1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "misched" 36 37 namespace llvm { 38 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 39 cl::desc("Force top-down list scheduling")); 40 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 41 cl::desc("Force bottom-up list scheduling")); 42 cl::opt<bool> 43 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 44 cl::desc("Print critical path length to stdout")); 45 } 46 47 #ifndef NDEBUG 48 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 49 cl::desc("Pop up a window to show MISched dags after they are processed")); 50 51 /// In some situations a few uninteresting nodes depend on nearly all other 52 /// nodes in the graph, provide a cutoff to hide them. 53 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 54 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 55 56 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 57 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 58 59 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 60 cl::desc("Only schedule this function")); 61 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 62 cl::desc("Only schedule this MBB#")); 63 #else 64 static bool ViewMISchedDAGs = false; 65 #endif // NDEBUG 66 67 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 68 cl::desc("Enable register pressure scheduling."), cl::init(true)); 69 70 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 71 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 72 73 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 74 cl::desc("Enable memop clustering."), 75 cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 static cl::opt<bool> EnablePostRAMachineSched( 223 "enable-post-misched", 224 cl::desc("Enable the post-ra machine instruction scheduling pass."), 225 cl::init(true), cl::Hidden); 226 227 /// Forward declare the standard machine scheduler. This will be used as the 228 /// default scheduler if the target does not set a default. 229 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 230 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 231 232 /// Decrement this iterator until reaching the top or a non-debug instr. 233 static MachineBasicBlock::const_iterator 234 priorNonDebug(MachineBasicBlock::const_iterator I, 235 MachineBasicBlock::const_iterator Beg) { 236 assert(I != Beg && "reached the top of the region, cannot decrement"); 237 while (--I != Beg) { 238 if (!I->isDebugValue()) 239 break; 240 } 241 return I; 242 } 243 244 /// Non-const version. 245 static MachineBasicBlock::iterator 246 priorNonDebug(MachineBasicBlock::iterator I, 247 MachineBasicBlock::const_iterator Beg) { 248 return const_cast<MachineInstr*>( 249 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 250 } 251 252 /// If this iterator is a debug value, increment until reaching the End or a 253 /// non-debug instruction. 254 static MachineBasicBlock::const_iterator 255 nextIfDebug(MachineBasicBlock::const_iterator I, 256 MachineBasicBlock::const_iterator End) { 257 for(; I != End; ++I) { 258 if (!I->isDebugValue()) 259 break; 260 } 261 return I; 262 } 263 264 /// Non-const version. 265 static MachineBasicBlock::iterator 266 nextIfDebug(MachineBasicBlock::iterator I, 267 MachineBasicBlock::const_iterator End) { 268 // Cast the return value to nonconst MachineInstr, then cast to an 269 // instr_iterator, which does not check for null, finally return a 270 // bundle_iterator. 271 return MachineBasicBlock::instr_iterator( 272 const_cast<MachineInstr*>( 273 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 274 } 275 276 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 277 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 278 // Select the scheduler, or set the default. 279 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 280 if (Ctor != useDefaultMachineSched) 281 return Ctor(this); 282 283 // Get the default scheduler set by the target for this function. 284 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 285 if (Scheduler) 286 return Scheduler; 287 288 // Default to GenericScheduler. 289 return createGenericSchedLive(this); 290 } 291 292 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 293 /// the caller. We don't have a command line option to override the postRA 294 /// scheduler. The Target must configure it. 295 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 296 // Get the postRA scheduler set by the target for this function. 297 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 298 if (Scheduler) 299 return Scheduler; 300 301 // Default to GenericScheduler. 302 return createGenericSchedPostRA(this); 303 } 304 305 /// Top-level MachineScheduler pass driver. 306 /// 307 /// Visit blocks in function order. Divide each block into scheduling regions 308 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 309 /// consistent with the DAG builder, which traverses the interior of the 310 /// scheduling regions bottom-up. 311 /// 312 /// This design avoids exposing scheduling boundaries to the DAG builder, 313 /// simplifying the DAG builder's support for "special" target instructions. 314 /// At the same time the design allows target schedulers to operate across 315 /// scheduling boundaries, for example to bundle the boudary instructions 316 /// without reordering them. This creates complexity, because the target 317 /// scheduler must update the RegionBegin and RegionEnd positions cached by 318 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 319 /// design would be to split blocks at scheduling boundaries, but LLVM has a 320 /// general bias against block splitting purely for implementation simplicity. 321 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 322 if (skipFunction(*mf.getFunction())) 323 return false; 324 325 if (EnableMachineSched.getNumOccurrences()) { 326 if (!EnableMachineSched) 327 return false; 328 } else if (!mf.getSubtarget().enableMachineScheduler()) 329 return false; 330 331 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 332 333 // Initialize the context of the pass. 334 MF = &mf; 335 MLI = &getAnalysis<MachineLoopInfo>(); 336 MDT = &getAnalysis<MachineDominatorTree>(); 337 PassConfig = &getAnalysis<TargetPassConfig>(); 338 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 339 340 LIS = &getAnalysis<LiveIntervals>(); 341 342 if (VerifyScheduling) { 343 DEBUG(LIS->dump()); 344 MF->verify(this, "Before machine scheduling."); 345 } 346 RegClassInfo->runOnMachineFunction(*MF); 347 348 // Instantiate the selected scheduler for this target, function, and 349 // optimization level. 350 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 351 scheduleRegions(*Scheduler, false); 352 353 DEBUG(LIS->dump()); 354 if (VerifyScheduling) 355 MF->verify(this, "After machine scheduling."); 356 return true; 357 } 358 359 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 360 if (skipFunction(*mf.getFunction())) 361 return false; 362 363 if (EnablePostRAMachineSched.getNumOccurrences()) { 364 if (!EnablePostRAMachineSched) 365 return false; 366 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 367 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 368 return false; 369 } 370 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 371 372 // Initialize the context of the pass. 373 MF = &mf; 374 PassConfig = &getAnalysis<TargetPassConfig>(); 375 376 if (VerifyScheduling) 377 MF->verify(this, "Before post machine scheduling."); 378 379 // Instantiate the selected scheduler for this target, function, and 380 // optimization level. 381 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 382 scheduleRegions(*Scheduler, true); 383 384 if (VerifyScheduling) 385 MF->verify(this, "After post machine scheduling."); 386 return true; 387 } 388 389 /// Return true of the given instruction should not be included in a scheduling 390 /// region. 391 /// 392 /// MachineScheduler does not currently support scheduling across calls. To 393 /// handle calls, the DAG builder needs to be modified to create register 394 /// anti/output dependencies on the registers clobbered by the call's regmask 395 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 396 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 397 /// the boundary, but there would be no benefit to postRA scheduling across 398 /// calls this late anyway. 399 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 400 MachineBasicBlock *MBB, 401 MachineFunction *MF, 402 const TargetInstrInfo *TII) { 403 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 404 } 405 406 /// Main driver for both MachineScheduler and PostMachineScheduler. 407 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 408 bool FixKillFlags) { 409 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 410 411 // Visit all machine basic blocks. 412 // 413 // TODO: Visit blocks in global postorder or postorder within the bottom-up 414 // loop tree. Then we can optionally compute global RegPressure. 415 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 416 MBB != MBBEnd; ++MBB) { 417 418 Scheduler.startBlock(&*MBB); 419 420 #ifndef NDEBUG 421 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 422 continue; 423 if (SchedOnlyBlock.getNumOccurrences() 424 && (int)SchedOnlyBlock != MBB->getNumber()) 425 continue; 426 #endif 427 428 // Break the block into scheduling regions [I, RegionEnd), and schedule each 429 // region as soon as it is discovered. RegionEnd points the scheduling 430 // boundary at the bottom of the region. The DAG does not include RegionEnd, 431 // but the region does (i.e. the next RegionEnd is above the previous 432 // RegionBegin). If the current block has no terminator then RegionEnd == 433 // MBB->end() for the bottom region. 434 // 435 // The Scheduler may insert instructions during either schedule() or 436 // exitRegion(), even for empty regions. So the local iterators 'I' and 437 // 'RegionEnd' are invalid across these calls. 438 // 439 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 440 // as a single instruction. 441 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 442 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 443 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 444 445 // Avoid decrementing RegionEnd for blocks with no terminator. 446 if (RegionEnd != MBB->end() || 447 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 448 --RegionEnd; 449 // Count the boundary instruction. 450 --RemainingInstrs; 451 } 452 453 // The next region starts above the previous region. Look backward in the 454 // instruction stream until we find the nearest boundary. 455 unsigned NumRegionInstrs = 0; 456 MachineBasicBlock::iterator I = RegionEnd; 457 for(;I != MBB->begin(); --I, --RemainingInstrs) { 458 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 459 break; 460 if (!I->isDebugValue()) 461 ++NumRegionInstrs; 462 } 463 // Notify the scheduler of the region, even if we may skip scheduling 464 // it. Perhaps it still needs to be bundled. 465 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 466 467 // Skip empty scheduling regions (0 or 1 schedulable instructions). 468 if (I == RegionEnd || I == std::prev(RegionEnd)) { 469 // Close the current region. Bundle the terminator if needed. 470 // This invalidates 'RegionEnd' and 'I'. 471 Scheduler.exitRegion(); 472 continue; 473 } 474 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 475 DEBUG(dbgs() << MF->getName() 476 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 477 << "\n From: " << *I << " To: "; 478 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 479 else dbgs() << "End"; 480 dbgs() << " RegionInstrs: " << NumRegionInstrs 481 << " Remaining: " << RemainingInstrs << "\n"); 482 if (DumpCriticalPathLength) { 483 errs() << MF->getName(); 484 errs() << ":BB# " << MBB->getNumber(); 485 errs() << " " << MBB->getName() << " \n"; 486 } 487 488 // Schedule a region: possibly reorder instructions. 489 // This invalidates 'RegionEnd' and 'I'. 490 Scheduler.schedule(); 491 492 // Close the current region. 493 Scheduler.exitRegion(); 494 495 // Scheduling has invalidated the current iterator 'I'. Ask the 496 // scheduler for the top of it's scheduled region. 497 RegionEnd = Scheduler.begin(); 498 } 499 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 500 Scheduler.finishBlock(); 501 // FIXME: Ideally, no further passes should rely on kill flags. However, 502 // thumb2 size reduction is currently an exception, so the PostMIScheduler 503 // needs to do this. 504 if (FixKillFlags) 505 Scheduler.fixupKills(&*MBB); 506 } 507 Scheduler.finalizeSchedule(); 508 } 509 510 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 511 // unimplemented 512 } 513 514 LLVM_DUMP_METHOD 515 void ReadyQueue::dump() { 516 dbgs() << "Queue " << Name << ": "; 517 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 518 dbgs() << Queue[i]->NodeNum << " "; 519 dbgs() << "\n"; 520 } 521 522 //===----------------------------------------------------------------------===// 523 // ScheduleDAGMI - Basic machine instruction scheduling. This is 524 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 525 // virtual registers. 526 // ===----------------------------------------------------------------------===/ 527 528 // Provide a vtable anchor. 529 ScheduleDAGMI::~ScheduleDAGMI() { 530 } 531 532 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 533 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 534 } 535 536 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 537 if (SuccSU != &ExitSU) { 538 // Do not use WillCreateCycle, it assumes SD scheduling. 539 // If Pred is reachable from Succ, then the edge creates a cycle. 540 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 541 return false; 542 Topo.AddPred(SuccSU, PredDep.getSUnit()); 543 } 544 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 545 // Return true regardless of whether a new edge needed to be inserted. 546 return true; 547 } 548 549 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 550 /// NumPredsLeft reaches zero, release the successor node. 551 /// 552 /// FIXME: Adjust SuccSU height based on MinLatency. 553 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 554 SUnit *SuccSU = SuccEdge->getSUnit(); 555 556 if (SuccEdge->isWeak()) { 557 --SuccSU->WeakPredsLeft; 558 if (SuccEdge->isCluster()) 559 NextClusterSucc = SuccSU; 560 return; 561 } 562 #ifndef NDEBUG 563 if (SuccSU->NumPredsLeft == 0) { 564 dbgs() << "*** Scheduling failed! ***\n"; 565 SuccSU->dump(this); 566 dbgs() << " has been released too many times!\n"; 567 llvm_unreachable(nullptr); 568 } 569 #endif 570 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 571 // CurrCycle may have advanced since then. 572 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 573 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 574 575 --SuccSU->NumPredsLeft; 576 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 577 SchedImpl->releaseTopNode(SuccSU); 578 } 579 580 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 581 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 582 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 583 I != E; ++I) { 584 releaseSucc(SU, &*I); 585 } 586 } 587 588 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 589 /// NumSuccsLeft reaches zero, release the predecessor node. 590 /// 591 /// FIXME: Adjust PredSU height based on MinLatency. 592 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 593 SUnit *PredSU = PredEdge->getSUnit(); 594 595 if (PredEdge->isWeak()) { 596 --PredSU->WeakSuccsLeft; 597 if (PredEdge->isCluster()) 598 NextClusterPred = PredSU; 599 return; 600 } 601 #ifndef NDEBUG 602 if (PredSU->NumSuccsLeft == 0) { 603 dbgs() << "*** Scheduling failed! ***\n"; 604 PredSU->dump(this); 605 dbgs() << " has been released too many times!\n"; 606 llvm_unreachable(nullptr); 607 } 608 #endif 609 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 610 // CurrCycle may have advanced since then. 611 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 612 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 613 614 --PredSU->NumSuccsLeft; 615 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 616 SchedImpl->releaseBottomNode(PredSU); 617 } 618 619 /// releasePredecessors - Call releasePred on each of SU's predecessors. 620 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 621 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 622 I != E; ++I) { 623 releasePred(SU, &*I); 624 } 625 } 626 627 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 628 /// crossing a scheduling boundary. [begin, end) includes all instructions in 629 /// the region, including the boundary itself and single-instruction regions 630 /// that don't get scheduled. 631 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 632 MachineBasicBlock::iterator begin, 633 MachineBasicBlock::iterator end, 634 unsigned regioninstrs) 635 { 636 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 637 638 SchedImpl->initPolicy(begin, end, regioninstrs); 639 } 640 641 /// This is normally called from the main scheduler loop but may also be invoked 642 /// by the scheduling strategy to perform additional code motion. 643 void ScheduleDAGMI::moveInstruction( 644 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 645 // Advance RegionBegin if the first instruction moves down. 646 if (&*RegionBegin == MI) 647 ++RegionBegin; 648 649 // Update the instruction stream. 650 BB->splice(InsertPos, BB, MI); 651 652 // Update LiveIntervals 653 if (LIS) 654 LIS->handleMove(*MI, /*UpdateFlags=*/true); 655 656 // Recede RegionBegin if an instruction moves above the first. 657 if (RegionBegin == InsertPos) 658 RegionBegin = MI; 659 } 660 661 bool ScheduleDAGMI::checkSchedLimit() { 662 #ifndef NDEBUG 663 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 664 CurrentTop = CurrentBottom; 665 return false; 666 } 667 ++NumInstrsScheduled; 668 #endif 669 return true; 670 } 671 672 /// Per-region scheduling driver, called back from 673 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 674 /// does not consider liveness or register pressure. It is useful for PostRA 675 /// scheduling and potentially other custom schedulers. 676 void ScheduleDAGMI::schedule() { 677 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 678 DEBUG(SchedImpl->dumpPolicy()); 679 680 // Build the DAG. 681 buildSchedGraph(AA); 682 683 Topo.InitDAGTopologicalSorting(); 684 685 postprocessDAG(); 686 687 SmallVector<SUnit*, 8> TopRoots, BotRoots; 688 findRootsAndBiasEdges(TopRoots, BotRoots); 689 690 // Initialize the strategy before modifying the DAG. 691 // This may initialize a DFSResult to be used for queue priority. 692 SchedImpl->initialize(this); 693 694 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 695 SUnits[su].dumpAll(this)); 696 if (ViewMISchedDAGs) viewGraph(); 697 698 // Initialize ready queues now that the DAG and priority data are finalized. 699 initQueues(TopRoots, BotRoots); 700 701 bool IsTopNode = false; 702 while (true) { 703 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 704 SUnit *SU = SchedImpl->pickNode(IsTopNode); 705 if (!SU) break; 706 707 assert(!SU->isScheduled && "Node already scheduled"); 708 if (!checkSchedLimit()) 709 break; 710 711 MachineInstr *MI = SU->getInstr(); 712 if (IsTopNode) { 713 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 714 if (&*CurrentTop == MI) 715 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 716 else 717 moveInstruction(MI, CurrentTop); 718 } else { 719 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 720 MachineBasicBlock::iterator priorII = 721 priorNonDebug(CurrentBottom, CurrentTop); 722 if (&*priorII == MI) 723 CurrentBottom = priorII; 724 else { 725 if (&*CurrentTop == MI) 726 CurrentTop = nextIfDebug(++CurrentTop, priorII); 727 moveInstruction(MI, CurrentBottom); 728 CurrentBottom = MI; 729 } 730 } 731 // Notify the scheduling strategy before updating the DAG. 732 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 733 // runs, it can then use the accurate ReadyCycle time to determine whether 734 // newly released nodes can move to the readyQ. 735 SchedImpl->schedNode(SU, IsTopNode); 736 737 updateQueues(SU, IsTopNode); 738 } 739 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 740 741 placeDebugValues(); 742 743 DEBUG({ 744 unsigned BBNum = begin()->getParent()->getNumber(); 745 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 746 dumpSchedule(); 747 dbgs() << '\n'; 748 }); 749 } 750 751 /// Apply each ScheduleDAGMutation step in order. 752 void ScheduleDAGMI::postprocessDAG() { 753 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 754 Mutations[i]->apply(this); 755 } 756 } 757 758 void ScheduleDAGMI:: 759 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 760 SmallVectorImpl<SUnit*> &BotRoots) { 761 for (std::vector<SUnit>::iterator 762 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 763 SUnit *SU = &(*I); 764 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 765 766 // Order predecessors so DFSResult follows the critical path. 767 SU->biasCriticalPath(); 768 769 // A SUnit is ready to top schedule if it has no predecessors. 770 if (!I->NumPredsLeft) 771 TopRoots.push_back(SU); 772 // A SUnit is ready to bottom schedule if it has no successors. 773 if (!I->NumSuccsLeft) 774 BotRoots.push_back(SU); 775 } 776 ExitSU.biasCriticalPath(); 777 } 778 779 /// Identify DAG roots and setup scheduler queues. 780 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 781 ArrayRef<SUnit*> BotRoots) { 782 NextClusterSucc = nullptr; 783 NextClusterPred = nullptr; 784 785 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 786 // 787 // Nodes with unreleased weak edges can still be roots. 788 // Release top roots in forward order. 789 for (SmallVectorImpl<SUnit*>::const_iterator 790 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 791 SchedImpl->releaseTopNode(*I); 792 } 793 // Release bottom roots in reverse order so the higher priority nodes appear 794 // first. This is more natural and slightly more efficient. 795 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 796 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 797 SchedImpl->releaseBottomNode(*I); 798 } 799 800 releaseSuccessors(&EntrySU); 801 releasePredecessors(&ExitSU); 802 803 SchedImpl->registerRoots(); 804 805 // Advance past initial DebugValues. 806 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 807 CurrentBottom = RegionEnd; 808 } 809 810 /// Update scheduler queues after scheduling an instruction. 811 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 812 // Release dependent instructions for scheduling. 813 if (IsTopNode) 814 releaseSuccessors(SU); 815 else 816 releasePredecessors(SU); 817 818 SU->isScheduled = true; 819 } 820 821 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 822 void ScheduleDAGMI::placeDebugValues() { 823 // If first instruction was a DBG_VALUE then put it back. 824 if (FirstDbgValue) { 825 BB->splice(RegionBegin, BB, FirstDbgValue); 826 RegionBegin = FirstDbgValue; 827 } 828 829 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 830 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 831 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 832 MachineInstr *DbgValue = P.first; 833 MachineBasicBlock::iterator OrigPrevMI = P.second; 834 if (&*RegionBegin == DbgValue) 835 ++RegionBegin; 836 BB->splice(++OrigPrevMI, BB, DbgValue); 837 if (OrigPrevMI == std::prev(RegionEnd)) 838 RegionEnd = DbgValue; 839 } 840 DbgValues.clear(); 841 FirstDbgValue = nullptr; 842 } 843 844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 845 void ScheduleDAGMI::dumpSchedule() const { 846 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 847 if (SUnit *SU = getSUnit(&(*MI))) 848 SU->dump(this); 849 else 850 dbgs() << "Missing SUnit\n"; 851 } 852 } 853 #endif 854 855 //===----------------------------------------------------------------------===// 856 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 857 // preservation. 858 //===----------------------------------------------------------------------===// 859 860 ScheduleDAGMILive::~ScheduleDAGMILive() { 861 delete DFSResult; 862 } 863 864 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 865 /// crossing a scheduling boundary. [begin, end) includes all instructions in 866 /// the region, including the boundary itself and single-instruction regions 867 /// that don't get scheduled. 868 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 869 MachineBasicBlock::iterator begin, 870 MachineBasicBlock::iterator end, 871 unsigned regioninstrs) 872 { 873 // ScheduleDAGMI initializes SchedImpl's per-region policy. 874 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 875 876 // For convenience remember the end of the liveness region. 877 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 878 879 SUPressureDiffs.clear(); 880 881 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 882 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 883 884 if (ShouldTrackLaneMasks) { 885 if (!ShouldTrackPressure) 886 report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure"); 887 // Dead subregister defs have no users and therefore no dependencies, 888 // moving them around may cause liveintervals to degrade into multiple 889 // components. Change independent components to have their own vreg to avoid 890 // this. 891 if (!DisconnectedComponentsRenamed) 892 LIS->renameDisconnectedComponents(); 893 } 894 } 895 896 // Setup the register pressure trackers for the top scheduled top and bottom 897 // scheduled regions. 898 void ScheduleDAGMILive::initRegPressure() { 899 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 900 ShouldTrackLaneMasks, false); 901 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 902 ShouldTrackLaneMasks, false); 903 904 // Close the RPTracker to finalize live ins. 905 RPTracker.closeRegion(); 906 907 DEBUG(RPTracker.dump()); 908 909 // Initialize the live ins and live outs. 910 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 911 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 912 913 // Close one end of the tracker so we can call 914 // getMaxUpward/DownwardPressureDelta before advancing across any 915 // instructions. This converts currently live regs into live ins/outs. 916 TopRPTracker.closeTop(); 917 BotRPTracker.closeBottom(); 918 919 BotRPTracker.initLiveThru(RPTracker); 920 if (!BotRPTracker.getLiveThru().empty()) { 921 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 922 DEBUG(dbgs() << "Live Thru: "; 923 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 924 }; 925 926 // For each live out vreg reduce the pressure change associated with other 927 // uses of the same vreg below the live-out reaching def. 928 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 929 930 // Account for liveness generated by the region boundary. 931 if (LiveRegionEnd != RegionEnd) { 932 SmallVector<RegisterMaskPair, 8> LiveUses; 933 BotRPTracker.recede(&LiveUses); 934 updatePressureDiffs(LiveUses); 935 } 936 937 DEBUG( 938 dbgs() << "Top Pressure:\n"; 939 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 940 dbgs() << "Bottom Pressure:\n"; 941 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 942 ); 943 944 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 945 946 // Cache the list of excess pressure sets in this region. This will also track 947 // the max pressure in the scheduled code for these sets. 948 RegionCriticalPSets.clear(); 949 const std::vector<unsigned> &RegionPressure = 950 RPTracker.getPressure().MaxSetPressure; 951 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 952 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 953 if (RegionPressure[i] > Limit) { 954 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 955 << " Limit " << Limit 956 << " Actual " << RegionPressure[i] << "\n"); 957 RegionCriticalPSets.push_back(PressureChange(i)); 958 } 959 } 960 DEBUG(dbgs() << "Excess PSets: "; 961 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 962 dbgs() << TRI->getRegPressureSetName( 963 RegionCriticalPSets[i].getPSet()) << " "; 964 dbgs() << "\n"); 965 } 966 967 void ScheduleDAGMILive:: 968 updateScheduledPressure(const SUnit *SU, 969 const std::vector<unsigned> &NewMaxPressure) { 970 const PressureDiff &PDiff = getPressureDiff(SU); 971 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 972 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 973 I != E; ++I) { 974 if (!I->isValid()) 975 break; 976 unsigned ID = I->getPSet(); 977 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 978 ++CritIdx; 979 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 980 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 981 && NewMaxPressure[ID] <= INT16_MAX) 982 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 983 } 984 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 985 if (NewMaxPressure[ID] >= Limit - 2) { 986 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 987 << NewMaxPressure[ID] 988 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 989 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 990 } 991 } 992 } 993 994 /// Update the PressureDiff array for liveness after scheduling this 995 /// instruction. 996 void ScheduleDAGMILive::updatePressureDiffs( 997 ArrayRef<RegisterMaskPair> LiveUses) { 998 for (const RegisterMaskPair &P : LiveUses) { 999 unsigned Reg = P.RegUnit; 1000 /// FIXME: Currently assuming single-use physregs. 1001 if (!TRI->isVirtualRegister(Reg)) 1002 continue; 1003 1004 if (ShouldTrackLaneMasks) { 1005 // If the register has just become live then other uses won't change 1006 // this fact anymore => decrement pressure. 1007 // If the register has just become dead then other uses make it come 1008 // back to life => increment pressure. 1009 bool Decrement = P.LaneMask != 0; 1010 1011 for (const VReg2SUnit &V2SU 1012 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1013 SUnit &SU = *V2SU.SU; 1014 if (SU.isScheduled || &SU == &ExitSU) 1015 continue; 1016 1017 PressureDiff &PDiff = getPressureDiff(&SU); 1018 PDiff.addPressureChange(Reg, Decrement, &MRI); 1019 DEBUG( 1020 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1021 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1022 << ' ' << *SU.getInstr(); 1023 dbgs() << " to "; 1024 PDiff.dump(*TRI); 1025 ); 1026 } 1027 } else { 1028 assert(P.LaneMask != 0); 1029 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1030 // This may be called before CurrentBottom has been initialized. However, 1031 // BotRPTracker must have a valid position. We want the value live into the 1032 // instruction or live out of the block, so ask for the previous 1033 // instruction's live-out. 1034 const LiveInterval &LI = LIS->getInterval(Reg); 1035 VNInfo *VNI; 1036 MachineBasicBlock::const_iterator I = 1037 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1038 if (I == BB->end()) 1039 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1040 else { 1041 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1042 VNI = LRQ.valueIn(); 1043 } 1044 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1045 assert(VNI && "No live value at use."); 1046 for (const VReg2SUnit &V2SU 1047 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1048 SUnit *SU = V2SU.SU; 1049 // If this use comes before the reaching def, it cannot be a last use, 1050 // so decrease its pressure change. 1051 if (!SU->isScheduled && SU != &ExitSU) { 1052 LiveQueryResult LRQ = 1053 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1054 if (LRQ.valueIn() == VNI) { 1055 PressureDiff &PDiff = getPressureDiff(SU); 1056 PDiff.addPressureChange(Reg, true, &MRI); 1057 DEBUG( 1058 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1059 << *SU->getInstr(); 1060 dbgs() << " to "; 1061 PDiff.dump(*TRI); 1062 ); 1063 } 1064 } 1065 } 1066 } 1067 } 1068 } 1069 1070 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1071 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1072 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1073 /// 1074 /// This is a skeletal driver, with all the functionality pushed into helpers, 1075 /// so that it can be easily extended by experimental schedulers. Generally, 1076 /// implementing MachineSchedStrategy should be sufficient to implement a new 1077 /// scheduling algorithm. However, if a scheduler further subclasses 1078 /// ScheduleDAGMILive then it will want to override this virtual method in order 1079 /// to update any specialized state. 1080 void ScheduleDAGMILive::schedule() { 1081 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1082 DEBUG(SchedImpl->dumpPolicy()); 1083 buildDAGWithRegPressure(); 1084 1085 Topo.InitDAGTopologicalSorting(); 1086 1087 postprocessDAG(); 1088 1089 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1090 findRootsAndBiasEdges(TopRoots, BotRoots); 1091 1092 // Initialize the strategy before modifying the DAG. 1093 // This may initialize a DFSResult to be used for queue priority. 1094 SchedImpl->initialize(this); 1095 1096 DEBUG( 1097 for (const SUnit &SU : SUnits) { 1098 SU.dumpAll(this); 1099 if (ShouldTrackPressure) { 1100 dbgs() << " Pressure Diff : "; 1101 getPressureDiff(&SU).dump(*TRI); 1102 } 1103 dbgs() << '\n'; 1104 } 1105 ); 1106 if (ViewMISchedDAGs) viewGraph(); 1107 1108 // Initialize ready queues now that the DAG and priority data are finalized. 1109 initQueues(TopRoots, BotRoots); 1110 1111 if (ShouldTrackPressure) { 1112 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1113 TopRPTracker.setPos(CurrentTop); 1114 } 1115 1116 bool IsTopNode = false; 1117 while (true) { 1118 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1119 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1120 if (!SU) break; 1121 1122 assert(!SU->isScheduled && "Node already scheduled"); 1123 if (!checkSchedLimit()) 1124 break; 1125 1126 scheduleMI(SU, IsTopNode); 1127 1128 if (DFSResult) { 1129 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1130 if (!ScheduledTrees.test(SubtreeID)) { 1131 ScheduledTrees.set(SubtreeID); 1132 DFSResult->scheduleTree(SubtreeID); 1133 SchedImpl->scheduleTree(SubtreeID); 1134 } 1135 } 1136 1137 // Notify the scheduling strategy after updating the DAG. 1138 SchedImpl->schedNode(SU, IsTopNode); 1139 1140 updateQueues(SU, IsTopNode); 1141 } 1142 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1143 1144 placeDebugValues(); 1145 1146 DEBUG({ 1147 unsigned BBNum = begin()->getParent()->getNumber(); 1148 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1149 dumpSchedule(); 1150 dbgs() << '\n'; 1151 }); 1152 } 1153 1154 /// Build the DAG and setup three register pressure trackers. 1155 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1156 if (!ShouldTrackPressure) { 1157 RPTracker.reset(); 1158 RegionCriticalPSets.clear(); 1159 buildSchedGraph(AA); 1160 return; 1161 } 1162 1163 // Initialize the register pressure tracker used by buildSchedGraph. 1164 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1165 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1166 1167 // Account for liveness generate by the region boundary. 1168 if (LiveRegionEnd != RegionEnd) 1169 RPTracker.recede(); 1170 1171 // Build the DAG, and compute current register pressure. 1172 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1173 1174 // Initialize top/bottom trackers after computing region pressure. 1175 initRegPressure(); 1176 } 1177 1178 void ScheduleDAGMILive::computeDFSResult() { 1179 if (!DFSResult) 1180 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1181 DFSResult->clear(); 1182 ScheduledTrees.clear(); 1183 DFSResult->resize(SUnits.size()); 1184 DFSResult->compute(SUnits); 1185 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1186 } 1187 1188 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1189 /// only provides the critical path for single block loops. To handle loops that 1190 /// span blocks, we could use the vreg path latencies provided by 1191 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1192 /// available for use in the scheduler. 1193 /// 1194 /// The cyclic path estimation identifies a def-use pair that crosses the back 1195 /// edge and considers the depth and height of the nodes. For example, consider 1196 /// the following instruction sequence where each instruction has unit latency 1197 /// and defines an epomymous virtual register: 1198 /// 1199 /// a->b(a,c)->c(b)->d(c)->exit 1200 /// 1201 /// The cyclic critical path is a two cycles: b->c->b 1202 /// The acyclic critical path is four cycles: a->b->c->d->exit 1203 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1204 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1205 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1206 /// LiveInDepth = depth(b) = len(a->b) = 1 1207 /// 1208 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1209 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1210 /// CyclicCriticalPath = min(2, 2) = 2 1211 /// 1212 /// This could be relevant to PostRA scheduling, but is currently implemented 1213 /// assuming LiveIntervals. 1214 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1215 // This only applies to single block loop. 1216 if (!BB->isSuccessor(BB)) 1217 return 0; 1218 1219 unsigned MaxCyclicLatency = 0; 1220 // Visit each live out vreg def to find def/use pairs that cross iterations. 1221 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1222 unsigned Reg = P.RegUnit; 1223 if (!TRI->isVirtualRegister(Reg)) 1224 continue; 1225 const LiveInterval &LI = LIS->getInterval(Reg); 1226 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1227 if (!DefVNI) 1228 continue; 1229 1230 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1231 const SUnit *DefSU = getSUnit(DefMI); 1232 if (!DefSU) 1233 continue; 1234 1235 unsigned LiveOutHeight = DefSU->getHeight(); 1236 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1237 // Visit all local users of the vreg def. 1238 for (const VReg2SUnit &V2SU 1239 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1240 SUnit *SU = V2SU.SU; 1241 if (SU == &ExitSU) 1242 continue; 1243 1244 // Only consider uses of the phi. 1245 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1246 if (!LRQ.valueIn()->isPHIDef()) 1247 continue; 1248 1249 // Assume that a path spanning two iterations is a cycle, which could 1250 // overestimate in strange cases. This allows cyclic latency to be 1251 // estimated as the minimum slack of the vreg's depth or height. 1252 unsigned CyclicLatency = 0; 1253 if (LiveOutDepth > SU->getDepth()) 1254 CyclicLatency = LiveOutDepth - SU->getDepth(); 1255 1256 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1257 if (LiveInHeight > LiveOutHeight) { 1258 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1259 CyclicLatency = LiveInHeight - LiveOutHeight; 1260 } else 1261 CyclicLatency = 0; 1262 1263 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1264 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1265 if (CyclicLatency > MaxCyclicLatency) 1266 MaxCyclicLatency = CyclicLatency; 1267 } 1268 } 1269 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1270 return MaxCyclicLatency; 1271 } 1272 1273 /// Move an instruction and update register pressure. 1274 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1275 // Move the instruction to its new location in the instruction stream. 1276 MachineInstr *MI = SU->getInstr(); 1277 1278 if (IsTopNode) { 1279 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1280 if (&*CurrentTop == MI) 1281 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1282 else { 1283 moveInstruction(MI, CurrentTop); 1284 TopRPTracker.setPos(MI); 1285 } 1286 1287 if (ShouldTrackPressure) { 1288 // Update top scheduled pressure. 1289 RegisterOperands RegOpers; 1290 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1291 if (ShouldTrackLaneMasks) { 1292 // Adjust liveness and add missing dead+read-undef flags. 1293 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1294 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1295 } else { 1296 // Adjust for missing dead-def flags. 1297 RegOpers.detectDeadDefs(*MI, *LIS); 1298 } 1299 1300 TopRPTracker.advance(RegOpers); 1301 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1302 DEBUG( 1303 dbgs() << "Top Pressure:\n"; 1304 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1305 ); 1306 1307 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1308 } 1309 } else { 1310 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1311 MachineBasicBlock::iterator priorII = 1312 priorNonDebug(CurrentBottom, CurrentTop); 1313 if (&*priorII == MI) 1314 CurrentBottom = priorII; 1315 else { 1316 if (&*CurrentTop == MI) { 1317 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1318 TopRPTracker.setPos(CurrentTop); 1319 } 1320 moveInstruction(MI, CurrentBottom); 1321 CurrentBottom = MI; 1322 } 1323 if (ShouldTrackPressure) { 1324 RegisterOperands RegOpers; 1325 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1326 if (ShouldTrackLaneMasks) { 1327 // Adjust liveness and add missing dead+read-undef flags. 1328 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1329 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1330 } else { 1331 // Adjust for missing dead-def flags. 1332 RegOpers.detectDeadDefs(*MI, *LIS); 1333 } 1334 1335 BotRPTracker.recedeSkipDebugValues(); 1336 SmallVector<RegisterMaskPair, 8> LiveUses; 1337 BotRPTracker.recede(RegOpers, &LiveUses); 1338 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1339 DEBUG( 1340 dbgs() << "Bottom Pressure:\n"; 1341 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1342 ); 1343 1344 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1345 updatePressureDiffs(LiveUses); 1346 } 1347 } 1348 } 1349 1350 //===----------------------------------------------------------------------===// 1351 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1352 //===----------------------------------------------------------------------===// 1353 1354 namespace { 1355 /// \brief Post-process the DAG to create cluster edges between neighboring 1356 /// loads or between neighboring stores. 1357 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1358 struct MemOpInfo { 1359 SUnit *SU; 1360 unsigned BaseReg; 1361 int64_t Offset; 1362 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1363 : SU(su), BaseReg(reg), Offset(ofs) {} 1364 1365 bool operator<(const MemOpInfo&RHS) const { 1366 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1367 } 1368 }; 1369 1370 const TargetInstrInfo *TII; 1371 const TargetRegisterInfo *TRI; 1372 bool IsLoad; 1373 1374 public: 1375 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1376 const TargetRegisterInfo *tri, bool IsLoad) 1377 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1378 1379 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1380 1381 protected: 1382 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1383 }; 1384 1385 class StoreClusterMutation : public BaseMemOpClusterMutation { 1386 public: 1387 StoreClusterMutation(const TargetInstrInfo *tii, 1388 const TargetRegisterInfo *tri) 1389 : BaseMemOpClusterMutation(tii, tri, false) {} 1390 }; 1391 1392 class LoadClusterMutation : public BaseMemOpClusterMutation { 1393 public: 1394 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1395 : BaseMemOpClusterMutation(tii, tri, true) {} 1396 }; 1397 } // anonymous 1398 1399 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1400 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1401 SmallVector<MemOpInfo, 32> MemOpRecords; 1402 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1403 SUnit *SU = MemOps[Idx]; 1404 unsigned BaseReg; 1405 int64_t Offset; 1406 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1407 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1408 } 1409 if (MemOpRecords.size() < 2) 1410 return; 1411 1412 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1413 unsigned ClusterLength = 1; 1414 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1415 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1416 ClusterLength = 1; 1417 continue; 1418 } 1419 1420 SUnit *SUa = MemOpRecords[Idx].SU; 1421 SUnit *SUb = MemOpRecords[Idx+1].SU; 1422 if (TII->shouldClusterMemOps(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1423 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1424 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1425 << SUb->NodeNum << ")\n"); 1426 // Copy successor edges from SUa to SUb. Interleaving computation 1427 // dependent on SUa can prevent load combining due to register reuse. 1428 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1429 // loads should have effectively the same inputs. 1430 for (SUnit::const_succ_iterator 1431 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1432 if (SI->getSUnit() == SUb) 1433 continue; 1434 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1435 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1436 } 1437 ++ClusterLength; 1438 } else 1439 ClusterLength = 1; 1440 } 1441 } 1442 1443 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1444 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1445 1446 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1447 1448 // Map DAG NodeNum to store chain ID. 1449 DenseMap<unsigned, unsigned> StoreChainIDs; 1450 // Map each store chain to a set of dependent MemOps. 1451 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1452 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1453 SUnit *SU = &DAG->SUnits[Idx]; 1454 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1455 (!IsLoad && !SU->getInstr()->mayStore())) 1456 continue; 1457 1458 unsigned ChainPredID = DAG->SUnits.size(); 1459 for (SUnit::const_pred_iterator 1460 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1461 if (PI->isCtrl()) { 1462 ChainPredID = PI->getSUnit()->NodeNum; 1463 break; 1464 } 1465 } 1466 // Check if this chain-like pred has been seen 1467 // before. ChainPredID==MaxNodeID at the top of the schedule. 1468 unsigned NumChains = StoreChainDependents.size(); 1469 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1470 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1471 if (Result.second) 1472 StoreChainDependents.resize(NumChains + 1); 1473 StoreChainDependents[Result.first->second].push_back(SU); 1474 } 1475 1476 // Iterate over the store chains. 1477 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1478 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1483 //===----------------------------------------------------------------------===// 1484 1485 namespace { 1486 /// \brief Post-process the DAG to create cluster edges between instructions 1487 /// that may be fused by the processor into a single operation. 1488 class MacroFusion : public ScheduleDAGMutation { 1489 const TargetInstrInfo &TII; 1490 const TargetRegisterInfo &TRI; 1491 public: 1492 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1493 : TII(TII), TRI(TRI) {} 1494 1495 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1496 }; 1497 } // anonymous 1498 1499 /// Returns true if \p MI reads a register written by \p Other. 1500 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1501 const MachineInstr &Other) { 1502 for (const MachineOperand &MO : MI.uses()) { 1503 if (!MO.isReg() || !MO.readsReg()) 1504 continue; 1505 1506 unsigned Reg = MO.getReg(); 1507 if (Other.modifiesRegister(Reg, &TRI)) 1508 return true; 1509 } 1510 return false; 1511 } 1512 1513 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1514 /// fused operations. 1515 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1516 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1517 1518 // For now, assume targets can only fuse with the branch. 1519 SUnit &ExitSU = DAG->ExitSU; 1520 MachineInstr *Branch = ExitSU.getInstr(); 1521 if (!Branch) 1522 return; 1523 1524 for (SUnit &SU : DAG->SUnits) { 1525 // SUnits with successors can't be schedule in front of the ExitSU. 1526 if (!SU.Succs.empty()) 1527 continue; 1528 // We only care if the node writes to a register that the branch reads. 1529 MachineInstr *Pred = SU.getInstr(); 1530 if (!HasDataDep(TRI, *Branch, *Pred)) 1531 continue; 1532 1533 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1534 continue; 1535 1536 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1537 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1538 // need to copy predecessor edges from ExitSU to SU, since top-down 1539 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1540 // of SU, we could create an artificial edge from the deepest root, but it 1541 // hasn't been needed yet. 1542 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1543 (void)Success; 1544 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1545 1546 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1547 break; 1548 } 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // CopyConstrain - DAG post-processing to encourage copy elimination. 1553 //===----------------------------------------------------------------------===// 1554 1555 namespace { 1556 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1557 /// the one use that defines the copy's source vreg, most likely an induction 1558 /// variable increment. 1559 class CopyConstrain : public ScheduleDAGMutation { 1560 // Transient state. 1561 SlotIndex RegionBeginIdx; 1562 // RegionEndIdx is the slot index of the last non-debug instruction in the 1563 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1564 SlotIndex RegionEndIdx; 1565 public: 1566 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1567 1568 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1569 1570 protected: 1571 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1572 }; 1573 } // anonymous 1574 1575 /// constrainLocalCopy handles two possibilities: 1576 /// 1) Local src: 1577 /// I0: = dst 1578 /// I1: src = ... 1579 /// I2: = dst 1580 /// I3: dst = src (copy) 1581 /// (create pred->succ edges I0->I1, I2->I1) 1582 /// 1583 /// 2) Local copy: 1584 /// I0: dst = src (copy) 1585 /// I1: = dst 1586 /// I2: src = ... 1587 /// I3: = dst 1588 /// (create pred->succ edges I1->I2, I3->I2) 1589 /// 1590 /// Although the MachineScheduler is currently constrained to single blocks, 1591 /// this algorithm should handle extended blocks. An EBB is a set of 1592 /// contiguously numbered blocks such that the previous block in the EBB is 1593 /// always the single predecessor. 1594 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1595 LiveIntervals *LIS = DAG->getLIS(); 1596 MachineInstr *Copy = CopySU->getInstr(); 1597 1598 // Check for pure vreg copies. 1599 const MachineOperand &SrcOp = Copy->getOperand(1); 1600 unsigned SrcReg = SrcOp.getReg(); 1601 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1602 return; 1603 1604 const MachineOperand &DstOp = Copy->getOperand(0); 1605 unsigned DstReg = DstOp.getReg(); 1606 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1607 return; 1608 1609 // Check if either the dest or source is local. If it's live across a back 1610 // edge, it's not local. Note that if both vregs are live across the back 1611 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1612 // If both the copy's source and dest are local live intervals, then we 1613 // should treat the dest as the global for the purpose of adding 1614 // constraints. This adds edges from source's other uses to the copy. 1615 unsigned LocalReg = SrcReg; 1616 unsigned GlobalReg = DstReg; 1617 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1618 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1619 LocalReg = DstReg; 1620 GlobalReg = SrcReg; 1621 LocalLI = &LIS->getInterval(LocalReg); 1622 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1623 return; 1624 } 1625 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1626 1627 // Find the global segment after the start of the local LI. 1628 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1629 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1630 // local live range. We could create edges from other global uses to the local 1631 // start, but the coalescer should have already eliminated these cases, so 1632 // don't bother dealing with it. 1633 if (GlobalSegment == GlobalLI->end()) 1634 return; 1635 1636 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1637 // returned the next global segment. But if GlobalSegment overlaps with 1638 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1639 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1640 if (GlobalSegment->contains(LocalLI->beginIndex())) 1641 ++GlobalSegment; 1642 1643 if (GlobalSegment == GlobalLI->end()) 1644 return; 1645 1646 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1647 if (GlobalSegment != GlobalLI->begin()) { 1648 // Two address defs have no hole. 1649 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1650 GlobalSegment->start)) { 1651 return; 1652 } 1653 // If the prior global segment may be defined by the same two-address 1654 // instruction that also defines LocalLI, then can't make a hole here. 1655 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1656 LocalLI->beginIndex())) { 1657 return; 1658 } 1659 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1660 // it would be a disconnected component in the live range. 1661 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1662 "Disconnected LRG within the scheduling region."); 1663 } 1664 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1665 if (!GlobalDef) 1666 return; 1667 1668 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1669 if (!GlobalSU) 1670 return; 1671 1672 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1673 // constraining the uses of the last local def to precede GlobalDef. 1674 SmallVector<SUnit*,8> LocalUses; 1675 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1676 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1677 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1678 for (SUnit::const_succ_iterator 1679 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1680 I != E; ++I) { 1681 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1682 continue; 1683 if (I->getSUnit() == GlobalSU) 1684 continue; 1685 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1686 return; 1687 LocalUses.push_back(I->getSUnit()); 1688 } 1689 // Open the top of the GlobalLI hole by constraining any earlier global uses 1690 // to precede the start of LocalLI. 1691 SmallVector<SUnit*,8> GlobalUses; 1692 MachineInstr *FirstLocalDef = 1693 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1694 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1695 for (SUnit::const_pred_iterator 1696 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1697 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1698 continue; 1699 if (I->getSUnit() == FirstLocalSU) 1700 continue; 1701 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1702 return; 1703 GlobalUses.push_back(I->getSUnit()); 1704 } 1705 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1706 // Add the weak edges. 1707 for (SmallVectorImpl<SUnit*>::const_iterator 1708 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1709 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1710 << GlobalSU->NodeNum << ")\n"); 1711 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1712 } 1713 for (SmallVectorImpl<SUnit*>::const_iterator 1714 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1715 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1716 << FirstLocalSU->NodeNum << ")\n"); 1717 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1718 } 1719 } 1720 1721 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1722 /// copy elimination. 1723 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1724 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1725 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1726 1727 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1728 if (FirstPos == DAG->end()) 1729 return; 1730 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1731 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1732 *priorNonDebug(DAG->end(), DAG->begin())); 1733 1734 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1735 SUnit *SU = &DAG->SUnits[Idx]; 1736 if (!SU->getInstr()->isCopy()) 1737 continue; 1738 1739 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1740 } 1741 } 1742 1743 //===----------------------------------------------------------------------===// 1744 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1745 // and possibly other custom schedulers. 1746 //===----------------------------------------------------------------------===// 1747 1748 static const unsigned InvalidCycle = ~0U; 1749 1750 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1751 1752 void SchedBoundary::reset() { 1753 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1754 // Destroying and reconstructing it is very expensive though. So keep 1755 // invalid, placeholder HazardRecs. 1756 if (HazardRec && HazardRec->isEnabled()) { 1757 delete HazardRec; 1758 HazardRec = nullptr; 1759 } 1760 Available.clear(); 1761 Pending.clear(); 1762 CheckPending = false; 1763 NextSUs.clear(); 1764 CurrCycle = 0; 1765 CurrMOps = 0; 1766 MinReadyCycle = UINT_MAX; 1767 ExpectedLatency = 0; 1768 DependentLatency = 0; 1769 RetiredMOps = 0; 1770 MaxExecutedResCount = 0; 1771 ZoneCritResIdx = 0; 1772 IsResourceLimited = false; 1773 ReservedCycles.clear(); 1774 #ifndef NDEBUG 1775 // Track the maximum number of stall cycles that could arise either from the 1776 // latency of a DAG edge or the number of cycles that a processor resource is 1777 // reserved (SchedBoundary::ReservedCycles). 1778 MaxObservedStall = 0; 1779 #endif 1780 // Reserve a zero-count for invalid CritResIdx. 1781 ExecutedResCounts.resize(1); 1782 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1783 } 1784 1785 void SchedRemainder:: 1786 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1787 reset(); 1788 if (!SchedModel->hasInstrSchedModel()) 1789 return; 1790 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1791 for (std::vector<SUnit>::iterator 1792 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1793 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1794 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1795 * SchedModel->getMicroOpFactor(); 1796 for (TargetSchedModel::ProcResIter 1797 PI = SchedModel->getWriteProcResBegin(SC), 1798 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1799 unsigned PIdx = PI->ProcResourceIdx; 1800 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1801 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1802 } 1803 } 1804 } 1805 1806 void SchedBoundary:: 1807 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1808 reset(); 1809 DAG = dag; 1810 SchedModel = smodel; 1811 Rem = rem; 1812 if (SchedModel->hasInstrSchedModel()) { 1813 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1814 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1815 } 1816 } 1817 1818 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1819 /// these "soft stalls" differently than the hard stall cycles based on CPU 1820 /// resources and computed by checkHazard(). A fully in-order model 1821 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1822 /// available for scheduling until they are ready. However, a weaker in-order 1823 /// model may use this for heuristics. For example, if a processor has in-order 1824 /// behavior when reading certain resources, this may come into play. 1825 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1826 if (!SU->isUnbuffered) 1827 return 0; 1828 1829 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1830 if (ReadyCycle > CurrCycle) 1831 return ReadyCycle - CurrCycle; 1832 return 0; 1833 } 1834 1835 /// Compute the next cycle at which the given processor resource can be 1836 /// scheduled. 1837 unsigned SchedBoundary:: 1838 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1839 unsigned NextUnreserved = ReservedCycles[PIdx]; 1840 // If this resource has never been used, always return cycle zero. 1841 if (NextUnreserved == InvalidCycle) 1842 return 0; 1843 // For bottom-up scheduling add the cycles needed for the current operation. 1844 if (!isTop()) 1845 NextUnreserved += Cycles; 1846 return NextUnreserved; 1847 } 1848 1849 /// Does this SU have a hazard within the current instruction group. 1850 /// 1851 /// The scheduler supports two modes of hazard recognition. The first is the 1852 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1853 /// supports highly complicated in-order reservation tables 1854 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1855 /// 1856 /// The second is a streamlined mechanism that checks for hazards based on 1857 /// simple counters that the scheduler itself maintains. It explicitly checks 1858 /// for instruction dispatch limitations, including the number of micro-ops that 1859 /// can dispatch per cycle. 1860 /// 1861 /// TODO: Also check whether the SU must start a new group. 1862 bool SchedBoundary::checkHazard(SUnit *SU) { 1863 if (HazardRec->isEnabled() 1864 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1865 return true; 1866 } 1867 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1868 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1869 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1870 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1871 return true; 1872 } 1873 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1874 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1875 for (TargetSchedModel::ProcResIter 1876 PI = SchedModel->getWriteProcResBegin(SC), 1877 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1878 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1879 if (NRCycle > CurrCycle) { 1880 #ifndef NDEBUG 1881 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1882 #endif 1883 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1884 << SchedModel->getResourceName(PI->ProcResourceIdx) 1885 << "=" << NRCycle << "c\n"); 1886 return true; 1887 } 1888 } 1889 } 1890 return false; 1891 } 1892 1893 // Find the unscheduled node in ReadySUs with the highest latency. 1894 unsigned SchedBoundary:: 1895 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1896 SUnit *LateSU = nullptr; 1897 unsigned RemLatency = 0; 1898 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1899 I != E; ++I) { 1900 unsigned L = getUnscheduledLatency(*I); 1901 if (L > RemLatency) { 1902 RemLatency = L; 1903 LateSU = *I; 1904 } 1905 } 1906 if (LateSU) { 1907 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1908 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1909 } 1910 return RemLatency; 1911 } 1912 1913 // Count resources in this zone and the remaining unscheduled 1914 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1915 // resource index, or zero if the zone is issue limited. 1916 unsigned SchedBoundary:: 1917 getOtherResourceCount(unsigned &OtherCritIdx) { 1918 OtherCritIdx = 0; 1919 if (!SchedModel->hasInstrSchedModel()) 1920 return 0; 1921 1922 unsigned OtherCritCount = Rem->RemIssueCount 1923 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1924 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1925 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1926 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1927 PIdx != PEnd; ++PIdx) { 1928 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1929 if (OtherCount > OtherCritCount) { 1930 OtherCritCount = OtherCount; 1931 OtherCritIdx = PIdx; 1932 } 1933 } 1934 if (OtherCritIdx) { 1935 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1936 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1937 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1938 } 1939 return OtherCritCount; 1940 } 1941 1942 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1943 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1944 1945 #ifndef NDEBUG 1946 // ReadyCycle was been bumped up to the CurrCycle when this node was 1947 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1948 // scheduling, so may now be greater than ReadyCycle. 1949 if (ReadyCycle > CurrCycle) 1950 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1951 #endif 1952 1953 if (ReadyCycle < MinReadyCycle) 1954 MinReadyCycle = ReadyCycle; 1955 1956 // Check for interlocks first. For the purpose of other heuristics, an 1957 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1958 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1959 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1960 Pending.push(SU); 1961 else 1962 Available.push(SU); 1963 1964 // Record this node as an immediate dependent of the scheduled node. 1965 NextSUs.insert(SU); 1966 } 1967 1968 void SchedBoundary::releaseTopNode(SUnit *SU) { 1969 if (SU->isScheduled) 1970 return; 1971 1972 releaseNode(SU, SU->TopReadyCycle); 1973 } 1974 1975 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1976 if (SU->isScheduled) 1977 return; 1978 1979 releaseNode(SU, SU->BotReadyCycle); 1980 } 1981 1982 /// Move the boundary of scheduled code by one cycle. 1983 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1984 if (SchedModel->getMicroOpBufferSize() == 0) { 1985 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1986 if (MinReadyCycle > NextCycle) 1987 NextCycle = MinReadyCycle; 1988 } 1989 // Update the current micro-ops, which will issue in the next cycle. 1990 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1991 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1992 1993 // Decrement DependentLatency based on the next cycle. 1994 if ((NextCycle - CurrCycle) > DependentLatency) 1995 DependentLatency = 0; 1996 else 1997 DependentLatency -= (NextCycle - CurrCycle); 1998 1999 if (!HazardRec->isEnabled()) { 2000 // Bypass HazardRec virtual calls. 2001 CurrCycle = NextCycle; 2002 } else { 2003 // Bypass getHazardType calls in case of long latency. 2004 for (; CurrCycle != NextCycle; ++CurrCycle) { 2005 if (isTop()) 2006 HazardRec->AdvanceCycle(); 2007 else 2008 HazardRec->RecedeCycle(); 2009 } 2010 } 2011 CheckPending = true; 2012 unsigned LFactor = SchedModel->getLatencyFactor(); 2013 IsResourceLimited = 2014 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2015 > (int)LFactor; 2016 2017 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2018 } 2019 2020 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2021 ExecutedResCounts[PIdx] += Count; 2022 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2023 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2024 } 2025 2026 /// Add the given processor resource to this scheduled zone. 2027 /// 2028 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2029 /// during which this resource is consumed. 2030 /// 2031 /// \return the next cycle at which the instruction may execute without 2032 /// oversubscribing resources. 2033 unsigned SchedBoundary:: 2034 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2035 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2036 unsigned Count = Factor * Cycles; 2037 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2038 << " +" << Cycles << "x" << Factor << "u\n"); 2039 2040 // Update Executed resources counts. 2041 incExecutedResources(PIdx, Count); 2042 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2043 Rem->RemainingCounts[PIdx] -= Count; 2044 2045 // Check if this resource exceeds the current critical resource. If so, it 2046 // becomes the critical resource. 2047 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2048 ZoneCritResIdx = PIdx; 2049 DEBUG(dbgs() << " *** Critical resource " 2050 << SchedModel->getResourceName(PIdx) << ": " 2051 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2052 } 2053 // For reserved resources, record the highest cycle using the resource. 2054 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2055 if (NextAvailable > CurrCycle) { 2056 DEBUG(dbgs() << " Resource conflict: " 2057 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2058 << NextAvailable << "\n"); 2059 } 2060 return NextAvailable; 2061 } 2062 2063 /// Move the boundary of scheduled code by one SUnit. 2064 void SchedBoundary::bumpNode(SUnit *SU) { 2065 // Update the reservation table. 2066 if (HazardRec->isEnabled()) { 2067 if (!isTop() && SU->isCall) { 2068 // Calls are scheduled with their preceding instructions. For bottom-up 2069 // scheduling, clear the pipeline state before emitting. 2070 HazardRec->Reset(); 2071 } 2072 HazardRec->EmitInstruction(SU); 2073 } 2074 // checkHazard should prevent scheduling multiple instructions per cycle that 2075 // exceed the issue width. 2076 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2077 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2078 assert( 2079 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2080 "Cannot schedule this instruction's MicroOps in the current cycle."); 2081 2082 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2083 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2084 2085 unsigned NextCycle = CurrCycle; 2086 switch (SchedModel->getMicroOpBufferSize()) { 2087 case 0: 2088 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2089 break; 2090 case 1: 2091 if (ReadyCycle > NextCycle) { 2092 NextCycle = ReadyCycle; 2093 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2094 } 2095 break; 2096 default: 2097 // We don't currently model the OOO reorder buffer, so consider all 2098 // scheduled MOps to be "retired". We do loosely model in-order resource 2099 // latency. If this instruction uses an in-order resource, account for any 2100 // likely stall cycles. 2101 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2102 NextCycle = ReadyCycle; 2103 break; 2104 } 2105 RetiredMOps += IncMOps; 2106 2107 // Update resource counts and critical resource. 2108 if (SchedModel->hasInstrSchedModel()) { 2109 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2110 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2111 Rem->RemIssueCount -= DecRemIssue; 2112 if (ZoneCritResIdx) { 2113 // Scale scheduled micro-ops for comparing with the critical resource. 2114 unsigned ScaledMOps = 2115 RetiredMOps * SchedModel->getMicroOpFactor(); 2116 2117 // If scaled micro-ops are now more than the previous critical resource by 2118 // a full cycle, then micro-ops issue becomes critical. 2119 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2120 >= (int)SchedModel->getLatencyFactor()) { 2121 ZoneCritResIdx = 0; 2122 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2123 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2124 } 2125 } 2126 for (TargetSchedModel::ProcResIter 2127 PI = SchedModel->getWriteProcResBegin(SC), 2128 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2129 unsigned RCycle = 2130 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2131 if (RCycle > NextCycle) 2132 NextCycle = RCycle; 2133 } 2134 if (SU->hasReservedResource) { 2135 // For reserved resources, record the highest cycle using the resource. 2136 // For top-down scheduling, this is the cycle in which we schedule this 2137 // instruction plus the number of cycles the operations reserves the 2138 // resource. For bottom-up is it simply the instruction's cycle. 2139 for (TargetSchedModel::ProcResIter 2140 PI = SchedModel->getWriteProcResBegin(SC), 2141 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2142 unsigned PIdx = PI->ProcResourceIdx; 2143 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2144 if (isTop()) { 2145 ReservedCycles[PIdx] = 2146 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2147 } 2148 else 2149 ReservedCycles[PIdx] = NextCycle; 2150 } 2151 } 2152 } 2153 } 2154 // Update ExpectedLatency and DependentLatency. 2155 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2156 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2157 if (SU->getDepth() > TopLatency) { 2158 TopLatency = SU->getDepth(); 2159 DEBUG(dbgs() << " " << Available.getName() 2160 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2161 } 2162 if (SU->getHeight() > BotLatency) { 2163 BotLatency = SU->getHeight(); 2164 DEBUG(dbgs() << " " << Available.getName() 2165 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2166 } 2167 // If we stall for any reason, bump the cycle. 2168 if (NextCycle > CurrCycle) { 2169 bumpCycle(NextCycle); 2170 } else { 2171 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2172 // resource limited. If a stall occurred, bumpCycle does this. 2173 unsigned LFactor = SchedModel->getLatencyFactor(); 2174 IsResourceLimited = 2175 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2176 > (int)LFactor; 2177 } 2178 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2179 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2180 // one cycle. Since we commonly reach the max MOps here, opportunistically 2181 // bump the cycle to avoid uselessly checking everything in the readyQ. 2182 CurrMOps += IncMOps; 2183 while (CurrMOps >= SchedModel->getIssueWidth()) { 2184 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2185 << " at cycle " << CurrCycle << '\n'); 2186 bumpCycle(++NextCycle); 2187 } 2188 DEBUG(dumpScheduledState()); 2189 } 2190 2191 /// Release pending ready nodes in to the available queue. This makes them 2192 /// visible to heuristics. 2193 void SchedBoundary::releasePending() { 2194 // If the available queue is empty, it is safe to reset MinReadyCycle. 2195 if (Available.empty()) 2196 MinReadyCycle = UINT_MAX; 2197 2198 // Check to see if any of the pending instructions are ready to issue. If 2199 // so, add them to the available queue. 2200 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2201 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2202 SUnit *SU = *(Pending.begin()+i); 2203 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2204 2205 if (ReadyCycle < MinReadyCycle) 2206 MinReadyCycle = ReadyCycle; 2207 2208 if (!IsBuffered && ReadyCycle > CurrCycle) 2209 continue; 2210 2211 if (checkHazard(SU)) 2212 continue; 2213 2214 Available.push(SU); 2215 Pending.remove(Pending.begin()+i); 2216 --i; --e; 2217 } 2218 DEBUG(if (!Pending.empty()) Pending.dump()); 2219 CheckPending = false; 2220 } 2221 2222 /// Remove SU from the ready set for this boundary. 2223 void SchedBoundary::removeReady(SUnit *SU) { 2224 if (Available.isInQueue(SU)) 2225 Available.remove(Available.find(SU)); 2226 else { 2227 assert(Pending.isInQueue(SU) && "bad ready count"); 2228 Pending.remove(Pending.find(SU)); 2229 } 2230 } 2231 2232 /// If this queue only has one ready candidate, return it. As a side effect, 2233 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2234 /// one node is ready. If multiple instructions are ready, return NULL. 2235 SUnit *SchedBoundary::pickOnlyChoice() { 2236 if (CheckPending) 2237 releasePending(); 2238 2239 if (CurrMOps > 0) { 2240 // Defer any ready instrs that now have a hazard. 2241 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2242 if (checkHazard(*I)) { 2243 Pending.push(*I); 2244 I = Available.remove(I); 2245 continue; 2246 } 2247 ++I; 2248 } 2249 } 2250 for (unsigned i = 0; Available.empty(); ++i) { 2251 // FIXME: Re-enable assert once PR20057 is resolved. 2252 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2253 // "permanent hazard"); 2254 (void)i; 2255 bumpCycle(CurrCycle + 1); 2256 releasePending(); 2257 } 2258 if (Available.size() == 1) 2259 return *Available.begin(); 2260 return nullptr; 2261 } 2262 2263 #ifndef NDEBUG 2264 // This is useful information to dump after bumpNode. 2265 // Note that the Queue contents are more useful before pickNodeFromQueue. 2266 void SchedBoundary::dumpScheduledState() { 2267 unsigned ResFactor; 2268 unsigned ResCount; 2269 if (ZoneCritResIdx) { 2270 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2271 ResCount = getResourceCount(ZoneCritResIdx); 2272 } else { 2273 ResFactor = SchedModel->getMicroOpFactor(); 2274 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2275 } 2276 unsigned LFactor = SchedModel->getLatencyFactor(); 2277 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2278 << " Retired: " << RetiredMOps; 2279 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2280 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2281 << ResCount / ResFactor << " " 2282 << SchedModel->getResourceName(ZoneCritResIdx) 2283 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2284 << (IsResourceLimited ? " - Resource" : " - Latency") 2285 << " limited.\n"; 2286 } 2287 #endif 2288 2289 //===----------------------------------------------------------------------===// 2290 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2291 //===----------------------------------------------------------------------===// 2292 2293 void GenericSchedulerBase::SchedCandidate:: 2294 initResourceDelta(const ScheduleDAGMI *DAG, 2295 const TargetSchedModel *SchedModel) { 2296 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2297 return; 2298 2299 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2300 for (TargetSchedModel::ProcResIter 2301 PI = SchedModel->getWriteProcResBegin(SC), 2302 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2303 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2304 ResDelta.CritResources += PI->Cycles; 2305 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2306 ResDelta.DemandedResources += PI->Cycles; 2307 } 2308 } 2309 2310 /// Set the CandPolicy given a scheduling zone given the current resources and 2311 /// latencies inside and outside the zone. 2312 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2313 SchedBoundary &CurrZone, 2314 SchedBoundary *OtherZone) { 2315 // Apply preemptive heuristics based on the total latency and resources 2316 // inside and outside this zone. Potential stalls should be considered before 2317 // following this policy. 2318 2319 // Compute remaining latency. We need this both to determine whether the 2320 // overall schedule has become latency-limited and whether the instructions 2321 // outside this zone are resource or latency limited. 2322 // 2323 // The "dependent" latency is updated incrementally during scheduling as the 2324 // max height/depth of scheduled nodes minus the cycles since it was 2325 // scheduled: 2326 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2327 // 2328 // The "independent" latency is the max ready queue depth: 2329 // ILat = max N.depth for N in Available|Pending 2330 // 2331 // RemainingLatency is the greater of independent and dependent latency. 2332 unsigned RemLatency = CurrZone.getDependentLatency(); 2333 RemLatency = std::max(RemLatency, 2334 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2335 RemLatency = std::max(RemLatency, 2336 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2337 2338 // Compute the critical resource outside the zone. 2339 unsigned OtherCritIdx = 0; 2340 unsigned OtherCount = 2341 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2342 2343 bool OtherResLimited = false; 2344 if (SchedModel->hasInstrSchedModel()) { 2345 unsigned LFactor = SchedModel->getLatencyFactor(); 2346 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2347 } 2348 // Schedule aggressively for latency in PostRA mode. We don't check for 2349 // acyclic latency during PostRA, and highly out-of-order processors will 2350 // skip PostRA scheduling. 2351 if (!OtherResLimited) { 2352 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2353 Policy.ReduceLatency |= true; 2354 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2355 << " RemainingLatency " << RemLatency << " + " 2356 << CurrZone.getCurrCycle() << "c > CritPath " 2357 << Rem.CriticalPath << "\n"); 2358 } 2359 } 2360 // If the same resource is limiting inside and outside the zone, do nothing. 2361 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2362 return; 2363 2364 DEBUG( 2365 if (CurrZone.isResourceLimited()) { 2366 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2367 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2368 << "\n"; 2369 } 2370 if (OtherResLimited) 2371 dbgs() << " RemainingLimit: " 2372 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2373 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2374 dbgs() << " Latency limited both directions.\n"); 2375 2376 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2377 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2378 2379 if (OtherResLimited) 2380 Policy.DemandResIdx = OtherCritIdx; 2381 } 2382 2383 #ifndef NDEBUG 2384 const char *GenericSchedulerBase::getReasonStr( 2385 GenericSchedulerBase::CandReason Reason) { 2386 switch (Reason) { 2387 case NoCand: return "NOCAND "; 2388 case PhysRegCopy: return "PREG-COPY"; 2389 case RegExcess: return "REG-EXCESS"; 2390 case RegCritical: return "REG-CRIT "; 2391 case Stall: return "STALL "; 2392 case Cluster: return "CLUSTER "; 2393 case Weak: return "WEAK "; 2394 case RegMax: return "REG-MAX "; 2395 case ResourceReduce: return "RES-REDUCE"; 2396 case ResourceDemand: return "RES-DEMAND"; 2397 case TopDepthReduce: return "TOP-DEPTH "; 2398 case TopPathReduce: return "TOP-PATH "; 2399 case BotHeightReduce:return "BOT-HEIGHT"; 2400 case BotPathReduce: return "BOT-PATH "; 2401 case NextDefUse: return "DEF-USE "; 2402 case NodeOrder: return "ORDER "; 2403 }; 2404 llvm_unreachable("Unknown reason!"); 2405 } 2406 2407 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2408 PressureChange P; 2409 unsigned ResIdx = 0; 2410 unsigned Latency = 0; 2411 switch (Cand.Reason) { 2412 default: 2413 break; 2414 case RegExcess: 2415 P = Cand.RPDelta.Excess; 2416 break; 2417 case RegCritical: 2418 P = Cand.RPDelta.CriticalMax; 2419 break; 2420 case RegMax: 2421 P = Cand.RPDelta.CurrentMax; 2422 break; 2423 case ResourceReduce: 2424 ResIdx = Cand.Policy.ReduceResIdx; 2425 break; 2426 case ResourceDemand: 2427 ResIdx = Cand.Policy.DemandResIdx; 2428 break; 2429 case TopDepthReduce: 2430 Latency = Cand.SU->getDepth(); 2431 break; 2432 case TopPathReduce: 2433 Latency = Cand.SU->getHeight(); 2434 break; 2435 case BotHeightReduce: 2436 Latency = Cand.SU->getHeight(); 2437 break; 2438 case BotPathReduce: 2439 Latency = Cand.SU->getDepth(); 2440 break; 2441 } 2442 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2443 if (P.isValid()) 2444 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2445 << ":" << P.getUnitInc() << " "; 2446 else 2447 dbgs() << " "; 2448 if (ResIdx) 2449 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2450 else 2451 dbgs() << " "; 2452 if (Latency) 2453 dbgs() << " " << Latency << " cycles "; 2454 else 2455 dbgs() << " "; 2456 dbgs() << '\n'; 2457 } 2458 #endif 2459 2460 /// Return true if this heuristic determines order. 2461 static bool tryLess(int TryVal, int CandVal, 2462 GenericSchedulerBase::SchedCandidate &TryCand, 2463 GenericSchedulerBase::SchedCandidate &Cand, 2464 GenericSchedulerBase::CandReason Reason) { 2465 if (TryVal < CandVal) { 2466 TryCand.Reason = Reason; 2467 return true; 2468 } 2469 if (TryVal > CandVal) { 2470 if (Cand.Reason > Reason) 2471 Cand.Reason = Reason; 2472 return true; 2473 } 2474 Cand.setRepeat(Reason); 2475 return false; 2476 } 2477 2478 static bool tryGreater(int TryVal, int CandVal, 2479 GenericSchedulerBase::SchedCandidate &TryCand, 2480 GenericSchedulerBase::SchedCandidate &Cand, 2481 GenericSchedulerBase::CandReason Reason) { 2482 if (TryVal > CandVal) { 2483 TryCand.Reason = Reason; 2484 return true; 2485 } 2486 if (TryVal < CandVal) { 2487 if (Cand.Reason > Reason) 2488 Cand.Reason = Reason; 2489 return true; 2490 } 2491 Cand.setRepeat(Reason); 2492 return false; 2493 } 2494 2495 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2496 GenericSchedulerBase::SchedCandidate &Cand, 2497 SchedBoundary &Zone) { 2498 if (Zone.isTop()) { 2499 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2500 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2501 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2502 return true; 2503 } 2504 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2505 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2506 return true; 2507 } else { 2508 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2509 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2510 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2511 return true; 2512 } 2513 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2514 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2515 return true; 2516 } 2517 return false; 2518 } 2519 2520 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2521 bool IsTop) { 2522 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2523 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2524 } 2525 2526 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2527 assert(dag->hasVRegLiveness() && 2528 "(PreRA)GenericScheduler needs vreg liveness"); 2529 DAG = static_cast<ScheduleDAGMILive*>(dag); 2530 SchedModel = DAG->getSchedModel(); 2531 TRI = DAG->TRI; 2532 2533 Rem.init(DAG, SchedModel); 2534 Top.init(DAG, SchedModel, &Rem); 2535 Bot.init(DAG, SchedModel, &Rem); 2536 2537 // Initialize resource counts. 2538 2539 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2540 // are disabled, then these HazardRecs will be disabled. 2541 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2542 if (!Top.HazardRec) { 2543 Top.HazardRec = 2544 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2545 Itin, DAG); 2546 } 2547 if (!Bot.HazardRec) { 2548 Bot.HazardRec = 2549 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2550 Itin, DAG); 2551 } 2552 } 2553 2554 /// Initialize the per-region scheduling policy. 2555 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2556 MachineBasicBlock::iterator End, 2557 unsigned NumRegionInstrs) { 2558 const MachineFunction &MF = *Begin->getParent()->getParent(); 2559 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2560 2561 // Avoid setting up the register pressure tracker for small regions to save 2562 // compile time. As a rough heuristic, only track pressure when the number of 2563 // schedulable instructions exceeds half the integer register file. 2564 RegionPolicy.ShouldTrackPressure = true; 2565 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2566 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2567 if (TLI->isTypeLegal(LegalIntVT)) { 2568 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2569 TLI->getRegClassFor(LegalIntVT)); 2570 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2571 } 2572 } 2573 2574 // For generic targets, we default to bottom-up, because it's simpler and more 2575 // compile-time optimizations have been implemented in that direction. 2576 RegionPolicy.OnlyBottomUp = true; 2577 2578 // Allow the subtarget to override default policy. 2579 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2580 NumRegionInstrs); 2581 2582 // After subtarget overrides, apply command line options. 2583 if (!EnableRegPressure) 2584 RegionPolicy.ShouldTrackPressure = false; 2585 2586 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2587 // e.g. -misched-bottomup=false allows scheduling in both directions. 2588 assert((!ForceTopDown || !ForceBottomUp) && 2589 "-misched-topdown incompatible with -misched-bottomup"); 2590 if (ForceBottomUp.getNumOccurrences() > 0) { 2591 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2592 if (RegionPolicy.OnlyBottomUp) 2593 RegionPolicy.OnlyTopDown = false; 2594 } 2595 if (ForceTopDown.getNumOccurrences() > 0) { 2596 RegionPolicy.OnlyTopDown = ForceTopDown; 2597 if (RegionPolicy.OnlyTopDown) 2598 RegionPolicy.OnlyBottomUp = false; 2599 } 2600 } 2601 2602 void GenericScheduler::dumpPolicy() { 2603 dbgs() << "GenericScheduler RegionPolicy: " 2604 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2605 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2606 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2607 << "\n"; 2608 } 2609 2610 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2611 /// critical path by more cycles than it takes to drain the instruction buffer. 2612 /// We estimate an upper bounds on in-flight instructions as: 2613 /// 2614 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2615 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2616 /// InFlightResources = InFlightIterations * LoopResources 2617 /// 2618 /// TODO: Check execution resources in addition to IssueCount. 2619 void GenericScheduler::checkAcyclicLatency() { 2620 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2621 return; 2622 2623 // Scaled number of cycles per loop iteration. 2624 unsigned IterCount = 2625 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2626 Rem.RemIssueCount); 2627 // Scaled acyclic critical path. 2628 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2629 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2630 unsigned InFlightCount = 2631 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2632 unsigned BufferLimit = 2633 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2634 2635 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2636 2637 DEBUG(dbgs() << "IssueCycles=" 2638 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2639 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2640 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2641 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2642 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2643 if (Rem.IsAcyclicLatencyLimited) 2644 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2645 } 2646 2647 void GenericScheduler::registerRoots() { 2648 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2649 2650 // Some roots may not feed into ExitSU. Check all of them in case. 2651 for (std::vector<SUnit*>::const_iterator 2652 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2653 if ((*I)->getDepth() > Rem.CriticalPath) 2654 Rem.CriticalPath = (*I)->getDepth(); 2655 } 2656 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2657 if (DumpCriticalPathLength) { 2658 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2659 } 2660 2661 if (EnableCyclicPath) { 2662 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2663 checkAcyclicLatency(); 2664 } 2665 } 2666 2667 static bool tryPressure(const PressureChange &TryP, 2668 const PressureChange &CandP, 2669 GenericSchedulerBase::SchedCandidate &TryCand, 2670 GenericSchedulerBase::SchedCandidate &Cand, 2671 GenericSchedulerBase::CandReason Reason, 2672 const TargetRegisterInfo *TRI, 2673 const MachineFunction &MF) { 2674 unsigned TryPSet = TryP.getPSetOrMax(); 2675 unsigned CandPSet = CandP.getPSetOrMax(); 2676 // If both candidates affect the same set, go with the smallest increase. 2677 if (TryPSet == CandPSet) { 2678 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2679 Reason); 2680 } 2681 // If one candidate decreases and the other increases, go with it. 2682 // Invalid candidates have UnitInc==0. 2683 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2684 Reason)) { 2685 return true; 2686 } 2687 2688 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2689 std::numeric_limits<int>::max(); 2690 2691 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2692 std::numeric_limits<int>::max(); 2693 2694 // If the candidates are decreasing pressure, reverse priority. 2695 if (TryP.getUnitInc() < 0) 2696 std::swap(TryRank, CandRank); 2697 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2698 } 2699 2700 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2701 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2702 } 2703 2704 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2705 /// their physreg def/use. 2706 /// 2707 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2708 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2709 /// with the operation that produces or consumes the physreg. We'll do this when 2710 /// regalloc has support for parallel copies. 2711 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2712 const MachineInstr *MI = SU->getInstr(); 2713 if (!MI->isCopy()) 2714 return 0; 2715 2716 unsigned ScheduledOper = isTop ? 1 : 0; 2717 unsigned UnscheduledOper = isTop ? 0 : 1; 2718 // If we have already scheduled the physreg produce/consumer, immediately 2719 // schedule the copy. 2720 if (TargetRegisterInfo::isPhysicalRegister( 2721 MI->getOperand(ScheduledOper).getReg())) 2722 return 1; 2723 // If the physreg is at the boundary, defer it. Otherwise schedule it 2724 // immediately to free the dependent. We can hoist the copy later. 2725 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2726 if (TargetRegisterInfo::isPhysicalRegister( 2727 MI->getOperand(UnscheduledOper).getReg())) 2728 return AtBoundary ? -1 : 1; 2729 return 0; 2730 } 2731 2732 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2733 /// hierarchical. This may be more efficient than a graduated cost model because 2734 /// we don't need to evaluate all aspects of the model for each node in the 2735 /// queue. But it's really done to make the heuristics easier to debug and 2736 /// statistically analyze. 2737 /// 2738 /// \param Cand provides the policy and current best candidate. 2739 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2740 /// \param Zone describes the scheduled zone that we are extending. 2741 /// \param RPTracker describes reg pressure within the scheduled zone. 2742 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2743 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2744 SchedCandidate &TryCand, 2745 SchedBoundary &Zone, 2746 const RegPressureTracker &RPTracker, 2747 RegPressureTracker &TempTracker) { 2748 2749 if (DAG->isTrackingPressure()) { 2750 // Always initialize TryCand's RPDelta. 2751 if (Zone.isTop()) { 2752 TempTracker.getMaxDownwardPressureDelta( 2753 TryCand.SU->getInstr(), 2754 TryCand.RPDelta, 2755 DAG->getRegionCriticalPSets(), 2756 DAG->getRegPressure().MaxSetPressure); 2757 } else { 2758 if (VerifyScheduling) { 2759 TempTracker.getMaxUpwardPressureDelta( 2760 TryCand.SU->getInstr(), 2761 &DAG->getPressureDiff(TryCand.SU), 2762 TryCand.RPDelta, 2763 DAG->getRegionCriticalPSets(), 2764 DAG->getRegPressure().MaxSetPressure); 2765 } else { 2766 RPTracker.getUpwardPressureDelta( 2767 TryCand.SU->getInstr(), 2768 DAG->getPressureDiff(TryCand.SU), 2769 TryCand.RPDelta, 2770 DAG->getRegionCriticalPSets(), 2771 DAG->getRegPressure().MaxSetPressure); 2772 } 2773 } 2774 } 2775 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2776 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2777 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2778 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2779 2780 // Initialize the candidate if needed. 2781 if (!Cand.isValid()) { 2782 TryCand.Reason = NodeOrder; 2783 return; 2784 } 2785 2786 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2787 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2788 TryCand, Cand, PhysRegCopy)) 2789 return; 2790 2791 // Avoid exceeding the target's limit. 2792 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2793 Cand.RPDelta.Excess, 2794 TryCand, Cand, RegExcess, TRI, 2795 DAG->MF)) 2796 return; 2797 2798 // Avoid increasing the max critical pressure in the scheduled region. 2799 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2800 Cand.RPDelta.CriticalMax, 2801 TryCand, Cand, RegCritical, TRI, 2802 DAG->MF)) 2803 return; 2804 2805 // For loops that are acyclic path limited, aggressively schedule for latency. 2806 // This can result in very long dependence chains scheduled in sequence, so 2807 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2808 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2809 && tryLatency(TryCand, Cand, Zone)) 2810 return; 2811 2812 // Prioritize instructions that read unbuffered resources by stall cycles. 2813 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2814 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2815 return; 2816 2817 // Keep clustered nodes together to encourage downstream peephole 2818 // optimizations which may reduce resource requirements. 2819 // 2820 // This is a best effort to set things up for a post-RA pass. Optimizations 2821 // like generating loads of multiple registers should ideally be done within 2822 // the scheduler pass by combining the loads during DAG postprocessing. 2823 const SUnit *NextClusterSU = 2824 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2825 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2826 TryCand, Cand, Cluster)) 2827 return; 2828 2829 // Weak edges are for clustering and other constraints. 2830 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2831 getWeakLeft(Cand.SU, Zone.isTop()), 2832 TryCand, Cand, Weak)) { 2833 return; 2834 } 2835 // Avoid increasing the max pressure of the entire region. 2836 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2837 Cand.RPDelta.CurrentMax, 2838 TryCand, Cand, RegMax, TRI, 2839 DAG->MF)) 2840 return; 2841 2842 // Avoid critical resource consumption and balance the schedule. 2843 TryCand.initResourceDelta(DAG, SchedModel); 2844 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2845 TryCand, Cand, ResourceReduce)) 2846 return; 2847 if (tryGreater(TryCand.ResDelta.DemandedResources, 2848 Cand.ResDelta.DemandedResources, 2849 TryCand, Cand, ResourceDemand)) 2850 return; 2851 2852 // Avoid serializing long latency dependence chains. 2853 // For acyclic path limited loops, latency was already checked above. 2854 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2855 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2856 return; 2857 } 2858 2859 // Prefer immediate defs/users of the last scheduled instruction. This is a 2860 // local pressure avoidance strategy that also makes the machine code 2861 // readable. 2862 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2863 TryCand, Cand, NextDefUse)) 2864 return; 2865 2866 // Fall through to original instruction order. 2867 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2868 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2869 TryCand.Reason = NodeOrder; 2870 } 2871 } 2872 2873 /// Pick the best candidate from the queue. 2874 /// 2875 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2876 /// DAG building. To adjust for the current scheduling location we need to 2877 /// maintain the number of vreg uses remaining to be top-scheduled. 2878 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2879 const RegPressureTracker &RPTracker, 2880 SchedCandidate &Cand) { 2881 ReadyQueue &Q = Zone.Available; 2882 2883 DEBUG(Q.dump()); 2884 2885 // getMaxPressureDelta temporarily modifies the tracker. 2886 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2887 2888 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2889 2890 SchedCandidate TryCand(Cand.Policy); 2891 TryCand.SU = *I; 2892 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2893 if (TryCand.Reason != NoCand) { 2894 // Initialize resource delta if needed in case future heuristics query it. 2895 if (TryCand.ResDelta == SchedResourceDelta()) 2896 TryCand.initResourceDelta(DAG, SchedModel); 2897 Cand.setBest(TryCand); 2898 DEBUG(traceCandidate(Cand)); 2899 } 2900 } 2901 } 2902 2903 /// Pick the best candidate node from either the top or bottom queue. 2904 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2905 // Schedule as far as possible in the direction of no choice. This is most 2906 // efficient, but also provides the best heuristics for CriticalPSets. 2907 if (SUnit *SU = Bot.pickOnlyChoice()) { 2908 IsTopNode = false; 2909 DEBUG(dbgs() << "Pick Bot ONLY1\n"); 2910 return SU; 2911 } 2912 if (SUnit *SU = Top.pickOnlyChoice()) { 2913 IsTopNode = true; 2914 DEBUG(dbgs() << "Pick Top ONLY1\n"); 2915 return SU; 2916 } 2917 CandPolicy NoPolicy; 2918 SchedCandidate BotCand(NoPolicy); 2919 SchedCandidate TopCand(NoPolicy); 2920 // Set the bottom-up policy based on the state of the current bottom zone and 2921 // the instructions outside the zone, including the top zone. 2922 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2923 // Set the top-down policy based on the state of the current top zone and 2924 // the instructions outside the zone, including the bottom zone. 2925 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2926 2927 // Prefer bottom scheduling when heuristics are silent. 2928 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2929 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2930 2931 // If either Q has a single candidate that provides the least increase in 2932 // Excess pressure, we can immediately schedule from that Q. 2933 // 2934 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2935 // affects picking from either Q. If scheduling in one direction must 2936 // increase pressure for one of the excess PSets, then schedule in that 2937 // direction first to provide more freedom in the other direction. 2938 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2939 || (BotCand.Reason == RegCritical && !BotCand.isRepeat(RegCritical))) 2940 { 2941 IsTopNode = false; 2942 tracePick(BotCand, IsTopNode); 2943 return BotCand.SU; 2944 } 2945 // Check if the top Q has a better candidate. 2946 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2947 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2948 2949 // Choose the queue with the most important (lowest enum) reason. 2950 if (TopCand.Reason < BotCand.Reason) { 2951 IsTopNode = true; 2952 tracePick(TopCand, IsTopNode); 2953 return TopCand.SU; 2954 } 2955 // Otherwise prefer the bottom candidate, in node order if all else failed. 2956 IsTopNode = false; 2957 tracePick(BotCand, IsTopNode); 2958 return BotCand.SU; 2959 } 2960 2961 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2962 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2963 if (DAG->top() == DAG->bottom()) { 2964 assert(Top.Available.empty() && Top.Pending.empty() && 2965 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2966 return nullptr; 2967 } 2968 SUnit *SU; 2969 do { 2970 if (RegionPolicy.OnlyTopDown) { 2971 SU = Top.pickOnlyChoice(); 2972 if (!SU) { 2973 CandPolicy NoPolicy; 2974 SchedCandidate TopCand(NoPolicy); 2975 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2976 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2977 tracePick(TopCand, true); 2978 SU = TopCand.SU; 2979 } 2980 IsTopNode = true; 2981 } else if (RegionPolicy.OnlyBottomUp) { 2982 SU = Bot.pickOnlyChoice(); 2983 if (!SU) { 2984 CandPolicy NoPolicy; 2985 SchedCandidate BotCand(NoPolicy); 2986 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2987 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2988 tracePick(BotCand, false); 2989 SU = BotCand.SU; 2990 } 2991 IsTopNode = false; 2992 } else { 2993 SU = pickNodeBidirectional(IsTopNode); 2994 } 2995 } while (SU->isScheduled); 2996 2997 if (SU->isTopReady()) 2998 Top.removeReady(SU); 2999 if (SU->isBottomReady()) 3000 Bot.removeReady(SU); 3001 3002 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3003 return SU; 3004 } 3005 3006 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3007 3008 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3009 if (!isTop) 3010 ++InsertPos; 3011 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3012 3013 // Find already scheduled copies with a single physreg dependence and move 3014 // them just above the scheduled instruction. 3015 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3016 I != E; ++I) { 3017 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3018 continue; 3019 SUnit *DepSU = I->getSUnit(); 3020 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3021 continue; 3022 MachineInstr *Copy = DepSU->getInstr(); 3023 if (!Copy->isCopy()) 3024 continue; 3025 DEBUG(dbgs() << " Rescheduling physreg copy "; 3026 I->getSUnit()->dump(DAG)); 3027 DAG->moveInstruction(Copy, InsertPos); 3028 } 3029 } 3030 3031 /// Update the scheduler's state after scheduling a node. This is the same node 3032 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3033 /// update it's state based on the current cycle before MachineSchedStrategy 3034 /// does. 3035 /// 3036 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3037 /// them here. See comments in biasPhysRegCopy. 3038 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3039 if (IsTopNode) { 3040 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3041 Top.bumpNode(SU); 3042 if (SU->hasPhysRegUses) 3043 reschedulePhysRegCopies(SU, true); 3044 } else { 3045 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3046 Bot.bumpNode(SU); 3047 if (SU->hasPhysRegDefs) 3048 reschedulePhysRegCopies(SU, false); 3049 } 3050 } 3051 3052 /// Create the standard converging machine scheduler. This will be used as the 3053 /// default scheduler if the target does not set a default. 3054 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3055 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3056 // Register DAG post-processors. 3057 // 3058 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3059 // data and pass it to later mutations. Have a single mutation that gathers 3060 // the interesting nodes in one pass. 3061 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 3062 if (EnableMemOpCluster) { 3063 if (DAG->TII->enableClusterLoads()) 3064 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 3065 if (DAG->TII->enableClusterStores()) 3066 DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI)); 3067 } 3068 if (EnableMacroFusion) 3069 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 3070 return DAG; 3071 } 3072 3073 static MachineSchedRegistry 3074 GenericSchedRegistry("converge", "Standard converging scheduler.", 3075 createGenericSchedLive); 3076 3077 //===----------------------------------------------------------------------===// 3078 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3079 //===----------------------------------------------------------------------===// 3080 3081 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3082 DAG = Dag; 3083 SchedModel = DAG->getSchedModel(); 3084 TRI = DAG->TRI; 3085 3086 Rem.init(DAG, SchedModel); 3087 Top.init(DAG, SchedModel, &Rem); 3088 BotRoots.clear(); 3089 3090 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3091 // or are disabled, then these HazardRecs will be disabled. 3092 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3093 if (!Top.HazardRec) { 3094 Top.HazardRec = 3095 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3096 Itin, DAG); 3097 } 3098 } 3099 3100 3101 void PostGenericScheduler::registerRoots() { 3102 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3103 3104 // Some roots may not feed into ExitSU. Check all of them in case. 3105 for (SmallVectorImpl<SUnit*>::const_iterator 3106 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3107 if ((*I)->getDepth() > Rem.CriticalPath) 3108 Rem.CriticalPath = (*I)->getDepth(); 3109 } 3110 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3111 if (DumpCriticalPathLength) { 3112 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3113 } 3114 } 3115 3116 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3117 /// 3118 /// \param Cand provides the policy and current best candidate. 3119 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3120 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3121 SchedCandidate &TryCand) { 3122 3123 // Initialize the candidate if needed. 3124 if (!Cand.isValid()) { 3125 TryCand.Reason = NodeOrder; 3126 return; 3127 } 3128 3129 // Prioritize instructions that read unbuffered resources by stall cycles. 3130 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3131 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3132 return; 3133 3134 // Avoid critical resource consumption and balance the schedule. 3135 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3136 TryCand, Cand, ResourceReduce)) 3137 return; 3138 if (tryGreater(TryCand.ResDelta.DemandedResources, 3139 Cand.ResDelta.DemandedResources, 3140 TryCand, Cand, ResourceDemand)) 3141 return; 3142 3143 // Avoid serializing long latency dependence chains. 3144 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3145 return; 3146 } 3147 3148 // Fall through to original instruction order. 3149 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3150 TryCand.Reason = NodeOrder; 3151 } 3152 3153 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3154 ReadyQueue &Q = Top.Available; 3155 3156 DEBUG(Q.dump()); 3157 3158 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3159 SchedCandidate TryCand(Cand.Policy); 3160 TryCand.SU = *I; 3161 TryCand.initResourceDelta(DAG, SchedModel); 3162 tryCandidate(Cand, TryCand); 3163 if (TryCand.Reason != NoCand) { 3164 Cand.setBest(TryCand); 3165 DEBUG(traceCandidate(Cand)); 3166 } 3167 } 3168 } 3169 3170 /// Pick the next node to schedule. 3171 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3172 if (DAG->top() == DAG->bottom()) { 3173 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3174 return nullptr; 3175 } 3176 SUnit *SU; 3177 do { 3178 SU = Top.pickOnlyChoice(); 3179 if (!SU) { 3180 CandPolicy NoPolicy; 3181 SchedCandidate TopCand(NoPolicy); 3182 // Set the top-down policy based on the state of the current top zone and 3183 // the instructions outside the zone, including the bottom zone. 3184 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3185 pickNodeFromQueue(TopCand); 3186 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3187 tracePick(TopCand, true); 3188 SU = TopCand.SU; 3189 } 3190 } while (SU->isScheduled); 3191 3192 IsTopNode = true; 3193 Top.removeReady(SU); 3194 3195 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3196 return SU; 3197 } 3198 3199 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3200 /// scheduled/remaining flags in the DAG nodes. 3201 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3202 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3203 Top.bumpNode(SU); 3204 } 3205 3206 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3207 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3208 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3209 } 3210 3211 //===----------------------------------------------------------------------===// 3212 // ILP Scheduler. Currently for experimental analysis of heuristics. 3213 //===----------------------------------------------------------------------===// 3214 3215 namespace { 3216 /// \brief Order nodes by the ILP metric. 3217 struct ILPOrder { 3218 const SchedDFSResult *DFSResult; 3219 const BitVector *ScheduledTrees; 3220 bool MaximizeILP; 3221 3222 ILPOrder(bool MaxILP) 3223 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3224 3225 /// \brief Apply a less-than relation on node priority. 3226 /// 3227 /// (Return true if A comes after B in the Q.) 3228 bool operator()(const SUnit *A, const SUnit *B) const { 3229 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3230 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3231 if (SchedTreeA != SchedTreeB) { 3232 // Unscheduled trees have lower priority. 3233 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3234 return ScheduledTrees->test(SchedTreeB); 3235 3236 // Trees with shallower connections have have lower priority. 3237 if (DFSResult->getSubtreeLevel(SchedTreeA) 3238 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3239 return DFSResult->getSubtreeLevel(SchedTreeA) 3240 < DFSResult->getSubtreeLevel(SchedTreeB); 3241 } 3242 } 3243 if (MaximizeILP) 3244 return DFSResult->getILP(A) < DFSResult->getILP(B); 3245 else 3246 return DFSResult->getILP(A) > DFSResult->getILP(B); 3247 } 3248 }; 3249 3250 /// \brief Schedule based on the ILP metric. 3251 class ILPScheduler : public MachineSchedStrategy { 3252 ScheduleDAGMILive *DAG; 3253 ILPOrder Cmp; 3254 3255 std::vector<SUnit*> ReadyQ; 3256 public: 3257 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3258 3259 void initialize(ScheduleDAGMI *dag) override { 3260 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3261 DAG = static_cast<ScheduleDAGMILive*>(dag); 3262 DAG->computeDFSResult(); 3263 Cmp.DFSResult = DAG->getDFSResult(); 3264 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3265 ReadyQ.clear(); 3266 } 3267 3268 void registerRoots() override { 3269 // Restore the heap in ReadyQ with the updated DFS results. 3270 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3271 } 3272 3273 /// Implement MachineSchedStrategy interface. 3274 /// ----------------------------------------- 3275 3276 /// Callback to select the highest priority node from the ready Q. 3277 SUnit *pickNode(bool &IsTopNode) override { 3278 if (ReadyQ.empty()) return nullptr; 3279 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3280 SUnit *SU = ReadyQ.back(); 3281 ReadyQ.pop_back(); 3282 IsTopNode = false; 3283 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3284 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3285 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3286 << DAG->getDFSResult()->getSubtreeLevel( 3287 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3288 << "Scheduling " << *SU->getInstr()); 3289 return SU; 3290 } 3291 3292 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3293 void scheduleTree(unsigned SubtreeID) override { 3294 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3295 } 3296 3297 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3298 /// DFSResults, and resort the priority Q. 3299 void schedNode(SUnit *SU, bool IsTopNode) override { 3300 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3301 } 3302 3303 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3304 3305 void releaseBottomNode(SUnit *SU) override { 3306 ReadyQ.push_back(SU); 3307 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3308 } 3309 }; 3310 } // namespace 3311 3312 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3313 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3314 } 3315 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3316 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3317 } 3318 static MachineSchedRegistry ILPMaxRegistry( 3319 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3320 static MachineSchedRegistry ILPMinRegistry( 3321 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3322 3323 //===----------------------------------------------------------------------===// 3324 // Machine Instruction Shuffler for Correctness Testing 3325 //===----------------------------------------------------------------------===// 3326 3327 #ifndef NDEBUG 3328 namespace { 3329 /// Apply a less-than relation on the node order, which corresponds to the 3330 /// instruction order prior to scheduling. IsReverse implements greater-than. 3331 template<bool IsReverse> 3332 struct SUnitOrder { 3333 bool operator()(SUnit *A, SUnit *B) const { 3334 if (IsReverse) 3335 return A->NodeNum > B->NodeNum; 3336 else 3337 return A->NodeNum < B->NodeNum; 3338 } 3339 }; 3340 3341 /// Reorder instructions as much as possible. 3342 class InstructionShuffler : public MachineSchedStrategy { 3343 bool IsAlternating; 3344 bool IsTopDown; 3345 3346 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3347 // gives nodes with a higher number higher priority causing the latest 3348 // instructions to be scheduled first. 3349 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3350 TopQ; 3351 // When scheduling bottom-up, use greater-than as the queue priority. 3352 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3353 BottomQ; 3354 public: 3355 InstructionShuffler(bool alternate, bool topdown) 3356 : IsAlternating(alternate), IsTopDown(topdown) {} 3357 3358 void initialize(ScheduleDAGMI*) override { 3359 TopQ.clear(); 3360 BottomQ.clear(); 3361 } 3362 3363 /// Implement MachineSchedStrategy interface. 3364 /// ----------------------------------------- 3365 3366 SUnit *pickNode(bool &IsTopNode) override { 3367 SUnit *SU; 3368 if (IsTopDown) { 3369 do { 3370 if (TopQ.empty()) return nullptr; 3371 SU = TopQ.top(); 3372 TopQ.pop(); 3373 } while (SU->isScheduled); 3374 IsTopNode = true; 3375 } else { 3376 do { 3377 if (BottomQ.empty()) return nullptr; 3378 SU = BottomQ.top(); 3379 BottomQ.pop(); 3380 } while (SU->isScheduled); 3381 IsTopNode = false; 3382 } 3383 if (IsAlternating) 3384 IsTopDown = !IsTopDown; 3385 return SU; 3386 } 3387 3388 void schedNode(SUnit *SU, bool IsTopNode) override {} 3389 3390 void releaseTopNode(SUnit *SU) override { 3391 TopQ.push(SU); 3392 } 3393 void releaseBottomNode(SUnit *SU) override { 3394 BottomQ.push(SU); 3395 } 3396 }; 3397 } // namespace 3398 3399 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3400 bool Alternate = !ForceTopDown && !ForceBottomUp; 3401 bool TopDown = !ForceBottomUp; 3402 assert((TopDown || !ForceTopDown) && 3403 "-misched-topdown incompatible with -misched-bottomup"); 3404 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3405 } 3406 static MachineSchedRegistry ShufflerRegistry( 3407 "shuffle", "Shuffle machine instructions alternating directions", 3408 createInstructionShuffler); 3409 #endif // !NDEBUG 3410 3411 //===----------------------------------------------------------------------===// 3412 // GraphWriter support for ScheduleDAGMILive. 3413 //===----------------------------------------------------------------------===// 3414 3415 #ifndef NDEBUG 3416 namespace llvm { 3417 3418 template<> struct GraphTraits< 3419 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3420 3421 template<> 3422 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3423 3424 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3425 3426 static std::string getGraphName(const ScheduleDAG *G) { 3427 return G->MF.getName(); 3428 } 3429 3430 static bool renderGraphFromBottomUp() { 3431 return true; 3432 } 3433 3434 static bool isNodeHidden(const SUnit *Node) { 3435 if (ViewMISchedCutoff == 0) 3436 return false; 3437 return (Node->Preds.size() > ViewMISchedCutoff 3438 || Node->Succs.size() > ViewMISchedCutoff); 3439 } 3440 3441 /// If you want to override the dot attributes printed for a particular 3442 /// edge, override this method. 3443 static std::string getEdgeAttributes(const SUnit *Node, 3444 SUnitIterator EI, 3445 const ScheduleDAG *Graph) { 3446 if (EI.isArtificialDep()) 3447 return "color=cyan,style=dashed"; 3448 if (EI.isCtrlDep()) 3449 return "color=blue,style=dashed"; 3450 return ""; 3451 } 3452 3453 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3454 std::string Str; 3455 raw_string_ostream SS(Str); 3456 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3457 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3458 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3459 SS << "SU:" << SU->NodeNum; 3460 if (DFS) 3461 SS << " I:" << DFS->getNumInstrs(SU); 3462 return SS.str(); 3463 } 3464 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3465 return G->getGraphNodeLabel(SU); 3466 } 3467 3468 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3469 std::string Str("shape=Mrecord"); 3470 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3471 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3472 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3473 if (DFS) { 3474 Str += ",style=filled,fillcolor=\"#"; 3475 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3476 Str += '"'; 3477 } 3478 return Str; 3479 } 3480 }; 3481 } // namespace llvm 3482 #endif // NDEBUG 3483 3484 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3485 /// rendered using 'dot'. 3486 /// 3487 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3488 #ifndef NDEBUG 3489 ViewGraph(this, Name, false, Title); 3490 #else 3491 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3492 << "systems with Graphviz or gv!\n"; 3493 #endif // NDEBUG 3494 } 3495 3496 /// Out-of-line implementation with no arguments is handy for gdb. 3497 void ScheduleDAGMI::viewGraph() { 3498 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3499 } 3500