xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision f01b9aa89e8cd5d3cca0e13835302f69c1f879d2)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 cl::opt<bool> VerifyScheduling(
86     "verify-misched", cl::Hidden,
87     cl::desc("Verify machine instrs before and after machine scheduling"));
88 
89 } // end namespace llvm
90 
91 #ifndef NDEBUG
92 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
93   cl::desc("Pop up a window to show MISched dags after they are processed"));
94 
95 /// In some situations a few uninteresting nodes depend on nearly all other
96 /// nodes in the graph, provide a cutoff to hide them.
97 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
98   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
99 
100 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
101   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
102 
103 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
104   cl::desc("Only schedule this function"));
105 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
106                                         cl::desc("Only schedule this MBB#"));
107 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
108                               cl::desc("Print schedule DAGs"));
109 #else
110 static const bool ViewMISchedDAGs = false;
111 static const bool PrintDAGs = false;
112 #endif // NDEBUG
113 
114 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
115 /// size of the ready lists.
116 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
117   cl::desc("Limit ready list to N instructions"), cl::init(256));
118 
119 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
120   cl::desc("Enable register pressure scheduling."), cl::init(true));
121 
122 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
123   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
124 
125 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
126                                         cl::desc("Enable memop clustering."),
127                                         cl::init(true));
128 
129 // DAG subtrees must have at least this many nodes.
130 static const unsigned MinSubtreeSize = 8;
131 
132 // Pin the vtables to this file.
133 void MachineSchedStrategy::anchor() {}
134 
135 void ScheduleDAGMutation::anchor() {}
136 
137 //===----------------------------------------------------------------------===//
138 // Machine Instruction Scheduling Pass and Registry
139 //===----------------------------------------------------------------------===//
140 
141 MachineSchedContext::MachineSchedContext() {
142   RegClassInfo = new RegisterClassInfo();
143 }
144 
145 MachineSchedContext::~MachineSchedContext() {
146   delete RegClassInfo;
147 }
148 
149 namespace {
150 
151 /// Base class for a machine scheduler class that can run at any point.
152 class MachineSchedulerBase : public MachineSchedContext,
153                              public MachineFunctionPass {
154 public:
155   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
156 
157   void print(raw_ostream &O, const Module* = nullptr) const override;
158 
159 protected:
160   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
161 };
162 
163 /// MachineScheduler runs after coalescing and before register allocation.
164 class MachineScheduler : public MachineSchedulerBase {
165 public:
166   MachineScheduler();
167 
168   void getAnalysisUsage(AnalysisUsage &AU) const override;
169 
170   bool runOnMachineFunction(MachineFunction&) override;
171 
172   static char ID; // Class identification, replacement for typeinfo
173 
174 protected:
175   ScheduleDAGInstrs *createMachineScheduler();
176 };
177 
178 /// PostMachineScheduler runs after shortly before code emission.
179 class PostMachineScheduler : public MachineSchedulerBase {
180 public:
181   PostMachineScheduler();
182 
183   void getAnalysisUsage(AnalysisUsage &AU) const override;
184 
185   bool runOnMachineFunction(MachineFunction&) override;
186 
187   static char ID; // Class identification, replacement for typeinfo
188 
189 protected:
190   ScheduleDAGInstrs *createPostMachineScheduler();
191 };
192 
193 } // end anonymous namespace
194 
195 char MachineScheduler::ID = 0;
196 
197 char &llvm::MachineSchedulerID = MachineScheduler::ID;
198 
199 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
200                       "Machine Instruction Scheduler", false, false)
201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
202 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
203 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
204 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
205 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
206 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
207                     "Machine Instruction Scheduler", false, false)
208 
209 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
210   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
211 }
212 
213 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
214   AU.setPreservesCFG();
215   AU.addRequired<MachineDominatorTree>();
216   AU.addRequired<MachineLoopInfo>();
217   AU.addRequired<AAResultsWrapperPass>();
218   AU.addRequired<TargetPassConfig>();
219   AU.addRequired<SlotIndexes>();
220   AU.addPreserved<SlotIndexes>();
221   AU.addRequired<LiveIntervals>();
222   AU.addPreserved<LiveIntervals>();
223   MachineFunctionPass::getAnalysisUsage(AU);
224 }
225 
226 char PostMachineScheduler::ID = 0;
227 
228 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
229 
230 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
231                 "PostRA Machine Instruction Scheduler", false, false)
232 
233 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
234   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
235 }
236 
237 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
238   AU.setPreservesCFG();
239   AU.addRequired<MachineDominatorTree>();
240   AU.addRequired<MachineLoopInfo>();
241   AU.addRequired<AAResultsWrapperPass>();
242   AU.addRequired<TargetPassConfig>();
243   MachineFunctionPass::getAnalysisUsage(AU);
244 }
245 
246 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
247     MachineSchedRegistry::Registry;
248 
249 /// A dummy default scheduler factory indicates whether the scheduler
250 /// is overridden on the command line.
251 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
252   return nullptr;
253 }
254 
255 /// MachineSchedOpt allows command line selection of the scheduler.
256 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
257                RegisterPassParser<MachineSchedRegistry>>
258 MachineSchedOpt("misched",
259                 cl::init(&useDefaultMachineSched), cl::Hidden,
260                 cl::desc("Machine instruction scheduler to use"));
261 
262 static MachineSchedRegistry
263 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
264                      useDefaultMachineSched);
265 
266 static cl::opt<bool> EnableMachineSched(
267     "enable-misched",
268     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
269     cl::Hidden);
270 
271 static cl::opt<bool> EnablePostRAMachineSched(
272     "enable-post-misched",
273     cl::desc("Enable the post-ra machine instruction scheduling pass."),
274     cl::init(true), cl::Hidden);
275 
276 /// Decrement this iterator until reaching the top or a non-debug instr.
277 static MachineBasicBlock::const_iterator
278 priorNonDebug(MachineBasicBlock::const_iterator I,
279               MachineBasicBlock::const_iterator Beg) {
280   assert(I != Beg && "reached the top of the region, cannot decrement");
281   while (--I != Beg) {
282     if (!I->isDebugInstr())
283       break;
284   }
285   return I;
286 }
287 
288 /// Non-const version.
289 static MachineBasicBlock::iterator
290 priorNonDebug(MachineBasicBlock::iterator I,
291               MachineBasicBlock::const_iterator Beg) {
292   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
293       .getNonConstIterator();
294 }
295 
296 /// If this iterator is a debug value, increment until reaching the End or a
297 /// non-debug instruction.
298 static MachineBasicBlock::const_iterator
299 nextIfDebug(MachineBasicBlock::const_iterator I,
300             MachineBasicBlock::const_iterator End) {
301   for(; I != End; ++I) {
302     if (!I->isDebugInstr())
303       break;
304   }
305   return I;
306 }
307 
308 /// Non-const version.
309 static MachineBasicBlock::iterator
310 nextIfDebug(MachineBasicBlock::iterator I,
311             MachineBasicBlock::const_iterator End) {
312   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
313       .getNonConstIterator();
314 }
315 
316 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
317 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
318   // Select the scheduler, or set the default.
319   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
320   if (Ctor != useDefaultMachineSched)
321     return Ctor(this);
322 
323   // Get the default scheduler set by the target for this function.
324   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
325   if (Scheduler)
326     return Scheduler;
327 
328   // Default to GenericScheduler.
329   return createGenericSchedLive(this);
330 }
331 
332 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
333 /// the caller. We don't have a command line option to override the postRA
334 /// scheduler. The Target must configure it.
335 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
336   // Get the postRA scheduler set by the target for this function.
337   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
338   if (Scheduler)
339     return Scheduler;
340 
341   // Default to GenericScheduler.
342   return createGenericSchedPostRA(this);
343 }
344 
345 /// Top-level MachineScheduler pass driver.
346 ///
347 /// Visit blocks in function order. Divide each block into scheduling regions
348 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
349 /// consistent with the DAG builder, which traverses the interior of the
350 /// scheduling regions bottom-up.
351 ///
352 /// This design avoids exposing scheduling boundaries to the DAG builder,
353 /// simplifying the DAG builder's support for "special" target instructions.
354 /// At the same time the design allows target schedulers to operate across
355 /// scheduling boundaries, for example to bundle the boundary instructions
356 /// without reordering them. This creates complexity, because the target
357 /// scheduler must update the RegionBegin and RegionEnd positions cached by
358 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
359 /// design would be to split blocks at scheduling boundaries, but LLVM has a
360 /// general bias against block splitting purely for implementation simplicity.
361 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
362   if (skipFunction(mf.getFunction()))
363     return false;
364 
365   if (EnableMachineSched.getNumOccurrences()) {
366     if (!EnableMachineSched)
367       return false;
368   } else if (!mf.getSubtarget().enableMachineScheduler())
369     return false;
370 
371   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
372 
373   // Initialize the context of the pass.
374   MF = &mf;
375   MLI = &getAnalysis<MachineLoopInfo>();
376   MDT = &getAnalysis<MachineDominatorTree>();
377   PassConfig = &getAnalysis<TargetPassConfig>();
378   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
379 
380   LIS = &getAnalysis<LiveIntervals>();
381 
382   if (VerifyScheduling) {
383     LLVM_DEBUG(LIS->dump());
384     MF->verify(this, "Before machine scheduling.");
385   }
386   RegClassInfo->runOnMachineFunction(*MF);
387 
388   // Instantiate the selected scheduler for this target, function, and
389   // optimization level.
390   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
391   scheduleRegions(*Scheduler, false);
392 
393   LLVM_DEBUG(LIS->dump());
394   if (VerifyScheduling)
395     MF->verify(this, "After machine scheduling.");
396   return true;
397 }
398 
399 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
400   if (skipFunction(mf.getFunction()))
401     return false;
402 
403   if (EnablePostRAMachineSched.getNumOccurrences()) {
404     if (!EnablePostRAMachineSched)
405       return false;
406   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
407     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
408     return false;
409   }
410   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
411 
412   // Initialize the context of the pass.
413   MF = &mf;
414   MLI = &getAnalysis<MachineLoopInfo>();
415   PassConfig = &getAnalysis<TargetPassConfig>();
416   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
417 
418   if (VerifyScheduling)
419     MF->verify(this, "Before post machine scheduling.");
420 
421   // Instantiate the selected scheduler for this target, function, and
422   // optimization level.
423   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
424   scheduleRegions(*Scheduler, true);
425 
426   if (VerifyScheduling)
427     MF->verify(this, "After post machine scheduling.");
428   return true;
429 }
430 
431 /// Return true of the given instruction should not be included in a scheduling
432 /// region.
433 ///
434 /// MachineScheduler does not currently support scheduling across calls. To
435 /// handle calls, the DAG builder needs to be modified to create register
436 /// anti/output dependencies on the registers clobbered by the call's regmask
437 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
438 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
439 /// the boundary, but there would be no benefit to postRA scheduling across
440 /// calls this late anyway.
441 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
442                             MachineBasicBlock *MBB,
443                             MachineFunction *MF,
444                             const TargetInstrInfo *TII) {
445   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
446 }
447 
448 /// A region of an MBB for scheduling.
449 namespace {
450 struct SchedRegion {
451   /// RegionBegin is the first instruction in the scheduling region, and
452   /// RegionEnd is either MBB->end() or the scheduling boundary after the
453   /// last instruction in the scheduling region. These iterators cannot refer
454   /// to instructions outside of the identified scheduling region because
455   /// those may be reordered before scheduling this region.
456   MachineBasicBlock::iterator RegionBegin;
457   MachineBasicBlock::iterator RegionEnd;
458   unsigned NumRegionInstrs;
459 
460   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
461               unsigned N) :
462     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
463 };
464 } // end anonymous namespace
465 
466 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
467 
468 static void
469 getSchedRegions(MachineBasicBlock *MBB,
470                 MBBRegionsVector &Regions,
471                 bool RegionsTopDown) {
472   MachineFunction *MF = MBB->getParent();
473   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
474 
475   MachineBasicBlock::iterator I = nullptr;
476   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
477       RegionEnd != MBB->begin(); RegionEnd = I) {
478 
479     // Avoid decrementing RegionEnd for blocks with no terminator.
480     if (RegionEnd != MBB->end() ||
481         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
482       --RegionEnd;
483     }
484 
485     // The next region starts above the previous region. Look backward in the
486     // instruction stream until we find the nearest boundary.
487     unsigned NumRegionInstrs = 0;
488     I = RegionEnd;
489     for (;I != MBB->begin(); --I) {
490       MachineInstr &MI = *std::prev(I);
491       if (isSchedBoundary(&MI, &*MBB, MF, TII))
492         break;
493       if (!MI.isDebugInstr()) {
494         // MBB::size() uses instr_iterator to count. Here we need a bundle to
495         // count as a single instruction.
496         ++NumRegionInstrs;
497       }
498     }
499 
500     // It's possible we found a scheduling region that only has debug
501     // instructions. Don't bother scheduling these.
502     if (NumRegionInstrs != 0)
503       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
504   }
505 
506   if (RegionsTopDown)
507     std::reverse(Regions.begin(), Regions.end());
508 }
509 
510 /// Main driver for both MachineScheduler and PostMachineScheduler.
511 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
512                                            bool FixKillFlags) {
513   // Visit all machine basic blocks.
514   //
515   // TODO: Visit blocks in global postorder or postorder within the bottom-up
516   // loop tree. Then we can optionally compute global RegPressure.
517   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
518        MBB != MBBEnd; ++MBB) {
519 
520     Scheduler.startBlock(&*MBB);
521 
522 #ifndef NDEBUG
523     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
524       continue;
525     if (SchedOnlyBlock.getNumOccurrences()
526         && (int)SchedOnlyBlock != MBB->getNumber())
527       continue;
528 #endif
529 
530     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
531     // points to the scheduling boundary at the bottom of the region. The DAG
532     // does not include RegionEnd, but the region does (i.e. the next
533     // RegionEnd is above the previous RegionBegin). If the current block has
534     // no terminator then RegionEnd == MBB->end() for the bottom region.
535     //
536     // All the regions of MBB are first found and stored in MBBRegions, which
537     // will be processed (MBB) top-down if initialized with true.
538     //
539     // The Scheduler may insert instructions during either schedule() or
540     // exitRegion(), even for empty regions. So the local iterators 'I' and
541     // 'RegionEnd' are invalid across these calls. Instructions must not be
542     // added to other regions than the current one without updating MBBRegions.
543 
544     MBBRegionsVector MBBRegions;
545     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
546     for (MBBRegionsVector::iterator R = MBBRegions.begin();
547          R != MBBRegions.end(); ++R) {
548       MachineBasicBlock::iterator I = R->RegionBegin;
549       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
550       unsigned NumRegionInstrs = R->NumRegionInstrs;
551 
552       // Notify the scheduler of the region, even if we may skip scheduling
553       // it. Perhaps it still needs to be bundled.
554       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
555 
556       // Skip empty scheduling regions (0 or 1 schedulable instructions).
557       if (I == RegionEnd || I == std::prev(RegionEnd)) {
558         // Close the current region. Bundle the terminator if needed.
559         // This invalidates 'RegionEnd' and 'I'.
560         Scheduler.exitRegion();
561         continue;
562       }
563       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
564       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
565                         << " " << MBB->getName() << "\n  From: " << *I
566                         << "    To: ";
567                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
568                  else dbgs() << "End";
569                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
570       if (DumpCriticalPathLength) {
571         errs() << MF->getName();
572         errs() << ":%bb. " << MBB->getNumber();
573         errs() << " " << MBB->getName() << " \n";
574       }
575 
576       // Schedule a region: possibly reorder instructions.
577       // This invalidates the original region iterators.
578       Scheduler.schedule();
579 
580       // Close the current region.
581       Scheduler.exitRegion();
582     }
583     Scheduler.finishBlock();
584     // FIXME: Ideally, no further passes should rely on kill flags. However,
585     // thumb2 size reduction is currently an exception, so the PostMIScheduler
586     // needs to do this.
587     if (FixKillFlags)
588       Scheduler.fixupKills(*MBB);
589   }
590   Scheduler.finalizeSchedule();
591 }
592 
593 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
594   // unimplemented
595 }
596 
597 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
598 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
599   dbgs() << "Queue " << Name << ": ";
600   for (const SUnit *SU : Queue)
601     dbgs() << SU->NodeNum << " ";
602   dbgs() << "\n";
603 }
604 #endif
605 
606 //===----------------------------------------------------------------------===//
607 // ScheduleDAGMI - Basic machine instruction scheduling. This is
608 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
609 // virtual registers.
610 // ===----------------------------------------------------------------------===/
611 
612 // Provide a vtable anchor.
613 ScheduleDAGMI::~ScheduleDAGMI() = default;
614 
615 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
616 /// NumPredsLeft reaches zero, release the successor node.
617 ///
618 /// FIXME: Adjust SuccSU height based on MinLatency.
619 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
620   SUnit *SuccSU = SuccEdge->getSUnit();
621 
622   if (SuccEdge->isWeak()) {
623     --SuccSU->WeakPredsLeft;
624     if (SuccEdge->isCluster())
625       NextClusterSucc = SuccSU;
626     return;
627   }
628 #ifndef NDEBUG
629   if (SuccSU->NumPredsLeft == 0) {
630     dbgs() << "*** Scheduling failed! ***\n";
631     dumpNode(*SuccSU);
632     dbgs() << " has been released too many times!\n";
633     llvm_unreachable(nullptr);
634   }
635 #endif
636   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
637   // CurrCycle may have advanced since then.
638   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
639     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
640 
641   --SuccSU->NumPredsLeft;
642   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
643     SchedImpl->releaseTopNode(SuccSU);
644 }
645 
646 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
647 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
648   for (SDep &Succ : SU->Succs)
649     releaseSucc(SU, &Succ);
650 }
651 
652 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
653 /// NumSuccsLeft reaches zero, release the predecessor node.
654 ///
655 /// FIXME: Adjust PredSU height based on MinLatency.
656 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
657   SUnit *PredSU = PredEdge->getSUnit();
658 
659   if (PredEdge->isWeak()) {
660     --PredSU->WeakSuccsLeft;
661     if (PredEdge->isCluster())
662       NextClusterPred = PredSU;
663     return;
664   }
665 #ifndef NDEBUG
666   if (PredSU->NumSuccsLeft == 0) {
667     dbgs() << "*** Scheduling failed! ***\n";
668     dumpNode(*PredSU);
669     dbgs() << " has been released too many times!\n";
670     llvm_unreachable(nullptr);
671   }
672 #endif
673   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
674   // CurrCycle may have advanced since then.
675   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
676     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
677 
678   --PredSU->NumSuccsLeft;
679   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
680     SchedImpl->releaseBottomNode(PredSU);
681 }
682 
683 /// releasePredecessors - Call releasePred on each of SU's predecessors.
684 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
685   for (SDep &Pred : SU->Preds)
686     releasePred(SU, &Pred);
687 }
688 
689 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
690   ScheduleDAGInstrs::startBlock(bb);
691   SchedImpl->enterMBB(bb);
692 }
693 
694 void ScheduleDAGMI::finishBlock() {
695   SchedImpl->leaveMBB();
696   ScheduleDAGInstrs::finishBlock();
697 }
698 
699 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
700 /// crossing a scheduling boundary. [begin, end) includes all instructions in
701 /// the region, including the boundary itself and single-instruction regions
702 /// that don't get scheduled.
703 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
704                                      MachineBasicBlock::iterator begin,
705                                      MachineBasicBlock::iterator end,
706                                      unsigned regioninstrs)
707 {
708   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
709 
710   SchedImpl->initPolicy(begin, end, regioninstrs);
711 }
712 
713 /// This is normally called from the main scheduler loop but may also be invoked
714 /// by the scheduling strategy to perform additional code motion.
715 void ScheduleDAGMI::moveInstruction(
716   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
717   // Advance RegionBegin if the first instruction moves down.
718   if (&*RegionBegin == MI)
719     ++RegionBegin;
720 
721   // Update the instruction stream.
722   BB->splice(InsertPos, BB, MI);
723 
724   // Update LiveIntervals
725   if (LIS)
726     LIS->handleMove(*MI, /*UpdateFlags=*/true);
727 
728   // Recede RegionBegin if an instruction moves above the first.
729   if (RegionBegin == InsertPos)
730     RegionBegin = MI;
731 }
732 
733 bool ScheduleDAGMI::checkSchedLimit() {
734 #ifndef NDEBUG
735   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
736     CurrentTop = CurrentBottom;
737     return false;
738   }
739   ++NumInstrsScheduled;
740 #endif
741   return true;
742 }
743 
744 /// Per-region scheduling driver, called back from
745 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
746 /// does not consider liveness or register pressure. It is useful for PostRA
747 /// scheduling and potentially other custom schedulers.
748 void ScheduleDAGMI::schedule() {
749   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
750   LLVM_DEBUG(SchedImpl->dumpPolicy());
751 
752   // Build the DAG.
753   buildSchedGraph(AA);
754 
755   postprocessDAG();
756 
757   SmallVector<SUnit*, 8> TopRoots, BotRoots;
758   findRootsAndBiasEdges(TopRoots, BotRoots);
759 
760   LLVM_DEBUG(dump());
761   if (PrintDAGs) dump();
762   if (ViewMISchedDAGs) viewGraph();
763 
764   // Initialize the strategy before modifying the DAG.
765   // This may initialize a DFSResult to be used for queue priority.
766   SchedImpl->initialize(this);
767 
768   // Initialize ready queues now that the DAG and priority data are finalized.
769   initQueues(TopRoots, BotRoots);
770 
771   bool IsTopNode = false;
772   while (true) {
773     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
774     SUnit *SU = SchedImpl->pickNode(IsTopNode);
775     if (!SU) break;
776 
777     assert(!SU->isScheduled && "Node already scheduled");
778     if (!checkSchedLimit())
779       break;
780 
781     MachineInstr *MI = SU->getInstr();
782     if (IsTopNode) {
783       assert(SU->isTopReady() && "node still has unscheduled dependencies");
784       if (&*CurrentTop == MI)
785         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
786       else
787         moveInstruction(MI, CurrentTop);
788     } else {
789       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
790       MachineBasicBlock::iterator priorII =
791         priorNonDebug(CurrentBottom, CurrentTop);
792       if (&*priorII == MI)
793         CurrentBottom = priorII;
794       else {
795         if (&*CurrentTop == MI)
796           CurrentTop = nextIfDebug(++CurrentTop, priorII);
797         moveInstruction(MI, CurrentBottom);
798         CurrentBottom = MI;
799       }
800     }
801     // Notify the scheduling strategy before updating the DAG.
802     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
803     // runs, it can then use the accurate ReadyCycle time to determine whether
804     // newly released nodes can move to the readyQ.
805     SchedImpl->schedNode(SU, IsTopNode);
806 
807     updateQueues(SU, IsTopNode);
808   }
809   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
810 
811   placeDebugValues();
812 
813   LLVM_DEBUG({
814     dbgs() << "*** Final schedule for "
815            << printMBBReference(*begin()->getParent()) << " ***\n";
816     dumpSchedule();
817     dbgs() << '\n';
818   });
819 }
820 
821 /// Apply each ScheduleDAGMutation step in order.
822 void ScheduleDAGMI::postprocessDAG() {
823   for (auto &m : Mutations)
824     m->apply(this);
825 }
826 
827 void ScheduleDAGMI::
828 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
829                       SmallVectorImpl<SUnit*> &BotRoots) {
830   for (SUnit &SU : SUnits) {
831     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
832 
833     // Order predecessors so DFSResult follows the critical path.
834     SU.biasCriticalPath();
835 
836     // A SUnit is ready to top schedule if it has no predecessors.
837     if (!SU.NumPredsLeft)
838       TopRoots.push_back(&SU);
839     // A SUnit is ready to bottom schedule if it has no successors.
840     if (!SU.NumSuccsLeft)
841       BotRoots.push_back(&SU);
842   }
843   ExitSU.biasCriticalPath();
844 }
845 
846 /// Identify DAG roots and setup scheduler queues.
847 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
848                                ArrayRef<SUnit*> BotRoots) {
849   NextClusterSucc = nullptr;
850   NextClusterPred = nullptr;
851 
852   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
853   //
854   // Nodes with unreleased weak edges can still be roots.
855   // Release top roots in forward order.
856   for (SUnit *SU : TopRoots)
857     SchedImpl->releaseTopNode(SU);
858 
859   // Release bottom roots in reverse order so the higher priority nodes appear
860   // first. This is more natural and slightly more efficient.
861   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
862          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
863     SchedImpl->releaseBottomNode(*I);
864   }
865 
866   releaseSuccessors(&EntrySU);
867   releasePredecessors(&ExitSU);
868 
869   SchedImpl->registerRoots();
870 
871   // Advance past initial DebugValues.
872   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
873   CurrentBottom = RegionEnd;
874 }
875 
876 /// Update scheduler queues after scheduling an instruction.
877 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
878   // Release dependent instructions for scheduling.
879   if (IsTopNode)
880     releaseSuccessors(SU);
881   else
882     releasePredecessors(SU);
883 
884   SU->isScheduled = true;
885 }
886 
887 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
888 void ScheduleDAGMI::placeDebugValues() {
889   // If first instruction was a DBG_VALUE then put it back.
890   if (FirstDbgValue) {
891     BB->splice(RegionBegin, BB, FirstDbgValue);
892     RegionBegin = FirstDbgValue;
893   }
894 
895   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
896          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
897     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
898     MachineInstr *DbgValue = P.first;
899     MachineBasicBlock::iterator OrigPrevMI = P.second;
900     if (&*RegionBegin == DbgValue)
901       ++RegionBegin;
902     BB->splice(++OrigPrevMI, BB, DbgValue);
903     if (OrigPrevMI == std::prev(RegionEnd))
904       RegionEnd = DbgValue;
905   }
906   DbgValues.clear();
907   FirstDbgValue = nullptr;
908 }
909 
910 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
911 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
912   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
913     if (SUnit *SU = getSUnit(&(*MI)))
914       dumpNode(*SU);
915     else
916       dbgs() << "Missing SUnit\n";
917   }
918 }
919 #endif
920 
921 //===----------------------------------------------------------------------===//
922 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
923 // preservation.
924 //===----------------------------------------------------------------------===//
925 
926 ScheduleDAGMILive::~ScheduleDAGMILive() {
927   delete DFSResult;
928 }
929 
930 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
931   const MachineInstr &MI = *SU.getInstr();
932   for (const MachineOperand &MO : MI.operands()) {
933     if (!MO.isReg())
934       continue;
935     if (!MO.readsReg())
936       continue;
937     if (TrackLaneMasks && !MO.isUse())
938       continue;
939 
940     Register Reg = MO.getReg();
941     if (!Register::isVirtualRegister(Reg))
942       continue;
943 
944     // Ignore re-defs.
945     if (TrackLaneMasks) {
946       bool FoundDef = false;
947       for (const MachineOperand &MO2 : MI.operands()) {
948         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
949           FoundDef = true;
950           break;
951         }
952       }
953       if (FoundDef)
954         continue;
955     }
956 
957     // Record this local VReg use.
958     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
959     for (; UI != VRegUses.end(); ++UI) {
960       if (UI->SU == &SU)
961         break;
962     }
963     if (UI == VRegUses.end())
964       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
965   }
966 }
967 
968 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
969 /// crossing a scheduling boundary. [begin, end) includes all instructions in
970 /// the region, including the boundary itself and single-instruction regions
971 /// that don't get scheduled.
972 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
973                                 MachineBasicBlock::iterator begin,
974                                 MachineBasicBlock::iterator end,
975                                 unsigned regioninstrs)
976 {
977   // ScheduleDAGMI initializes SchedImpl's per-region policy.
978   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
979 
980   // For convenience remember the end of the liveness region.
981   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
982 
983   SUPressureDiffs.clear();
984 
985   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
986   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
987 
988   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
989          "ShouldTrackLaneMasks requires ShouldTrackPressure");
990 }
991 
992 // Setup the register pressure trackers for the top scheduled and bottom
993 // scheduled regions.
994 void ScheduleDAGMILive::initRegPressure() {
995   VRegUses.clear();
996   VRegUses.setUniverse(MRI.getNumVirtRegs());
997   for (SUnit &SU : SUnits)
998     collectVRegUses(SU);
999 
1000   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1001                     ShouldTrackLaneMasks, false);
1002   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1003                     ShouldTrackLaneMasks, false);
1004 
1005   // Close the RPTracker to finalize live ins.
1006   RPTracker.closeRegion();
1007 
1008   LLVM_DEBUG(RPTracker.dump());
1009 
1010   // Initialize the live ins and live outs.
1011   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1012   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1013 
1014   // Close one end of the tracker so we can call
1015   // getMaxUpward/DownwardPressureDelta before advancing across any
1016   // instructions. This converts currently live regs into live ins/outs.
1017   TopRPTracker.closeTop();
1018   BotRPTracker.closeBottom();
1019 
1020   BotRPTracker.initLiveThru(RPTracker);
1021   if (!BotRPTracker.getLiveThru().empty()) {
1022     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1023     LLVM_DEBUG(dbgs() << "Live Thru: ";
1024                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1025   };
1026 
1027   // For each live out vreg reduce the pressure change associated with other
1028   // uses of the same vreg below the live-out reaching def.
1029   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1030 
1031   // Account for liveness generated by the region boundary.
1032   if (LiveRegionEnd != RegionEnd) {
1033     SmallVector<RegisterMaskPair, 8> LiveUses;
1034     BotRPTracker.recede(&LiveUses);
1035     updatePressureDiffs(LiveUses);
1036   }
1037 
1038   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1039              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1040              dbgs() << "Bottom Pressure:\n";
1041              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1042 
1043   assert((BotRPTracker.getPos() == RegionEnd ||
1044           (RegionEnd->isDebugInstr() &&
1045            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1046          "Can't find the region bottom");
1047 
1048   // Cache the list of excess pressure sets in this region. This will also track
1049   // the max pressure in the scheduled code for these sets.
1050   RegionCriticalPSets.clear();
1051   const std::vector<unsigned> &RegionPressure =
1052     RPTracker.getPressure().MaxSetPressure;
1053   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1054     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1055     if (RegionPressure[i] > Limit) {
1056       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1057                         << " Actual " << RegionPressure[i] << "\n");
1058       RegionCriticalPSets.push_back(PressureChange(i));
1059     }
1060   }
1061   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1062              for (const PressureChange &RCPS
1063                   : RegionCriticalPSets) dbgs()
1064              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1065              dbgs() << "\n");
1066 }
1067 
1068 void ScheduleDAGMILive::
1069 updateScheduledPressure(const SUnit *SU,
1070                         const std::vector<unsigned> &NewMaxPressure) {
1071   const PressureDiff &PDiff = getPressureDiff(SU);
1072   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1073   for (const PressureChange &PC : PDiff) {
1074     if (!PC.isValid())
1075       break;
1076     unsigned ID = PC.getPSet();
1077     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1078       ++CritIdx;
1079     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1080       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1081           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1082         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1083     }
1084     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1085     if (NewMaxPressure[ID] >= Limit - 2) {
1086       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1087                         << NewMaxPressure[ID]
1088                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1089                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1090                         << " livethru)\n");
1091     }
1092   }
1093 }
1094 
1095 /// Update the PressureDiff array for liveness after scheduling this
1096 /// instruction.
1097 void ScheduleDAGMILive::updatePressureDiffs(
1098     ArrayRef<RegisterMaskPair> LiveUses) {
1099   for (const RegisterMaskPair &P : LiveUses) {
1100     unsigned Reg = P.RegUnit;
1101     /// FIXME: Currently assuming single-use physregs.
1102     if (!Register::isVirtualRegister(Reg))
1103       continue;
1104 
1105     if (ShouldTrackLaneMasks) {
1106       // If the register has just become live then other uses won't change
1107       // this fact anymore => decrement pressure.
1108       // If the register has just become dead then other uses make it come
1109       // back to life => increment pressure.
1110       bool Decrement = P.LaneMask.any();
1111 
1112       for (const VReg2SUnit &V2SU
1113            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1114         SUnit &SU = *V2SU.SU;
1115         if (SU.isScheduled || &SU == &ExitSU)
1116           continue;
1117 
1118         PressureDiff &PDiff = getPressureDiff(&SU);
1119         PDiff.addPressureChange(Reg, Decrement, &MRI);
1120         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1121                           << printReg(Reg, TRI) << ':'
1122                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1123                    dbgs() << "              to "; PDiff.dump(*TRI););
1124       }
1125     } else {
1126       assert(P.LaneMask.any());
1127       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1128       // This may be called before CurrentBottom has been initialized. However,
1129       // BotRPTracker must have a valid position. We want the value live into the
1130       // instruction or live out of the block, so ask for the previous
1131       // instruction's live-out.
1132       const LiveInterval &LI = LIS->getInterval(Reg);
1133       VNInfo *VNI;
1134       MachineBasicBlock::const_iterator I =
1135         nextIfDebug(BotRPTracker.getPos(), BB->end());
1136       if (I == BB->end())
1137         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1138       else {
1139         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1140         VNI = LRQ.valueIn();
1141       }
1142       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1143       assert(VNI && "No live value at use.");
1144       for (const VReg2SUnit &V2SU
1145            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1146         SUnit *SU = V2SU.SU;
1147         // If this use comes before the reaching def, it cannot be a last use,
1148         // so decrease its pressure change.
1149         if (!SU->isScheduled && SU != &ExitSU) {
1150           LiveQueryResult LRQ =
1151               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1152           if (LRQ.valueIn() == VNI) {
1153             PressureDiff &PDiff = getPressureDiff(SU);
1154             PDiff.addPressureChange(Reg, true, &MRI);
1155             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1156                               << *SU->getInstr();
1157                        dbgs() << "              to "; PDiff.dump(*TRI););
1158           }
1159         }
1160       }
1161     }
1162   }
1163 }
1164 
1165 void ScheduleDAGMILive::dump() const {
1166 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1167   if (EntrySU.getInstr() != nullptr)
1168     dumpNodeAll(EntrySU);
1169   for (const SUnit &SU : SUnits) {
1170     dumpNodeAll(SU);
1171     if (ShouldTrackPressure) {
1172       dbgs() << "  Pressure Diff      : ";
1173       getPressureDiff(&SU).dump(*TRI);
1174     }
1175     dbgs() << "  Single Issue       : ";
1176     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1177         SchedModel.mustEndGroup(SU.getInstr()))
1178       dbgs() << "true;";
1179     else
1180       dbgs() << "false;";
1181     dbgs() << '\n';
1182   }
1183   if (ExitSU.getInstr() != nullptr)
1184     dumpNodeAll(ExitSU);
1185 #endif
1186 }
1187 
1188 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1189 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1190 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1191 ///
1192 /// This is a skeletal driver, with all the functionality pushed into helpers,
1193 /// so that it can be easily extended by experimental schedulers. Generally,
1194 /// implementing MachineSchedStrategy should be sufficient to implement a new
1195 /// scheduling algorithm. However, if a scheduler further subclasses
1196 /// ScheduleDAGMILive then it will want to override this virtual method in order
1197 /// to update any specialized state.
1198 void ScheduleDAGMILive::schedule() {
1199   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1200   LLVM_DEBUG(SchedImpl->dumpPolicy());
1201   buildDAGWithRegPressure();
1202 
1203   postprocessDAG();
1204 
1205   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1206   findRootsAndBiasEdges(TopRoots, BotRoots);
1207 
1208   // Initialize the strategy before modifying the DAG.
1209   // This may initialize a DFSResult to be used for queue priority.
1210   SchedImpl->initialize(this);
1211 
1212   LLVM_DEBUG(dump());
1213   if (PrintDAGs) dump();
1214   if (ViewMISchedDAGs) viewGraph();
1215 
1216   // Initialize ready queues now that the DAG and priority data are finalized.
1217   initQueues(TopRoots, BotRoots);
1218 
1219   bool IsTopNode = false;
1220   while (true) {
1221     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1222     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1223     if (!SU) break;
1224 
1225     assert(!SU->isScheduled && "Node already scheduled");
1226     if (!checkSchedLimit())
1227       break;
1228 
1229     scheduleMI(SU, IsTopNode);
1230 
1231     if (DFSResult) {
1232       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1233       if (!ScheduledTrees.test(SubtreeID)) {
1234         ScheduledTrees.set(SubtreeID);
1235         DFSResult->scheduleTree(SubtreeID);
1236         SchedImpl->scheduleTree(SubtreeID);
1237       }
1238     }
1239 
1240     // Notify the scheduling strategy after updating the DAG.
1241     SchedImpl->schedNode(SU, IsTopNode);
1242 
1243     updateQueues(SU, IsTopNode);
1244   }
1245   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1246 
1247   placeDebugValues();
1248 
1249   LLVM_DEBUG({
1250     dbgs() << "*** Final schedule for "
1251            << printMBBReference(*begin()->getParent()) << " ***\n";
1252     dumpSchedule();
1253     dbgs() << '\n';
1254   });
1255 }
1256 
1257 /// Build the DAG and setup three register pressure trackers.
1258 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1259   if (!ShouldTrackPressure) {
1260     RPTracker.reset();
1261     RegionCriticalPSets.clear();
1262     buildSchedGraph(AA);
1263     return;
1264   }
1265 
1266   // Initialize the register pressure tracker used by buildSchedGraph.
1267   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1268                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1269 
1270   // Account for liveness generate by the region boundary.
1271   if (LiveRegionEnd != RegionEnd)
1272     RPTracker.recede();
1273 
1274   // Build the DAG, and compute current register pressure.
1275   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1276 
1277   // Initialize top/bottom trackers after computing region pressure.
1278   initRegPressure();
1279 }
1280 
1281 void ScheduleDAGMILive::computeDFSResult() {
1282   if (!DFSResult)
1283     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1284   DFSResult->clear();
1285   ScheduledTrees.clear();
1286   DFSResult->resize(SUnits.size());
1287   DFSResult->compute(SUnits);
1288   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1289 }
1290 
1291 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1292 /// only provides the critical path for single block loops. To handle loops that
1293 /// span blocks, we could use the vreg path latencies provided by
1294 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1295 /// available for use in the scheduler.
1296 ///
1297 /// The cyclic path estimation identifies a def-use pair that crosses the back
1298 /// edge and considers the depth and height of the nodes. For example, consider
1299 /// the following instruction sequence where each instruction has unit latency
1300 /// and defines an epomymous virtual register:
1301 ///
1302 /// a->b(a,c)->c(b)->d(c)->exit
1303 ///
1304 /// The cyclic critical path is a two cycles: b->c->b
1305 /// The acyclic critical path is four cycles: a->b->c->d->exit
1306 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1307 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1308 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1309 /// LiveInDepth = depth(b) = len(a->b) = 1
1310 ///
1311 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1312 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1313 /// CyclicCriticalPath = min(2, 2) = 2
1314 ///
1315 /// This could be relevant to PostRA scheduling, but is currently implemented
1316 /// assuming LiveIntervals.
1317 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1318   // This only applies to single block loop.
1319   if (!BB->isSuccessor(BB))
1320     return 0;
1321 
1322   unsigned MaxCyclicLatency = 0;
1323   // Visit each live out vreg def to find def/use pairs that cross iterations.
1324   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1325     unsigned Reg = P.RegUnit;
1326     if (!Register::isVirtualRegister(Reg))
1327       continue;
1328     const LiveInterval &LI = LIS->getInterval(Reg);
1329     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1330     if (!DefVNI)
1331       continue;
1332 
1333     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1334     const SUnit *DefSU = getSUnit(DefMI);
1335     if (!DefSU)
1336       continue;
1337 
1338     unsigned LiveOutHeight = DefSU->getHeight();
1339     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1340     // Visit all local users of the vreg def.
1341     for (const VReg2SUnit &V2SU
1342          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1343       SUnit *SU = V2SU.SU;
1344       if (SU == &ExitSU)
1345         continue;
1346 
1347       // Only consider uses of the phi.
1348       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1349       if (!LRQ.valueIn()->isPHIDef())
1350         continue;
1351 
1352       // Assume that a path spanning two iterations is a cycle, which could
1353       // overestimate in strange cases. This allows cyclic latency to be
1354       // estimated as the minimum slack of the vreg's depth or height.
1355       unsigned CyclicLatency = 0;
1356       if (LiveOutDepth > SU->getDepth())
1357         CyclicLatency = LiveOutDepth - SU->getDepth();
1358 
1359       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1360       if (LiveInHeight > LiveOutHeight) {
1361         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1362           CyclicLatency = LiveInHeight - LiveOutHeight;
1363       } else
1364         CyclicLatency = 0;
1365 
1366       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1367                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1368       if (CyclicLatency > MaxCyclicLatency)
1369         MaxCyclicLatency = CyclicLatency;
1370     }
1371   }
1372   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1373   return MaxCyclicLatency;
1374 }
1375 
1376 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1377 /// the Top RP tracker in case the region beginning has changed.
1378 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1379                                    ArrayRef<SUnit*> BotRoots) {
1380   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1381   if (ShouldTrackPressure) {
1382     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1383     TopRPTracker.setPos(CurrentTop);
1384   }
1385 }
1386 
1387 /// Move an instruction and update register pressure.
1388 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1389   // Move the instruction to its new location in the instruction stream.
1390   MachineInstr *MI = SU->getInstr();
1391 
1392   if (IsTopNode) {
1393     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1394     if (&*CurrentTop == MI)
1395       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1396     else {
1397       moveInstruction(MI, CurrentTop);
1398       TopRPTracker.setPos(MI);
1399     }
1400 
1401     if (ShouldTrackPressure) {
1402       // Update top scheduled pressure.
1403       RegisterOperands RegOpers;
1404       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1405       if (ShouldTrackLaneMasks) {
1406         // Adjust liveness and add missing dead+read-undef flags.
1407         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1408         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1409       } else {
1410         // Adjust for missing dead-def flags.
1411         RegOpers.detectDeadDefs(*MI, *LIS);
1412       }
1413 
1414       TopRPTracker.advance(RegOpers);
1415       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1416       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1417                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1418 
1419       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1420     }
1421   } else {
1422     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1423     MachineBasicBlock::iterator priorII =
1424       priorNonDebug(CurrentBottom, CurrentTop);
1425     if (&*priorII == MI)
1426       CurrentBottom = priorII;
1427     else {
1428       if (&*CurrentTop == MI) {
1429         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1430         TopRPTracker.setPos(CurrentTop);
1431       }
1432       moveInstruction(MI, CurrentBottom);
1433       CurrentBottom = MI;
1434       BotRPTracker.setPos(CurrentBottom);
1435     }
1436     if (ShouldTrackPressure) {
1437       RegisterOperands RegOpers;
1438       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1439       if (ShouldTrackLaneMasks) {
1440         // Adjust liveness and add missing dead+read-undef flags.
1441         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1442         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1443       } else {
1444         // Adjust for missing dead-def flags.
1445         RegOpers.detectDeadDefs(*MI, *LIS);
1446       }
1447 
1448       if (BotRPTracker.getPos() != CurrentBottom)
1449         BotRPTracker.recedeSkipDebugValues();
1450       SmallVector<RegisterMaskPair, 8> LiveUses;
1451       BotRPTracker.recede(RegOpers, &LiveUses);
1452       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1453       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1454                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1455 
1456       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1457       updatePressureDiffs(LiveUses);
1458     }
1459   }
1460 }
1461 
1462 //===----------------------------------------------------------------------===//
1463 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1464 //===----------------------------------------------------------------------===//
1465 
1466 namespace {
1467 
1468 /// Post-process the DAG to create cluster edges between neighboring
1469 /// loads or between neighboring stores.
1470 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1471   struct MemOpInfo {
1472     SUnit *SU;
1473     const MachineOperand *BaseOp;
1474     int64_t Offset;
1475 
1476     MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
1477         : SU(su), BaseOp(Op), Offset(ofs) {}
1478 
1479     bool operator<(const MemOpInfo &RHS) const {
1480       if (BaseOp->getType() != RHS.BaseOp->getType())
1481         return BaseOp->getType() < RHS.BaseOp->getType();
1482 
1483       if (BaseOp->isReg())
1484         return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1485                std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1486                                RHS.SU->NodeNum);
1487       if (BaseOp->isFI()) {
1488         const MachineFunction &MF =
1489             *BaseOp->getParent()->getParent()->getParent();
1490         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1491         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1492                               TargetFrameLowering::StackGrowsDown;
1493         // Can't use tuple comparison here since we might need to use a
1494         // different order when the stack grows down.
1495         if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1496           return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1497                                 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1498 
1499         if (Offset != RHS.Offset)
1500           return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1501 
1502         return SU->NodeNum < RHS.SU->NodeNum;
1503       }
1504 
1505       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1506                        "index bases.");
1507     }
1508   };
1509 
1510   const TargetInstrInfo *TII;
1511   const TargetRegisterInfo *TRI;
1512   bool IsLoad;
1513 
1514 public:
1515   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1516                            const TargetRegisterInfo *tri, bool IsLoad)
1517       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1518 
1519   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1520 
1521 protected:
1522   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1523 };
1524 
1525 class StoreClusterMutation : public BaseMemOpClusterMutation {
1526 public:
1527   StoreClusterMutation(const TargetInstrInfo *tii,
1528                        const TargetRegisterInfo *tri)
1529       : BaseMemOpClusterMutation(tii, tri, false) {}
1530 };
1531 
1532 class LoadClusterMutation : public BaseMemOpClusterMutation {
1533 public:
1534   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1535       : BaseMemOpClusterMutation(tii, tri, true) {}
1536 };
1537 
1538 } // end anonymous namespace
1539 
1540 namespace llvm {
1541 
1542 std::unique_ptr<ScheduleDAGMutation>
1543 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1544                              const TargetRegisterInfo *TRI) {
1545   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
1546                             : nullptr;
1547 }
1548 
1549 std::unique_ptr<ScheduleDAGMutation>
1550 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1551                               const TargetRegisterInfo *TRI) {
1552   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
1553                             : nullptr;
1554 }
1555 
1556 } // end namespace llvm
1557 
1558 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1559     ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1560   SmallVector<MemOpInfo, 32> MemOpRecords;
1561   for (SUnit *SU : MemOps) {
1562     const MachineOperand *BaseOp;
1563     int64_t Offset;
1564     if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1565       MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1566   }
1567   if (MemOpRecords.size() < 2)
1568     return;
1569 
1570   llvm::sort(MemOpRecords);
1571   unsigned ClusterLength = 1;
1572   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1573     SUnit *SUa = MemOpRecords[Idx].SU;
1574     SUnit *SUb = MemOpRecords[Idx+1].SU;
1575     if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1576                                  *MemOpRecords[Idx + 1].BaseOp,
1577                                  ClusterLength) &&
1578         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1579       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1580                         << SUb->NodeNum << ")\n");
1581       // Copy successor edges from SUa to SUb. Interleaving computation
1582       // dependent on SUa can prevent load combining due to register reuse.
1583       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1584       // loads should have effectively the same inputs.
1585       for (const SDep &Succ : SUa->Succs) {
1586         if (Succ.getSUnit() == SUb)
1587           continue;
1588         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1589                           << ")\n");
1590         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1591       }
1592       ++ClusterLength;
1593     } else
1594       ClusterLength = 1;
1595   }
1596 }
1597 
1598 /// Callback from DAG postProcessing to create cluster edges for loads.
1599 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1600   // Map DAG NodeNum to store chain ID.
1601   DenseMap<unsigned, unsigned> StoreChainIDs;
1602   // Map each store chain to a set of dependent MemOps.
1603   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1604   for (SUnit &SU : DAG->SUnits) {
1605     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1606         (!IsLoad && !SU.getInstr()->mayStore()))
1607       continue;
1608 
1609     unsigned ChainPredID = DAG->SUnits.size();
1610     for (const SDep &Pred : SU.Preds) {
1611       if (Pred.isCtrl()) {
1612         ChainPredID = Pred.getSUnit()->NodeNum;
1613         break;
1614       }
1615     }
1616     // Check if this chain-like pred has been seen
1617     // before. ChainPredID==MaxNodeID at the top of the schedule.
1618     unsigned NumChains = StoreChainDependents.size();
1619     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1620       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1621     if (Result.second)
1622       StoreChainDependents.resize(NumChains + 1);
1623     StoreChainDependents[Result.first->second].push_back(&SU);
1624   }
1625 
1626   // Iterate over the store chains.
1627   for (auto &SCD : StoreChainDependents)
1628     clusterNeighboringMemOps(SCD, DAG);
1629 }
1630 
1631 //===----------------------------------------------------------------------===//
1632 // CopyConstrain - DAG post-processing to encourage copy elimination.
1633 //===----------------------------------------------------------------------===//
1634 
1635 namespace {
1636 
1637 /// Post-process the DAG to create weak edges from all uses of a copy to
1638 /// the one use that defines the copy's source vreg, most likely an induction
1639 /// variable increment.
1640 class CopyConstrain : public ScheduleDAGMutation {
1641   // Transient state.
1642   SlotIndex RegionBeginIdx;
1643 
1644   // RegionEndIdx is the slot index of the last non-debug instruction in the
1645   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1646   SlotIndex RegionEndIdx;
1647 
1648 public:
1649   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1650 
1651   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1652 
1653 protected:
1654   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1655 };
1656 
1657 } // end anonymous namespace
1658 
1659 namespace llvm {
1660 
1661 std::unique_ptr<ScheduleDAGMutation>
1662 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1663                                const TargetRegisterInfo *TRI) {
1664   return std::make_unique<CopyConstrain>(TII, TRI);
1665 }
1666 
1667 } // end namespace llvm
1668 
1669 /// constrainLocalCopy handles two possibilities:
1670 /// 1) Local src:
1671 /// I0:     = dst
1672 /// I1: src = ...
1673 /// I2:     = dst
1674 /// I3: dst = src (copy)
1675 /// (create pred->succ edges I0->I1, I2->I1)
1676 ///
1677 /// 2) Local copy:
1678 /// I0: dst = src (copy)
1679 /// I1:     = dst
1680 /// I2: src = ...
1681 /// I3:     = dst
1682 /// (create pred->succ edges I1->I2, I3->I2)
1683 ///
1684 /// Although the MachineScheduler is currently constrained to single blocks,
1685 /// this algorithm should handle extended blocks. An EBB is a set of
1686 /// contiguously numbered blocks such that the previous block in the EBB is
1687 /// always the single predecessor.
1688 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1689   LiveIntervals *LIS = DAG->getLIS();
1690   MachineInstr *Copy = CopySU->getInstr();
1691 
1692   // Check for pure vreg copies.
1693   const MachineOperand &SrcOp = Copy->getOperand(1);
1694   Register SrcReg = SrcOp.getReg();
1695   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1696     return;
1697 
1698   const MachineOperand &DstOp = Copy->getOperand(0);
1699   Register DstReg = DstOp.getReg();
1700   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
1701     return;
1702 
1703   // Check if either the dest or source is local. If it's live across a back
1704   // edge, it's not local. Note that if both vregs are live across the back
1705   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1706   // If both the copy's source and dest are local live intervals, then we
1707   // should treat the dest as the global for the purpose of adding
1708   // constraints. This adds edges from source's other uses to the copy.
1709   unsigned LocalReg = SrcReg;
1710   unsigned GlobalReg = DstReg;
1711   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1712   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1713     LocalReg = DstReg;
1714     GlobalReg = SrcReg;
1715     LocalLI = &LIS->getInterval(LocalReg);
1716     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1717       return;
1718   }
1719   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1720 
1721   // Find the global segment after the start of the local LI.
1722   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1723   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1724   // local live range. We could create edges from other global uses to the local
1725   // start, but the coalescer should have already eliminated these cases, so
1726   // don't bother dealing with it.
1727   if (GlobalSegment == GlobalLI->end())
1728     return;
1729 
1730   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1731   // returned the next global segment. But if GlobalSegment overlaps with
1732   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1733   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1734   if (GlobalSegment->contains(LocalLI->beginIndex()))
1735     ++GlobalSegment;
1736 
1737   if (GlobalSegment == GlobalLI->end())
1738     return;
1739 
1740   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1741   if (GlobalSegment != GlobalLI->begin()) {
1742     // Two address defs have no hole.
1743     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1744                                GlobalSegment->start)) {
1745       return;
1746     }
1747     // If the prior global segment may be defined by the same two-address
1748     // instruction that also defines LocalLI, then can't make a hole here.
1749     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1750                                LocalLI->beginIndex())) {
1751       return;
1752     }
1753     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1754     // it would be a disconnected component in the live range.
1755     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1756            "Disconnected LRG within the scheduling region.");
1757   }
1758   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1759   if (!GlobalDef)
1760     return;
1761 
1762   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1763   if (!GlobalSU)
1764     return;
1765 
1766   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1767   // constraining the uses of the last local def to precede GlobalDef.
1768   SmallVector<SUnit*,8> LocalUses;
1769   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1770   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1771   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1772   for (const SDep &Succ : LastLocalSU->Succs) {
1773     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1774       continue;
1775     if (Succ.getSUnit() == GlobalSU)
1776       continue;
1777     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1778       return;
1779     LocalUses.push_back(Succ.getSUnit());
1780   }
1781   // Open the top of the GlobalLI hole by constraining any earlier global uses
1782   // to precede the start of LocalLI.
1783   SmallVector<SUnit*,8> GlobalUses;
1784   MachineInstr *FirstLocalDef =
1785     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1786   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1787   for (const SDep &Pred : GlobalSU->Preds) {
1788     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1789       continue;
1790     if (Pred.getSUnit() == FirstLocalSU)
1791       continue;
1792     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1793       return;
1794     GlobalUses.push_back(Pred.getSUnit());
1795   }
1796   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1797   // Add the weak edges.
1798   for (SmallVectorImpl<SUnit*>::const_iterator
1799          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1800     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1801                       << GlobalSU->NodeNum << ")\n");
1802     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1803   }
1804   for (SmallVectorImpl<SUnit*>::const_iterator
1805          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1806     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1807                       << FirstLocalSU->NodeNum << ")\n");
1808     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1809   }
1810 }
1811 
1812 /// Callback from DAG postProcessing to create weak edges to encourage
1813 /// copy elimination.
1814 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1815   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1816   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1817 
1818   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1819   if (FirstPos == DAG->end())
1820     return;
1821   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1822   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1823       *priorNonDebug(DAG->end(), DAG->begin()));
1824 
1825   for (SUnit &SU : DAG->SUnits) {
1826     if (!SU.getInstr()->isCopy())
1827       continue;
1828 
1829     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1830   }
1831 }
1832 
1833 //===----------------------------------------------------------------------===//
1834 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1835 // and possibly other custom schedulers.
1836 //===----------------------------------------------------------------------===//
1837 
1838 static const unsigned InvalidCycle = ~0U;
1839 
1840 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1841 
1842 /// Given a Count of resource usage and a Latency value, return true if a
1843 /// SchedBoundary becomes resource limited.
1844 /// If we are checking after scheduling a node, we should return true when
1845 /// we just reach the resource limit.
1846 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1847                                unsigned Latency, bool AfterSchedNode) {
1848   int ResCntFactor = (int)(Count - (Latency * LFactor));
1849   if (AfterSchedNode)
1850     return ResCntFactor >= (int)LFactor;
1851   else
1852     return ResCntFactor > (int)LFactor;
1853 }
1854 
1855 void SchedBoundary::reset() {
1856   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1857   // Destroying and reconstructing it is very expensive though. So keep
1858   // invalid, placeholder HazardRecs.
1859   if (HazardRec && HazardRec->isEnabled()) {
1860     delete HazardRec;
1861     HazardRec = nullptr;
1862   }
1863   Available.clear();
1864   Pending.clear();
1865   CheckPending = false;
1866   CurrCycle = 0;
1867   CurrMOps = 0;
1868   MinReadyCycle = std::numeric_limits<unsigned>::max();
1869   ExpectedLatency = 0;
1870   DependentLatency = 0;
1871   RetiredMOps = 0;
1872   MaxExecutedResCount = 0;
1873   ZoneCritResIdx = 0;
1874   IsResourceLimited = false;
1875   ReservedCycles.clear();
1876   ReservedCyclesIndex.clear();
1877 #ifndef NDEBUG
1878   // Track the maximum number of stall cycles that could arise either from the
1879   // latency of a DAG edge or the number of cycles that a processor resource is
1880   // reserved (SchedBoundary::ReservedCycles).
1881   MaxObservedStall = 0;
1882 #endif
1883   // Reserve a zero-count for invalid CritResIdx.
1884   ExecutedResCounts.resize(1);
1885   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1886 }
1887 
1888 void SchedRemainder::
1889 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1890   reset();
1891   if (!SchedModel->hasInstrSchedModel())
1892     return;
1893   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1894   for (SUnit &SU : DAG->SUnits) {
1895     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1896     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1897       * SchedModel->getMicroOpFactor();
1898     for (TargetSchedModel::ProcResIter
1899            PI = SchedModel->getWriteProcResBegin(SC),
1900            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1901       unsigned PIdx = PI->ProcResourceIdx;
1902       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1903       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1904     }
1905   }
1906 }
1907 
1908 void SchedBoundary::
1909 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1910   reset();
1911   DAG = dag;
1912   SchedModel = smodel;
1913   Rem = rem;
1914   if (SchedModel->hasInstrSchedModel()) {
1915     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1916     ReservedCyclesIndex.resize(ResourceCount);
1917     ExecutedResCounts.resize(ResourceCount);
1918     unsigned NumUnits = 0;
1919 
1920     for (unsigned i = 0; i < ResourceCount; ++i) {
1921       ReservedCyclesIndex[i] = NumUnits;
1922       NumUnits += SchedModel->getProcResource(i)->NumUnits;
1923     }
1924 
1925     ReservedCycles.resize(NumUnits, InvalidCycle);
1926   }
1927 }
1928 
1929 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1930 /// these "soft stalls" differently than the hard stall cycles based on CPU
1931 /// resources and computed by checkHazard(). A fully in-order model
1932 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1933 /// available for scheduling until they are ready. However, a weaker in-order
1934 /// model may use this for heuristics. For example, if a processor has in-order
1935 /// behavior when reading certain resources, this may come into play.
1936 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1937   if (!SU->isUnbuffered)
1938     return 0;
1939 
1940   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1941   if (ReadyCycle > CurrCycle)
1942     return ReadyCycle - CurrCycle;
1943   return 0;
1944 }
1945 
1946 /// Compute the next cycle at which the given processor resource unit
1947 /// can be scheduled.
1948 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
1949                                                        unsigned Cycles) {
1950   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
1951   // If this resource has never been used, always return cycle zero.
1952   if (NextUnreserved == InvalidCycle)
1953     return 0;
1954   // For bottom-up scheduling add the cycles needed for the current operation.
1955   if (!isTop())
1956     NextUnreserved += Cycles;
1957   return NextUnreserved;
1958 }
1959 
1960 /// Compute the next cycle at which the given processor resource can be
1961 /// scheduled.  Returns the next cycle and the index of the processor resource
1962 /// instance in the reserved cycles vector.
1963 std::pair<unsigned, unsigned>
1964 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1965   unsigned MinNextUnreserved = InvalidCycle;
1966   unsigned InstanceIdx = 0;
1967   unsigned StartIndex = ReservedCyclesIndex[PIdx];
1968   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
1969   assert(NumberOfInstances > 0 &&
1970          "Cannot have zero instances of a ProcResource");
1971 
1972   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
1973        ++I) {
1974     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
1975     if (MinNextUnreserved > NextUnreserved) {
1976       InstanceIdx = I;
1977       MinNextUnreserved = NextUnreserved;
1978     }
1979   }
1980   return std::make_pair(MinNextUnreserved, InstanceIdx);
1981 }
1982 
1983 /// Does this SU have a hazard within the current instruction group.
1984 ///
1985 /// The scheduler supports two modes of hazard recognition. The first is the
1986 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1987 /// supports highly complicated in-order reservation tables
1988 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1989 ///
1990 /// The second is a streamlined mechanism that checks for hazards based on
1991 /// simple counters that the scheduler itself maintains. It explicitly checks
1992 /// for instruction dispatch limitations, including the number of micro-ops that
1993 /// can dispatch per cycle.
1994 ///
1995 /// TODO: Also check whether the SU must start a new group.
1996 bool SchedBoundary::checkHazard(SUnit *SU) {
1997   if (HazardRec->isEnabled()
1998       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1999     return true;
2000   }
2001 
2002   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
2003   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
2004     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
2005                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
2006     return true;
2007   }
2008 
2009   if (CurrMOps > 0 &&
2010       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2011        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2012     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2013                       << (isTop() ? "begin" : "end") << " group\n");
2014     return true;
2015   }
2016 
2017   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2018     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2019     for (const MCWriteProcResEntry &PE :
2020           make_range(SchedModel->getWriteProcResBegin(SC),
2021                      SchedModel->getWriteProcResEnd(SC))) {
2022       unsigned ResIdx = PE.ProcResourceIdx;
2023       unsigned Cycles = PE.Cycles;
2024       unsigned NRCycle, InstanceIdx;
2025       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2026       if (NRCycle > CurrCycle) {
2027 #ifndef NDEBUG
2028         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2029 #endif
2030         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2031                           << SchedModel->getResourceName(ResIdx)
2032                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2033                           << "=" << NRCycle << "c\n");
2034         return true;
2035       }
2036     }
2037   }
2038   return false;
2039 }
2040 
2041 // Find the unscheduled node in ReadySUs with the highest latency.
2042 unsigned SchedBoundary::
2043 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2044   SUnit *LateSU = nullptr;
2045   unsigned RemLatency = 0;
2046   for (SUnit *SU : ReadySUs) {
2047     unsigned L = getUnscheduledLatency(SU);
2048     if (L > RemLatency) {
2049       RemLatency = L;
2050       LateSU = SU;
2051     }
2052   }
2053   if (LateSU) {
2054     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2055                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2056   }
2057   return RemLatency;
2058 }
2059 
2060 // Count resources in this zone and the remaining unscheduled
2061 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2062 // resource index, or zero if the zone is issue limited.
2063 unsigned SchedBoundary::
2064 getOtherResourceCount(unsigned &OtherCritIdx) {
2065   OtherCritIdx = 0;
2066   if (!SchedModel->hasInstrSchedModel())
2067     return 0;
2068 
2069   unsigned OtherCritCount = Rem->RemIssueCount
2070     + (RetiredMOps * SchedModel->getMicroOpFactor());
2071   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2072                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2073   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2074        PIdx != PEnd; ++PIdx) {
2075     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2076     if (OtherCount > OtherCritCount) {
2077       OtherCritCount = OtherCount;
2078       OtherCritIdx = PIdx;
2079     }
2080   }
2081   if (OtherCritIdx) {
2082     LLVM_DEBUG(
2083         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2084                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2085                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2086   }
2087   return OtherCritCount;
2088 }
2089 
2090 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2091   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2092 
2093 #ifndef NDEBUG
2094   // ReadyCycle was been bumped up to the CurrCycle when this node was
2095   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2096   // scheduling, so may now be greater than ReadyCycle.
2097   if (ReadyCycle > CurrCycle)
2098     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2099 #endif
2100 
2101   if (ReadyCycle < MinReadyCycle)
2102     MinReadyCycle = ReadyCycle;
2103 
2104   // Check for interlocks first. For the purpose of other heuristics, an
2105   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2106   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2107   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2108       Available.size() >= ReadyListLimit)
2109     Pending.push(SU);
2110   else
2111     Available.push(SU);
2112 }
2113 
2114 /// Move the boundary of scheduled code by one cycle.
2115 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2116   if (SchedModel->getMicroOpBufferSize() == 0) {
2117     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2118            "MinReadyCycle uninitialized");
2119     if (MinReadyCycle > NextCycle)
2120       NextCycle = MinReadyCycle;
2121   }
2122   // Update the current micro-ops, which will issue in the next cycle.
2123   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2124   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2125 
2126   // Decrement DependentLatency based on the next cycle.
2127   if ((NextCycle - CurrCycle) > DependentLatency)
2128     DependentLatency = 0;
2129   else
2130     DependentLatency -= (NextCycle - CurrCycle);
2131 
2132   if (!HazardRec->isEnabled()) {
2133     // Bypass HazardRec virtual calls.
2134     CurrCycle = NextCycle;
2135   } else {
2136     // Bypass getHazardType calls in case of long latency.
2137     for (; CurrCycle != NextCycle; ++CurrCycle) {
2138       if (isTop())
2139         HazardRec->AdvanceCycle();
2140       else
2141         HazardRec->RecedeCycle();
2142     }
2143   }
2144   CheckPending = true;
2145   IsResourceLimited =
2146       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2147                          getScheduledLatency(), true);
2148 
2149   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2150                     << '\n');
2151 }
2152 
2153 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2154   ExecutedResCounts[PIdx] += Count;
2155   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2156     MaxExecutedResCount = ExecutedResCounts[PIdx];
2157 }
2158 
2159 /// Add the given processor resource to this scheduled zone.
2160 ///
2161 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2162 /// during which this resource is consumed.
2163 ///
2164 /// \return the next cycle at which the instruction may execute without
2165 /// oversubscribing resources.
2166 unsigned SchedBoundary::
2167 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2168   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2169   unsigned Count = Factor * Cycles;
2170   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2171                     << Cycles << "x" << Factor << "u\n");
2172 
2173   // Update Executed resources counts.
2174   incExecutedResources(PIdx, Count);
2175   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2176   Rem->RemainingCounts[PIdx] -= Count;
2177 
2178   // Check if this resource exceeds the current critical resource. If so, it
2179   // becomes the critical resource.
2180   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2181     ZoneCritResIdx = PIdx;
2182     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2183                       << SchedModel->getResourceName(PIdx) << ": "
2184                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2185                       << "c\n");
2186   }
2187   // For reserved resources, record the highest cycle using the resource.
2188   unsigned NextAvailable, InstanceIdx;
2189   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2190   if (NextAvailable > CurrCycle) {
2191     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2192                       << SchedModel->getResourceName(PIdx)
2193                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2194                       << " reserved until @" << NextAvailable << "\n");
2195   }
2196   return NextAvailable;
2197 }
2198 
2199 /// Move the boundary of scheduled code by one SUnit.
2200 void SchedBoundary::bumpNode(SUnit *SU) {
2201   // Update the reservation table.
2202   if (HazardRec->isEnabled()) {
2203     if (!isTop() && SU->isCall) {
2204       // Calls are scheduled with their preceding instructions. For bottom-up
2205       // scheduling, clear the pipeline state before emitting.
2206       HazardRec->Reset();
2207     }
2208     HazardRec->EmitInstruction(SU);
2209     // Scheduling an instruction may have made pending instructions available.
2210     CheckPending = true;
2211   }
2212   // checkHazard should prevent scheduling multiple instructions per cycle that
2213   // exceed the issue width.
2214   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2215   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2216   assert(
2217       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2218       "Cannot schedule this instruction's MicroOps in the current cycle.");
2219 
2220   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2221   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2222 
2223   unsigned NextCycle = CurrCycle;
2224   switch (SchedModel->getMicroOpBufferSize()) {
2225   case 0:
2226     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2227     break;
2228   case 1:
2229     if (ReadyCycle > NextCycle) {
2230       NextCycle = ReadyCycle;
2231       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2232     }
2233     break;
2234   default:
2235     // We don't currently model the OOO reorder buffer, so consider all
2236     // scheduled MOps to be "retired". We do loosely model in-order resource
2237     // latency. If this instruction uses an in-order resource, account for any
2238     // likely stall cycles.
2239     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2240       NextCycle = ReadyCycle;
2241     break;
2242   }
2243   RetiredMOps += IncMOps;
2244 
2245   // Update resource counts and critical resource.
2246   if (SchedModel->hasInstrSchedModel()) {
2247     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2248     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2249     Rem->RemIssueCount -= DecRemIssue;
2250     if (ZoneCritResIdx) {
2251       // Scale scheduled micro-ops for comparing with the critical resource.
2252       unsigned ScaledMOps =
2253         RetiredMOps * SchedModel->getMicroOpFactor();
2254 
2255       // If scaled micro-ops are now more than the previous critical resource by
2256       // a full cycle, then micro-ops issue becomes critical.
2257       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2258           >= (int)SchedModel->getLatencyFactor()) {
2259         ZoneCritResIdx = 0;
2260         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2261                           << ScaledMOps / SchedModel->getLatencyFactor()
2262                           << "c\n");
2263       }
2264     }
2265     for (TargetSchedModel::ProcResIter
2266            PI = SchedModel->getWriteProcResBegin(SC),
2267            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2268       unsigned RCycle =
2269         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2270       if (RCycle > NextCycle)
2271         NextCycle = RCycle;
2272     }
2273     if (SU->hasReservedResource) {
2274       // For reserved resources, record the highest cycle using the resource.
2275       // For top-down scheduling, this is the cycle in which we schedule this
2276       // instruction plus the number of cycles the operations reserves the
2277       // resource. For bottom-up is it simply the instruction's cycle.
2278       for (TargetSchedModel::ProcResIter
2279              PI = SchedModel->getWriteProcResBegin(SC),
2280              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2281         unsigned PIdx = PI->ProcResourceIdx;
2282         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2283           unsigned ReservedUntil, InstanceIdx;
2284           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2285           if (isTop()) {
2286             ReservedCycles[InstanceIdx] =
2287                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2288           } else
2289             ReservedCycles[InstanceIdx] = NextCycle;
2290         }
2291       }
2292     }
2293   }
2294   // Update ExpectedLatency and DependentLatency.
2295   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2296   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2297   if (SU->getDepth() > TopLatency) {
2298     TopLatency = SU->getDepth();
2299     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2300                       << SU->NodeNum << ") " << TopLatency << "c\n");
2301   }
2302   if (SU->getHeight() > BotLatency) {
2303     BotLatency = SU->getHeight();
2304     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2305                       << SU->NodeNum << ") " << BotLatency << "c\n");
2306   }
2307   // If we stall for any reason, bump the cycle.
2308   if (NextCycle > CurrCycle)
2309     bumpCycle(NextCycle);
2310   else
2311     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2312     // resource limited. If a stall occurred, bumpCycle does this.
2313     IsResourceLimited =
2314         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2315                            getScheduledLatency(), true);
2316 
2317   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2318   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2319   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2320   // bump the cycle to avoid uselessly checking everything in the readyQ.
2321   CurrMOps += IncMOps;
2322 
2323   // Bump the cycle count for issue group constraints.
2324   // This must be done after NextCycle has been adjust for all other stalls.
2325   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2326   // currCycle to X.
2327   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2328       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2329     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2330                       << " group\n");
2331     bumpCycle(++NextCycle);
2332   }
2333 
2334   while (CurrMOps >= SchedModel->getIssueWidth()) {
2335     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2336                       << CurrCycle << '\n');
2337     bumpCycle(++NextCycle);
2338   }
2339   LLVM_DEBUG(dumpScheduledState());
2340 }
2341 
2342 /// Release pending ready nodes in to the available queue. This makes them
2343 /// visible to heuristics.
2344 void SchedBoundary::releasePending() {
2345   // If the available queue is empty, it is safe to reset MinReadyCycle.
2346   if (Available.empty())
2347     MinReadyCycle = std::numeric_limits<unsigned>::max();
2348 
2349   // Check to see if any of the pending instructions are ready to issue.  If
2350   // so, add them to the available queue.
2351   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2352   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2353     SUnit *SU = *(Pending.begin()+i);
2354     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2355 
2356     if (ReadyCycle < MinReadyCycle)
2357       MinReadyCycle = ReadyCycle;
2358 
2359     if (!IsBuffered && ReadyCycle > CurrCycle)
2360       continue;
2361 
2362     if (checkHazard(SU))
2363       continue;
2364 
2365     if (Available.size() >= ReadyListLimit)
2366       break;
2367 
2368     Available.push(SU);
2369     Pending.remove(Pending.begin()+i);
2370     --i; --e;
2371   }
2372   CheckPending = false;
2373 }
2374 
2375 /// Remove SU from the ready set for this boundary.
2376 void SchedBoundary::removeReady(SUnit *SU) {
2377   if (Available.isInQueue(SU))
2378     Available.remove(Available.find(SU));
2379   else {
2380     assert(Pending.isInQueue(SU) && "bad ready count");
2381     Pending.remove(Pending.find(SU));
2382   }
2383 }
2384 
2385 /// If this queue only has one ready candidate, return it. As a side effect,
2386 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2387 /// one node is ready. If multiple instructions are ready, return NULL.
2388 SUnit *SchedBoundary::pickOnlyChoice() {
2389   if (CheckPending)
2390     releasePending();
2391 
2392   if (CurrMOps > 0) {
2393     // Defer any ready instrs that now have a hazard.
2394     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2395       if (checkHazard(*I)) {
2396         Pending.push(*I);
2397         I = Available.remove(I);
2398         continue;
2399       }
2400       ++I;
2401     }
2402   }
2403   for (unsigned i = 0; Available.empty(); ++i) {
2404 //  FIXME: Re-enable assert once PR20057 is resolved.
2405 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2406 //           "permanent hazard");
2407     (void)i;
2408     bumpCycle(CurrCycle + 1);
2409     releasePending();
2410   }
2411 
2412   LLVM_DEBUG(Pending.dump());
2413   LLVM_DEBUG(Available.dump());
2414 
2415   if (Available.size() == 1)
2416     return *Available.begin();
2417   return nullptr;
2418 }
2419 
2420 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2421 // This is useful information to dump after bumpNode.
2422 // Note that the Queue contents are more useful before pickNodeFromQueue.
2423 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2424   unsigned ResFactor;
2425   unsigned ResCount;
2426   if (ZoneCritResIdx) {
2427     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2428     ResCount = getResourceCount(ZoneCritResIdx);
2429   } else {
2430     ResFactor = SchedModel->getMicroOpFactor();
2431     ResCount = RetiredMOps * ResFactor;
2432   }
2433   unsigned LFactor = SchedModel->getLatencyFactor();
2434   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2435          << "  Retired: " << RetiredMOps;
2436   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2437   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2438          << ResCount / ResFactor << " "
2439          << SchedModel->getResourceName(ZoneCritResIdx)
2440          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2441          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2442          << " limited.\n";
2443 }
2444 #endif
2445 
2446 //===----------------------------------------------------------------------===//
2447 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2448 //===----------------------------------------------------------------------===//
2449 
2450 void GenericSchedulerBase::SchedCandidate::
2451 initResourceDelta(const ScheduleDAGMI *DAG,
2452                   const TargetSchedModel *SchedModel) {
2453   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2454     return;
2455 
2456   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2457   for (TargetSchedModel::ProcResIter
2458          PI = SchedModel->getWriteProcResBegin(SC),
2459          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2460     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2461       ResDelta.CritResources += PI->Cycles;
2462     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2463       ResDelta.DemandedResources += PI->Cycles;
2464   }
2465 }
2466 
2467 /// Compute remaining latency. We need this both to determine whether the
2468 /// overall schedule has become latency-limited and whether the instructions
2469 /// outside this zone are resource or latency limited.
2470 ///
2471 /// The "dependent" latency is updated incrementally during scheduling as the
2472 /// max height/depth of scheduled nodes minus the cycles since it was
2473 /// scheduled:
2474 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2475 ///
2476 /// The "independent" latency is the max ready queue depth:
2477 ///   ILat = max N.depth for N in Available|Pending
2478 ///
2479 /// RemainingLatency is the greater of independent and dependent latency.
2480 ///
2481 /// These computations are expensive, especially in DAGs with many edges, so
2482 /// only do them if necessary.
2483 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2484   unsigned RemLatency = CurrZone.getDependentLatency();
2485   RemLatency = std::max(RemLatency,
2486                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2487   RemLatency = std::max(RemLatency,
2488                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2489   return RemLatency;
2490 }
2491 
2492 /// Returns true if the current cycle plus remaning latency is greater than
2493 /// the critical path in the scheduling region.
2494 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2495                                                SchedBoundary &CurrZone,
2496                                                bool ComputeRemLatency,
2497                                                unsigned &RemLatency) const {
2498   // The current cycle is already greater than the critical path, so we are
2499   // already latency limited and don't need to compute the remaining latency.
2500   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2501     return true;
2502 
2503   // If we haven't scheduled anything yet, then we aren't latency limited.
2504   if (CurrZone.getCurrCycle() == 0)
2505     return false;
2506 
2507   if (ComputeRemLatency)
2508     RemLatency = computeRemLatency(CurrZone);
2509 
2510   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2511 }
2512 
2513 /// Set the CandPolicy given a scheduling zone given the current resources and
2514 /// latencies inside and outside the zone.
2515 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2516                                      SchedBoundary &CurrZone,
2517                                      SchedBoundary *OtherZone) {
2518   // Apply preemptive heuristics based on the total latency and resources
2519   // inside and outside this zone. Potential stalls should be considered before
2520   // following this policy.
2521 
2522   // Compute the critical resource outside the zone.
2523   unsigned OtherCritIdx = 0;
2524   unsigned OtherCount =
2525     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2526 
2527   bool OtherResLimited = false;
2528   unsigned RemLatency = 0;
2529   bool RemLatencyComputed = false;
2530   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2531     RemLatency = computeRemLatency(CurrZone);
2532     RemLatencyComputed = true;
2533     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2534                                          OtherCount, RemLatency, false);
2535   }
2536 
2537   // Schedule aggressively for latency in PostRA mode. We don't check for
2538   // acyclic latency during PostRA, and highly out-of-order processors will
2539   // skip PostRA scheduling.
2540   if (!OtherResLimited &&
2541       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2542                                        RemLatency))) {
2543     Policy.ReduceLatency |= true;
2544     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2545                       << " RemainingLatency " << RemLatency << " + "
2546                       << CurrZone.getCurrCycle() << "c > CritPath "
2547                       << Rem.CriticalPath << "\n");
2548   }
2549   // If the same resource is limiting inside and outside the zone, do nothing.
2550   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2551     return;
2552 
2553   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2554     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2555            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2556   } if (OtherResLimited) dbgs()
2557                  << "  RemainingLimit: "
2558                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2559              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2560              << "  Latency limited both directions.\n");
2561 
2562   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2563     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2564 
2565   if (OtherResLimited)
2566     Policy.DemandResIdx = OtherCritIdx;
2567 }
2568 
2569 #ifndef NDEBUG
2570 const char *GenericSchedulerBase::getReasonStr(
2571   GenericSchedulerBase::CandReason Reason) {
2572   switch (Reason) {
2573   case NoCand:         return "NOCAND    ";
2574   case Only1:          return "ONLY1     ";
2575   case PhysReg:        return "PHYS-REG  ";
2576   case RegExcess:      return "REG-EXCESS";
2577   case RegCritical:    return "REG-CRIT  ";
2578   case Stall:          return "STALL     ";
2579   case Cluster:        return "CLUSTER   ";
2580   case Weak:           return "WEAK      ";
2581   case RegMax:         return "REG-MAX   ";
2582   case ResourceReduce: return "RES-REDUCE";
2583   case ResourceDemand: return "RES-DEMAND";
2584   case TopDepthReduce: return "TOP-DEPTH ";
2585   case TopPathReduce:  return "TOP-PATH  ";
2586   case BotHeightReduce:return "BOT-HEIGHT";
2587   case BotPathReduce:  return "BOT-PATH  ";
2588   case NextDefUse:     return "DEF-USE   ";
2589   case NodeOrder:      return "ORDER     ";
2590   };
2591   llvm_unreachable("Unknown reason!");
2592 }
2593 
2594 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2595   PressureChange P;
2596   unsigned ResIdx = 0;
2597   unsigned Latency = 0;
2598   switch (Cand.Reason) {
2599   default:
2600     break;
2601   case RegExcess:
2602     P = Cand.RPDelta.Excess;
2603     break;
2604   case RegCritical:
2605     P = Cand.RPDelta.CriticalMax;
2606     break;
2607   case RegMax:
2608     P = Cand.RPDelta.CurrentMax;
2609     break;
2610   case ResourceReduce:
2611     ResIdx = Cand.Policy.ReduceResIdx;
2612     break;
2613   case ResourceDemand:
2614     ResIdx = Cand.Policy.DemandResIdx;
2615     break;
2616   case TopDepthReduce:
2617     Latency = Cand.SU->getDepth();
2618     break;
2619   case TopPathReduce:
2620     Latency = Cand.SU->getHeight();
2621     break;
2622   case BotHeightReduce:
2623     Latency = Cand.SU->getHeight();
2624     break;
2625   case BotPathReduce:
2626     Latency = Cand.SU->getDepth();
2627     break;
2628   }
2629   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2630   if (P.isValid())
2631     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2632            << ":" << P.getUnitInc() << " ";
2633   else
2634     dbgs() << "      ";
2635   if (ResIdx)
2636     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2637   else
2638     dbgs() << "         ";
2639   if (Latency)
2640     dbgs() << " " << Latency << " cycles ";
2641   else
2642     dbgs() << "          ";
2643   dbgs() << '\n';
2644 }
2645 #endif
2646 
2647 namespace llvm {
2648 /// Return true if this heuristic determines order.
2649 bool tryLess(int TryVal, int CandVal,
2650              GenericSchedulerBase::SchedCandidate &TryCand,
2651              GenericSchedulerBase::SchedCandidate &Cand,
2652              GenericSchedulerBase::CandReason Reason) {
2653   if (TryVal < CandVal) {
2654     TryCand.Reason = Reason;
2655     return true;
2656   }
2657   if (TryVal > CandVal) {
2658     if (Cand.Reason > Reason)
2659       Cand.Reason = Reason;
2660     return true;
2661   }
2662   return false;
2663 }
2664 
2665 bool tryGreater(int TryVal, int CandVal,
2666                 GenericSchedulerBase::SchedCandidate &TryCand,
2667                 GenericSchedulerBase::SchedCandidate &Cand,
2668                 GenericSchedulerBase::CandReason Reason) {
2669   if (TryVal > CandVal) {
2670     TryCand.Reason = Reason;
2671     return true;
2672   }
2673   if (TryVal < CandVal) {
2674     if (Cand.Reason > Reason)
2675       Cand.Reason = Reason;
2676     return true;
2677   }
2678   return false;
2679 }
2680 
2681 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2682                 GenericSchedulerBase::SchedCandidate &Cand,
2683                 SchedBoundary &Zone) {
2684   if (Zone.isTop()) {
2685     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2686       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2687                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2688         return true;
2689     }
2690     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2691                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2692       return true;
2693   } else {
2694     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2695       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2696                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2697         return true;
2698     }
2699     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2700                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2701       return true;
2702   }
2703   return false;
2704 }
2705 } // end namespace llvm
2706 
2707 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2708   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2709                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2710 }
2711 
2712 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2713   tracePick(Cand.Reason, Cand.AtTop);
2714 }
2715 
2716 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2717   assert(dag->hasVRegLiveness() &&
2718          "(PreRA)GenericScheduler needs vreg liveness");
2719   DAG = static_cast<ScheduleDAGMILive*>(dag);
2720   SchedModel = DAG->getSchedModel();
2721   TRI = DAG->TRI;
2722 
2723   Rem.init(DAG, SchedModel);
2724   Top.init(DAG, SchedModel, &Rem);
2725   Bot.init(DAG, SchedModel, &Rem);
2726 
2727   // Initialize resource counts.
2728 
2729   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2730   // are disabled, then these HazardRecs will be disabled.
2731   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2732   if (!Top.HazardRec) {
2733     Top.HazardRec =
2734         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2735             Itin, DAG);
2736   }
2737   if (!Bot.HazardRec) {
2738     Bot.HazardRec =
2739         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2740             Itin, DAG);
2741   }
2742   TopCand.SU = nullptr;
2743   BotCand.SU = nullptr;
2744 }
2745 
2746 /// Initialize the per-region scheduling policy.
2747 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2748                                   MachineBasicBlock::iterator End,
2749                                   unsigned NumRegionInstrs) {
2750   const MachineFunction &MF = *Begin->getMF();
2751   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2752 
2753   // Avoid setting up the register pressure tracker for small regions to save
2754   // compile time. As a rough heuristic, only track pressure when the number of
2755   // schedulable instructions exceeds half the integer register file.
2756   RegionPolicy.ShouldTrackPressure = true;
2757   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2758     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2759     if (TLI->isTypeLegal(LegalIntVT)) {
2760       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2761         TLI->getRegClassFor(LegalIntVT));
2762       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2763     }
2764   }
2765 
2766   // For generic targets, we default to bottom-up, because it's simpler and more
2767   // compile-time optimizations have been implemented in that direction.
2768   RegionPolicy.OnlyBottomUp = true;
2769 
2770   // Allow the subtarget to override default policy.
2771   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2772 
2773   // After subtarget overrides, apply command line options.
2774   if (!EnableRegPressure) {
2775     RegionPolicy.ShouldTrackPressure = false;
2776     RegionPolicy.ShouldTrackLaneMasks = false;
2777   }
2778 
2779   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2780   // e.g. -misched-bottomup=false allows scheduling in both directions.
2781   assert((!ForceTopDown || !ForceBottomUp) &&
2782          "-misched-topdown incompatible with -misched-bottomup");
2783   if (ForceBottomUp.getNumOccurrences() > 0) {
2784     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2785     if (RegionPolicy.OnlyBottomUp)
2786       RegionPolicy.OnlyTopDown = false;
2787   }
2788   if (ForceTopDown.getNumOccurrences() > 0) {
2789     RegionPolicy.OnlyTopDown = ForceTopDown;
2790     if (RegionPolicy.OnlyTopDown)
2791       RegionPolicy.OnlyBottomUp = false;
2792   }
2793 }
2794 
2795 void GenericScheduler::dumpPolicy() const {
2796   // Cannot completely remove virtual function even in release mode.
2797 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2798   dbgs() << "GenericScheduler RegionPolicy: "
2799          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2800          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2801          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2802          << "\n";
2803 #endif
2804 }
2805 
2806 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2807 /// critical path by more cycles than it takes to drain the instruction buffer.
2808 /// We estimate an upper bounds on in-flight instructions as:
2809 ///
2810 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2811 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2812 /// InFlightResources = InFlightIterations * LoopResources
2813 ///
2814 /// TODO: Check execution resources in addition to IssueCount.
2815 void GenericScheduler::checkAcyclicLatency() {
2816   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2817     return;
2818 
2819   // Scaled number of cycles per loop iteration.
2820   unsigned IterCount =
2821     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2822              Rem.RemIssueCount);
2823   // Scaled acyclic critical path.
2824   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2825   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2826   unsigned InFlightCount =
2827     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2828   unsigned BufferLimit =
2829     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2830 
2831   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2832 
2833   LLVM_DEBUG(
2834       dbgs() << "IssueCycles="
2835              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2836              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2837              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2838              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2839              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2840       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2841 }
2842 
2843 void GenericScheduler::registerRoots() {
2844   Rem.CriticalPath = DAG->ExitSU.getDepth();
2845 
2846   // Some roots may not feed into ExitSU. Check all of them in case.
2847   for (const SUnit *SU : Bot.Available) {
2848     if (SU->getDepth() > Rem.CriticalPath)
2849       Rem.CriticalPath = SU->getDepth();
2850   }
2851   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2852   if (DumpCriticalPathLength) {
2853     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2854   }
2855 
2856   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2857     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2858     checkAcyclicLatency();
2859   }
2860 }
2861 
2862 namespace llvm {
2863 bool tryPressure(const PressureChange &TryP,
2864                  const PressureChange &CandP,
2865                  GenericSchedulerBase::SchedCandidate &TryCand,
2866                  GenericSchedulerBase::SchedCandidate &Cand,
2867                  GenericSchedulerBase::CandReason Reason,
2868                  const TargetRegisterInfo *TRI,
2869                  const MachineFunction &MF) {
2870   // If one candidate decreases and the other increases, go with it.
2871   // Invalid candidates have UnitInc==0.
2872   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2873                  Reason)) {
2874     return true;
2875   }
2876   // Do not compare the magnitude of pressure changes between top and bottom
2877   // boundary.
2878   if (Cand.AtTop != TryCand.AtTop)
2879     return false;
2880 
2881   // If both candidates affect the same set in the same boundary, go with the
2882   // smallest increase.
2883   unsigned TryPSet = TryP.getPSetOrMax();
2884   unsigned CandPSet = CandP.getPSetOrMax();
2885   if (TryPSet == CandPSet) {
2886     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2887                    Reason);
2888   }
2889 
2890   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2891                                  std::numeric_limits<int>::max();
2892 
2893   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2894                                    std::numeric_limits<int>::max();
2895 
2896   // If the candidates are decreasing pressure, reverse priority.
2897   if (TryP.getUnitInc() < 0)
2898     std::swap(TryRank, CandRank);
2899   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2900 }
2901 
2902 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2903   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2904 }
2905 
2906 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2907 /// their physreg def/use.
2908 ///
2909 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2910 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2911 /// with the operation that produces or consumes the physreg. We'll do this when
2912 /// regalloc has support for parallel copies.
2913 int biasPhysReg(const SUnit *SU, bool isTop) {
2914   const MachineInstr *MI = SU->getInstr();
2915 
2916   if (MI->isCopy()) {
2917     unsigned ScheduledOper = isTop ? 1 : 0;
2918     unsigned UnscheduledOper = isTop ? 0 : 1;
2919     // If we have already scheduled the physreg produce/consumer, immediately
2920     // schedule the copy.
2921     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
2922       return 1;
2923     // If the physreg is at the boundary, defer it. Otherwise schedule it
2924     // immediately to free the dependent. We can hoist the copy later.
2925     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2926     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
2927       return AtBoundary ? -1 : 1;
2928   }
2929 
2930   if (MI->isMoveImmediate()) {
2931     // If we have a move immediate and all successors have been assigned, bias
2932     // towards scheduling this later. Make sure all register defs are to
2933     // physical registers.
2934     bool DoBias = true;
2935     for (const MachineOperand &Op : MI->defs()) {
2936       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
2937         DoBias = false;
2938         break;
2939       }
2940     }
2941 
2942     if (DoBias)
2943       return isTop ? -1 : 1;
2944   }
2945 
2946   return 0;
2947 }
2948 } // end namespace llvm
2949 
2950 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2951                                      bool AtTop,
2952                                      const RegPressureTracker &RPTracker,
2953                                      RegPressureTracker &TempTracker) {
2954   Cand.SU = SU;
2955   Cand.AtTop = AtTop;
2956   if (DAG->isTrackingPressure()) {
2957     if (AtTop) {
2958       TempTracker.getMaxDownwardPressureDelta(
2959         Cand.SU->getInstr(),
2960         Cand.RPDelta,
2961         DAG->getRegionCriticalPSets(),
2962         DAG->getRegPressure().MaxSetPressure);
2963     } else {
2964       if (VerifyScheduling) {
2965         TempTracker.getMaxUpwardPressureDelta(
2966           Cand.SU->getInstr(),
2967           &DAG->getPressureDiff(Cand.SU),
2968           Cand.RPDelta,
2969           DAG->getRegionCriticalPSets(),
2970           DAG->getRegPressure().MaxSetPressure);
2971       } else {
2972         RPTracker.getUpwardPressureDelta(
2973           Cand.SU->getInstr(),
2974           DAG->getPressureDiff(Cand.SU),
2975           Cand.RPDelta,
2976           DAG->getRegionCriticalPSets(),
2977           DAG->getRegPressure().MaxSetPressure);
2978       }
2979     }
2980   }
2981   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2982              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2983              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2984              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2985 }
2986 
2987 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2988 /// hierarchical. This may be more efficient than a graduated cost model because
2989 /// we don't need to evaluate all aspects of the model for each node in the
2990 /// queue. But it's really done to make the heuristics easier to debug and
2991 /// statistically analyze.
2992 ///
2993 /// \param Cand provides the policy and current best candidate.
2994 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2995 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2996 //              if Cand is from a different zone than TryCand.
2997 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2998                                     SchedCandidate &TryCand,
2999                                     SchedBoundary *Zone) const {
3000   // Initialize the candidate if needed.
3001   if (!Cand.isValid()) {
3002     TryCand.Reason = NodeOrder;
3003     return;
3004   }
3005 
3006   // Bias PhysReg Defs and copies to their uses and defined respectively.
3007   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
3008                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
3009     return;
3010 
3011   // Avoid exceeding the target's limit.
3012   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3013                                                Cand.RPDelta.Excess,
3014                                                TryCand, Cand, RegExcess, TRI,
3015                                                DAG->MF))
3016     return;
3017 
3018   // Avoid increasing the max critical pressure in the scheduled region.
3019   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3020                                                Cand.RPDelta.CriticalMax,
3021                                                TryCand, Cand, RegCritical, TRI,
3022                                                DAG->MF))
3023     return;
3024 
3025   // We only compare a subset of features when comparing nodes between
3026   // Top and Bottom boundary. Some properties are simply incomparable, in many
3027   // other instances we should only override the other boundary if something
3028   // is a clear good pick on one boundary. Skip heuristics that are more
3029   // "tie-breaking" in nature.
3030   bool SameBoundary = Zone != nullptr;
3031   if (SameBoundary) {
3032     // For loops that are acyclic path limited, aggressively schedule for
3033     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3034     // heuristics to take precedence.
3035     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3036         tryLatency(TryCand, Cand, *Zone))
3037       return;
3038 
3039     // Prioritize instructions that read unbuffered resources by stall cycles.
3040     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3041                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3042       return;
3043   }
3044 
3045   // Keep clustered nodes together to encourage downstream peephole
3046   // optimizations which may reduce resource requirements.
3047   //
3048   // This is a best effort to set things up for a post-RA pass. Optimizations
3049   // like generating loads of multiple registers should ideally be done within
3050   // the scheduler pass by combining the loads during DAG postprocessing.
3051   const SUnit *CandNextClusterSU =
3052     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3053   const SUnit *TryCandNextClusterSU =
3054     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3055   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3056                  Cand.SU == CandNextClusterSU,
3057                  TryCand, Cand, Cluster))
3058     return;
3059 
3060   if (SameBoundary) {
3061     // Weak edges are for clustering and other constraints.
3062     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3063                 getWeakLeft(Cand.SU, Cand.AtTop),
3064                 TryCand, Cand, Weak))
3065       return;
3066   }
3067 
3068   // Avoid increasing the max pressure of the entire region.
3069   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3070                                                Cand.RPDelta.CurrentMax,
3071                                                TryCand, Cand, RegMax, TRI,
3072                                                DAG->MF))
3073     return;
3074 
3075   if (SameBoundary) {
3076     // Avoid critical resource consumption and balance the schedule.
3077     TryCand.initResourceDelta(DAG, SchedModel);
3078     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3079                 TryCand, Cand, ResourceReduce))
3080       return;
3081     if (tryGreater(TryCand.ResDelta.DemandedResources,
3082                    Cand.ResDelta.DemandedResources,
3083                    TryCand, Cand, ResourceDemand))
3084       return;
3085 
3086     // Avoid serializing long latency dependence chains.
3087     // For acyclic path limited loops, latency was already checked above.
3088     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3089         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3090       return;
3091 
3092     // Fall through to original instruction order.
3093     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3094         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3095       TryCand.Reason = NodeOrder;
3096     }
3097   }
3098 }
3099 
3100 /// Pick the best candidate from the queue.
3101 ///
3102 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3103 /// DAG building. To adjust for the current scheduling location we need to
3104 /// maintain the number of vreg uses remaining to be top-scheduled.
3105 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3106                                          const CandPolicy &ZonePolicy,
3107                                          const RegPressureTracker &RPTracker,
3108                                          SchedCandidate &Cand) {
3109   // getMaxPressureDelta temporarily modifies the tracker.
3110   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3111 
3112   ReadyQueue &Q = Zone.Available;
3113   for (SUnit *SU : Q) {
3114 
3115     SchedCandidate TryCand(ZonePolicy);
3116     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3117     // Pass SchedBoundary only when comparing nodes from the same boundary.
3118     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3119     tryCandidate(Cand, TryCand, ZoneArg);
3120     if (TryCand.Reason != NoCand) {
3121       // Initialize resource delta if needed in case future heuristics query it.
3122       if (TryCand.ResDelta == SchedResourceDelta())
3123         TryCand.initResourceDelta(DAG, SchedModel);
3124       Cand.setBest(TryCand);
3125       LLVM_DEBUG(traceCandidate(Cand));
3126     }
3127   }
3128 }
3129 
3130 /// Pick the best candidate node from either the top or bottom queue.
3131 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3132   // Schedule as far as possible in the direction of no choice. This is most
3133   // efficient, but also provides the best heuristics for CriticalPSets.
3134   if (SUnit *SU = Bot.pickOnlyChoice()) {
3135     IsTopNode = false;
3136     tracePick(Only1, false);
3137     return SU;
3138   }
3139   if (SUnit *SU = Top.pickOnlyChoice()) {
3140     IsTopNode = true;
3141     tracePick(Only1, true);
3142     return SU;
3143   }
3144   // Set the bottom-up policy based on the state of the current bottom zone and
3145   // the instructions outside the zone, including the top zone.
3146   CandPolicy BotPolicy;
3147   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3148   // Set the top-down policy based on the state of the current top zone and
3149   // the instructions outside the zone, including the bottom zone.
3150   CandPolicy TopPolicy;
3151   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3152 
3153   // See if BotCand is still valid (because we previously scheduled from Top).
3154   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3155   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3156       BotCand.Policy != BotPolicy) {
3157     BotCand.reset(CandPolicy());
3158     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3159     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3160   } else {
3161     LLVM_DEBUG(traceCandidate(BotCand));
3162 #ifndef NDEBUG
3163     if (VerifyScheduling) {
3164       SchedCandidate TCand;
3165       TCand.reset(CandPolicy());
3166       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3167       assert(TCand.SU == BotCand.SU &&
3168              "Last pick result should correspond to re-picking right now");
3169     }
3170 #endif
3171   }
3172 
3173   // Check if the top Q has a better candidate.
3174   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3175   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3176       TopCand.Policy != TopPolicy) {
3177     TopCand.reset(CandPolicy());
3178     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3179     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3180   } else {
3181     LLVM_DEBUG(traceCandidate(TopCand));
3182 #ifndef NDEBUG
3183     if (VerifyScheduling) {
3184       SchedCandidate TCand;
3185       TCand.reset(CandPolicy());
3186       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3187       assert(TCand.SU == TopCand.SU &&
3188            "Last pick result should correspond to re-picking right now");
3189     }
3190 #endif
3191   }
3192 
3193   // Pick best from BotCand and TopCand.
3194   assert(BotCand.isValid());
3195   assert(TopCand.isValid());
3196   SchedCandidate Cand = BotCand;
3197   TopCand.Reason = NoCand;
3198   tryCandidate(Cand, TopCand, nullptr);
3199   if (TopCand.Reason != NoCand) {
3200     Cand.setBest(TopCand);
3201     LLVM_DEBUG(traceCandidate(Cand));
3202   }
3203 
3204   IsTopNode = Cand.AtTop;
3205   tracePick(Cand);
3206   return Cand.SU;
3207 }
3208 
3209 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3210 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3211   if (DAG->top() == DAG->bottom()) {
3212     assert(Top.Available.empty() && Top.Pending.empty() &&
3213            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3214     return nullptr;
3215   }
3216   SUnit *SU;
3217   do {
3218     if (RegionPolicy.OnlyTopDown) {
3219       SU = Top.pickOnlyChoice();
3220       if (!SU) {
3221         CandPolicy NoPolicy;
3222         TopCand.reset(NoPolicy);
3223         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3224         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3225         tracePick(TopCand);
3226         SU = TopCand.SU;
3227       }
3228       IsTopNode = true;
3229     } else if (RegionPolicy.OnlyBottomUp) {
3230       SU = Bot.pickOnlyChoice();
3231       if (!SU) {
3232         CandPolicy NoPolicy;
3233         BotCand.reset(NoPolicy);
3234         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3235         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3236         tracePick(BotCand);
3237         SU = BotCand.SU;
3238       }
3239       IsTopNode = false;
3240     } else {
3241       SU = pickNodeBidirectional(IsTopNode);
3242     }
3243   } while (SU->isScheduled);
3244 
3245   if (SU->isTopReady())
3246     Top.removeReady(SU);
3247   if (SU->isBottomReady())
3248     Bot.removeReady(SU);
3249 
3250   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3251                     << *SU->getInstr());
3252   return SU;
3253 }
3254 
3255 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3256   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3257   if (!isTop)
3258     ++InsertPos;
3259   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3260 
3261   // Find already scheduled copies with a single physreg dependence and move
3262   // them just above the scheduled instruction.
3263   for (SDep &Dep : Deps) {
3264     if (Dep.getKind() != SDep::Data ||
3265         !Register::isPhysicalRegister(Dep.getReg()))
3266       continue;
3267     SUnit *DepSU = Dep.getSUnit();
3268     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3269       continue;
3270     MachineInstr *Copy = DepSU->getInstr();
3271     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3272       continue;
3273     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3274                DAG->dumpNode(*Dep.getSUnit()));
3275     DAG->moveInstruction(Copy, InsertPos);
3276   }
3277 }
3278 
3279 /// Update the scheduler's state after scheduling a node. This is the same node
3280 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3281 /// update it's state based on the current cycle before MachineSchedStrategy
3282 /// does.
3283 ///
3284 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3285 /// them here. See comments in biasPhysReg.
3286 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3287   if (IsTopNode) {
3288     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3289     Top.bumpNode(SU);
3290     if (SU->hasPhysRegUses)
3291       reschedulePhysReg(SU, true);
3292   } else {
3293     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3294     Bot.bumpNode(SU);
3295     if (SU->hasPhysRegDefs)
3296       reschedulePhysReg(SU, false);
3297   }
3298 }
3299 
3300 /// Create the standard converging machine scheduler. This will be used as the
3301 /// default scheduler if the target does not set a default.
3302 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3303   ScheduleDAGMILive *DAG =
3304       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
3305   // Register DAG post-processors.
3306   //
3307   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3308   // data and pass it to later mutations. Have a single mutation that gathers
3309   // the interesting nodes in one pass.
3310   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3311   return DAG;
3312 }
3313 
3314 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3315   return createGenericSchedLive(C);
3316 }
3317 
3318 static MachineSchedRegistry
3319 GenericSchedRegistry("converge", "Standard converging scheduler.",
3320                      createConveringSched);
3321 
3322 //===----------------------------------------------------------------------===//
3323 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3324 //===----------------------------------------------------------------------===//
3325 
3326 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3327   DAG = Dag;
3328   SchedModel = DAG->getSchedModel();
3329   TRI = DAG->TRI;
3330 
3331   Rem.init(DAG, SchedModel);
3332   Top.init(DAG, SchedModel, &Rem);
3333   BotRoots.clear();
3334 
3335   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3336   // or are disabled, then these HazardRecs will be disabled.
3337   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3338   if (!Top.HazardRec) {
3339     Top.HazardRec =
3340         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3341             Itin, DAG);
3342   }
3343 }
3344 
3345 void PostGenericScheduler::registerRoots() {
3346   Rem.CriticalPath = DAG->ExitSU.getDepth();
3347 
3348   // Some roots may not feed into ExitSU. Check all of them in case.
3349   for (const SUnit *SU : BotRoots) {
3350     if (SU->getDepth() > Rem.CriticalPath)
3351       Rem.CriticalPath = SU->getDepth();
3352   }
3353   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3354   if (DumpCriticalPathLength) {
3355     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3356   }
3357 }
3358 
3359 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3360 ///
3361 /// \param Cand provides the policy and current best candidate.
3362 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3363 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3364                                         SchedCandidate &TryCand) {
3365   // Initialize the candidate if needed.
3366   if (!Cand.isValid()) {
3367     TryCand.Reason = NodeOrder;
3368     return;
3369   }
3370 
3371   // Prioritize instructions that read unbuffered resources by stall cycles.
3372   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3373               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3374     return;
3375 
3376   // Keep clustered nodes together.
3377   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3378                  Cand.SU == DAG->getNextClusterSucc(),
3379                  TryCand, Cand, Cluster))
3380     return;
3381 
3382   // Avoid critical resource consumption and balance the schedule.
3383   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3384               TryCand, Cand, ResourceReduce))
3385     return;
3386   if (tryGreater(TryCand.ResDelta.DemandedResources,
3387                  Cand.ResDelta.DemandedResources,
3388                  TryCand, Cand, ResourceDemand))
3389     return;
3390 
3391   // Avoid serializing long latency dependence chains.
3392   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3393     return;
3394   }
3395 
3396   // Fall through to original instruction order.
3397   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3398     TryCand.Reason = NodeOrder;
3399 }
3400 
3401 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3402   ReadyQueue &Q = Top.Available;
3403   for (SUnit *SU : Q) {
3404     SchedCandidate TryCand(Cand.Policy);
3405     TryCand.SU = SU;
3406     TryCand.AtTop = true;
3407     TryCand.initResourceDelta(DAG, SchedModel);
3408     tryCandidate(Cand, TryCand);
3409     if (TryCand.Reason != NoCand) {
3410       Cand.setBest(TryCand);
3411       LLVM_DEBUG(traceCandidate(Cand));
3412     }
3413   }
3414 }
3415 
3416 /// Pick the next node to schedule.
3417 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3418   if (DAG->top() == DAG->bottom()) {
3419     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3420     return nullptr;
3421   }
3422   SUnit *SU;
3423   do {
3424     SU = Top.pickOnlyChoice();
3425     if (SU) {
3426       tracePick(Only1, true);
3427     } else {
3428       CandPolicy NoPolicy;
3429       SchedCandidate TopCand(NoPolicy);
3430       // Set the top-down policy based on the state of the current top zone and
3431       // the instructions outside the zone, including the bottom zone.
3432       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3433       pickNodeFromQueue(TopCand);
3434       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3435       tracePick(TopCand);
3436       SU = TopCand.SU;
3437     }
3438   } while (SU->isScheduled);
3439 
3440   IsTopNode = true;
3441   Top.removeReady(SU);
3442 
3443   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3444                     << *SU->getInstr());
3445   return SU;
3446 }
3447 
3448 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3449 /// scheduled/remaining flags in the DAG nodes.
3450 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3451   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3452   Top.bumpNode(SU);
3453 }
3454 
3455 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3456   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
3457                            /*RemoveKillFlags=*/true);
3458 }
3459 
3460 //===----------------------------------------------------------------------===//
3461 // ILP Scheduler. Currently for experimental analysis of heuristics.
3462 //===----------------------------------------------------------------------===//
3463 
3464 namespace {
3465 
3466 /// Order nodes by the ILP metric.
3467 struct ILPOrder {
3468   const SchedDFSResult *DFSResult = nullptr;
3469   const BitVector *ScheduledTrees = nullptr;
3470   bool MaximizeILP;
3471 
3472   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3473 
3474   /// Apply a less-than relation on node priority.
3475   ///
3476   /// (Return true if A comes after B in the Q.)
3477   bool operator()(const SUnit *A, const SUnit *B) const {
3478     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3479     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3480     if (SchedTreeA != SchedTreeB) {
3481       // Unscheduled trees have lower priority.
3482       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3483         return ScheduledTrees->test(SchedTreeB);
3484 
3485       // Trees with shallower connections have have lower priority.
3486       if (DFSResult->getSubtreeLevel(SchedTreeA)
3487           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3488         return DFSResult->getSubtreeLevel(SchedTreeA)
3489           < DFSResult->getSubtreeLevel(SchedTreeB);
3490       }
3491     }
3492     if (MaximizeILP)
3493       return DFSResult->getILP(A) < DFSResult->getILP(B);
3494     else
3495       return DFSResult->getILP(A) > DFSResult->getILP(B);
3496   }
3497 };
3498 
3499 /// Schedule based on the ILP metric.
3500 class ILPScheduler : public MachineSchedStrategy {
3501   ScheduleDAGMILive *DAG = nullptr;
3502   ILPOrder Cmp;
3503 
3504   std::vector<SUnit*> ReadyQ;
3505 
3506 public:
3507   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3508 
3509   void initialize(ScheduleDAGMI *dag) override {
3510     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3511     DAG = static_cast<ScheduleDAGMILive*>(dag);
3512     DAG->computeDFSResult();
3513     Cmp.DFSResult = DAG->getDFSResult();
3514     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3515     ReadyQ.clear();
3516   }
3517 
3518   void registerRoots() override {
3519     // Restore the heap in ReadyQ with the updated DFS results.
3520     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3521   }
3522 
3523   /// Implement MachineSchedStrategy interface.
3524   /// -----------------------------------------
3525 
3526   /// Callback to select the highest priority node from the ready Q.
3527   SUnit *pickNode(bool &IsTopNode) override {
3528     if (ReadyQ.empty()) return nullptr;
3529     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3530     SUnit *SU = ReadyQ.back();
3531     ReadyQ.pop_back();
3532     IsTopNode = false;
3533     LLVM_DEBUG(dbgs() << "Pick node "
3534                       << "SU(" << SU->NodeNum << ") "
3535                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3536                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3537                       << " @"
3538                       << DAG->getDFSResult()->getSubtreeLevel(
3539                              DAG->getDFSResult()->getSubtreeID(SU))
3540                       << '\n'
3541                       << "Scheduling " << *SU->getInstr());
3542     return SU;
3543   }
3544 
3545   /// Scheduler callback to notify that a new subtree is scheduled.
3546   void scheduleTree(unsigned SubtreeID) override {
3547     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3548   }
3549 
3550   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3551   /// DFSResults, and resort the priority Q.
3552   void schedNode(SUnit *SU, bool IsTopNode) override {
3553     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3554   }
3555 
3556   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3557 
3558   void releaseBottomNode(SUnit *SU) override {
3559     ReadyQ.push_back(SU);
3560     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3561   }
3562 };
3563 
3564 } // end anonymous namespace
3565 
3566 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3567   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
3568 }
3569 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3570   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
3571 }
3572 
3573 static MachineSchedRegistry ILPMaxRegistry(
3574   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3575 static MachineSchedRegistry ILPMinRegistry(
3576   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3577 
3578 //===----------------------------------------------------------------------===//
3579 // Machine Instruction Shuffler for Correctness Testing
3580 //===----------------------------------------------------------------------===//
3581 
3582 #ifndef NDEBUG
3583 namespace {
3584 
3585 /// Apply a less-than relation on the node order, which corresponds to the
3586 /// instruction order prior to scheduling. IsReverse implements greater-than.
3587 template<bool IsReverse>
3588 struct SUnitOrder {
3589   bool operator()(SUnit *A, SUnit *B) const {
3590     if (IsReverse)
3591       return A->NodeNum > B->NodeNum;
3592     else
3593       return A->NodeNum < B->NodeNum;
3594   }
3595 };
3596 
3597 /// Reorder instructions as much as possible.
3598 class InstructionShuffler : public MachineSchedStrategy {
3599   bool IsAlternating;
3600   bool IsTopDown;
3601 
3602   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3603   // gives nodes with a higher number higher priority causing the latest
3604   // instructions to be scheduled first.
3605   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3606     TopQ;
3607 
3608   // When scheduling bottom-up, use greater-than as the queue priority.
3609   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3610     BottomQ;
3611 
3612 public:
3613   InstructionShuffler(bool alternate, bool topdown)
3614     : IsAlternating(alternate), IsTopDown(topdown) {}
3615 
3616   void initialize(ScheduleDAGMI*) override {
3617     TopQ.clear();
3618     BottomQ.clear();
3619   }
3620 
3621   /// Implement MachineSchedStrategy interface.
3622   /// -----------------------------------------
3623 
3624   SUnit *pickNode(bool &IsTopNode) override {
3625     SUnit *SU;
3626     if (IsTopDown) {
3627       do {
3628         if (TopQ.empty()) return nullptr;
3629         SU = TopQ.top();
3630         TopQ.pop();
3631       } while (SU->isScheduled);
3632       IsTopNode = true;
3633     } else {
3634       do {
3635         if (BottomQ.empty()) return nullptr;
3636         SU = BottomQ.top();
3637         BottomQ.pop();
3638       } while (SU->isScheduled);
3639       IsTopNode = false;
3640     }
3641     if (IsAlternating)
3642       IsTopDown = !IsTopDown;
3643     return SU;
3644   }
3645 
3646   void schedNode(SUnit *SU, bool IsTopNode) override {}
3647 
3648   void releaseTopNode(SUnit *SU) override {
3649     TopQ.push(SU);
3650   }
3651   void releaseBottomNode(SUnit *SU) override {
3652     BottomQ.push(SU);
3653   }
3654 };
3655 
3656 } // end anonymous namespace
3657 
3658 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3659   bool Alternate = !ForceTopDown && !ForceBottomUp;
3660   bool TopDown = !ForceBottomUp;
3661   assert((TopDown || !ForceTopDown) &&
3662          "-misched-topdown incompatible with -misched-bottomup");
3663   return new ScheduleDAGMILive(
3664       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
3665 }
3666 
3667 static MachineSchedRegistry ShufflerRegistry(
3668   "shuffle", "Shuffle machine instructions alternating directions",
3669   createInstructionShuffler);
3670 #endif // !NDEBUG
3671 
3672 //===----------------------------------------------------------------------===//
3673 // GraphWriter support for ScheduleDAGMILive.
3674 //===----------------------------------------------------------------------===//
3675 
3676 #ifndef NDEBUG
3677 namespace llvm {
3678 
3679 template<> struct GraphTraits<
3680   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3681 
3682 template<>
3683 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3684   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3685 
3686   static std::string getGraphName(const ScheduleDAG *G) {
3687     return G->MF.getName();
3688   }
3689 
3690   static bool renderGraphFromBottomUp() {
3691     return true;
3692   }
3693 
3694   static bool isNodeHidden(const SUnit *Node) {
3695     if (ViewMISchedCutoff == 0)
3696       return false;
3697     return (Node->Preds.size() > ViewMISchedCutoff
3698          || Node->Succs.size() > ViewMISchedCutoff);
3699   }
3700 
3701   /// If you want to override the dot attributes printed for a particular
3702   /// edge, override this method.
3703   static std::string getEdgeAttributes(const SUnit *Node,
3704                                        SUnitIterator EI,
3705                                        const ScheduleDAG *Graph) {
3706     if (EI.isArtificialDep())
3707       return "color=cyan,style=dashed";
3708     if (EI.isCtrlDep())
3709       return "color=blue,style=dashed";
3710     return "";
3711   }
3712 
3713   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3714     std::string Str;
3715     raw_string_ostream SS(Str);
3716     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3717     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3718       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3719     SS << "SU:" << SU->NodeNum;
3720     if (DFS)
3721       SS << " I:" << DFS->getNumInstrs(SU);
3722     return SS.str();
3723   }
3724 
3725   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3726     return G->getGraphNodeLabel(SU);
3727   }
3728 
3729   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3730     std::string Str("shape=Mrecord");
3731     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3732     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3733       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3734     if (DFS) {
3735       Str += ",style=filled,fillcolor=\"#";
3736       Str += DOT::getColorString(DFS->getSubtreeID(N));
3737       Str += '"';
3738     }
3739     return Str;
3740   }
3741 };
3742 
3743 } // end namespace llvm
3744 #endif // NDEBUG
3745 
3746 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3747 /// rendered using 'dot'.
3748 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3749 #ifndef NDEBUG
3750   ViewGraph(this, Name, false, Title);
3751 #else
3752   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3753          << "systems with Graphviz or gv!\n";
3754 #endif  // NDEBUG
3755 }
3756 
3757 /// Out-of-line implementation with no arguments is handy for gdb.
3758 void ScheduleDAGMI::viewGraph() {
3759   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3760 }
3761