1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <queue> 31 32 using namespace llvm; 33 34 namespace llvm { 35 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 36 cl::desc("Force top-down list scheduling")); 37 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 38 cl::desc("Force bottom-up list scheduling")); 39 } 40 41 #ifndef NDEBUG 42 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 43 cl::desc("Pop up a window to show MISched dags after they are processed")); 44 45 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 46 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 47 #else 48 static bool ViewMISchedDAGs = false; 49 #endif // NDEBUG 50 51 // Threshold to very roughly model an out-of-order processor's instruction 52 // buffers. If the actual value of this threshold matters much in practice, then 53 // it can be specified by the machine model. For now, it's an experimental 54 // tuning knob to determine when and if it matters. 55 static cl::opt<unsigned> ILPWindow("ilp-window", cl::Hidden, 56 cl::desc("Allow expected latency to exceed the critical path by N cycles " 57 "before attempting to balance ILP"), 58 cl::init(10U)); 59 60 // Experimental heuristics 61 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 62 cl::desc("Enable load clustering."), cl::init(true)); 63 64 // Experimental heuristics 65 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 66 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 67 68 //===----------------------------------------------------------------------===// 69 // Machine Instruction Scheduling Pass and Registry 70 //===----------------------------------------------------------------------===// 71 72 MachineSchedContext::MachineSchedContext(): 73 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 74 RegClassInfo = new RegisterClassInfo(); 75 } 76 77 MachineSchedContext::~MachineSchedContext() { 78 delete RegClassInfo; 79 } 80 81 namespace { 82 /// MachineScheduler runs after coalescing and before register allocation. 83 class MachineScheduler : public MachineSchedContext, 84 public MachineFunctionPass { 85 public: 86 MachineScheduler(); 87 88 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 89 90 virtual void releaseMemory() {} 91 92 virtual bool runOnMachineFunction(MachineFunction&); 93 94 virtual void print(raw_ostream &O, const Module* = 0) const; 95 96 static char ID; // Class identification, replacement for typeinfo 97 }; 98 } // namespace 99 100 char MachineScheduler::ID = 0; 101 102 char &llvm::MachineSchedulerID = MachineScheduler::ID; 103 104 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 105 "Machine Instruction Scheduler", false, false) 106 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 107 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 108 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 109 INITIALIZE_PASS_END(MachineScheduler, "misched", 110 "Machine Instruction Scheduler", false, false) 111 112 MachineScheduler::MachineScheduler() 113 : MachineFunctionPass(ID) { 114 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 115 } 116 117 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 118 AU.setPreservesCFG(); 119 AU.addRequiredID(MachineDominatorsID); 120 AU.addRequired<MachineLoopInfo>(); 121 AU.addRequired<AliasAnalysis>(); 122 AU.addRequired<TargetPassConfig>(); 123 AU.addRequired<SlotIndexes>(); 124 AU.addPreserved<SlotIndexes>(); 125 AU.addRequired<LiveIntervals>(); 126 AU.addPreserved<LiveIntervals>(); 127 MachineFunctionPass::getAnalysisUsage(AU); 128 } 129 130 MachinePassRegistry MachineSchedRegistry::Registry; 131 132 /// A dummy default scheduler factory indicates whether the scheduler 133 /// is overridden on the command line. 134 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 135 return 0; 136 } 137 138 /// MachineSchedOpt allows command line selection of the scheduler. 139 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 140 RegisterPassParser<MachineSchedRegistry> > 141 MachineSchedOpt("misched", 142 cl::init(&useDefaultMachineSched), cl::Hidden, 143 cl::desc("Machine instruction scheduler to use")); 144 145 static MachineSchedRegistry 146 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 147 useDefaultMachineSched); 148 149 /// Forward declare the standard machine scheduler. This will be used as the 150 /// default scheduler if the target does not set a default. 151 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 152 153 154 /// Decrement this iterator until reaching the top or a non-debug instr. 155 static MachineBasicBlock::iterator 156 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 157 assert(I != Beg && "reached the top of the region, cannot decrement"); 158 while (--I != Beg) { 159 if (!I->isDebugValue()) 160 break; 161 } 162 return I; 163 } 164 165 /// If this iterator is a debug value, increment until reaching the End or a 166 /// non-debug instruction. 167 static MachineBasicBlock::iterator 168 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 169 for(; I != End; ++I) { 170 if (!I->isDebugValue()) 171 break; 172 } 173 return I; 174 } 175 176 /// Top-level MachineScheduler pass driver. 177 /// 178 /// Visit blocks in function order. Divide each block into scheduling regions 179 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 180 /// consistent with the DAG builder, which traverses the interior of the 181 /// scheduling regions bottom-up. 182 /// 183 /// This design avoids exposing scheduling boundaries to the DAG builder, 184 /// simplifying the DAG builder's support for "special" target instructions. 185 /// At the same time the design allows target schedulers to operate across 186 /// scheduling boundaries, for example to bundle the boudary instructions 187 /// without reordering them. This creates complexity, because the target 188 /// scheduler must update the RegionBegin and RegionEnd positions cached by 189 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 190 /// design would be to split blocks at scheduling boundaries, but LLVM has a 191 /// general bias against block splitting purely for implementation simplicity. 192 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 193 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 194 195 // Initialize the context of the pass. 196 MF = &mf; 197 MLI = &getAnalysis<MachineLoopInfo>(); 198 MDT = &getAnalysis<MachineDominatorTree>(); 199 PassConfig = &getAnalysis<TargetPassConfig>(); 200 AA = &getAnalysis<AliasAnalysis>(); 201 202 LIS = &getAnalysis<LiveIntervals>(); 203 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 204 205 RegClassInfo->runOnMachineFunction(*MF); 206 207 // Select the scheduler, or set the default. 208 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 209 if (Ctor == useDefaultMachineSched) { 210 // Get the default scheduler set by the target. 211 Ctor = MachineSchedRegistry::getDefault(); 212 if (!Ctor) { 213 Ctor = createConvergingSched; 214 MachineSchedRegistry::setDefault(Ctor); 215 } 216 } 217 // Instantiate the selected scheduler. 218 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 219 220 // Visit all machine basic blocks. 221 // 222 // TODO: Visit blocks in global postorder or postorder within the bottom-up 223 // loop tree. Then we can optionally compute global RegPressure. 224 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 225 MBB != MBBEnd; ++MBB) { 226 227 Scheduler->startBlock(MBB); 228 229 // Break the block into scheduling regions [I, RegionEnd), and schedule each 230 // region as soon as it is discovered. RegionEnd points the scheduling 231 // boundary at the bottom of the region. The DAG does not include RegionEnd, 232 // but the region does (i.e. the next RegionEnd is above the previous 233 // RegionBegin). If the current block has no terminator then RegionEnd == 234 // MBB->end() for the bottom region. 235 // 236 // The Scheduler may insert instructions during either schedule() or 237 // exitRegion(), even for empty regions. So the local iterators 'I' and 238 // 'RegionEnd' are invalid across these calls. 239 unsigned RemainingInstrs = MBB->size(); 240 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 241 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 242 243 // Avoid decrementing RegionEnd for blocks with no terminator. 244 if (RegionEnd != MBB->end() 245 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 246 --RegionEnd; 247 // Count the boundary instruction. 248 --RemainingInstrs; 249 } 250 251 // The next region starts above the previous region. Look backward in the 252 // instruction stream until we find the nearest boundary. 253 MachineBasicBlock::iterator I = RegionEnd; 254 for(;I != MBB->begin(); --I, --RemainingInstrs) { 255 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 256 break; 257 } 258 // Notify the scheduler of the region, even if we may skip scheduling 259 // it. Perhaps it still needs to be bundled. 260 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); 261 262 // Skip empty scheduling regions (0 or 1 schedulable instructions). 263 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 264 // Close the current region. Bundle the terminator if needed. 265 // This invalidates 'RegionEnd' and 'I'. 266 Scheduler->exitRegion(); 267 continue; 268 } 269 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 270 DEBUG(dbgs() << MF->getName() 271 << ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: "; 272 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 273 else dbgs() << "End"; 274 dbgs() << " Remaining: " << RemainingInstrs << "\n"); 275 276 // Schedule a region: possibly reorder instructions. 277 // This invalidates 'RegionEnd' and 'I'. 278 Scheduler->schedule(); 279 280 // Close the current region. 281 Scheduler->exitRegion(); 282 283 // Scheduling has invalidated the current iterator 'I'. Ask the 284 // scheduler for the top of it's scheduled region. 285 RegionEnd = Scheduler->begin(); 286 } 287 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 288 Scheduler->finishBlock(); 289 } 290 Scheduler->finalizeSchedule(); 291 DEBUG(LIS->print(dbgs())); 292 return true; 293 } 294 295 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 296 // unimplemented 297 } 298 299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 300 void ReadyQueue::dump() { 301 dbgs() << Name << ": "; 302 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 303 dbgs() << Queue[i]->NodeNum << " "; 304 dbgs() << "\n"; 305 } 306 #endif 307 308 //===----------------------------------------------------------------------===// 309 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 310 // preservation. 311 //===----------------------------------------------------------------------===// 312 313 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 314 if (SuccSU != &ExitSU) { 315 // Do not use WillCreateCycle, it assumes SD scheduling. 316 // If Pred is reachable from Succ, then the edge creates a cycle. 317 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 318 return false; 319 Topo.AddPred(SuccSU, PredDep.getSUnit()); 320 } 321 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 322 // Return true regardless of whether a new edge needed to be inserted. 323 return true; 324 } 325 326 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 327 /// NumPredsLeft reaches zero, release the successor node. 328 /// 329 /// FIXME: Adjust SuccSU height based on MinLatency. 330 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 331 SUnit *SuccSU = SuccEdge->getSUnit(); 332 333 if (SuccEdge->isWeak()) { 334 --SuccSU->WeakPredsLeft; 335 if (SuccEdge->isCluster()) 336 NextClusterSucc = SuccSU; 337 return; 338 } 339 #ifndef NDEBUG 340 if (SuccSU->NumPredsLeft == 0) { 341 dbgs() << "*** Scheduling failed! ***\n"; 342 SuccSU->dump(this); 343 dbgs() << " has been released too many times!\n"; 344 llvm_unreachable(0); 345 } 346 #endif 347 --SuccSU->NumPredsLeft; 348 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 349 SchedImpl->releaseTopNode(SuccSU); 350 } 351 352 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 353 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 354 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 355 I != E; ++I) { 356 releaseSucc(SU, &*I); 357 } 358 } 359 360 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 361 /// NumSuccsLeft reaches zero, release the predecessor node. 362 /// 363 /// FIXME: Adjust PredSU height based on MinLatency. 364 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 365 SUnit *PredSU = PredEdge->getSUnit(); 366 367 if (PredEdge->isWeak()) { 368 --PredSU->WeakSuccsLeft; 369 if (PredEdge->isCluster()) 370 NextClusterPred = PredSU; 371 return; 372 } 373 #ifndef NDEBUG 374 if (PredSU->NumSuccsLeft == 0) { 375 dbgs() << "*** Scheduling failed! ***\n"; 376 PredSU->dump(this); 377 dbgs() << " has been released too many times!\n"; 378 llvm_unreachable(0); 379 } 380 #endif 381 --PredSU->NumSuccsLeft; 382 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 383 SchedImpl->releaseBottomNode(PredSU); 384 } 385 386 /// releasePredecessors - Call releasePred on each of SU's predecessors. 387 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 388 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 389 I != E; ++I) { 390 releasePred(SU, &*I); 391 } 392 } 393 394 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 395 MachineBasicBlock::iterator InsertPos) { 396 // Advance RegionBegin if the first instruction moves down. 397 if (&*RegionBegin == MI) 398 ++RegionBegin; 399 400 // Update the instruction stream. 401 BB->splice(InsertPos, BB, MI); 402 403 // Update LiveIntervals 404 LIS->handleMove(MI, /*UpdateFlags=*/true); 405 406 // Recede RegionBegin if an instruction moves above the first. 407 if (RegionBegin == InsertPos) 408 RegionBegin = MI; 409 } 410 411 bool ScheduleDAGMI::checkSchedLimit() { 412 #ifndef NDEBUG 413 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 414 CurrentTop = CurrentBottom; 415 return false; 416 } 417 ++NumInstrsScheduled; 418 #endif 419 return true; 420 } 421 422 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 423 /// crossing a scheduling boundary. [begin, end) includes all instructions in 424 /// the region, including the boundary itself and single-instruction regions 425 /// that don't get scheduled. 426 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 427 MachineBasicBlock::iterator begin, 428 MachineBasicBlock::iterator end, 429 unsigned endcount) 430 { 431 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); 432 433 // For convenience remember the end of the liveness region. 434 LiveRegionEnd = 435 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 436 } 437 438 // Setup the register pressure trackers for the top scheduled top and bottom 439 // scheduled regions. 440 void ScheduleDAGMI::initRegPressure() { 441 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 442 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 443 444 // Close the RPTracker to finalize live ins. 445 RPTracker.closeRegion(); 446 447 DEBUG(RPTracker.getPressure().dump(TRI)); 448 449 // Initialize the live ins and live outs. 450 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 451 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 452 453 // Close one end of the tracker so we can call 454 // getMaxUpward/DownwardPressureDelta before advancing across any 455 // instructions. This converts currently live regs into live ins/outs. 456 TopRPTracker.closeTop(); 457 BotRPTracker.closeBottom(); 458 459 // Account for liveness generated by the region boundary. 460 if (LiveRegionEnd != RegionEnd) 461 BotRPTracker.recede(); 462 463 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 464 465 // Cache the list of excess pressure sets in this region. This will also track 466 // the max pressure in the scheduled code for these sets. 467 RegionCriticalPSets.clear(); 468 std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure; 469 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 470 unsigned Limit = TRI->getRegPressureSetLimit(i); 471 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 472 << "Limit " << Limit 473 << " Actual " << RegionPressure[i] << "\n"); 474 if (RegionPressure[i] > Limit) 475 RegionCriticalPSets.push_back(PressureElement(i, 0)); 476 } 477 DEBUG(dbgs() << "Excess PSets: "; 478 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 479 dbgs() << TRI->getRegPressureSetName( 480 RegionCriticalPSets[i].PSetID) << " "; 481 dbgs() << "\n"); 482 } 483 484 // FIXME: When the pressure tracker deals in pressure differences then we won't 485 // iterate over all RegionCriticalPSets[i]. 486 void ScheduleDAGMI:: 487 updateScheduledPressure(std::vector<unsigned> NewMaxPressure) { 488 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 489 unsigned ID = RegionCriticalPSets[i].PSetID; 490 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 491 if ((int)NewMaxPressure[ID] > MaxUnits) 492 MaxUnits = NewMaxPressure[ID]; 493 } 494 } 495 496 /// schedule - Called back from MachineScheduler::runOnMachineFunction 497 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 498 /// only includes instructions that have DAG nodes, not scheduling boundaries. 499 /// 500 /// This is a skeletal driver, with all the functionality pushed into helpers, 501 /// so that it can be easilly extended by experimental schedulers. Generally, 502 /// implementing MachineSchedStrategy should be sufficient to implement a new 503 /// scheduling algorithm. However, if a scheduler further subclasses 504 /// ScheduleDAGMI then it will want to override this virtual method in order to 505 /// update any specialized state. 506 void ScheduleDAGMI::schedule() { 507 buildDAGWithRegPressure(); 508 509 Topo.InitDAGTopologicalSorting(); 510 511 postprocessDAG(); 512 513 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 514 SUnits[su].dumpAll(this)); 515 516 if (ViewMISchedDAGs) viewGraph(); 517 518 initQueues(); 519 520 bool IsTopNode = false; 521 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 522 assert(!SU->isScheduled && "Node already scheduled"); 523 if (!checkSchedLimit()) 524 break; 525 526 scheduleMI(SU, IsTopNode); 527 528 updateQueues(SU, IsTopNode); 529 } 530 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 531 532 placeDebugValues(); 533 534 DEBUG({ 535 unsigned BBNum = begin()->getParent()->getNumber(); 536 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 537 dumpSchedule(); 538 dbgs() << '\n'; 539 }); 540 } 541 542 /// Build the DAG and setup three register pressure trackers. 543 void ScheduleDAGMI::buildDAGWithRegPressure() { 544 // Initialize the register pressure tracker used by buildSchedGraph. 545 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 546 547 // Account for liveness generate by the region boundary. 548 if (LiveRegionEnd != RegionEnd) 549 RPTracker.recede(); 550 551 // Build the DAG, and compute current register pressure. 552 buildSchedGraph(AA, &RPTracker); 553 if (ViewMISchedDAGs) viewGraph(); 554 555 // Initialize top/bottom trackers after computing region pressure. 556 initRegPressure(); 557 } 558 559 /// Apply each ScheduleDAGMutation step in order. 560 void ScheduleDAGMI::postprocessDAG() { 561 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 562 Mutations[i]->apply(this); 563 } 564 } 565 566 // Release all DAG roots for scheduling. 567 // 568 // Nodes with unreleased weak edges can still be roots. 569 void ScheduleDAGMI::releaseRoots() { 570 SmallVector<SUnit*, 16> BotRoots; 571 572 for (std::vector<SUnit>::iterator 573 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 574 SUnit *SU = &(*I); 575 // A SUnit is ready to top schedule if it has no predecessors. 576 if (!I->NumPredsLeft && SU != &EntrySU) 577 SchedImpl->releaseTopNode(SU); 578 // A SUnit is ready to bottom schedule if it has no successors. 579 if (!I->NumSuccsLeft && SU != &ExitSU) 580 BotRoots.push_back(SU); 581 } 582 // Release bottom roots in reverse order so the higher priority nodes appear 583 // first. This is more natural and slightly more efficient. 584 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 585 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) 586 SchedImpl->releaseBottomNode(*I); 587 } 588 589 /// Identify DAG roots and setup scheduler queues. 590 void ScheduleDAGMI::initQueues() { 591 NextClusterSucc = NULL; 592 NextClusterPred = NULL; 593 594 // Initialize the strategy before modifying the DAG. 595 SchedImpl->initialize(this); 596 597 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 598 releaseRoots(); 599 600 releaseSuccessors(&EntrySU); 601 releasePredecessors(&ExitSU); 602 603 SchedImpl->registerRoots(); 604 605 // Advance past initial DebugValues. 606 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 607 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 608 TopRPTracker.setPos(CurrentTop); 609 610 CurrentBottom = RegionEnd; 611 } 612 613 /// Move an instruction and update register pressure. 614 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 615 // Move the instruction to its new location in the instruction stream. 616 MachineInstr *MI = SU->getInstr(); 617 618 if (IsTopNode) { 619 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 620 if (&*CurrentTop == MI) 621 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 622 else { 623 moveInstruction(MI, CurrentTop); 624 TopRPTracker.setPos(MI); 625 } 626 627 // Update top scheduled pressure. 628 TopRPTracker.advance(); 629 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 630 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 631 } 632 else { 633 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 634 MachineBasicBlock::iterator priorII = 635 priorNonDebug(CurrentBottom, CurrentTop); 636 if (&*priorII == MI) 637 CurrentBottom = priorII; 638 else { 639 if (&*CurrentTop == MI) { 640 CurrentTop = nextIfDebug(++CurrentTop, priorII); 641 TopRPTracker.setPos(CurrentTop); 642 } 643 moveInstruction(MI, CurrentBottom); 644 CurrentBottom = MI; 645 } 646 // Update bottom scheduled pressure. 647 BotRPTracker.recede(); 648 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 649 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 650 } 651 } 652 653 /// Update scheduler queues after scheduling an instruction. 654 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 655 // Release dependent instructions for scheduling. 656 if (IsTopNode) 657 releaseSuccessors(SU); 658 else 659 releasePredecessors(SU); 660 661 SU->isScheduled = true; 662 663 // Notify the scheduling strategy after updating the DAG. 664 SchedImpl->schedNode(SU, IsTopNode); 665 } 666 667 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 668 void ScheduleDAGMI::placeDebugValues() { 669 // If first instruction was a DBG_VALUE then put it back. 670 if (FirstDbgValue) { 671 BB->splice(RegionBegin, BB, FirstDbgValue); 672 RegionBegin = FirstDbgValue; 673 } 674 675 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 676 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 677 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 678 MachineInstr *DbgValue = P.first; 679 MachineBasicBlock::iterator OrigPrevMI = P.second; 680 if (&*RegionBegin == DbgValue) 681 ++RegionBegin; 682 BB->splice(++OrigPrevMI, BB, DbgValue); 683 if (OrigPrevMI == llvm::prior(RegionEnd)) 684 RegionEnd = DbgValue; 685 } 686 DbgValues.clear(); 687 FirstDbgValue = NULL; 688 } 689 690 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 691 void ScheduleDAGMI::dumpSchedule() const { 692 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 693 if (SUnit *SU = getSUnit(&(*MI))) 694 SU->dump(this); 695 else 696 dbgs() << "Missing SUnit\n"; 697 } 698 } 699 #endif 700 701 //===----------------------------------------------------------------------===// 702 // LoadClusterMutation - DAG post-processing to cluster loads. 703 //===----------------------------------------------------------------------===// 704 705 namespace { 706 /// \brief Post-process the DAG to create cluster edges between neighboring 707 /// loads. 708 class LoadClusterMutation : public ScheduleDAGMutation { 709 struct LoadInfo { 710 SUnit *SU; 711 unsigned BaseReg; 712 unsigned Offset; 713 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 714 : SU(su), BaseReg(reg), Offset(ofs) {} 715 }; 716 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 717 const LoadClusterMutation::LoadInfo &RHS); 718 719 const TargetInstrInfo *TII; 720 const TargetRegisterInfo *TRI; 721 public: 722 LoadClusterMutation(const TargetInstrInfo *tii, 723 const TargetRegisterInfo *tri) 724 : TII(tii), TRI(tri) {} 725 726 virtual void apply(ScheduleDAGMI *DAG); 727 protected: 728 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 729 }; 730 } // anonymous 731 732 bool LoadClusterMutation::LoadInfoLess( 733 const LoadClusterMutation::LoadInfo &LHS, 734 const LoadClusterMutation::LoadInfo &RHS) { 735 if (LHS.BaseReg != RHS.BaseReg) 736 return LHS.BaseReg < RHS.BaseReg; 737 return LHS.Offset < RHS.Offset; 738 } 739 740 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 741 ScheduleDAGMI *DAG) { 742 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 743 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 744 SUnit *SU = Loads[Idx]; 745 unsigned BaseReg; 746 unsigned Offset; 747 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 748 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 749 } 750 if (LoadRecords.size() < 2) 751 return; 752 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 753 unsigned ClusterLength = 1; 754 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 755 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 756 ClusterLength = 1; 757 continue; 758 } 759 760 SUnit *SUa = LoadRecords[Idx].SU; 761 SUnit *SUb = LoadRecords[Idx+1].SU; 762 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 763 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 764 765 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 766 << SUb->NodeNum << ")\n"); 767 // Copy successor edges from SUa to SUb. Interleaving computation 768 // dependent on SUa can prevent load combining due to register reuse. 769 // Predecessor edges do not need to be copied from SUb to SUa since nearby 770 // loads should have effectively the same inputs. 771 for (SUnit::const_succ_iterator 772 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 773 if (SI->getSUnit() == SUb) 774 continue; 775 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 776 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 777 } 778 ++ClusterLength; 779 } 780 else 781 ClusterLength = 1; 782 } 783 } 784 785 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 786 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 787 // Map DAG NodeNum to store chain ID. 788 DenseMap<unsigned, unsigned> StoreChainIDs; 789 // Map each store chain to a set of dependent loads. 790 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 791 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 792 SUnit *SU = &DAG->SUnits[Idx]; 793 if (!SU->getInstr()->mayLoad()) 794 continue; 795 unsigned ChainPredID = DAG->SUnits.size(); 796 for (SUnit::const_pred_iterator 797 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 798 if (PI->isCtrl()) { 799 ChainPredID = PI->getSUnit()->NodeNum; 800 break; 801 } 802 } 803 // Check if this chain-like pred has been seen 804 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 805 unsigned NumChains = StoreChainDependents.size(); 806 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 807 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 808 if (Result.second) 809 StoreChainDependents.resize(NumChains + 1); 810 StoreChainDependents[Result.first->second].push_back(SU); 811 } 812 // Iterate over the store chains. 813 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 814 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 815 } 816 817 //===----------------------------------------------------------------------===// 818 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 819 //===----------------------------------------------------------------------===// 820 821 namespace { 822 /// \brief Post-process the DAG to create cluster edges between instructions 823 /// that may be fused by the processor into a single operation. 824 class MacroFusion : public ScheduleDAGMutation { 825 const TargetInstrInfo *TII; 826 public: 827 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 828 829 virtual void apply(ScheduleDAGMI *DAG); 830 }; 831 } // anonymous 832 833 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 834 /// fused operations. 835 void MacroFusion::apply(ScheduleDAGMI *DAG) { 836 // For now, assume targets can only fuse with the branch. 837 MachineInstr *Branch = DAG->ExitSU.getInstr(); 838 if (!Branch) 839 return; 840 841 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 842 SUnit *SU = &DAG->SUnits[--Idx]; 843 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 844 continue; 845 846 // Create a single weak edge from SU to ExitSU. The only effect is to cause 847 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 848 // need to copy predecessor edges from ExitSU to SU, since top-down 849 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 850 // of SU, we could create an artificial edge from the deepest root, but it 851 // hasn't been needed yet. 852 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 853 (void)Success; 854 assert(Success && "No DAG nodes should be reachable from ExitSU"); 855 856 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 857 break; 858 } 859 } 860 861 //===----------------------------------------------------------------------===// 862 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. 863 //===----------------------------------------------------------------------===// 864 865 namespace { 866 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 867 /// the schedule. 868 class ConvergingScheduler : public MachineSchedStrategy { 869 public: 870 /// Represent the type of SchedCandidate found within a single queue. 871 /// pickNodeBidirectional depends on these listed by decreasing priority. 872 enum CandReason { 873 NoCand, SingleExcess, SingleCritical, Cluster, 874 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 875 TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, 876 NodeOrder}; 877 878 #ifndef NDEBUG 879 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 880 #endif 881 882 /// Policy for scheduling the next instruction in the candidate's zone. 883 struct CandPolicy { 884 bool ReduceLatency; 885 unsigned ReduceResIdx; 886 unsigned DemandResIdx; 887 888 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 889 }; 890 891 /// Status of an instruction's critical resource consumption. 892 struct SchedResourceDelta { 893 // Count critical resources in the scheduled region required by SU. 894 unsigned CritResources; 895 896 // Count critical resources from another region consumed by SU. 897 unsigned DemandedResources; 898 899 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 900 901 bool operator==(const SchedResourceDelta &RHS) const { 902 return CritResources == RHS.CritResources 903 && DemandedResources == RHS.DemandedResources; 904 } 905 bool operator!=(const SchedResourceDelta &RHS) const { 906 return !operator==(RHS); 907 } 908 }; 909 910 /// Store the state used by ConvergingScheduler heuristics, required for the 911 /// lifetime of one invocation of pickNode(). 912 struct SchedCandidate { 913 CandPolicy Policy; 914 915 // The best SUnit candidate. 916 SUnit *SU; 917 918 // The reason for this candidate. 919 CandReason Reason; 920 921 // Register pressure values for the best candidate. 922 RegPressureDelta RPDelta; 923 924 // Critical resource consumption of the best candidate. 925 SchedResourceDelta ResDelta; 926 927 SchedCandidate(const CandPolicy &policy) 928 : Policy(policy), SU(NULL), Reason(NoCand) {} 929 930 bool isValid() const { return SU; } 931 932 // Copy the status of another candidate without changing policy. 933 void setBest(SchedCandidate &Best) { 934 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 935 SU = Best.SU; 936 Reason = Best.Reason; 937 RPDelta = Best.RPDelta; 938 ResDelta = Best.ResDelta; 939 } 940 941 void initResourceDelta(const ScheduleDAGMI *DAG, 942 const TargetSchedModel *SchedModel); 943 }; 944 945 /// Summarize the unscheduled region. 946 struct SchedRemainder { 947 // Critical path through the DAG in expected latency. 948 unsigned CriticalPath; 949 950 // Unscheduled resources 951 SmallVector<unsigned, 16> RemainingCounts; 952 // Critical resource for the unscheduled zone. 953 unsigned CritResIdx; 954 // Number of micro-ops left to schedule. 955 unsigned RemainingMicroOps; 956 // Is the unscheduled zone resource limited. 957 bool IsResourceLimited; 958 959 unsigned MaxRemainingCount; 960 961 void reset() { 962 CriticalPath = 0; 963 RemainingCounts.clear(); 964 CritResIdx = 0; 965 RemainingMicroOps = 0; 966 IsResourceLimited = false; 967 MaxRemainingCount = 0; 968 } 969 970 SchedRemainder() { reset(); } 971 972 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 973 }; 974 975 /// Each Scheduling boundary is associated with ready queues. It tracks the 976 /// current cycle in the direction of movement, and maintains the state 977 /// of "hazards" and other interlocks at the current cycle. 978 struct SchedBoundary { 979 ScheduleDAGMI *DAG; 980 const TargetSchedModel *SchedModel; 981 SchedRemainder *Rem; 982 983 ReadyQueue Available; 984 ReadyQueue Pending; 985 bool CheckPending; 986 987 // For heuristics, keep a list of the nodes that immediately depend on the 988 // most recently scheduled node. 989 SmallPtrSet<const SUnit*, 8> NextSUs; 990 991 ScheduleHazardRecognizer *HazardRec; 992 993 unsigned CurrCycle; 994 unsigned IssueCount; 995 996 /// MinReadyCycle - Cycle of the soonest available instruction. 997 unsigned MinReadyCycle; 998 999 // The expected latency of the critical path in this scheduled zone. 1000 unsigned ExpectedLatency; 1001 1002 // Resources used in the scheduled zone beyond this boundary. 1003 SmallVector<unsigned, 16> ResourceCounts; 1004 1005 // Cache the critical resources ID in this scheduled zone. 1006 unsigned CritResIdx; 1007 1008 // Is the scheduled region resource limited vs. latency limited. 1009 bool IsResourceLimited; 1010 1011 unsigned ExpectedCount; 1012 1013 // Policy flag: attempt to find ILP until expected latency is covered. 1014 bool ShouldIncreaseILP; 1015 1016 #ifndef NDEBUG 1017 // Remember the greatest min operand latency. 1018 unsigned MaxMinLatency; 1019 #endif 1020 1021 void reset() { 1022 Available.clear(); 1023 Pending.clear(); 1024 CheckPending = false; 1025 NextSUs.clear(); 1026 HazardRec = 0; 1027 CurrCycle = 0; 1028 IssueCount = 0; 1029 MinReadyCycle = UINT_MAX; 1030 ExpectedLatency = 0; 1031 ResourceCounts.resize(1); 1032 assert(!ResourceCounts[0] && "nonzero count for bad resource"); 1033 CritResIdx = 0; 1034 IsResourceLimited = false; 1035 ExpectedCount = 0; 1036 ShouldIncreaseILP = false; 1037 #ifndef NDEBUG 1038 MaxMinLatency = 0; 1039 #endif 1040 // Reserve a zero-count for invalid CritResIdx. 1041 ResourceCounts.resize(1); 1042 } 1043 1044 /// Pending queues extend the ready queues with the same ID and the 1045 /// PendingFlag set. 1046 SchedBoundary(unsigned ID, const Twine &Name): 1047 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1048 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P") { 1049 reset(); 1050 } 1051 1052 ~SchedBoundary() { delete HazardRec; } 1053 1054 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1055 SchedRemainder *rem); 1056 1057 bool isTop() const { 1058 return Available.getID() == ConvergingScheduler::TopQID; 1059 } 1060 1061 unsigned getUnscheduledLatency(SUnit *SU) const { 1062 if (isTop()) 1063 return SU->getHeight(); 1064 return SU->getDepth(); 1065 } 1066 1067 unsigned getCriticalCount() const { 1068 return ResourceCounts[CritResIdx]; 1069 } 1070 1071 bool checkHazard(SUnit *SU); 1072 1073 void checkILPPolicy(); 1074 1075 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1076 1077 void bumpCycle(); 1078 1079 void countResource(unsigned PIdx, unsigned Cycles); 1080 1081 void bumpNode(SUnit *SU); 1082 1083 void releasePending(); 1084 1085 void removeReady(SUnit *SU); 1086 1087 SUnit *pickOnlyChoice(); 1088 }; 1089 1090 private: 1091 ScheduleDAGMI *DAG; 1092 const TargetSchedModel *SchedModel; 1093 const TargetRegisterInfo *TRI; 1094 1095 // State of the top and bottom scheduled instruction boundaries. 1096 SchedRemainder Rem; 1097 SchedBoundary Top; 1098 SchedBoundary Bot; 1099 1100 public: 1101 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1102 enum { 1103 TopQID = 1, 1104 BotQID = 2, 1105 LogMaxQID = 2 1106 }; 1107 1108 ConvergingScheduler(): 1109 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1110 1111 virtual void initialize(ScheduleDAGMI *dag); 1112 1113 virtual SUnit *pickNode(bool &IsTopNode); 1114 1115 virtual void schedNode(SUnit *SU, bool IsTopNode); 1116 1117 virtual void releaseTopNode(SUnit *SU); 1118 1119 virtual void releaseBottomNode(SUnit *SU); 1120 1121 virtual void registerRoots(); 1122 1123 protected: 1124 void balanceZones( 1125 ConvergingScheduler::SchedBoundary &CriticalZone, 1126 ConvergingScheduler::SchedCandidate &CriticalCand, 1127 ConvergingScheduler::SchedBoundary &OppositeZone, 1128 ConvergingScheduler::SchedCandidate &OppositeCand); 1129 1130 void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, 1131 ConvergingScheduler::SchedCandidate &BotCand); 1132 1133 void tryCandidate(SchedCandidate &Cand, 1134 SchedCandidate &TryCand, 1135 SchedBoundary &Zone, 1136 const RegPressureTracker &RPTracker, 1137 RegPressureTracker &TempTracker); 1138 1139 SUnit *pickNodeBidirectional(bool &IsTopNode); 1140 1141 void pickNodeFromQueue(SchedBoundary &Zone, 1142 const RegPressureTracker &RPTracker, 1143 SchedCandidate &Candidate); 1144 1145 #ifndef NDEBUG 1146 void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone); 1147 #endif 1148 }; 1149 } // namespace 1150 1151 void ConvergingScheduler::SchedRemainder:: 1152 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1153 reset(); 1154 if (!SchedModel->hasInstrSchedModel()) 1155 return; 1156 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1157 for (std::vector<SUnit>::iterator 1158 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1159 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1160 RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); 1161 for (TargetSchedModel::ProcResIter 1162 PI = SchedModel->getWriteProcResBegin(SC), 1163 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1164 unsigned PIdx = PI->ProcResourceIdx; 1165 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1166 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1167 } 1168 } 1169 } 1170 1171 void ConvergingScheduler::SchedBoundary:: 1172 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1173 reset(); 1174 DAG = dag; 1175 SchedModel = smodel; 1176 Rem = rem; 1177 if (SchedModel->hasInstrSchedModel()) 1178 ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); 1179 } 1180 1181 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1182 DAG = dag; 1183 SchedModel = DAG->getSchedModel(); 1184 TRI = DAG->TRI; 1185 Rem.init(DAG, SchedModel); 1186 Top.init(DAG, SchedModel, &Rem); 1187 Bot.init(DAG, SchedModel, &Rem); 1188 1189 // Initialize resource counts. 1190 1191 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1192 // are disabled, then these HazardRecs will be disabled. 1193 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1194 const TargetMachine &TM = DAG->MF.getTarget(); 1195 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1196 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1197 1198 assert((!ForceTopDown || !ForceBottomUp) && 1199 "-misched-topdown incompatible with -misched-bottomup"); 1200 } 1201 1202 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1203 if (SU->isScheduled) 1204 return; 1205 1206 for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1207 I != E; ++I) { 1208 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1209 unsigned MinLatency = I->getMinLatency(); 1210 #ifndef NDEBUG 1211 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); 1212 #endif 1213 if (SU->TopReadyCycle < PredReadyCycle + MinLatency) 1214 SU->TopReadyCycle = PredReadyCycle + MinLatency; 1215 } 1216 Top.releaseNode(SU, SU->TopReadyCycle); 1217 } 1218 1219 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1220 if (SU->isScheduled) 1221 return; 1222 1223 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1224 1225 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1226 I != E; ++I) { 1227 if (I->isWeak()) 1228 continue; 1229 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1230 unsigned MinLatency = I->getMinLatency(); 1231 #ifndef NDEBUG 1232 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); 1233 #endif 1234 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) 1235 SU->BotReadyCycle = SuccReadyCycle + MinLatency; 1236 } 1237 Bot.releaseNode(SU, SU->BotReadyCycle); 1238 } 1239 1240 void ConvergingScheduler::registerRoots() { 1241 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1242 // Some roots may not feed into ExitSU. Check all of them in case. 1243 for (std::vector<SUnit*>::const_iterator 1244 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1245 if ((*I)->getDepth() > Rem.CriticalPath) 1246 Rem.CriticalPath = (*I)->getDepth(); 1247 } 1248 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1249 } 1250 1251 /// Does this SU have a hazard within the current instruction group. 1252 /// 1253 /// The scheduler supports two modes of hazard recognition. The first is the 1254 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1255 /// supports highly complicated in-order reservation tables 1256 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1257 /// 1258 /// The second is a streamlined mechanism that checks for hazards based on 1259 /// simple counters that the scheduler itself maintains. It explicitly checks 1260 /// for instruction dispatch limitations, including the number of micro-ops that 1261 /// can dispatch per cycle. 1262 /// 1263 /// TODO: Also check whether the SU must start a new group. 1264 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1265 if (HazardRec->isEnabled()) 1266 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1267 1268 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1269 if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { 1270 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1271 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1272 return true; 1273 } 1274 return false; 1275 } 1276 1277 /// If expected latency is covered, disable ILP policy. 1278 void ConvergingScheduler::SchedBoundary::checkILPPolicy() { 1279 if (ShouldIncreaseILP 1280 && (IsResourceLimited || ExpectedLatency <= CurrCycle)) { 1281 ShouldIncreaseILP = false; 1282 DEBUG(dbgs() << "Disable ILP: " << Available.getName() << '\n'); 1283 } 1284 } 1285 1286 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1287 unsigned ReadyCycle) { 1288 1289 if (ReadyCycle < MinReadyCycle) 1290 MinReadyCycle = ReadyCycle; 1291 1292 // Check for interlocks first. For the purpose of other heuristics, an 1293 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1294 if (ReadyCycle > CurrCycle || checkHazard(SU)) 1295 Pending.push(SU); 1296 else 1297 Available.push(SU); 1298 1299 // Record this node as an immediate dependent of the scheduled node. 1300 NextSUs.insert(SU); 1301 1302 // If CriticalPath has been computed, then check if the unscheduled nodes 1303 // exceed the ILP window. Before registerRoots, CriticalPath==0. 1304 if (Rem->CriticalPath && (ExpectedLatency + getUnscheduledLatency(SU) 1305 > Rem->CriticalPath + ILPWindow)) { 1306 ShouldIncreaseILP = true; 1307 DEBUG(dbgs() << "Increase ILP: " << Available.getName() << " " 1308 << ExpectedLatency << " + " << getUnscheduledLatency(SU) << '\n'); 1309 } 1310 } 1311 1312 /// Move the boundary of scheduled code by one cycle. 1313 void ConvergingScheduler::SchedBoundary::bumpCycle() { 1314 unsigned Width = SchedModel->getIssueWidth(); 1315 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; 1316 1317 unsigned NextCycle = CurrCycle + 1; 1318 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1319 if (MinReadyCycle > NextCycle) { 1320 IssueCount = 0; 1321 NextCycle = MinReadyCycle; 1322 } 1323 1324 if (!HazardRec->isEnabled()) { 1325 // Bypass HazardRec virtual calls. 1326 CurrCycle = NextCycle; 1327 } 1328 else { 1329 // Bypass getHazardType calls in case of long latency. 1330 for (; CurrCycle != NextCycle; ++CurrCycle) { 1331 if (isTop()) 1332 HazardRec->AdvanceCycle(); 1333 else 1334 HazardRec->RecedeCycle(); 1335 } 1336 } 1337 CheckPending = true; 1338 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1339 1340 DEBUG(dbgs() << " *** " << Available.getName() << " cycle " 1341 << CurrCycle << '\n'); 1342 } 1343 1344 /// Add the given processor resource to this scheduled zone. 1345 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, 1346 unsigned Cycles) { 1347 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1348 DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name 1349 << " +(" << Cycles << "x" << Factor 1350 << ") / " << SchedModel->getLatencyFactor() << '\n'); 1351 1352 unsigned Count = Factor * Cycles; 1353 ResourceCounts[PIdx] += Count; 1354 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1355 Rem->RemainingCounts[PIdx] -= Count; 1356 1357 // Reset MaxRemainingCount for sanity. 1358 Rem->MaxRemainingCount = 0; 1359 1360 // Check if this resource exceeds the current critical resource by a full 1361 // cycle. If so, it becomes the critical resource. 1362 if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) 1363 >= (int)SchedModel->getLatencyFactor()) { 1364 CritResIdx = PIdx; 1365 DEBUG(dbgs() << " *** Critical resource " 1366 << SchedModel->getProcResource(PIdx)->Name << " x" 1367 << ResourceCounts[PIdx] << '\n'); 1368 } 1369 } 1370 1371 /// Move the boundary of scheduled code by one SUnit. 1372 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1373 // Update the reservation table. 1374 if (HazardRec->isEnabled()) { 1375 if (!isTop() && SU->isCall) { 1376 // Calls are scheduled with their preceding instructions. For bottom-up 1377 // scheduling, clear the pipeline state before emitting. 1378 HazardRec->Reset(); 1379 } 1380 HazardRec->EmitInstruction(SU); 1381 } 1382 // Update resource counts and critical resource. 1383 if (SchedModel->hasInstrSchedModel()) { 1384 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1385 Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); 1386 for (TargetSchedModel::ProcResIter 1387 PI = SchedModel->getWriteProcResBegin(SC), 1388 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1389 countResource(PI->ProcResourceIdx, PI->Cycles); 1390 } 1391 } 1392 if (isTop()) { 1393 if (SU->getDepth() > ExpectedLatency) 1394 ExpectedLatency = SU->getDepth(); 1395 } 1396 else { 1397 if (SU->getHeight() > ExpectedLatency) 1398 ExpectedLatency = SU->getHeight(); 1399 } 1400 1401 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1402 1403 // Check the instruction group dispatch limit. 1404 // TODO: Check if this SU must end a dispatch group. 1405 IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); 1406 1407 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1408 // issue width. However, we commonly reach the maximum. In this case 1409 // opportunistically bump the cycle to avoid uselessly checking everything in 1410 // the readyQ. Furthermore, a single instruction may produce more than one 1411 // cycle's worth of micro-ops. 1412 if (IssueCount >= SchedModel->getIssueWidth()) { 1413 DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); 1414 bumpCycle(); 1415 } 1416 } 1417 1418 /// Release pending ready nodes in to the available queue. This makes them 1419 /// visible to heuristics. 1420 void ConvergingScheduler::SchedBoundary::releasePending() { 1421 // If the available queue is empty, it is safe to reset MinReadyCycle. 1422 if (Available.empty()) 1423 MinReadyCycle = UINT_MAX; 1424 1425 // Check to see if any of the pending instructions are ready to issue. If 1426 // so, add them to the available queue. 1427 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1428 SUnit *SU = *(Pending.begin()+i); 1429 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1430 1431 if (ReadyCycle < MinReadyCycle) 1432 MinReadyCycle = ReadyCycle; 1433 1434 if (ReadyCycle > CurrCycle) 1435 continue; 1436 1437 if (checkHazard(SU)) 1438 continue; 1439 1440 Available.push(SU); 1441 Pending.remove(Pending.begin()+i); 1442 --i; --e; 1443 } 1444 DEBUG(if (!Pending.empty()) Pending.dump()); 1445 CheckPending = false; 1446 } 1447 1448 /// Remove SU from the ready set for this boundary. 1449 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1450 if (Available.isInQueue(SU)) 1451 Available.remove(Available.find(SU)); 1452 else { 1453 assert(Pending.isInQueue(SU) && "bad ready count"); 1454 Pending.remove(Pending.find(SU)); 1455 } 1456 } 1457 1458 /// If this queue only has one ready candidate, return it. As a side effect, 1459 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1460 /// one node is ready. If multiple instructions are ready, return NULL. 1461 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1462 if (CheckPending) 1463 releasePending(); 1464 1465 if (IssueCount > 0) { 1466 // Defer any ready instrs that now have a hazard. 1467 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1468 if (checkHazard(*I)) { 1469 Pending.push(*I); 1470 I = Available.remove(I); 1471 continue; 1472 } 1473 ++I; 1474 } 1475 } 1476 for (unsigned i = 0; Available.empty(); ++i) { 1477 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && 1478 "permanent hazard"); (void)i; 1479 bumpCycle(); 1480 releasePending(); 1481 } 1482 if (Available.size() == 1) 1483 return *Available.begin(); 1484 return NULL; 1485 } 1486 1487 /// Record the candidate policy for opposite zones with different critical 1488 /// resources. 1489 /// 1490 /// If the CriticalZone is latency limited, don't force a policy for the 1491 /// candidates here. Instead, When releasing each candidate, releaseNode 1492 /// compares the region's critical path to the candidate's height or depth and 1493 /// the scheduled zone's expected latency then sets ShouldIncreaseILP. 1494 void ConvergingScheduler::balanceZones( 1495 ConvergingScheduler::SchedBoundary &CriticalZone, 1496 ConvergingScheduler::SchedCandidate &CriticalCand, 1497 ConvergingScheduler::SchedBoundary &OppositeZone, 1498 ConvergingScheduler::SchedCandidate &OppositeCand) { 1499 1500 if (!CriticalZone.IsResourceLimited) 1501 return; 1502 1503 SchedRemainder *Rem = CriticalZone.Rem; 1504 1505 // If the critical zone is overconsuming a resource relative to the 1506 // remainder, try to reduce it. 1507 unsigned RemainingCritCount = 1508 Rem->RemainingCounts[CriticalZone.CritResIdx]; 1509 if ((int)(Rem->MaxRemainingCount - RemainingCritCount) 1510 > (int)SchedModel->getLatencyFactor()) { 1511 CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; 1512 DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " 1513 << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name 1514 << '\n'); 1515 } 1516 // If the other zone is underconsuming a resource relative to the full zone, 1517 // try to increase it. 1518 unsigned OppositeCount = 1519 OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; 1520 if ((int)(OppositeZone.ExpectedCount - OppositeCount) 1521 > (int)SchedModel->getLatencyFactor()) { 1522 OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; 1523 DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " 1524 << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name 1525 << '\n'); 1526 } 1527 } 1528 1529 /// Determine if the scheduled zones exceed resource limits or critical path and 1530 /// set each candidate's ReduceHeight policy accordingly. 1531 void ConvergingScheduler::checkResourceLimits( 1532 ConvergingScheduler::SchedCandidate &TopCand, 1533 ConvergingScheduler::SchedCandidate &BotCand) { 1534 1535 Bot.checkILPPolicy(); 1536 Top.checkILPPolicy(); 1537 if (Bot.ShouldIncreaseILP) 1538 BotCand.Policy.ReduceLatency = true; 1539 if (Top.ShouldIncreaseILP) 1540 TopCand.Policy.ReduceLatency = true; 1541 1542 // Handle resource-limited regions. 1543 if (Top.IsResourceLimited && Bot.IsResourceLimited 1544 && Top.CritResIdx == Bot.CritResIdx) { 1545 // If the scheduled critical resource in both zones is no longer the 1546 // critical remaining resource, attempt to reduce resource height both ways. 1547 if (Top.CritResIdx != Rem.CritResIdx) { 1548 TopCand.Policy.ReduceResIdx = Top.CritResIdx; 1549 BotCand.Policy.ReduceResIdx = Bot.CritResIdx; 1550 DEBUG(dbgs() << "Reduce scheduled " 1551 << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); 1552 } 1553 return; 1554 } 1555 // Handle latency-limited regions. 1556 if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { 1557 // If the total scheduled expected latency exceeds the region's critical 1558 // path then reduce latency both ways. 1559 // 1560 // Just because a zone is not resource limited does not mean it is latency 1561 // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle 1562 // to exceed expected latency. 1563 if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) 1564 && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { 1565 TopCand.Policy.ReduceLatency = true; 1566 BotCand.Policy.ReduceLatency = true; 1567 DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency 1568 << " + " << Bot.ExpectedLatency << '\n'); 1569 } 1570 return; 1571 } 1572 // The critical resource is different in each zone, so request balancing. 1573 1574 // Compute the cost of each zone. 1575 Rem.MaxRemainingCount = std::max( 1576 Rem.RemainingMicroOps * SchedModel->getMicroOpFactor(), 1577 Rem.RemainingCounts[Rem.CritResIdx]); 1578 Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); 1579 Top.ExpectedCount = std::max( 1580 Top.getCriticalCount(), 1581 Top.ExpectedCount * SchedModel->getLatencyFactor()); 1582 Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); 1583 Bot.ExpectedCount = std::max( 1584 Bot.getCriticalCount(), 1585 Bot.ExpectedCount * SchedModel->getLatencyFactor()); 1586 1587 balanceZones(Top, TopCand, Bot, BotCand); 1588 balanceZones(Bot, BotCand, Top, TopCand); 1589 } 1590 1591 void ConvergingScheduler::SchedCandidate:: 1592 initResourceDelta(const ScheduleDAGMI *DAG, 1593 const TargetSchedModel *SchedModel) { 1594 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 1595 return; 1596 1597 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1598 for (TargetSchedModel::ProcResIter 1599 PI = SchedModel->getWriteProcResBegin(SC), 1600 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1601 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 1602 ResDelta.CritResources += PI->Cycles; 1603 if (PI->ProcResourceIdx == Policy.DemandResIdx) 1604 ResDelta.DemandedResources += PI->Cycles; 1605 } 1606 } 1607 1608 /// Return true if this heuristic determines order. 1609 static bool tryLess(unsigned TryVal, unsigned CandVal, 1610 ConvergingScheduler::SchedCandidate &TryCand, 1611 ConvergingScheduler::SchedCandidate &Cand, 1612 ConvergingScheduler::CandReason Reason) { 1613 if (TryVal < CandVal) { 1614 TryCand.Reason = Reason; 1615 return true; 1616 } 1617 if (TryVal > CandVal) { 1618 if (Cand.Reason > Reason) 1619 Cand.Reason = Reason; 1620 return true; 1621 } 1622 return false; 1623 } 1624 1625 static bool tryGreater(unsigned TryVal, unsigned CandVal, 1626 ConvergingScheduler::SchedCandidate &TryCand, 1627 ConvergingScheduler::SchedCandidate &Cand, 1628 ConvergingScheduler::CandReason Reason) { 1629 if (TryVal > CandVal) { 1630 TryCand.Reason = Reason; 1631 return true; 1632 } 1633 if (TryVal < CandVal) { 1634 if (Cand.Reason > Reason) 1635 Cand.Reason = Reason; 1636 return true; 1637 } 1638 return false; 1639 } 1640 1641 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 1642 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 1643 } 1644 1645 /// Apply a set of heursitics to a new candidate. Heuristics are currently 1646 /// hierarchical. This may be more efficient than a graduated cost model because 1647 /// we don't need to evaluate all aspects of the model for each node in the 1648 /// queue. But it's really done to make the heuristics easier to debug and 1649 /// statistically analyze. 1650 /// 1651 /// \param Cand provides the policy and current best candidate. 1652 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 1653 /// \param Zone describes the scheduled zone that we are extending. 1654 /// \param RPTracker describes reg pressure within the scheduled zone. 1655 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 1656 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 1657 SchedCandidate &TryCand, 1658 SchedBoundary &Zone, 1659 const RegPressureTracker &RPTracker, 1660 RegPressureTracker &TempTracker) { 1661 1662 // Always initialize TryCand's RPDelta. 1663 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 1664 DAG->getRegionCriticalPSets(), 1665 DAG->getRegPressure().MaxSetPressure); 1666 1667 // Initialize the candidate if needed. 1668 if (!Cand.isValid()) { 1669 TryCand.Reason = NodeOrder; 1670 return; 1671 } 1672 // Avoid exceeding the target's limit. 1673 if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, 1674 Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) 1675 return; 1676 if (Cand.Reason == SingleExcess) 1677 Cand.Reason = MultiPressure; 1678 1679 // Avoid increasing the max critical pressure in the scheduled region. 1680 if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, 1681 Cand.RPDelta.CriticalMax.UnitIncrease, 1682 TryCand, Cand, SingleCritical)) 1683 return; 1684 if (Cand.Reason == SingleCritical) 1685 Cand.Reason = MultiPressure; 1686 1687 // Keep clustered nodes together to encourage downstream peephole 1688 // optimizations which may reduce resource requirements. 1689 // 1690 // This is a best effort to set things up for a post-RA pass. Optimizations 1691 // like generating loads of multiple registers should ideally be done within 1692 // the scheduler pass by combining the loads during DAG postprocessing. 1693 const SUnit *NextClusterSU = 1694 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 1695 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 1696 TryCand, Cand, Cluster)) 1697 return; 1698 // Currently, weak edges are for clustering, so we hard-code that reason. 1699 // However, deferring the current TryCand will not change Cand's reason. 1700 CandReason OrigReason = Cand.Reason; 1701 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 1702 getWeakLeft(Cand.SU, Zone.isTop()), 1703 TryCand, Cand, Cluster)) { 1704 Cand.Reason = OrigReason; 1705 return; 1706 } 1707 // Avoid critical resource consumption and balance the schedule. 1708 TryCand.initResourceDelta(DAG, SchedModel); 1709 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 1710 TryCand, Cand, ResourceReduce)) 1711 return; 1712 if (tryGreater(TryCand.ResDelta.DemandedResources, 1713 Cand.ResDelta.DemandedResources, 1714 TryCand, Cand, ResourceDemand)) 1715 return; 1716 1717 // Avoid serializing long latency dependence chains. 1718 if (Cand.Policy.ReduceLatency) { 1719 if (Zone.isTop()) { 1720 if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() 1721 > Zone.ExpectedCount) { 1722 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1723 TryCand, Cand, TopDepthReduce)) 1724 return; 1725 } 1726 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1727 TryCand, Cand, TopPathReduce)) 1728 return; 1729 } 1730 else { 1731 if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() 1732 > Zone.ExpectedCount) { 1733 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1734 TryCand, Cand, BotHeightReduce)) 1735 return; 1736 } 1737 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1738 TryCand, Cand, BotPathReduce)) 1739 return; 1740 } 1741 } 1742 1743 // Avoid increasing the max pressure of the entire region. 1744 if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, 1745 Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) 1746 return; 1747 if (Cand.Reason == SingleMax) 1748 Cand.Reason = MultiPressure; 1749 1750 // Prefer immediate defs/users of the last scheduled instruction. This is a 1751 // nice pressure avoidance strategy that also conserves the processor's 1752 // register renaming resources and keeps the machine code readable. 1753 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 1754 TryCand, Cand, NextDefUse)) 1755 return; 1756 1757 // Fall through to original instruction order. 1758 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 1759 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 1760 TryCand.Reason = NodeOrder; 1761 } 1762 } 1763 1764 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is 1765 /// more desirable than RHS from scheduling standpoint. 1766 static bool compareRPDelta(const RegPressureDelta &LHS, 1767 const RegPressureDelta &RHS) { 1768 // Compare each component of pressure in decreasing order of importance 1769 // without checking if any are valid. Invalid PressureElements are assumed to 1770 // have UnitIncrease==0, so are neutral. 1771 1772 // Avoid increasing the max critical pressure in the scheduled region. 1773 if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { 1774 DEBUG(dbgs() << "RP excess top - bot: " 1775 << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); 1776 return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; 1777 } 1778 // Avoid increasing the max critical pressure in the scheduled region. 1779 if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { 1780 DEBUG(dbgs() << "RP critical top - bot: " 1781 << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) 1782 << '\n'); 1783 return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; 1784 } 1785 // Avoid increasing the max pressure of the entire region. 1786 if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { 1787 DEBUG(dbgs() << "RP current top - bot: " 1788 << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) 1789 << '\n'); 1790 return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; 1791 } 1792 return false; 1793 } 1794 1795 #ifndef NDEBUG 1796 const char *ConvergingScheduler::getReasonStr( 1797 ConvergingScheduler::CandReason Reason) { 1798 switch (Reason) { 1799 case NoCand: return "NOCAND "; 1800 case SingleExcess: return "REG-EXCESS"; 1801 case SingleCritical: return "REG-CRIT "; 1802 case Cluster: return "CLUSTER "; 1803 case SingleMax: return "REG-MAX "; 1804 case MultiPressure: return "REG-MULTI "; 1805 case ResourceReduce: return "RES-REDUCE"; 1806 case ResourceDemand: return "RES-DEMAND"; 1807 case TopDepthReduce: return "TOP-DEPTH "; 1808 case TopPathReduce: return "TOP-PATH "; 1809 case BotHeightReduce:return "BOT-HEIGHT"; 1810 case BotPathReduce: return "BOT-PATH "; 1811 case NextDefUse: return "DEF-USE "; 1812 case NodeOrder: return "ORDER "; 1813 }; 1814 llvm_unreachable("Unknown reason!"); 1815 } 1816 1817 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand, 1818 const SchedBoundary &Zone) { 1819 const char *Label = getReasonStr(Cand.Reason); 1820 PressureElement P; 1821 unsigned ResIdx = 0; 1822 unsigned Latency = 0; 1823 switch (Cand.Reason) { 1824 default: 1825 break; 1826 case SingleExcess: 1827 P = Cand.RPDelta.Excess; 1828 break; 1829 case SingleCritical: 1830 P = Cand.RPDelta.CriticalMax; 1831 break; 1832 case SingleMax: 1833 P = Cand.RPDelta.CurrentMax; 1834 break; 1835 case ResourceReduce: 1836 ResIdx = Cand.Policy.ReduceResIdx; 1837 break; 1838 case ResourceDemand: 1839 ResIdx = Cand.Policy.DemandResIdx; 1840 break; 1841 case TopDepthReduce: 1842 Latency = Cand.SU->getDepth(); 1843 break; 1844 case TopPathReduce: 1845 Latency = Cand.SU->getHeight(); 1846 break; 1847 case BotHeightReduce: 1848 Latency = Cand.SU->getHeight(); 1849 break; 1850 case BotPathReduce: 1851 Latency = Cand.SU->getDepth(); 1852 break; 1853 } 1854 dbgs() << Label << " " << Zone.Available.getName() << " "; 1855 if (P.isValid()) 1856 dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease 1857 << " "; 1858 else 1859 dbgs() << " "; 1860 if (ResIdx) 1861 dbgs() << SchedModel->getProcResource(ResIdx)->Name << " "; 1862 else 1863 dbgs() << " "; 1864 if (Latency) 1865 dbgs() << Latency << " cycles "; 1866 else 1867 dbgs() << " "; 1868 Cand.SU->dump(DAG); 1869 } 1870 #endif 1871 1872 /// Pick the best candidate from the top queue. 1873 /// 1874 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 1875 /// DAG building. To adjust for the current scheduling location we need to 1876 /// maintain the number of vreg uses remaining to be top-scheduled. 1877 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 1878 const RegPressureTracker &RPTracker, 1879 SchedCandidate &Cand) { 1880 ReadyQueue &Q = Zone.Available; 1881 1882 DEBUG(Q.dump()); 1883 1884 // getMaxPressureDelta temporarily modifies the tracker. 1885 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 1886 1887 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 1888 1889 SchedCandidate TryCand(Cand.Policy); 1890 TryCand.SU = *I; 1891 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 1892 if (TryCand.Reason != NoCand) { 1893 // Initialize resource delta if needed in case future heuristics query it. 1894 if (TryCand.ResDelta == SchedResourceDelta()) 1895 TryCand.initResourceDelta(DAG, SchedModel); 1896 Cand.setBest(TryCand); 1897 DEBUG(traceCandidate(Cand, Zone)); 1898 } 1899 TryCand.SU = *I; 1900 } 1901 } 1902 1903 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 1904 bool IsTop) { 1905 DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot") 1906 << " SU(" << Cand.SU->NodeNum << ") " 1907 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 1908 } 1909 1910 /// Pick the best candidate node from either the top or bottom queue. 1911 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 1912 // Schedule as far as possible in the direction of no choice. This is most 1913 // efficient, but also provides the best heuristics for CriticalPSets. 1914 if (SUnit *SU = Bot.pickOnlyChoice()) { 1915 IsTopNode = false; 1916 return SU; 1917 } 1918 if (SUnit *SU = Top.pickOnlyChoice()) { 1919 IsTopNode = true; 1920 return SU; 1921 } 1922 CandPolicy NoPolicy; 1923 SchedCandidate BotCand(NoPolicy); 1924 SchedCandidate TopCand(NoPolicy); 1925 checkResourceLimits(TopCand, BotCand); 1926 1927 // Prefer bottom scheduling when heuristics are silent. 1928 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 1929 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 1930 1931 // If either Q has a single candidate that provides the least increase in 1932 // Excess pressure, we can immediately schedule from that Q. 1933 // 1934 // RegionCriticalPSets summarizes the pressure within the scheduled region and 1935 // affects picking from either Q. If scheduling in one direction must 1936 // increase pressure for one of the excess PSets, then schedule in that 1937 // direction first to provide more freedom in the other direction. 1938 if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { 1939 IsTopNode = false; 1940 tracePick(BotCand, IsTopNode); 1941 return BotCand.SU; 1942 } 1943 // Check if the top Q has a better candidate. 1944 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 1945 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 1946 1947 // If either Q has a single candidate that minimizes pressure above the 1948 // original region's pressure pick it. 1949 if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { 1950 if (TopCand.Reason < BotCand.Reason) { 1951 IsTopNode = true; 1952 tracePick(TopCand, IsTopNode); 1953 return TopCand.SU; 1954 } 1955 IsTopNode = false; 1956 tracePick(BotCand, IsTopNode); 1957 return BotCand.SU; 1958 } 1959 // Check for a salient pressure difference and pick the best from either side. 1960 if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { 1961 IsTopNode = true; 1962 tracePick(TopCand, IsTopNode); 1963 return TopCand.SU; 1964 } 1965 // Otherwise prefer the bottom candidate, in node order if all else failed. 1966 if (TopCand.Reason < BotCand.Reason) { 1967 IsTopNode = true; 1968 tracePick(TopCand, IsTopNode); 1969 return TopCand.SU; 1970 } 1971 IsTopNode = false; 1972 tracePick(BotCand, IsTopNode); 1973 return BotCand.SU; 1974 } 1975 1976 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 1977 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 1978 if (DAG->top() == DAG->bottom()) { 1979 assert(Top.Available.empty() && Top.Pending.empty() && 1980 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 1981 return NULL; 1982 } 1983 SUnit *SU; 1984 do { 1985 if (ForceTopDown) { 1986 SU = Top.pickOnlyChoice(); 1987 if (!SU) { 1988 CandPolicy NoPolicy; 1989 SchedCandidate TopCand(NoPolicy); 1990 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 1991 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 1992 SU = TopCand.SU; 1993 } 1994 IsTopNode = true; 1995 } 1996 else if (ForceBottomUp) { 1997 SU = Bot.pickOnlyChoice(); 1998 if (!SU) { 1999 CandPolicy NoPolicy; 2000 SchedCandidate BotCand(NoPolicy); 2001 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2002 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2003 SU = BotCand.SU; 2004 } 2005 IsTopNode = false; 2006 } 2007 else { 2008 SU = pickNodeBidirectional(IsTopNode); 2009 } 2010 } while (SU->isScheduled); 2011 2012 if (SU->isTopReady()) 2013 Top.removeReady(SU); 2014 if (SU->isBottomReady()) 2015 Bot.removeReady(SU); 2016 2017 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") 2018 << " Scheduling Instruction in cycle " 2019 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; 2020 SU->dump(DAG)); 2021 return SU; 2022 } 2023 2024 /// Update the scheduler's state after scheduling a node. This is the same node 2025 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2026 /// it's state based on the current cycle before MachineSchedStrategy does. 2027 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2028 if (IsTopNode) { 2029 SU->TopReadyCycle = Top.CurrCycle; 2030 Top.bumpNode(SU); 2031 } 2032 else { 2033 SU->BotReadyCycle = Bot.CurrCycle; 2034 Bot.bumpNode(SU); 2035 } 2036 } 2037 2038 /// Create the standard converging machine scheduler. This will be used as the 2039 /// default scheduler if the target does not set a default. 2040 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2041 assert((!ForceTopDown || !ForceBottomUp) && 2042 "-misched-topdown incompatible with -misched-bottomup"); 2043 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2044 // Register DAG post-processors. 2045 if (EnableLoadCluster) 2046 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2047 if (EnableMacroFusion) 2048 DAG->addMutation(new MacroFusion(DAG->TII)); 2049 return DAG; 2050 } 2051 static MachineSchedRegistry 2052 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2053 createConvergingSched); 2054 2055 //===----------------------------------------------------------------------===// 2056 // ILP Scheduler. Currently for experimental analysis of heuristics. 2057 //===----------------------------------------------------------------------===// 2058 2059 namespace { 2060 /// \brief Order nodes by the ILP metric. 2061 struct ILPOrder { 2062 SchedDFSResult *DFSResult; 2063 BitVector *ScheduledTrees; 2064 bool MaximizeILP; 2065 2066 ILPOrder(SchedDFSResult *dfs, BitVector *schedtrees, bool MaxILP) 2067 : DFSResult(dfs), ScheduledTrees(schedtrees), MaximizeILP(MaxILP) {} 2068 2069 /// \brief Apply a less-than relation on node priority. 2070 /// 2071 /// (Return true if A comes after B in the Q.) 2072 bool operator()(const SUnit *A, const SUnit *B) const { 2073 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2074 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2075 if (SchedTreeA != SchedTreeB) { 2076 // Unscheduled trees have lower priority. 2077 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2078 return ScheduledTrees->test(SchedTreeB); 2079 2080 // Trees with shallower connections have have lower priority. 2081 if (DFSResult->getSubtreeLevel(SchedTreeA) 2082 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2083 return DFSResult->getSubtreeLevel(SchedTreeA) 2084 < DFSResult->getSubtreeLevel(SchedTreeB); 2085 } 2086 } 2087 if (MaximizeILP) 2088 return DFSResult->getILP(A) < DFSResult->getILP(B); 2089 else 2090 return DFSResult->getILP(A) > DFSResult->getILP(B); 2091 } 2092 }; 2093 2094 /// \brief Schedule based on the ILP metric. 2095 class ILPScheduler : public MachineSchedStrategy { 2096 /// In case all subtrees are eventually connected to a common root through 2097 /// data dependence (e.g. reduction), place an upper limit on their size. 2098 /// 2099 /// FIXME: A subtree limit is generally good, but in the situation commented 2100 /// above, where multiple similar subtrees feed a common root, we should 2101 /// only split at a point where the resulting subtrees will be balanced. 2102 /// (a motivating test case must be found). 2103 static const unsigned SubtreeLimit = 16; 2104 2105 SchedDFSResult DFSResult; 2106 BitVector ScheduledTrees; 2107 ILPOrder Cmp; 2108 2109 std::vector<SUnit*> ReadyQ; 2110 public: 2111 ILPScheduler(bool MaximizeILP) 2112 : DFSResult(/*BottomUp=*/true, SubtreeLimit), 2113 Cmp(&DFSResult, &ScheduledTrees, MaximizeILP) {} 2114 2115 virtual void initialize(ScheduleDAGMI *DAG) { 2116 ReadyQ.clear(); 2117 DFSResult.clear(); 2118 DFSResult.resize(DAG->SUnits.size()); 2119 ScheduledTrees.clear(); 2120 } 2121 2122 virtual void registerRoots() { 2123 DFSResult.compute(ReadyQ); 2124 ScheduledTrees.resize(DFSResult.getNumSubtrees()); 2125 // Restore the heap in ReadyQ with the updated DFS results. 2126 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2127 } 2128 2129 /// Implement MachineSchedStrategy interface. 2130 /// ----------------------------------------- 2131 2132 /// Callback to select the highest priority node from the ready Q. 2133 virtual SUnit *pickNode(bool &IsTopNode) { 2134 if (ReadyQ.empty()) return NULL; 2135 pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2136 SUnit *SU = ReadyQ.back(); 2137 ReadyQ.pop_back(); 2138 IsTopNode = false; 2139 DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " 2140 << *SU->getInstr() 2141 << " ILP: " << DFSResult.getILP(SU) 2142 << " Tree: " << DFSResult.getSubtreeID(SU) << " @" 2143 << DFSResult.getSubtreeLevel(DFSResult.getSubtreeID(SU))<< '\n'); 2144 return SU; 2145 } 2146 2147 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2148 /// DFSResults, and resort the priority Q. 2149 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2150 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2151 if (!ScheduledTrees.test(DFSResult.getSubtreeID(SU))) { 2152 ScheduledTrees.set(DFSResult.getSubtreeID(SU)); 2153 DFSResult.scheduleTree(DFSResult.getSubtreeID(SU)); 2154 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2155 } 2156 } 2157 2158 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2159 2160 virtual void releaseBottomNode(SUnit *SU) { 2161 ReadyQ.push_back(SU); 2162 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2163 } 2164 }; 2165 } // namespace 2166 2167 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2168 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2169 } 2170 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2171 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2172 } 2173 static MachineSchedRegistry ILPMaxRegistry( 2174 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2175 static MachineSchedRegistry ILPMinRegistry( 2176 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2177 2178 //===----------------------------------------------------------------------===// 2179 // Machine Instruction Shuffler for Correctness Testing 2180 //===----------------------------------------------------------------------===// 2181 2182 #ifndef NDEBUG 2183 namespace { 2184 /// Apply a less-than relation on the node order, which corresponds to the 2185 /// instruction order prior to scheduling. IsReverse implements greater-than. 2186 template<bool IsReverse> 2187 struct SUnitOrder { 2188 bool operator()(SUnit *A, SUnit *B) const { 2189 if (IsReverse) 2190 return A->NodeNum > B->NodeNum; 2191 else 2192 return A->NodeNum < B->NodeNum; 2193 } 2194 }; 2195 2196 /// Reorder instructions as much as possible. 2197 class InstructionShuffler : public MachineSchedStrategy { 2198 bool IsAlternating; 2199 bool IsTopDown; 2200 2201 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2202 // gives nodes with a higher number higher priority causing the latest 2203 // instructions to be scheduled first. 2204 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2205 TopQ; 2206 // When scheduling bottom-up, use greater-than as the queue priority. 2207 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2208 BottomQ; 2209 public: 2210 InstructionShuffler(bool alternate, bool topdown) 2211 : IsAlternating(alternate), IsTopDown(topdown) {} 2212 2213 virtual void initialize(ScheduleDAGMI *) { 2214 TopQ.clear(); 2215 BottomQ.clear(); 2216 } 2217 2218 /// Implement MachineSchedStrategy interface. 2219 /// ----------------------------------------- 2220 2221 virtual SUnit *pickNode(bool &IsTopNode) { 2222 SUnit *SU; 2223 if (IsTopDown) { 2224 do { 2225 if (TopQ.empty()) return NULL; 2226 SU = TopQ.top(); 2227 TopQ.pop(); 2228 } while (SU->isScheduled); 2229 IsTopNode = true; 2230 } 2231 else { 2232 do { 2233 if (BottomQ.empty()) return NULL; 2234 SU = BottomQ.top(); 2235 BottomQ.pop(); 2236 } while (SU->isScheduled); 2237 IsTopNode = false; 2238 } 2239 if (IsAlternating) 2240 IsTopDown = !IsTopDown; 2241 return SU; 2242 } 2243 2244 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2245 2246 virtual void releaseTopNode(SUnit *SU) { 2247 TopQ.push(SU); 2248 } 2249 virtual void releaseBottomNode(SUnit *SU) { 2250 BottomQ.push(SU); 2251 } 2252 }; 2253 } // namespace 2254 2255 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2256 bool Alternate = !ForceTopDown && !ForceBottomUp; 2257 bool TopDown = !ForceBottomUp; 2258 assert((TopDown || !ForceTopDown) && 2259 "-misched-topdown incompatible with -misched-bottomup"); 2260 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2261 } 2262 static MachineSchedRegistry ShufflerRegistry( 2263 "shuffle", "Shuffle machine instructions alternating directions", 2264 createInstructionShuffler); 2265 #endif // !NDEBUG 2266