace llvm 3276 #endif // NDEBUG 3277 3278 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3279 /// rendered using 'dot'. 3280 /// 3281 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3282 #ifndef NDEBUG 3283 ViewGraph(this, Name, false, Title); 3284 #else 3285 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3286 << "systems with Graphviz or gv!\n"; 3287 #endif // NDEBUG 3288 } 3289 3290 /// Out-of-line implementation with no arguments is handy for gdb. 3291 void ScheduleDAGMI::viewGraph() { 3292 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3293 } 3294