1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Decrement this iterator until reaching the top or a non-debug instr. 234 static MachineBasicBlock::const_iterator 235 priorNonDebug(MachineBasicBlock::const_iterator I, 236 MachineBasicBlock::const_iterator Beg) { 237 assert(I != Beg && "reached the top of the region, cannot decrement"); 238 while (--I != Beg) { 239 if (!I->isDebugValue()) 240 break; 241 } 242 return I; 243 } 244 245 /// Non-const version. 246 static MachineBasicBlock::iterator 247 priorNonDebug(MachineBasicBlock::iterator I, 248 MachineBasicBlock::const_iterator Beg) { 249 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 250 .getNonConstIterator(); 251 } 252 253 /// If this iterator is a debug value, increment until reaching the End or a 254 /// non-debug instruction. 255 static MachineBasicBlock::const_iterator 256 nextIfDebug(MachineBasicBlock::const_iterator I, 257 MachineBasicBlock::const_iterator End) { 258 for(; I != End; ++I) { 259 if (!I->isDebugValue()) 260 break; 261 } 262 return I; 263 } 264 265 /// Non-const version. 266 static MachineBasicBlock::iterator 267 nextIfDebug(MachineBasicBlock::iterator I, 268 MachineBasicBlock::const_iterator End) { 269 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 270 .getNonConstIterator(); 271 } 272 273 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 274 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 275 // Select the scheduler, or set the default. 276 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 277 if (Ctor != useDefaultMachineSched) 278 return Ctor(this); 279 280 // Get the default scheduler set by the target for this function. 281 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 282 if (Scheduler) 283 return Scheduler; 284 285 // Default to GenericScheduler. 286 return createGenericSchedLive(this); 287 } 288 289 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 290 /// the caller. We don't have a command line option to override the postRA 291 /// scheduler. The Target must configure it. 292 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 293 // Get the postRA scheduler set by the target for this function. 294 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 295 if (Scheduler) 296 return Scheduler; 297 298 // Default to GenericScheduler. 299 return createGenericSchedPostRA(this); 300 } 301 302 /// Top-level MachineScheduler pass driver. 303 /// 304 /// Visit blocks in function order. Divide each block into scheduling regions 305 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 306 /// consistent with the DAG builder, which traverses the interior of the 307 /// scheduling regions bottom-up. 308 /// 309 /// This design avoids exposing scheduling boundaries to the DAG builder, 310 /// simplifying the DAG builder's support for "special" target instructions. 311 /// At the same time the design allows target schedulers to operate across 312 /// scheduling boundaries, for example to bundle the boudary instructions 313 /// without reordering them. This creates complexity, because the target 314 /// scheduler must update the RegionBegin and RegionEnd positions cached by 315 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 316 /// design would be to split blocks at scheduling boundaries, but LLVM has a 317 /// general bias against block splitting purely for implementation simplicity. 318 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 319 if (skipFunction(*mf.getFunction())) 320 return false; 321 322 if (EnableMachineSched.getNumOccurrences()) { 323 if (!EnableMachineSched) 324 return false; 325 } else if (!mf.getSubtarget().enableMachineScheduler()) 326 return false; 327 328 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 329 330 // Initialize the context of the pass. 331 MF = &mf; 332 MLI = &getAnalysis<MachineLoopInfo>(); 333 MDT = &getAnalysis<MachineDominatorTree>(); 334 PassConfig = &getAnalysis<TargetPassConfig>(); 335 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 336 337 LIS = &getAnalysis<LiveIntervals>(); 338 339 if (VerifyScheduling) { 340 DEBUG(LIS->dump()); 341 MF->verify(this, "Before machine scheduling."); 342 } 343 RegClassInfo->runOnMachineFunction(*MF); 344 345 // Instantiate the selected scheduler for this target, function, and 346 // optimization level. 347 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 348 scheduleRegions(*Scheduler, false); 349 350 DEBUG(LIS->dump()); 351 if (VerifyScheduling) 352 MF->verify(this, "After machine scheduling."); 353 return true; 354 } 355 356 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 357 if (skipFunction(*mf.getFunction())) 358 return false; 359 360 if (EnablePostRAMachineSched.getNumOccurrences()) { 361 if (!EnablePostRAMachineSched) 362 return false; 363 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 364 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 365 return false; 366 } 367 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 368 369 // Initialize the context of the pass. 370 MF = &mf; 371 PassConfig = &getAnalysis<TargetPassConfig>(); 372 373 if (VerifyScheduling) 374 MF->verify(this, "Before post machine scheduling."); 375 376 // Instantiate the selected scheduler for this target, function, and 377 // optimization level. 378 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 379 scheduleRegions(*Scheduler, true); 380 381 if (VerifyScheduling) 382 MF->verify(this, "After post machine scheduling."); 383 return true; 384 } 385 386 /// Return true of the given instruction should not be included in a scheduling 387 /// region. 388 /// 389 /// MachineScheduler does not currently support scheduling across calls. To 390 /// handle calls, the DAG builder needs to be modified to create register 391 /// anti/output dependencies on the registers clobbered by the call's regmask 392 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 393 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 394 /// the boundary, but there would be no benefit to postRA scheduling across 395 /// calls this late anyway. 396 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 397 MachineBasicBlock *MBB, 398 MachineFunction *MF, 399 const TargetInstrInfo *TII) { 400 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 401 } 402 403 /// Main driver for both MachineScheduler and PostMachineScheduler. 404 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 405 bool FixKillFlags) { 406 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 407 408 // Visit all machine basic blocks. 409 // 410 // TODO: Visit blocks in global postorder or postorder within the bottom-up 411 // loop tree. Then we can optionally compute global RegPressure. 412 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 413 MBB != MBBEnd; ++MBB) { 414 415 Scheduler.startBlock(&*MBB); 416 417 #ifndef NDEBUG 418 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 419 continue; 420 if (SchedOnlyBlock.getNumOccurrences() 421 && (int)SchedOnlyBlock != MBB->getNumber()) 422 continue; 423 #endif 424 425 // Break the block into scheduling regions [I, RegionEnd), and schedule each 426 // region as soon as it is discovered. RegionEnd points the scheduling 427 // boundary at the bottom of the region. The DAG does not include RegionEnd, 428 // but the region does (i.e. the next RegionEnd is above the previous 429 // RegionBegin). If the current block has no terminator then RegionEnd == 430 // MBB->end() for the bottom region. 431 // 432 // The Scheduler may insert instructions during either schedule() or 433 // exitRegion(), even for empty regions. So the local iterators 'I' and 434 // 'RegionEnd' are invalid across these calls. 435 // 436 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 437 // as a single instruction. 438 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 439 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 440 441 // Avoid decrementing RegionEnd for blocks with no terminator. 442 if (RegionEnd != MBB->end() || 443 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 444 --RegionEnd; 445 } 446 447 // The next region starts above the previous region. Look backward in the 448 // instruction stream until we find the nearest boundary. 449 unsigned NumRegionInstrs = 0; 450 MachineBasicBlock::iterator I = RegionEnd; 451 for (;I != MBB->begin(); --I) { 452 MachineInstr &MI = *std::prev(I); 453 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 454 break; 455 if (!MI.isDebugValue()) 456 ++NumRegionInstrs; 457 } 458 // Notify the scheduler of the region, even if we may skip scheduling 459 // it. Perhaps it still needs to be bundled. 460 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 461 462 // Skip empty scheduling regions (0 or 1 schedulable instructions). 463 if (I == RegionEnd || I == std::prev(RegionEnd)) { 464 // Close the current region. Bundle the terminator if needed. 465 // This invalidates 'RegionEnd' and 'I'. 466 Scheduler.exitRegion(); 467 continue; 468 } 469 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 470 DEBUG(dbgs() << MF->getName() 471 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 472 << "\n From: " << *I << " To: "; 473 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 474 else dbgs() << "End"; 475 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 476 if (DumpCriticalPathLength) { 477 errs() << MF->getName(); 478 errs() << ":BB# " << MBB->getNumber(); 479 errs() << " " << MBB->getName() << " \n"; 480 } 481 482 // Schedule a region: possibly reorder instructions. 483 // This invalidates 'RegionEnd' and 'I'. 484 Scheduler.schedule(); 485 486 // Close the current region. 487 Scheduler.exitRegion(); 488 489 // Scheduling has invalidated the current iterator 'I'. Ask the 490 // scheduler for the top of it's scheduled region. 491 RegionEnd = Scheduler.begin(); 492 } 493 Scheduler.finishBlock(); 494 // FIXME: Ideally, no further passes should rely on kill flags. However, 495 // thumb2 size reduction is currently an exception, so the PostMIScheduler 496 // needs to do this. 497 if (FixKillFlags) 498 Scheduler.fixupKills(&*MBB); 499 } 500 Scheduler.finalizeSchedule(); 501 } 502 503 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 504 // unimplemented 505 } 506 507 LLVM_DUMP_METHOD 508 void ReadyQueue::dump() { 509 dbgs() << "Queue " << Name << ": "; 510 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 511 dbgs() << Queue[i]->NodeNum << " "; 512 dbgs() << "\n"; 513 } 514 515 //===----------------------------------------------------------------------===// 516 // ScheduleDAGMI - Basic machine instruction scheduling. This is 517 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 518 // virtual registers. 519 // ===----------------------------------------------------------------------===/ 520 521 // Provide a vtable anchor. 522 ScheduleDAGMI::~ScheduleDAGMI() { 523 } 524 525 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 526 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 527 } 528 529 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 530 if (SuccSU != &ExitSU) { 531 // Do not use WillCreateCycle, it assumes SD scheduling. 532 // If Pred is reachable from Succ, then the edge creates a cycle. 533 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 534 return false; 535 Topo.AddPred(SuccSU, PredDep.getSUnit()); 536 } 537 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 538 // Return true regardless of whether a new edge needed to be inserted. 539 return true; 540 } 541 542 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 543 /// NumPredsLeft reaches zero, release the successor node. 544 /// 545 /// FIXME: Adjust SuccSU height based on MinLatency. 546 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 547 SUnit *SuccSU = SuccEdge->getSUnit(); 548 549 if (SuccEdge->isWeak()) { 550 --SuccSU->WeakPredsLeft; 551 if (SuccEdge->isCluster()) 552 NextClusterSucc = SuccSU; 553 return; 554 } 555 #ifndef NDEBUG 556 if (SuccSU->NumPredsLeft == 0) { 557 dbgs() << "*** Scheduling failed! ***\n"; 558 SuccSU->dump(this); 559 dbgs() << " has been released too many times!\n"; 560 llvm_unreachable(nullptr); 561 } 562 #endif 563 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 564 // CurrCycle may have advanced since then. 565 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 566 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 567 568 --SuccSU->NumPredsLeft; 569 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 570 SchedImpl->releaseTopNode(SuccSU); 571 } 572 573 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 574 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 575 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 576 I != E; ++I) { 577 releaseSucc(SU, &*I); 578 } 579 } 580 581 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 582 /// NumSuccsLeft reaches zero, release the predecessor node. 583 /// 584 /// FIXME: Adjust PredSU height based on MinLatency. 585 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 586 SUnit *PredSU = PredEdge->getSUnit(); 587 588 if (PredEdge->isWeak()) { 589 --PredSU->WeakSuccsLeft; 590 if (PredEdge->isCluster()) 591 NextClusterPred = PredSU; 592 return; 593 } 594 #ifndef NDEBUG 595 if (PredSU->NumSuccsLeft == 0) { 596 dbgs() << "*** Scheduling failed! ***\n"; 597 PredSU->dump(this); 598 dbgs() << " has been released too many times!\n"; 599 llvm_unreachable(nullptr); 600 } 601 #endif 602 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 603 // CurrCycle may have advanced since then. 604 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 605 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 606 607 --PredSU->NumSuccsLeft; 608 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 609 SchedImpl->releaseBottomNode(PredSU); 610 } 611 612 /// releasePredecessors - Call releasePred on each of SU's predecessors. 613 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 614 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 615 I != E; ++I) { 616 releasePred(SU, &*I); 617 } 618 } 619 620 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 621 /// crossing a scheduling boundary. [begin, end) includes all instructions in 622 /// the region, including the boundary itself and single-instruction regions 623 /// that don't get scheduled. 624 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 625 MachineBasicBlock::iterator begin, 626 MachineBasicBlock::iterator end, 627 unsigned regioninstrs) 628 { 629 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 630 631 SchedImpl->initPolicy(begin, end, regioninstrs); 632 } 633 634 /// This is normally called from the main scheduler loop but may also be invoked 635 /// by the scheduling strategy to perform additional code motion. 636 void ScheduleDAGMI::moveInstruction( 637 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 638 // Advance RegionBegin if the first instruction moves down. 639 if (&*RegionBegin == MI) 640 ++RegionBegin; 641 642 // Update the instruction stream. 643 BB->splice(InsertPos, BB, MI); 644 645 // Update LiveIntervals 646 if (LIS) 647 LIS->handleMove(*MI, /*UpdateFlags=*/true); 648 649 // Recede RegionBegin if an instruction moves above the first. 650 if (RegionBegin == InsertPos) 651 RegionBegin = MI; 652 } 653 654 bool ScheduleDAGMI::checkSchedLimit() { 655 #ifndef NDEBUG 656 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 657 CurrentTop = CurrentBottom; 658 return false; 659 } 660 ++NumInstrsScheduled; 661 #endif 662 return true; 663 } 664 665 /// Per-region scheduling driver, called back from 666 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 667 /// does not consider liveness or register pressure. It is useful for PostRA 668 /// scheduling and potentially other custom schedulers. 669 void ScheduleDAGMI::schedule() { 670 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 671 DEBUG(SchedImpl->dumpPolicy()); 672 673 // Build the DAG. 674 buildSchedGraph(AA); 675 676 Topo.InitDAGTopologicalSorting(); 677 678 postprocessDAG(); 679 680 SmallVector<SUnit*, 8> TopRoots, BotRoots; 681 findRootsAndBiasEdges(TopRoots, BotRoots); 682 683 // Initialize the strategy before modifying the DAG. 684 // This may initialize a DFSResult to be used for queue priority. 685 SchedImpl->initialize(this); 686 687 DEBUG( 688 if (EntrySU.getInstr() != nullptr) 689 EntrySU.dumpAll(this); 690 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 691 SUnits[su].dumpAll(this); 692 if (ExitSU.getInstr() != nullptr) 693 ExitSU.dumpAll(this); 694 ); 695 if (ViewMISchedDAGs) viewGraph(); 696 697 // Initialize ready queues now that the DAG and priority data are finalized. 698 initQueues(TopRoots, BotRoots); 699 700 bool IsTopNode = false; 701 while (true) { 702 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 703 SUnit *SU = SchedImpl->pickNode(IsTopNode); 704 if (!SU) break; 705 706 assert(!SU->isScheduled && "Node already scheduled"); 707 if (!checkSchedLimit()) 708 break; 709 710 MachineInstr *MI = SU->getInstr(); 711 if (IsTopNode) { 712 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 713 if (&*CurrentTop == MI) 714 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 715 else 716 moveInstruction(MI, CurrentTop); 717 } else { 718 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 719 MachineBasicBlock::iterator priorII = 720 priorNonDebug(CurrentBottom, CurrentTop); 721 if (&*priorII == MI) 722 CurrentBottom = priorII; 723 else { 724 if (&*CurrentTop == MI) 725 CurrentTop = nextIfDebug(++CurrentTop, priorII); 726 moveInstruction(MI, CurrentBottom); 727 CurrentBottom = MI; 728 } 729 } 730 // Notify the scheduling strategy before updating the DAG. 731 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 732 // runs, it can then use the accurate ReadyCycle time to determine whether 733 // newly released nodes can move to the readyQ. 734 SchedImpl->schedNode(SU, IsTopNode); 735 736 updateQueues(SU, IsTopNode); 737 } 738 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 739 740 placeDebugValues(); 741 742 DEBUG({ 743 unsigned BBNum = begin()->getParent()->getNumber(); 744 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 745 dumpSchedule(); 746 dbgs() << '\n'; 747 }); 748 } 749 750 /// Apply each ScheduleDAGMutation step in order. 751 void ScheduleDAGMI::postprocessDAG() { 752 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 753 Mutations[i]->apply(this); 754 } 755 } 756 757 void ScheduleDAGMI:: 758 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 759 SmallVectorImpl<SUnit*> &BotRoots) { 760 for (std::vector<SUnit>::iterator 761 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 762 SUnit *SU = &(*I); 763 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 764 765 // Order predecessors so DFSResult follows the critical path. 766 SU->biasCriticalPath(); 767 768 // A SUnit is ready to top schedule if it has no predecessors. 769 if (!I->NumPredsLeft) 770 TopRoots.push_back(SU); 771 // A SUnit is ready to bottom schedule if it has no successors. 772 if (!I->NumSuccsLeft) 773 BotRoots.push_back(SU); 774 } 775 ExitSU.biasCriticalPath(); 776 } 777 778 /// Identify DAG roots and setup scheduler queues. 779 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 780 ArrayRef<SUnit*> BotRoots) { 781 NextClusterSucc = nullptr; 782 NextClusterPred = nullptr; 783 784 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 785 // 786 // Nodes with unreleased weak edges can still be roots. 787 // Release top roots in forward order. 788 for (SmallVectorImpl<SUnit*>::const_iterator 789 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 790 SchedImpl->releaseTopNode(*I); 791 } 792 // Release bottom roots in reverse order so the higher priority nodes appear 793 // first. This is more natural and slightly more efficient. 794 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 795 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 796 SchedImpl->releaseBottomNode(*I); 797 } 798 799 releaseSuccessors(&EntrySU); 800 releasePredecessors(&ExitSU); 801 802 SchedImpl->registerRoots(); 803 804 // Advance past initial DebugValues. 805 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 806 CurrentBottom = RegionEnd; 807 } 808 809 /// Update scheduler queues after scheduling an instruction. 810 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 811 // Release dependent instructions for scheduling. 812 if (IsTopNode) 813 releaseSuccessors(SU); 814 else 815 releasePredecessors(SU); 816 817 SU->isScheduled = true; 818 } 819 820 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 821 void ScheduleDAGMI::placeDebugValues() { 822 // If first instruction was a DBG_VALUE then put it back. 823 if (FirstDbgValue) { 824 BB->splice(RegionBegin, BB, FirstDbgValue); 825 RegionBegin = FirstDbgValue; 826 } 827 828 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 829 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 830 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 831 MachineInstr *DbgValue = P.first; 832 MachineBasicBlock::iterator OrigPrevMI = P.second; 833 if (&*RegionBegin == DbgValue) 834 ++RegionBegin; 835 BB->splice(++OrigPrevMI, BB, DbgValue); 836 if (OrigPrevMI == std::prev(RegionEnd)) 837 RegionEnd = DbgValue; 838 } 839 DbgValues.clear(); 840 FirstDbgValue = nullptr; 841 } 842 843 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 844 void ScheduleDAGMI::dumpSchedule() const { 845 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 846 if (SUnit *SU = getSUnit(&(*MI))) 847 SU->dump(this); 848 else 849 dbgs() << "Missing SUnit\n"; 850 } 851 } 852 #endif 853 854 //===----------------------------------------------------------------------===// 855 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 856 // preservation. 857 //===----------------------------------------------------------------------===// 858 859 ScheduleDAGMILive::~ScheduleDAGMILive() { 860 delete DFSResult; 861 } 862 863 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 864 const MachineInstr &MI = *SU.getInstr(); 865 for (const MachineOperand &MO : MI.operands()) { 866 if (!MO.isReg()) 867 continue; 868 if (!MO.readsReg()) 869 continue; 870 if (TrackLaneMasks && !MO.isUse()) 871 continue; 872 873 unsigned Reg = MO.getReg(); 874 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 875 continue; 876 877 // Ignore re-defs. 878 if (TrackLaneMasks) { 879 bool FoundDef = false; 880 for (const MachineOperand &MO2 : MI.operands()) { 881 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 882 FoundDef = true; 883 break; 884 } 885 } 886 if (FoundDef) 887 continue; 888 } 889 890 // Record this local VReg use. 891 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 892 for (; UI != VRegUses.end(); ++UI) { 893 if (UI->SU == &SU) 894 break; 895 } 896 if (UI == VRegUses.end()) 897 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 898 } 899 } 900 901 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 902 /// crossing a scheduling boundary. [begin, end) includes all instructions in 903 /// the region, including the boundary itself and single-instruction regions 904 /// that don't get scheduled. 905 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 906 MachineBasicBlock::iterator begin, 907 MachineBasicBlock::iterator end, 908 unsigned regioninstrs) 909 { 910 // ScheduleDAGMI initializes SchedImpl's per-region policy. 911 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 912 913 // For convenience remember the end of the liveness region. 914 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 915 916 SUPressureDiffs.clear(); 917 918 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 919 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 920 921 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 922 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 923 } 924 925 // Setup the register pressure trackers for the top scheduled top and bottom 926 // scheduled regions. 927 void ScheduleDAGMILive::initRegPressure() { 928 VRegUses.clear(); 929 VRegUses.setUniverse(MRI.getNumVirtRegs()); 930 for (SUnit &SU : SUnits) 931 collectVRegUses(SU); 932 933 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 934 ShouldTrackLaneMasks, false); 935 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 936 ShouldTrackLaneMasks, false); 937 938 // Close the RPTracker to finalize live ins. 939 RPTracker.closeRegion(); 940 941 DEBUG(RPTracker.dump()); 942 943 // Initialize the live ins and live outs. 944 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 945 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 946 947 // Close one end of the tracker so we can call 948 // getMaxUpward/DownwardPressureDelta before advancing across any 949 // instructions. This converts currently live regs into live ins/outs. 950 TopRPTracker.closeTop(); 951 BotRPTracker.closeBottom(); 952 953 BotRPTracker.initLiveThru(RPTracker); 954 if (!BotRPTracker.getLiveThru().empty()) { 955 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 956 DEBUG(dbgs() << "Live Thru: "; 957 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 958 }; 959 960 // For each live out vreg reduce the pressure change associated with other 961 // uses of the same vreg below the live-out reaching def. 962 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 963 964 // Account for liveness generated by the region boundary. 965 if (LiveRegionEnd != RegionEnd) { 966 SmallVector<RegisterMaskPair, 8> LiveUses; 967 BotRPTracker.recede(&LiveUses); 968 updatePressureDiffs(LiveUses); 969 } 970 971 DEBUG( 972 dbgs() << "Top Pressure:\n"; 973 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 974 dbgs() << "Bottom Pressure:\n"; 975 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 976 ); 977 978 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 979 980 // Cache the list of excess pressure sets in this region. This will also track 981 // the max pressure in the scheduled code for these sets. 982 RegionCriticalPSets.clear(); 983 const std::vector<unsigned> &RegionPressure = 984 RPTracker.getPressure().MaxSetPressure; 985 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 986 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 987 if (RegionPressure[i] > Limit) { 988 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 989 << " Limit " << Limit 990 << " Actual " << RegionPressure[i] << "\n"); 991 RegionCriticalPSets.push_back(PressureChange(i)); 992 } 993 } 994 DEBUG(dbgs() << "Excess PSets: "; 995 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 996 dbgs() << TRI->getRegPressureSetName( 997 RegionCriticalPSets[i].getPSet()) << " "; 998 dbgs() << "\n"); 999 } 1000 1001 void ScheduleDAGMILive:: 1002 updateScheduledPressure(const SUnit *SU, 1003 const std::vector<unsigned> &NewMaxPressure) { 1004 const PressureDiff &PDiff = getPressureDiff(SU); 1005 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1006 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 1007 I != E; ++I) { 1008 if (!I->isValid()) 1009 break; 1010 unsigned ID = I->getPSet(); 1011 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1012 ++CritIdx; 1013 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1014 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1015 && NewMaxPressure[ID] <= INT16_MAX) 1016 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1017 } 1018 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1019 if (NewMaxPressure[ID] >= Limit - 2) { 1020 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1021 << NewMaxPressure[ID] 1022 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1023 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1024 } 1025 } 1026 } 1027 1028 /// Update the PressureDiff array for liveness after scheduling this 1029 /// instruction. 1030 void ScheduleDAGMILive::updatePressureDiffs( 1031 ArrayRef<RegisterMaskPair> LiveUses) { 1032 for (const RegisterMaskPair &P : LiveUses) { 1033 unsigned Reg = P.RegUnit; 1034 /// FIXME: Currently assuming single-use physregs. 1035 if (!TRI->isVirtualRegister(Reg)) 1036 continue; 1037 1038 if (ShouldTrackLaneMasks) { 1039 // If the register has just become live then other uses won't change 1040 // this fact anymore => decrement pressure. 1041 // If the register has just become dead then other uses make it come 1042 // back to life => increment pressure. 1043 bool Decrement = P.LaneMask.any(); 1044 1045 for (const VReg2SUnit &V2SU 1046 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1047 SUnit &SU = *V2SU.SU; 1048 if (SU.isScheduled || &SU == &ExitSU) 1049 continue; 1050 1051 PressureDiff &PDiff = getPressureDiff(&SU); 1052 PDiff.addPressureChange(Reg, Decrement, &MRI); 1053 DEBUG( 1054 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1055 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1056 << ' ' << *SU.getInstr(); 1057 dbgs() << " to "; 1058 PDiff.dump(*TRI); 1059 ); 1060 } 1061 } else { 1062 assert(P.LaneMask.any()); 1063 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1064 // This may be called before CurrentBottom has been initialized. However, 1065 // BotRPTracker must have a valid position. We want the value live into the 1066 // instruction or live out of the block, so ask for the previous 1067 // instruction's live-out. 1068 const LiveInterval &LI = LIS->getInterval(Reg); 1069 VNInfo *VNI; 1070 MachineBasicBlock::const_iterator I = 1071 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1072 if (I == BB->end()) 1073 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1074 else { 1075 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1076 VNI = LRQ.valueIn(); 1077 } 1078 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1079 assert(VNI && "No live value at use."); 1080 for (const VReg2SUnit &V2SU 1081 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1082 SUnit *SU = V2SU.SU; 1083 // If this use comes before the reaching def, it cannot be a last use, 1084 // so decrease its pressure change. 1085 if (!SU->isScheduled && SU != &ExitSU) { 1086 LiveQueryResult LRQ = 1087 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1088 if (LRQ.valueIn() == VNI) { 1089 PressureDiff &PDiff = getPressureDiff(SU); 1090 PDiff.addPressureChange(Reg, true, &MRI); 1091 DEBUG( 1092 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1093 << *SU->getInstr(); 1094 dbgs() << " to "; 1095 PDiff.dump(*TRI); 1096 ); 1097 } 1098 } 1099 } 1100 } 1101 } 1102 } 1103 1104 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1105 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1106 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1107 /// 1108 /// This is a skeletal driver, with all the functionality pushed into helpers, 1109 /// so that it can be easily extended by experimental schedulers. Generally, 1110 /// implementing MachineSchedStrategy should be sufficient to implement a new 1111 /// scheduling algorithm. However, if a scheduler further subclasses 1112 /// ScheduleDAGMILive then it will want to override this virtual method in order 1113 /// to update any specialized state. 1114 void ScheduleDAGMILive::schedule() { 1115 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1116 DEBUG(SchedImpl->dumpPolicy()); 1117 buildDAGWithRegPressure(); 1118 1119 Topo.InitDAGTopologicalSorting(); 1120 1121 postprocessDAG(); 1122 1123 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1124 findRootsAndBiasEdges(TopRoots, BotRoots); 1125 1126 // Initialize the strategy before modifying the DAG. 1127 // This may initialize a DFSResult to be used for queue priority. 1128 SchedImpl->initialize(this); 1129 1130 DEBUG( 1131 if (EntrySU.getInstr() != nullptr) 1132 EntrySU.dumpAll(this); 1133 for (const SUnit &SU : SUnits) { 1134 SU.dumpAll(this); 1135 if (ShouldTrackPressure) { 1136 dbgs() << " Pressure Diff : "; 1137 getPressureDiff(&SU).dump(*TRI); 1138 } 1139 dbgs() << '\n'; 1140 } 1141 if (ExitSU.getInstr() != nullptr) 1142 ExitSU.dumpAll(this); 1143 ); 1144 if (ViewMISchedDAGs) viewGraph(); 1145 1146 // Initialize ready queues now that the DAG and priority data are finalized. 1147 initQueues(TopRoots, BotRoots); 1148 1149 bool IsTopNode = false; 1150 while (true) { 1151 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1152 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1153 if (!SU) break; 1154 1155 assert(!SU->isScheduled && "Node already scheduled"); 1156 if (!checkSchedLimit()) 1157 break; 1158 1159 scheduleMI(SU, IsTopNode); 1160 1161 if (DFSResult) { 1162 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1163 if (!ScheduledTrees.test(SubtreeID)) { 1164 ScheduledTrees.set(SubtreeID); 1165 DFSResult->scheduleTree(SubtreeID); 1166 SchedImpl->scheduleTree(SubtreeID); 1167 } 1168 } 1169 1170 // Notify the scheduling strategy after updating the DAG. 1171 SchedImpl->schedNode(SU, IsTopNode); 1172 1173 updateQueues(SU, IsTopNode); 1174 } 1175 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1176 1177 placeDebugValues(); 1178 1179 DEBUG({ 1180 unsigned BBNum = begin()->getParent()->getNumber(); 1181 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1182 dumpSchedule(); 1183 dbgs() << '\n'; 1184 }); 1185 } 1186 1187 /// Build the DAG and setup three register pressure trackers. 1188 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1189 if (!ShouldTrackPressure) { 1190 RPTracker.reset(); 1191 RegionCriticalPSets.clear(); 1192 buildSchedGraph(AA); 1193 return; 1194 } 1195 1196 // Initialize the register pressure tracker used by buildSchedGraph. 1197 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1198 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1199 1200 // Account for liveness generate by the region boundary. 1201 if (LiveRegionEnd != RegionEnd) 1202 RPTracker.recede(); 1203 1204 // Build the DAG, and compute current register pressure. 1205 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1206 1207 // Initialize top/bottom trackers after computing region pressure. 1208 initRegPressure(); 1209 } 1210 1211 void ScheduleDAGMILive::computeDFSResult() { 1212 if (!DFSResult) 1213 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1214 DFSResult->clear(); 1215 ScheduledTrees.clear(); 1216 DFSResult->resize(SUnits.size()); 1217 DFSResult->compute(SUnits); 1218 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1219 } 1220 1221 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1222 /// only provides the critical path for single block loops. To handle loops that 1223 /// span blocks, we could use the vreg path latencies provided by 1224 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1225 /// available for use in the scheduler. 1226 /// 1227 /// The cyclic path estimation identifies a def-use pair that crosses the back 1228 /// edge and considers the depth and height of the nodes. For example, consider 1229 /// the following instruction sequence where each instruction has unit latency 1230 /// and defines an epomymous virtual register: 1231 /// 1232 /// a->b(a,c)->c(b)->d(c)->exit 1233 /// 1234 /// The cyclic critical path is a two cycles: b->c->b 1235 /// The acyclic critical path is four cycles: a->b->c->d->exit 1236 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1237 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1238 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1239 /// LiveInDepth = depth(b) = len(a->b) = 1 1240 /// 1241 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1242 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1243 /// CyclicCriticalPath = min(2, 2) = 2 1244 /// 1245 /// This could be relevant to PostRA scheduling, but is currently implemented 1246 /// assuming LiveIntervals. 1247 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1248 // This only applies to single block loop. 1249 if (!BB->isSuccessor(BB)) 1250 return 0; 1251 1252 unsigned MaxCyclicLatency = 0; 1253 // Visit each live out vreg def to find def/use pairs that cross iterations. 1254 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1255 unsigned Reg = P.RegUnit; 1256 if (!TRI->isVirtualRegister(Reg)) 1257 continue; 1258 const LiveInterval &LI = LIS->getInterval(Reg); 1259 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1260 if (!DefVNI) 1261 continue; 1262 1263 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1264 const SUnit *DefSU = getSUnit(DefMI); 1265 if (!DefSU) 1266 continue; 1267 1268 unsigned LiveOutHeight = DefSU->getHeight(); 1269 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1270 // Visit all local users of the vreg def. 1271 for (const VReg2SUnit &V2SU 1272 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1273 SUnit *SU = V2SU.SU; 1274 if (SU == &ExitSU) 1275 continue; 1276 1277 // Only consider uses of the phi. 1278 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1279 if (!LRQ.valueIn()->isPHIDef()) 1280 continue; 1281 1282 // Assume that a path spanning two iterations is a cycle, which could 1283 // overestimate in strange cases. This allows cyclic latency to be 1284 // estimated as the minimum slack of the vreg's depth or height. 1285 unsigned CyclicLatency = 0; 1286 if (LiveOutDepth > SU->getDepth()) 1287 CyclicLatency = LiveOutDepth - SU->getDepth(); 1288 1289 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1290 if (LiveInHeight > LiveOutHeight) { 1291 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1292 CyclicLatency = LiveInHeight - LiveOutHeight; 1293 } else 1294 CyclicLatency = 0; 1295 1296 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1297 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1298 if (CyclicLatency > MaxCyclicLatency) 1299 MaxCyclicLatency = CyclicLatency; 1300 } 1301 } 1302 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1303 return MaxCyclicLatency; 1304 } 1305 1306 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1307 /// the Top RP tracker in case the region beginning has changed. 1308 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1309 ArrayRef<SUnit*> BotRoots) { 1310 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1311 if (ShouldTrackPressure) { 1312 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1313 TopRPTracker.setPos(CurrentTop); 1314 } 1315 } 1316 1317 /// Move an instruction and update register pressure. 1318 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1319 // Move the instruction to its new location in the instruction stream. 1320 MachineInstr *MI = SU->getInstr(); 1321 1322 if (IsTopNode) { 1323 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1324 if (&*CurrentTop == MI) 1325 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1326 else { 1327 moveInstruction(MI, CurrentTop); 1328 TopRPTracker.setPos(MI); 1329 } 1330 1331 if (ShouldTrackPressure) { 1332 // Update top scheduled pressure. 1333 RegisterOperands RegOpers; 1334 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1335 if (ShouldTrackLaneMasks) { 1336 // Adjust liveness and add missing dead+read-undef flags. 1337 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1338 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1339 } else { 1340 // Adjust for missing dead-def flags. 1341 RegOpers.detectDeadDefs(*MI, *LIS); 1342 } 1343 1344 TopRPTracker.advance(RegOpers); 1345 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1346 DEBUG( 1347 dbgs() << "Top Pressure:\n"; 1348 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1349 ); 1350 1351 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1352 } 1353 } else { 1354 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1355 MachineBasicBlock::iterator priorII = 1356 priorNonDebug(CurrentBottom, CurrentTop); 1357 if (&*priorII == MI) 1358 CurrentBottom = priorII; 1359 else { 1360 if (&*CurrentTop == MI) { 1361 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1362 TopRPTracker.setPos(CurrentTop); 1363 } 1364 moveInstruction(MI, CurrentBottom); 1365 CurrentBottom = MI; 1366 } 1367 if (ShouldTrackPressure) { 1368 RegisterOperands RegOpers; 1369 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1370 if (ShouldTrackLaneMasks) { 1371 // Adjust liveness and add missing dead+read-undef flags. 1372 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1373 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1374 } else { 1375 // Adjust for missing dead-def flags. 1376 RegOpers.detectDeadDefs(*MI, *LIS); 1377 } 1378 1379 BotRPTracker.recedeSkipDebugValues(); 1380 SmallVector<RegisterMaskPair, 8> LiveUses; 1381 BotRPTracker.recede(RegOpers, &LiveUses); 1382 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1383 DEBUG( 1384 dbgs() << "Bottom Pressure:\n"; 1385 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1386 ); 1387 1388 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1389 updatePressureDiffs(LiveUses); 1390 } 1391 } 1392 } 1393 1394 //===----------------------------------------------------------------------===// 1395 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1396 //===----------------------------------------------------------------------===// 1397 1398 namespace { 1399 /// \brief Post-process the DAG to create cluster edges between neighboring 1400 /// loads or between neighboring stores. 1401 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1402 struct MemOpInfo { 1403 SUnit *SU; 1404 unsigned BaseReg; 1405 int64_t Offset; 1406 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1407 : SU(su), BaseReg(reg), Offset(ofs) {} 1408 1409 bool operator<(const MemOpInfo&RHS) const { 1410 return std::tie(BaseReg, Offset, SU->NodeNum) < 1411 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1412 } 1413 }; 1414 1415 const TargetInstrInfo *TII; 1416 const TargetRegisterInfo *TRI; 1417 bool IsLoad; 1418 1419 public: 1420 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1421 const TargetRegisterInfo *tri, bool IsLoad) 1422 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1423 1424 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1425 1426 protected: 1427 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1428 }; 1429 1430 class StoreClusterMutation : public BaseMemOpClusterMutation { 1431 public: 1432 StoreClusterMutation(const TargetInstrInfo *tii, 1433 const TargetRegisterInfo *tri) 1434 : BaseMemOpClusterMutation(tii, tri, false) {} 1435 }; 1436 1437 class LoadClusterMutation : public BaseMemOpClusterMutation { 1438 public: 1439 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1440 : BaseMemOpClusterMutation(tii, tri, true) {} 1441 }; 1442 } // anonymous 1443 1444 namespace llvm { 1445 1446 std::unique_ptr<ScheduleDAGMutation> 1447 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1448 const TargetRegisterInfo *TRI) { 1449 return EnableMemOpCluster ? make_unique<LoadClusterMutation>(TII, TRI) 1450 : nullptr; 1451 } 1452 1453 std::unique_ptr<ScheduleDAGMutation> 1454 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1455 const TargetRegisterInfo *TRI) { 1456 return EnableMemOpCluster ? make_unique<StoreClusterMutation>(TII, TRI) 1457 : nullptr; 1458 } 1459 1460 } // namespace llvm 1461 1462 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1463 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1464 SmallVector<MemOpInfo, 32> MemOpRecords; 1465 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1466 SUnit *SU = MemOps[Idx]; 1467 unsigned BaseReg; 1468 int64_t Offset; 1469 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1470 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1471 } 1472 if (MemOpRecords.size() < 2) 1473 return; 1474 1475 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1476 unsigned ClusterLength = 1; 1477 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1478 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1479 ClusterLength = 1; 1480 continue; 1481 } 1482 1483 SUnit *SUa = MemOpRecords[Idx].SU; 1484 SUnit *SUb = MemOpRecords[Idx+1].SU; 1485 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1486 ClusterLength) && 1487 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1488 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1489 << SUb->NodeNum << ")\n"); 1490 // Copy successor edges from SUa to SUb. Interleaving computation 1491 // dependent on SUa can prevent load combining due to register reuse. 1492 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1493 // loads should have effectively the same inputs. 1494 for (SUnit::const_succ_iterator 1495 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1496 if (SI->getSUnit() == SUb) 1497 continue; 1498 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1499 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1500 } 1501 ++ClusterLength; 1502 } else 1503 ClusterLength = 1; 1504 } 1505 } 1506 1507 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1508 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1509 1510 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1511 1512 // Map DAG NodeNum to store chain ID. 1513 DenseMap<unsigned, unsigned> StoreChainIDs; 1514 // Map each store chain to a set of dependent MemOps. 1515 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1516 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1517 SUnit *SU = &DAG->SUnits[Idx]; 1518 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1519 (!IsLoad && !SU->getInstr()->mayStore())) 1520 continue; 1521 1522 unsigned ChainPredID = DAG->SUnits.size(); 1523 for (SUnit::const_pred_iterator 1524 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1525 if (PI->isCtrl()) { 1526 ChainPredID = PI->getSUnit()->NodeNum; 1527 break; 1528 } 1529 } 1530 // Check if this chain-like pred has been seen 1531 // before. ChainPredID==MaxNodeID at the top of the schedule. 1532 unsigned NumChains = StoreChainDependents.size(); 1533 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1534 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1535 if (Result.second) 1536 StoreChainDependents.resize(NumChains + 1); 1537 StoreChainDependents[Result.first->second].push_back(SU); 1538 } 1539 1540 // Iterate over the store chains. 1541 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1542 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1543 } 1544 1545 //===----------------------------------------------------------------------===// 1546 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1547 //===----------------------------------------------------------------------===// 1548 1549 namespace { 1550 /// \brief Post-process the DAG to create cluster edges between instructions 1551 /// that may be fused by the processor into a single operation. 1552 class MacroFusion : public ScheduleDAGMutation { 1553 const TargetInstrInfo &TII; 1554 public: 1555 MacroFusion(const TargetInstrInfo &TII) 1556 : TII(TII) {} 1557 1558 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1559 }; 1560 } // anonymous 1561 1562 namespace llvm { 1563 1564 std::unique_ptr<ScheduleDAGMutation> 1565 createMacroFusionDAGMutation(const TargetInstrInfo *TII) { 1566 return EnableMacroFusion ? make_unique<MacroFusion>(*TII) : nullptr; 1567 } 1568 1569 } // namespace llvm 1570 1571 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1572 /// fused operations. 1573 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1574 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1575 1576 // For now, assume targets can only fuse with the branch. 1577 SUnit &ExitSU = DAG->ExitSU; 1578 MachineInstr *Branch = ExitSU.getInstr(); 1579 if (!Branch) 1580 return; 1581 1582 for (SDep &PredDep : ExitSU.Preds) { 1583 if (PredDep.isWeak()) 1584 continue; 1585 SUnit &SU = *PredDep.getSUnit(); 1586 MachineInstr &Pred = *SU.getInstr(); 1587 if (!TII.shouldScheduleAdjacent(Pred, *Branch)) 1588 continue; 1589 1590 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1591 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1592 // need to copy predecessor edges from ExitSU to SU, since top-down 1593 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1594 // of SU, we could create an artificial edge from the deepest root, but it 1595 // hasn't been needed yet. 1596 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1597 (void)Success; 1598 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1599 1600 // Adjust latency of data deps between the nodes. 1601 for (SDep &PredDep : ExitSU.Preds) { 1602 if (PredDep.getSUnit() == &SU) 1603 PredDep.setLatency(0); 1604 } 1605 for (SDep &SuccDep : SU.Succs) { 1606 if (SuccDep.getSUnit() == &ExitSU) 1607 SuccDep.setLatency(0); 1608 } 1609 1610 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1611 break; 1612 } 1613 } 1614 1615 //===----------------------------------------------------------------------===// 1616 // CopyConstrain - DAG post-processing to encourage copy elimination. 1617 //===----------------------------------------------------------------------===// 1618 1619 namespace { 1620 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1621 /// the one use that defines the copy's source vreg, most likely an induction 1622 /// variable increment. 1623 class CopyConstrain : public ScheduleDAGMutation { 1624 // Transient state. 1625 SlotIndex RegionBeginIdx; 1626 // RegionEndIdx is the slot index of the last non-debug instruction in the 1627 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1628 SlotIndex RegionEndIdx; 1629 public: 1630 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1631 1632 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1633 1634 protected: 1635 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1636 }; 1637 } // anonymous 1638 1639 namespace llvm { 1640 1641 std::unique_ptr<ScheduleDAGMutation> 1642 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1643 const TargetRegisterInfo *TRI) { 1644 return make_unique<CopyConstrain>(TII, TRI); 1645 } 1646 1647 } // namespace llvm 1648 1649 /// constrainLocalCopy handles two possibilities: 1650 /// 1) Local src: 1651 /// I0: = dst 1652 /// I1: src = ... 1653 /// I2: = dst 1654 /// I3: dst = src (copy) 1655 /// (create pred->succ edges I0->I1, I2->I1) 1656 /// 1657 /// 2) Local copy: 1658 /// I0: dst = src (copy) 1659 /// I1: = dst 1660 /// I2: src = ... 1661 /// I3: = dst 1662 /// (create pred->succ edges I1->I2, I3->I2) 1663 /// 1664 /// Although the MachineScheduler is currently constrained to single blocks, 1665 /// this algorithm should handle extended blocks. An EBB is a set of 1666 /// contiguously numbered blocks such that the previous block in the EBB is 1667 /// always the single predecessor. 1668 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1669 LiveIntervals *LIS = DAG->getLIS(); 1670 MachineInstr *Copy = CopySU->getInstr(); 1671 1672 // Check for pure vreg copies. 1673 const MachineOperand &SrcOp = Copy->getOperand(1); 1674 unsigned SrcReg = SrcOp.getReg(); 1675 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1676 return; 1677 1678 const MachineOperand &DstOp = Copy->getOperand(0); 1679 unsigned DstReg = DstOp.getReg(); 1680 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1681 return; 1682 1683 // Check if either the dest or source is local. If it's live across a back 1684 // edge, it's not local. Note that if both vregs are live across the back 1685 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1686 // If both the copy's source and dest are local live intervals, then we 1687 // should treat the dest as the global for the purpose of adding 1688 // constraints. This adds edges from source's other uses to the copy. 1689 unsigned LocalReg = SrcReg; 1690 unsigned GlobalReg = DstReg; 1691 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1692 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1693 LocalReg = DstReg; 1694 GlobalReg = SrcReg; 1695 LocalLI = &LIS->getInterval(LocalReg); 1696 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1697 return; 1698 } 1699 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1700 1701 // Find the global segment after the start of the local LI. 1702 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1703 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1704 // local live range. We could create edges from other global uses to the local 1705 // start, but the coalescer should have already eliminated these cases, so 1706 // don't bother dealing with it. 1707 if (GlobalSegment == GlobalLI->end()) 1708 return; 1709 1710 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1711 // returned the next global segment. But if GlobalSegment overlaps with 1712 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1713 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1714 if (GlobalSegment->contains(LocalLI->beginIndex())) 1715 ++GlobalSegment; 1716 1717 if (GlobalSegment == GlobalLI->end()) 1718 return; 1719 1720 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1721 if (GlobalSegment != GlobalLI->begin()) { 1722 // Two address defs have no hole. 1723 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1724 GlobalSegment->start)) { 1725 return; 1726 } 1727 // If the prior global segment may be defined by the same two-address 1728 // instruction that also defines LocalLI, then can't make a hole here. 1729 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1730 LocalLI->beginIndex())) { 1731 return; 1732 } 1733 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1734 // it would be a disconnected component in the live range. 1735 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1736 "Disconnected LRG within the scheduling region."); 1737 } 1738 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1739 if (!GlobalDef) 1740 return; 1741 1742 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1743 if (!GlobalSU) 1744 return; 1745 1746 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1747 // constraining the uses of the last local def to precede GlobalDef. 1748 SmallVector<SUnit*,8> LocalUses; 1749 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1750 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1751 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1752 for (SUnit::const_succ_iterator 1753 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1754 I != E; ++I) { 1755 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1756 continue; 1757 if (I->getSUnit() == GlobalSU) 1758 continue; 1759 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1760 return; 1761 LocalUses.push_back(I->getSUnit()); 1762 } 1763 // Open the top of the GlobalLI hole by constraining any earlier global uses 1764 // to precede the start of LocalLI. 1765 SmallVector<SUnit*,8> GlobalUses; 1766 MachineInstr *FirstLocalDef = 1767 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1768 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1769 for (SUnit::const_pred_iterator 1770 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1771 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1772 continue; 1773 if (I->getSUnit() == FirstLocalSU) 1774 continue; 1775 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1776 return; 1777 GlobalUses.push_back(I->getSUnit()); 1778 } 1779 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1780 // Add the weak edges. 1781 for (SmallVectorImpl<SUnit*>::const_iterator 1782 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1783 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1784 << GlobalSU->NodeNum << ")\n"); 1785 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1786 } 1787 for (SmallVectorImpl<SUnit*>::const_iterator 1788 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1789 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1790 << FirstLocalSU->NodeNum << ")\n"); 1791 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1792 } 1793 } 1794 1795 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1796 /// copy elimination. 1797 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1798 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1799 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1800 1801 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1802 if (FirstPos == DAG->end()) 1803 return; 1804 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1805 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1806 *priorNonDebug(DAG->end(), DAG->begin())); 1807 1808 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1809 SUnit *SU = &DAG->SUnits[Idx]; 1810 if (!SU->getInstr()->isCopy()) 1811 continue; 1812 1813 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1814 } 1815 } 1816 1817 //===----------------------------------------------------------------------===// 1818 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1819 // and possibly other custom schedulers. 1820 //===----------------------------------------------------------------------===// 1821 1822 static const unsigned InvalidCycle = ~0U; 1823 1824 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1825 1826 void SchedBoundary::reset() { 1827 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1828 // Destroying and reconstructing it is very expensive though. So keep 1829 // invalid, placeholder HazardRecs. 1830 if (HazardRec && HazardRec->isEnabled()) { 1831 delete HazardRec; 1832 HazardRec = nullptr; 1833 } 1834 Available.clear(); 1835 Pending.clear(); 1836 CheckPending = false; 1837 CurrCycle = 0; 1838 CurrMOps = 0; 1839 MinReadyCycle = UINT_MAX; 1840 ExpectedLatency = 0; 1841 DependentLatency = 0; 1842 RetiredMOps = 0; 1843 MaxExecutedResCount = 0; 1844 ZoneCritResIdx = 0; 1845 IsResourceLimited = false; 1846 ReservedCycles.clear(); 1847 #ifndef NDEBUG 1848 // Track the maximum number of stall cycles that could arise either from the 1849 // latency of a DAG edge or the number of cycles that a processor resource is 1850 // reserved (SchedBoundary::ReservedCycles). 1851 MaxObservedStall = 0; 1852 #endif 1853 // Reserve a zero-count for invalid CritResIdx. 1854 ExecutedResCounts.resize(1); 1855 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1856 } 1857 1858 void SchedRemainder:: 1859 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1860 reset(); 1861 if (!SchedModel->hasInstrSchedModel()) 1862 return; 1863 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1864 for (std::vector<SUnit>::iterator 1865 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1866 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1867 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1868 * SchedModel->getMicroOpFactor(); 1869 for (TargetSchedModel::ProcResIter 1870 PI = SchedModel->getWriteProcResBegin(SC), 1871 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1872 unsigned PIdx = PI->ProcResourceIdx; 1873 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1874 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1875 } 1876 } 1877 } 1878 1879 void SchedBoundary:: 1880 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1881 reset(); 1882 DAG = dag; 1883 SchedModel = smodel; 1884 Rem = rem; 1885 if (SchedModel->hasInstrSchedModel()) { 1886 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1887 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1888 } 1889 } 1890 1891 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1892 /// these "soft stalls" differently than the hard stall cycles based on CPU 1893 /// resources and computed by checkHazard(). A fully in-order model 1894 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1895 /// available for scheduling until they are ready. However, a weaker in-order 1896 /// model may use this for heuristics. For example, if a processor has in-order 1897 /// behavior when reading certain resources, this may come into play. 1898 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1899 if (!SU->isUnbuffered) 1900 return 0; 1901 1902 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1903 if (ReadyCycle > CurrCycle) 1904 return ReadyCycle - CurrCycle; 1905 return 0; 1906 } 1907 1908 /// Compute the next cycle at which the given processor resource can be 1909 /// scheduled. 1910 unsigned SchedBoundary:: 1911 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1912 unsigned NextUnreserved = ReservedCycles[PIdx]; 1913 // If this resource has never been used, always return cycle zero. 1914 if (NextUnreserved == InvalidCycle) 1915 return 0; 1916 // For bottom-up scheduling add the cycles needed for the current operation. 1917 if (!isTop()) 1918 NextUnreserved += Cycles; 1919 return NextUnreserved; 1920 } 1921 1922 /// Does this SU have a hazard within the current instruction group. 1923 /// 1924 /// The scheduler supports two modes of hazard recognition. The first is the 1925 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1926 /// supports highly complicated in-order reservation tables 1927 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1928 /// 1929 /// The second is a streamlined mechanism that checks for hazards based on 1930 /// simple counters that the scheduler itself maintains. It explicitly checks 1931 /// for instruction dispatch limitations, including the number of micro-ops that 1932 /// can dispatch per cycle. 1933 /// 1934 /// TODO: Also check whether the SU must start a new group. 1935 bool SchedBoundary::checkHazard(SUnit *SU) { 1936 if (HazardRec->isEnabled() 1937 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1938 return true; 1939 } 1940 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1941 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1942 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1943 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1944 return true; 1945 } 1946 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1947 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1948 for (TargetSchedModel::ProcResIter 1949 PI = SchedModel->getWriteProcResBegin(SC), 1950 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1951 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1952 if (NRCycle > CurrCycle) { 1953 #ifndef NDEBUG 1954 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1955 #endif 1956 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1957 << SchedModel->getResourceName(PI->ProcResourceIdx) 1958 << "=" << NRCycle << "c\n"); 1959 return true; 1960 } 1961 } 1962 } 1963 return false; 1964 } 1965 1966 // Find the unscheduled node in ReadySUs with the highest latency. 1967 unsigned SchedBoundary:: 1968 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1969 SUnit *LateSU = nullptr; 1970 unsigned RemLatency = 0; 1971 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1972 I != E; ++I) { 1973 unsigned L = getUnscheduledLatency(*I); 1974 if (L > RemLatency) { 1975 RemLatency = L; 1976 LateSU = *I; 1977 } 1978 } 1979 if (LateSU) { 1980 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1981 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1982 } 1983 return RemLatency; 1984 } 1985 1986 // Count resources in this zone and the remaining unscheduled 1987 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1988 // resource index, or zero if the zone is issue limited. 1989 unsigned SchedBoundary:: 1990 getOtherResourceCount(unsigned &OtherCritIdx) { 1991 OtherCritIdx = 0; 1992 if (!SchedModel->hasInstrSchedModel()) 1993 return 0; 1994 1995 unsigned OtherCritCount = Rem->RemIssueCount 1996 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1997 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1998 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1999 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2000 PIdx != PEnd; ++PIdx) { 2001 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2002 if (OtherCount > OtherCritCount) { 2003 OtherCritCount = OtherCount; 2004 OtherCritIdx = PIdx; 2005 } 2006 } 2007 if (OtherCritIdx) { 2008 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2009 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2010 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2011 } 2012 return OtherCritCount; 2013 } 2014 2015 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2016 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2017 2018 #ifndef NDEBUG 2019 // ReadyCycle was been bumped up to the CurrCycle when this node was 2020 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2021 // scheduling, so may now be greater than ReadyCycle. 2022 if (ReadyCycle > CurrCycle) 2023 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2024 #endif 2025 2026 if (ReadyCycle < MinReadyCycle) 2027 MinReadyCycle = ReadyCycle; 2028 2029 // Check for interlocks first. For the purpose of other heuristics, an 2030 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2031 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2032 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2033 Available.size() >= ReadyListLimit) 2034 Pending.push(SU); 2035 else 2036 Available.push(SU); 2037 } 2038 2039 /// Move the boundary of scheduled code by one cycle. 2040 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2041 if (SchedModel->getMicroOpBufferSize() == 0) { 2042 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 2043 if (MinReadyCycle > NextCycle) 2044 NextCycle = MinReadyCycle; 2045 } 2046 // Update the current micro-ops, which will issue in the next cycle. 2047 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2048 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2049 2050 // Decrement DependentLatency based on the next cycle. 2051 if ((NextCycle - CurrCycle) > DependentLatency) 2052 DependentLatency = 0; 2053 else 2054 DependentLatency -= (NextCycle - CurrCycle); 2055 2056 if (!HazardRec->isEnabled()) { 2057 // Bypass HazardRec virtual calls. 2058 CurrCycle = NextCycle; 2059 } else { 2060 // Bypass getHazardType calls in case of long latency. 2061 for (; CurrCycle != NextCycle; ++CurrCycle) { 2062 if (isTop()) 2063 HazardRec->AdvanceCycle(); 2064 else 2065 HazardRec->RecedeCycle(); 2066 } 2067 } 2068 CheckPending = true; 2069 unsigned LFactor = SchedModel->getLatencyFactor(); 2070 IsResourceLimited = 2071 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2072 > (int)LFactor; 2073 2074 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2075 } 2076 2077 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2078 ExecutedResCounts[PIdx] += Count; 2079 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2080 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2081 } 2082 2083 /// Add the given processor resource to this scheduled zone. 2084 /// 2085 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2086 /// during which this resource is consumed. 2087 /// 2088 /// \return the next cycle at which the instruction may execute without 2089 /// oversubscribing resources. 2090 unsigned SchedBoundary:: 2091 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2092 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2093 unsigned Count = Factor * Cycles; 2094 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2095 << " +" << Cycles << "x" << Factor << "u\n"); 2096 2097 // Update Executed resources counts. 2098 incExecutedResources(PIdx, Count); 2099 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2100 Rem->RemainingCounts[PIdx] -= Count; 2101 2102 // Check if this resource exceeds the current critical resource. If so, it 2103 // becomes the critical resource. 2104 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2105 ZoneCritResIdx = PIdx; 2106 DEBUG(dbgs() << " *** Critical resource " 2107 << SchedModel->getResourceName(PIdx) << ": " 2108 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2109 } 2110 // For reserved resources, record the highest cycle using the resource. 2111 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2112 if (NextAvailable > CurrCycle) { 2113 DEBUG(dbgs() << " Resource conflict: " 2114 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2115 << NextAvailable << "\n"); 2116 } 2117 return NextAvailable; 2118 } 2119 2120 /// Move the boundary of scheduled code by one SUnit. 2121 void SchedBoundary::bumpNode(SUnit *SU) { 2122 // Update the reservation table. 2123 if (HazardRec->isEnabled()) { 2124 if (!isTop() && SU->isCall) { 2125 // Calls are scheduled with their preceding instructions. For bottom-up 2126 // scheduling, clear the pipeline state before emitting. 2127 HazardRec->Reset(); 2128 } 2129 HazardRec->EmitInstruction(SU); 2130 } 2131 // checkHazard should prevent scheduling multiple instructions per cycle that 2132 // exceed the issue width. 2133 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2134 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2135 assert( 2136 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2137 "Cannot schedule this instruction's MicroOps in the current cycle."); 2138 2139 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2140 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2141 2142 unsigned NextCycle = CurrCycle; 2143 switch (SchedModel->getMicroOpBufferSize()) { 2144 case 0: 2145 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2146 break; 2147 case 1: 2148 if (ReadyCycle > NextCycle) { 2149 NextCycle = ReadyCycle; 2150 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2151 } 2152 break; 2153 default: 2154 // We don't currently model the OOO reorder buffer, so consider all 2155 // scheduled MOps to be "retired". We do loosely model in-order resource 2156 // latency. If this instruction uses an in-order resource, account for any 2157 // likely stall cycles. 2158 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2159 NextCycle = ReadyCycle; 2160 break; 2161 } 2162 RetiredMOps += IncMOps; 2163 2164 // Update resource counts and critical resource. 2165 if (SchedModel->hasInstrSchedModel()) { 2166 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2167 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2168 Rem->RemIssueCount -= DecRemIssue; 2169 if (ZoneCritResIdx) { 2170 // Scale scheduled micro-ops for comparing with the critical resource. 2171 unsigned ScaledMOps = 2172 RetiredMOps * SchedModel->getMicroOpFactor(); 2173 2174 // If scaled micro-ops are now more than the previous critical resource by 2175 // a full cycle, then micro-ops issue becomes critical. 2176 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2177 >= (int)SchedModel->getLatencyFactor()) { 2178 ZoneCritResIdx = 0; 2179 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2180 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2181 } 2182 } 2183 for (TargetSchedModel::ProcResIter 2184 PI = SchedModel->getWriteProcResBegin(SC), 2185 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2186 unsigned RCycle = 2187 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2188 if (RCycle > NextCycle) 2189 NextCycle = RCycle; 2190 } 2191 if (SU->hasReservedResource) { 2192 // For reserved resources, record the highest cycle using the resource. 2193 // For top-down scheduling, this is the cycle in which we schedule this 2194 // instruction plus the number of cycles the operations reserves the 2195 // resource. For bottom-up is it simply the instruction's cycle. 2196 for (TargetSchedModel::ProcResIter 2197 PI = SchedModel->getWriteProcResBegin(SC), 2198 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2199 unsigned PIdx = PI->ProcResourceIdx; 2200 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2201 if (isTop()) { 2202 ReservedCycles[PIdx] = 2203 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2204 } 2205 else 2206 ReservedCycles[PIdx] = NextCycle; 2207 } 2208 } 2209 } 2210 } 2211 // Update ExpectedLatency and DependentLatency. 2212 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2213 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2214 if (SU->getDepth() > TopLatency) { 2215 TopLatency = SU->getDepth(); 2216 DEBUG(dbgs() << " " << Available.getName() 2217 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2218 } 2219 if (SU->getHeight() > BotLatency) { 2220 BotLatency = SU->getHeight(); 2221 DEBUG(dbgs() << " " << Available.getName() 2222 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2223 } 2224 // If we stall for any reason, bump the cycle. 2225 if (NextCycle > CurrCycle) { 2226 bumpCycle(NextCycle); 2227 } else { 2228 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2229 // resource limited. If a stall occurred, bumpCycle does this. 2230 unsigned LFactor = SchedModel->getLatencyFactor(); 2231 IsResourceLimited = 2232 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2233 > (int)LFactor; 2234 } 2235 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2236 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2237 // one cycle. Since we commonly reach the max MOps here, opportunistically 2238 // bump the cycle to avoid uselessly checking everything in the readyQ. 2239 CurrMOps += IncMOps; 2240 while (CurrMOps >= SchedModel->getIssueWidth()) { 2241 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2242 << " at cycle " << CurrCycle << '\n'); 2243 bumpCycle(++NextCycle); 2244 } 2245 DEBUG(dumpScheduledState()); 2246 } 2247 2248 /// Release pending ready nodes in to the available queue. This makes them 2249 /// visible to heuristics. 2250 void SchedBoundary::releasePending() { 2251 // If the available queue is empty, it is safe to reset MinReadyCycle. 2252 if (Available.empty()) 2253 MinReadyCycle = UINT_MAX; 2254 2255 // Check to see if any of the pending instructions are ready to issue. If 2256 // so, add them to the available queue. 2257 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2258 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2259 SUnit *SU = *(Pending.begin()+i); 2260 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2261 2262 if (ReadyCycle < MinReadyCycle) 2263 MinReadyCycle = ReadyCycle; 2264 2265 if (!IsBuffered && ReadyCycle > CurrCycle) 2266 continue; 2267 2268 if (checkHazard(SU)) 2269 continue; 2270 2271 if (Available.size() >= ReadyListLimit) 2272 break; 2273 2274 Available.push(SU); 2275 Pending.remove(Pending.begin()+i); 2276 --i; --e; 2277 } 2278 CheckPending = false; 2279 } 2280 2281 /// Remove SU from the ready set for this boundary. 2282 void SchedBoundary::removeReady(SUnit *SU) { 2283 if (Available.isInQueue(SU)) 2284 Available.remove(Available.find(SU)); 2285 else { 2286 assert(Pending.isInQueue(SU) && "bad ready count"); 2287 Pending.remove(Pending.find(SU)); 2288 } 2289 } 2290 2291 /// If this queue only has one ready candidate, return it. As a side effect, 2292 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2293 /// one node is ready. If multiple instructions are ready, return NULL. 2294 SUnit *SchedBoundary::pickOnlyChoice() { 2295 if (CheckPending) 2296 releasePending(); 2297 2298 if (CurrMOps > 0) { 2299 // Defer any ready instrs that now have a hazard. 2300 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2301 if (checkHazard(*I)) { 2302 Pending.push(*I); 2303 I = Available.remove(I); 2304 continue; 2305 } 2306 ++I; 2307 } 2308 } 2309 for (unsigned i = 0; Available.empty(); ++i) { 2310 // FIXME: Re-enable assert once PR20057 is resolved. 2311 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2312 // "permanent hazard"); 2313 (void)i; 2314 bumpCycle(CurrCycle + 1); 2315 releasePending(); 2316 } 2317 2318 DEBUG(Pending.dump()); 2319 DEBUG(Available.dump()); 2320 2321 if (Available.size() == 1) 2322 return *Available.begin(); 2323 return nullptr; 2324 } 2325 2326 #ifndef NDEBUG 2327 // This is useful information to dump after bumpNode. 2328 // Note that the Queue contents are more useful before pickNodeFromQueue. 2329 void SchedBoundary::dumpScheduledState() { 2330 unsigned ResFactor; 2331 unsigned ResCount; 2332 if (ZoneCritResIdx) { 2333 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2334 ResCount = getResourceCount(ZoneCritResIdx); 2335 } else { 2336 ResFactor = SchedModel->getMicroOpFactor(); 2337 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2338 } 2339 unsigned LFactor = SchedModel->getLatencyFactor(); 2340 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2341 << " Retired: " << RetiredMOps; 2342 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2343 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2344 << ResCount / ResFactor << " " 2345 << SchedModel->getResourceName(ZoneCritResIdx) 2346 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2347 << (IsResourceLimited ? " - Resource" : " - Latency") 2348 << " limited.\n"; 2349 } 2350 #endif 2351 2352 //===----------------------------------------------------------------------===// 2353 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2354 //===----------------------------------------------------------------------===// 2355 2356 void GenericSchedulerBase::SchedCandidate:: 2357 initResourceDelta(const ScheduleDAGMI *DAG, 2358 const TargetSchedModel *SchedModel) { 2359 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2360 return; 2361 2362 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2363 for (TargetSchedModel::ProcResIter 2364 PI = SchedModel->getWriteProcResBegin(SC), 2365 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2366 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2367 ResDelta.CritResources += PI->Cycles; 2368 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2369 ResDelta.DemandedResources += PI->Cycles; 2370 } 2371 } 2372 2373 /// Set the CandPolicy given a scheduling zone given the current resources and 2374 /// latencies inside and outside the zone. 2375 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2376 SchedBoundary &CurrZone, 2377 SchedBoundary *OtherZone) { 2378 // Apply preemptive heuristics based on the total latency and resources 2379 // inside and outside this zone. Potential stalls should be considered before 2380 // following this policy. 2381 2382 // Compute remaining latency. We need this both to determine whether the 2383 // overall schedule has become latency-limited and whether the instructions 2384 // outside this zone are resource or latency limited. 2385 // 2386 // The "dependent" latency is updated incrementally during scheduling as the 2387 // max height/depth of scheduled nodes minus the cycles since it was 2388 // scheduled: 2389 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2390 // 2391 // The "independent" latency is the max ready queue depth: 2392 // ILat = max N.depth for N in Available|Pending 2393 // 2394 // RemainingLatency is the greater of independent and dependent latency. 2395 unsigned RemLatency = CurrZone.getDependentLatency(); 2396 RemLatency = std::max(RemLatency, 2397 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2398 RemLatency = std::max(RemLatency, 2399 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2400 2401 // Compute the critical resource outside the zone. 2402 unsigned OtherCritIdx = 0; 2403 unsigned OtherCount = 2404 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2405 2406 bool OtherResLimited = false; 2407 if (SchedModel->hasInstrSchedModel()) { 2408 unsigned LFactor = SchedModel->getLatencyFactor(); 2409 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2410 } 2411 // Schedule aggressively for latency in PostRA mode. We don't check for 2412 // acyclic latency during PostRA, and highly out-of-order processors will 2413 // skip PostRA scheduling. 2414 if (!OtherResLimited) { 2415 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2416 Policy.ReduceLatency |= true; 2417 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2418 << " RemainingLatency " << RemLatency << " + " 2419 << CurrZone.getCurrCycle() << "c > CritPath " 2420 << Rem.CriticalPath << "\n"); 2421 } 2422 } 2423 // If the same resource is limiting inside and outside the zone, do nothing. 2424 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2425 return; 2426 2427 DEBUG( 2428 if (CurrZone.isResourceLimited()) { 2429 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2430 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2431 << "\n"; 2432 } 2433 if (OtherResLimited) 2434 dbgs() << " RemainingLimit: " 2435 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2436 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2437 dbgs() << " Latency limited both directions.\n"); 2438 2439 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2440 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2441 2442 if (OtherResLimited) 2443 Policy.DemandResIdx = OtherCritIdx; 2444 } 2445 2446 #ifndef NDEBUG 2447 const char *GenericSchedulerBase::getReasonStr( 2448 GenericSchedulerBase::CandReason Reason) { 2449 switch (Reason) { 2450 case NoCand: return "NOCAND "; 2451 case Only1: return "ONLY1 "; 2452 case PhysRegCopy: return "PREG-COPY "; 2453 case RegExcess: return "REG-EXCESS"; 2454 case RegCritical: return "REG-CRIT "; 2455 case Stall: return "STALL "; 2456 case Cluster: return "CLUSTER "; 2457 case Weak: return "WEAK "; 2458 case RegMax: return "REG-MAX "; 2459 case ResourceReduce: return "RES-REDUCE"; 2460 case ResourceDemand: return "RES-DEMAND"; 2461 case TopDepthReduce: return "TOP-DEPTH "; 2462 case TopPathReduce: return "TOP-PATH "; 2463 case BotHeightReduce:return "BOT-HEIGHT"; 2464 case BotPathReduce: return "BOT-PATH "; 2465 case NextDefUse: return "DEF-USE "; 2466 case NodeOrder: return "ORDER "; 2467 }; 2468 llvm_unreachable("Unknown reason!"); 2469 } 2470 2471 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2472 PressureChange P; 2473 unsigned ResIdx = 0; 2474 unsigned Latency = 0; 2475 switch (Cand.Reason) { 2476 default: 2477 break; 2478 case RegExcess: 2479 P = Cand.RPDelta.Excess; 2480 break; 2481 case RegCritical: 2482 P = Cand.RPDelta.CriticalMax; 2483 break; 2484 case RegMax: 2485 P = Cand.RPDelta.CurrentMax; 2486 break; 2487 case ResourceReduce: 2488 ResIdx = Cand.Policy.ReduceResIdx; 2489 break; 2490 case ResourceDemand: 2491 ResIdx = Cand.Policy.DemandResIdx; 2492 break; 2493 case TopDepthReduce: 2494 Latency = Cand.SU->getDepth(); 2495 break; 2496 case TopPathReduce: 2497 Latency = Cand.SU->getHeight(); 2498 break; 2499 case BotHeightReduce: 2500 Latency = Cand.SU->getHeight(); 2501 break; 2502 case BotPathReduce: 2503 Latency = Cand.SU->getDepth(); 2504 break; 2505 } 2506 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2507 if (P.isValid()) 2508 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2509 << ":" << P.getUnitInc() << " "; 2510 else 2511 dbgs() << " "; 2512 if (ResIdx) 2513 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2514 else 2515 dbgs() << " "; 2516 if (Latency) 2517 dbgs() << " " << Latency << " cycles "; 2518 else 2519 dbgs() << " "; 2520 dbgs() << '\n'; 2521 } 2522 #endif 2523 2524 /// Return true if this heuristic determines order. 2525 static bool tryLess(int TryVal, int CandVal, 2526 GenericSchedulerBase::SchedCandidate &TryCand, 2527 GenericSchedulerBase::SchedCandidate &Cand, 2528 GenericSchedulerBase::CandReason Reason) { 2529 if (TryVal < CandVal) { 2530 TryCand.Reason = Reason; 2531 return true; 2532 } 2533 if (TryVal > CandVal) { 2534 if (Cand.Reason > Reason) 2535 Cand.Reason = Reason; 2536 return true; 2537 } 2538 return false; 2539 } 2540 2541 static bool tryGreater(int TryVal, int CandVal, 2542 GenericSchedulerBase::SchedCandidate &TryCand, 2543 GenericSchedulerBase::SchedCandidate &Cand, 2544 GenericSchedulerBase::CandReason Reason) { 2545 if (TryVal > CandVal) { 2546 TryCand.Reason = Reason; 2547 return true; 2548 } 2549 if (TryVal < CandVal) { 2550 if (Cand.Reason > Reason) 2551 Cand.Reason = Reason; 2552 return true; 2553 } 2554 return false; 2555 } 2556 2557 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2558 GenericSchedulerBase::SchedCandidate &Cand, 2559 SchedBoundary &Zone) { 2560 if (Zone.isTop()) { 2561 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2562 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2563 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2564 return true; 2565 } 2566 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2567 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2568 return true; 2569 } else { 2570 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2571 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2572 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2573 return true; 2574 } 2575 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2576 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2577 return true; 2578 } 2579 return false; 2580 } 2581 2582 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2583 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2584 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2585 } 2586 2587 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2588 tracePick(Cand.Reason, Cand.AtTop); 2589 } 2590 2591 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2592 assert(dag->hasVRegLiveness() && 2593 "(PreRA)GenericScheduler needs vreg liveness"); 2594 DAG = static_cast<ScheduleDAGMILive*>(dag); 2595 SchedModel = DAG->getSchedModel(); 2596 TRI = DAG->TRI; 2597 2598 Rem.init(DAG, SchedModel); 2599 Top.init(DAG, SchedModel, &Rem); 2600 Bot.init(DAG, SchedModel, &Rem); 2601 2602 // Initialize resource counts. 2603 2604 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2605 // are disabled, then these HazardRecs will be disabled. 2606 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2607 if (!Top.HazardRec) { 2608 Top.HazardRec = 2609 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2610 Itin, DAG); 2611 } 2612 if (!Bot.HazardRec) { 2613 Bot.HazardRec = 2614 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2615 Itin, DAG); 2616 } 2617 TopCand.SU = nullptr; 2618 BotCand.SU = nullptr; 2619 } 2620 2621 /// Initialize the per-region scheduling policy. 2622 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2623 MachineBasicBlock::iterator End, 2624 unsigned NumRegionInstrs) { 2625 const MachineFunction &MF = *Begin->getParent()->getParent(); 2626 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2627 2628 // Avoid setting up the register pressure tracker for small regions to save 2629 // compile time. As a rough heuristic, only track pressure when the number of 2630 // schedulable instructions exceeds half the integer register file. 2631 RegionPolicy.ShouldTrackPressure = true; 2632 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2633 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2634 if (TLI->isTypeLegal(LegalIntVT)) { 2635 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2636 TLI->getRegClassFor(LegalIntVT)); 2637 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2638 } 2639 } 2640 2641 // For generic targets, we default to bottom-up, because it's simpler and more 2642 // compile-time optimizations have been implemented in that direction. 2643 RegionPolicy.OnlyBottomUp = true; 2644 2645 // Allow the subtarget to override default policy. 2646 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2647 2648 // After subtarget overrides, apply command line options. 2649 if (!EnableRegPressure) 2650 RegionPolicy.ShouldTrackPressure = false; 2651 2652 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2653 // e.g. -misched-bottomup=false allows scheduling in both directions. 2654 assert((!ForceTopDown || !ForceBottomUp) && 2655 "-misched-topdown incompatible with -misched-bottomup"); 2656 if (ForceBottomUp.getNumOccurrences() > 0) { 2657 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2658 if (RegionPolicy.OnlyBottomUp) 2659 RegionPolicy.OnlyTopDown = false; 2660 } 2661 if (ForceTopDown.getNumOccurrences() > 0) { 2662 RegionPolicy.OnlyTopDown = ForceTopDown; 2663 if (RegionPolicy.OnlyTopDown) 2664 RegionPolicy.OnlyBottomUp = false; 2665 } 2666 } 2667 2668 void GenericScheduler::dumpPolicy() { 2669 dbgs() << "GenericScheduler RegionPolicy: " 2670 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2671 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2672 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2673 << "\n"; 2674 } 2675 2676 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2677 /// critical path by more cycles than it takes to drain the instruction buffer. 2678 /// We estimate an upper bounds on in-flight instructions as: 2679 /// 2680 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2681 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2682 /// InFlightResources = InFlightIterations * LoopResources 2683 /// 2684 /// TODO: Check execution resources in addition to IssueCount. 2685 void GenericScheduler::checkAcyclicLatency() { 2686 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2687 return; 2688 2689 // Scaled number of cycles per loop iteration. 2690 unsigned IterCount = 2691 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2692 Rem.RemIssueCount); 2693 // Scaled acyclic critical path. 2694 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2695 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2696 unsigned InFlightCount = 2697 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2698 unsigned BufferLimit = 2699 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2700 2701 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2702 2703 DEBUG(dbgs() << "IssueCycles=" 2704 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2705 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2706 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2707 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2708 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2709 if (Rem.IsAcyclicLatencyLimited) 2710 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2711 } 2712 2713 void GenericScheduler::registerRoots() { 2714 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2715 2716 // Some roots may not feed into ExitSU. Check all of them in case. 2717 for (std::vector<SUnit*>::const_iterator 2718 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2719 if ((*I)->getDepth() > Rem.CriticalPath) 2720 Rem.CriticalPath = (*I)->getDepth(); 2721 } 2722 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2723 if (DumpCriticalPathLength) { 2724 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2725 } 2726 2727 if (EnableCyclicPath) { 2728 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2729 checkAcyclicLatency(); 2730 } 2731 } 2732 2733 static bool tryPressure(const PressureChange &TryP, 2734 const PressureChange &CandP, 2735 GenericSchedulerBase::SchedCandidate &TryCand, 2736 GenericSchedulerBase::SchedCandidate &Cand, 2737 GenericSchedulerBase::CandReason Reason, 2738 const TargetRegisterInfo *TRI, 2739 const MachineFunction &MF) { 2740 // If one candidate decreases and the other increases, go with it. 2741 // Invalid candidates have UnitInc==0. 2742 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2743 Reason)) { 2744 return true; 2745 } 2746 // Do not compare the magnitude of pressure changes between top and bottom 2747 // boundary. 2748 if (Cand.AtTop != TryCand.AtTop) 2749 return false; 2750 2751 // If both candidates affect the same set in the same boundary, go with the 2752 // smallest increase. 2753 unsigned TryPSet = TryP.getPSetOrMax(); 2754 unsigned CandPSet = CandP.getPSetOrMax(); 2755 if (TryPSet == CandPSet) { 2756 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2757 Reason); 2758 } 2759 2760 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2761 std::numeric_limits<int>::max(); 2762 2763 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2764 std::numeric_limits<int>::max(); 2765 2766 // If the candidates are decreasing pressure, reverse priority. 2767 if (TryP.getUnitInc() < 0) 2768 std::swap(TryRank, CandRank); 2769 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2770 } 2771 2772 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2773 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2774 } 2775 2776 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2777 /// their physreg def/use. 2778 /// 2779 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2780 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2781 /// with the operation that produces or consumes the physreg. We'll do this when 2782 /// regalloc has support for parallel copies. 2783 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2784 const MachineInstr *MI = SU->getInstr(); 2785 if (!MI->isCopy()) 2786 return 0; 2787 2788 unsigned ScheduledOper = isTop ? 1 : 0; 2789 unsigned UnscheduledOper = isTop ? 0 : 1; 2790 // If we have already scheduled the physreg produce/consumer, immediately 2791 // schedule the copy. 2792 if (TargetRegisterInfo::isPhysicalRegister( 2793 MI->getOperand(ScheduledOper).getReg())) 2794 return 1; 2795 // If the physreg is at the boundary, defer it. Otherwise schedule it 2796 // immediately to free the dependent. We can hoist the copy later. 2797 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2798 if (TargetRegisterInfo::isPhysicalRegister( 2799 MI->getOperand(UnscheduledOper).getReg())) 2800 return AtBoundary ? -1 : 1; 2801 return 0; 2802 } 2803 2804 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2805 bool AtTop, 2806 const RegPressureTracker &RPTracker, 2807 RegPressureTracker &TempTracker) { 2808 Cand.SU = SU; 2809 Cand.AtTop = AtTop; 2810 if (DAG->isTrackingPressure()) { 2811 if (AtTop) { 2812 TempTracker.getMaxDownwardPressureDelta( 2813 Cand.SU->getInstr(), 2814 Cand.RPDelta, 2815 DAG->getRegionCriticalPSets(), 2816 DAG->getRegPressure().MaxSetPressure); 2817 } else { 2818 if (VerifyScheduling) { 2819 TempTracker.getMaxUpwardPressureDelta( 2820 Cand.SU->getInstr(), 2821 &DAG->getPressureDiff(Cand.SU), 2822 Cand.RPDelta, 2823 DAG->getRegionCriticalPSets(), 2824 DAG->getRegPressure().MaxSetPressure); 2825 } else { 2826 RPTracker.getUpwardPressureDelta( 2827 Cand.SU->getInstr(), 2828 DAG->getPressureDiff(Cand.SU), 2829 Cand.RPDelta, 2830 DAG->getRegionCriticalPSets(), 2831 DAG->getRegPressure().MaxSetPressure); 2832 } 2833 } 2834 } 2835 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2836 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2837 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2838 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2839 } 2840 2841 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2842 /// hierarchical. This may be more efficient than a graduated cost model because 2843 /// we don't need to evaluate all aspects of the model for each node in the 2844 /// queue. But it's really done to make the heuristics easier to debug and 2845 /// statistically analyze. 2846 /// 2847 /// \param Cand provides the policy and current best candidate. 2848 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2849 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2850 // if Cand is from a different zone than TryCand. 2851 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2852 SchedCandidate &TryCand, 2853 SchedBoundary *Zone) { 2854 // Initialize the candidate if needed. 2855 if (!Cand.isValid()) { 2856 TryCand.Reason = NodeOrder; 2857 return; 2858 } 2859 2860 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2861 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2862 TryCand, Cand, PhysRegCopy)) 2863 return; 2864 2865 // Avoid exceeding the target's limit. 2866 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2867 Cand.RPDelta.Excess, 2868 TryCand, Cand, RegExcess, TRI, 2869 DAG->MF)) 2870 return; 2871 2872 // Avoid increasing the max critical pressure in the scheduled region. 2873 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2874 Cand.RPDelta.CriticalMax, 2875 TryCand, Cand, RegCritical, TRI, 2876 DAG->MF)) 2877 return; 2878 2879 // We only compare a subset of features when comparing nodes between 2880 // Top and Bottom boundary. Some properties are simply incomparable, in many 2881 // other instances we should only override the other boundary if something 2882 // is a clear good pick on one boundary. Skip heuristics that are more 2883 // "tie-breaking" in nature. 2884 bool SameBoundary = Zone != nullptr; 2885 if (SameBoundary) { 2886 // For loops that are acyclic path limited, aggressively schedule for 2887 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2888 // heuristics to take precedence. 2889 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2890 tryLatency(TryCand, Cand, *Zone)) 2891 return; 2892 2893 // Prioritize instructions that read unbuffered resources by stall cycles. 2894 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2895 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2896 return; 2897 } 2898 2899 // Keep clustered nodes together to encourage downstream peephole 2900 // optimizations which may reduce resource requirements. 2901 // 2902 // This is a best effort to set things up for a post-RA pass. Optimizations 2903 // like generating loads of multiple registers should ideally be done within 2904 // the scheduler pass by combining the loads during DAG postprocessing. 2905 const SUnit *CandNextClusterSU = 2906 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2907 const SUnit *TryCandNextClusterSU = 2908 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2909 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2910 Cand.SU == CandNextClusterSU, 2911 TryCand, Cand, Cluster)) 2912 return; 2913 2914 if (SameBoundary) { 2915 // Weak edges are for clustering and other constraints. 2916 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2917 getWeakLeft(Cand.SU, Cand.AtTop), 2918 TryCand, Cand, Weak)) 2919 return; 2920 } 2921 2922 // Avoid increasing the max pressure of the entire region. 2923 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2924 Cand.RPDelta.CurrentMax, 2925 TryCand, Cand, RegMax, TRI, 2926 DAG->MF)) 2927 return; 2928 2929 if (SameBoundary) { 2930 // Avoid critical resource consumption and balance the schedule. 2931 TryCand.initResourceDelta(DAG, SchedModel); 2932 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2933 TryCand, Cand, ResourceReduce)) 2934 return; 2935 if (tryGreater(TryCand.ResDelta.DemandedResources, 2936 Cand.ResDelta.DemandedResources, 2937 TryCand, Cand, ResourceDemand)) 2938 return; 2939 2940 // Avoid serializing long latency dependence chains. 2941 // For acyclic path limited loops, latency was already checked above. 2942 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2943 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2944 return; 2945 2946 // Fall through to original instruction order. 2947 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2948 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2949 TryCand.Reason = NodeOrder; 2950 } 2951 } 2952 } 2953 2954 /// Pick the best candidate from the queue. 2955 /// 2956 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2957 /// DAG building. To adjust for the current scheduling location we need to 2958 /// maintain the number of vreg uses remaining to be top-scheduled. 2959 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2960 const CandPolicy &ZonePolicy, 2961 const RegPressureTracker &RPTracker, 2962 SchedCandidate &Cand) { 2963 // getMaxPressureDelta temporarily modifies the tracker. 2964 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2965 2966 ReadyQueue &Q = Zone.Available; 2967 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2968 2969 SchedCandidate TryCand(ZonePolicy); 2970 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2971 // Pass SchedBoundary only when comparing nodes from the same boundary. 2972 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2973 tryCandidate(Cand, TryCand, ZoneArg); 2974 if (TryCand.Reason != NoCand) { 2975 // Initialize resource delta if needed in case future heuristics query it. 2976 if (TryCand.ResDelta == SchedResourceDelta()) 2977 TryCand.initResourceDelta(DAG, SchedModel); 2978 Cand.setBest(TryCand); 2979 DEBUG(traceCandidate(Cand)); 2980 } 2981 } 2982 } 2983 2984 /// Pick the best candidate node from either the top or bottom queue. 2985 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2986 // Schedule as far as possible in the direction of no choice. This is most 2987 // efficient, but also provides the best heuristics for CriticalPSets. 2988 if (SUnit *SU = Bot.pickOnlyChoice()) { 2989 IsTopNode = false; 2990 tracePick(Only1, false); 2991 return SU; 2992 } 2993 if (SUnit *SU = Top.pickOnlyChoice()) { 2994 IsTopNode = true; 2995 tracePick(Only1, true); 2996 return SU; 2997 } 2998 // Set the bottom-up policy based on the state of the current bottom zone and 2999 // the instructions outside the zone, including the top zone. 3000 CandPolicy BotPolicy; 3001 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3002 // Set the top-down policy based on the state of the current top zone and 3003 // the instructions outside the zone, including the bottom zone. 3004 CandPolicy TopPolicy; 3005 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3006 3007 // See if BotCand is still valid (because we previously scheduled from Top). 3008 DEBUG(dbgs() << "Picking from Bot:\n"); 3009 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3010 BotCand.Policy != BotPolicy) { 3011 BotCand.reset(CandPolicy()); 3012 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3013 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3014 } else { 3015 DEBUG(traceCandidate(BotCand)); 3016 #ifndef NDEBUG 3017 if (VerifyScheduling) { 3018 SchedCandidate TCand; 3019 TCand.reset(CandPolicy()); 3020 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3021 assert(TCand.SU == BotCand.SU && 3022 "Last pick result should correspond to re-picking right now"); 3023 } 3024 #endif 3025 } 3026 3027 // Check if the top Q has a better candidate. 3028 DEBUG(dbgs() << "Picking from Top:\n"); 3029 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3030 TopCand.Policy != TopPolicy) { 3031 TopCand.reset(CandPolicy()); 3032 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3033 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3034 } else { 3035 DEBUG(traceCandidate(TopCand)); 3036 #ifndef NDEBUG 3037 if (VerifyScheduling) { 3038 SchedCandidate TCand; 3039 TCand.reset(CandPolicy()); 3040 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3041 assert(TCand.SU == TopCand.SU && 3042 "Last pick result should correspond to re-picking right now"); 3043 } 3044 #endif 3045 } 3046 3047 // Pick best from BotCand and TopCand. 3048 assert(BotCand.isValid()); 3049 assert(TopCand.isValid()); 3050 SchedCandidate Cand = BotCand; 3051 TopCand.Reason = NoCand; 3052 tryCandidate(Cand, TopCand, nullptr); 3053 if (TopCand.Reason != NoCand) { 3054 Cand.setBest(TopCand); 3055 DEBUG(traceCandidate(Cand)); 3056 } 3057 3058 IsTopNode = Cand.AtTop; 3059 tracePick(Cand); 3060 return Cand.SU; 3061 } 3062 3063 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3064 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3065 if (DAG->top() == DAG->bottom()) { 3066 assert(Top.Available.empty() && Top.Pending.empty() && 3067 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3068 return nullptr; 3069 } 3070 SUnit *SU; 3071 do { 3072 if (RegionPolicy.OnlyTopDown) { 3073 SU = Top.pickOnlyChoice(); 3074 if (!SU) { 3075 CandPolicy NoPolicy; 3076 TopCand.reset(NoPolicy); 3077 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3078 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3079 tracePick(TopCand); 3080 SU = TopCand.SU; 3081 } 3082 IsTopNode = true; 3083 } else if (RegionPolicy.OnlyBottomUp) { 3084 SU = Bot.pickOnlyChoice(); 3085 if (!SU) { 3086 CandPolicy NoPolicy; 3087 BotCand.reset(NoPolicy); 3088 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3089 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3090 tracePick(BotCand); 3091 SU = BotCand.SU; 3092 } 3093 IsTopNode = false; 3094 } else { 3095 SU = pickNodeBidirectional(IsTopNode); 3096 } 3097 } while (SU->isScheduled); 3098 3099 if (SU->isTopReady()) 3100 Top.removeReady(SU); 3101 if (SU->isBottomReady()) 3102 Bot.removeReady(SU); 3103 3104 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3105 return SU; 3106 } 3107 3108 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3109 3110 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3111 if (!isTop) 3112 ++InsertPos; 3113 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3114 3115 // Find already scheduled copies with a single physreg dependence and move 3116 // them just above the scheduled instruction. 3117 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3118 I != E; ++I) { 3119 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3120 continue; 3121 SUnit *DepSU = I->getSUnit(); 3122 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3123 continue; 3124 MachineInstr *Copy = DepSU->getInstr(); 3125 if (!Copy->isCopy()) 3126 continue; 3127 DEBUG(dbgs() << " Rescheduling physreg copy "; 3128 I->getSUnit()->dump(DAG)); 3129 DAG->moveInstruction(Copy, InsertPos); 3130 } 3131 } 3132 3133 /// Update the scheduler's state after scheduling a node. This is the same node 3134 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3135 /// update it's state based on the current cycle before MachineSchedStrategy 3136 /// does. 3137 /// 3138 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3139 /// them here. See comments in biasPhysRegCopy. 3140 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3141 if (IsTopNode) { 3142 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3143 Top.bumpNode(SU); 3144 if (SU->hasPhysRegUses) 3145 reschedulePhysRegCopies(SU, true); 3146 } else { 3147 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3148 Bot.bumpNode(SU); 3149 if (SU->hasPhysRegDefs) 3150 reschedulePhysRegCopies(SU, false); 3151 } 3152 } 3153 3154 /// Create the standard converging machine scheduler. This will be used as the 3155 /// default scheduler if the target does not set a default. 3156 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3157 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3158 // Register DAG post-processors. 3159 // 3160 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3161 // data and pass it to later mutations. Have a single mutation that gathers 3162 // the interesting nodes in one pass. 3163 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3164 return DAG; 3165 } 3166 3167 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3168 return createGenericSchedLive(C); 3169 } 3170 3171 static MachineSchedRegistry 3172 GenericSchedRegistry("converge", "Standard converging scheduler.", 3173 createConveringSched); 3174 3175 //===----------------------------------------------------------------------===// 3176 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3177 //===----------------------------------------------------------------------===// 3178 3179 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3180 DAG = Dag; 3181 SchedModel = DAG->getSchedModel(); 3182 TRI = DAG->TRI; 3183 3184 Rem.init(DAG, SchedModel); 3185 Top.init(DAG, SchedModel, &Rem); 3186 BotRoots.clear(); 3187 3188 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3189 // or are disabled, then these HazardRecs will be disabled. 3190 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3191 if (!Top.HazardRec) { 3192 Top.HazardRec = 3193 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3194 Itin, DAG); 3195 } 3196 } 3197 3198 3199 void PostGenericScheduler::registerRoots() { 3200 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3201 3202 // Some roots may not feed into ExitSU. Check all of them in case. 3203 for (SmallVectorImpl<SUnit*>::const_iterator 3204 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3205 if ((*I)->getDepth() > Rem.CriticalPath) 3206 Rem.CriticalPath = (*I)->getDepth(); 3207 } 3208 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3209 if (DumpCriticalPathLength) { 3210 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3211 } 3212 } 3213 3214 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3215 /// 3216 /// \param Cand provides the policy and current best candidate. 3217 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3218 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3219 SchedCandidate &TryCand) { 3220 3221 // Initialize the candidate if needed. 3222 if (!Cand.isValid()) { 3223 TryCand.Reason = NodeOrder; 3224 return; 3225 } 3226 3227 // Prioritize instructions that read unbuffered resources by stall cycles. 3228 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3229 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3230 return; 3231 3232 // Avoid critical resource consumption and balance the schedule. 3233 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3234 TryCand, Cand, ResourceReduce)) 3235 return; 3236 if (tryGreater(TryCand.ResDelta.DemandedResources, 3237 Cand.ResDelta.DemandedResources, 3238 TryCand, Cand, ResourceDemand)) 3239 return; 3240 3241 // Avoid serializing long latency dependence chains. 3242 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3243 return; 3244 } 3245 3246 // Fall through to original instruction order. 3247 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3248 TryCand.Reason = NodeOrder; 3249 } 3250 3251 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3252 ReadyQueue &Q = Top.Available; 3253 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3254 SchedCandidate TryCand(Cand.Policy); 3255 TryCand.SU = *I; 3256 TryCand.AtTop = true; 3257 TryCand.initResourceDelta(DAG, SchedModel); 3258 tryCandidate(Cand, TryCand); 3259 if (TryCand.Reason != NoCand) { 3260 Cand.setBest(TryCand); 3261 DEBUG(traceCandidate(Cand)); 3262 } 3263 } 3264 } 3265 3266 /// Pick the next node to schedule. 3267 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3268 if (DAG->top() == DAG->bottom()) { 3269 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3270 return nullptr; 3271 } 3272 SUnit *SU; 3273 do { 3274 SU = Top.pickOnlyChoice(); 3275 if (SU) { 3276 tracePick(Only1, true); 3277 } else { 3278 CandPolicy NoPolicy; 3279 SchedCandidate TopCand(NoPolicy); 3280 // Set the top-down policy based on the state of the current top zone and 3281 // the instructions outside the zone, including the bottom zone. 3282 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3283 pickNodeFromQueue(TopCand); 3284 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3285 tracePick(TopCand); 3286 SU = TopCand.SU; 3287 } 3288 } while (SU->isScheduled); 3289 3290 IsTopNode = true; 3291 Top.removeReady(SU); 3292 3293 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3294 return SU; 3295 } 3296 3297 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3298 /// scheduled/remaining flags in the DAG nodes. 3299 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3300 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3301 Top.bumpNode(SU); 3302 } 3303 3304 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3305 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), 3306 /*RemoveKillFlags=*/true); 3307 } 3308 3309 //===----------------------------------------------------------------------===// 3310 // ILP Scheduler. Currently for experimental analysis of heuristics. 3311 //===----------------------------------------------------------------------===// 3312 3313 namespace { 3314 /// \brief Order nodes by the ILP metric. 3315 struct ILPOrder { 3316 const SchedDFSResult *DFSResult; 3317 const BitVector *ScheduledTrees; 3318 bool MaximizeILP; 3319 3320 ILPOrder(bool MaxILP) 3321 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3322 3323 /// \brief Apply a less-than relation on node priority. 3324 /// 3325 /// (Return true if A comes after B in the Q.) 3326 bool operator()(const SUnit *A, const SUnit *B) const { 3327 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3328 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3329 if (SchedTreeA != SchedTreeB) { 3330 // Unscheduled trees have lower priority. 3331 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3332 return ScheduledTrees->test(SchedTreeB); 3333 3334 // Trees with shallower connections have have lower priority. 3335 if (DFSResult->getSubtreeLevel(SchedTreeA) 3336 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3337 return DFSResult->getSubtreeLevel(SchedTreeA) 3338 < DFSResult->getSubtreeLevel(SchedTreeB); 3339 } 3340 } 3341 if (MaximizeILP) 3342 return DFSResult->getILP(A) < DFSResult->getILP(B); 3343 else 3344 return DFSResult->getILP(A) > DFSResult->getILP(B); 3345 } 3346 }; 3347 3348 /// \brief Schedule based on the ILP metric. 3349 class ILPScheduler : public MachineSchedStrategy { 3350 ScheduleDAGMILive *DAG; 3351 ILPOrder Cmp; 3352 3353 std::vector<SUnit*> ReadyQ; 3354 public: 3355 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3356 3357 void initialize(ScheduleDAGMI *dag) override { 3358 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3359 DAG = static_cast<ScheduleDAGMILive*>(dag); 3360 DAG->computeDFSResult(); 3361 Cmp.DFSResult = DAG->getDFSResult(); 3362 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3363 ReadyQ.clear(); 3364 } 3365 3366 void registerRoots() override { 3367 // Restore the heap in ReadyQ with the updated DFS results. 3368 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3369 } 3370 3371 /// Implement MachineSchedStrategy interface. 3372 /// ----------------------------------------- 3373 3374 /// Callback to select the highest priority node from the ready Q. 3375 SUnit *pickNode(bool &IsTopNode) override { 3376 if (ReadyQ.empty()) return nullptr; 3377 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3378 SUnit *SU = ReadyQ.back(); 3379 ReadyQ.pop_back(); 3380 IsTopNode = false; 3381 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3382 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3383 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3384 << DAG->getDFSResult()->getSubtreeLevel( 3385 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3386 << "Scheduling " << *SU->getInstr()); 3387 return SU; 3388 } 3389 3390 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3391 void scheduleTree(unsigned SubtreeID) override { 3392 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3393 } 3394 3395 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3396 /// DFSResults, and resort the priority Q. 3397 void schedNode(SUnit *SU, bool IsTopNode) override { 3398 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3399 } 3400 3401 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3402 3403 void releaseBottomNode(SUnit *SU) override { 3404 ReadyQ.push_back(SU); 3405 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3406 } 3407 }; 3408 } // namespace 3409 3410 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3411 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3412 } 3413 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3414 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3415 } 3416 static MachineSchedRegistry ILPMaxRegistry( 3417 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3418 static MachineSchedRegistry ILPMinRegistry( 3419 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3420 3421 //===----------------------------------------------------------------------===// 3422 // Machine Instruction Shuffler for Correctness Testing 3423 //===----------------------------------------------------------------------===// 3424 3425 #ifndef NDEBUG 3426 namespace { 3427 /// Apply a less-than relation on the node order, which corresponds to the 3428 /// instruction order prior to scheduling. IsReverse implements greater-than. 3429 template<bool IsReverse> 3430 struct SUnitOrder { 3431 bool operator()(SUnit *A, SUnit *B) const { 3432 if (IsReverse) 3433 return A->NodeNum > B->NodeNum; 3434 else 3435 return A->NodeNum < B->NodeNum; 3436 } 3437 }; 3438 3439 /// Reorder instructions as much as possible. 3440 class InstructionShuffler : public MachineSchedStrategy { 3441 bool IsAlternating; 3442 bool IsTopDown; 3443 3444 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3445 // gives nodes with a higher number higher priority causing the latest 3446 // instructions to be scheduled first. 3447 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3448 TopQ; 3449 // When scheduling bottom-up, use greater-than as the queue priority. 3450 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3451 BottomQ; 3452 public: 3453 InstructionShuffler(bool alternate, bool topdown) 3454 : IsAlternating(alternate), IsTopDown(topdown) {} 3455 3456 void initialize(ScheduleDAGMI*) override { 3457 TopQ.clear(); 3458 BottomQ.clear(); 3459 } 3460 3461 /// Implement MachineSchedStrategy interface. 3462 /// ----------------------------------------- 3463 3464 SUnit *pickNode(bool &IsTopNode) override { 3465 SUnit *SU; 3466 if (IsTopDown) { 3467 do { 3468 if (TopQ.empty()) return nullptr; 3469 SU = TopQ.top(); 3470 TopQ.pop(); 3471 } while (SU->isScheduled); 3472 IsTopNode = true; 3473 } else { 3474 do { 3475 if (BottomQ.empty()) return nullptr; 3476 SU = BottomQ.top(); 3477 BottomQ.pop(); 3478 } while (SU->isScheduled); 3479 IsTopNode = false; 3480 } 3481 if (IsAlternating) 3482 IsTopDown = !IsTopDown; 3483 return SU; 3484 } 3485 3486 void schedNode(SUnit *SU, bool IsTopNode) override {} 3487 3488 void releaseTopNode(SUnit *SU) override { 3489 TopQ.push(SU); 3490 } 3491 void releaseBottomNode(SUnit *SU) override { 3492 BottomQ.push(SU); 3493 } 3494 }; 3495 } // namespace 3496 3497 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3498 bool Alternate = !ForceTopDown && !ForceBottomUp; 3499 bool TopDown = !ForceBottomUp; 3500 assert((TopDown || !ForceTopDown) && 3501 "-misched-topdown incompatible with -misched-bottomup"); 3502 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3503 } 3504 static MachineSchedRegistry ShufflerRegistry( 3505 "shuffle", "Shuffle machine instructions alternating directions", 3506 createInstructionShuffler); 3507 #endif // !NDEBUG 3508 3509 //===----------------------------------------------------------------------===// 3510 // GraphWriter support for ScheduleDAGMILive. 3511 //===----------------------------------------------------------------------===// 3512 3513 #ifndef NDEBUG 3514 namespace llvm { 3515 3516 template<> struct GraphTraits< 3517 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3518 3519 template<> 3520 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3521 3522 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3523 3524 static std::string getGraphName(const ScheduleDAG *G) { 3525 return G->MF.getName(); 3526 } 3527 3528 static bool renderGraphFromBottomUp() { 3529 return true; 3530 } 3531 3532 static bool isNodeHidden(const SUnit *Node) { 3533 if (ViewMISchedCutoff == 0) 3534 return false; 3535 return (Node->Preds.size() > ViewMISchedCutoff 3536 || Node->Succs.size() > ViewMISchedCutoff); 3537 } 3538 3539 /// If you want to override the dot attributes printed for a particular 3540 /// edge, override this method. 3541 static std::string getEdgeAttributes(const SUnit *Node, 3542 SUnitIterator EI, 3543 const ScheduleDAG *Graph) { 3544 if (EI.isArtificialDep()) 3545 return "color=cyan,style=dashed"; 3546 if (EI.isCtrlDep()) 3547 return "color=blue,style=dashed"; 3548 return ""; 3549 } 3550 3551 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3552 std::string Str; 3553 raw_string_ostream SS(Str); 3554 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3555 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3556 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3557 SS << "SU:" << SU->NodeNum; 3558 if (DFS) 3559 SS << " I:" << DFS->getNumInstrs(SU); 3560 return SS.str(); 3561 } 3562 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3563 return G->getGraphNodeLabel(SU); 3564 } 3565 3566 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3567 std::string Str("shape=Mrecord"); 3568 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3569 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3570 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3571 if (DFS) { 3572 Str += ",style=filled,fillcolor=\"#"; 3573 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3574 Str += '"'; 3575 } 3576 return Str; 3577 } 3578 }; 3579 } // namespace llvm 3580 #endif // NDEBUG 3581 3582 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3583 /// rendered using 'dot'. 3584 /// 3585 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3586 #ifndef NDEBUG 3587 ViewGraph(this, Name, false, Title); 3588 #else 3589 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3590 << "systems with Graphviz or gv!\n"; 3591 #endif // NDEBUG 3592 } 3593 3594 /// Out-of-line implementation with no arguments is handy for gdb. 3595 void ScheduleDAGMI::viewGraph() { 3596 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3597 } 3598