xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision d65438d0ca7cf1e03a27767dbf2e455ac0b9b154)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/RegisterPressure.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
41 #include "llvm/CodeGen/ScheduleDAGMutation.h"
42 #include "llvm/CodeGen/ScheduleDFS.h"
43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
44 #include "llvm/CodeGen/SlotIndexes.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <tuple>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "machine-scheduler"
73 
74 namespace llvm {
75 
76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
77                            cl::desc("Force top-down list scheduling"));
78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
79                             cl::desc("Force bottom-up list scheduling"));
80 cl::opt<bool>
81 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
82                        cl::desc("Print critical path length to stdout"));
83 
84 } // end namespace llvm
85 
86 #ifndef NDEBUG
87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
88   cl::desc("Pop up a window to show MISched dags after they are processed"));
89 
90 /// In some situations a few uninteresting nodes depend on nearly all other
91 /// nodes in the graph, provide a cutoff to hide them.
92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
93   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
94 
95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
96   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
97 
98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
99   cl::desc("Only schedule this function"));
100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
101                                         cl::desc("Only schedule this MBB#"));
102 #else
103 static bool ViewMISchedDAGs = false;
104 #endif // NDEBUG
105 
106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
107 /// size of the ready lists.
108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
109   cl::desc("Limit ready list to N instructions"), cl::init(256));
110 
111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
112   cl::desc("Enable register pressure scheduling."), cl::init(true));
113 
114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
115   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
116 
117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
118                                         cl::desc("Enable memop clustering."),
119                                         cl::init(true));
120 
121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
122   cl::desc("Verify machine instrs before and after machine scheduling"));
123 
124 // DAG subtrees must have at least this many nodes.
125 static const unsigned MinSubtreeSize = 8;
126 
127 // Pin the vtables to this file.
128 void MachineSchedStrategy::anchor() {}
129 
130 void ScheduleDAGMutation::anchor() {}
131 
132 //===----------------------------------------------------------------------===//
133 // Machine Instruction Scheduling Pass and Registry
134 //===----------------------------------------------------------------------===//
135 
136 MachineSchedContext::MachineSchedContext() {
137   RegClassInfo = new RegisterClassInfo();
138 }
139 
140 MachineSchedContext::~MachineSchedContext() {
141   delete RegClassInfo;
142 }
143 
144 namespace {
145 
146 /// Base class for a machine scheduler class that can run at any point.
147 class MachineSchedulerBase : public MachineSchedContext,
148                              public MachineFunctionPass {
149 public:
150   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
151 
152   void print(raw_ostream &O, const Module* = nullptr) const override;
153 
154 protected:
155   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
156 };
157 
158 /// MachineScheduler runs after coalescing and before register allocation.
159 class MachineScheduler : public MachineSchedulerBase {
160 public:
161   MachineScheduler();
162 
163   void getAnalysisUsage(AnalysisUsage &AU) const override;
164 
165   bool runOnMachineFunction(MachineFunction&) override;
166 
167   static char ID; // Class identification, replacement for typeinfo
168 
169 protected:
170   ScheduleDAGInstrs *createMachineScheduler();
171 };
172 
173 /// PostMachineScheduler runs after shortly before code emission.
174 class PostMachineScheduler : public MachineSchedulerBase {
175 public:
176   PostMachineScheduler();
177 
178   void getAnalysisUsage(AnalysisUsage &AU) const override;
179 
180   bool runOnMachineFunction(MachineFunction&) override;
181 
182   static char ID; // Class identification, replacement for typeinfo
183 
184 protected:
185   ScheduleDAGInstrs *createPostMachineScheduler();
186 };
187 
188 } // end anonymous namespace
189 
190 char MachineScheduler::ID = 0;
191 
192 char &llvm::MachineSchedulerID = MachineScheduler::ID;
193 
194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
195                       "Machine Instruction Scheduler", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
201                     "Machine Instruction Scheduler", false, false)
202 
203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
204   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
205 }
206 
207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
208   AU.setPreservesCFG();
209   AU.addRequiredID(MachineDominatorsID);
210   AU.addRequired<MachineLoopInfo>();
211   AU.addRequired<AAResultsWrapperPass>();
212   AU.addRequired<TargetPassConfig>();
213   AU.addRequired<SlotIndexes>();
214   AU.addPreserved<SlotIndexes>();
215   AU.addRequired<LiveIntervals>();
216   AU.addPreserved<LiveIntervals>();
217   MachineFunctionPass::getAnalysisUsage(AU);
218 }
219 
220 char PostMachineScheduler::ID = 0;
221 
222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
223 
224 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
225                 "PostRA Machine Instruction Scheduler", false, false)
226 
227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
228   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
229 }
230 
231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesCFG();
233   AU.addRequiredID(MachineDominatorsID);
234   AU.addRequired<MachineLoopInfo>();
235   AU.addRequired<TargetPassConfig>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 MachinePassRegistry MachineSchedRegistry::Registry;
240 
241 /// A dummy default scheduler factory indicates whether the scheduler
242 /// is overridden on the command line.
243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
244   return nullptr;
245 }
246 
247 /// MachineSchedOpt allows command line selection of the scheduler.
248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
249                RegisterPassParser<MachineSchedRegistry>>
250 MachineSchedOpt("misched",
251                 cl::init(&useDefaultMachineSched), cl::Hidden,
252                 cl::desc("Machine instruction scheduler to use"));
253 
254 static MachineSchedRegistry
255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
256                      useDefaultMachineSched);
257 
258 static cl::opt<bool> EnableMachineSched(
259     "enable-misched",
260     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
261     cl::Hidden);
262 
263 static cl::opt<bool> EnablePostRAMachineSched(
264     "enable-post-misched",
265     cl::desc("Enable the post-ra machine instruction scheduling pass."),
266     cl::init(true), cl::Hidden);
267 
268 /// Decrement this iterator until reaching the top or a non-debug instr.
269 static MachineBasicBlock::const_iterator
270 priorNonDebug(MachineBasicBlock::const_iterator I,
271               MachineBasicBlock::const_iterator Beg) {
272   assert(I != Beg && "reached the top of the region, cannot decrement");
273   while (--I != Beg) {
274     if (!I->isDebugValue())
275       break;
276   }
277   return I;
278 }
279 
280 /// Non-const version.
281 static MachineBasicBlock::iterator
282 priorNonDebug(MachineBasicBlock::iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
285       .getNonConstIterator();
286 }
287 
288 /// If this iterator is a debug value, increment until reaching the End or a
289 /// non-debug instruction.
290 static MachineBasicBlock::const_iterator
291 nextIfDebug(MachineBasicBlock::const_iterator I,
292             MachineBasicBlock::const_iterator End) {
293   for(; I != End; ++I) {
294     if (!I->isDebugValue())
295       break;
296   }
297   return I;
298 }
299 
300 /// Non-const version.
301 static MachineBasicBlock::iterator
302 nextIfDebug(MachineBasicBlock::iterator I,
303             MachineBasicBlock::const_iterator End) {
304   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
305       .getNonConstIterator();
306 }
307 
308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
310   // Select the scheduler, or set the default.
311   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
312   if (Ctor != useDefaultMachineSched)
313     return Ctor(this);
314 
315   // Get the default scheduler set by the target for this function.
316   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
317   if (Scheduler)
318     return Scheduler;
319 
320   // Default to GenericScheduler.
321   return createGenericSchedLive(this);
322 }
323 
324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
325 /// the caller. We don't have a command line option to override the postRA
326 /// scheduler. The Target must configure it.
327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
328   // Get the postRA scheduler set by the target for this function.
329   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
330   if (Scheduler)
331     return Scheduler;
332 
333   // Default to GenericScheduler.
334   return createGenericSchedPostRA(this);
335 }
336 
337 /// Top-level MachineScheduler pass driver.
338 ///
339 /// Visit blocks in function order. Divide each block into scheduling regions
340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
341 /// consistent with the DAG builder, which traverses the interior of the
342 /// scheduling regions bottom-up.
343 ///
344 /// This design avoids exposing scheduling boundaries to the DAG builder,
345 /// simplifying the DAG builder's support for "special" target instructions.
346 /// At the same time the design allows target schedulers to operate across
347 /// scheduling boundaries, for example to bundle the boudary instructions
348 /// without reordering them. This creates complexity, because the target
349 /// scheduler must update the RegionBegin and RegionEnd positions cached by
350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
351 /// design would be to split blocks at scheduling boundaries, but LLVM has a
352 /// general bias against block splitting purely for implementation simplicity.
353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
354   if (skipFunction(mf.getFunction()))
355     return false;
356 
357   if (EnableMachineSched.getNumOccurrences()) {
358     if (!EnableMachineSched)
359       return false;
360   } else if (!mf.getSubtarget().enableMachineScheduler())
361     return false;
362 
363   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
364 
365   // Initialize the context of the pass.
366   MF = &mf;
367   MLI = &getAnalysis<MachineLoopInfo>();
368   MDT = &getAnalysis<MachineDominatorTree>();
369   PassConfig = &getAnalysis<TargetPassConfig>();
370   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
371 
372   LIS = &getAnalysis<LiveIntervals>();
373 
374   if (VerifyScheduling) {
375     DEBUG(LIS->dump());
376     MF->verify(this, "Before machine scheduling.");
377   }
378   RegClassInfo->runOnMachineFunction(*MF);
379 
380   // Instantiate the selected scheduler for this target, function, and
381   // optimization level.
382   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
383   scheduleRegions(*Scheduler, false);
384 
385   DEBUG(LIS->dump());
386   if (VerifyScheduling)
387     MF->verify(this, "After machine scheduling.");
388   return true;
389 }
390 
391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
392   if (skipFunction(mf.getFunction()))
393     return false;
394 
395   if (EnablePostRAMachineSched.getNumOccurrences()) {
396     if (!EnablePostRAMachineSched)
397       return false;
398   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
399     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
400     return false;
401   }
402   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
403 
404   // Initialize the context of the pass.
405   MF = &mf;
406   MLI = &getAnalysis<MachineLoopInfo>();
407   PassConfig = &getAnalysis<TargetPassConfig>();
408 
409   if (VerifyScheduling)
410     MF->verify(this, "Before post machine scheduling.");
411 
412   // Instantiate the selected scheduler for this target, function, and
413   // optimization level.
414   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
415   scheduleRegions(*Scheduler, true);
416 
417   if (VerifyScheduling)
418     MF->verify(this, "After post machine scheduling.");
419   return true;
420 }
421 
422 /// Return true of the given instruction should not be included in a scheduling
423 /// region.
424 ///
425 /// MachineScheduler does not currently support scheduling across calls. To
426 /// handle calls, the DAG builder needs to be modified to create register
427 /// anti/output dependencies on the registers clobbered by the call's regmask
428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
430 /// the boundary, but there would be no benefit to postRA scheduling across
431 /// calls this late anyway.
432 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
433                             MachineBasicBlock *MBB,
434                             MachineFunction *MF,
435                             const TargetInstrInfo *TII) {
436   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
437 }
438 
439 /// A region of an MBB for scheduling.
440 namespace {
441 struct SchedRegion {
442   /// RegionBegin is the first instruction in the scheduling region, and
443   /// RegionEnd is either MBB->end() or the scheduling boundary after the
444   /// last instruction in the scheduling region. These iterators cannot refer
445   /// to instructions outside of the identified scheduling region because
446   /// those may be reordered before scheduling this region.
447   MachineBasicBlock::iterator RegionBegin;
448   MachineBasicBlock::iterator RegionEnd;
449   unsigned NumRegionInstrs;
450 
451   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
452               unsigned N) :
453     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
454 };
455 } // end anonymous namespace
456 
457 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
458 
459 static void
460 getSchedRegions(MachineBasicBlock *MBB,
461                 MBBRegionsVector &Regions,
462                 bool RegionsTopDown) {
463   MachineFunction *MF = MBB->getParent();
464   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
465 
466   MachineBasicBlock::iterator I = nullptr;
467   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
468       RegionEnd != MBB->begin(); RegionEnd = I) {
469 
470     // Avoid decrementing RegionEnd for blocks with no terminator.
471     if (RegionEnd != MBB->end() ||
472         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
473       --RegionEnd;
474     }
475 
476     // The next region starts above the previous region. Look backward in the
477     // instruction stream until we find the nearest boundary.
478     unsigned NumRegionInstrs = 0;
479     I = RegionEnd;
480     for (;I != MBB->begin(); --I) {
481       MachineInstr &MI = *std::prev(I);
482       if (isSchedBoundary(&MI, &*MBB, MF, TII))
483         break;
484       if (!MI.isDebugValue())
485         // MBB::size() uses instr_iterator to count. Here we need a bundle to
486         // count as a single instruction.
487         ++NumRegionInstrs;
488     }
489 
490     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
491   }
492 
493   if (RegionsTopDown)
494     std::reverse(Regions.begin(), Regions.end());
495 }
496 
497 /// Main driver for both MachineScheduler and PostMachineScheduler.
498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
499                                            bool FixKillFlags) {
500   // Visit all machine basic blocks.
501   //
502   // TODO: Visit blocks in global postorder or postorder within the bottom-up
503   // loop tree. Then we can optionally compute global RegPressure.
504   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
505        MBB != MBBEnd; ++MBB) {
506 
507     Scheduler.startBlock(&*MBB);
508 
509 #ifndef NDEBUG
510     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
511       continue;
512     if (SchedOnlyBlock.getNumOccurrences()
513         && (int)SchedOnlyBlock != MBB->getNumber())
514       continue;
515 #endif
516 
517     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
518     // points to the scheduling boundary at the bottom of the region. The DAG
519     // does not include RegionEnd, but the region does (i.e. the next
520     // RegionEnd is above the previous RegionBegin). If the current block has
521     // no terminator then RegionEnd == MBB->end() for the bottom region.
522     //
523     // All the regions of MBB are first found and stored in MBBRegions, which
524     // will be processed (MBB) top-down if initialized with true.
525     //
526     // The Scheduler may insert instructions during either schedule() or
527     // exitRegion(), even for empty regions. So the local iterators 'I' and
528     // 'RegionEnd' are invalid across these calls. Instructions must not be
529     // added to other regions than the current one without updating MBBRegions.
530 
531     MBBRegionsVector MBBRegions;
532     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
533     for (MBBRegionsVector::iterator R = MBBRegions.begin();
534          R != MBBRegions.end(); ++R) {
535       MachineBasicBlock::iterator I = R->RegionBegin;
536       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
537       unsigned NumRegionInstrs = R->NumRegionInstrs;
538 
539       // Notify the scheduler of the region, even if we may skip scheduling
540       // it. Perhaps it still needs to be bundled.
541       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
542 
543       // Skip empty scheduling regions (0 or 1 schedulable instructions).
544       if (I == RegionEnd || I == std::prev(RegionEnd)) {
545         // Close the current region. Bundle the terminator if needed.
546         // This invalidates 'RegionEnd' and 'I'.
547         Scheduler.exitRegion();
548         continue;
549       }
550       DEBUG(dbgs() << "********** MI Scheduling **********\n");
551       DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " "
552                    << MBB->getName() << "\n  From: " << *I << '\n'
553                    << "    To: ";
554             if (RegionEnd != MBB->end()) {
555               dbgs() << *RegionEnd << '\n';
556             } else {
557               dbgs() << "End";
558             }
559             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
560       if (DumpCriticalPathLength) {
561         errs() << MF->getName();
562         errs() << ":%bb. " << MBB->getNumber();
563         errs() << " " << MBB->getName() << " \n";
564       }
565 
566       // Schedule a region: possibly reorder instructions.
567       // This invalidates the original region iterators.
568       Scheduler.schedule();
569 
570       // Close the current region.
571       Scheduler.exitRegion();
572     }
573     Scheduler.finishBlock();
574     // FIXME: Ideally, no further passes should rely on kill flags. However,
575     // thumb2 size reduction is currently an exception, so the PostMIScheduler
576     // needs to do this.
577     if (FixKillFlags)
578       Scheduler.fixupKills(*MBB);
579   }
580   Scheduler.finalizeSchedule();
581 }
582 
583 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
584   // unimplemented
585 }
586 
587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
588 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
589   dbgs() << "Queue " << Name << ": ";
590   for (const SUnit *SU : Queue)
591     dbgs() << SU->NodeNum << " ";
592   dbgs() << "\n";
593 }
594 #endif
595 
596 //===----------------------------------------------------------------------===//
597 // ScheduleDAGMI - Basic machine instruction scheduling. This is
598 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
599 // virtual registers.
600 // ===----------------------------------------------------------------------===/
601 
602 // Provide a vtable anchor.
603 ScheduleDAGMI::~ScheduleDAGMI() = default;
604 
605 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
606   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
607 }
608 
609 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
610   if (SuccSU != &ExitSU) {
611     // Do not use WillCreateCycle, it assumes SD scheduling.
612     // If Pred is reachable from Succ, then the edge creates a cycle.
613     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
614       return false;
615     Topo.AddPred(SuccSU, PredDep.getSUnit());
616   }
617   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
618   // Return true regardless of whether a new edge needed to be inserted.
619   return true;
620 }
621 
622 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
623 /// NumPredsLeft reaches zero, release the successor node.
624 ///
625 /// FIXME: Adjust SuccSU height based on MinLatency.
626 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
627   SUnit *SuccSU = SuccEdge->getSUnit();
628 
629   if (SuccEdge->isWeak()) {
630     --SuccSU->WeakPredsLeft;
631     if (SuccEdge->isCluster())
632       NextClusterSucc = SuccSU;
633     return;
634   }
635 #ifndef NDEBUG
636   if (SuccSU->NumPredsLeft == 0) {
637     dbgs() << "*** Scheduling failed! ***\n";
638     SuccSU->dump(this);
639     dbgs() << " has been released too many times!\n";
640     llvm_unreachable(nullptr);
641   }
642 #endif
643   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
644   // CurrCycle may have advanced since then.
645   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
646     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
647 
648   --SuccSU->NumPredsLeft;
649   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
650     SchedImpl->releaseTopNode(SuccSU);
651 }
652 
653 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
654 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
655   for (SDep &Succ : SU->Succs)
656     releaseSucc(SU, &Succ);
657 }
658 
659 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
660 /// NumSuccsLeft reaches zero, release the predecessor node.
661 ///
662 /// FIXME: Adjust PredSU height based on MinLatency.
663 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
664   SUnit *PredSU = PredEdge->getSUnit();
665 
666   if (PredEdge->isWeak()) {
667     --PredSU->WeakSuccsLeft;
668     if (PredEdge->isCluster())
669       NextClusterPred = PredSU;
670     return;
671   }
672 #ifndef NDEBUG
673   if (PredSU->NumSuccsLeft == 0) {
674     dbgs() << "*** Scheduling failed! ***\n";
675     PredSU->dump(this);
676     dbgs() << " has been released too many times!\n";
677     llvm_unreachable(nullptr);
678   }
679 #endif
680   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
681   // CurrCycle may have advanced since then.
682   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
683     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
684 
685   --PredSU->NumSuccsLeft;
686   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
687     SchedImpl->releaseBottomNode(PredSU);
688 }
689 
690 /// releasePredecessors - Call releasePred on each of SU's predecessors.
691 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
692   for (SDep &Pred : SU->Preds)
693     releasePred(SU, &Pred);
694 }
695 
696 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
697   ScheduleDAGInstrs::startBlock(bb);
698   SchedImpl->enterMBB(bb);
699 }
700 
701 void ScheduleDAGMI::finishBlock() {
702   SchedImpl->leaveMBB();
703   ScheduleDAGInstrs::finishBlock();
704 }
705 
706 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
707 /// crossing a scheduling boundary. [begin, end) includes all instructions in
708 /// the region, including the boundary itself and single-instruction regions
709 /// that don't get scheduled.
710 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
711                                      MachineBasicBlock::iterator begin,
712                                      MachineBasicBlock::iterator end,
713                                      unsigned regioninstrs)
714 {
715   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
716 
717   SchedImpl->initPolicy(begin, end, regioninstrs);
718 }
719 
720 /// This is normally called from the main scheduler loop but may also be invoked
721 /// by the scheduling strategy to perform additional code motion.
722 void ScheduleDAGMI::moveInstruction(
723   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
724   // Advance RegionBegin if the first instruction moves down.
725   if (&*RegionBegin == MI)
726     ++RegionBegin;
727 
728   // Update the instruction stream.
729   BB->splice(InsertPos, BB, MI);
730 
731   // Update LiveIntervals
732   if (LIS)
733     LIS->handleMove(*MI, /*UpdateFlags=*/true);
734 
735   // Recede RegionBegin if an instruction moves above the first.
736   if (RegionBegin == InsertPos)
737     RegionBegin = MI;
738 }
739 
740 bool ScheduleDAGMI::checkSchedLimit() {
741 #ifndef NDEBUG
742   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
743     CurrentTop = CurrentBottom;
744     return false;
745   }
746   ++NumInstrsScheduled;
747 #endif
748   return true;
749 }
750 
751 /// Per-region scheduling driver, called back from
752 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
753 /// does not consider liveness or register pressure. It is useful for PostRA
754 /// scheduling and potentially other custom schedulers.
755 void ScheduleDAGMI::schedule() {
756   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
757   DEBUG(SchedImpl->dumpPolicy());
758 
759   // Build the DAG.
760   buildSchedGraph(AA);
761 
762   Topo.InitDAGTopologicalSorting();
763 
764   postprocessDAG();
765 
766   SmallVector<SUnit*, 8> TopRoots, BotRoots;
767   findRootsAndBiasEdges(TopRoots, BotRoots);
768 
769   // Initialize the strategy before modifying the DAG.
770   // This may initialize a DFSResult to be used for queue priority.
771   SchedImpl->initialize(this);
772 
773   DEBUG(
774     if (EntrySU.getInstr() != nullptr)
775       EntrySU.dumpAll(this);
776     for (const SUnit &SU : SUnits)
777       SU.dumpAll(this);
778     if (ExitSU.getInstr() != nullptr)
779       ExitSU.dumpAll(this);
780   );
781   if (ViewMISchedDAGs) viewGraph();
782 
783   // Initialize ready queues now that the DAG and priority data are finalized.
784   initQueues(TopRoots, BotRoots);
785 
786   bool IsTopNode = false;
787   while (true) {
788     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
789     SUnit *SU = SchedImpl->pickNode(IsTopNode);
790     if (!SU) break;
791 
792     assert(!SU->isScheduled && "Node already scheduled");
793     if (!checkSchedLimit())
794       break;
795 
796     MachineInstr *MI = SU->getInstr();
797     if (IsTopNode) {
798       assert(SU->isTopReady() && "node still has unscheduled dependencies");
799       if (&*CurrentTop == MI)
800         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
801       else
802         moveInstruction(MI, CurrentTop);
803     } else {
804       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
805       MachineBasicBlock::iterator priorII =
806         priorNonDebug(CurrentBottom, CurrentTop);
807       if (&*priorII == MI)
808         CurrentBottom = priorII;
809       else {
810         if (&*CurrentTop == MI)
811           CurrentTop = nextIfDebug(++CurrentTop, priorII);
812         moveInstruction(MI, CurrentBottom);
813         CurrentBottom = MI;
814       }
815     }
816     // Notify the scheduling strategy before updating the DAG.
817     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
818     // runs, it can then use the accurate ReadyCycle time to determine whether
819     // newly released nodes can move to the readyQ.
820     SchedImpl->schedNode(SU, IsTopNode);
821 
822     updateQueues(SU, IsTopNode);
823   }
824   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
825 
826   placeDebugValues();
827 
828   DEBUG({
829     dbgs() << "*** Final schedule for "
830            << printMBBReference(*begin()->getParent()) << " ***\n";
831     dumpSchedule();
832     dbgs() << '\n';
833   });
834 }
835 
836 /// Apply each ScheduleDAGMutation step in order.
837 void ScheduleDAGMI::postprocessDAG() {
838   for (auto &m : Mutations)
839     m->apply(this);
840 }
841 
842 void ScheduleDAGMI::
843 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
844                       SmallVectorImpl<SUnit*> &BotRoots) {
845   for (SUnit &SU : SUnits) {
846     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
847 
848     // Order predecessors so DFSResult follows the critical path.
849     SU.biasCriticalPath();
850 
851     // A SUnit is ready to top schedule if it has no predecessors.
852     if (!SU.NumPredsLeft)
853       TopRoots.push_back(&SU);
854     // A SUnit is ready to bottom schedule if it has no successors.
855     if (!SU.NumSuccsLeft)
856       BotRoots.push_back(&SU);
857   }
858   ExitSU.biasCriticalPath();
859 }
860 
861 /// Identify DAG roots and setup scheduler queues.
862 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
863                                ArrayRef<SUnit*> BotRoots) {
864   NextClusterSucc = nullptr;
865   NextClusterPred = nullptr;
866 
867   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
868   //
869   // Nodes with unreleased weak edges can still be roots.
870   // Release top roots in forward order.
871   for (SUnit *SU : TopRoots)
872     SchedImpl->releaseTopNode(SU);
873 
874   // Release bottom roots in reverse order so the higher priority nodes appear
875   // first. This is more natural and slightly more efficient.
876   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
877          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
878     SchedImpl->releaseBottomNode(*I);
879   }
880 
881   releaseSuccessors(&EntrySU);
882   releasePredecessors(&ExitSU);
883 
884   SchedImpl->registerRoots();
885 
886   // Advance past initial DebugValues.
887   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
888   CurrentBottom = RegionEnd;
889 }
890 
891 /// Update scheduler queues after scheduling an instruction.
892 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
893   // Release dependent instructions for scheduling.
894   if (IsTopNode)
895     releaseSuccessors(SU);
896   else
897     releasePredecessors(SU);
898 
899   SU->isScheduled = true;
900 }
901 
902 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
903 void ScheduleDAGMI::placeDebugValues() {
904   // If first instruction was a DBG_VALUE then put it back.
905   if (FirstDbgValue) {
906     BB->splice(RegionBegin, BB, FirstDbgValue);
907     RegionBegin = FirstDbgValue;
908   }
909 
910   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
911          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
912     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
913     MachineInstr *DbgValue = P.first;
914     MachineBasicBlock::iterator OrigPrevMI = P.second;
915     if (&*RegionBegin == DbgValue)
916       ++RegionBegin;
917     BB->splice(++OrigPrevMI, BB, DbgValue);
918     if (OrigPrevMI == std::prev(RegionEnd))
919       RegionEnd = DbgValue;
920   }
921   DbgValues.clear();
922   FirstDbgValue = nullptr;
923 }
924 
925 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
926 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
927   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
928     if (SUnit *SU = getSUnit(&(*MI)))
929       SU->dump(this);
930     else
931       dbgs() << "Missing SUnit\n";
932   }
933 }
934 #endif
935 
936 //===----------------------------------------------------------------------===//
937 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
938 // preservation.
939 //===----------------------------------------------------------------------===//
940 
941 ScheduleDAGMILive::~ScheduleDAGMILive() {
942   delete DFSResult;
943 }
944 
945 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
946   const MachineInstr &MI = *SU.getInstr();
947   for (const MachineOperand &MO : MI.operands()) {
948     if (!MO.isReg())
949       continue;
950     if (!MO.readsReg())
951       continue;
952     if (TrackLaneMasks && !MO.isUse())
953       continue;
954 
955     unsigned Reg = MO.getReg();
956     if (!TargetRegisterInfo::isVirtualRegister(Reg))
957       continue;
958 
959     // Ignore re-defs.
960     if (TrackLaneMasks) {
961       bool FoundDef = false;
962       for (const MachineOperand &MO2 : MI.operands()) {
963         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
964           FoundDef = true;
965           break;
966         }
967       }
968       if (FoundDef)
969         continue;
970     }
971 
972     // Record this local VReg use.
973     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
974     for (; UI != VRegUses.end(); ++UI) {
975       if (UI->SU == &SU)
976         break;
977     }
978     if (UI == VRegUses.end())
979       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
980   }
981 }
982 
983 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
984 /// crossing a scheduling boundary. [begin, end) includes all instructions in
985 /// the region, including the boundary itself and single-instruction regions
986 /// that don't get scheduled.
987 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
988                                 MachineBasicBlock::iterator begin,
989                                 MachineBasicBlock::iterator end,
990                                 unsigned regioninstrs)
991 {
992   // ScheduleDAGMI initializes SchedImpl's per-region policy.
993   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
994 
995   // For convenience remember the end of the liveness region.
996   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
997 
998   SUPressureDiffs.clear();
999 
1000   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
1001   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
1002 
1003   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1004          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1005 }
1006 
1007 // Setup the register pressure trackers for the top scheduled top and bottom
1008 // scheduled regions.
1009 void ScheduleDAGMILive::initRegPressure() {
1010   VRegUses.clear();
1011   VRegUses.setUniverse(MRI.getNumVirtRegs());
1012   for (SUnit &SU : SUnits)
1013     collectVRegUses(SU);
1014 
1015   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1016                     ShouldTrackLaneMasks, false);
1017   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1018                     ShouldTrackLaneMasks, false);
1019 
1020   // Close the RPTracker to finalize live ins.
1021   RPTracker.closeRegion();
1022 
1023   DEBUG(RPTracker.dump());
1024 
1025   // Initialize the live ins and live outs.
1026   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1027   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1028 
1029   // Close one end of the tracker so we can call
1030   // getMaxUpward/DownwardPressureDelta before advancing across any
1031   // instructions. This converts currently live regs into live ins/outs.
1032   TopRPTracker.closeTop();
1033   BotRPTracker.closeBottom();
1034 
1035   BotRPTracker.initLiveThru(RPTracker);
1036   if (!BotRPTracker.getLiveThru().empty()) {
1037     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1038     DEBUG(dbgs() << "Live Thru: ";
1039           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1040   };
1041 
1042   // For each live out vreg reduce the pressure change associated with other
1043   // uses of the same vreg below the live-out reaching def.
1044   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1045 
1046   // Account for liveness generated by the region boundary.
1047   if (LiveRegionEnd != RegionEnd) {
1048     SmallVector<RegisterMaskPair, 8> LiveUses;
1049     BotRPTracker.recede(&LiveUses);
1050     updatePressureDiffs(LiveUses);
1051   }
1052 
1053   DEBUG(
1054     dbgs() << "Top Pressure:\n";
1055     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1056     dbgs() << "Bottom Pressure:\n";
1057     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1058   );
1059 
1060   assert((BotRPTracker.getPos() == RegionEnd ||
1061           (RegionEnd->isDebugValue() &&
1062            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1063          "Can't find the region bottom");
1064 
1065   // Cache the list of excess pressure sets in this region. This will also track
1066   // the max pressure in the scheduled code for these sets.
1067   RegionCriticalPSets.clear();
1068   const std::vector<unsigned> &RegionPressure =
1069     RPTracker.getPressure().MaxSetPressure;
1070   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1071     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1072     if (RegionPressure[i] > Limit) {
1073       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
1074             << " Limit " << Limit
1075             << " Actual " << RegionPressure[i] << "\n");
1076       RegionCriticalPSets.push_back(PressureChange(i));
1077     }
1078   }
1079   DEBUG(dbgs() << "Excess PSets: ";
1080         for (const PressureChange &RCPS : RegionCriticalPSets)
1081           dbgs() << TRI->getRegPressureSetName(
1082             RCPS.getPSet()) << " ";
1083         dbgs() << "\n");
1084 }
1085 
1086 void ScheduleDAGMILive::
1087 updateScheduledPressure(const SUnit *SU,
1088                         const std::vector<unsigned> &NewMaxPressure) {
1089   const PressureDiff &PDiff = getPressureDiff(SU);
1090   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1091   for (const PressureChange &PC : PDiff) {
1092     if (!PC.isValid())
1093       break;
1094     unsigned ID = PC.getPSet();
1095     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1096       ++CritIdx;
1097     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1098       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1099           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1100         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1101     }
1102     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1103     if (NewMaxPressure[ID] >= Limit - 2) {
1104       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1105             << NewMaxPressure[ID]
1106             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
1107             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
1108     }
1109   }
1110 }
1111 
1112 /// Update the PressureDiff array for liveness after scheduling this
1113 /// instruction.
1114 void ScheduleDAGMILive::updatePressureDiffs(
1115     ArrayRef<RegisterMaskPair> LiveUses) {
1116   for (const RegisterMaskPair &P : LiveUses) {
1117     unsigned Reg = P.RegUnit;
1118     /// FIXME: Currently assuming single-use physregs.
1119     if (!TRI->isVirtualRegister(Reg))
1120       continue;
1121 
1122     if (ShouldTrackLaneMasks) {
1123       // If the register has just become live then other uses won't change
1124       // this fact anymore => decrement pressure.
1125       // If the register has just become dead then other uses make it come
1126       // back to life => increment pressure.
1127       bool Decrement = P.LaneMask.any();
1128 
1129       for (const VReg2SUnit &V2SU
1130            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1131         SUnit &SU = *V2SU.SU;
1132         if (SU.isScheduled || &SU == &ExitSU)
1133           continue;
1134 
1135         PressureDiff &PDiff = getPressureDiff(&SU);
1136         PDiff.addPressureChange(Reg, Decrement, &MRI);
1137         DEBUG(
1138           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1139                  << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1140                  << ' ' << *SU.getInstr() << '\n';
1141           dbgs() << "              to ";
1142           PDiff.dump(*TRI);
1143         );
1144       }
1145     } else {
1146       assert(P.LaneMask.any());
1147       DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1148       // This may be called before CurrentBottom has been initialized. However,
1149       // BotRPTracker must have a valid position. We want the value live into the
1150       // instruction or live out of the block, so ask for the previous
1151       // instruction's live-out.
1152       const LiveInterval &LI = LIS->getInterval(Reg);
1153       VNInfo *VNI;
1154       MachineBasicBlock::const_iterator I =
1155         nextIfDebug(BotRPTracker.getPos(), BB->end());
1156       if (I == BB->end())
1157         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1158       else {
1159         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1160         VNI = LRQ.valueIn();
1161       }
1162       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1163       assert(VNI && "No live value at use.");
1164       for (const VReg2SUnit &V2SU
1165            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1166         SUnit *SU = V2SU.SU;
1167         // If this use comes before the reaching def, it cannot be a last use,
1168         // so decrease its pressure change.
1169         if (!SU->isScheduled && SU != &ExitSU) {
1170           LiveQueryResult LRQ =
1171               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1172           if (LRQ.valueIn() == VNI) {
1173             PressureDiff &PDiff = getPressureDiff(SU);
1174             PDiff.addPressureChange(Reg, true, &MRI);
1175             DEBUG(
1176               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1177                      << *SU->getInstr() << '\n';
1178               dbgs() << "              to ";
1179               PDiff.dump(*TRI);
1180             );
1181           }
1182         }
1183       }
1184     }
1185   }
1186 }
1187 
1188 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1189 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1190 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1191 ///
1192 /// This is a skeletal driver, with all the functionality pushed into helpers,
1193 /// so that it can be easily extended by experimental schedulers. Generally,
1194 /// implementing MachineSchedStrategy should be sufficient to implement a new
1195 /// scheduling algorithm. However, if a scheduler further subclasses
1196 /// ScheduleDAGMILive then it will want to override this virtual method in order
1197 /// to update any specialized state.
1198 void ScheduleDAGMILive::schedule() {
1199   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1200   DEBUG(SchedImpl->dumpPolicy());
1201   buildDAGWithRegPressure();
1202 
1203   Topo.InitDAGTopologicalSorting();
1204 
1205   postprocessDAG();
1206 
1207   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1208   findRootsAndBiasEdges(TopRoots, BotRoots);
1209 
1210   // Initialize the strategy before modifying the DAG.
1211   // This may initialize a DFSResult to be used for queue priority.
1212   SchedImpl->initialize(this);
1213 
1214   DEBUG(
1215     if (EntrySU.getInstr() != nullptr)
1216       EntrySU.dumpAll(this);
1217     for (const SUnit &SU : SUnits) {
1218       SU.dumpAll(this);
1219       if (ShouldTrackPressure) {
1220         dbgs() << "  Pressure Diff      : ";
1221         getPressureDiff(&SU).dump(*TRI);
1222       }
1223       dbgs() << "  Single Issue       : ";
1224       if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1225          SchedModel.mustEndGroup(SU.getInstr()))
1226         dbgs() << "true;";
1227       else
1228         dbgs() << "false;";
1229       dbgs() << '\n';
1230     }
1231     if (ExitSU.getInstr() != nullptr)
1232       ExitSU.dumpAll(this);
1233   );
1234   if (ViewMISchedDAGs) viewGraph();
1235 
1236   // Initialize ready queues now that the DAG and priority data are finalized.
1237   initQueues(TopRoots, BotRoots);
1238 
1239   bool IsTopNode = false;
1240   while (true) {
1241     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1242     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1243     if (!SU) break;
1244 
1245     assert(!SU->isScheduled && "Node already scheduled");
1246     if (!checkSchedLimit())
1247       break;
1248 
1249     scheduleMI(SU, IsTopNode);
1250 
1251     if (DFSResult) {
1252       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1253       if (!ScheduledTrees.test(SubtreeID)) {
1254         ScheduledTrees.set(SubtreeID);
1255         DFSResult->scheduleTree(SubtreeID);
1256         SchedImpl->scheduleTree(SubtreeID);
1257       }
1258     }
1259 
1260     // Notify the scheduling strategy after updating the DAG.
1261     SchedImpl->schedNode(SU, IsTopNode);
1262 
1263     updateQueues(SU, IsTopNode);
1264   }
1265   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1266 
1267   placeDebugValues();
1268 
1269   DEBUG({
1270     dbgs() << "*** Final schedule for "
1271            << printMBBReference(*begin()->getParent()) << " ***\n";
1272     dumpSchedule();
1273     dbgs() << '\n';
1274   });
1275 }
1276 
1277 /// Build the DAG and setup three register pressure trackers.
1278 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1279   if (!ShouldTrackPressure) {
1280     RPTracker.reset();
1281     RegionCriticalPSets.clear();
1282     buildSchedGraph(AA);
1283     return;
1284   }
1285 
1286   // Initialize the register pressure tracker used by buildSchedGraph.
1287   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1288                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1289 
1290   // Account for liveness generate by the region boundary.
1291   if (LiveRegionEnd != RegionEnd)
1292     RPTracker.recede();
1293 
1294   // Build the DAG, and compute current register pressure.
1295   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1296 
1297   // Initialize top/bottom trackers after computing region pressure.
1298   initRegPressure();
1299 }
1300 
1301 void ScheduleDAGMILive::computeDFSResult() {
1302   if (!DFSResult)
1303     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1304   DFSResult->clear();
1305   ScheduledTrees.clear();
1306   DFSResult->resize(SUnits.size());
1307   DFSResult->compute(SUnits);
1308   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1309 }
1310 
1311 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1312 /// only provides the critical path for single block loops. To handle loops that
1313 /// span blocks, we could use the vreg path latencies provided by
1314 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1315 /// available for use in the scheduler.
1316 ///
1317 /// The cyclic path estimation identifies a def-use pair that crosses the back
1318 /// edge and considers the depth and height of the nodes. For example, consider
1319 /// the following instruction sequence where each instruction has unit latency
1320 /// and defines an epomymous virtual register:
1321 ///
1322 /// a->b(a,c)->c(b)->d(c)->exit
1323 ///
1324 /// The cyclic critical path is a two cycles: b->c->b
1325 /// The acyclic critical path is four cycles: a->b->c->d->exit
1326 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1327 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1328 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1329 /// LiveInDepth = depth(b) = len(a->b) = 1
1330 ///
1331 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1332 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1333 /// CyclicCriticalPath = min(2, 2) = 2
1334 ///
1335 /// This could be relevant to PostRA scheduling, but is currently implemented
1336 /// assuming LiveIntervals.
1337 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1338   // This only applies to single block loop.
1339   if (!BB->isSuccessor(BB))
1340     return 0;
1341 
1342   unsigned MaxCyclicLatency = 0;
1343   // Visit each live out vreg def to find def/use pairs that cross iterations.
1344   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1345     unsigned Reg = P.RegUnit;
1346     if (!TRI->isVirtualRegister(Reg))
1347         continue;
1348     const LiveInterval &LI = LIS->getInterval(Reg);
1349     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1350     if (!DefVNI)
1351       continue;
1352 
1353     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1354     const SUnit *DefSU = getSUnit(DefMI);
1355     if (!DefSU)
1356       continue;
1357 
1358     unsigned LiveOutHeight = DefSU->getHeight();
1359     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1360     // Visit all local users of the vreg def.
1361     for (const VReg2SUnit &V2SU
1362          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1363       SUnit *SU = V2SU.SU;
1364       if (SU == &ExitSU)
1365         continue;
1366 
1367       // Only consider uses of the phi.
1368       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1369       if (!LRQ.valueIn()->isPHIDef())
1370         continue;
1371 
1372       // Assume that a path spanning two iterations is a cycle, which could
1373       // overestimate in strange cases. This allows cyclic latency to be
1374       // estimated as the minimum slack of the vreg's depth or height.
1375       unsigned CyclicLatency = 0;
1376       if (LiveOutDepth > SU->getDepth())
1377         CyclicLatency = LiveOutDepth - SU->getDepth();
1378 
1379       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1380       if (LiveInHeight > LiveOutHeight) {
1381         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1382           CyclicLatency = LiveInHeight - LiveOutHeight;
1383       } else
1384         CyclicLatency = 0;
1385 
1386       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1387             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1388       if (CyclicLatency > MaxCyclicLatency)
1389         MaxCyclicLatency = CyclicLatency;
1390     }
1391   }
1392   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1393   return MaxCyclicLatency;
1394 }
1395 
1396 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1397 /// the Top RP tracker in case the region beginning has changed.
1398 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1399                                    ArrayRef<SUnit*> BotRoots) {
1400   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1401   if (ShouldTrackPressure) {
1402     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1403     TopRPTracker.setPos(CurrentTop);
1404   }
1405 }
1406 
1407 /// Move an instruction and update register pressure.
1408 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1409   // Move the instruction to its new location in the instruction stream.
1410   MachineInstr *MI = SU->getInstr();
1411 
1412   if (IsTopNode) {
1413     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1414     if (&*CurrentTop == MI)
1415       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1416     else {
1417       moveInstruction(MI, CurrentTop);
1418       TopRPTracker.setPos(MI);
1419     }
1420 
1421     if (ShouldTrackPressure) {
1422       // Update top scheduled pressure.
1423       RegisterOperands RegOpers;
1424       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1425       if (ShouldTrackLaneMasks) {
1426         // Adjust liveness and add missing dead+read-undef flags.
1427         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1428         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1429       } else {
1430         // Adjust for missing dead-def flags.
1431         RegOpers.detectDeadDefs(*MI, *LIS);
1432       }
1433 
1434       TopRPTracker.advance(RegOpers);
1435       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1436       DEBUG(
1437         dbgs() << "Top Pressure:\n";
1438         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1439       );
1440 
1441       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1442     }
1443   } else {
1444     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1445     MachineBasicBlock::iterator priorII =
1446       priorNonDebug(CurrentBottom, CurrentTop);
1447     if (&*priorII == MI)
1448       CurrentBottom = priorII;
1449     else {
1450       if (&*CurrentTop == MI) {
1451         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1452         TopRPTracker.setPos(CurrentTop);
1453       }
1454       moveInstruction(MI, CurrentBottom);
1455       CurrentBottom = MI;
1456       BotRPTracker.setPos(CurrentBottom);
1457     }
1458     if (ShouldTrackPressure) {
1459       RegisterOperands RegOpers;
1460       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1461       if (ShouldTrackLaneMasks) {
1462         // Adjust liveness and add missing dead+read-undef flags.
1463         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1464         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1465       } else {
1466         // Adjust for missing dead-def flags.
1467         RegOpers.detectDeadDefs(*MI, *LIS);
1468       }
1469 
1470       if (BotRPTracker.getPos() != CurrentBottom)
1471         BotRPTracker.recedeSkipDebugValues();
1472       SmallVector<RegisterMaskPair, 8> LiveUses;
1473       BotRPTracker.recede(RegOpers, &LiveUses);
1474       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1475       DEBUG(
1476         dbgs() << "Bottom Pressure:\n";
1477         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1478       );
1479 
1480       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1481       updatePressureDiffs(LiveUses);
1482     }
1483   }
1484 }
1485 
1486 //===----------------------------------------------------------------------===//
1487 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1488 //===----------------------------------------------------------------------===//
1489 
1490 namespace {
1491 
1492 /// \brief Post-process the DAG to create cluster edges between neighboring
1493 /// loads or between neighboring stores.
1494 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1495   struct MemOpInfo {
1496     SUnit *SU;
1497     unsigned BaseReg;
1498     int64_t Offset;
1499 
1500     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1501         : SU(su), BaseReg(reg), Offset(ofs) {}
1502 
1503     bool operator<(const MemOpInfo&RHS) const {
1504       return std::tie(BaseReg, Offset, SU->NodeNum) <
1505              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1506     }
1507   };
1508 
1509   const TargetInstrInfo *TII;
1510   const TargetRegisterInfo *TRI;
1511   bool IsLoad;
1512 
1513 public:
1514   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1515                            const TargetRegisterInfo *tri, bool IsLoad)
1516       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1517 
1518   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1519 
1520 protected:
1521   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1522 };
1523 
1524 class StoreClusterMutation : public BaseMemOpClusterMutation {
1525 public:
1526   StoreClusterMutation(const TargetInstrInfo *tii,
1527                        const TargetRegisterInfo *tri)
1528       : BaseMemOpClusterMutation(tii, tri, false) {}
1529 };
1530 
1531 class LoadClusterMutation : public BaseMemOpClusterMutation {
1532 public:
1533   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1534       : BaseMemOpClusterMutation(tii, tri, true) {}
1535 };
1536 
1537 } // end anonymous namespace
1538 
1539 namespace llvm {
1540 
1541 std::unique_ptr<ScheduleDAGMutation>
1542 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1543                              const TargetRegisterInfo *TRI) {
1544   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1545                             : nullptr;
1546 }
1547 
1548 std::unique_ptr<ScheduleDAGMutation>
1549 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1550                               const TargetRegisterInfo *TRI) {
1551   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1552                             : nullptr;
1553 }
1554 
1555 } // end namespace llvm
1556 
1557 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1558     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1559   SmallVector<MemOpInfo, 32> MemOpRecords;
1560   for (SUnit *SU : MemOps) {
1561     unsigned BaseReg;
1562     int64_t Offset;
1563     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1564       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1565   }
1566   if (MemOpRecords.size() < 2)
1567     return;
1568 
1569   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1570   unsigned ClusterLength = 1;
1571   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1572     SUnit *SUa = MemOpRecords[Idx].SU;
1573     SUnit *SUb = MemOpRecords[Idx+1].SU;
1574     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1575                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1576                                  ClusterLength) &&
1577         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1578       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1579             << SUb->NodeNum << ")\n");
1580       // Copy successor edges from SUa to SUb. Interleaving computation
1581       // dependent on SUa can prevent load combining due to register reuse.
1582       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1583       // loads should have effectively the same inputs.
1584       for (const SDep &Succ : SUa->Succs) {
1585         if (Succ.getSUnit() == SUb)
1586           continue;
1587         DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n");
1588         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1589       }
1590       ++ClusterLength;
1591     } else
1592       ClusterLength = 1;
1593   }
1594 }
1595 
1596 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1597 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1598   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1599 
1600   // Map DAG NodeNum to store chain ID.
1601   DenseMap<unsigned, unsigned> StoreChainIDs;
1602   // Map each store chain to a set of dependent MemOps.
1603   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1604   for (SUnit &SU : DAG->SUnits) {
1605     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1606         (!IsLoad && !SU.getInstr()->mayStore()))
1607       continue;
1608 
1609     unsigned ChainPredID = DAG->SUnits.size();
1610     for (const SDep &Pred : SU.Preds) {
1611       if (Pred.isCtrl()) {
1612         ChainPredID = Pred.getSUnit()->NodeNum;
1613         break;
1614       }
1615     }
1616     // Check if this chain-like pred has been seen
1617     // before. ChainPredID==MaxNodeID at the top of the schedule.
1618     unsigned NumChains = StoreChainDependents.size();
1619     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1620       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1621     if (Result.second)
1622       StoreChainDependents.resize(NumChains + 1);
1623     StoreChainDependents[Result.first->second].push_back(&SU);
1624   }
1625 
1626   // Iterate over the store chains.
1627   for (auto &SCD : StoreChainDependents)
1628     clusterNeighboringMemOps(SCD, DAG);
1629 }
1630 
1631 //===----------------------------------------------------------------------===//
1632 // CopyConstrain - DAG post-processing to encourage copy elimination.
1633 //===----------------------------------------------------------------------===//
1634 
1635 namespace {
1636 
1637 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1638 /// the one use that defines the copy's source vreg, most likely an induction
1639 /// variable increment.
1640 class CopyConstrain : public ScheduleDAGMutation {
1641   // Transient state.
1642   SlotIndex RegionBeginIdx;
1643 
1644   // RegionEndIdx is the slot index of the last non-debug instruction in the
1645   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1646   SlotIndex RegionEndIdx;
1647 
1648 public:
1649   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1650 
1651   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1652 
1653 protected:
1654   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1655 };
1656 
1657 } // end anonymous namespace
1658 
1659 namespace llvm {
1660 
1661 std::unique_ptr<ScheduleDAGMutation>
1662 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1663                                const TargetRegisterInfo *TRI) {
1664   return llvm::make_unique<CopyConstrain>(TII, TRI);
1665 }
1666 
1667 } // end namespace llvm
1668 
1669 /// constrainLocalCopy handles two possibilities:
1670 /// 1) Local src:
1671 /// I0:     = dst
1672 /// I1: src = ...
1673 /// I2:     = dst
1674 /// I3: dst = src (copy)
1675 /// (create pred->succ edges I0->I1, I2->I1)
1676 ///
1677 /// 2) Local copy:
1678 /// I0: dst = src (copy)
1679 /// I1:     = dst
1680 /// I2: src = ...
1681 /// I3:     = dst
1682 /// (create pred->succ edges I1->I2, I3->I2)
1683 ///
1684 /// Although the MachineScheduler is currently constrained to single blocks,
1685 /// this algorithm should handle extended blocks. An EBB is a set of
1686 /// contiguously numbered blocks such that the previous block in the EBB is
1687 /// always the single predecessor.
1688 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1689   LiveIntervals *LIS = DAG->getLIS();
1690   MachineInstr *Copy = CopySU->getInstr();
1691 
1692   // Check for pure vreg copies.
1693   const MachineOperand &SrcOp = Copy->getOperand(1);
1694   unsigned SrcReg = SrcOp.getReg();
1695   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1696     return;
1697 
1698   const MachineOperand &DstOp = Copy->getOperand(0);
1699   unsigned DstReg = DstOp.getReg();
1700   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1701     return;
1702 
1703   // Check if either the dest or source is local. If it's live across a back
1704   // edge, it's not local. Note that if both vregs are live across the back
1705   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1706   // If both the copy's source and dest are local live intervals, then we
1707   // should treat the dest as the global for the purpose of adding
1708   // constraints. This adds edges from source's other uses to the copy.
1709   unsigned LocalReg = SrcReg;
1710   unsigned GlobalReg = DstReg;
1711   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1712   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1713     LocalReg = DstReg;
1714     GlobalReg = SrcReg;
1715     LocalLI = &LIS->getInterval(LocalReg);
1716     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1717       return;
1718   }
1719   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1720 
1721   // Find the global segment after the start of the local LI.
1722   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1723   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1724   // local live range. We could create edges from other global uses to the local
1725   // start, but the coalescer should have already eliminated these cases, so
1726   // don't bother dealing with it.
1727   if (GlobalSegment == GlobalLI->end())
1728     return;
1729 
1730   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1731   // returned the next global segment. But if GlobalSegment overlaps with
1732   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1733   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1734   if (GlobalSegment->contains(LocalLI->beginIndex()))
1735     ++GlobalSegment;
1736 
1737   if (GlobalSegment == GlobalLI->end())
1738     return;
1739 
1740   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1741   if (GlobalSegment != GlobalLI->begin()) {
1742     // Two address defs have no hole.
1743     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1744                                GlobalSegment->start)) {
1745       return;
1746     }
1747     // If the prior global segment may be defined by the same two-address
1748     // instruction that also defines LocalLI, then can't make a hole here.
1749     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1750                                LocalLI->beginIndex())) {
1751       return;
1752     }
1753     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1754     // it would be a disconnected component in the live range.
1755     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1756            "Disconnected LRG within the scheduling region.");
1757   }
1758   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1759   if (!GlobalDef)
1760     return;
1761 
1762   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1763   if (!GlobalSU)
1764     return;
1765 
1766   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1767   // constraining the uses of the last local def to precede GlobalDef.
1768   SmallVector<SUnit*,8> LocalUses;
1769   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1770   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1771   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1772   for (const SDep &Succ : LastLocalSU->Succs) {
1773     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1774       continue;
1775     if (Succ.getSUnit() == GlobalSU)
1776       continue;
1777     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1778       return;
1779     LocalUses.push_back(Succ.getSUnit());
1780   }
1781   // Open the top of the GlobalLI hole by constraining any earlier global uses
1782   // to precede the start of LocalLI.
1783   SmallVector<SUnit*,8> GlobalUses;
1784   MachineInstr *FirstLocalDef =
1785     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1786   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1787   for (const SDep &Pred : GlobalSU->Preds) {
1788     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1789       continue;
1790     if (Pred.getSUnit() == FirstLocalSU)
1791       continue;
1792     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1793       return;
1794     GlobalUses.push_back(Pred.getSUnit());
1795   }
1796   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1797   // Add the weak edges.
1798   for (SmallVectorImpl<SUnit*>::const_iterator
1799          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1800     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1801           << GlobalSU->NodeNum << ")\n");
1802     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1803   }
1804   for (SmallVectorImpl<SUnit*>::const_iterator
1805          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1806     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1807           << FirstLocalSU->NodeNum << ")\n");
1808     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1809   }
1810 }
1811 
1812 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1813 /// copy elimination.
1814 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1815   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1816   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1817 
1818   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1819   if (FirstPos == DAG->end())
1820     return;
1821   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1822   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1823       *priorNonDebug(DAG->end(), DAG->begin()));
1824 
1825   for (SUnit &SU : DAG->SUnits) {
1826     if (!SU.getInstr()->isCopy())
1827       continue;
1828 
1829     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1830   }
1831 }
1832 
1833 //===----------------------------------------------------------------------===//
1834 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1835 // and possibly other custom schedulers.
1836 //===----------------------------------------------------------------------===//
1837 
1838 static const unsigned InvalidCycle = ~0U;
1839 
1840 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1841 
1842 /// Given a Count of resource usage and a Latency value, return true if a
1843 /// SchedBoundary becomes resource limited.
1844 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1845                                unsigned Latency) {
1846   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1847 }
1848 
1849 void SchedBoundary::reset() {
1850   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1851   // Destroying and reconstructing it is very expensive though. So keep
1852   // invalid, placeholder HazardRecs.
1853   if (HazardRec && HazardRec->isEnabled()) {
1854     delete HazardRec;
1855     HazardRec = nullptr;
1856   }
1857   Available.clear();
1858   Pending.clear();
1859   CheckPending = false;
1860   CurrCycle = 0;
1861   CurrMOps = 0;
1862   MinReadyCycle = std::numeric_limits<unsigned>::max();
1863   ExpectedLatency = 0;
1864   DependentLatency = 0;
1865   RetiredMOps = 0;
1866   MaxExecutedResCount = 0;
1867   ZoneCritResIdx = 0;
1868   IsResourceLimited = false;
1869   ReservedCycles.clear();
1870 #ifndef NDEBUG
1871   // Track the maximum number of stall cycles that could arise either from the
1872   // latency of a DAG edge or the number of cycles that a processor resource is
1873   // reserved (SchedBoundary::ReservedCycles).
1874   MaxObservedStall = 0;
1875 #endif
1876   // Reserve a zero-count for invalid CritResIdx.
1877   ExecutedResCounts.resize(1);
1878   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1879 }
1880 
1881 void SchedRemainder::
1882 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1883   reset();
1884   if (!SchedModel->hasInstrSchedModel())
1885     return;
1886   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1887   for (SUnit &SU : DAG->SUnits) {
1888     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1889     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1890       * SchedModel->getMicroOpFactor();
1891     for (TargetSchedModel::ProcResIter
1892            PI = SchedModel->getWriteProcResBegin(SC),
1893            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1894       unsigned PIdx = PI->ProcResourceIdx;
1895       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1896       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1897     }
1898   }
1899 }
1900 
1901 void SchedBoundary::
1902 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1903   reset();
1904   DAG = dag;
1905   SchedModel = smodel;
1906   Rem = rem;
1907   if (SchedModel->hasInstrSchedModel()) {
1908     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1909     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1910   }
1911 }
1912 
1913 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1914 /// these "soft stalls" differently than the hard stall cycles based on CPU
1915 /// resources and computed by checkHazard(). A fully in-order model
1916 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1917 /// available for scheduling until they are ready. However, a weaker in-order
1918 /// model may use this for heuristics. For example, if a processor has in-order
1919 /// behavior when reading certain resources, this may come into play.
1920 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1921   if (!SU->isUnbuffered)
1922     return 0;
1923 
1924   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1925   if (ReadyCycle > CurrCycle)
1926     return ReadyCycle - CurrCycle;
1927   return 0;
1928 }
1929 
1930 /// Compute the next cycle at which the given processor resource can be
1931 /// scheduled.
1932 unsigned SchedBoundary::
1933 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1934   unsigned NextUnreserved = ReservedCycles[PIdx];
1935   // If this resource has never been used, always return cycle zero.
1936   if (NextUnreserved == InvalidCycle)
1937     return 0;
1938   // For bottom-up scheduling add the cycles needed for the current operation.
1939   if (!isTop())
1940     NextUnreserved += Cycles;
1941   return NextUnreserved;
1942 }
1943 
1944 /// Does this SU have a hazard within the current instruction group.
1945 ///
1946 /// The scheduler supports two modes of hazard recognition. The first is the
1947 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1948 /// supports highly complicated in-order reservation tables
1949 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1950 ///
1951 /// The second is a streamlined mechanism that checks for hazards based on
1952 /// simple counters that the scheduler itself maintains. It explicitly checks
1953 /// for instruction dispatch limitations, including the number of micro-ops that
1954 /// can dispatch per cycle.
1955 ///
1956 /// TODO: Also check whether the SU must start a new group.
1957 bool SchedBoundary::checkHazard(SUnit *SU) {
1958   if (HazardRec->isEnabled()
1959       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1960     return true;
1961   }
1962 
1963   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1964   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1965     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1966           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1967     return true;
1968   }
1969 
1970   if (CurrMOps > 0 &&
1971       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1972        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1973     DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1974                  << (isTop()? "begin" : "end") << " group\n");
1975     return true;
1976   }
1977 
1978   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1979     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1980     for (const MCWriteProcResEntry &PE :
1981           make_range(SchedModel->getWriteProcResBegin(SC),
1982                      SchedModel->getWriteProcResEnd(SC))) {
1983       unsigned ResIdx = PE.ProcResourceIdx;
1984       unsigned Cycles = PE.Cycles;
1985       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1986       if (NRCycle > CurrCycle) {
1987 #ifndef NDEBUG
1988         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1989 #endif
1990         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1991               << SchedModel->getResourceName(ResIdx)
1992               << "=" << NRCycle << "c\n");
1993         return true;
1994       }
1995     }
1996   }
1997   return false;
1998 }
1999 
2000 // Find the unscheduled node in ReadySUs with the highest latency.
2001 unsigned SchedBoundary::
2002 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2003   SUnit *LateSU = nullptr;
2004   unsigned RemLatency = 0;
2005   for (SUnit *SU : ReadySUs) {
2006     unsigned L = getUnscheduledLatency(SU);
2007     if (L > RemLatency) {
2008       RemLatency = L;
2009       LateSU = SU;
2010     }
2011   }
2012   if (LateSU) {
2013     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2014           << LateSU->NodeNum << ") " << RemLatency << "c\n");
2015   }
2016   return RemLatency;
2017 }
2018 
2019 // Count resources in this zone and the remaining unscheduled
2020 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2021 // resource index, or zero if the zone is issue limited.
2022 unsigned SchedBoundary::
2023 getOtherResourceCount(unsigned &OtherCritIdx) {
2024   OtherCritIdx = 0;
2025   if (!SchedModel->hasInstrSchedModel())
2026     return 0;
2027 
2028   unsigned OtherCritCount = Rem->RemIssueCount
2029     + (RetiredMOps * SchedModel->getMicroOpFactor());
2030   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2031         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2032   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2033        PIdx != PEnd; ++PIdx) {
2034     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2035     if (OtherCount > OtherCritCount) {
2036       OtherCritCount = OtherCount;
2037       OtherCritIdx = PIdx;
2038     }
2039   }
2040   if (OtherCritIdx) {
2041     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2042           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2043           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2044   }
2045   return OtherCritCount;
2046 }
2047 
2048 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2049   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2050 
2051 #ifndef NDEBUG
2052   // ReadyCycle was been bumped up to the CurrCycle when this node was
2053   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2054   // scheduling, so may now be greater than ReadyCycle.
2055   if (ReadyCycle > CurrCycle)
2056     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2057 #endif
2058 
2059   if (ReadyCycle < MinReadyCycle)
2060     MinReadyCycle = ReadyCycle;
2061 
2062   // Check for interlocks first. For the purpose of other heuristics, an
2063   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2064   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2065   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2066       Available.size() >= ReadyListLimit)
2067     Pending.push(SU);
2068   else
2069     Available.push(SU);
2070 }
2071 
2072 /// Move the boundary of scheduled code by one cycle.
2073 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2074   if (SchedModel->getMicroOpBufferSize() == 0) {
2075     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2076            "MinReadyCycle uninitialized");
2077     if (MinReadyCycle > NextCycle)
2078       NextCycle = MinReadyCycle;
2079   }
2080   // Update the current micro-ops, which will issue in the next cycle.
2081   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2082   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2083 
2084   // Decrement DependentLatency based on the next cycle.
2085   if ((NextCycle - CurrCycle) > DependentLatency)
2086     DependentLatency = 0;
2087   else
2088     DependentLatency -= (NextCycle - CurrCycle);
2089 
2090   if (!HazardRec->isEnabled()) {
2091     // Bypass HazardRec virtual calls.
2092     CurrCycle = NextCycle;
2093   } else {
2094     // Bypass getHazardType calls in case of long latency.
2095     for (; CurrCycle != NextCycle; ++CurrCycle) {
2096       if (isTop())
2097         HazardRec->AdvanceCycle();
2098       else
2099         HazardRec->RecedeCycle();
2100     }
2101   }
2102   CheckPending = true;
2103   IsResourceLimited =
2104       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2105                          getScheduledLatency());
2106 
2107   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2108 }
2109 
2110 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2111   ExecutedResCounts[PIdx] += Count;
2112   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2113     MaxExecutedResCount = ExecutedResCounts[PIdx];
2114 }
2115 
2116 /// Add the given processor resource to this scheduled zone.
2117 ///
2118 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2119 /// during which this resource is consumed.
2120 ///
2121 /// \return the next cycle at which the instruction may execute without
2122 /// oversubscribing resources.
2123 unsigned SchedBoundary::
2124 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2125   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2126   unsigned Count = Factor * Cycles;
2127   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2128         << " +" << Cycles << "x" << Factor << "u\n");
2129 
2130   // Update Executed resources counts.
2131   incExecutedResources(PIdx, Count);
2132   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2133   Rem->RemainingCounts[PIdx] -= Count;
2134 
2135   // Check if this resource exceeds the current critical resource. If so, it
2136   // becomes the critical resource.
2137   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2138     ZoneCritResIdx = PIdx;
2139     DEBUG(dbgs() << "  *** Critical resource "
2140           << SchedModel->getResourceName(PIdx) << ": "
2141           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2142   }
2143   // For reserved resources, record the highest cycle using the resource.
2144   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2145   if (NextAvailable > CurrCycle) {
2146     DEBUG(dbgs() << "  Resource conflict: "
2147           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2148           << NextAvailable << "\n");
2149   }
2150   return NextAvailable;
2151 }
2152 
2153 /// Move the boundary of scheduled code by one SUnit.
2154 void SchedBoundary::bumpNode(SUnit *SU) {
2155   // Update the reservation table.
2156   if (HazardRec->isEnabled()) {
2157     if (!isTop() && SU->isCall) {
2158       // Calls are scheduled with their preceding instructions. For bottom-up
2159       // scheduling, clear the pipeline state before emitting.
2160       HazardRec->Reset();
2161     }
2162     HazardRec->EmitInstruction(SU);
2163   }
2164   // checkHazard should prevent scheduling multiple instructions per cycle that
2165   // exceed the issue width.
2166   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2167   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2168   assert(
2169       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2170       "Cannot schedule this instruction's MicroOps in the current cycle.");
2171 
2172   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2173   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2174 
2175   unsigned NextCycle = CurrCycle;
2176   switch (SchedModel->getMicroOpBufferSize()) {
2177   case 0:
2178     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2179     break;
2180   case 1:
2181     if (ReadyCycle > NextCycle) {
2182       NextCycle = ReadyCycle;
2183       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2184     }
2185     break;
2186   default:
2187     // We don't currently model the OOO reorder buffer, so consider all
2188     // scheduled MOps to be "retired". We do loosely model in-order resource
2189     // latency. If this instruction uses an in-order resource, account for any
2190     // likely stall cycles.
2191     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2192       NextCycle = ReadyCycle;
2193     break;
2194   }
2195   RetiredMOps += IncMOps;
2196 
2197   // Update resource counts and critical resource.
2198   if (SchedModel->hasInstrSchedModel()) {
2199     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2200     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2201     Rem->RemIssueCount -= DecRemIssue;
2202     if (ZoneCritResIdx) {
2203       // Scale scheduled micro-ops for comparing with the critical resource.
2204       unsigned ScaledMOps =
2205         RetiredMOps * SchedModel->getMicroOpFactor();
2206 
2207       // If scaled micro-ops are now more than the previous critical resource by
2208       // a full cycle, then micro-ops issue becomes critical.
2209       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2210           >= (int)SchedModel->getLatencyFactor()) {
2211         ZoneCritResIdx = 0;
2212         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2213               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2214       }
2215     }
2216     for (TargetSchedModel::ProcResIter
2217            PI = SchedModel->getWriteProcResBegin(SC),
2218            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2219       unsigned RCycle =
2220         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2221       if (RCycle > NextCycle)
2222         NextCycle = RCycle;
2223     }
2224     if (SU->hasReservedResource) {
2225       // For reserved resources, record the highest cycle using the resource.
2226       // For top-down scheduling, this is the cycle in which we schedule this
2227       // instruction plus the number of cycles the operations reserves the
2228       // resource. For bottom-up is it simply the instruction's cycle.
2229       for (TargetSchedModel::ProcResIter
2230              PI = SchedModel->getWriteProcResBegin(SC),
2231              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2232         unsigned PIdx = PI->ProcResourceIdx;
2233         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2234           if (isTop()) {
2235             ReservedCycles[PIdx] =
2236               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2237           }
2238           else
2239             ReservedCycles[PIdx] = NextCycle;
2240         }
2241       }
2242     }
2243   }
2244   // Update ExpectedLatency and DependentLatency.
2245   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2246   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2247   if (SU->getDepth() > TopLatency) {
2248     TopLatency = SU->getDepth();
2249     DEBUG(dbgs() << "  " << Available.getName()
2250           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2251   }
2252   if (SU->getHeight() > BotLatency) {
2253     BotLatency = SU->getHeight();
2254     DEBUG(dbgs() << "  " << Available.getName()
2255           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2256   }
2257   // If we stall for any reason, bump the cycle.
2258   if (NextCycle > CurrCycle)
2259     bumpCycle(NextCycle);
2260   else
2261     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2262     // resource limited. If a stall occurred, bumpCycle does this.
2263     IsResourceLimited =
2264         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2265                            getScheduledLatency());
2266 
2267   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2268   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2269   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2270   // bump the cycle to avoid uselessly checking everything in the readyQ.
2271   CurrMOps += IncMOps;
2272 
2273   // Bump the cycle count for issue group constraints.
2274   // This must be done after NextCycle has been adjust for all other stalls.
2275   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2276   // currCycle to X.
2277   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2278       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2279     DEBUG(dbgs() << "  Bump cycle to "
2280                  << (isTop() ? "end" : "begin") << " group\n");
2281     bumpCycle(++NextCycle);
2282   }
2283 
2284   while (CurrMOps >= SchedModel->getIssueWidth()) {
2285     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2286           << " at cycle " << CurrCycle << '\n');
2287     bumpCycle(++NextCycle);
2288   }
2289   DEBUG(dumpScheduledState());
2290 }
2291 
2292 /// Release pending ready nodes in to the available queue. This makes them
2293 /// visible to heuristics.
2294 void SchedBoundary::releasePending() {
2295   // If the available queue is empty, it is safe to reset MinReadyCycle.
2296   if (Available.empty())
2297     MinReadyCycle = std::numeric_limits<unsigned>::max();
2298 
2299   // Check to see if any of the pending instructions are ready to issue.  If
2300   // so, add them to the available queue.
2301   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2302   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2303     SUnit *SU = *(Pending.begin()+i);
2304     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2305 
2306     if (ReadyCycle < MinReadyCycle)
2307       MinReadyCycle = ReadyCycle;
2308 
2309     if (!IsBuffered && ReadyCycle > CurrCycle)
2310       continue;
2311 
2312     if (checkHazard(SU))
2313       continue;
2314 
2315     if (Available.size() >= ReadyListLimit)
2316       break;
2317 
2318     Available.push(SU);
2319     Pending.remove(Pending.begin()+i);
2320     --i; --e;
2321   }
2322   CheckPending = false;
2323 }
2324 
2325 /// Remove SU from the ready set for this boundary.
2326 void SchedBoundary::removeReady(SUnit *SU) {
2327   if (Available.isInQueue(SU))
2328     Available.remove(Available.find(SU));
2329   else {
2330     assert(Pending.isInQueue(SU) && "bad ready count");
2331     Pending.remove(Pending.find(SU));
2332   }
2333 }
2334 
2335 /// If this queue only has one ready candidate, return it. As a side effect,
2336 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2337 /// one node is ready. If multiple instructions are ready, return NULL.
2338 SUnit *SchedBoundary::pickOnlyChoice() {
2339   if (CheckPending)
2340     releasePending();
2341 
2342   if (CurrMOps > 0) {
2343     // Defer any ready instrs that now have a hazard.
2344     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2345       if (checkHazard(*I)) {
2346         Pending.push(*I);
2347         I = Available.remove(I);
2348         continue;
2349       }
2350       ++I;
2351     }
2352   }
2353   for (unsigned i = 0; Available.empty(); ++i) {
2354 //  FIXME: Re-enable assert once PR20057 is resolved.
2355 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2356 //           "permanent hazard");
2357     (void)i;
2358     bumpCycle(CurrCycle + 1);
2359     releasePending();
2360   }
2361 
2362   DEBUG(Pending.dump());
2363   DEBUG(Available.dump());
2364 
2365   if (Available.size() == 1)
2366     return *Available.begin();
2367   return nullptr;
2368 }
2369 
2370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2371 // This is useful information to dump after bumpNode.
2372 // Note that the Queue contents are more useful before pickNodeFromQueue.
2373 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2374   unsigned ResFactor;
2375   unsigned ResCount;
2376   if (ZoneCritResIdx) {
2377     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2378     ResCount = getResourceCount(ZoneCritResIdx);
2379   } else {
2380     ResFactor = SchedModel->getMicroOpFactor();
2381     ResCount = RetiredMOps * ResFactor;
2382   }
2383   unsigned LFactor = SchedModel->getLatencyFactor();
2384   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2385          << "  Retired: " << RetiredMOps;
2386   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2387   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2388          << ResCount / ResFactor << " "
2389          << SchedModel->getResourceName(ZoneCritResIdx)
2390          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2391          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2392          << " limited.\n";
2393 }
2394 #endif
2395 
2396 //===----------------------------------------------------------------------===//
2397 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2398 //===----------------------------------------------------------------------===//
2399 
2400 void GenericSchedulerBase::SchedCandidate::
2401 initResourceDelta(const ScheduleDAGMI *DAG,
2402                   const TargetSchedModel *SchedModel) {
2403   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2404     return;
2405 
2406   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2407   for (TargetSchedModel::ProcResIter
2408          PI = SchedModel->getWriteProcResBegin(SC),
2409          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2410     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2411       ResDelta.CritResources += PI->Cycles;
2412     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2413       ResDelta.DemandedResources += PI->Cycles;
2414   }
2415 }
2416 
2417 /// Set the CandPolicy given a scheduling zone given the current resources and
2418 /// latencies inside and outside the zone.
2419 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2420                                      SchedBoundary &CurrZone,
2421                                      SchedBoundary *OtherZone) {
2422   // Apply preemptive heuristics based on the total latency and resources
2423   // inside and outside this zone. Potential stalls should be considered before
2424   // following this policy.
2425 
2426   // Compute remaining latency. We need this both to determine whether the
2427   // overall schedule has become latency-limited and whether the instructions
2428   // outside this zone are resource or latency limited.
2429   //
2430   // The "dependent" latency is updated incrementally during scheduling as the
2431   // max height/depth of scheduled nodes minus the cycles since it was
2432   // scheduled:
2433   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2434   //
2435   // The "independent" latency is the max ready queue depth:
2436   //   ILat = max N.depth for N in Available|Pending
2437   //
2438   // RemainingLatency is the greater of independent and dependent latency.
2439   unsigned RemLatency = CurrZone.getDependentLatency();
2440   RemLatency = std::max(RemLatency,
2441                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2442   RemLatency = std::max(RemLatency,
2443                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2444 
2445   // Compute the critical resource outside the zone.
2446   unsigned OtherCritIdx = 0;
2447   unsigned OtherCount =
2448     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2449 
2450   bool OtherResLimited = false;
2451   if (SchedModel->hasInstrSchedModel())
2452     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2453                                          OtherCount, RemLatency);
2454 
2455   // Schedule aggressively for latency in PostRA mode. We don't check for
2456   // acyclic latency during PostRA, and highly out-of-order processors will
2457   // skip PostRA scheduling.
2458   if (!OtherResLimited) {
2459     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2460       Policy.ReduceLatency |= true;
2461       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2462             << " RemainingLatency " << RemLatency << " + "
2463             << CurrZone.getCurrCycle() << "c > CritPath "
2464             << Rem.CriticalPath << "\n");
2465     }
2466   }
2467   // If the same resource is limiting inside and outside the zone, do nothing.
2468   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2469     return;
2470 
2471   DEBUG(
2472     if (CurrZone.isResourceLimited()) {
2473       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2474              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2475              << "\n";
2476     }
2477     if (OtherResLimited)
2478       dbgs() << "  RemainingLimit: "
2479              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2480     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2481       dbgs() << "  Latency limited both directions.\n");
2482 
2483   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2484     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2485 
2486   if (OtherResLimited)
2487     Policy.DemandResIdx = OtherCritIdx;
2488 }
2489 
2490 #ifndef NDEBUG
2491 const char *GenericSchedulerBase::getReasonStr(
2492   GenericSchedulerBase::CandReason Reason) {
2493   switch (Reason) {
2494   case NoCand:         return "NOCAND    ";
2495   case Only1:          return "ONLY1     ";
2496   case PhysRegCopy:    return "PREG-COPY ";
2497   case RegExcess:      return "REG-EXCESS";
2498   case RegCritical:    return "REG-CRIT  ";
2499   case Stall:          return "STALL     ";
2500   case Cluster:        return "CLUSTER   ";
2501   case Weak:           return "WEAK      ";
2502   case RegMax:         return "REG-MAX   ";
2503   case ResourceReduce: return "RES-REDUCE";
2504   case ResourceDemand: return "RES-DEMAND";
2505   case TopDepthReduce: return "TOP-DEPTH ";
2506   case TopPathReduce:  return "TOP-PATH  ";
2507   case BotHeightReduce:return "BOT-HEIGHT";
2508   case BotPathReduce:  return "BOT-PATH  ";
2509   case NextDefUse:     return "DEF-USE   ";
2510   case NodeOrder:      return "ORDER     ";
2511   };
2512   llvm_unreachable("Unknown reason!");
2513 }
2514 
2515 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2516   PressureChange P;
2517   unsigned ResIdx = 0;
2518   unsigned Latency = 0;
2519   switch (Cand.Reason) {
2520   default:
2521     break;
2522   case RegExcess:
2523     P = Cand.RPDelta.Excess;
2524     break;
2525   case RegCritical:
2526     P = Cand.RPDelta.CriticalMax;
2527     break;
2528   case RegMax:
2529     P = Cand.RPDelta.CurrentMax;
2530     break;
2531   case ResourceReduce:
2532     ResIdx = Cand.Policy.ReduceResIdx;
2533     break;
2534   case ResourceDemand:
2535     ResIdx = Cand.Policy.DemandResIdx;
2536     break;
2537   case TopDepthReduce:
2538     Latency = Cand.SU->getDepth();
2539     break;
2540   case TopPathReduce:
2541     Latency = Cand.SU->getHeight();
2542     break;
2543   case BotHeightReduce:
2544     Latency = Cand.SU->getHeight();
2545     break;
2546   case BotPathReduce:
2547     Latency = Cand.SU->getDepth();
2548     break;
2549   }
2550   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2551   if (P.isValid())
2552     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2553            << ":" << P.getUnitInc() << " ";
2554   else
2555     dbgs() << "      ";
2556   if (ResIdx)
2557     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2558   else
2559     dbgs() << "         ";
2560   if (Latency)
2561     dbgs() << " " << Latency << " cycles ";
2562   else
2563     dbgs() << "          ";
2564   dbgs() << '\n';
2565 }
2566 #endif
2567 
2568 /// Return true if this heuristic determines order.
2569 static bool tryLess(int TryVal, int CandVal,
2570                     GenericSchedulerBase::SchedCandidate &TryCand,
2571                     GenericSchedulerBase::SchedCandidate &Cand,
2572                     GenericSchedulerBase::CandReason Reason) {
2573   if (TryVal < CandVal) {
2574     TryCand.Reason = Reason;
2575     return true;
2576   }
2577   if (TryVal > CandVal) {
2578     if (Cand.Reason > Reason)
2579       Cand.Reason = Reason;
2580     return true;
2581   }
2582   return false;
2583 }
2584 
2585 static bool tryGreater(int TryVal, int CandVal,
2586                        GenericSchedulerBase::SchedCandidate &TryCand,
2587                        GenericSchedulerBase::SchedCandidate &Cand,
2588                        GenericSchedulerBase::CandReason Reason) {
2589   if (TryVal > CandVal) {
2590     TryCand.Reason = Reason;
2591     return true;
2592   }
2593   if (TryVal < CandVal) {
2594     if (Cand.Reason > Reason)
2595       Cand.Reason = Reason;
2596     return true;
2597   }
2598   return false;
2599 }
2600 
2601 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2602                        GenericSchedulerBase::SchedCandidate &Cand,
2603                        SchedBoundary &Zone) {
2604   if (Zone.isTop()) {
2605     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2606       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2607                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2608         return true;
2609     }
2610     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2611                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2612       return true;
2613   } else {
2614     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2615       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2616                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2617         return true;
2618     }
2619     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2620                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2621       return true;
2622   }
2623   return false;
2624 }
2625 
2626 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2627   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2628         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2629 }
2630 
2631 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2632   tracePick(Cand.Reason, Cand.AtTop);
2633 }
2634 
2635 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2636   assert(dag->hasVRegLiveness() &&
2637          "(PreRA)GenericScheduler needs vreg liveness");
2638   DAG = static_cast<ScheduleDAGMILive*>(dag);
2639   SchedModel = DAG->getSchedModel();
2640   TRI = DAG->TRI;
2641 
2642   Rem.init(DAG, SchedModel);
2643   Top.init(DAG, SchedModel, &Rem);
2644   Bot.init(DAG, SchedModel, &Rem);
2645 
2646   // Initialize resource counts.
2647 
2648   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2649   // are disabled, then these HazardRecs will be disabled.
2650   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2651   if (!Top.HazardRec) {
2652     Top.HazardRec =
2653         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2654             Itin, DAG);
2655   }
2656   if (!Bot.HazardRec) {
2657     Bot.HazardRec =
2658         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2659             Itin, DAG);
2660   }
2661   TopCand.SU = nullptr;
2662   BotCand.SU = nullptr;
2663 }
2664 
2665 /// Initialize the per-region scheduling policy.
2666 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2667                                   MachineBasicBlock::iterator End,
2668                                   unsigned NumRegionInstrs) {
2669   const MachineFunction &MF = *Begin->getMF();
2670   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2671 
2672   // Avoid setting up the register pressure tracker for small regions to save
2673   // compile time. As a rough heuristic, only track pressure when the number of
2674   // schedulable instructions exceeds half the integer register file.
2675   RegionPolicy.ShouldTrackPressure = true;
2676   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2677     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2678     if (TLI->isTypeLegal(LegalIntVT)) {
2679       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2680         TLI->getRegClassFor(LegalIntVT));
2681       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2682     }
2683   }
2684 
2685   // For generic targets, we default to bottom-up, because it's simpler and more
2686   // compile-time optimizations have been implemented in that direction.
2687   RegionPolicy.OnlyBottomUp = true;
2688 
2689   // Allow the subtarget to override default policy.
2690   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2691 
2692   // After subtarget overrides, apply command line options.
2693   if (!EnableRegPressure)
2694     RegionPolicy.ShouldTrackPressure = false;
2695 
2696   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2697   // e.g. -misched-bottomup=false allows scheduling in both directions.
2698   assert((!ForceTopDown || !ForceBottomUp) &&
2699          "-misched-topdown incompatible with -misched-bottomup");
2700   if (ForceBottomUp.getNumOccurrences() > 0) {
2701     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2702     if (RegionPolicy.OnlyBottomUp)
2703       RegionPolicy.OnlyTopDown = false;
2704   }
2705   if (ForceTopDown.getNumOccurrences() > 0) {
2706     RegionPolicy.OnlyTopDown = ForceTopDown;
2707     if (RegionPolicy.OnlyTopDown)
2708       RegionPolicy.OnlyBottomUp = false;
2709   }
2710 }
2711 
2712 void GenericScheduler::dumpPolicy() const {
2713   // Cannot completely remove virtual function even in release mode.
2714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2715   dbgs() << "GenericScheduler RegionPolicy: "
2716          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2717          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2718          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2719          << "\n";
2720 #endif
2721 }
2722 
2723 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2724 /// critical path by more cycles than it takes to drain the instruction buffer.
2725 /// We estimate an upper bounds on in-flight instructions as:
2726 ///
2727 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2728 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2729 /// InFlightResources = InFlightIterations * LoopResources
2730 ///
2731 /// TODO: Check execution resources in addition to IssueCount.
2732 void GenericScheduler::checkAcyclicLatency() {
2733   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2734     return;
2735 
2736   // Scaled number of cycles per loop iteration.
2737   unsigned IterCount =
2738     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2739              Rem.RemIssueCount);
2740   // Scaled acyclic critical path.
2741   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2742   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2743   unsigned InFlightCount =
2744     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2745   unsigned BufferLimit =
2746     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2747 
2748   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2749 
2750   DEBUG(dbgs() << "IssueCycles="
2751         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2752         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2753         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2754         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2755         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2756         if (Rem.IsAcyclicLatencyLimited)
2757           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2758 }
2759 
2760 void GenericScheduler::registerRoots() {
2761   Rem.CriticalPath = DAG->ExitSU.getDepth();
2762 
2763   // Some roots may not feed into ExitSU. Check all of them in case.
2764   for (const SUnit *SU : Bot.Available) {
2765     if (SU->getDepth() > Rem.CriticalPath)
2766       Rem.CriticalPath = SU->getDepth();
2767   }
2768   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2769   if (DumpCriticalPathLength) {
2770     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2771   }
2772 
2773   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2774     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2775     checkAcyclicLatency();
2776   }
2777 }
2778 
2779 static bool tryPressure(const PressureChange &TryP,
2780                         const PressureChange &CandP,
2781                         GenericSchedulerBase::SchedCandidate &TryCand,
2782                         GenericSchedulerBase::SchedCandidate &Cand,
2783                         GenericSchedulerBase::CandReason Reason,
2784                         const TargetRegisterInfo *TRI,
2785                         const MachineFunction &MF) {
2786   // If one candidate decreases and the other increases, go with it.
2787   // Invalid candidates have UnitInc==0.
2788   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2789                  Reason)) {
2790     return true;
2791   }
2792   // Do not compare the magnitude of pressure changes between top and bottom
2793   // boundary.
2794   if (Cand.AtTop != TryCand.AtTop)
2795     return false;
2796 
2797   // If both candidates affect the same set in the same boundary, go with the
2798   // smallest increase.
2799   unsigned TryPSet = TryP.getPSetOrMax();
2800   unsigned CandPSet = CandP.getPSetOrMax();
2801   if (TryPSet == CandPSet) {
2802     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2803                    Reason);
2804   }
2805 
2806   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2807                                  std::numeric_limits<int>::max();
2808 
2809   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2810                                    std::numeric_limits<int>::max();
2811 
2812   // If the candidates are decreasing pressure, reverse priority.
2813   if (TryP.getUnitInc() < 0)
2814     std::swap(TryRank, CandRank);
2815   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2816 }
2817 
2818 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2819   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2820 }
2821 
2822 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2823 /// their physreg def/use.
2824 ///
2825 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2826 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2827 /// with the operation that produces or consumes the physreg. We'll do this when
2828 /// regalloc has support for parallel copies.
2829 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2830   const MachineInstr *MI = SU->getInstr();
2831   if (!MI->isCopy())
2832     return 0;
2833 
2834   unsigned ScheduledOper = isTop ? 1 : 0;
2835   unsigned UnscheduledOper = isTop ? 0 : 1;
2836   // If we have already scheduled the physreg produce/consumer, immediately
2837   // schedule the copy.
2838   if (TargetRegisterInfo::isPhysicalRegister(
2839         MI->getOperand(ScheduledOper).getReg()))
2840     return 1;
2841   // If the physreg is at the boundary, defer it. Otherwise schedule it
2842   // immediately to free the dependent. We can hoist the copy later.
2843   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2844   if (TargetRegisterInfo::isPhysicalRegister(
2845         MI->getOperand(UnscheduledOper).getReg()))
2846     return AtBoundary ? -1 : 1;
2847   return 0;
2848 }
2849 
2850 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2851                                      bool AtTop,
2852                                      const RegPressureTracker &RPTracker,
2853                                      RegPressureTracker &TempTracker) {
2854   Cand.SU = SU;
2855   Cand.AtTop = AtTop;
2856   if (DAG->isTrackingPressure()) {
2857     if (AtTop) {
2858       TempTracker.getMaxDownwardPressureDelta(
2859         Cand.SU->getInstr(),
2860         Cand.RPDelta,
2861         DAG->getRegionCriticalPSets(),
2862         DAG->getRegPressure().MaxSetPressure);
2863     } else {
2864       if (VerifyScheduling) {
2865         TempTracker.getMaxUpwardPressureDelta(
2866           Cand.SU->getInstr(),
2867           &DAG->getPressureDiff(Cand.SU),
2868           Cand.RPDelta,
2869           DAG->getRegionCriticalPSets(),
2870           DAG->getRegPressure().MaxSetPressure);
2871       } else {
2872         RPTracker.getUpwardPressureDelta(
2873           Cand.SU->getInstr(),
2874           DAG->getPressureDiff(Cand.SU),
2875           Cand.RPDelta,
2876           DAG->getRegionCriticalPSets(),
2877           DAG->getRegPressure().MaxSetPressure);
2878       }
2879     }
2880   }
2881   DEBUG(if (Cand.RPDelta.Excess.isValid())
2882           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2883                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2884                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2885 }
2886 
2887 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2888 /// hierarchical. This may be more efficient than a graduated cost model because
2889 /// we don't need to evaluate all aspects of the model for each node in the
2890 /// queue. But it's really done to make the heuristics easier to debug and
2891 /// statistically analyze.
2892 ///
2893 /// \param Cand provides the policy and current best candidate.
2894 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2895 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2896 //              if Cand is from a different zone than TryCand.
2897 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2898                                     SchedCandidate &TryCand,
2899                                     SchedBoundary *Zone) {
2900   // Initialize the candidate if needed.
2901   if (!Cand.isValid()) {
2902     TryCand.Reason = NodeOrder;
2903     return;
2904   }
2905 
2906   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2907                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2908                  TryCand, Cand, PhysRegCopy))
2909     return;
2910 
2911   // Avoid exceeding the target's limit.
2912   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2913                                                Cand.RPDelta.Excess,
2914                                                TryCand, Cand, RegExcess, TRI,
2915                                                DAG->MF))
2916     return;
2917 
2918   // Avoid increasing the max critical pressure in the scheduled region.
2919   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2920                                                Cand.RPDelta.CriticalMax,
2921                                                TryCand, Cand, RegCritical, TRI,
2922                                                DAG->MF))
2923     return;
2924 
2925   // We only compare a subset of features when comparing nodes between
2926   // Top and Bottom boundary. Some properties are simply incomparable, in many
2927   // other instances we should only override the other boundary if something
2928   // is a clear good pick on one boundary. Skip heuristics that are more
2929   // "tie-breaking" in nature.
2930   bool SameBoundary = Zone != nullptr;
2931   if (SameBoundary) {
2932     // For loops that are acyclic path limited, aggressively schedule for
2933     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2934     // heuristics to take precedence.
2935     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2936         tryLatency(TryCand, Cand, *Zone))
2937       return;
2938 
2939     // Prioritize instructions that read unbuffered resources by stall cycles.
2940     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2941                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2942       return;
2943   }
2944 
2945   // Keep clustered nodes together to encourage downstream peephole
2946   // optimizations which may reduce resource requirements.
2947   //
2948   // This is a best effort to set things up for a post-RA pass. Optimizations
2949   // like generating loads of multiple registers should ideally be done within
2950   // the scheduler pass by combining the loads during DAG postprocessing.
2951   const SUnit *CandNextClusterSU =
2952     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2953   const SUnit *TryCandNextClusterSU =
2954     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2955   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2956                  Cand.SU == CandNextClusterSU,
2957                  TryCand, Cand, Cluster))
2958     return;
2959 
2960   if (SameBoundary) {
2961     // Weak edges are for clustering and other constraints.
2962     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2963                 getWeakLeft(Cand.SU, Cand.AtTop),
2964                 TryCand, Cand, Weak))
2965       return;
2966   }
2967 
2968   // Avoid increasing the max pressure of the entire region.
2969   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2970                                                Cand.RPDelta.CurrentMax,
2971                                                TryCand, Cand, RegMax, TRI,
2972                                                DAG->MF))
2973     return;
2974 
2975   if (SameBoundary) {
2976     // Avoid critical resource consumption and balance the schedule.
2977     TryCand.initResourceDelta(DAG, SchedModel);
2978     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2979                 TryCand, Cand, ResourceReduce))
2980       return;
2981     if (tryGreater(TryCand.ResDelta.DemandedResources,
2982                    Cand.ResDelta.DemandedResources,
2983                    TryCand, Cand, ResourceDemand))
2984       return;
2985 
2986     // Avoid serializing long latency dependence chains.
2987     // For acyclic path limited loops, latency was already checked above.
2988     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2989         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2990       return;
2991 
2992     // Fall through to original instruction order.
2993     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2994         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2995       TryCand.Reason = NodeOrder;
2996     }
2997   }
2998 }
2999 
3000 /// Pick the best candidate from the queue.
3001 ///
3002 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3003 /// DAG building. To adjust for the current scheduling location we need to
3004 /// maintain the number of vreg uses remaining to be top-scheduled.
3005 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3006                                          const CandPolicy &ZonePolicy,
3007                                          const RegPressureTracker &RPTracker,
3008                                          SchedCandidate &Cand) {
3009   // getMaxPressureDelta temporarily modifies the tracker.
3010   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3011 
3012   ReadyQueue &Q = Zone.Available;
3013   for (SUnit *SU : Q) {
3014 
3015     SchedCandidate TryCand(ZonePolicy);
3016     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3017     // Pass SchedBoundary only when comparing nodes from the same boundary.
3018     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3019     tryCandidate(Cand, TryCand, ZoneArg);
3020     if (TryCand.Reason != NoCand) {
3021       // Initialize resource delta if needed in case future heuristics query it.
3022       if (TryCand.ResDelta == SchedResourceDelta())
3023         TryCand.initResourceDelta(DAG, SchedModel);
3024       Cand.setBest(TryCand);
3025       DEBUG(traceCandidate(Cand));
3026     }
3027   }
3028 }
3029 
3030 /// Pick the best candidate node from either the top or bottom queue.
3031 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3032   // Schedule as far as possible in the direction of no choice. This is most
3033   // efficient, but also provides the best heuristics for CriticalPSets.
3034   if (SUnit *SU = Bot.pickOnlyChoice()) {
3035     IsTopNode = false;
3036     tracePick(Only1, false);
3037     return SU;
3038   }
3039   if (SUnit *SU = Top.pickOnlyChoice()) {
3040     IsTopNode = true;
3041     tracePick(Only1, true);
3042     return SU;
3043   }
3044   // Set the bottom-up policy based on the state of the current bottom zone and
3045   // the instructions outside the zone, including the top zone.
3046   CandPolicy BotPolicy;
3047   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3048   // Set the top-down policy based on the state of the current top zone and
3049   // the instructions outside the zone, including the bottom zone.
3050   CandPolicy TopPolicy;
3051   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3052 
3053   // See if BotCand is still valid (because we previously scheduled from Top).
3054   DEBUG(dbgs() << "Picking from Bot:\n");
3055   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3056       BotCand.Policy != BotPolicy) {
3057     BotCand.reset(CandPolicy());
3058     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3059     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3060   } else {
3061     DEBUG(traceCandidate(BotCand));
3062 #ifndef NDEBUG
3063     if (VerifyScheduling) {
3064       SchedCandidate TCand;
3065       TCand.reset(CandPolicy());
3066       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3067       assert(TCand.SU == BotCand.SU &&
3068              "Last pick result should correspond to re-picking right now");
3069     }
3070 #endif
3071   }
3072 
3073   // Check if the top Q has a better candidate.
3074   DEBUG(dbgs() << "Picking from Top:\n");
3075   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3076       TopCand.Policy != TopPolicy) {
3077     TopCand.reset(CandPolicy());
3078     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3079     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3080   } else {
3081     DEBUG(traceCandidate(TopCand));
3082 #ifndef NDEBUG
3083     if (VerifyScheduling) {
3084       SchedCandidate TCand;
3085       TCand.reset(CandPolicy());
3086       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3087       assert(TCand.SU == TopCand.SU &&
3088            "Last pick result should correspond to re-picking right now");
3089     }
3090 #endif
3091   }
3092 
3093   // Pick best from BotCand and TopCand.
3094   assert(BotCand.isValid());
3095   assert(TopCand.isValid());
3096   SchedCandidate Cand = BotCand;
3097   TopCand.Reason = NoCand;
3098   tryCandidate(Cand, TopCand, nullptr);
3099   if (TopCand.Reason != NoCand) {
3100     Cand.setBest(TopCand);
3101     DEBUG(traceCandidate(Cand));
3102   }
3103 
3104   IsTopNode = Cand.AtTop;
3105   tracePick(Cand);
3106   return Cand.SU;
3107 }
3108 
3109 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3110 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3111   if (DAG->top() == DAG->bottom()) {
3112     assert(Top.Available.empty() && Top.Pending.empty() &&
3113            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3114     return nullptr;
3115   }
3116   SUnit *SU;
3117   do {
3118     if (RegionPolicy.OnlyTopDown) {
3119       SU = Top.pickOnlyChoice();
3120       if (!SU) {
3121         CandPolicy NoPolicy;
3122         TopCand.reset(NoPolicy);
3123         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3124         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3125         tracePick(TopCand);
3126         SU = TopCand.SU;
3127       }
3128       IsTopNode = true;
3129     } else if (RegionPolicy.OnlyBottomUp) {
3130       SU = Bot.pickOnlyChoice();
3131       if (!SU) {
3132         CandPolicy NoPolicy;
3133         BotCand.reset(NoPolicy);
3134         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3135         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3136         tracePick(BotCand);
3137         SU = BotCand.SU;
3138       }
3139       IsTopNode = false;
3140     } else {
3141       SU = pickNodeBidirectional(IsTopNode);
3142     }
3143   } while (SU->isScheduled);
3144 
3145   if (SU->isTopReady())
3146     Top.removeReady(SU);
3147   if (SU->isBottomReady())
3148     Bot.removeReady(SU);
3149 
3150   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3151   return SU;
3152 }
3153 
3154 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3155   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3156   if (!isTop)
3157     ++InsertPos;
3158   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3159 
3160   // Find already scheduled copies with a single physreg dependence and move
3161   // them just above the scheduled instruction.
3162   for (SDep &Dep : Deps) {
3163     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3164       continue;
3165     SUnit *DepSU = Dep.getSUnit();
3166     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3167       continue;
3168     MachineInstr *Copy = DepSU->getInstr();
3169     if (!Copy->isCopy())
3170       continue;
3171     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3172           Dep.getSUnit()->dump(DAG));
3173     DAG->moveInstruction(Copy, InsertPos);
3174   }
3175 }
3176 
3177 /// Update the scheduler's state after scheduling a node. This is the same node
3178 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3179 /// update it's state based on the current cycle before MachineSchedStrategy
3180 /// does.
3181 ///
3182 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3183 /// them here. See comments in biasPhysRegCopy.
3184 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3185   if (IsTopNode) {
3186     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3187     Top.bumpNode(SU);
3188     if (SU->hasPhysRegUses)
3189       reschedulePhysRegCopies(SU, true);
3190   } else {
3191     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3192     Bot.bumpNode(SU);
3193     if (SU->hasPhysRegDefs)
3194       reschedulePhysRegCopies(SU, false);
3195   }
3196 }
3197 
3198 /// Create the standard converging machine scheduler. This will be used as the
3199 /// default scheduler if the target does not set a default.
3200 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3201   ScheduleDAGMILive *DAG =
3202       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3203   // Register DAG post-processors.
3204   //
3205   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3206   // data and pass it to later mutations. Have a single mutation that gathers
3207   // the interesting nodes in one pass.
3208   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3209   return DAG;
3210 }
3211 
3212 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3213   return createGenericSchedLive(C);
3214 }
3215 
3216 static MachineSchedRegistry
3217 GenericSchedRegistry("converge", "Standard converging scheduler.",
3218                      createConveringSched);
3219 
3220 //===----------------------------------------------------------------------===//
3221 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3222 //===----------------------------------------------------------------------===//
3223 
3224 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3225   DAG = Dag;
3226   SchedModel = DAG->getSchedModel();
3227   TRI = DAG->TRI;
3228 
3229   Rem.init(DAG, SchedModel);
3230   Top.init(DAG, SchedModel, &Rem);
3231   BotRoots.clear();
3232 
3233   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3234   // or are disabled, then these HazardRecs will be disabled.
3235   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3236   if (!Top.HazardRec) {
3237     Top.HazardRec =
3238         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3239             Itin, DAG);
3240   }
3241 }
3242 
3243 void PostGenericScheduler::registerRoots() {
3244   Rem.CriticalPath = DAG->ExitSU.getDepth();
3245 
3246   // Some roots may not feed into ExitSU. Check all of them in case.
3247   for (const SUnit *SU : BotRoots) {
3248     if (SU->getDepth() > Rem.CriticalPath)
3249       Rem.CriticalPath = SU->getDepth();
3250   }
3251   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3252   if (DumpCriticalPathLength) {
3253     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3254   }
3255 }
3256 
3257 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3258 ///
3259 /// \param Cand provides the policy and current best candidate.
3260 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3261 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3262                                         SchedCandidate &TryCand) {
3263   // Initialize the candidate if needed.
3264   if (!Cand.isValid()) {
3265     TryCand.Reason = NodeOrder;
3266     return;
3267   }
3268 
3269   // Prioritize instructions that read unbuffered resources by stall cycles.
3270   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3271               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3272     return;
3273 
3274   // Keep clustered nodes together.
3275   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3276                  Cand.SU == DAG->getNextClusterSucc(),
3277                  TryCand, Cand, Cluster))
3278     return;
3279 
3280   // Avoid critical resource consumption and balance the schedule.
3281   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3282               TryCand, Cand, ResourceReduce))
3283     return;
3284   if (tryGreater(TryCand.ResDelta.DemandedResources,
3285                  Cand.ResDelta.DemandedResources,
3286                  TryCand, Cand, ResourceDemand))
3287     return;
3288 
3289   // Avoid serializing long latency dependence chains.
3290   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3291     return;
3292   }
3293 
3294   // Fall through to original instruction order.
3295   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3296     TryCand.Reason = NodeOrder;
3297 }
3298 
3299 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3300   ReadyQueue &Q = Top.Available;
3301   for (SUnit *SU : Q) {
3302     SchedCandidate TryCand(Cand.Policy);
3303     TryCand.SU = SU;
3304     TryCand.AtTop = true;
3305     TryCand.initResourceDelta(DAG, SchedModel);
3306     tryCandidate(Cand, TryCand);
3307     if (TryCand.Reason != NoCand) {
3308       Cand.setBest(TryCand);
3309       DEBUG(traceCandidate(Cand));
3310     }
3311   }
3312 }
3313 
3314 /// Pick the next node to schedule.
3315 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3316   if (DAG->top() == DAG->bottom()) {
3317     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3318     return nullptr;
3319   }
3320   SUnit *SU;
3321   do {
3322     SU = Top.pickOnlyChoice();
3323     if (SU) {
3324       tracePick(Only1, true);
3325     } else {
3326       CandPolicy NoPolicy;
3327       SchedCandidate TopCand(NoPolicy);
3328       // Set the top-down policy based on the state of the current top zone and
3329       // the instructions outside the zone, including the bottom zone.
3330       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3331       pickNodeFromQueue(TopCand);
3332       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3333       tracePick(TopCand);
3334       SU = TopCand.SU;
3335     }
3336   } while (SU->isScheduled);
3337 
3338   IsTopNode = true;
3339   Top.removeReady(SU);
3340 
3341   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()
3342                << '\n');
3343   return SU;
3344 }
3345 
3346 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3347 /// scheduled/remaining flags in the DAG nodes.
3348 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3349   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3350   Top.bumpNode(SU);
3351 }
3352 
3353 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3354   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3355                            /*RemoveKillFlags=*/true);
3356 }
3357 
3358 //===----------------------------------------------------------------------===//
3359 // ILP Scheduler. Currently for experimental analysis of heuristics.
3360 //===----------------------------------------------------------------------===//
3361 
3362 namespace {
3363 
3364 /// \brief Order nodes by the ILP metric.
3365 struct ILPOrder {
3366   const SchedDFSResult *DFSResult = nullptr;
3367   const BitVector *ScheduledTrees = nullptr;
3368   bool MaximizeILP;
3369 
3370   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3371 
3372   /// \brief Apply a less-than relation on node priority.
3373   ///
3374   /// (Return true if A comes after B in the Q.)
3375   bool operator()(const SUnit *A, const SUnit *B) const {
3376     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3377     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3378     if (SchedTreeA != SchedTreeB) {
3379       // Unscheduled trees have lower priority.
3380       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3381         return ScheduledTrees->test(SchedTreeB);
3382 
3383       // Trees with shallower connections have have lower priority.
3384       if (DFSResult->getSubtreeLevel(SchedTreeA)
3385           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3386         return DFSResult->getSubtreeLevel(SchedTreeA)
3387           < DFSResult->getSubtreeLevel(SchedTreeB);
3388       }
3389     }
3390     if (MaximizeILP)
3391       return DFSResult->getILP(A) < DFSResult->getILP(B);
3392     else
3393       return DFSResult->getILP(A) > DFSResult->getILP(B);
3394   }
3395 };
3396 
3397 /// \brief Schedule based on the ILP metric.
3398 class ILPScheduler : public MachineSchedStrategy {
3399   ScheduleDAGMILive *DAG = nullptr;
3400   ILPOrder Cmp;
3401 
3402   std::vector<SUnit*> ReadyQ;
3403 
3404 public:
3405   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3406 
3407   void initialize(ScheduleDAGMI *dag) override {
3408     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3409     DAG = static_cast<ScheduleDAGMILive*>(dag);
3410     DAG->computeDFSResult();
3411     Cmp.DFSResult = DAG->getDFSResult();
3412     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3413     ReadyQ.clear();
3414   }
3415 
3416   void registerRoots() override {
3417     // Restore the heap in ReadyQ with the updated DFS results.
3418     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3419   }
3420 
3421   /// Implement MachineSchedStrategy interface.
3422   /// -----------------------------------------
3423 
3424   /// Callback to select the highest priority node from the ready Q.
3425   SUnit *pickNode(bool &IsTopNode) override {
3426     if (ReadyQ.empty()) return nullptr;
3427     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3428     SUnit *SU = ReadyQ.back();
3429     ReadyQ.pop_back();
3430     IsTopNode = false;
3431     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3432           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3433           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3434           << DAG->getDFSResult()->getSubtreeLevel(
3435             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3436           << "Scheduling " << *SU->getInstr());
3437     return SU;
3438   }
3439 
3440   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3441   void scheduleTree(unsigned SubtreeID) override {
3442     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3443   }
3444 
3445   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3446   /// DFSResults, and resort the priority Q.
3447   void schedNode(SUnit *SU, bool IsTopNode) override {
3448     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3449   }
3450 
3451   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3452 
3453   void releaseBottomNode(SUnit *SU) override {
3454     ReadyQ.push_back(SU);
3455     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3456   }
3457 };
3458 
3459 } // end anonymous namespace
3460 
3461 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3462   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3463 }
3464 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3465   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3466 }
3467 
3468 static MachineSchedRegistry ILPMaxRegistry(
3469   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3470 static MachineSchedRegistry ILPMinRegistry(
3471   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3472 
3473 //===----------------------------------------------------------------------===//
3474 // Machine Instruction Shuffler for Correctness Testing
3475 //===----------------------------------------------------------------------===//
3476 
3477 #ifndef NDEBUG
3478 namespace {
3479 
3480 /// Apply a less-than relation on the node order, which corresponds to the
3481 /// instruction order prior to scheduling. IsReverse implements greater-than.
3482 template<bool IsReverse>
3483 struct SUnitOrder {
3484   bool operator()(SUnit *A, SUnit *B) const {
3485     if (IsReverse)
3486       return A->NodeNum > B->NodeNum;
3487     else
3488       return A->NodeNum < B->NodeNum;
3489   }
3490 };
3491 
3492 /// Reorder instructions as much as possible.
3493 class InstructionShuffler : public MachineSchedStrategy {
3494   bool IsAlternating;
3495   bool IsTopDown;
3496 
3497   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3498   // gives nodes with a higher number higher priority causing the latest
3499   // instructions to be scheduled first.
3500   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3501     TopQ;
3502 
3503   // When scheduling bottom-up, use greater-than as the queue priority.
3504   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3505     BottomQ;
3506 
3507 public:
3508   InstructionShuffler(bool alternate, bool topdown)
3509     : IsAlternating(alternate), IsTopDown(topdown) {}
3510 
3511   void initialize(ScheduleDAGMI*) override {
3512     TopQ.clear();
3513     BottomQ.clear();
3514   }
3515 
3516   /// Implement MachineSchedStrategy interface.
3517   /// -----------------------------------------
3518 
3519   SUnit *pickNode(bool &IsTopNode) override {
3520     SUnit *SU;
3521     if (IsTopDown) {
3522       do {
3523         if (TopQ.empty()) return nullptr;
3524         SU = TopQ.top();
3525         TopQ.pop();
3526       } while (SU->isScheduled);
3527       IsTopNode = true;
3528     } else {
3529       do {
3530         if (BottomQ.empty()) return nullptr;
3531         SU = BottomQ.top();
3532         BottomQ.pop();
3533       } while (SU->isScheduled);
3534       IsTopNode = false;
3535     }
3536     if (IsAlternating)
3537       IsTopDown = !IsTopDown;
3538     return SU;
3539   }
3540 
3541   void schedNode(SUnit *SU, bool IsTopNode) override {}
3542 
3543   void releaseTopNode(SUnit *SU) override {
3544     TopQ.push(SU);
3545   }
3546   void releaseBottomNode(SUnit *SU) override {
3547     BottomQ.push(SU);
3548   }
3549 };
3550 
3551 } // end anonymous namespace
3552 
3553 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3554   bool Alternate = !ForceTopDown && !ForceBottomUp;
3555   bool TopDown = !ForceBottomUp;
3556   assert((TopDown || !ForceTopDown) &&
3557          "-misched-topdown incompatible with -misched-bottomup");
3558   return new ScheduleDAGMILive(
3559       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3560 }
3561 
3562 static MachineSchedRegistry ShufflerRegistry(
3563   "shuffle", "Shuffle machine instructions alternating directions",
3564   createInstructionShuffler);
3565 #endif // !NDEBUG
3566 
3567 //===----------------------------------------------------------------------===//
3568 // GraphWriter support for ScheduleDAGMILive.
3569 //===----------------------------------------------------------------------===//
3570 
3571 #ifndef NDEBUG
3572 namespace llvm {
3573 
3574 template<> struct GraphTraits<
3575   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3576 
3577 template<>
3578 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3579   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3580 
3581   static std::string getGraphName(const ScheduleDAG *G) {
3582     return G->MF.getName();
3583   }
3584 
3585   static bool renderGraphFromBottomUp() {
3586     return true;
3587   }
3588 
3589   static bool isNodeHidden(const SUnit *Node) {
3590     if (ViewMISchedCutoff == 0)
3591       return false;
3592     return (Node->Preds.size() > ViewMISchedCutoff
3593          || Node->Succs.size() > ViewMISchedCutoff);
3594   }
3595 
3596   /// If you want to override the dot attributes printed for a particular
3597   /// edge, override this method.
3598   static std::string getEdgeAttributes(const SUnit *Node,
3599                                        SUnitIterator EI,
3600                                        const ScheduleDAG *Graph) {
3601     if (EI.isArtificialDep())
3602       return "color=cyan,style=dashed";
3603     if (EI.isCtrlDep())
3604       return "color=blue,style=dashed";
3605     return "";
3606   }
3607 
3608   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3609     std::string Str;
3610     raw_string_ostream SS(Str);
3611     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3612     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3613       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3614     SS << "SU:" << SU->NodeNum;
3615     if (DFS)
3616       SS << " I:" << DFS->getNumInstrs(SU);
3617     return SS.str();
3618   }
3619 
3620   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3621     return G->getGraphNodeLabel(SU);
3622   }
3623 
3624   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3625     std::string Str("shape=Mrecord");
3626     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3627     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3628       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3629     if (DFS) {
3630       Str += ",style=filled,fillcolor=\"#";
3631       Str += DOT::getColorString(DFS->getSubtreeID(N));
3632       Str += '"';
3633     }
3634     return Str;
3635   }
3636 };
3637 
3638 } // end namespace llvm
3639 #endif // NDEBUG
3640 
3641 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3642 /// rendered using 'dot'.
3643 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3644 #ifndef NDEBUG
3645   ViewGraph(this, Name, false, Title);
3646 #else
3647   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3648          << "systems with Graphviz or gv!\n";
3649 #endif  // NDEBUG
3650 }
3651 
3652 /// Out-of-line implementation with no arguments is handy for gdb.
3653 void ScheduleDAGMI::viewGraph() {
3654   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3655 }
3656