1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDFS.h" 28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/GraphWriter.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include <queue> 36 37 using namespace llvm; 38 39 namespace llvm { 40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 41 cl::desc("Force top-down list scheduling")); 42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 43 cl::desc("Force bottom-up list scheduling")); 44 } 45 46 #ifndef NDEBUG 47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 48 cl::desc("Pop up a window to show MISched dags after they are processed")); 49 50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 52 #else 53 static bool ViewMISchedDAGs = false; 54 #endif // NDEBUG 55 56 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 57 cl::desc("Enable register pressure scheduling."), cl::init(true)); 58 59 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 60 cl::desc("Enable cyclic critical path analysis."), cl::init(false)); 61 62 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 63 cl::desc("Enable load clustering."), cl::init(true)); 64 65 // Experimental heuristics 66 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 67 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 68 69 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 70 cl::desc("Verify machine instrs before and after machine scheduling")); 71 72 // DAG subtrees must have at least this many nodes. 73 static const unsigned MinSubtreeSize = 8; 74 75 //===----------------------------------------------------------------------===// 76 // Machine Instruction Scheduling Pass and Registry 77 //===----------------------------------------------------------------------===// 78 79 MachineSchedContext::MachineSchedContext(): 80 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 81 RegClassInfo = new RegisterClassInfo(); 82 } 83 84 MachineSchedContext::~MachineSchedContext() { 85 delete RegClassInfo; 86 } 87 88 namespace { 89 /// MachineScheduler runs after coalescing and before register allocation. 90 class MachineScheduler : public MachineSchedContext, 91 public MachineFunctionPass { 92 public: 93 MachineScheduler(); 94 95 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 96 97 virtual void releaseMemory() {} 98 99 virtual bool runOnMachineFunction(MachineFunction&); 100 101 virtual void print(raw_ostream &O, const Module* = 0) const; 102 103 static char ID; // Class identification, replacement for typeinfo 104 }; 105 } // namespace 106 107 char MachineScheduler::ID = 0; 108 109 char &llvm::MachineSchedulerID = MachineScheduler::ID; 110 111 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 112 "Machine Instruction Scheduler", false, false) 113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 114 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 115 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 116 INITIALIZE_PASS_END(MachineScheduler, "misched", 117 "Machine Instruction Scheduler", false, false) 118 119 MachineScheduler::MachineScheduler() 120 : MachineFunctionPass(ID) { 121 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 122 } 123 124 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 125 AU.setPreservesCFG(); 126 AU.addRequiredID(MachineDominatorsID); 127 AU.addRequired<MachineLoopInfo>(); 128 AU.addRequired<AliasAnalysis>(); 129 AU.addRequired<TargetPassConfig>(); 130 AU.addRequired<SlotIndexes>(); 131 AU.addPreserved<SlotIndexes>(); 132 AU.addRequired<LiveIntervals>(); 133 AU.addPreserved<LiveIntervals>(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 137 MachinePassRegistry MachineSchedRegistry::Registry; 138 139 /// A dummy default scheduler factory indicates whether the scheduler 140 /// is overridden on the command line. 141 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 142 return 0; 143 } 144 145 /// MachineSchedOpt allows command line selection of the scheduler. 146 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 147 RegisterPassParser<MachineSchedRegistry> > 148 MachineSchedOpt("misched", 149 cl::init(&useDefaultMachineSched), cl::Hidden, 150 cl::desc("Machine instruction scheduler to use")); 151 152 static MachineSchedRegistry 153 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 154 useDefaultMachineSched); 155 156 /// Forward declare the standard machine scheduler. This will be used as the 157 /// default scheduler if the target does not set a default. 158 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 159 160 161 /// Decrement this iterator until reaching the top or a non-debug instr. 162 static MachineBasicBlock::const_iterator 163 priorNonDebug(MachineBasicBlock::const_iterator I, 164 MachineBasicBlock::const_iterator Beg) { 165 assert(I != Beg && "reached the top of the region, cannot decrement"); 166 while (--I != Beg) { 167 if (!I->isDebugValue()) 168 break; 169 } 170 return I; 171 } 172 173 /// Non-const version. 174 static MachineBasicBlock::iterator 175 priorNonDebug(MachineBasicBlock::iterator I, 176 MachineBasicBlock::const_iterator Beg) { 177 return const_cast<MachineInstr*>( 178 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 179 } 180 181 /// If this iterator is a debug value, increment until reaching the End or a 182 /// non-debug instruction. 183 static MachineBasicBlock::const_iterator 184 nextIfDebug(MachineBasicBlock::const_iterator I, 185 MachineBasicBlock::const_iterator End) { 186 for(; I != End; ++I) { 187 if (!I->isDebugValue()) 188 break; 189 } 190 return I; 191 } 192 193 /// Non-const version. 194 static MachineBasicBlock::iterator 195 nextIfDebug(MachineBasicBlock::iterator I, 196 MachineBasicBlock::const_iterator End) { 197 // Cast the return value to nonconst MachineInstr, then cast to an 198 // instr_iterator, which does not check for null, finally return a 199 // bundle_iterator. 200 return MachineBasicBlock::instr_iterator( 201 const_cast<MachineInstr*>( 202 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 203 } 204 205 /// Top-level MachineScheduler pass driver. 206 /// 207 /// Visit blocks in function order. Divide each block into scheduling regions 208 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 209 /// consistent with the DAG builder, which traverses the interior of the 210 /// scheduling regions bottom-up. 211 /// 212 /// This design avoids exposing scheduling boundaries to the DAG builder, 213 /// simplifying the DAG builder's support for "special" target instructions. 214 /// At the same time the design allows target schedulers to operate across 215 /// scheduling boundaries, for example to bundle the boudary instructions 216 /// without reordering them. This creates complexity, because the target 217 /// scheduler must update the RegionBegin and RegionEnd positions cached by 218 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 219 /// design would be to split blocks at scheduling boundaries, but LLVM has a 220 /// general bias against block splitting purely for implementation simplicity. 221 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 222 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 223 224 // Initialize the context of the pass. 225 MF = &mf; 226 MLI = &getAnalysis<MachineLoopInfo>(); 227 MDT = &getAnalysis<MachineDominatorTree>(); 228 PassConfig = &getAnalysis<TargetPassConfig>(); 229 AA = &getAnalysis<AliasAnalysis>(); 230 231 LIS = &getAnalysis<LiveIntervals>(); 232 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 233 234 if (VerifyScheduling) { 235 DEBUG(LIS->dump()); 236 MF->verify(this, "Before machine scheduling."); 237 } 238 RegClassInfo->runOnMachineFunction(*MF); 239 240 // Select the scheduler, or set the default. 241 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 242 if (Ctor == useDefaultMachineSched) { 243 // Get the default scheduler set by the target. 244 Ctor = MachineSchedRegistry::getDefault(); 245 if (!Ctor) { 246 Ctor = createConvergingSched; 247 MachineSchedRegistry::setDefault(Ctor); 248 } 249 } 250 // Instantiate the selected scheduler. 251 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 252 253 // Visit all machine basic blocks. 254 // 255 // TODO: Visit blocks in global postorder or postorder within the bottom-up 256 // loop tree. Then we can optionally compute global RegPressure. 257 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 258 MBB != MBBEnd; ++MBB) { 259 260 Scheduler->startBlock(MBB); 261 262 // Break the block into scheduling regions [I, RegionEnd), and schedule each 263 // region as soon as it is discovered. RegionEnd points the scheduling 264 // boundary at the bottom of the region. The DAG does not include RegionEnd, 265 // but the region does (i.e. the next RegionEnd is above the previous 266 // RegionBegin). If the current block has no terminator then RegionEnd == 267 // MBB->end() for the bottom region. 268 // 269 // The Scheduler may insert instructions during either schedule() or 270 // exitRegion(), even for empty regions. So the local iterators 'I' and 271 // 'RegionEnd' are invalid across these calls. 272 unsigned RemainingInstrs = MBB->size(); 273 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 274 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 275 276 // Avoid decrementing RegionEnd for blocks with no terminator. 277 if (RegionEnd != MBB->end() 278 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 279 --RegionEnd; 280 // Count the boundary instruction. 281 --RemainingInstrs; 282 } 283 284 // The next region starts above the previous region. Look backward in the 285 // instruction stream until we find the nearest boundary. 286 unsigned NumRegionInstrs = 0; 287 MachineBasicBlock::iterator I = RegionEnd; 288 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 289 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 290 break; 291 } 292 // Notify the scheduler of the region, even if we may skip scheduling 293 // it. Perhaps it still needs to be bundled. 294 Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 295 296 // Skip empty scheduling regions (0 or 1 schedulable instructions). 297 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 298 // Close the current region. Bundle the terminator if needed. 299 // This invalidates 'RegionEnd' and 'I'. 300 Scheduler->exitRegion(); 301 continue; 302 } 303 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 304 DEBUG(dbgs() << MF->getName() 305 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 306 << "\n From: " << *I << " To: "; 307 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 308 else dbgs() << "End"; 309 dbgs() << " RegionInstrs: " << NumRegionInstrs 310 << " Remaining: " << RemainingInstrs << "\n"); 311 312 // Schedule a region: possibly reorder instructions. 313 // This invalidates 'RegionEnd' and 'I'. 314 Scheduler->schedule(); 315 316 // Close the current region. 317 Scheduler->exitRegion(); 318 319 // Scheduling has invalidated the current iterator 'I'. Ask the 320 // scheduler for the top of it's scheduled region. 321 RegionEnd = Scheduler->begin(); 322 } 323 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 324 Scheduler->finishBlock(); 325 } 326 Scheduler->finalizeSchedule(); 327 DEBUG(LIS->dump()); 328 if (VerifyScheduling) 329 MF->verify(this, "After machine scheduling."); 330 return true; 331 } 332 333 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 334 // unimplemented 335 } 336 337 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 338 void ReadyQueue::dump() { 339 dbgs() << Name << ": "; 340 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 341 dbgs() << Queue[i]->NodeNum << " "; 342 dbgs() << "\n"; 343 } 344 #endif 345 346 //===----------------------------------------------------------------------===// 347 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 348 // preservation. 349 //===----------------------------------------------------------------------===// 350 351 ScheduleDAGMI::~ScheduleDAGMI() { 352 delete DFSResult; 353 DeleteContainerPointers(Mutations); 354 delete SchedImpl; 355 } 356 357 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 358 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 359 } 360 361 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 362 if (SuccSU != &ExitSU) { 363 // Do not use WillCreateCycle, it assumes SD scheduling. 364 // If Pred is reachable from Succ, then the edge creates a cycle. 365 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 366 return false; 367 Topo.AddPred(SuccSU, PredDep.getSUnit()); 368 } 369 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 370 // Return true regardless of whether a new edge needed to be inserted. 371 return true; 372 } 373 374 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 375 /// NumPredsLeft reaches zero, release the successor node. 376 /// 377 /// FIXME: Adjust SuccSU height based on MinLatency. 378 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 379 SUnit *SuccSU = SuccEdge->getSUnit(); 380 381 if (SuccEdge->isWeak()) { 382 --SuccSU->WeakPredsLeft; 383 if (SuccEdge->isCluster()) 384 NextClusterSucc = SuccSU; 385 return; 386 } 387 #ifndef NDEBUG 388 if (SuccSU->NumPredsLeft == 0) { 389 dbgs() << "*** Scheduling failed! ***\n"; 390 SuccSU->dump(this); 391 dbgs() << " has been released too many times!\n"; 392 llvm_unreachable(0); 393 } 394 #endif 395 --SuccSU->NumPredsLeft; 396 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 397 SchedImpl->releaseTopNode(SuccSU); 398 } 399 400 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 401 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 402 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 403 I != E; ++I) { 404 releaseSucc(SU, &*I); 405 } 406 } 407 408 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 409 /// NumSuccsLeft reaches zero, release the predecessor node. 410 /// 411 /// FIXME: Adjust PredSU height based on MinLatency. 412 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 413 SUnit *PredSU = PredEdge->getSUnit(); 414 415 if (PredEdge->isWeak()) { 416 --PredSU->WeakSuccsLeft; 417 if (PredEdge->isCluster()) 418 NextClusterPred = PredSU; 419 return; 420 } 421 #ifndef NDEBUG 422 if (PredSU->NumSuccsLeft == 0) { 423 dbgs() << "*** Scheduling failed! ***\n"; 424 PredSU->dump(this); 425 dbgs() << " has been released too many times!\n"; 426 llvm_unreachable(0); 427 } 428 #endif 429 --PredSU->NumSuccsLeft; 430 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 431 SchedImpl->releaseBottomNode(PredSU); 432 } 433 434 /// releasePredecessors - Call releasePred on each of SU's predecessors. 435 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 436 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 437 I != E; ++I) { 438 releasePred(SU, &*I); 439 } 440 } 441 442 /// This is normally called from the main scheduler loop but may also be invoked 443 /// by the scheduling strategy to perform additional code motion. 444 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 445 MachineBasicBlock::iterator InsertPos) { 446 // Advance RegionBegin if the first instruction moves down. 447 if (&*RegionBegin == MI) 448 ++RegionBegin; 449 450 // Update the instruction stream. 451 BB->splice(InsertPos, BB, MI); 452 453 // Update LiveIntervals 454 LIS->handleMove(MI, /*UpdateFlags=*/true); 455 456 // Recede RegionBegin if an instruction moves above the first. 457 if (RegionBegin == InsertPos) 458 RegionBegin = MI; 459 } 460 461 bool ScheduleDAGMI::checkSchedLimit() { 462 #ifndef NDEBUG 463 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 464 CurrentTop = CurrentBottom; 465 return false; 466 } 467 ++NumInstrsScheduled; 468 #endif 469 return true; 470 } 471 472 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 473 /// crossing a scheduling boundary. [begin, end) includes all instructions in 474 /// the region, including the boundary itself and single-instruction regions 475 /// that don't get scheduled. 476 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 477 MachineBasicBlock::iterator begin, 478 MachineBasicBlock::iterator end, 479 unsigned regioninstrs) 480 { 481 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 482 483 // For convenience remember the end of the liveness region. 484 LiveRegionEnd = 485 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 486 487 SchedImpl->initPolicy(begin, end, regioninstrs); 488 489 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 490 } 491 492 // Setup the register pressure trackers for the top scheduled top and bottom 493 // scheduled regions. 494 void ScheduleDAGMI::initRegPressure() { 495 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 496 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 497 498 // Close the RPTracker to finalize live ins. 499 RPTracker.closeRegion(); 500 501 DEBUG(RPTracker.dump()); 502 503 // Initialize the live ins and live outs. 504 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 505 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 506 507 // Close one end of the tracker so we can call 508 // getMaxUpward/DownwardPressureDelta before advancing across any 509 // instructions. This converts currently live regs into live ins/outs. 510 TopRPTracker.closeTop(); 511 BotRPTracker.closeBottom(); 512 513 BotRPTracker.initLiveThru(RPTracker); 514 if (!BotRPTracker.getLiveThru().empty()) { 515 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 516 DEBUG(dbgs() << "Live Thru: "; 517 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 518 }; 519 520 // For each live out vreg reduce the pressure change associated with other 521 // uses of the same vreg below the live-out reaching def. 522 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 523 524 // Account for liveness generated by the region boundary. 525 if (LiveRegionEnd != RegionEnd) { 526 SmallVector<unsigned, 8> LiveUses; 527 BotRPTracker.recede(&LiveUses); 528 updatePressureDiffs(LiveUses); 529 } 530 531 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 532 533 // Cache the list of excess pressure sets in this region. This will also track 534 // the max pressure in the scheduled code for these sets. 535 RegionCriticalPSets.clear(); 536 const std::vector<unsigned> &RegionPressure = 537 RPTracker.getPressure().MaxSetPressure; 538 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 539 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 540 if (RegionPressure[i] > Limit) { 541 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 542 << " Limit " << Limit 543 << " Actual " << RegionPressure[i] << "\n"); 544 RegionCriticalPSets.push_back(PressureChange(i)); 545 } 546 } 547 DEBUG(dbgs() << "Excess PSets: "; 548 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 549 dbgs() << TRI->getRegPressureSetName( 550 RegionCriticalPSets[i].getPSet()) << " "; 551 dbgs() << "\n"); 552 } 553 554 // FIXME: When the pressure tracker deals in pressure differences then we won't 555 // iterate over all RegionCriticalPSets[i]. 556 void ScheduleDAGMI:: 557 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 558 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 559 unsigned ID = RegionCriticalPSets[i].getPSet(); 560 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[i].getUnitInc() 561 && NewMaxPressure[ID] <= INT16_MAX) 562 RegionCriticalPSets[i].setUnitInc(NewMaxPressure[ID]); 563 } 564 DEBUG( 565 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { 566 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 567 if (NewMaxPressure[i] > Limit ) { 568 dbgs() << " " << TRI->getRegPressureSetName(i) << ": " 569 << NewMaxPressure[i] << " > " << Limit << "\n"; 570 } 571 }); 572 } 573 574 /// Update the PressureDiff array for liveness after scheduling this 575 /// instruction. 576 void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 577 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 578 /// FIXME: Currently assuming single-use physregs. 579 unsigned Reg = LiveUses[LUIdx]; 580 if (!TRI->isVirtualRegister(Reg)) 581 continue; 582 // This may be called before CurrentBottom has been initialized. However, 583 // BotRPTracker must have a valid position. We want the value live into the 584 // instruction or live out of the block, so ask for the previous 585 // instruction's live-out. 586 const LiveInterval &LI = LIS->getInterval(Reg); 587 VNInfo *VNI; 588 MachineBasicBlock::const_iterator I = 589 nextIfDebug(BotRPTracker.getPos(), BB->end()); 590 if (I == BB->end()) 591 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 592 else { 593 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(I)); 594 VNI = LRQ.valueIn(); 595 } 596 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 597 assert(VNI && "No live value at use."); 598 for (VReg2UseMap::iterator 599 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 600 SUnit *SU = UI->SU; 601 // If this use comes before the reaching def, it cannot be a last use, so 602 // descrease its pressure change. 603 if (!SU->isScheduled && SU != &ExitSU) { 604 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(SU->getInstr())); 605 if (LRQ.valueIn() == VNI) 606 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 607 } 608 } 609 } 610 } 611 612 /// schedule - Called back from MachineScheduler::runOnMachineFunction 613 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 614 /// only includes instructions that have DAG nodes, not scheduling boundaries. 615 /// 616 /// This is a skeletal driver, with all the functionality pushed into helpers, 617 /// so that it can be easilly extended by experimental schedulers. Generally, 618 /// implementing MachineSchedStrategy should be sufficient to implement a new 619 /// scheduling algorithm. However, if a scheduler further subclasses 620 /// ScheduleDAGMI then it will want to override this virtual method in order to 621 /// update any specialized state. 622 void ScheduleDAGMI::schedule() { 623 buildDAGWithRegPressure(); 624 625 Topo.InitDAGTopologicalSorting(); 626 627 postprocessDAG(); 628 629 SmallVector<SUnit*, 8> TopRoots, BotRoots; 630 findRootsAndBiasEdges(TopRoots, BotRoots); 631 632 // Initialize the strategy before modifying the DAG. 633 // This may initialize a DFSResult to be used for queue priority. 634 SchedImpl->initialize(this); 635 636 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 637 SUnits[su].dumpAll(this)); 638 if (ViewMISchedDAGs) viewGraph(); 639 640 // Initialize ready queues now that the DAG and priority data are finalized. 641 initQueues(TopRoots, BotRoots); 642 643 bool IsTopNode = false; 644 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 645 assert(!SU->isScheduled && "Node already scheduled"); 646 if (!checkSchedLimit()) 647 break; 648 649 scheduleMI(SU, IsTopNode); 650 651 updateQueues(SU, IsTopNode); 652 } 653 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 654 655 placeDebugValues(); 656 657 DEBUG({ 658 unsigned BBNum = begin()->getParent()->getNumber(); 659 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 660 dumpSchedule(); 661 dbgs() << '\n'; 662 }); 663 } 664 665 /// Build the DAG and setup three register pressure trackers. 666 void ScheduleDAGMI::buildDAGWithRegPressure() { 667 if (!ShouldTrackPressure) { 668 RPTracker.reset(); 669 RegionCriticalPSets.clear(); 670 buildSchedGraph(AA); 671 return; 672 } 673 674 // Initialize the register pressure tracker used by buildSchedGraph. 675 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 676 /*TrackUntiedDefs=*/true); 677 678 // Account for liveness generate by the region boundary. 679 if (LiveRegionEnd != RegionEnd) 680 RPTracker.recede(); 681 682 // Build the DAG, and compute current register pressure. 683 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 684 685 // Initialize top/bottom trackers after computing region pressure. 686 initRegPressure(); 687 } 688 689 /// Apply each ScheduleDAGMutation step in order. 690 void ScheduleDAGMI::postprocessDAG() { 691 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 692 Mutations[i]->apply(this); 693 } 694 } 695 696 void ScheduleDAGMI::computeDFSResult() { 697 if (!DFSResult) 698 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 699 DFSResult->clear(); 700 ScheduledTrees.clear(); 701 DFSResult->resize(SUnits.size()); 702 DFSResult->compute(SUnits); 703 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 704 } 705 706 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 707 SmallVectorImpl<SUnit*> &BotRoots) { 708 for (std::vector<SUnit>::iterator 709 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 710 SUnit *SU = &(*I); 711 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 712 713 // Order predecessors so DFSResult follows the critical path. 714 SU->biasCriticalPath(); 715 716 // A SUnit is ready to top schedule if it has no predecessors. 717 if (!I->NumPredsLeft) 718 TopRoots.push_back(SU); 719 // A SUnit is ready to bottom schedule if it has no successors. 720 if (!I->NumSuccsLeft) 721 BotRoots.push_back(SU); 722 } 723 ExitSU.biasCriticalPath(); 724 } 725 726 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 727 /// only provides the critical path for single block loops. To handle loops that 728 /// span blocks, we could use the vreg path latencies provided by 729 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 730 /// available for use in the scheduler. 731 /// 732 /// The cyclic path estimation identifies a def-use pair that crosses the back 733 /// edge and considers the depth and height of the nodes. For example, consider 734 /// the following instruction sequence where each instruction has unit latency 735 /// and defines an epomymous virtual register: 736 /// 737 /// a->b(a,c)->c(b)->d(c)->exit 738 /// 739 /// The cyclic critical path is a two cycles: b->c->b 740 /// The acyclic critical path is four cycles: a->b->c->d->exit 741 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 742 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 743 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 744 /// LiveInDepth = depth(b) = len(a->b) = 1 745 /// 746 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 747 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 748 /// CyclicCriticalPath = min(2, 2) = 2 749 unsigned ScheduleDAGMI::computeCyclicCriticalPath() { 750 // This only applies to single block loop. 751 if (!BB->isSuccessor(BB)) 752 return 0; 753 754 unsigned MaxCyclicLatency = 0; 755 // Visit each live out vreg def to find def/use pairs that cross iterations. 756 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 757 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 758 RI != RE; ++RI) { 759 unsigned Reg = *RI; 760 if (!TRI->isVirtualRegister(Reg)) 761 continue; 762 const LiveInterval &LI = LIS->getInterval(Reg); 763 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 764 if (!DefVNI) 765 continue; 766 767 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 768 const SUnit *DefSU = getSUnit(DefMI); 769 if (!DefSU) 770 continue; 771 772 unsigned LiveOutHeight = DefSU->getHeight(); 773 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 774 // Visit all local users of the vreg def. 775 for (VReg2UseMap::iterator 776 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 777 if (UI->SU == &ExitSU) 778 continue; 779 780 // Only consider uses of the phi. 781 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr())); 782 if (!LRQ.valueIn()->isPHIDef()) 783 continue; 784 785 // Assume that a path spanning two iterations is a cycle, which could 786 // overestimate in strange cases. This allows cyclic latency to be 787 // estimated as the minimum slack of the vreg's depth or height. 788 unsigned CyclicLatency = 0; 789 if (LiveOutDepth > UI->SU->getDepth()) 790 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 791 792 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 793 if (LiveInHeight > LiveOutHeight) { 794 if (LiveInHeight - LiveOutHeight < CyclicLatency) 795 CyclicLatency = LiveInHeight - LiveOutHeight; 796 } 797 else 798 CyclicLatency = 0; 799 800 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 801 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 802 if (CyclicLatency > MaxCyclicLatency) 803 MaxCyclicLatency = CyclicLatency; 804 } 805 } 806 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 807 return MaxCyclicLatency; 808 } 809 810 /// Identify DAG roots and setup scheduler queues. 811 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 812 ArrayRef<SUnit*> BotRoots) { 813 NextClusterSucc = NULL; 814 NextClusterPred = NULL; 815 816 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 817 // 818 // Nodes with unreleased weak edges can still be roots. 819 // Release top roots in forward order. 820 for (SmallVectorImpl<SUnit*>::const_iterator 821 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 822 SchedImpl->releaseTopNode(*I); 823 } 824 // Release bottom roots in reverse order so the higher priority nodes appear 825 // first. This is more natural and slightly more efficient. 826 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 827 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 828 SchedImpl->releaseBottomNode(*I); 829 } 830 831 releaseSuccessors(&EntrySU); 832 releasePredecessors(&ExitSU); 833 834 SchedImpl->registerRoots(); 835 836 // Advance past initial DebugValues. 837 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 838 CurrentBottom = RegionEnd; 839 840 if (ShouldTrackPressure) { 841 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 842 TopRPTracker.setPos(CurrentTop); 843 } 844 } 845 846 /// Move an instruction and update register pressure. 847 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 848 // Move the instruction to its new location in the instruction stream. 849 MachineInstr *MI = SU->getInstr(); 850 851 if (IsTopNode) { 852 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 853 if (&*CurrentTop == MI) 854 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 855 else { 856 moveInstruction(MI, CurrentTop); 857 TopRPTracker.setPos(MI); 858 } 859 860 if (ShouldTrackPressure) { 861 // Update top scheduled pressure. 862 TopRPTracker.advance(); 863 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 864 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 865 } 866 } 867 else { 868 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 869 MachineBasicBlock::iterator priorII = 870 priorNonDebug(CurrentBottom, CurrentTop); 871 if (&*priorII == MI) 872 CurrentBottom = priorII; 873 else { 874 if (&*CurrentTop == MI) { 875 CurrentTop = nextIfDebug(++CurrentTop, priorII); 876 TopRPTracker.setPos(CurrentTop); 877 } 878 moveInstruction(MI, CurrentBottom); 879 CurrentBottom = MI; 880 } 881 if (ShouldTrackPressure) { 882 // Update bottom scheduled pressure. 883 SmallVector<unsigned, 8> LiveUses; 884 BotRPTracker.recede(&LiveUses); 885 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 886 updatePressureDiffs(LiveUses); 887 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 888 } 889 } 890 } 891 892 /// Update scheduler queues after scheduling an instruction. 893 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 894 // Release dependent instructions for scheduling. 895 if (IsTopNode) 896 releaseSuccessors(SU); 897 else 898 releasePredecessors(SU); 899 900 SU->isScheduled = true; 901 902 if (DFSResult) { 903 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 904 if (!ScheduledTrees.test(SubtreeID)) { 905 ScheduledTrees.set(SubtreeID); 906 DFSResult->scheduleTree(SubtreeID); 907 SchedImpl->scheduleTree(SubtreeID); 908 } 909 } 910 911 // Notify the scheduling strategy after updating the DAG. 912 SchedImpl->schedNode(SU, IsTopNode); 913 } 914 915 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 916 void ScheduleDAGMI::placeDebugValues() { 917 // If first instruction was a DBG_VALUE then put it back. 918 if (FirstDbgValue) { 919 BB->splice(RegionBegin, BB, FirstDbgValue); 920 RegionBegin = FirstDbgValue; 921 } 922 923 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 924 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 925 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 926 MachineInstr *DbgValue = P.first; 927 MachineBasicBlock::iterator OrigPrevMI = P.second; 928 if (&*RegionBegin == DbgValue) 929 ++RegionBegin; 930 BB->splice(++OrigPrevMI, BB, DbgValue); 931 if (OrigPrevMI == llvm::prior(RegionEnd)) 932 RegionEnd = DbgValue; 933 } 934 DbgValues.clear(); 935 FirstDbgValue = NULL; 936 } 937 938 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 939 void ScheduleDAGMI::dumpSchedule() const { 940 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 941 if (SUnit *SU = getSUnit(&(*MI))) 942 SU->dump(this); 943 else 944 dbgs() << "Missing SUnit\n"; 945 } 946 } 947 #endif 948 949 //===----------------------------------------------------------------------===// 950 // LoadClusterMutation - DAG post-processing to cluster loads. 951 //===----------------------------------------------------------------------===// 952 953 namespace { 954 /// \brief Post-process the DAG to create cluster edges between neighboring 955 /// loads. 956 class LoadClusterMutation : public ScheduleDAGMutation { 957 struct LoadInfo { 958 SUnit *SU; 959 unsigned BaseReg; 960 unsigned Offset; 961 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 962 : SU(su), BaseReg(reg), Offset(ofs) {} 963 }; 964 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 965 const LoadClusterMutation::LoadInfo &RHS); 966 967 const TargetInstrInfo *TII; 968 const TargetRegisterInfo *TRI; 969 public: 970 LoadClusterMutation(const TargetInstrInfo *tii, 971 const TargetRegisterInfo *tri) 972 : TII(tii), TRI(tri) {} 973 974 virtual void apply(ScheduleDAGMI *DAG); 975 protected: 976 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 977 }; 978 } // anonymous 979 980 bool LoadClusterMutation::LoadInfoLess( 981 const LoadClusterMutation::LoadInfo &LHS, 982 const LoadClusterMutation::LoadInfo &RHS) { 983 if (LHS.BaseReg != RHS.BaseReg) 984 return LHS.BaseReg < RHS.BaseReg; 985 return LHS.Offset < RHS.Offset; 986 } 987 988 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 989 ScheduleDAGMI *DAG) { 990 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 991 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 992 SUnit *SU = Loads[Idx]; 993 unsigned BaseReg; 994 unsigned Offset; 995 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 996 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 997 } 998 if (LoadRecords.size() < 2) 999 return; 1000 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 1001 unsigned ClusterLength = 1; 1002 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1003 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1004 ClusterLength = 1; 1005 continue; 1006 } 1007 1008 SUnit *SUa = LoadRecords[Idx].SU; 1009 SUnit *SUb = LoadRecords[Idx+1].SU; 1010 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1011 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1012 1013 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1014 << SUb->NodeNum << ")\n"); 1015 // Copy successor edges from SUa to SUb. Interleaving computation 1016 // dependent on SUa can prevent load combining due to register reuse. 1017 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1018 // loads should have effectively the same inputs. 1019 for (SUnit::const_succ_iterator 1020 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1021 if (SI->getSUnit() == SUb) 1022 continue; 1023 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1024 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1025 } 1026 ++ClusterLength; 1027 } 1028 else 1029 ClusterLength = 1; 1030 } 1031 } 1032 1033 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1034 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1035 // Map DAG NodeNum to store chain ID. 1036 DenseMap<unsigned, unsigned> StoreChainIDs; 1037 // Map each store chain to a set of dependent loads. 1038 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1039 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1040 SUnit *SU = &DAG->SUnits[Idx]; 1041 if (!SU->getInstr()->mayLoad()) 1042 continue; 1043 unsigned ChainPredID = DAG->SUnits.size(); 1044 for (SUnit::const_pred_iterator 1045 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1046 if (PI->isCtrl()) { 1047 ChainPredID = PI->getSUnit()->NodeNum; 1048 break; 1049 } 1050 } 1051 // Check if this chain-like pred has been seen 1052 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1053 unsigned NumChains = StoreChainDependents.size(); 1054 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1055 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1056 if (Result.second) 1057 StoreChainDependents.resize(NumChains + 1); 1058 StoreChainDependents[Result.first->second].push_back(SU); 1059 } 1060 // Iterate over the store chains. 1061 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1062 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1067 //===----------------------------------------------------------------------===// 1068 1069 namespace { 1070 /// \brief Post-process the DAG to create cluster edges between instructions 1071 /// that may be fused by the processor into a single operation. 1072 class MacroFusion : public ScheduleDAGMutation { 1073 const TargetInstrInfo *TII; 1074 public: 1075 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 1076 1077 virtual void apply(ScheduleDAGMI *DAG); 1078 }; 1079 } // anonymous 1080 1081 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1082 /// fused operations. 1083 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1084 // For now, assume targets can only fuse with the branch. 1085 MachineInstr *Branch = DAG->ExitSU.getInstr(); 1086 if (!Branch) 1087 return; 1088 1089 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1090 SUnit *SU = &DAG->SUnits[--Idx]; 1091 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1092 continue; 1093 1094 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1095 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1096 // need to copy predecessor edges from ExitSU to SU, since top-down 1097 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1098 // of SU, we could create an artificial edge from the deepest root, but it 1099 // hasn't been needed yet. 1100 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1101 (void)Success; 1102 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1103 1104 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1105 break; 1106 } 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // CopyConstrain - DAG post-processing to encourage copy elimination. 1111 //===----------------------------------------------------------------------===// 1112 1113 namespace { 1114 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1115 /// the one use that defines the copy's source vreg, most likely an induction 1116 /// variable increment. 1117 class CopyConstrain : public ScheduleDAGMutation { 1118 // Transient state. 1119 SlotIndex RegionBeginIdx; 1120 // RegionEndIdx is the slot index of the last non-debug instruction in the 1121 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1122 SlotIndex RegionEndIdx; 1123 public: 1124 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1125 1126 virtual void apply(ScheduleDAGMI *DAG); 1127 1128 protected: 1129 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); 1130 }; 1131 } // anonymous 1132 1133 /// constrainLocalCopy handles two possibilities: 1134 /// 1) Local src: 1135 /// I0: = dst 1136 /// I1: src = ... 1137 /// I2: = dst 1138 /// I3: dst = src (copy) 1139 /// (create pred->succ edges I0->I1, I2->I1) 1140 /// 1141 /// 2) Local copy: 1142 /// I0: dst = src (copy) 1143 /// I1: = dst 1144 /// I2: src = ... 1145 /// I3: = dst 1146 /// (create pred->succ edges I1->I2, I3->I2) 1147 /// 1148 /// Although the MachineScheduler is currently constrained to single blocks, 1149 /// this algorithm should handle extended blocks. An EBB is a set of 1150 /// contiguously numbered blocks such that the previous block in the EBB is 1151 /// always the single predecessor. 1152 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { 1153 LiveIntervals *LIS = DAG->getLIS(); 1154 MachineInstr *Copy = CopySU->getInstr(); 1155 1156 // Check for pure vreg copies. 1157 unsigned SrcReg = Copy->getOperand(1).getReg(); 1158 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1159 return; 1160 1161 unsigned DstReg = Copy->getOperand(0).getReg(); 1162 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1163 return; 1164 1165 // Check if either the dest or source is local. If it's live across a back 1166 // edge, it's not local. Note that if both vregs are live across the back 1167 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1168 unsigned LocalReg = DstReg; 1169 unsigned GlobalReg = SrcReg; 1170 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1171 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1172 LocalReg = SrcReg; 1173 GlobalReg = DstReg; 1174 LocalLI = &LIS->getInterval(LocalReg); 1175 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1176 return; 1177 } 1178 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1179 1180 // Find the global segment after the start of the local LI. 1181 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1182 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1183 // local live range. We could create edges from other global uses to the local 1184 // start, but the coalescer should have already eliminated these cases, so 1185 // don't bother dealing with it. 1186 if (GlobalSegment == GlobalLI->end()) 1187 return; 1188 1189 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1190 // returned the next global segment. But if GlobalSegment overlaps with 1191 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1192 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1193 if (GlobalSegment->contains(LocalLI->beginIndex())) 1194 ++GlobalSegment; 1195 1196 if (GlobalSegment == GlobalLI->end()) 1197 return; 1198 1199 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1200 if (GlobalSegment != GlobalLI->begin()) { 1201 // Two address defs have no hole. 1202 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, 1203 GlobalSegment->start)) { 1204 return; 1205 } 1206 // If the prior global segment may be defined by the same two-address 1207 // instruction that also defines LocalLI, then can't make a hole here. 1208 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, 1209 LocalLI->beginIndex())) { 1210 return; 1211 } 1212 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1213 // it would be a disconnected component in the live range. 1214 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && 1215 "Disconnected LRG within the scheduling region."); 1216 } 1217 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1218 if (!GlobalDef) 1219 return; 1220 1221 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1222 if (!GlobalSU) 1223 return; 1224 1225 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1226 // constraining the uses of the last local def to precede GlobalDef. 1227 SmallVector<SUnit*,8> LocalUses; 1228 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1229 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1230 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1231 for (SUnit::const_succ_iterator 1232 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1233 I != E; ++I) { 1234 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1235 continue; 1236 if (I->getSUnit() == GlobalSU) 1237 continue; 1238 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1239 return; 1240 LocalUses.push_back(I->getSUnit()); 1241 } 1242 // Open the top of the GlobalLI hole by constraining any earlier global uses 1243 // to precede the start of LocalLI. 1244 SmallVector<SUnit*,8> GlobalUses; 1245 MachineInstr *FirstLocalDef = 1246 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1247 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1248 for (SUnit::const_pred_iterator 1249 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1250 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1251 continue; 1252 if (I->getSUnit() == FirstLocalSU) 1253 continue; 1254 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1255 return; 1256 GlobalUses.push_back(I->getSUnit()); 1257 } 1258 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1259 // Add the weak edges. 1260 for (SmallVectorImpl<SUnit*>::const_iterator 1261 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1262 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1263 << GlobalSU->NodeNum << ")\n"); 1264 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1265 } 1266 for (SmallVectorImpl<SUnit*>::const_iterator 1267 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1268 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1269 << FirstLocalSU->NodeNum << ")\n"); 1270 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1271 } 1272 } 1273 1274 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1275 /// copy elimination. 1276 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1277 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1278 if (FirstPos == DAG->end()) 1279 return; 1280 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1281 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1282 &*priorNonDebug(DAG->end(), DAG->begin())); 1283 1284 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1285 SUnit *SU = &DAG->SUnits[Idx]; 1286 if (!SU->getInstr()->isCopy()) 1287 continue; 1288 1289 constrainLocalCopy(SU, DAG); 1290 } 1291 } 1292 1293 //===----------------------------------------------------------------------===// 1294 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy. 1295 //===----------------------------------------------------------------------===// 1296 1297 namespace { 1298 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 1299 /// the schedule. 1300 class ConvergingScheduler : public MachineSchedStrategy { 1301 public: 1302 /// Represent the type of SchedCandidate found within a single queue. 1303 /// pickNodeBidirectional depends on these listed by decreasing priority. 1304 enum CandReason { 1305 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, 1306 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 1307 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 1308 1309 #ifndef NDEBUG 1310 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 1311 #endif 1312 1313 /// Policy for scheduling the next instruction in the candidate's zone. 1314 struct CandPolicy { 1315 bool ReduceLatency; 1316 unsigned ReduceResIdx; 1317 unsigned DemandResIdx; 1318 1319 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 1320 }; 1321 1322 /// Status of an instruction's critical resource consumption. 1323 struct SchedResourceDelta { 1324 // Count critical resources in the scheduled region required by SU. 1325 unsigned CritResources; 1326 1327 // Count critical resources from another region consumed by SU. 1328 unsigned DemandedResources; 1329 1330 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 1331 1332 bool operator==(const SchedResourceDelta &RHS) const { 1333 return CritResources == RHS.CritResources 1334 && DemandedResources == RHS.DemandedResources; 1335 } 1336 bool operator!=(const SchedResourceDelta &RHS) const { 1337 return !operator==(RHS); 1338 } 1339 }; 1340 1341 /// Store the state used by ConvergingScheduler heuristics, required for the 1342 /// lifetime of one invocation of pickNode(). 1343 struct SchedCandidate { 1344 CandPolicy Policy; 1345 1346 // The best SUnit candidate. 1347 SUnit *SU; 1348 1349 // The reason for this candidate. 1350 CandReason Reason; 1351 1352 // Set of reasons that apply to multiple candidates. 1353 uint32_t RepeatReasonSet; 1354 1355 // Register pressure values for the best candidate. 1356 RegPressureDelta RPDelta; 1357 1358 // Critical resource consumption of the best candidate. 1359 SchedResourceDelta ResDelta; 1360 1361 SchedCandidate(const CandPolicy &policy) 1362 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} 1363 1364 bool isValid() const { return SU; } 1365 1366 // Copy the status of another candidate without changing policy. 1367 void setBest(SchedCandidate &Best) { 1368 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 1369 SU = Best.SU; 1370 Reason = Best.Reason; 1371 RPDelta = Best.RPDelta; 1372 ResDelta = Best.ResDelta; 1373 } 1374 1375 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 1376 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 1377 1378 void initResourceDelta(const ScheduleDAGMI *DAG, 1379 const TargetSchedModel *SchedModel); 1380 }; 1381 1382 /// Summarize the unscheduled region. 1383 struct SchedRemainder { 1384 // Critical path through the DAG in expected latency. 1385 unsigned CriticalPath; 1386 unsigned CyclicCritPath; 1387 1388 // Scaled count of micro-ops left to schedule. 1389 unsigned RemIssueCount; 1390 1391 bool IsAcyclicLatencyLimited; 1392 1393 // Unscheduled resources 1394 SmallVector<unsigned, 16> RemainingCounts; 1395 1396 void reset() { 1397 CriticalPath = 0; 1398 CyclicCritPath = 0; 1399 RemIssueCount = 0; 1400 IsAcyclicLatencyLimited = false; 1401 RemainingCounts.clear(); 1402 } 1403 1404 SchedRemainder() { reset(); } 1405 1406 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1407 }; 1408 1409 /// Each Scheduling boundary is associated with ready queues. It tracks the 1410 /// current cycle in the direction of movement, and maintains the state 1411 /// of "hazards" and other interlocks at the current cycle. 1412 struct SchedBoundary { 1413 ScheduleDAGMI *DAG; 1414 const TargetSchedModel *SchedModel; 1415 SchedRemainder *Rem; 1416 1417 ReadyQueue Available; 1418 ReadyQueue Pending; 1419 bool CheckPending; 1420 1421 // For heuristics, keep a list of the nodes that immediately depend on the 1422 // most recently scheduled node. 1423 SmallPtrSet<const SUnit*, 8> NextSUs; 1424 1425 ScheduleHazardRecognizer *HazardRec; 1426 1427 /// Number of cycles it takes to issue the instructions scheduled in this 1428 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. 1429 /// See getStalls(). 1430 unsigned CurrCycle; 1431 1432 /// Micro-ops issued in the current cycle 1433 unsigned CurrMOps; 1434 1435 /// MinReadyCycle - Cycle of the soonest available instruction. 1436 unsigned MinReadyCycle; 1437 1438 // The expected latency of the critical path in this scheduled zone. 1439 unsigned ExpectedLatency; 1440 1441 // The latency of dependence chains leading into this zone. 1442 // For each node scheduled bottom-up: DLat = max DLat, N.Depth. 1443 // For each cycle scheduled: DLat -= 1. 1444 unsigned DependentLatency; 1445 1446 /// Count the scheduled (issued) micro-ops that can be retired by 1447 /// time=CurrCycle assuming the first scheduled instr is retired at time=0. 1448 unsigned RetiredMOps; 1449 1450 // Count scheduled resources that have been executed. Resources are 1451 // considered executed if they become ready in the time that it takes to 1452 // saturate any resource including the one in question. Counts are scaled 1453 // for direct comparison with other resources. Counts can be compared with 1454 // MOps * getMicroOpFactor and Latency * getLatencyFactor. 1455 SmallVector<unsigned, 16> ExecutedResCounts; 1456 1457 /// Cache the max count for a single resource. 1458 unsigned MaxExecutedResCount; 1459 1460 // Cache the critical resources ID in this scheduled zone. 1461 unsigned ZoneCritResIdx; 1462 1463 // Is the scheduled region resource limited vs. latency limited. 1464 bool IsResourceLimited; 1465 1466 #ifndef NDEBUG 1467 // Remember the greatest operand latency as an upper bound on the number of 1468 // times we should retry the pending queue because of a hazard. 1469 unsigned MaxObservedLatency; 1470 #endif 1471 1472 void reset() { 1473 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1474 // Destroying and reconstructing it is very expensive though. So keep 1475 // invalid, placeholder HazardRecs. 1476 if (HazardRec && HazardRec->isEnabled()) { 1477 delete HazardRec; 1478 HazardRec = 0; 1479 } 1480 Available.clear(); 1481 Pending.clear(); 1482 CheckPending = false; 1483 NextSUs.clear(); 1484 CurrCycle = 0; 1485 CurrMOps = 0; 1486 MinReadyCycle = UINT_MAX; 1487 ExpectedLatency = 0; 1488 DependentLatency = 0; 1489 RetiredMOps = 0; 1490 MaxExecutedResCount = 0; 1491 ZoneCritResIdx = 0; 1492 IsResourceLimited = false; 1493 #ifndef NDEBUG 1494 MaxObservedLatency = 0; 1495 #endif 1496 // Reserve a zero-count for invalid CritResIdx. 1497 ExecutedResCounts.resize(1); 1498 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1499 } 1500 1501 /// Pending queues extend the ready queues with the same ID and the 1502 /// PendingFlag set. 1503 SchedBoundary(unsigned ID, const Twine &Name): 1504 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1505 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1506 HazardRec(0) { 1507 reset(); 1508 } 1509 1510 ~SchedBoundary() { delete HazardRec; } 1511 1512 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1513 SchedRemainder *rem); 1514 1515 bool isTop() const { 1516 return Available.getID() == ConvergingScheduler::TopQID; 1517 } 1518 1519 #ifndef NDEBUG 1520 const char *getResourceName(unsigned PIdx) { 1521 if (!PIdx) 1522 return "MOps"; 1523 return SchedModel->getProcResource(PIdx)->Name; 1524 } 1525 #endif 1526 1527 /// Get the number of latency cycles "covered" by the scheduled 1528 /// instructions. This is the larger of the critical path within the zone 1529 /// and the number of cycles required to issue the instructions. 1530 unsigned getScheduledLatency() const { 1531 return std::max(ExpectedLatency, CurrCycle); 1532 } 1533 1534 unsigned getUnscheduledLatency(SUnit *SU) const { 1535 return isTop() ? SU->getHeight() : SU->getDepth(); 1536 } 1537 1538 unsigned getResourceCount(unsigned ResIdx) const { 1539 return ExecutedResCounts[ResIdx]; 1540 } 1541 1542 /// Get the scaled count of scheduled micro-ops and resources, including 1543 /// executed resources. 1544 unsigned getCriticalCount() const { 1545 if (!ZoneCritResIdx) 1546 return RetiredMOps * SchedModel->getMicroOpFactor(); 1547 return getResourceCount(ZoneCritResIdx); 1548 } 1549 1550 /// Get a scaled count for the minimum execution time of the scheduled 1551 /// micro-ops that are ready to execute by getExecutedCount. Notice the 1552 /// feedback loop. 1553 unsigned getExecutedCount() const { 1554 return std::max(CurrCycle * SchedModel->getLatencyFactor(), 1555 MaxExecutedResCount); 1556 } 1557 1558 bool checkHazard(SUnit *SU); 1559 1560 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); 1561 1562 unsigned getOtherResourceCount(unsigned &OtherCritIdx); 1563 1564 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); 1565 1566 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1567 1568 void bumpCycle(unsigned NextCycle); 1569 1570 void incExecutedResources(unsigned PIdx, unsigned Count); 1571 1572 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); 1573 1574 void bumpNode(SUnit *SU); 1575 1576 void releasePending(); 1577 1578 void removeReady(SUnit *SU); 1579 1580 SUnit *pickOnlyChoice(); 1581 1582 #ifndef NDEBUG 1583 void dumpScheduledState(); 1584 #endif 1585 }; 1586 1587 private: 1588 const MachineSchedContext *Context; 1589 ScheduleDAGMI *DAG; 1590 const TargetSchedModel *SchedModel; 1591 const TargetRegisterInfo *TRI; 1592 1593 // State of the top and bottom scheduled instruction boundaries. 1594 SchedRemainder Rem; 1595 SchedBoundary Top; 1596 SchedBoundary Bot; 1597 1598 MachineSchedPolicy RegionPolicy; 1599 public: 1600 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1601 enum { 1602 TopQID = 1, 1603 BotQID = 2, 1604 LogMaxQID = 2 1605 }; 1606 1607 ConvergingScheduler(const MachineSchedContext *C): 1608 Context(C), DAG(0), SchedModel(0), TRI(0), 1609 Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1610 1611 virtual void initPolicy(MachineBasicBlock::iterator Begin, 1612 MachineBasicBlock::iterator End, 1613 unsigned NumRegionInstrs); 1614 1615 bool shouldTrackPressure() const { return RegionPolicy.ShouldTrackPressure; } 1616 1617 virtual void initialize(ScheduleDAGMI *dag); 1618 1619 virtual SUnit *pickNode(bool &IsTopNode); 1620 1621 virtual void schedNode(SUnit *SU, bool IsTopNode); 1622 1623 virtual void releaseTopNode(SUnit *SU); 1624 1625 virtual void releaseBottomNode(SUnit *SU); 1626 1627 virtual void registerRoots(); 1628 1629 protected: 1630 void checkAcyclicLatency(); 1631 1632 void tryCandidate(SchedCandidate &Cand, 1633 SchedCandidate &TryCand, 1634 SchedBoundary &Zone, 1635 const RegPressureTracker &RPTracker, 1636 RegPressureTracker &TempTracker); 1637 1638 SUnit *pickNodeBidirectional(bool &IsTopNode); 1639 1640 void pickNodeFromQueue(SchedBoundary &Zone, 1641 const RegPressureTracker &RPTracker, 1642 SchedCandidate &Candidate); 1643 1644 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 1645 1646 #ifndef NDEBUG 1647 void traceCandidate(const SchedCandidate &Cand); 1648 #endif 1649 }; 1650 } // namespace 1651 1652 void ConvergingScheduler::SchedRemainder:: 1653 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1654 reset(); 1655 if (!SchedModel->hasInstrSchedModel()) 1656 return; 1657 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1658 for (std::vector<SUnit>::iterator 1659 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1660 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1661 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1662 * SchedModel->getMicroOpFactor(); 1663 for (TargetSchedModel::ProcResIter 1664 PI = SchedModel->getWriteProcResBegin(SC), 1665 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1666 unsigned PIdx = PI->ProcResourceIdx; 1667 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1668 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1669 } 1670 } 1671 } 1672 1673 void ConvergingScheduler::SchedBoundary:: 1674 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1675 reset(); 1676 DAG = dag; 1677 SchedModel = smodel; 1678 Rem = rem; 1679 if (SchedModel->hasInstrSchedModel()) 1680 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1681 } 1682 1683 /// Initialize the per-region scheduling policy. 1684 void ConvergingScheduler::initPolicy(MachineBasicBlock::iterator Begin, 1685 MachineBasicBlock::iterator End, 1686 unsigned NumRegionInstrs) { 1687 const TargetMachine &TM = Context->MF->getTarget(); 1688 1689 // Avoid setting up the register pressure tracker for small regions to save 1690 // compile time. As a rough heuristic, only track pressure when the number of 1691 // schedulable instructions exceeds half the integer register file. 1692 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 1693 TM.getTargetLowering()->getRegClassFor(MVT::i32)); 1694 1695 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 1696 1697 // For generic targets, we default to bottom-up, because it's simpler and more 1698 // compile-time optimizations have been implemented in that direction. 1699 RegionPolicy.OnlyBottomUp = true; 1700 1701 // Allow the subtarget to override default policy. 1702 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 1703 ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs); 1704 1705 // After subtarget overrides, apply command line options. 1706 if (!EnableRegPressure) 1707 RegionPolicy.ShouldTrackPressure = false; 1708 1709 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 1710 // e.g. -misched-bottomup=false allows scheduling in both directions. 1711 assert((!ForceTopDown || !ForceBottomUp) && 1712 "-misched-topdown incompatible with -misched-bottomup"); 1713 if (ForceBottomUp.getNumOccurrences() > 0) { 1714 RegionPolicy.OnlyBottomUp = ForceBottomUp; 1715 if (RegionPolicy.OnlyBottomUp) 1716 RegionPolicy.OnlyTopDown = false; 1717 } 1718 if (ForceTopDown.getNumOccurrences() > 0) { 1719 RegionPolicy.OnlyTopDown = ForceTopDown; 1720 if (RegionPolicy.OnlyTopDown) 1721 RegionPolicy.OnlyBottomUp = false; 1722 } 1723 } 1724 1725 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1726 DAG = dag; 1727 SchedModel = DAG->getSchedModel(); 1728 TRI = DAG->TRI; 1729 1730 Rem.init(DAG, SchedModel); 1731 Top.init(DAG, SchedModel, &Rem); 1732 Bot.init(DAG, SchedModel, &Rem); 1733 1734 // Initialize resource counts. 1735 1736 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1737 // are disabled, then these HazardRecs will be disabled. 1738 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1739 const TargetMachine &TM = DAG->MF.getTarget(); 1740 if (!Top.HazardRec) { 1741 Top.HazardRec = 1742 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1743 } 1744 if (!Bot.HazardRec) { 1745 Bot.HazardRec = 1746 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1747 } 1748 } 1749 1750 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1751 if (SU->isScheduled) 1752 return; 1753 1754 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1755 I != E; ++I) { 1756 if (I->isWeak()) 1757 continue; 1758 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1759 unsigned Latency = I->getLatency(); 1760 #ifndef NDEBUG 1761 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); 1762 #endif 1763 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1764 SU->TopReadyCycle = PredReadyCycle + Latency; 1765 } 1766 Top.releaseNode(SU, SU->TopReadyCycle); 1767 } 1768 1769 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1770 if (SU->isScheduled) 1771 return; 1772 1773 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1774 1775 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1776 I != E; ++I) { 1777 if (I->isWeak()) 1778 continue; 1779 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1780 unsigned Latency = I->getLatency(); 1781 #ifndef NDEBUG 1782 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); 1783 #endif 1784 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1785 SU->BotReadyCycle = SuccReadyCycle + Latency; 1786 } 1787 Bot.releaseNode(SU, SU->BotReadyCycle); 1788 } 1789 1790 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 1791 /// critical path by more cycles than it takes to drain the instruction buffer. 1792 /// We estimate an upper bounds on in-flight instructions as: 1793 /// 1794 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 1795 /// InFlightIterations = AcyclicPath / CyclesPerIteration 1796 /// InFlightResources = InFlightIterations * LoopResources 1797 /// 1798 /// TODO: Check execution resources in addition to IssueCount. 1799 void ConvergingScheduler::checkAcyclicLatency() { 1800 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 1801 return; 1802 1803 // Scaled number of cycles per loop iteration. 1804 unsigned IterCount = 1805 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 1806 Rem.RemIssueCount); 1807 // Scaled acyclic critical path. 1808 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 1809 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 1810 unsigned InFlightCount = 1811 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 1812 unsigned BufferLimit = 1813 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 1814 1815 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 1816 1817 DEBUG(dbgs() << "IssueCycles=" 1818 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 1819 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 1820 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 1821 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 1822 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 1823 if (Rem.IsAcyclicLatencyLimited) 1824 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 1825 } 1826 1827 void ConvergingScheduler::registerRoots() { 1828 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1829 1830 // Some roots may not feed into ExitSU. Check all of them in case. 1831 for (std::vector<SUnit*>::const_iterator 1832 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1833 if ((*I)->getDepth() > Rem.CriticalPath) 1834 Rem.CriticalPath = (*I)->getDepth(); 1835 } 1836 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1837 1838 if (EnableCyclicPath) { 1839 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 1840 checkAcyclicLatency(); 1841 } 1842 } 1843 1844 /// Does this SU have a hazard within the current instruction group. 1845 /// 1846 /// The scheduler supports two modes of hazard recognition. The first is the 1847 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1848 /// supports highly complicated in-order reservation tables 1849 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1850 /// 1851 /// The second is a streamlined mechanism that checks for hazards based on 1852 /// simple counters that the scheduler itself maintains. It explicitly checks 1853 /// for instruction dispatch limitations, including the number of micro-ops that 1854 /// can dispatch per cycle. 1855 /// 1856 /// TODO: Also check whether the SU must start a new group. 1857 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1858 if (HazardRec->isEnabled()) 1859 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1860 1861 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1862 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1863 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1864 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 // Find the unscheduled node in ReadySUs with the highest latency. 1871 unsigned ConvergingScheduler::SchedBoundary:: 1872 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1873 SUnit *LateSU = 0; 1874 unsigned RemLatency = 0; 1875 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1876 I != E; ++I) { 1877 unsigned L = getUnscheduledLatency(*I); 1878 if (L > RemLatency) { 1879 RemLatency = L; 1880 LateSU = *I; 1881 } 1882 } 1883 if (LateSU) { 1884 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1885 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1886 } 1887 return RemLatency; 1888 } 1889 1890 // Count resources in this zone and the remaining unscheduled 1891 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1892 // resource index, or zero if the zone is issue limited. 1893 unsigned ConvergingScheduler::SchedBoundary:: 1894 getOtherResourceCount(unsigned &OtherCritIdx) { 1895 OtherCritIdx = 0; 1896 if (!SchedModel->hasInstrSchedModel()) 1897 return 0; 1898 1899 unsigned OtherCritCount = Rem->RemIssueCount 1900 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1901 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1902 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1903 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1904 PIdx != PEnd; ++PIdx) { 1905 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1906 if (OtherCount > OtherCritCount) { 1907 OtherCritCount = OtherCount; 1908 OtherCritIdx = PIdx; 1909 } 1910 } 1911 if (OtherCritIdx) { 1912 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1913 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1914 << " " << getResourceName(OtherCritIdx) << "\n"); 1915 } 1916 return OtherCritCount; 1917 } 1918 1919 /// Set the CandPolicy for this zone given the current resources and latencies 1920 /// inside and outside the zone. 1921 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, 1922 SchedBoundary &OtherZone) { 1923 // Now that potential stalls have been considered, apply preemptive heuristics 1924 // based on the the total latency and resources inside and outside this 1925 // zone. 1926 1927 // Compute remaining latency. We need this both to determine whether the 1928 // overall schedule has become latency-limited and whether the instructions 1929 // outside this zone are resource or latency limited. 1930 // 1931 // The "dependent" latency is updated incrementally during scheduling as the 1932 // max height/depth of scheduled nodes minus the cycles since it was 1933 // scheduled: 1934 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 1935 // 1936 // The "independent" latency is the max ready queue depth: 1937 // ILat = max N.depth for N in Available|Pending 1938 // 1939 // RemainingLatency is the greater of independent and dependent latency. 1940 unsigned RemLatency = DependentLatency; 1941 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); 1942 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); 1943 1944 // Compute the critical resource outside the zone. 1945 unsigned OtherCritIdx; 1946 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); 1947 1948 bool OtherResLimited = false; 1949 if (SchedModel->hasInstrSchedModel()) { 1950 unsigned LFactor = SchedModel->getLatencyFactor(); 1951 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 1952 } 1953 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { 1954 Policy.ReduceLatency |= true; 1955 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " 1956 << RemLatency << " + " << CurrCycle << "c > CritPath " 1957 << Rem->CriticalPath << "\n"); 1958 } 1959 // If the same resource is limiting inside and outside the zone, do nothing. 1960 if (ZoneCritResIdx == OtherCritIdx) 1961 return; 1962 1963 DEBUG( 1964 if (IsResourceLimited) { 1965 dbgs() << " " << Available.getName() << " ResourceLimited: " 1966 << getResourceName(ZoneCritResIdx) << "\n"; 1967 } 1968 if (OtherResLimited) 1969 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; 1970 if (!IsResourceLimited && !OtherResLimited) 1971 dbgs() << " Latency limited both directions.\n"); 1972 1973 if (IsResourceLimited && !Policy.ReduceResIdx) 1974 Policy.ReduceResIdx = ZoneCritResIdx; 1975 1976 if (OtherResLimited) 1977 Policy.DemandResIdx = OtherCritIdx; 1978 } 1979 1980 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1981 unsigned ReadyCycle) { 1982 if (ReadyCycle < MinReadyCycle) 1983 MinReadyCycle = ReadyCycle; 1984 1985 // Check for interlocks first. For the purpose of other heuristics, an 1986 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1987 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1988 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1989 Pending.push(SU); 1990 else 1991 Available.push(SU); 1992 1993 // Record this node as an immediate dependent of the scheduled node. 1994 NextSUs.insert(SU); 1995 } 1996 1997 /// Move the boundary of scheduled code by one cycle. 1998 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { 1999 if (SchedModel->getMicroOpBufferSize() == 0) { 2000 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 2001 if (MinReadyCycle > NextCycle) 2002 NextCycle = MinReadyCycle; 2003 } 2004 // Update the current micro-ops, which will issue in the next cycle. 2005 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2006 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2007 2008 // Decrement DependentLatency based on the next cycle. 2009 if ((NextCycle - CurrCycle) > DependentLatency) 2010 DependentLatency = 0; 2011 else 2012 DependentLatency -= (NextCycle - CurrCycle); 2013 2014 if (!HazardRec->isEnabled()) { 2015 // Bypass HazardRec virtual calls. 2016 CurrCycle = NextCycle; 2017 } 2018 else { 2019 // Bypass getHazardType calls in case of long latency. 2020 for (; CurrCycle != NextCycle; ++CurrCycle) { 2021 if (isTop()) 2022 HazardRec->AdvanceCycle(); 2023 else 2024 HazardRec->RecedeCycle(); 2025 } 2026 } 2027 CheckPending = true; 2028 unsigned LFactor = SchedModel->getLatencyFactor(); 2029 IsResourceLimited = 2030 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2031 > (int)LFactor; 2032 2033 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2034 } 2035 2036 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, 2037 unsigned Count) { 2038 ExecutedResCounts[PIdx] += Count; 2039 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2040 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2041 } 2042 2043 /// Add the given processor resource to this scheduled zone. 2044 /// 2045 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2046 /// during which this resource is consumed. 2047 /// 2048 /// \return the next cycle at which the instruction may execute without 2049 /// oversubscribing resources. 2050 unsigned ConvergingScheduler::SchedBoundary:: 2051 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { 2052 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2053 unsigned Count = Factor * Cycles; 2054 DEBUG(dbgs() << " " << getResourceName(PIdx) 2055 << " +" << Cycles << "x" << Factor << "u\n"); 2056 2057 // Update Executed resources counts. 2058 incExecutedResources(PIdx, Count); 2059 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2060 Rem->RemainingCounts[PIdx] -= Count; 2061 2062 // Check if this resource exceeds the current critical resource. If so, it 2063 // becomes the critical resource. 2064 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2065 ZoneCritResIdx = PIdx; 2066 DEBUG(dbgs() << " *** Critical resource " 2067 << getResourceName(PIdx) << ": " 2068 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2069 } 2070 // TODO: We don't yet model reserved resources. It's not hard though. 2071 return CurrCycle; 2072 } 2073 2074 /// Move the boundary of scheduled code by one SUnit. 2075 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 2076 // Update the reservation table. 2077 if (HazardRec->isEnabled()) { 2078 if (!isTop() && SU->isCall) { 2079 // Calls are scheduled with their preceding instructions. For bottom-up 2080 // scheduling, clear the pipeline state before emitting. 2081 HazardRec->Reset(); 2082 } 2083 HazardRec->EmitInstruction(SU); 2084 } 2085 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2086 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2087 CurrMOps += IncMOps; 2088 // checkHazard prevents scheduling multiple instructions per cycle that exceed 2089 // issue width. However, we commonly reach the maximum. In this case 2090 // opportunistically bump the cycle to avoid uselessly checking everything in 2091 // the readyQ. Furthermore, a single instruction may produce more than one 2092 // cycle's worth of micro-ops. 2093 // 2094 // TODO: Also check if this SU must end a dispatch group. 2095 unsigned NextCycle = CurrCycle; 2096 if (CurrMOps >= SchedModel->getIssueWidth()) { 2097 ++NextCycle; 2098 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2099 << " at cycle " << CurrCycle << '\n'); 2100 } 2101 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2102 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2103 2104 switch (SchedModel->getMicroOpBufferSize()) { 2105 case 0: 2106 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2107 break; 2108 case 1: 2109 if (ReadyCycle > NextCycle) { 2110 NextCycle = ReadyCycle; 2111 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2112 } 2113 break; 2114 default: 2115 // We don't currently model the OOO reorder buffer, so consider all 2116 // scheduled MOps to be "retired". 2117 break; 2118 } 2119 RetiredMOps += IncMOps; 2120 2121 // Update resource counts and critical resource. 2122 if (SchedModel->hasInstrSchedModel()) { 2123 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2124 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2125 Rem->RemIssueCount -= DecRemIssue; 2126 if (ZoneCritResIdx) { 2127 // Scale scheduled micro-ops for comparing with the critical resource. 2128 unsigned ScaledMOps = 2129 RetiredMOps * SchedModel->getMicroOpFactor(); 2130 2131 // If scaled micro-ops are now more than the previous critical resource by 2132 // a full cycle, then micro-ops issue becomes critical. 2133 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2134 >= (int)SchedModel->getLatencyFactor()) { 2135 ZoneCritResIdx = 0; 2136 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2137 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2138 } 2139 } 2140 for (TargetSchedModel::ProcResIter 2141 PI = SchedModel->getWriteProcResBegin(SC), 2142 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2143 unsigned RCycle = 2144 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); 2145 if (RCycle > NextCycle) 2146 NextCycle = RCycle; 2147 } 2148 } 2149 // Update ExpectedLatency and DependentLatency. 2150 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2151 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2152 if (SU->getDepth() > TopLatency) { 2153 TopLatency = SU->getDepth(); 2154 DEBUG(dbgs() << " " << Available.getName() 2155 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2156 } 2157 if (SU->getHeight() > BotLatency) { 2158 BotLatency = SU->getHeight(); 2159 DEBUG(dbgs() << " " << Available.getName() 2160 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2161 } 2162 // If we stall for any reason, bump the cycle. 2163 if (NextCycle > CurrCycle) { 2164 bumpCycle(NextCycle); 2165 } 2166 else { 2167 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2168 // resource limited. If a stall occured, bumpCycle does this. 2169 unsigned LFactor = SchedModel->getLatencyFactor(); 2170 IsResourceLimited = 2171 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2172 > (int)LFactor; 2173 } 2174 DEBUG(dumpScheduledState()); 2175 } 2176 2177 /// Release pending ready nodes in to the available queue. This makes them 2178 /// visible to heuristics. 2179 void ConvergingScheduler::SchedBoundary::releasePending() { 2180 // If the available queue is empty, it is safe to reset MinReadyCycle. 2181 if (Available.empty()) 2182 MinReadyCycle = UINT_MAX; 2183 2184 // Check to see if any of the pending instructions are ready to issue. If 2185 // so, add them to the available queue. 2186 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2187 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2188 SUnit *SU = *(Pending.begin()+i); 2189 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2190 2191 if (ReadyCycle < MinReadyCycle) 2192 MinReadyCycle = ReadyCycle; 2193 2194 if (!IsBuffered && ReadyCycle > CurrCycle) 2195 continue; 2196 2197 if (checkHazard(SU)) 2198 continue; 2199 2200 Available.push(SU); 2201 Pending.remove(Pending.begin()+i); 2202 --i; --e; 2203 } 2204 DEBUG(if (!Pending.empty()) Pending.dump()); 2205 CheckPending = false; 2206 } 2207 2208 /// Remove SU from the ready set for this boundary. 2209 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 2210 if (Available.isInQueue(SU)) 2211 Available.remove(Available.find(SU)); 2212 else { 2213 assert(Pending.isInQueue(SU) && "bad ready count"); 2214 Pending.remove(Pending.find(SU)); 2215 } 2216 } 2217 2218 /// If this queue only has one ready candidate, return it. As a side effect, 2219 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2220 /// one node is ready. If multiple instructions are ready, return NULL. 2221 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 2222 if (CheckPending) 2223 releasePending(); 2224 2225 if (CurrMOps > 0) { 2226 // Defer any ready instrs that now have a hazard. 2227 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2228 if (checkHazard(*I)) { 2229 Pending.push(*I); 2230 I = Available.remove(I); 2231 continue; 2232 } 2233 ++I; 2234 } 2235 } 2236 for (unsigned i = 0; Available.empty(); ++i) { 2237 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 2238 "permanent hazard"); (void)i; 2239 bumpCycle(CurrCycle + 1); 2240 releasePending(); 2241 } 2242 if (Available.size() == 1) 2243 return *Available.begin(); 2244 return NULL; 2245 } 2246 2247 #ifndef NDEBUG 2248 // This is useful information to dump after bumpNode. 2249 // Note that the Queue contents are more useful before pickNodeFromQueue. 2250 void ConvergingScheduler::SchedBoundary::dumpScheduledState() { 2251 unsigned ResFactor; 2252 unsigned ResCount; 2253 if (ZoneCritResIdx) { 2254 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2255 ResCount = getResourceCount(ZoneCritResIdx); 2256 } 2257 else { 2258 ResFactor = SchedModel->getMicroOpFactor(); 2259 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2260 } 2261 unsigned LFactor = SchedModel->getLatencyFactor(); 2262 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2263 << " Retired: " << RetiredMOps; 2264 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2265 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2266 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) 2267 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2268 << (IsResourceLimited ? " - Resource" : " - Latency") 2269 << " limited.\n"; 2270 } 2271 #endif 2272 2273 void ConvergingScheduler::SchedCandidate:: 2274 initResourceDelta(const ScheduleDAGMI *DAG, 2275 const TargetSchedModel *SchedModel) { 2276 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2277 return; 2278 2279 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2280 for (TargetSchedModel::ProcResIter 2281 PI = SchedModel->getWriteProcResBegin(SC), 2282 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2283 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2284 ResDelta.CritResources += PI->Cycles; 2285 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2286 ResDelta.DemandedResources += PI->Cycles; 2287 } 2288 } 2289 2290 2291 /// Return true if this heuristic determines order. 2292 static bool tryLess(int TryVal, int CandVal, 2293 ConvergingScheduler::SchedCandidate &TryCand, 2294 ConvergingScheduler::SchedCandidate &Cand, 2295 ConvergingScheduler::CandReason Reason) { 2296 if (TryVal < CandVal) { 2297 TryCand.Reason = Reason; 2298 return true; 2299 } 2300 if (TryVal > CandVal) { 2301 if (Cand.Reason > Reason) 2302 Cand.Reason = Reason; 2303 return true; 2304 } 2305 Cand.setRepeat(Reason); 2306 return false; 2307 } 2308 2309 static bool tryGreater(int TryVal, int CandVal, 2310 ConvergingScheduler::SchedCandidate &TryCand, 2311 ConvergingScheduler::SchedCandidate &Cand, 2312 ConvergingScheduler::CandReason Reason) { 2313 if (TryVal > CandVal) { 2314 TryCand.Reason = Reason; 2315 return true; 2316 } 2317 if (TryVal < CandVal) { 2318 if (Cand.Reason > Reason) 2319 Cand.Reason = Reason; 2320 return true; 2321 } 2322 Cand.setRepeat(Reason); 2323 return false; 2324 } 2325 2326 static bool tryPressure(const PressureChange &TryP, 2327 const PressureChange &CandP, 2328 ConvergingScheduler::SchedCandidate &TryCand, 2329 ConvergingScheduler::SchedCandidate &Cand, 2330 ConvergingScheduler::CandReason Reason) { 2331 int TryRank = TryP.getPSetOrMax(); 2332 int CandRank = CandP.getPSetOrMax(); 2333 // If both candidates affect the same set, go with the smallest increase. 2334 if (TryRank == CandRank) { 2335 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2336 Reason); 2337 } 2338 // If one candidate decreases and the other increases, go with it. 2339 // Invalid candidates have UnitInc==0. 2340 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2341 Reason)) { 2342 return true; 2343 } 2344 // If the candidates are decreasing pressure, reverse priority. 2345 if (TryP.getUnitInc() < 0) 2346 std::swap(TryRank, CandRank); 2347 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2348 } 2349 2350 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2351 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2352 } 2353 2354 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2355 /// their physreg def/use. 2356 /// 2357 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2358 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2359 /// with the operation that produces or consumes the physreg. We'll do this when 2360 /// regalloc has support for parallel copies. 2361 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2362 const MachineInstr *MI = SU->getInstr(); 2363 if (!MI->isCopy()) 2364 return 0; 2365 2366 unsigned ScheduledOper = isTop ? 1 : 0; 2367 unsigned UnscheduledOper = isTop ? 0 : 1; 2368 // If we have already scheduled the physreg produce/consumer, immediately 2369 // schedule the copy. 2370 if (TargetRegisterInfo::isPhysicalRegister( 2371 MI->getOperand(ScheduledOper).getReg())) 2372 return 1; 2373 // If the physreg is at the boundary, defer it. Otherwise schedule it 2374 // immediately to free the dependent. We can hoist the copy later. 2375 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2376 if (TargetRegisterInfo::isPhysicalRegister( 2377 MI->getOperand(UnscheduledOper).getReg())) 2378 return AtBoundary ? -1 : 1; 2379 return 0; 2380 } 2381 2382 static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand, 2383 ConvergingScheduler::SchedCandidate &Cand, 2384 ConvergingScheduler::SchedBoundary &Zone) { 2385 if (Zone.isTop()) { 2386 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2387 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2388 TryCand, Cand, ConvergingScheduler::TopDepthReduce)) 2389 return true; 2390 } 2391 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2392 TryCand, Cand, ConvergingScheduler::TopPathReduce)) 2393 return true; 2394 } 2395 else { 2396 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2397 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2398 TryCand, Cand, ConvergingScheduler::BotHeightReduce)) 2399 return true; 2400 } 2401 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2402 TryCand, Cand, ConvergingScheduler::BotPathReduce)) 2403 return true; 2404 } 2405 return false; 2406 } 2407 2408 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2409 /// hierarchical. This may be more efficient than a graduated cost model because 2410 /// we don't need to evaluate all aspects of the model for each node in the 2411 /// queue. But it's really done to make the heuristics easier to debug and 2412 /// statistically analyze. 2413 /// 2414 /// \param Cand provides the policy and current best candidate. 2415 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2416 /// \param Zone describes the scheduled zone that we are extending. 2417 /// \param RPTracker describes reg pressure within the scheduled zone. 2418 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2419 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 2420 SchedCandidate &TryCand, 2421 SchedBoundary &Zone, 2422 const RegPressureTracker &RPTracker, 2423 RegPressureTracker &TempTracker) { 2424 2425 if (DAG->isTrackingPressure()) { 2426 // Always initialize TryCand's RPDelta. 2427 if (Zone.isTop()) { 2428 TempTracker.getMaxDownwardPressureDelta( 2429 TryCand.SU->getInstr(), 2430 TryCand.RPDelta, 2431 DAG->getRegionCriticalPSets(), 2432 DAG->getRegPressure().MaxSetPressure); 2433 } 2434 else { 2435 if (VerifyScheduling) { 2436 TempTracker.getMaxUpwardPressureDelta( 2437 TryCand.SU->getInstr(), 2438 &DAG->getPressureDiff(TryCand.SU), 2439 TryCand.RPDelta, 2440 DAG->getRegionCriticalPSets(), 2441 DAG->getRegPressure().MaxSetPressure); 2442 } 2443 else { 2444 RPTracker.getUpwardPressureDelta( 2445 TryCand.SU->getInstr(), 2446 DAG->getPressureDiff(TryCand.SU), 2447 TryCand.RPDelta, 2448 DAG->getRegionCriticalPSets(), 2449 DAG->getRegPressure().MaxSetPressure); 2450 } 2451 } 2452 } 2453 2454 // Initialize the candidate if needed. 2455 if (!Cand.isValid()) { 2456 TryCand.Reason = NodeOrder; 2457 return; 2458 } 2459 2460 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2461 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2462 TryCand, Cand, PhysRegCopy)) 2463 return; 2464 2465 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2466 // invalid; convert it to INT_MAX to give it lowest priority. 2467 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2468 Cand.RPDelta.Excess, 2469 TryCand, Cand, RegExcess)) 2470 return; 2471 2472 // Avoid increasing the max critical pressure in the scheduled region. 2473 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2474 Cand.RPDelta.CriticalMax, 2475 TryCand, Cand, RegCritical)) 2476 return; 2477 2478 // For loops that are acyclic path limited, aggressively schedule for latency. 2479 if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) 2480 return; 2481 2482 // Keep clustered nodes together to encourage downstream peephole 2483 // optimizations which may reduce resource requirements. 2484 // 2485 // This is a best effort to set things up for a post-RA pass. Optimizations 2486 // like generating loads of multiple registers should ideally be done within 2487 // the scheduler pass by combining the loads during DAG postprocessing. 2488 const SUnit *NextClusterSU = 2489 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2490 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2491 TryCand, Cand, Cluster)) 2492 return; 2493 2494 // Weak edges are for clustering and other constraints. 2495 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2496 getWeakLeft(Cand.SU, Zone.isTop()), 2497 TryCand, Cand, Weak)) { 2498 return; 2499 } 2500 // Avoid increasing the max pressure of the entire region. 2501 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2502 Cand.RPDelta.CurrentMax, 2503 TryCand, Cand, RegMax)) 2504 return; 2505 2506 // Avoid critical resource consumption and balance the schedule. 2507 TryCand.initResourceDelta(DAG, SchedModel); 2508 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2509 TryCand, Cand, ResourceReduce)) 2510 return; 2511 if (tryGreater(TryCand.ResDelta.DemandedResources, 2512 Cand.ResDelta.DemandedResources, 2513 TryCand, Cand, ResourceDemand)) 2514 return; 2515 2516 // Avoid serializing long latency dependence chains. 2517 // For acyclic path limited loops, latency was already checked above. 2518 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2519 && tryLatency(TryCand, Cand, Zone)) { 2520 return; 2521 } 2522 2523 // Prefer immediate defs/users of the last scheduled instruction. This is a 2524 // local pressure avoidance strategy that also makes the machine code 2525 // readable. 2526 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 2527 TryCand, Cand, NextDefUse)) 2528 return; 2529 2530 // Fall through to original instruction order. 2531 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2532 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2533 TryCand.Reason = NodeOrder; 2534 } 2535 } 2536 2537 #ifndef NDEBUG 2538 const char *ConvergingScheduler::getReasonStr( 2539 ConvergingScheduler::CandReason Reason) { 2540 switch (Reason) { 2541 case NoCand: return "NOCAND "; 2542 case PhysRegCopy: return "PREG-COPY"; 2543 case RegExcess: return "REG-EXCESS"; 2544 case RegCritical: return "REG-CRIT "; 2545 case Cluster: return "CLUSTER "; 2546 case Weak: return "WEAK "; 2547 case RegMax: return "REG-MAX "; 2548 case ResourceReduce: return "RES-REDUCE"; 2549 case ResourceDemand: return "RES-DEMAND"; 2550 case TopDepthReduce: return "TOP-DEPTH "; 2551 case TopPathReduce: return "TOP-PATH "; 2552 case BotHeightReduce:return "BOT-HEIGHT"; 2553 case BotPathReduce: return "BOT-PATH "; 2554 case NextDefUse: return "DEF-USE "; 2555 case NodeOrder: return "ORDER "; 2556 }; 2557 llvm_unreachable("Unknown reason!"); 2558 } 2559 2560 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { 2561 PressureChange P; 2562 unsigned ResIdx = 0; 2563 unsigned Latency = 0; 2564 switch (Cand.Reason) { 2565 default: 2566 break; 2567 case RegExcess: 2568 P = Cand.RPDelta.Excess; 2569 break; 2570 case RegCritical: 2571 P = Cand.RPDelta.CriticalMax; 2572 break; 2573 case RegMax: 2574 P = Cand.RPDelta.CurrentMax; 2575 break; 2576 case ResourceReduce: 2577 ResIdx = Cand.Policy.ReduceResIdx; 2578 break; 2579 case ResourceDemand: 2580 ResIdx = Cand.Policy.DemandResIdx; 2581 break; 2582 case TopDepthReduce: 2583 Latency = Cand.SU->getDepth(); 2584 break; 2585 case TopPathReduce: 2586 Latency = Cand.SU->getHeight(); 2587 break; 2588 case BotHeightReduce: 2589 Latency = Cand.SU->getHeight(); 2590 break; 2591 case BotPathReduce: 2592 Latency = Cand.SU->getDepth(); 2593 break; 2594 } 2595 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2596 if (P.isValid()) 2597 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2598 << ":" << P.getUnitInc() << " "; 2599 else 2600 dbgs() << " "; 2601 if (ResIdx) 2602 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2603 else 2604 dbgs() << " "; 2605 if (Latency) 2606 dbgs() << " " << Latency << " cycles "; 2607 else 2608 dbgs() << " "; 2609 dbgs() << '\n'; 2610 } 2611 #endif 2612 2613 /// Pick the best candidate from the top queue. 2614 /// 2615 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2616 /// DAG building. To adjust for the current scheduling location we need to 2617 /// maintain the number of vreg uses remaining to be top-scheduled. 2618 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2619 const RegPressureTracker &RPTracker, 2620 SchedCandidate &Cand) { 2621 ReadyQueue &Q = Zone.Available; 2622 2623 DEBUG(Q.dump()); 2624 2625 // getMaxPressureDelta temporarily modifies the tracker. 2626 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2627 2628 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2629 2630 SchedCandidate TryCand(Cand.Policy); 2631 TryCand.SU = *I; 2632 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2633 if (TryCand.Reason != NoCand) { 2634 // Initialize resource delta if needed in case future heuristics query it. 2635 if (TryCand.ResDelta == SchedResourceDelta()) 2636 TryCand.initResourceDelta(DAG, SchedModel); 2637 Cand.setBest(TryCand); 2638 DEBUG(traceCandidate(Cand)); 2639 } 2640 } 2641 } 2642 2643 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 2644 bool IsTop) { 2645 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2646 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 2647 } 2648 2649 /// Pick the best candidate node from either the top or bottom queue. 2650 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 2651 // Schedule as far as possible in the direction of no choice. This is most 2652 // efficient, but also provides the best heuristics for CriticalPSets. 2653 if (SUnit *SU = Bot.pickOnlyChoice()) { 2654 IsTopNode = false; 2655 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2656 return SU; 2657 } 2658 if (SUnit *SU = Top.pickOnlyChoice()) { 2659 IsTopNode = true; 2660 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2661 return SU; 2662 } 2663 CandPolicy NoPolicy; 2664 SchedCandidate BotCand(NoPolicy); 2665 SchedCandidate TopCand(NoPolicy); 2666 Bot.setPolicy(BotCand.Policy, Top); 2667 Top.setPolicy(TopCand.Policy, Bot); 2668 2669 // Prefer bottom scheduling when heuristics are silent. 2670 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2671 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2672 2673 // If either Q has a single candidate that provides the least increase in 2674 // Excess pressure, we can immediately schedule from that Q. 2675 // 2676 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2677 // affects picking from either Q. If scheduling in one direction must 2678 // increase pressure for one of the excess PSets, then schedule in that 2679 // direction first to provide more freedom in the other direction. 2680 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2681 || (BotCand.Reason == RegCritical 2682 && !BotCand.isRepeat(RegCritical))) 2683 { 2684 IsTopNode = false; 2685 tracePick(BotCand, IsTopNode); 2686 return BotCand.SU; 2687 } 2688 // Check if the top Q has a better candidate. 2689 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2690 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2691 2692 // Choose the queue with the most important (lowest enum) reason. 2693 if (TopCand.Reason < BotCand.Reason) { 2694 IsTopNode = true; 2695 tracePick(TopCand, IsTopNode); 2696 return TopCand.SU; 2697 } 2698 // Otherwise prefer the bottom candidate, in node order if all else failed. 2699 IsTopNode = false; 2700 tracePick(BotCand, IsTopNode); 2701 return BotCand.SU; 2702 } 2703 2704 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2705 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2706 if (DAG->top() == DAG->bottom()) { 2707 assert(Top.Available.empty() && Top.Pending.empty() && 2708 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2709 return NULL; 2710 } 2711 SUnit *SU; 2712 do { 2713 if (RegionPolicy.OnlyTopDown) { 2714 SU = Top.pickOnlyChoice(); 2715 if (!SU) { 2716 CandPolicy NoPolicy; 2717 SchedCandidate TopCand(NoPolicy); 2718 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2719 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2720 tracePick(TopCand, true); 2721 SU = TopCand.SU; 2722 } 2723 IsTopNode = true; 2724 } 2725 else if (RegionPolicy.OnlyBottomUp) { 2726 SU = Bot.pickOnlyChoice(); 2727 if (!SU) { 2728 CandPolicy NoPolicy; 2729 SchedCandidate BotCand(NoPolicy); 2730 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2731 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2732 tracePick(BotCand, false); 2733 SU = BotCand.SU; 2734 } 2735 IsTopNode = false; 2736 } 2737 else { 2738 SU = pickNodeBidirectional(IsTopNode); 2739 } 2740 } while (SU->isScheduled); 2741 2742 if (SU->isTopReady()) 2743 Top.removeReady(SU); 2744 if (SU->isBottomReady()) 2745 Bot.removeReady(SU); 2746 2747 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2748 return SU; 2749 } 2750 2751 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2752 2753 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2754 if (!isTop) 2755 ++InsertPos; 2756 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2757 2758 // Find already scheduled copies with a single physreg dependence and move 2759 // them just above the scheduled instruction. 2760 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2761 I != E; ++I) { 2762 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2763 continue; 2764 SUnit *DepSU = I->getSUnit(); 2765 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2766 continue; 2767 MachineInstr *Copy = DepSU->getInstr(); 2768 if (!Copy->isCopy()) 2769 continue; 2770 DEBUG(dbgs() << " Rescheduling physreg copy "; 2771 I->getSUnit()->dump(DAG)); 2772 DAG->moveInstruction(Copy, InsertPos); 2773 } 2774 } 2775 2776 /// Update the scheduler's state after scheduling a node. This is the same node 2777 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2778 /// it's state based on the current cycle before MachineSchedStrategy does. 2779 /// 2780 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2781 /// them here. See comments in biasPhysRegCopy. 2782 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2783 if (IsTopNode) { 2784 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); 2785 Top.bumpNode(SU); 2786 if (SU->hasPhysRegUses) 2787 reschedulePhysRegCopies(SU, true); 2788 } 2789 else { 2790 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); 2791 Bot.bumpNode(SU); 2792 if (SU->hasPhysRegDefs) 2793 reschedulePhysRegCopies(SU, false); 2794 } 2795 } 2796 2797 /// Create the standard converging machine scheduler. This will be used as the 2798 /// default scheduler if the target does not set a default. 2799 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2800 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler(C)); 2801 // Register DAG post-processors. 2802 // 2803 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2804 // data and pass it to later mutations. Have a single mutation that gathers 2805 // the interesting nodes in one pass. 2806 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 2807 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2808 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2809 if (EnableMacroFusion) 2810 DAG->addMutation(new MacroFusion(DAG->TII)); 2811 return DAG; 2812 } 2813 static MachineSchedRegistry 2814 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2815 createConvergingSched); 2816 2817 //===----------------------------------------------------------------------===// 2818 // ILP Scheduler. Currently for experimental analysis of heuristics. 2819 //===----------------------------------------------------------------------===// 2820 2821 namespace { 2822 /// \brief Order nodes by the ILP metric. 2823 struct ILPOrder { 2824 const SchedDFSResult *DFSResult; 2825 const BitVector *ScheduledTrees; 2826 bool MaximizeILP; 2827 2828 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2829 2830 /// \brief Apply a less-than relation on node priority. 2831 /// 2832 /// (Return true if A comes after B in the Q.) 2833 bool operator()(const SUnit *A, const SUnit *B) const { 2834 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2835 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2836 if (SchedTreeA != SchedTreeB) { 2837 // Unscheduled trees have lower priority. 2838 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2839 return ScheduledTrees->test(SchedTreeB); 2840 2841 // Trees with shallower connections have have lower priority. 2842 if (DFSResult->getSubtreeLevel(SchedTreeA) 2843 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2844 return DFSResult->getSubtreeLevel(SchedTreeA) 2845 < DFSResult->getSubtreeLevel(SchedTreeB); 2846 } 2847 } 2848 if (MaximizeILP) 2849 return DFSResult->getILP(A) < DFSResult->getILP(B); 2850 else 2851 return DFSResult->getILP(A) > DFSResult->getILP(B); 2852 } 2853 }; 2854 2855 /// \brief Schedule based on the ILP metric. 2856 class ILPScheduler : public MachineSchedStrategy { 2857 ScheduleDAGMI *DAG; 2858 ILPOrder Cmp; 2859 2860 std::vector<SUnit*> ReadyQ; 2861 public: 2862 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2863 2864 virtual void initialize(ScheduleDAGMI *dag) { 2865 DAG = dag; 2866 DAG->computeDFSResult(); 2867 Cmp.DFSResult = DAG->getDFSResult(); 2868 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2869 ReadyQ.clear(); 2870 } 2871 2872 virtual void registerRoots() { 2873 // Restore the heap in ReadyQ with the updated DFS results. 2874 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2875 } 2876 2877 /// Implement MachineSchedStrategy interface. 2878 /// ----------------------------------------- 2879 2880 /// Callback to select the highest priority node from the ready Q. 2881 virtual SUnit *pickNode(bool &IsTopNode) { 2882 if (ReadyQ.empty()) return NULL; 2883 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2884 SUnit *SU = ReadyQ.back(); 2885 ReadyQ.pop_back(); 2886 IsTopNode = false; 2887 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 2888 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2889 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2890 << DAG->getDFSResult()->getSubtreeLevel( 2891 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 2892 << "Scheduling " << *SU->getInstr()); 2893 return SU; 2894 } 2895 2896 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2897 virtual void scheduleTree(unsigned SubtreeID) { 2898 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2899 } 2900 2901 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2902 /// DFSResults, and resort the priority Q. 2903 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2904 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2905 } 2906 2907 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2908 2909 virtual void releaseBottomNode(SUnit *SU) { 2910 ReadyQ.push_back(SU); 2911 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2912 } 2913 }; 2914 } // namespace 2915 2916 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2917 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2918 } 2919 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2920 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2921 } 2922 static MachineSchedRegistry ILPMaxRegistry( 2923 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2924 static MachineSchedRegistry ILPMinRegistry( 2925 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2926 2927 //===----------------------------------------------------------------------===// 2928 // Machine Instruction Shuffler for Correctness Testing 2929 //===----------------------------------------------------------------------===// 2930 2931 #ifndef NDEBUG 2932 namespace { 2933 /// Apply a less-than relation on the node order, which corresponds to the 2934 /// instruction order prior to scheduling. IsReverse implements greater-than. 2935 template<bool IsReverse> 2936 struct SUnitOrder { 2937 bool operator()(SUnit *A, SUnit *B) const { 2938 if (IsReverse) 2939 return A->NodeNum > B->NodeNum; 2940 else 2941 return A->NodeNum < B->NodeNum; 2942 } 2943 }; 2944 2945 /// Reorder instructions as much as possible. 2946 class InstructionShuffler : public MachineSchedStrategy { 2947 bool IsAlternating; 2948 bool IsTopDown; 2949 2950 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2951 // gives nodes with a higher number higher priority causing the latest 2952 // instructions to be scheduled first. 2953 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2954 TopQ; 2955 // When scheduling bottom-up, use greater-than as the queue priority. 2956 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2957 BottomQ; 2958 public: 2959 InstructionShuffler(bool alternate, bool topdown) 2960 : IsAlternating(alternate), IsTopDown(topdown) {} 2961 2962 virtual void initialize(ScheduleDAGMI *) { 2963 TopQ.clear(); 2964 BottomQ.clear(); 2965 } 2966 2967 /// Implement MachineSchedStrategy interface. 2968 /// ----------------------------------------- 2969 2970 virtual SUnit *pickNode(bool &IsTopNode) { 2971 SUnit *SU; 2972 if (IsTopDown) { 2973 do { 2974 if (TopQ.empty()) return NULL; 2975 SU = TopQ.top(); 2976 TopQ.pop(); 2977 } while (SU->isScheduled); 2978 IsTopNode = true; 2979 } 2980 else { 2981 do { 2982 if (BottomQ.empty()) return NULL; 2983 SU = BottomQ.top(); 2984 BottomQ.pop(); 2985 } while (SU->isScheduled); 2986 IsTopNode = false; 2987 } 2988 if (IsAlternating) 2989 IsTopDown = !IsTopDown; 2990 return SU; 2991 } 2992 2993 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2994 2995 virtual void releaseTopNode(SUnit *SU) { 2996 TopQ.push(SU); 2997 } 2998 virtual void releaseBottomNode(SUnit *SU) { 2999 BottomQ.push(SU); 3000 } 3001 }; 3002 } // namespace 3003 3004 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3005 bool Alternate = !ForceTopDown && !ForceBottomUp; 3006 bool TopDown = !ForceBottomUp; 3007 assert((TopDown || !ForceTopDown) && 3008 "-misched-topdown incompatible with -misched-bottomup"); 3009 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 3010 } 3011 static MachineSchedRegistry ShufflerRegistry( 3012 "shuffle", "Shuffle machine instructions alternating directions", 3013 createInstructionShuffler); 3014 #endif // !NDEBUG 3015 3016 //===----------------------------------------------------------------------===// 3017 // GraphWriter support for ScheduleDAGMI. 3018 //===----------------------------------------------------------------------===// 3019 3020 #ifndef NDEBUG 3021 namespace llvm { 3022 3023 template<> struct GraphTraits< 3024 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3025 3026 template<> 3027 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3028 3029 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3030 3031 static std::string getGraphName(const ScheduleDAG *G) { 3032 return G->MF.getName(); 3033 } 3034 3035 static bool renderGraphFromBottomUp() { 3036 return true; 3037 } 3038 3039 static bool isNodeHidden(const SUnit *Node) { 3040 return (Node->Preds.size() > 10 || Node->Succs.size() > 10); 3041 } 3042 3043 static bool hasNodeAddressLabel(const SUnit *Node, 3044 const ScheduleDAG *Graph) { 3045 return false; 3046 } 3047 3048 /// If you want to override the dot attributes printed for a particular 3049 /// edge, override this method. 3050 static std::string getEdgeAttributes(const SUnit *Node, 3051 SUnitIterator EI, 3052 const ScheduleDAG *Graph) { 3053 if (EI.isArtificialDep()) 3054 return "color=cyan,style=dashed"; 3055 if (EI.isCtrlDep()) 3056 return "color=blue,style=dashed"; 3057 return ""; 3058 } 3059 3060 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3061 std::string Str; 3062 raw_string_ostream SS(Str); 3063 SS << "SU(" << SU->NodeNum << ')'; 3064 return SS.str(); 3065 } 3066 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3067 return G->getGraphNodeLabel(SU); 3068 } 3069 3070 static std::string getNodeAttributes(const SUnit *N, 3071 const ScheduleDAG *Graph) { 3072 std::string Str("shape=Mrecord"); 3073 const SchedDFSResult *DFS = 3074 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 3075 if (DFS) { 3076 Str += ",style=filled,fillcolor=\"#"; 3077 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3078 Str += '"'; 3079 } 3080 return Str; 3081 } 3082 }; 3083 } // namespace llvm 3084 #endif // NDEBUG 3085 3086 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3087 /// rendered using 'dot'. 3088 /// 3089 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3090 #ifndef NDEBUG 3091 ViewGraph(this, Name, false, Title); 3092 #else 3093 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3094 << "systems with Graphviz or gv!\n"; 3095 #endif // NDEBUG 3096 } 3097 3098 /// Out-of-line implementation with no arguments is handy for gdb. 3099 void ScheduleDAGMI::viewGraph() { 3100 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3101 } 3102