1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 228 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequiredID(MachineDominatorsID); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<TargetPassConfig>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 MachinePassRegistry MachineSchedRegistry::Registry; 240 241 /// A dummy default scheduler factory indicates whether the scheduler 242 /// is overridden on the command line. 243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 244 return nullptr; 245 } 246 247 /// MachineSchedOpt allows command line selection of the scheduler. 248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 249 RegisterPassParser<MachineSchedRegistry>> 250 MachineSchedOpt("misched", 251 cl::init(&useDefaultMachineSched), cl::Hidden, 252 cl::desc("Machine instruction scheduler to use")); 253 254 static MachineSchedRegistry 255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 256 useDefaultMachineSched); 257 258 static cl::opt<bool> EnableMachineSched( 259 "enable-misched", 260 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 261 cl::Hidden); 262 263 static cl::opt<bool> EnablePostRAMachineSched( 264 "enable-post-misched", 265 cl::desc("Enable the post-ra machine instruction scheduling pass."), 266 cl::init(true), cl::Hidden); 267 268 /// Decrement this iterator until reaching the top or a non-debug instr. 269 static MachineBasicBlock::const_iterator 270 priorNonDebug(MachineBasicBlock::const_iterator I, 271 MachineBasicBlock::const_iterator Beg) { 272 assert(I != Beg && "reached the top of the region, cannot decrement"); 273 while (--I != Beg) { 274 if (!I->isDebugValue()) 275 break; 276 } 277 return I; 278 } 279 280 /// Non-const version. 281 static MachineBasicBlock::iterator 282 priorNonDebug(MachineBasicBlock::iterator I, 283 MachineBasicBlock::const_iterator Beg) { 284 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 285 .getNonConstIterator(); 286 } 287 288 /// If this iterator is a debug value, increment until reaching the End or a 289 /// non-debug instruction. 290 static MachineBasicBlock::const_iterator 291 nextIfDebug(MachineBasicBlock::const_iterator I, 292 MachineBasicBlock::const_iterator End) { 293 for(; I != End; ++I) { 294 if (!I->isDebugValue()) 295 break; 296 } 297 return I; 298 } 299 300 /// Non-const version. 301 static MachineBasicBlock::iterator 302 nextIfDebug(MachineBasicBlock::iterator I, 303 MachineBasicBlock::const_iterator End) { 304 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 305 .getNonConstIterator(); 306 } 307 308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 310 // Select the scheduler, or set the default. 311 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 312 if (Ctor != useDefaultMachineSched) 313 return Ctor(this); 314 315 // Get the default scheduler set by the target for this function. 316 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 317 if (Scheduler) 318 return Scheduler; 319 320 // Default to GenericScheduler. 321 return createGenericSchedLive(this); 322 } 323 324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 325 /// the caller. We don't have a command line option to override the postRA 326 /// scheduler. The Target must configure it. 327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 328 // Get the postRA scheduler set by the target for this function. 329 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 330 if (Scheduler) 331 return Scheduler; 332 333 // Default to GenericScheduler. 334 return createGenericSchedPostRA(this); 335 } 336 337 /// Top-level MachineScheduler pass driver. 338 /// 339 /// Visit blocks in function order. Divide each block into scheduling regions 340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 341 /// consistent with the DAG builder, which traverses the interior of the 342 /// scheduling regions bottom-up. 343 /// 344 /// This design avoids exposing scheduling boundaries to the DAG builder, 345 /// simplifying the DAG builder's support for "special" target instructions. 346 /// At the same time the design allows target schedulers to operate across 347 /// scheduling boundaries, for example to bundle the boudary instructions 348 /// without reordering them. This creates complexity, because the target 349 /// scheduler must update the RegionBegin and RegionEnd positions cached by 350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 351 /// design would be to split blocks at scheduling boundaries, but LLVM has a 352 /// general bias against block splitting purely for implementation simplicity. 353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 354 if (skipFunction(mf.getFunction())) 355 return false; 356 357 if (EnableMachineSched.getNumOccurrences()) { 358 if (!EnableMachineSched) 359 return false; 360 } else if (!mf.getSubtarget().enableMachineScheduler()) 361 return false; 362 363 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 MDT = &getAnalysis<MachineDominatorTree>(); 369 PassConfig = &getAnalysis<TargetPassConfig>(); 370 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 371 372 LIS = &getAnalysis<LiveIntervals>(); 373 374 if (VerifyScheduling) { 375 DEBUG(LIS->dump()); 376 MF->verify(this, "Before machine scheduling."); 377 } 378 RegClassInfo->runOnMachineFunction(*MF); 379 380 // Instantiate the selected scheduler for this target, function, and 381 // optimization level. 382 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 383 scheduleRegions(*Scheduler, false); 384 385 DEBUG(LIS->dump()); 386 if (VerifyScheduling) 387 MF->verify(this, "After machine scheduling."); 388 return true; 389 } 390 391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 392 if (skipFunction(mf.getFunction())) 393 return false; 394 395 if (EnablePostRAMachineSched.getNumOccurrences()) { 396 if (!EnablePostRAMachineSched) 397 return false; 398 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 399 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 400 return false; 401 } 402 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 403 404 // Initialize the context of the pass. 405 MF = &mf; 406 MLI = &getAnalysis<MachineLoopInfo>(); 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// A region of an MBB for scheduling. 440 namespace { 441 struct SchedRegion { 442 /// RegionBegin is the first instruction in the scheduling region, and 443 /// RegionEnd is either MBB->end() or the scheduling boundary after the 444 /// last instruction in the scheduling region. These iterators cannot refer 445 /// to instructions outside of the identified scheduling region because 446 /// those may be reordered before scheduling this region. 447 MachineBasicBlock::iterator RegionBegin; 448 MachineBasicBlock::iterator RegionEnd; 449 unsigned NumRegionInstrs; 450 451 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 452 unsigned N) : 453 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 454 }; 455 } // end anonymous namespace 456 457 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 458 459 static void 460 getSchedRegions(MachineBasicBlock *MBB, 461 MBBRegionsVector &Regions, 462 bool RegionsTopDown) { 463 MachineFunction *MF = MBB->getParent(); 464 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 465 466 MachineBasicBlock::iterator I = nullptr; 467 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 468 RegionEnd != MBB->begin(); RegionEnd = I) { 469 470 // Avoid decrementing RegionEnd for blocks with no terminator. 471 if (RegionEnd != MBB->end() || 472 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 473 --RegionEnd; 474 } 475 476 // The next region starts above the previous region. Look backward in the 477 // instruction stream until we find the nearest boundary. 478 unsigned NumRegionInstrs = 0; 479 I = RegionEnd; 480 for (;I != MBB->begin(); --I) { 481 MachineInstr &MI = *std::prev(I); 482 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 483 break; 484 if (!MI.isDebugValue()) 485 // MBB::size() uses instr_iterator to count. Here we need a bundle to 486 // count as a single instruction. 487 ++NumRegionInstrs; 488 } 489 490 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 491 } 492 493 if (RegionsTopDown) 494 std::reverse(Regions.begin(), Regions.end()); 495 } 496 497 /// Main driver for both MachineScheduler and PostMachineScheduler. 498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 499 bool FixKillFlags) { 500 // Visit all machine basic blocks. 501 // 502 // TODO: Visit blocks in global postorder or postorder within the bottom-up 503 // loop tree. Then we can optionally compute global RegPressure. 504 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 505 MBB != MBBEnd; ++MBB) { 506 507 Scheduler.startBlock(&*MBB); 508 509 #ifndef NDEBUG 510 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 511 continue; 512 if (SchedOnlyBlock.getNumOccurrences() 513 && (int)SchedOnlyBlock != MBB->getNumber()) 514 continue; 515 #endif 516 517 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 518 // points to the scheduling boundary at the bottom of the region. The DAG 519 // does not include RegionEnd, but the region does (i.e. the next 520 // RegionEnd is above the previous RegionBegin). If the current block has 521 // no terminator then RegionEnd == MBB->end() for the bottom region. 522 // 523 // All the regions of MBB are first found and stored in MBBRegions, which 524 // will be processed (MBB) top-down if initialized with true. 525 // 526 // The Scheduler may insert instructions during either schedule() or 527 // exitRegion(), even for empty regions. So the local iterators 'I' and 528 // 'RegionEnd' are invalid across these calls. Instructions must not be 529 // added to other regions than the current one without updating MBBRegions. 530 531 MBBRegionsVector MBBRegions; 532 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 533 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 534 R != MBBRegions.end(); ++R) { 535 MachineBasicBlock::iterator I = R->RegionBegin; 536 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 537 unsigned NumRegionInstrs = R->NumRegionInstrs; 538 539 // Notify the scheduler of the region, even if we may skip scheduling 540 // it. Perhaps it still needs to be bundled. 541 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (I == RegionEnd || I == std::prev(RegionEnd)) { 545 // Close the current region. Bundle the terminator if needed. 546 // This invalidates 'RegionEnd' and 'I'. 547 Scheduler.exitRegion(); 548 continue; 549 } 550 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 551 DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " " 552 << MBB->getName() << "\n From: " << *I << '\n' 553 << " To: "; 554 if (RegionEnd != MBB->end()) { 555 dbgs() << *RegionEnd << '\n'; 556 } else { 557 dbgs() << "End"; 558 } 559 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 560 if (DumpCriticalPathLength) { 561 errs() << MF->getName(); 562 errs() << ":%bb. " << MBB->getNumber(); 563 errs() << " " << MBB->getName() << " \n"; 564 } 565 566 // Schedule a region: possibly reorder instructions. 567 // This invalidates the original region iterators. 568 Scheduler.schedule(); 569 570 // Close the current region. 571 Scheduler.exitRegion(); 572 } 573 Scheduler.finishBlock(); 574 // FIXME: Ideally, no further passes should rely on kill flags. However, 575 // thumb2 size reduction is currently an exception, so the PostMIScheduler 576 // needs to do this. 577 if (FixKillFlags) 578 Scheduler.fixupKills(*MBB); 579 } 580 Scheduler.finalizeSchedule(); 581 } 582 583 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 584 // unimplemented 585 } 586 587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 588 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 589 dbgs() << "Queue " << Name << ": "; 590 for (const SUnit *SU : Queue) 591 dbgs() << SU->NodeNum << " "; 592 dbgs() << "\n"; 593 } 594 #endif 595 596 //===----------------------------------------------------------------------===// 597 // ScheduleDAGMI - Basic machine instruction scheduling. This is 598 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 599 // virtual registers. 600 // ===----------------------------------------------------------------------===/ 601 602 // Provide a vtable anchor. 603 ScheduleDAGMI::~ScheduleDAGMI() = default; 604 605 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 606 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 607 } 608 609 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 610 if (SuccSU != &ExitSU) { 611 // Do not use WillCreateCycle, it assumes SD scheduling. 612 // If Pred is reachable from Succ, then the edge creates a cycle. 613 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 614 return false; 615 Topo.AddPred(SuccSU, PredDep.getSUnit()); 616 } 617 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 618 // Return true regardless of whether a new edge needed to be inserted. 619 return true; 620 } 621 622 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 623 /// NumPredsLeft reaches zero, release the successor node. 624 /// 625 /// FIXME: Adjust SuccSU height based on MinLatency. 626 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 627 SUnit *SuccSU = SuccEdge->getSUnit(); 628 629 if (SuccEdge->isWeak()) { 630 --SuccSU->WeakPredsLeft; 631 if (SuccEdge->isCluster()) 632 NextClusterSucc = SuccSU; 633 return; 634 } 635 #ifndef NDEBUG 636 if (SuccSU->NumPredsLeft == 0) { 637 dbgs() << "*** Scheduling failed! ***\n"; 638 SuccSU->dump(this); 639 dbgs() << " has been released too many times!\n"; 640 llvm_unreachable(nullptr); 641 } 642 #endif 643 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 644 // CurrCycle may have advanced since then. 645 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 646 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 647 648 --SuccSU->NumPredsLeft; 649 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 650 SchedImpl->releaseTopNode(SuccSU); 651 } 652 653 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 654 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 655 for (SDep &Succ : SU->Succs) 656 releaseSucc(SU, &Succ); 657 } 658 659 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 660 /// NumSuccsLeft reaches zero, release the predecessor node. 661 /// 662 /// FIXME: Adjust PredSU height based on MinLatency. 663 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 664 SUnit *PredSU = PredEdge->getSUnit(); 665 666 if (PredEdge->isWeak()) { 667 --PredSU->WeakSuccsLeft; 668 if (PredEdge->isCluster()) 669 NextClusterPred = PredSU; 670 return; 671 } 672 #ifndef NDEBUG 673 if (PredSU->NumSuccsLeft == 0) { 674 dbgs() << "*** Scheduling failed! ***\n"; 675 PredSU->dump(this); 676 dbgs() << " has been released too many times!\n"; 677 llvm_unreachable(nullptr); 678 } 679 #endif 680 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 681 // CurrCycle may have advanced since then. 682 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 683 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 684 685 --PredSU->NumSuccsLeft; 686 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 687 SchedImpl->releaseBottomNode(PredSU); 688 } 689 690 /// releasePredecessors - Call releasePred on each of SU's predecessors. 691 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 692 for (SDep &Pred : SU->Preds) 693 releasePred(SU, &Pred); 694 } 695 696 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 697 ScheduleDAGInstrs::startBlock(bb); 698 SchedImpl->enterMBB(bb); 699 } 700 701 void ScheduleDAGMI::finishBlock() { 702 SchedImpl->leaveMBB(); 703 ScheduleDAGInstrs::finishBlock(); 704 } 705 706 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 707 /// crossing a scheduling boundary. [begin, end) includes all instructions in 708 /// the region, including the boundary itself and single-instruction regions 709 /// that don't get scheduled. 710 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 711 MachineBasicBlock::iterator begin, 712 MachineBasicBlock::iterator end, 713 unsigned regioninstrs) 714 { 715 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 716 717 SchedImpl->initPolicy(begin, end, regioninstrs); 718 } 719 720 /// This is normally called from the main scheduler loop but may also be invoked 721 /// by the scheduling strategy to perform additional code motion. 722 void ScheduleDAGMI::moveInstruction( 723 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 724 // Advance RegionBegin if the first instruction moves down. 725 if (&*RegionBegin == MI) 726 ++RegionBegin; 727 728 // Update the instruction stream. 729 BB->splice(InsertPos, BB, MI); 730 731 // Update LiveIntervals 732 if (LIS) 733 LIS->handleMove(*MI, /*UpdateFlags=*/true); 734 735 // Recede RegionBegin if an instruction moves above the first. 736 if (RegionBegin == InsertPos) 737 RegionBegin = MI; 738 } 739 740 bool ScheduleDAGMI::checkSchedLimit() { 741 #ifndef NDEBUG 742 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 743 CurrentTop = CurrentBottom; 744 return false; 745 } 746 ++NumInstrsScheduled; 747 #endif 748 return true; 749 } 750 751 /// Per-region scheduling driver, called back from 752 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 753 /// does not consider liveness or register pressure. It is useful for PostRA 754 /// scheduling and potentially other custom schedulers. 755 void ScheduleDAGMI::schedule() { 756 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 757 DEBUG(SchedImpl->dumpPolicy()); 758 759 // Build the DAG. 760 buildSchedGraph(AA); 761 762 Topo.InitDAGTopologicalSorting(); 763 764 postprocessDAG(); 765 766 SmallVector<SUnit*, 8> TopRoots, BotRoots; 767 findRootsAndBiasEdges(TopRoots, BotRoots); 768 769 // Initialize the strategy before modifying the DAG. 770 // This may initialize a DFSResult to be used for queue priority. 771 SchedImpl->initialize(this); 772 773 DEBUG( 774 if (EntrySU.getInstr() != nullptr) 775 EntrySU.dumpAll(this); 776 for (const SUnit &SU : SUnits) 777 SU.dumpAll(this); 778 if (ExitSU.getInstr() != nullptr) 779 ExitSU.dumpAll(this); 780 ); 781 if (ViewMISchedDAGs) viewGraph(); 782 783 // Initialize ready queues now that the DAG and priority data are finalized. 784 initQueues(TopRoots, BotRoots); 785 786 bool IsTopNode = false; 787 while (true) { 788 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 789 SUnit *SU = SchedImpl->pickNode(IsTopNode); 790 if (!SU) break; 791 792 assert(!SU->isScheduled && "Node already scheduled"); 793 if (!checkSchedLimit()) 794 break; 795 796 MachineInstr *MI = SU->getInstr(); 797 if (IsTopNode) { 798 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 799 if (&*CurrentTop == MI) 800 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 801 else 802 moveInstruction(MI, CurrentTop); 803 } else { 804 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 805 MachineBasicBlock::iterator priorII = 806 priorNonDebug(CurrentBottom, CurrentTop); 807 if (&*priorII == MI) 808 CurrentBottom = priorII; 809 else { 810 if (&*CurrentTop == MI) 811 CurrentTop = nextIfDebug(++CurrentTop, priorII); 812 moveInstruction(MI, CurrentBottom); 813 CurrentBottom = MI; 814 } 815 } 816 // Notify the scheduling strategy before updating the DAG. 817 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 818 // runs, it can then use the accurate ReadyCycle time to determine whether 819 // newly released nodes can move to the readyQ. 820 SchedImpl->schedNode(SU, IsTopNode); 821 822 updateQueues(SU, IsTopNode); 823 } 824 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 825 826 placeDebugValues(); 827 828 DEBUG({ 829 dbgs() << "*** Final schedule for " 830 << printMBBReference(*begin()->getParent()) << " ***\n"; 831 dumpSchedule(); 832 dbgs() << '\n'; 833 }); 834 } 835 836 /// Apply each ScheduleDAGMutation step in order. 837 void ScheduleDAGMI::postprocessDAG() { 838 for (auto &m : Mutations) 839 m->apply(this); 840 } 841 842 void ScheduleDAGMI:: 843 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 844 SmallVectorImpl<SUnit*> &BotRoots) { 845 for (SUnit &SU : SUnits) { 846 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 847 848 // Order predecessors so DFSResult follows the critical path. 849 SU.biasCriticalPath(); 850 851 // A SUnit is ready to top schedule if it has no predecessors. 852 if (!SU.NumPredsLeft) 853 TopRoots.push_back(&SU); 854 // A SUnit is ready to bottom schedule if it has no successors. 855 if (!SU.NumSuccsLeft) 856 BotRoots.push_back(&SU); 857 } 858 ExitSU.biasCriticalPath(); 859 } 860 861 /// Identify DAG roots and setup scheduler queues. 862 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 863 ArrayRef<SUnit*> BotRoots) { 864 NextClusterSucc = nullptr; 865 NextClusterPred = nullptr; 866 867 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 868 // 869 // Nodes with unreleased weak edges can still be roots. 870 // Release top roots in forward order. 871 for (SUnit *SU : TopRoots) 872 SchedImpl->releaseTopNode(SU); 873 874 // Release bottom roots in reverse order so the higher priority nodes appear 875 // first. This is more natural and slightly more efficient. 876 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 877 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 878 SchedImpl->releaseBottomNode(*I); 879 } 880 881 releaseSuccessors(&EntrySU); 882 releasePredecessors(&ExitSU); 883 884 SchedImpl->registerRoots(); 885 886 // Advance past initial DebugValues. 887 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 888 CurrentBottom = RegionEnd; 889 } 890 891 /// Update scheduler queues after scheduling an instruction. 892 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 893 // Release dependent instructions for scheduling. 894 if (IsTopNode) 895 releaseSuccessors(SU); 896 else 897 releasePredecessors(SU); 898 899 SU->isScheduled = true; 900 } 901 902 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 903 void ScheduleDAGMI::placeDebugValues() { 904 // If first instruction was a DBG_VALUE then put it back. 905 if (FirstDbgValue) { 906 BB->splice(RegionBegin, BB, FirstDbgValue); 907 RegionBegin = FirstDbgValue; 908 } 909 910 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 911 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 912 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 913 MachineInstr *DbgValue = P.first; 914 MachineBasicBlock::iterator OrigPrevMI = P.second; 915 if (&*RegionBegin == DbgValue) 916 ++RegionBegin; 917 BB->splice(++OrigPrevMI, BB, DbgValue); 918 if (OrigPrevMI == std::prev(RegionEnd)) 919 RegionEnd = DbgValue; 920 } 921 DbgValues.clear(); 922 FirstDbgValue = nullptr; 923 } 924 925 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 926 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 927 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 928 if (SUnit *SU = getSUnit(&(*MI))) 929 SU->dump(this); 930 else 931 dbgs() << "Missing SUnit\n"; 932 } 933 } 934 #endif 935 936 //===----------------------------------------------------------------------===// 937 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 938 // preservation. 939 //===----------------------------------------------------------------------===// 940 941 ScheduleDAGMILive::~ScheduleDAGMILive() { 942 delete DFSResult; 943 } 944 945 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 946 const MachineInstr &MI = *SU.getInstr(); 947 for (const MachineOperand &MO : MI.operands()) { 948 if (!MO.isReg()) 949 continue; 950 if (!MO.readsReg()) 951 continue; 952 if (TrackLaneMasks && !MO.isUse()) 953 continue; 954 955 unsigned Reg = MO.getReg(); 956 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 957 continue; 958 959 // Ignore re-defs. 960 if (TrackLaneMasks) { 961 bool FoundDef = false; 962 for (const MachineOperand &MO2 : MI.operands()) { 963 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 964 FoundDef = true; 965 break; 966 } 967 } 968 if (FoundDef) 969 continue; 970 } 971 972 // Record this local VReg use. 973 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 974 for (; UI != VRegUses.end(); ++UI) { 975 if (UI->SU == &SU) 976 break; 977 } 978 if (UI == VRegUses.end()) 979 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 980 } 981 } 982 983 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 984 /// crossing a scheduling boundary. [begin, end) includes all instructions in 985 /// the region, including the boundary itself and single-instruction regions 986 /// that don't get scheduled. 987 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 988 MachineBasicBlock::iterator begin, 989 MachineBasicBlock::iterator end, 990 unsigned regioninstrs) 991 { 992 // ScheduleDAGMI initializes SchedImpl's per-region policy. 993 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 994 995 // For convenience remember the end of the liveness region. 996 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 997 998 SUPressureDiffs.clear(); 999 1000 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1001 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1002 1003 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1004 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1005 } 1006 1007 // Setup the register pressure trackers for the top scheduled top and bottom 1008 // scheduled regions. 1009 void ScheduleDAGMILive::initRegPressure() { 1010 VRegUses.clear(); 1011 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1012 for (SUnit &SU : SUnits) 1013 collectVRegUses(SU); 1014 1015 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1016 ShouldTrackLaneMasks, false); 1017 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1018 ShouldTrackLaneMasks, false); 1019 1020 // Close the RPTracker to finalize live ins. 1021 RPTracker.closeRegion(); 1022 1023 DEBUG(RPTracker.dump()); 1024 1025 // Initialize the live ins and live outs. 1026 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1027 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1028 1029 // Close one end of the tracker so we can call 1030 // getMaxUpward/DownwardPressureDelta before advancing across any 1031 // instructions. This converts currently live regs into live ins/outs. 1032 TopRPTracker.closeTop(); 1033 BotRPTracker.closeBottom(); 1034 1035 BotRPTracker.initLiveThru(RPTracker); 1036 if (!BotRPTracker.getLiveThru().empty()) { 1037 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1038 DEBUG(dbgs() << "Live Thru: "; 1039 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1040 }; 1041 1042 // For each live out vreg reduce the pressure change associated with other 1043 // uses of the same vreg below the live-out reaching def. 1044 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1045 1046 // Account for liveness generated by the region boundary. 1047 if (LiveRegionEnd != RegionEnd) { 1048 SmallVector<RegisterMaskPair, 8> LiveUses; 1049 BotRPTracker.recede(&LiveUses); 1050 updatePressureDiffs(LiveUses); 1051 } 1052 1053 DEBUG( 1054 dbgs() << "Top Pressure:\n"; 1055 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1056 dbgs() << "Bottom Pressure:\n"; 1057 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1058 ); 1059 1060 assert((BotRPTracker.getPos() == RegionEnd || 1061 (RegionEnd->isDebugValue() && 1062 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1063 "Can't find the region bottom"); 1064 1065 // Cache the list of excess pressure sets in this region. This will also track 1066 // the max pressure in the scheduled code for these sets. 1067 RegionCriticalPSets.clear(); 1068 const std::vector<unsigned> &RegionPressure = 1069 RPTracker.getPressure().MaxSetPressure; 1070 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1071 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1072 if (RegionPressure[i] > Limit) { 1073 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1074 << " Limit " << Limit 1075 << " Actual " << RegionPressure[i] << "\n"); 1076 RegionCriticalPSets.push_back(PressureChange(i)); 1077 } 1078 } 1079 DEBUG(dbgs() << "Excess PSets: "; 1080 for (const PressureChange &RCPS : RegionCriticalPSets) 1081 dbgs() << TRI->getRegPressureSetName( 1082 RCPS.getPSet()) << " "; 1083 dbgs() << "\n"); 1084 } 1085 1086 void ScheduleDAGMILive:: 1087 updateScheduledPressure(const SUnit *SU, 1088 const std::vector<unsigned> &NewMaxPressure) { 1089 const PressureDiff &PDiff = getPressureDiff(SU); 1090 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1091 for (const PressureChange &PC : PDiff) { 1092 if (!PC.isValid()) 1093 break; 1094 unsigned ID = PC.getPSet(); 1095 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1096 ++CritIdx; 1097 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1098 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1099 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1100 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1101 } 1102 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1103 if (NewMaxPressure[ID] >= Limit - 2) { 1104 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1105 << NewMaxPressure[ID] 1106 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1107 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1108 } 1109 } 1110 } 1111 1112 /// Update the PressureDiff array for liveness after scheduling this 1113 /// instruction. 1114 void ScheduleDAGMILive::updatePressureDiffs( 1115 ArrayRef<RegisterMaskPair> LiveUses) { 1116 for (const RegisterMaskPair &P : LiveUses) { 1117 unsigned Reg = P.RegUnit; 1118 /// FIXME: Currently assuming single-use physregs. 1119 if (!TRI->isVirtualRegister(Reg)) 1120 continue; 1121 1122 if (ShouldTrackLaneMasks) { 1123 // If the register has just become live then other uses won't change 1124 // this fact anymore => decrement pressure. 1125 // If the register has just become dead then other uses make it come 1126 // back to life => increment pressure. 1127 bool Decrement = P.LaneMask.any(); 1128 1129 for (const VReg2SUnit &V2SU 1130 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1131 SUnit &SU = *V2SU.SU; 1132 if (SU.isScheduled || &SU == &ExitSU) 1133 continue; 1134 1135 PressureDiff &PDiff = getPressureDiff(&SU); 1136 PDiff.addPressureChange(Reg, Decrement, &MRI); 1137 DEBUG( 1138 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1139 << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1140 << ' ' << *SU.getInstr() << '\n'; 1141 dbgs() << " to "; 1142 PDiff.dump(*TRI); 1143 ); 1144 } 1145 } else { 1146 assert(P.LaneMask.any()); 1147 DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1148 // This may be called before CurrentBottom has been initialized. However, 1149 // BotRPTracker must have a valid position. We want the value live into the 1150 // instruction or live out of the block, so ask for the previous 1151 // instruction's live-out. 1152 const LiveInterval &LI = LIS->getInterval(Reg); 1153 VNInfo *VNI; 1154 MachineBasicBlock::const_iterator I = 1155 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1156 if (I == BB->end()) 1157 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1158 else { 1159 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1160 VNI = LRQ.valueIn(); 1161 } 1162 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1163 assert(VNI && "No live value at use."); 1164 for (const VReg2SUnit &V2SU 1165 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1166 SUnit *SU = V2SU.SU; 1167 // If this use comes before the reaching def, it cannot be a last use, 1168 // so decrease its pressure change. 1169 if (!SU->isScheduled && SU != &ExitSU) { 1170 LiveQueryResult LRQ = 1171 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1172 if (LRQ.valueIn() == VNI) { 1173 PressureDiff &PDiff = getPressureDiff(SU); 1174 PDiff.addPressureChange(Reg, true, &MRI); 1175 DEBUG( 1176 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1177 << *SU->getInstr() << '\n'; 1178 dbgs() << " to "; 1179 PDiff.dump(*TRI); 1180 ); 1181 } 1182 } 1183 } 1184 } 1185 } 1186 } 1187 1188 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1189 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1190 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1191 /// 1192 /// This is a skeletal driver, with all the functionality pushed into helpers, 1193 /// so that it can be easily extended by experimental schedulers. Generally, 1194 /// implementing MachineSchedStrategy should be sufficient to implement a new 1195 /// scheduling algorithm. However, if a scheduler further subclasses 1196 /// ScheduleDAGMILive then it will want to override this virtual method in order 1197 /// to update any specialized state. 1198 void ScheduleDAGMILive::schedule() { 1199 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1200 DEBUG(SchedImpl->dumpPolicy()); 1201 buildDAGWithRegPressure(); 1202 1203 Topo.InitDAGTopologicalSorting(); 1204 1205 postprocessDAG(); 1206 1207 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1208 findRootsAndBiasEdges(TopRoots, BotRoots); 1209 1210 // Initialize the strategy before modifying the DAG. 1211 // This may initialize a DFSResult to be used for queue priority. 1212 SchedImpl->initialize(this); 1213 1214 DEBUG( 1215 if (EntrySU.getInstr() != nullptr) 1216 EntrySU.dumpAll(this); 1217 for (const SUnit &SU : SUnits) { 1218 SU.dumpAll(this); 1219 if (ShouldTrackPressure) { 1220 dbgs() << " Pressure Diff : "; 1221 getPressureDiff(&SU).dump(*TRI); 1222 } 1223 dbgs() << " Single Issue : "; 1224 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1225 SchedModel.mustEndGroup(SU.getInstr())) 1226 dbgs() << "true;"; 1227 else 1228 dbgs() << "false;"; 1229 dbgs() << '\n'; 1230 } 1231 if (ExitSU.getInstr() != nullptr) 1232 ExitSU.dumpAll(this); 1233 ); 1234 if (ViewMISchedDAGs) viewGraph(); 1235 1236 // Initialize ready queues now that the DAG and priority data are finalized. 1237 initQueues(TopRoots, BotRoots); 1238 1239 bool IsTopNode = false; 1240 while (true) { 1241 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1242 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1243 if (!SU) break; 1244 1245 assert(!SU->isScheduled && "Node already scheduled"); 1246 if (!checkSchedLimit()) 1247 break; 1248 1249 scheduleMI(SU, IsTopNode); 1250 1251 if (DFSResult) { 1252 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1253 if (!ScheduledTrees.test(SubtreeID)) { 1254 ScheduledTrees.set(SubtreeID); 1255 DFSResult->scheduleTree(SubtreeID); 1256 SchedImpl->scheduleTree(SubtreeID); 1257 } 1258 } 1259 1260 // Notify the scheduling strategy after updating the DAG. 1261 SchedImpl->schedNode(SU, IsTopNode); 1262 1263 updateQueues(SU, IsTopNode); 1264 } 1265 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1266 1267 placeDebugValues(); 1268 1269 DEBUG({ 1270 dbgs() << "*** Final schedule for " 1271 << printMBBReference(*begin()->getParent()) << " ***\n"; 1272 dumpSchedule(); 1273 dbgs() << '\n'; 1274 }); 1275 } 1276 1277 /// Build the DAG and setup three register pressure trackers. 1278 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1279 if (!ShouldTrackPressure) { 1280 RPTracker.reset(); 1281 RegionCriticalPSets.clear(); 1282 buildSchedGraph(AA); 1283 return; 1284 } 1285 1286 // Initialize the register pressure tracker used by buildSchedGraph. 1287 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1288 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1289 1290 // Account for liveness generate by the region boundary. 1291 if (LiveRegionEnd != RegionEnd) 1292 RPTracker.recede(); 1293 1294 // Build the DAG, and compute current register pressure. 1295 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1296 1297 // Initialize top/bottom trackers after computing region pressure. 1298 initRegPressure(); 1299 } 1300 1301 void ScheduleDAGMILive::computeDFSResult() { 1302 if (!DFSResult) 1303 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1304 DFSResult->clear(); 1305 ScheduledTrees.clear(); 1306 DFSResult->resize(SUnits.size()); 1307 DFSResult->compute(SUnits); 1308 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1309 } 1310 1311 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1312 /// only provides the critical path for single block loops. To handle loops that 1313 /// span blocks, we could use the vreg path latencies provided by 1314 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1315 /// available for use in the scheduler. 1316 /// 1317 /// The cyclic path estimation identifies a def-use pair that crosses the back 1318 /// edge and considers the depth and height of the nodes. For example, consider 1319 /// the following instruction sequence where each instruction has unit latency 1320 /// and defines an epomymous virtual register: 1321 /// 1322 /// a->b(a,c)->c(b)->d(c)->exit 1323 /// 1324 /// The cyclic critical path is a two cycles: b->c->b 1325 /// The acyclic critical path is four cycles: a->b->c->d->exit 1326 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1327 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1328 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1329 /// LiveInDepth = depth(b) = len(a->b) = 1 1330 /// 1331 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1332 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1333 /// CyclicCriticalPath = min(2, 2) = 2 1334 /// 1335 /// This could be relevant to PostRA scheduling, but is currently implemented 1336 /// assuming LiveIntervals. 1337 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1338 // This only applies to single block loop. 1339 if (!BB->isSuccessor(BB)) 1340 return 0; 1341 1342 unsigned MaxCyclicLatency = 0; 1343 // Visit each live out vreg def to find def/use pairs that cross iterations. 1344 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1345 unsigned Reg = P.RegUnit; 1346 if (!TRI->isVirtualRegister(Reg)) 1347 continue; 1348 const LiveInterval &LI = LIS->getInterval(Reg); 1349 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1350 if (!DefVNI) 1351 continue; 1352 1353 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1354 const SUnit *DefSU = getSUnit(DefMI); 1355 if (!DefSU) 1356 continue; 1357 1358 unsigned LiveOutHeight = DefSU->getHeight(); 1359 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1360 // Visit all local users of the vreg def. 1361 for (const VReg2SUnit &V2SU 1362 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1363 SUnit *SU = V2SU.SU; 1364 if (SU == &ExitSU) 1365 continue; 1366 1367 // Only consider uses of the phi. 1368 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1369 if (!LRQ.valueIn()->isPHIDef()) 1370 continue; 1371 1372 // Assume that a path spanning two iterations is a cycle, which could 1373 // overestimate in strange cases. This allows cyclic latency to be 1374 // estimated as the minimum slack of the vreg's depth or height. 1375 unsigned CyclicLatency = 0; 1376 if (LiveOutDepth > SU->getDepth()) 1377 CyclicLatency = LiveOutDepth - SU->getDepth(); 1378 1379 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1380 if (LiveInHeight > LiveOutHeight) { 1381 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1382 CyclicLatency = LiveInHeight - LiveOutHeight; 1383 } else 1384 CyclicLatency = 0; 1385 1386 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1387 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1388 if (CyclicLatency > MaxCyclicLatency) 1389 MaxCyclicLatency = CyclicLatency; 1390 } 1391 } 1392 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1393 return MaxCyclicLatency; 1394 } 1395 1396 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1397 /// the Top RP tracker in case the region beginning has changed. 1398 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1399 ArrayRef<SUnit*> BotRoots) { 1400 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1401 if (ShouldTrackPressure) { 1402 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1403 TopRPTracker.setPos(CurrentTop); 1404 } 1405 } 1406 1407 /// Move an instruction and update register pressure. 1408 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1409 // Move the instruction to its new location in the instruction stream. 1410 MachineInstr *MI = SU->getInstr(); 1411 1412 if (IsTopNode) { 1413 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1414 if (&*CurrentTop == MI) 1415 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1416 else { 1417 moveInstruction(MI, CurrentTop); 1418 TopRPTracker.setPos(MI); 1419 } 1420 1421 if (ShouldTrackPressure) { 1422 // Update top scheduled pressure. 1423 RegisterOperands RegOpers; 1424 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1425 if (ShouldTrackLaneMasks) { 1426 // Adjust liveness and add missing dead+read-undef flags. 1427 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1428 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1429 } else { 1430 // Adjust for missing dead-def flags. 1431 RegOpers.detectDeadDefs(*MI, *LIS); 1432 } 1433 1434 TopRPTracker.advance(RegOpers); 1435 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1436 DEBUG( 1437 dbgs() << "Top Pressure:\n"; 1438 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1439 ); 1440 1441 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1442 } 1443 } else { 1444 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1445 MachineBasicBlock::iterator priorII = 1446 priorNonDebug(CurrentBottom, CurrentTop); 1447 if (&*priorII == MI) 1448 CurrentBottom = priorII; 1449 else { 1450 if (&*CurrentTop == MI) { 1451 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1452 TopRPTracker.setPos(CurrentTop); 1453 } 1454 moveInstruction(MI, CurrentBottom); 1455 CurrentBottom = MI; 1456 BotRPTracker.setPos(CurrentBottom); 1457 } 1458 if (ShouldTrackPressure) { 1459 RegisterOperands RegOpers; 1460 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1461 if (ShouldTrackLaneMasks) { 1462 // Adjust liveness and add missing dead+read-undef flags. 1463 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1464 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1465 } else { 1466 // Adjust for missing dead-def flags. 1467 RegOpers.detectDeadDefs(*MI, *LIS); 1468 } 1469 1470 if (BotRPTracker.getPos() != CurrentBottom) 1471 BotRPTracker.recedeSkipDebugValues(); 1472 SmallVector<RegisterMaskPair, 8> LiveUses; 1473 BotRPTracker.recede(RegOpers, &LiveUses); 1474 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1475 DEBUG( 1476 dbgs() << "Bottom Pressure:\n"; 1477 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1478 ); 1479 1480 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1481 updatePressureDiffs(LiveUses); 1482 } 1483 } 1484 } 1485 1486 //===----------------------------------------------------------------------===// 1487 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1488 //===----------------------------------------------------------------------===// 1489 1490 namespace { 1491 1492 /// \brief Post-process the DAG to create cluster edges between neighboring 1493 /// loads or between neighboring stores. 1494 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1495 struct MemOpInfo { 1496 SUnit *SU; 1497 unsigned BaseReg; 1498 int64_t Offset; 1499 1500 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1501 : SU(su), BaseReg(reg), Offset(ofs) {} 1502 1503 bool operator<(const MemOpInfo&RHS) const { 1504 return std::tie(BaseReg, Offset, SU->NodeNum) < 1505 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1506 } 1507 }; 1508 1509 const TargetInstrInfo *TII; 1510 const TargetRegisterInfo *TRI; 1511 bool IsLoad; 1512 1513 public: 1514 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1515 const TargetRegisterInfo *tri, bool IsLoad) 1516 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1517 1518 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1519 1520 protected: 1521 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1522 }; 1523 1524 class StoreClusterMutation : public BaseMemOpClusterMutation { 1525 public: 1526 StoreClusterMutation(const TargetInstrInfo *tii, 1527 const TargetRegisterInfo *tri) 1528 : BaseMemOpClusterMutation(tii, tri, false) {} 1529 }; 1530 1531 class LoadClusterMutation : public BaseMemOpClusterMutation { 1532 public: 1533 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1534 : BaseMemOpClusterMutation(tii, tri, true) {} 1535 }; 1536 1537 } // end anonymous namespace 1538 1539 namespace llvm { 1540 1541 std::unique_ptr<ScheduleDAGMutation> 1542 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1543 const TargetRegisterInfo *TRI) { 1544 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1545 : nullptr; 1546 } 1547 1548 std::unique_ptr<ScheduleDAGMutation> 1549 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1550 const TargetRegisterInfo *TRI) { 1551 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1552 : nullptr; 1553 } 1554 1555 } // end namespace llvm 1556 1557 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1558 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1559 SmallVector<MemOpInfo, 32> MemOpRecords; 1560 for (SUnit *SU : MemOps) { 1561 unsigned BaseReg; 1562 int64_t Offset; 1563 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1564 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1565 } 1566 if (MemOpRecords.size() < 2) 1567 return; 1568 1569 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1570 unsigned ClusterLength = 1; 1571 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1572 SUnit *SUa = MemOpRecords[Idx].SU; 1573 SUnit *SUb = MemOpRecords[Idx+1].SU; 1574 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1575 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1576 ClusterLength) && 1577 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1578 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1579 << SUb->NodeNum << ")\n"); 1580 // Copy successor edges from SUa to SUb. Interleaving computation 1581 // dependent on SUa can prevent load combining due to register reuse. 1582 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1583 // loads should have effectively the same inputs. 1584 for (const SDep &Succ : SUa->Succs) { 1585 if (Succ.getSUnit() == SUb) 1586 continue; 1587 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1588 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1589 } 1590 ++ClusterLength; 1591 } else 1592 ClusterLength = 1; 1593 } 1594 } 1595 1596 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1597 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1598 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1599 1600 // Map DAG NodeNum to store chain ID. 1601 DenseMap<unsigned, unsigned> StoreChainIDs; 1602 // Map each store chain to a set of dependent MemOps. 1603 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1604 for (SUnit &SU : DAG->SUnits) { 1605 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1606 (!IsLoad && !SU.getInstr()->mayStore())) 1607 continue; 1608 1609 unsigned ChainPredID = DAG->SUnits.size(); 1610 for (const SDep &Pred : SU.Preds) { 1611 if (Pred.isCtrl()) { 1612 ChainPredID = Pred.getSUnit()->NodeNum; 1613 break; 1614 } 1615 } 1616 // Check if this chain-like pred has been seen 1617 // before. ChainPredID==MaxNodeID at the top of the schedule. 1618 unsigned NumChains = StoreChainDependents.size(); 1619 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1620 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1621 if (Result.second) 1622 StoreChainDependents.resize(NumChains + 1); 1623 StoreChainDependents[Result.first->second].push_back(&SU); 1624 } 1625 1626 // Iterate over the store chains. 1627 for (auto &SCD : StoreChainDependents) 1628 clusterNeighboringMemOps(SCD, DAG); 1629 } 1630 1631 //===----------------------------------------------------------------------===// 1632 // CopyConstrain - DAG post-processing to encourage copy elimination. 1633 //===----------------------------------------------------------------------===// 1634 1635 namespace { 1636 1637 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1638 /// the one use that defines the copy's source vreg, most likely an induction 1639 /// variable increment. 1640 class CopyConstrain : public ScheduleDAGMutation { 1641 // Transient state. 1642 SlotIndex RegionBeginIdx; 1643 1644 // RegionEndIdx is the slot index of the last non-debug instruction in the 1645 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1646 SlotIndex RegionEndIdx; 1647 1648 public: 1649 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1650 1651 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1652 1653 protected: 1654 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1655 }; 1656 1657 } // end anonymous namespace 1658 1659 namespace llvm { 1660 1661 std::unique_ptr<ScheduleDAGMutation> 1662 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1663 const TargetRegisterInfo *TRI) { 1664 return llvm::make_unique<CopyConstrain>(TII, TRI); 1665 } 1666 1667 } // end namespace llvm 1668 1669 /// constrainLocalCopy handles two possibilities: 1670 /// 1) Local src: 1671 /// I0: = dst 1672 /// I1: src = ... 1673 /// I2: = dst 1674 /// I3: dst = src (copy) 1675 /// (create pred->succ edges I0->I1, I2->I1) 1676 /// 1677 /// 2) Local copy: 1678 /// I0: dst = src (copy) 1679 /// I1: = dst 1680 /// I2: src = ... 1681 /// I3: = dst 1682 /// (create pred->succ edges I1->I2, I3->I2) 1683 /// 1684 /// Although the MachineScheduler is currently constrained to single blocks, 1685 /// this algorithm should handle extended blocks. An EBB is a set of 1686 /// contiguously numbered blocks such that the previous block in the EBB is 1687 /// always the single predecessor. 1688 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1689 LiveIntervals *LIS = DAG->getLIS(); 1690 MachineInstr *Copy = CopySU->getInstr(); 1691 1692 // Check for pure vreg copies. 1693 const MachineOperand &SrcOp = Copy->getOperand(1); 1694 unsigned SrcReg = SrcOp.getReg(); 1695 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1696 return; 1697 1698 const MachineOperand &DstOp = Copy->getOperand(0); 1699 unsigned DstReg = DstOp.getReg(); 1700 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1701 return; 1702 1703 // Check if either the dest or source is local. If it's live across a back 1704 // edge, it's not local. Note that if both vregs are live across the back 1705 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1706 // If both the copy's source and dest are local live intervals, then we 1707 // should treat the dest as the global for the purpose of adding 1708 // constraints. This adds edges from source's other uses to the copy. 1709 unsigned LocalReg = SrcReg; 1710 unsigned GlobalReg = DstReg; 1711 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1712 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1713 LocalReg = DstReg; 1714 GlobalReg = SrcReg; 1715 LocalLI = &LIS->getInterval(LocalReg); 1716 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1717 return; 1718 } 1719 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1720 1721 // Find the global segment after the start of the local LI. 1722 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1723 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1724 // local live range. We could create edges from other global uses to the local 1725 // start, but the coalescer should have already eliminated these cases, so 1726 // don't bother dealing with it. 1727 if (GlobalSegment == GlobalLI->end()) 1728 return; 1729 1730 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1731 // returned the next global segment. But if GlobalSegment overlaps with 1732 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1733 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1734 if (GlobalSegment->contains(LocalLI->beginIndex())) 1735 ++GlobalSegment; 1736 1737 if (GlobalSegment == GlobalLI->end()) 1738 return; 1739 1740 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1741 if (GlobalSegment != GlobalLI->begin()) { 1742 // Two address defs have no hole. 1743 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1744 GlobalSegment->start)) { 1745 return; 1746 } 1747 // If the prior global segment may be defined by the same two-address 1748 // instruction that also defines LocalLI, then can't make a hole here. 1749 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1750 LocalLI->beginIndex())) { 1751 return; 1752 } 1753 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1754 // it would be a disconnected component in the live range. 1755 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1756 "Disconnected LRG within the scheduling region."); 1757 } 1758 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1759 if (!GlobalDef) 1760 return; 1761 1762 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1763 if (!GlobalSU) 1764 return; 1765 1766 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1767 // constraining the uses of the last local def to precede GlobalDef. 1768 SmallVector<SUnit*,8> LocalUses; 1769 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1770 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1771 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1772 for (const SDep &Succ : LastLocalSU->Succs) { 1773 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1774 continue; 1775 if (Succ.getSUnit() == GlobalSU) 1776 continue; 1777 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1778 return; 1779 LocalUses.push_back(Succ.getSUnit()); 1780 } 1781 // Open the top of the GlobalLI hole by constraining any earlier global uses 1782 // to precede the start of LocalLI. 1783 SmallVector<SUnit*,8> GlobalUses; 1784 MachineInstr *FirstLocalDef = 1785 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1786 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1787 for (const SDep &Pred : GlobalSU->Preds) { 1788 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1789 continue; 1790 if (Pred.getSUnit() == FirstLocalSU) 1791 continue; 1792 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1793 return; 1794 GlobalUses.push_back(Pred.getSUnit()); 1795 } 1796 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1797 // Add the weak edges. 1798 for (SmallVectorImpl<SUnit*>::const_iterator 1799 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1800 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1801 << GlobalSU->NodeNum << ")\n"); 1802 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1803 } 1804 for (SmallVectorImpl<SUnit*>::const_iterator 1805 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1806 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1807 << FirstLocalSU->NodeNum << ")\n"); 1808 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1809 } 1810 } 1811 1812 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1813 /// copy elimination. 1814 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1815 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1816 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1817 1818 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1819 if (FirstPos == DAG->end()) 1820 return; 1821 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1822 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1823 *priorNonDebug(DAG->end(), DAG->begin())); 1824 1825 for (SUnit &SU : DAG->SUnits) { 1826 if (!SU.getInstr()->isCopy()) 1827 continue; 1828 1829 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1830 } 1831 } 1832 1833 //===----------------------------------------------------------------------===// 1834 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1835 // and possibly other custom schedulers. 1836 //===----------------------------------------------------------------------===// 1837 1838 static const unsigned InvalidCycle = ~0U; 1839 1840 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1841 1842 /// Given a Count of resource usage and a Latency value, return true if a 1843 /// SchedBoundary becomes resource limited. 1844 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1845 unsigned Latency) { 1846 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1847 } 1848 1849 void SchedBoundary::reset() { 1850 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1851 // Destroying and reconstructing it is very expensive though. So keep 1852 // invalid, placeholder HazardRecs. 1853 if (HazardRec && HazardRec->isEnabled()) { 1854 delete HazardRec; 1855 HazardRec = nullptr; 1856 } 1857 Available.clear(); 1858 Pending.clear(); 1859 CheckPending = false; 1860 CurrCycle = 0; 1861 CurrMOps = 0; 1862 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1863 ExpectedLatency = 0; 1864 DependentLatency = 0; 1865 RetiredMOps = 0; 1866 MaxExecutedResCount = 0; 1867 ZoneCritResIdx = 0; 1868 IsResourceLimited = false; 1869 ReservedCycles.clear(); 1870 #ifndef NDEBUG 1871 // Track the maximum number of stall cycles that could arise either from the 1872 // latency of a DAG edge or the number of cycles that a processor resource is 1873 // reserved (SchedBoundary::ReservedCycles). 1874 MaxObservedStall = 0; 1875 #endif 1876 // Reserve a zero-count for invalid CritResIdx. 1877 ExecutedResCounts.resize(1); 1878 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1879 } 1880 1881 void SchedRemainder:: 1882 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1883 reset(); 1884 if (!SchedModel->hasInstrSchedModel()) 1885 return; 1886 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1887 for (SUnit &SU : DAG->SUnits) { 1888 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1889 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1890 * SchedModel->getMicroOpFactor(); 1891 for (TargetSchedModel::ProcResIter 1892 PI = SchedModel->getWriteProcResBegin(SC), 1893 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1894 unsigned PIdx = PI->ProcResourceIdx; 1895 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1896 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1897 } 1898 } 1899 } 1900 1901 void SchedBoundary:: 1902 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1903 reset(); 1904 DAG = dag; 1905 SchedModel = smodel; 1906 Rem = rem; 1907 if (SchedModel->hasInstrSchedModel()) { 1908 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1909 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1910 } 1911 } 1912 1913 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1914 /// these "soft stalls" differently than the hard stall cycles based on CPU 1915 /// resources and computed by checkHazard(). A fully in-order model 1916 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1917 /// available for scheduling until they are ready. However, a weaker in-order 1918 /// model may use this for heuristics. For example, if a processor has in-order 1919 /// behavior when reading certain resources, this may come into play. 1920 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1921 if (!SU->isUnbuffered) 1922 return 0; 1923 1924 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1925 if (ReadyCycle > CurrCycle) 1926 return ReadyCycle - CurrCycle; 1927 return 0; 1928 } 1929 1930 /// Compute the next cycle at which the given processor resource can be 1931 /// scheduled. 1932 unsigned SchedBoundary:: 1933 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1934 unsigned NextUnreserved = ReservedCycles[PIdx]; 1935 // If this resource has never been used, always return cycle zero. 1936 if (NextUnreserved == InvalidCycle) 1937 return 0; 1938 // For bottom-up scheduling add the cycles needed for the current operation. 1939 if (!isTop()) 1940 NextUnreserved += Cycles; 1941 return NextUnreserved; 1942 } 1943 1944 /// Does this SU have a hazard within the current instruction group. 1945 /// 1946 /// The scheduler supports two modes of hazard recognition. The first is the 1947 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1948 /// supports highly complicated in-order reservation tables 1949 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1950 /// 1951 /// The second is a streamlined mechanism that checks for hazards based on 1952 /// simple counters that the scheduler itself maintains. It explicitly checks 1953 /// for instruction dispatch limitations, including the number of micro-ops that 1954 /// can dispatch per cycle. 1955 /// 1956 /// TODO: Also check whether the SU must start a new group. 1957 bool SchedBoundary::checkHazard(SUnit *SU) { 1958 if (HazardRec->isEnabled() 1959 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1960 return true; 1961 } 1962 1963 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1964 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1965 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1966 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1967 return true; 1968 } 1969 1970 if (CurrMOps > 0 && 1971 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1972 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1973 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1974 << (isTop()? "begin" : "end") << " group\n"); 1975 return true; 1976 } 1977 1978 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1979 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1980 for (const MCWriteProcResEntry &PE : 1981 make_range(SchedModel->getWriteProcResBegin(SC), 1982 SchedModel->getWriteProcResEnd(SC))) { 1983 unsigned ResIdx = PE.ProcResourceIdx; 1984 unsigned Cycles = PE.Cycles; 1985 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1986 if (NRCycle > CurrCycle) { 1987 #ifndef NDEBUG 1988 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1989 #endif 1990 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1991 << SchedModel->getResourceName(ResIdx) 1992 << "=" << NRCycle << "c\n"); 1993 return true; 1994 } 1995 } 1996 } 1997 return false; 1998 } 1999 2000 // Find the unscheduled node in ReadySUs with the highest latency. 2001 unsigned SchedBoundary:: 2002 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2003 SUnit *LateSU = nullptr; 2004 unsigned RemLatency = 0; 2005 for (SUnit *SU : ReadySUs) { 2006 unsigned L = getUnscheduledLatency(SU); 2007 if (L > RemLatency) { 2008 RemLatency = L; 2009 LateSU = SU; 2010 } 2011 } 2012 if (LateSU) { 2013 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2014 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2015 } 2016 return RemLatency; 2017 } 2018 2019 // Count resources in this zone and the remaining unscheduled 2020 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2021 // resource index, or zero if the zone is issue limited. 2022 unsigned SchedBoundary:: 2023 getOtherResourceCount(unsigned &OtherCritIdx) { 2024 OtherCritIdx = 0; 2025 if (!SchedModel->hasInstrSchedModel()) 2026 return 0; 2027 2028 unsigned OtherCritCount = Rem->RemIssueCount 2029 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2030 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2031 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2032 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2033 PIdx != PEnd; ++PIdx) { 2034 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2035 if (OtherCount > OtherCritCount) { 2036 OtherCritCount = OtherCount; 2037 OtherCritIdx = PIdx; 2038 } 2039 } 2040 if (OtherCritIdx) { 2041 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2042 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2043 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2044 } 2045 return OtherCritCount; 2046 } 2047 2048 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2049 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2050 2051 #ifndef NDEBUG 2052 // ReadyCycle was been bumped up to the CurrCycle when this node was 2053 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2054 // scheduling, so may now be greater than ReadyCycle. 2055 if (ReadyCycle > CurrCycle) 2056 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2057 #endif 2058 2059 if (ReadyCycle < MinReadyCycle) 2060 MinReadyCycle = ReadyCycle; 2061 2062 // Check for interlocks first. For the purpose of other heuristics, an 2063 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2064 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2065 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2066 Available.size() >= ReadyListLimit) 2067 Pending.push(SU); 2068 else 2069 Available.push(SU); 2070 } 2071 2072 /// Move the boundary of scheduled code by one cycle. 2073 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2074 if (SchedModel->getMicroOpBufferSize() == 0) { 2075 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2076 "MinReadyCycle uninitialized"); 2077 if (MinReadyCycle > NextCycle) 2078 NextCycle = MinReadyCycle; 2079 } 2080 // Update the current micro-ops, which will issue in the next cycle. 2081 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2082 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2083 2084 // Decrement DependentLatency based on the next cycle. 2085 if ((NextCycle - CurrCycle) > DependentLatency) 2086 DependentLatency = 0; 2087 else 2088 DependentLatency -= (NextCycle - CurrCycle); 2089 2090 if (!HazardRec->isEnabled()) { 2091 // Bypass HazardRec virtual calls. 2092 CurrCycle = NextCycle; 2093 } else { 2094 // Bypass getHazardType calls in case of long latency. 2095 for (; CurrCycle != NextCycle; ++CurrCycle) { 2096 if (isTop()) 2097 HazardRec->AdvanceCycle(); 2098 else 2099 HazardRec->RecedeCycle(); 2100 } 2101 } 2102 CheckPending = true; 2103 IsResourceLimited = 2104 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2105 getScheduledLatency()); 2106 2107 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2108 } 2109 2110 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2111 ExecutedResCounts[PIdx] += Count; 2112 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2113 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2114 } 2115 2116 /// Add the given processor resource to this scheduled zone. 2117 /// 2118 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2119 /// during which this resource is consumed. 2120 /// 2121 /// \return the next cycle at which the instruction may execute without 2122 /// oversubscribing resources. 2123 unsigned SchedBoundary:: 2124 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2125 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2126 unsigned Count = Factor * Cycles; 2127 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2128 << " +" << Cycles << "x" << Factor << "u\n"); 2129 2130 // Update Executed resources counts. 2131 incExecutedResources(PIdx, Count); 2132 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2133 Rem->RemainingCounts[PIdx] -= Count; 2134 2135 // Check if this resource exceeds the current critical resource. If so, it 2136 // becomes the critical resource. 2137 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2138 ZoneCritResIdx = PIdx; 2139 DEBUG(dbgs() << " *** Critical resource " 2140 << SchedModel->getResourceName(PIdx) << ": " 2141 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2142 } 2143 // For reserved resources, record the highest cycle using the resource. 2144 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2145 if (NextAvailable > CurrCycle) { 2146 DEBUG(dbgs() << " Resource conflict: " 2147 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2148 << NextAvailable << "\n"); 2149 } 2150 return NextAvailable; 2151 } 2152 2153 /// Move the boundary of scheduled code by one SUnit. 2154 void SchedBoundary::bumpNode(SUnit *SU) { 2155 // Update the reservation table. 2156 if (HazardRec->isEnabled()) { 2157 if (!isTop() && SU->isCall) { 2158 // Calls are scheduled with their preceding instructions. For bottom-up 2159 // scheduling, clear the pipeline state before emitting. 2160 HazardRec->Reset(); 2161 } 2162 HazardRec->EmitInstruction(SU); 2163 } 2164 // checkHazard should prevent scheduling multiple instructions per cycle that 2165 // exceed the issue width. 2166 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2167 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2168 assert( 2169 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2170 "Cannot schedule this instruction's MicroOps in the current cycle."); 2171 2172 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2173 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2174 2175 unsigned NextCycle = CurrCycle; 2176 switch (SchedModel->getMicroOpBufferSize()) { 2177 case 0: 2178 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2179 break; 2180 case 1: 2181 if (ReadyCycle > NextCycle) { 2182 NextCycle = ReadyCycle; 2183 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2184 } 2185 break; 2186 default: 2187 // We don't currently model the OOO reorder buffer, so consider all 2188 // scheduled MOps to be "retired". We do loosely model in-order resource 2189 // latency. If this instruction uses an in-order resource, account for any 2190 // likely stall cycles. 2191 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2192 NextCycle = ReadyCycle; 2193 break; 2194 } 2195 RetiredMOps += IncMOps; 2196 2197 // Update resource counts and critical resource. 2198 if (SchedModel->hasInstrSchedModel()) { 2199 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2200 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2201 Rem->RemIssueCount -= DecRemIssue; 2202 if (ZoneCritResIdx) { 2203 // Scale scheduled micro-ops for comparing with the critical resource. 2204 unsigned ScaledMOps = 2205 RetiredMOps * SchedModel->getMicroOpFactor(); 2206 2207 // If scaled micro-ops are now more than the previous critical resource by 2208 // a full cycle, then micro-ops issue becomes critical. 2209 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2210 >= (int)SchedModel->getLatencyFactor()) { 2211 ZoneCritResIdx = 0; 2212 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2213 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2214 } 2215 } 2216 for (TargetSchedModel::ProcResIter 2217 PI = SchedModel->getWriteProcResBegin(SC), 2218 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2219 unsigned RCycle = 2220 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2221 if (RCycle > NextCycle) 2222 NextCycle = RCycle; 2223 } 2224 if (SU->hasReservedResource) { 2225 // For reserved resources, record the highest cycle using the resource. 2226 // For top-down scheduling, this is the cycle in which we schedule this 2227 // instruction plus the number of cycles the operations reserves the 2228 // resource. For bottom-up is it simply the instruction's cycle. 2229 for (TargetSchedModel::ProcResIter 2230 PI = SchedModel->getWriteProcResBegin(SC), 2231 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2232 unsigned PIdx = PI->ProcResourceIdx; 2233 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2234 if (isTop()) { 2235 ReservedCycles[PIdx] = 2236 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2237 } 2238 else 2239 ReservedCycles[PIdx] = NextCycle; 2240 } 2241 } 2242 } 2243 } 2244 // Update ExpectedLatency and DependentLatency. 2245 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2246 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2247 if (SU->getDepth() > TopLatency) { 2248 TopLatency = SU->getDepth(); 2249 DEBUG(dbgs() << " " << Available.getName() 2250 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2251 } 2252 if (SU->getHeight() > BotLatency) { 2253 BotLatency = SU->getHeight(); 2254 DEBUG(dbgs() << " " << Available.getName() 2255 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2256 } 2257 // If we stall for any reason, bump the cycle. 2258 if (NextCycle > CurrCycle) 2259 bumpCycle(NextCycle); 2260 else 2261 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2262 // resource limited. If a stall occurred, bumpCycle does this. 2263 IsResourceLimited = 2264 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2265 getScheduledLatency()); 2266 2267 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2268 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2269 // one cycle. Since we commonly reach the max MOps here, opportunistically 2270 // bump the cycle to avoid uselessly checking everything in the readyQ. 2271 CurrMOps += IncMOps; 2272 2273 // Bump the cycle count for issue group constraints. 2274 // This must be done after NextCycle has been adjust for all other stalls. 2275 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2276 // currCycle to X. 2277 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2278 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2279 DEBUG(dbgs() << " Bump cycle to " 2280 << (isTop() ? "end" : "begin") << " group\n"); 2281 bumpCycle(++NextCycle); 2282 } 2283 2284 while (CurrMOps >= SchedModel->getIssueWidth()) { 2285 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2286 << " at cycle " << CurrCycle << '\n'); 2287 bumpCycle(++NextCycle); 2288 } 2289 DEBUG(dumpScheduledState()); 2290 } 2291 2292 /// Release pending ready nodes in to the available queue. This makes them 2293 /// visible to heuristics. 2294 void SchedBoundary::releasePending() { 2295 // If the available queue is empty, it is safe to reset MinReadyCycle. 2296 if (Available.empty()) 2297 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2298 2299 // Check to see if any of the pending instructions are ready to issue. If 2300 // so, add them to the available queue. 2301 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2302 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2303 SUnit *SU = *(Pending.begin()+i); 2304 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2305 2306 if (ReadyCycle < MinReadyCycle) 2307 MinReadyCycle = ReadyCycle; 2308 2309 if (!IsBuffered && ReadyCycle > CurrCycle) 2310 continue; 2311 2312 if (checkHazard(SU)) 2313 continue; 2314 2315 if (Available.size() >= ReadyListLimit) 2316 break; 2317 2318 Available.push(SU); 2319 Pending.remove(Pending.begin()+i); 2320 --i; --e; 2321 } 2322 CheckPending = false; 2323 } 2324 2325 /// Remove SU from the ready set for this boundary. 2326 void SchedBoundary::removeReady(SUnit *SU) { 2327 if (Available.isInQueue(SU)) 2328 Available.remove(Available.find(SU)); 2329 else { 2330 assert(Pending.isInQueue(SU) && "bad ready count"); 2331 Pending.remove(Pending.find(SU)); 2332 } 2333 } 2334 2335 /// If this queue only has one ready candidate, return it. As a side effect, 2336 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2337 /// one node is ready. If multiple instructions are ready, return NULL. 2338 SUnit *SchedBoundary::pickOnlyChoice() { 2339 if (CheckPending) 2340 releasePending(); 2341 2342 if (CurrMOps > 0) { 2343 // Defer any ready instrs that now have a hazard. 2344 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2345 if (checkHazard(*I)) { 2346 Pending.push(*I); 2347 I = Available.remove(I); 2348 continue; 2349 } 2350 ++I; 2351 } 2352 } 2353 for (unsigned i = 0; Available.empty(); ++i) { 2354 // FIXME: Re-enable assert once PR20057 is resolved. 2355 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2356 // "permanent hazard"); 2357 (void)i; 2358 bumpCycle(CurrCycle + 1); 2359 releasePending(); 2360 } 2361 2362 DEBUG(Pending.dump()); 2363 DEBUG(Available.dump()); 2364 2365 if (Available.size() == 1) 2366 return *Available.begin(); 2367 return nullptr; 2368 } 2369 2370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2371 // This is useful information to dump after bumpNode. 2372 // Note that the Queue contents are more useful before pickNodeFromQueue. 2373 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2374 unsigned ResFactor; 2375 unsigned ResCount; 2376 if (ZoneCritResIdx) { 2377 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2378 ResCount = getResourceCount(ZoneCritResIdx); 2379 } else { 2380 ResFactor = SchedModel->getMicroOpFactor(); 2381 ResCount = RetiredMOps * ResFactor; 2382 } 2383 unsigned LFactor = SchedModel->getLatencyFactor(); 2384 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2385 << " Retired: " << RetiredMOps; 2386 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2387 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2388 << ResCount / ResFactor << " " 2389 << SchedModel->getResourceName(ZoneCritResIdx) 2390 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2391 << (IsResourceLimited ? " - Resource" : " - Latency") 2392 << " limited.\n"; 2393 } 2394 #endif 2395 2396 //===----------------------------------------------------------------------===// 2397 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2398 //===----------------------------------------------------------------------===// 2399 2400 void GenericSchedulerBase::SchedCandidate:: 2401 initResourceDelta(const ScheduleDAGMI *DAG, 2402 const TargetSchedModel *SchedModel) { 2403 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2404 return; 2405 2406 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2407 for (TargetSchedModel::ProcResIter 2408 PI = SchedModel->getWriteProcResBegin(SC), 2409 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2410 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2411 ResDelta.CritResources += PI->Cycles; 2412 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2413 ResDelta.DemandedResources += PI->Cycles; 2414 } 2415 } 2416 2417 /// Set the CandPolicy given a scheduling zone given the current resources and 2418 /// latencies inside and outside the zone. 2419 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2420 SchedBoundary &CurrZone, 2421 SchedBoundary *OtherZone) { 2422 // Apply preemptive heuristics based on the total latency and resources 2423 // inside and outside this zone. Potential stalls should be considered before 2424 // following this policy. 2425 2426 // Compute remaining latency. We need this both to determine whether the 2427 // overall schedule has become latency-limited and whether the instructions 2428 // outside this zone are resource or latency limited. 2429 // 2430 // The "dependent" latency is updated incrementally during scheduling as the 2431 // max height/depth of scheduled nodes minus the cycles since it was 2432 // scheduled: 2433 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2434 // 2435 // The "independent" latency is the max ready queue depth: 2436 // ILat = max N.depth for N in Available|Pending 2437 // 2438 // RemainingLatency is the greater of independent and dependent latency. 2439 unsigned RemLatency = CurrZone.getDependentLatency(); 2440 RemLatency = std::max(RemLatency, 2441 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2442 RemLatency = std::max(RemLatency, 2443 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2444 2445 // Compute the critical resource outside the zone. 2446 unsigned OtherCritIdx = 0; 2447 unsigned OtherCount = 2448 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2449 2450 bool OtherResLimited = false; 2451 if (SchedModel->hasInstrSchedModel()) 2452 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2453 OtherCount, RemLatency); 2454 2455 // Schedule aggressively for latency in PostRA mode. We don't check for 2456 // acyclic latency during PostRA, and highly out-of-order processors will 2457 // skip PostRA scheduling. 2458 if (!OtherResLimited) { 2459 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2460 Policy.ReduceLatency |= true; 2461 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2462 << " RemainingLatency " << RemLatency << " + " 2463 << CurrZone.getCurrCycle() << "c > CritPath " 2464 << Rem.CriticalPath << "\n"); 2465 } 2466 } 2467 // If the same resource is limiting inside and outside the zone, do nothing. 2468 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2469 return; 2470 2471 DEBUG( 2472 if (CurrZone.isResourceLimited()) { 2473 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2474 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2475 << "\n"; 2476 } 2477 if (OtherResLimited) 2478 dbgs() << " RemainingLimit: " 2479 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2480 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2481 dbgs() << " Latency limited both directions.\n"); 2482 2483 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2484 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2485 2486 if (OtherResLimited) 2487 Policy.DemandResIdx = OtherCritIdx; 2488 } 2489 2490 #ifndef NDEBUG 2491 const char *GenericSchedulerBase::getReasonStr( 2492 GenericSchedulerBase::CandReason Reason) { 2493 switch (Reason) { 2494 case NoCand: return "NOCAND "; 2495 case Only1: return "ONLY1 "; 2496 case PhysRegCopy: return "PREG-COPY "; 2497 case RegExcess: return "REG-EXCESS"; 2498 case RegCritical: return "REG-CRIT "; 2499 case Stall: return "STALL "; 2500 case Cluster: return "CLUSTER "; 2501 case Weak: return "WEAK "; 2502 case RegMax: return "REG-MAX "; 2503 case ResourceReduce: return "RES-REDUCE"; 2504 case ResourceDemand: return "RES-DEMAND"; 2505 case TopDepthReduce: return "TOP-DEPTH "; 2506 case TopPathReduce: return "TOP-PATH "; 2507 case BotHeightReduce:return "BOT-HEIGHT"; 2508 case BotPathReduce: return "BOT-PATH "; 2509 case NextDefUse: return "DEF-USE "; 2510 case NodeOrder: return "ORDER "; 2511 }; 2512 llvm_unreachable("Unknown reason!"); 2513 } 2514 2515 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2516 PressureChange P; 2517 unsigned ResIdx = 0; 2518 unsigned Latency = 0; 2519 switch (Cand.Reason) { 2520 default: 2521 break; 2522 case RegExcess: 2523 P = Cand.RPDelta.Excess; 2524 break; 2525 case RegCritical: 2526 P = Cand.RPDelta.CriticalMax; 2527 break; 2528 case RegMax: 2529 P = Cand.RPDelta.CurrentMax; 2530 break; 2531 case ResourceReduce: 2532 ResIdx = Cand.Policy.ReduceResIdx; 2533 break; 2534 case ResourceDemand: 2535 ResIdx = Cand.Policy.DemandResIdx; 2536 break; 2537 case TopDepthReduce: 2538 Latency = Cand.SU->getDepth(); 2539 break; 2540 case TopPathReduce: 2541 Latency = Cand.SU->getHeight(); 2542 break; 2543 case BotHeightReduce: 2544 Latency = Cand.SU->getHeight(); 2545 break; 2546 case BotPathReduce: 2547 Latency = Cand.SU->getDepth(); 2548 break; 2549 } 2550 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2551 if (P.isValid()) 2552 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2553 << ":" << P.getUnitInc() << " "; 2554 else 2555 dbgs() << " "; 2556 if (ResIdx) 2557 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2558 else 2559 dbgs() << " "; 2560 if (Latency) 2561 dbgs() << " " << Latency << " cycles "; 2562 else 2563 dbgs() << " "; 2564 dbgs() << '\n'; 2565 } 2566 #endif 2567 2568 /// Return true if this heuristic determines order. 2569 static bool tryLess(int TryVal, int CandVal, 2570 GenericSchedulerBase::SchedCandidate &TryCand, 2571 GenericSchedulerBase::SchedCandidate &Cand, 2572 GenericSchedulerBase::CandReason Reason) { 2573 if (TryVal < CandVal) { 2574 TryCand.Reason = Reason; 2575 return true; 2576 } 2577 if (TryVal > CandVal) { 2578 if (Cand.Reason > Reason) 2579 Cand.Reason = Reason; 2580 return true; 2581 } 2582 return false; 2583 } 2584 2585 static bool tryGreater(int TryVal, int CandVal, 2586 GenericSchedulerBase::SchedCandidate &TryCand, 2587 GenericSchedulerBase::SchedCandidate &Cand, 2588 GenericSchedulerBase::CandReason Reason) { 2589 if (TryVal > CandVal) { 2590 TryCand.Reason = Reason; 2591 return true; 2592 } 2593 if (TryVal < CandVal) { 2594 if (Cand.Reason > Reason) 2595 Cand.Reason = Reason; 2596 return true; 2597 } 2598 return false; 2599 } 2600 2601 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2602 GenericSchedulerBase::SchedCandidate &Cand, 2603 SchedBoundary &Zone) { 2604 if (Zone.isTop()) { 2605 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2606 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2607 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2608 return true; 2609 } 2610 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2611 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2612 return true; 2613 } else { 2614 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2615 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2616 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2617 return true; 2618 } 2619 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2620 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2621 return true; 2622 } 2623 return false; 2624 } 2625 2626 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2627 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2628 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2629 } 2630 2631 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2632 tracePick(Cand.Reason, Cand.AtTop); 2633 } 2634 2635 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2636 assert(dag->hasVRegLiveness() && 2637 "(PreRA)GenericScheduler needs vreg liveness"); 2638 DAG = static_cast<ScheduleDAGMILive*>(dag); 2639 SchedModel = DAG->getSchedModel(); 2640 TRI = DAG->TRI; 2641 2642 Rem.init(DAG, SchedModel); 2643 Top.init(DAG, SchedModel, &Rem); 2644 Bot.init(DAG, SchedModel, &Rem); 2645 2646 // Initialize resource counts. 2647 2648 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2649 // are disabled, then these HazardRecs will be disabled. 2650 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2651 if (!Top.HazardRec) { 2652 Top.HazardRec = 2653 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2654 Itin, DAG); 2655 } 2656 if (!Bot.HazardRec) { 2657 Bot.HazardRec = 2658 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2659 Itin, DAG); 2660 } 2661 TopCand.SU = nullptr; 2662 BotCand.SU = nullptr; 2663 } 2664 2665 /// Initialize the per-region scheduling policy. 2666 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2667 MachineBasicBlock::iterator End, 2668 unsigned NumRegionInstrs) { 2669 const MachineFunction &MF = *Begin->getMF(); 2670 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2671 2672 // Avoid setting up the register pressure tracker for small regions to save 2673 // compile time. As a rough heuristic, only track pressure when the number of 2674 // schedulable instructions exceeds half the integer register file. 2675 RegionPolicy.ShouldTrackPressure = true; 2676 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2677 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2678 if (TLI->isTypeLegal(LegalIntVT)) { 2679 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2680 TLI->getRegClassFor(LegalIntVT)); 2681 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2682 } 2683 } 2684 2685 // For generic targets, we default to bottom-up, because it's simpler and more 2686 // compile-time optimizations have been implemented in that direction. 2687 RegionPolicy.OnlyBottomUp = true; 2688 2689 // Allow the subtarget to override default policy. 2690 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2691 2692 // After subtarget overrides, apply command line options. 2693 if (!EnableRegPressure) 2694 RegionPolicy.ShouldTrackPressure = false; 2695 2696 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2697 // e.g. -misched-bottomup=false allows scheduling in both directions. 2698 assert((!ForceTopDown || !ForceBottomUp) && 2699 "-misched-topdown incompatible with -misched-bottomup"); 2700 if (ForceBottomUp.getNumOccurrences() > 0) { 2701 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2702 if (RegionPolicy.OnlyBottomUp) 2703 RegionPolicy.OnlyTopDown = false; 2704 } 2705 if (ForceTopDown.getNumOccurrences() > 0) { 2706 RegionPolicy.OnlyTopDown = ForceTopDown; 2707 if (RegionPolicy.OnlyTopDown) 2708 RegionPolicy.OnlyBottomUp = false; 2709 } 2710 } 2711 2712 void GenericScheduler::dumpPolicy() const { 2713 // Cannot completely remove virtual function even in release mode. 2714 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2715 dbgs() << "GenericScheduler RegionPolicy: " 2716 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2717 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2718 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2719 << "\n"; 2720 #endif 2721 } 2722 2723 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2724 /// critical path by more cycles than it takes to drain the instruction buffer. 2725 /// We estimate an upper bounds on in-flight instructions as: 2726 /// 2727 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2728 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2729 /// InFlightResources = InFlightIterations * LoopResources 2730 /// 2731 /// TODO: Check execution resources in addition to IssueCount. 2732 void GenericScheduler::checkAcyclicLatency() { 2733 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2734 return; 2735 2736 // Scaled number of cycles per loop iteration. 2737 unsigned IterCount = 2738 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2739 Rem.RemIssueCount); 2740 // Scaled acyclic critical path. 2741 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2742 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2743 unsigned InFlightCount = 2744 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2745 unsigned BufferLimit = 2746 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2747 2748 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2749 2750 DEBUG(dbgs() << "IssueCycles=" 2751 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2752 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2753 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2754 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2755 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2756 if (Rem.IsAcyclicLatencyLimited) 2757 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2758 } 2759 2760 void GenericScheduler::registerRoots() { 2761 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2762 2763 // Some roots may not feed into ExitSU. Check all of them in case. 2764 for (const SUnit *SU : Bot.Available) { 2765 if (SU->getDepth() > Rem.CriticalPath) 2766 Rem.CriticalPath = SU->getDepth(); 2767 } 2768 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2769 if (DumpCriticalPathLength) { 2770 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2771 } 2772 2773 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2774 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2775 checkAcyclicLatency(); 2776 } 2777 } 2778 2779 static bool tryPressure(const PressureChange &TryP, 2780 const PressureChange &CandP, 2781 GenericSchedulerBase::SchedCandidate &TryCand, 2782 GenericSchedulerBase::SchedCandidate &Cand, 2783 GenericSchedulerBase::CandReason Reason, 2784 const TargetRegisterInfo *TRI, 2785 const MachineFunction &MF) { 2786 // If one candidate decreases and the other increases, go with it. 2787 // Invalid candidates have UnitInc==0. 2788 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2789 Reason)) { 2790 return true; 2791 } 2792 // Do not compare the magnitude of pressure changes between top and bottom 2793 // boundary. 2794 if (Cand.AtTop != TryCand.AtTop) 2795 return false; 2796 2797 // If both candidates affect the same set in the same boundary, go with the 2798 // smallest increase. 2799 unsigned TryPSet = TryP.getPSetOrMax(); 2800 unsigned CandPSet = CandP.getPSetOrMax(); 2801 if (TryPSet == CandPSet) { 2802 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2803 Reason); 2804 } 2805 2806 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2807 std::numeric_limits<int>::max(); 2808 2809 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2810 std::numeric_limits<int>::max(); 2811 2812 // If the candidates are decreasing pressure, reverse priority. 2813 if (TryP.getUnitInc() < 0) 2814 std::swap(TryRank, CandRank); 2815 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2816 } 2817 2818 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2819 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2820 } 2821 2822 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2823 /// their physreg def/use. 2824 /// 2825 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2826 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2827 /// with the operation that produces or consumes the physreg. We'll do this when 2828 /// regalloc has support for parallel copies. 2829 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2830 const MachineInstr *MI = SU->getInstr(); 2831 if (!MI->isCopy()) 2832 return 0; 2833 2834 unsigned ScheduledOper = isTop ? 1 : 0; 2835 unsigned UnscheduledOper = isTop ? 0 : 1; 2836 // If we have already scheduled the physreg produce/consumer, immediately 2837 // schedule the copy. 2838 if (TargetRegisterInfo::isPhysicalRegister( 2839 MI->getOperand(ScheduledOper).getReg())) 2840 return 1; 2841 // If the physreg is at the boundary, defer it. Otherwise schedule it 2842 // immediately to free the dependent. We can hoist the copy later. 2843 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2844 if (TargetRegisterInfo::isPhysicalRegister( 2845 MI->getOperand(UnscheduledOper).getReg())) 2846 return AtBoundary ? -1 : 1; 2847 return 0; 2848 } 2849 2850 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2851 bool AtTop, 2852 const RegPressureTracker &RPTracker, 2853 RegPressureTracker &TempTracker) { 2854 Cand.SU = SU; 2855 Cand.AtTop = AtTop; 2856 if (DAG->isTrackingPressure()) { 2857 if (AtTop) { 2858 TempTracker.getMaxDownwardPressureDelta( 2859 Cand.SU->getInstr(), 2860 Cand.RPDelta, 2861 DAG->getRegionCriticalPSets(), 2862 DAG->getRegPressure().MaxSetPressure); 2863 } else { 2864 if (VerifyScheduling) { 2865 TempTracker.getMaxUpwardPressureDelta( 2866 Cand.SU->getInstr(), 2867 &DAG->getPressureDiff(Cand.SU), 2868 Cand.RPDelta, 2869 DAG->getRegionCriticalPSets(), 2870 DAG->getRegPressure().MaxSetPressure); 2871 } else { 2872 RPTracker.getUpwardPressureDelta( 2873 Cand.SU->getInstr(), 2874 DAG->getPressureDiff(Cand.SU), 2875 Cand.RPDelta, 2876 DAG->getRegionCriticalPSets(), 2877 DAG->getRegPressure().MaxSetPressure); 2878 } 2879 } 2880 } 2881 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2882 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2883 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2884 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2885 } 2886 2887 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2888 /// hierarchical. This may be more efficient than a graduated cost model because 2889 /// we don't need to evaluate all aspects of the model for each node in the 2890 /// queue. But it's really done to make the heuristics easier to debug and 2891 /// statistically analyze. 2892 /// 2893 /// \param Cand provides the policy and current best candidate. 2894 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2895 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2896 // if Cand is from a different zone than TryCand. 2897 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2898 SchedCandidate &TryCand, 2899 SchedBoundary *Zone) { 2900 // Initialize the candidate if needed. 2901 if (!Cand.isValid()) { 2902 TryCand.Reason = NodeOrder; 2903 return; 2904 } 2905 2906 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2907 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2908 TryCand, Cand, PhysRegCopy)) 2909 return; 2910 2911 // Avoid exceeding the target's limit. 2912 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2913 Cand.RPDelta.Excess, 2914 TryCand, Cand, RegExcess, TRI, 2915 DAG->MF)) 2916 return; 2917 2918 // Avoid increasing the max critical pressure in the scheduled region. 2919 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2920 Cand.RPDelta.CriticalMax, 2921 TryCand, Cand, RegCritical, TRI, 2922 DAG->MF)) 2923 return; 2924 2925 // We only compare a subset of features when comparing nodes between 2926 // Top and Bottom boundary. Some properties are simply incomparable, in many 2927 // other instances we should only override the other boundary if something 2928 // is a clear good pick on one boundary. Skip heuristics that are more 2929 // "tie-breaking" in nature. 2930 bool SameBoundary = Zone != nullptr; 2931 if (SameBoundary) { 2932 // For loops that are acyclic path limited, aggressively schedule for 2933 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2934 // heuristics to take precedence. 2935 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2936 tryLatency(TryCand, Cand, *Zone)) 2937 return; 2938 2939 // Prioritize instructions that read unbuffered resources by stall cycles. 2940 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2941 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2942 return; 2943 } 2944 2945 // Keep clustered nodes together to encourage downstream peephole 2946 // optimizations which may reduce resource requirements. 2947 // 2948 // This is a best effort to set things up for a post-RA pass. Optimizations 2949 // like generating loads of multiple registers should ideally be done within 2950 // the scheduler pass by combining the loads during DAG postprocessing. 2951 const SUnit *CandNextClusterSU = 2952 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2953 const SUnit *TryCandNextClusterSU = 2954 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2955 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2956 Cand.SU == CandNextClusterSU, 2957 TryCand, Cand, Cluster)) 2958 return; 2959 2960 if (SameBoundary) { 2961 // Weak edges are for clustering and other constraints. 2962 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2963 getWeakLeft(Cand.SU, Cand.AtTop), 2964 TryCand, Cand, Weak)) 2965 return; 2966 } 2967 2968 // Avoid increasing the max pressure of the entire region. 2969 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2970 Cand.RPDelta.CurrentMax, 2971 TryCand, Cand, RegMax, TRI, 2972 DAG->MF)) 2973 return; 2974 2975 if (SameBoundary) { 2976 // Avoid critical resource consumption and balance the schedule. 2977 TryCand.initResourceDelta(DAG, SchedModel); 2978 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2979 TryCand, Cand, ResourceReduce)) 2980 return; 2981 if (tryGreater(TryCand.ResDelta.DemandedResources, 2982 Cand.ResDelta.DemandedResources, 2983 TryCand, Cand, ResourceDemand)) 2984 return; 2985 2986 // Avoid serializing long latency dependence chains. 2987 // For acyclic path limited loops, latency was already checked above. 2988 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2989 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2990 return; 2991 2992 // Fall through to original instruction order. 2993 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2994 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2995 TryCand.Reason = NodeOrder; 2996 } 2997 } 2998 } 2999 3000 /// Pick the best candidate from the queue. 3001 /// 3002 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3003 /// DAG building. To adjust for the current scheduling location we need to 3004 /// maintain the number of vreg uses remaining to be top-scheduled. 3005 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3006 const CandPolicy &ZonePolicy, 3007 const RegPressureTracker &RPTracker, 3008 SchedCandidate &Cand) { 3009 // getMaxPressureDelta temporarily modifies the tracker. 3010 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3011 3012 ReadyQueue &Q = Zone.Available; 3013 for (SUnit *SU : Q) { 3014 3015 SchedCandidate TryCand(ZonePolicy); 3016 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3017 // Pass SchedBoundary only when comparing nodes from the same boundary. 3018 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3019 tryCandidate(Cand, TryCand, ZoneArg); 3020 if (TryCand.Reason != NoCand) { 3021 // Initialize resource delta if needed in case future heuristics query it. 3022 if (TryCand.ResDelta == SchedResourceDelta()) 3023 TryCand.initResourceDelta(DAG, SchedModel); 3024 Cand.setBest(TryCand); 3025 DEBUG(traceCandidate(Cand)); 3026 } 3027 } 3028 } 3029 3030 /// Pick the best candidate node from either the top or bottom queue. 3031 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3032 // Schedule as far as possible in the direction of no choice. This is most 3033 // efficient, but also provides the best heuristics for CriticalPSets. 3034 if (SUnit *SU = Bot.pickOnlyChoice()) { 3035 IsTopNode = false; 3036 tracePick(Only1, false); 3037 return SU; 3038 } 3039 if (SUnit *SU = Top.pickOnlyChoice()) { 3040 IsTopNode = true; 3041 tracePick(Only1, true); 3042 return SU; 3043 } 3044 // Set the bottom-up policy based on the state of the current bottom zone and 3045 // the instructions outside the zone, including the top zone. 3046 CandPolicy BotPolicy; 3047 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3048 // Set the top-down policy based on the state of the current top zone and 3049 // the instructions outside the zone, including the bottom zone. 3050 CandPolicy TopPolicy; 3051 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3052 3053 // See if BotCand is still valid (because we previously scheduled from Top). 3054 DEBUG(dbgs() << "Picking from Bot:\n"); 3055 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3056 BotCand.Policy != BotPolicy) { 3057 BotCand.reset(CandPolicy()); 3058 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3059 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3060 } else { 3061 DEBUG(traceCandidate(BotCand)); 3062 #ifndef NDEBUG 3063 if (VerifyScheduling) { 3064 SchedCandidate TCand; 3065 TCand.reset(CandPolicy()); 3066 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3067 assert(TCand.SU == BotCand.SU && 3068 "Last pick result should correspond to re-picking right now"); 3069 } 3070 #endif 3071 } 3072 3073 // Check if the top Q has a better candidate. 3074 DEBUG(dbgs() << "Picking from Top:\n"); 3075 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3076 TopCand.Policy != TopPolicy) { 3077 TopCand.reset(CandPolicy()); 3078 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3079 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3080 } else { 3081 DEBUG(traceCandidate(TopCand)); 3082 #ifndef NDEBUG 3083 if (VerifyScheduling) { 3084 SchedCandidate TCand; 3085 TCand.reset(CandPolicy()); 3086 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3087 assert(TCand.SU == TopCand.SU && 3088 "Last pick result should correspond to re-picking right now"); 3089 } 3090 #endif 3091 } 3092 3093 // Pick best from BotCand and TopCand. 3094 assert(BotCand.isValid()); 3095 assert(TopCand.isValid()); 3096 SchedCandidate Cand = BotCand; 3097 TopCand.Reason = NoCand; 3098 tryCandidate(Cand, TopCand, nullptr); 3099 if (TopCand.Reason != NoCand) { 3100 Cand.setBest(TopCand); 3101 DEBUG(traceCandidate(Cand)); 3102 } 3103 3104 IsTopNode = Cand.AtTop; 3105 tracePick(Cand); 3106 return Cand.SU; 3107 } 3108 3109 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3110 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3111 if (DAG->top() == DAG->bottom()) { 3112 assert(Top.Available.empty() && Top.Pending.empty() && 3113 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3114 return nullptr; 3115 } 3116 SUnit *SU; 3117 do { 3118 if (RegionPolicy.OnlyTopDown) { 3119 SU = Top.pickOnlyChoice(); 3120 if (!SU) { 3121 CandPolicy NoPolicy; 3122 TopCand.reset(NoPolicy); 3123 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3124 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3125 tracePick(TopCand); 3126 SU = TopCand.SU; 3127 } 3128 IsTopNode = true; 3129 } else if (RegionPolicy.OnlyBottomUp) { 3130 SU = Bot.pickOnlyChoice(); 3131 if (!SU) { 3132 CandPolicy NoPolicy; 3133 BotCand.reset(NoPolicy); 3134 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3135 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3136 tracePick(BotCand); 3137 SU = BotCand.SU; 3138 } 3139 IsTopNode = false; 3140 } else { 3141 SU = pickNodeBidirectional(IsTopNode); 3142 } 3143 } while (SU->isScheduled); 3144 3145 if (SU->isTopReady()) 3146 Top.removeReady(SU); 3147 if (SU->isBottomReady()) 3148 Bot.removeReady(SU); 3149 3150 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3151 return SU; 3152 } 3153 3154 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3155 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3156 if (!isTop) 3157 ++InsertPos; 3158 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3159 3160 // Find already scheduled copies with a single physreg dependence and move 3161 // them just above the scheduled instruction. 3162 for (SDep &Dep : Deps) { 3163 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3164 continue; 3165 SUnit *DepSU = Dep.getSUnit(); 3166 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3167 continue; 3168 MachineInstr *Copy = DepSU->getInstr(); 3169 if (!Copy->isCopy()) 3170 continue; 3171 DEBUG(dbgs() << " Rescheduling physreg copy "; 3172 Dep.getSUnit()->dump(DAG)); 3173 DAG->moveInstruction(Copy, InsertPos); 3174 } 3175 } 3176 3177 /// Update the scheduler's state after scheduling a node. This is the same node 3178 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3179 /// update it's state based on the current cycle before MachineSchedStrategy 3180 /// does. 3181 /// 3182 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3183 /// them here. See comments in biasPhysRegCopy. 3184 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3185 if (IsTopNode) { 3186 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3187 Top.bumpNode(SU); 3188 if (SU->hasPhysRegUses) 3189 reschedulePhysRegCopies(SU, true); 3190 } else { 3191 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3192 Bot.bumpNode(SU); 3193 if (SU->hasPhysRegDefs) 3194 reschedulePhysRegCopies(SU, false); 3195 } 3196 } 3197 3198 /// Create the standard converging machine scheduler. This will be used as the 3199 /// default scheduler if the target does not set a default. 3200 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3201 ScheduleDAGMILive *DAG = 3202 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3203 // Register DAG post-processors. 3204 // 3205 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3206 // data and pass it to later mutations. Have a single mutation that gathers 3207 // the interesting nodes in one pass. 3208 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3209 return DAG; 3210 } 3211 3212 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3213 return createGenericSchedLive(C); 3214 } 3215 3216 static MachineSchedRegistry 3217 GenericSchedRegistry("converge", "Standard converging scheduler.", 3218 createConveringSched); 3219 3220 //===----------------------------------------------------------------------===// 3221 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3222 //===----------------------------------------------------------------------===// 3223 3224 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3225 DAG = Dag; 3226 SchedModel = DAG->getSchedModel(); 3227 TRI = DAG->TRI; 3228 3229 Rem.init(DAG, SchedModel); 3230 Top.init(DAG, SchedModel, &Rem); 3231 BotRoots.clear(); 3232 3233 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3234 // or are disabled, then these HazardRecs will be disabled. 3235 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3236 if (!Top.HazardRec) { 3237 Top.HazardRec = 3238 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3239 Itin, DAG); 3240 } 3241 } 3242 3243 void PostGenericScheduler::registerRoots() { 3244 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3245 3246 // Some roots may not feed into ExitSU. Check all of them in case. 3247 for (const SUnit *SU : BotRoots) { 3248 if (SU->getDepth() > Rem.CriticalPath) 3249 Rem.CriticalPath = SU->getDepth(); 3250 } 3251 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3252 if (DumpCriticalPathLength) { 3253 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3254 } 3255 } 3256 3257 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3258 /// 3259 /// \param Cand provides the policy and current best candidate. 3260 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3261 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3262 SchedCandidate &TryCand) { 3263 // Initialize the candidate if needed. 3264 if (!Cand.isValid()) { 3265 TryCand.Reason = NodeOrder; 3266 return; 3267 } 3268 3269 // Prioritize instructions that read unbuffered resources by stall cycles. 3270 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3271 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3272 return; 3273 3274 // Keep clustered nodes together. 3275 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3276 Cand.SU == DAG->getNextClusterSucc(), 3277 TryCand, Cand, Cluster)) 3278 return; 3279 3280 // Avoid critical resource consumption and balance the schedule. 3281 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3282 TryCand, Cand, ResourceReduce)) 3283 return; 3284 if (tryGreater(TryCand.ResDelta.DemandedResources, 3285 Cand.ResDelta.DemandedResources, 3286 TryCand, Cand, ResourceDemand)) 3287 return; 3288 3289 // Avoid serializing long latency dependence chains. 3290 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3291 return; 3292 } 3293 3294 // Fall through to original instruction order. 3295 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3296 TryCand.Reason = NodeOrder; 3297 } 3298 3299 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3300 ReadyQueue &Q = Top.Available; 3301 for (SUnit *SU : Q) { 3302 SchedCandidate TryCand(Cand.Policy); 3303 TryCand.SU = SU; 3304 TryCand.AtTop = true; 3305 TryCand.initResourceDelta(DAG, SchedModel); 3306 tryCandidate(Cand, TryCand); 3307 if (TryCand.Reason != NoCand) { 3308 Cand.setBest(TryCand); 3309 DEBUG(traceCandidate(Cand)); 3310 } 3311 } 3312 } 3313 3314 /// Pick the next node to schedule. 3315 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3316 if (DAG->top() == DAG->bottom()) { 3317 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3318 return nullptr; 3319 } 3320 SUnit *SU; 3321 do { 3322 SU = Top.pickOnlyChoice(); 3323 if (SU) { 3324 tracePick(Only1, true); 3325 } else { 3326 CandPolicy NoPolicy; 3327 SchedCandidate TopCand(NoPolicy); 3328 // Set the top-down policy based on the state of the current top zone and 3329 // the instructions outside the zone, including the bottom zone. 3330 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3331 pickNodeFromQueue(TopCand); 3332 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3333 tracePick(TopCand); 3334 SU = TopCand.SU; 3335 } 3336 } while (SU->isScheduled); 3337 3338 IsTopNode = true; 3339 Top.removeReady(SU); 3340 3341 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr() 3342 << '\n'); 3343 return SU; 3344 } 3345 3346 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3347 /// scheduled/remaining flags in the DAG nodes. 3348 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3349 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3350 Top.bumpNode(SU); 3351 } 3352 3353 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3354 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3355 /*RemoveKillFlags=*/true); 3356 } 3357 3358 //===----------------------------------------------------------------------===// 3359 // ILP Scheduler. Currently for experimental analysis of heuristics. 3360 //===----------------------------------------------------------------------===// 3361 3362 namespace { 3363 3364 /// \brief Order nodes by the ILP metric. 3365 struct ILPOrder { 3366 const SchedDFSResult *DFSResult = nullptr; 3367 const BitVector *ScheduledTrees = nullptr; 3368 bool MaximizeILP; 3369 3370 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3371 3372 /// \brief Apply a less-than relation on node priority. 3373 /// 3374 /// (Return true if A comes after B in the Q.) 3375 bool operator()(const SUnit *A, const SUnit *B) const { 3376 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3377 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3378 if (SchedTreeA != SchedTreeB) { 3379 // Unscheduled trees have lower priority. 3380 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3381 return ScheduledTrees->test(SchedTreeB); 3382 3383 // Trees with shallower connections have have lower priority. 3384 if (DFSResult->getSubtreeLevel(SchedTreeA) 3385 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3386 return DFSResult->getSubtreeLevel(SchedTreeA) 3387 < DFSResult->getSubtreeLevel(SchedTreeB); 3388 } 3389 } 3390 if (MaximizeILP) 3391 return DFSResult->getILP(A) < DFSResult->getILP(B); 3392 else 3393 return DFSResult->getILP(A) > DFSResult->getILP(B); 3394 } 3395 }; 3396 3397 /// \brief Schedule based on the ILP metric. 3398 class ILPScheduler : public MachineSchedStrategy { 3399 ScheduleDAGMILive *DAG = nullptr; 3400 ILPOrder Cmp; 3401 3402 std::vector<SUnit*> ReadyQ; 3403 3404 public: 3405 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3406 3407 void initialize(ScheduleDAGMI *dag) override { 3408 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3409 DAG = static_cast<ScheduleDAGMILive*>(dag); 3410 DAG->computeDFSResult(); 3411 Cmp.DFSResult = DAG->getDFSResult(); 3412 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3413 ReadyQ.clear(); 3414 } 3415 3416 void registerRoots() override { 3417 // Restore the heap in ReadyQ with the updated DFS results. 3418 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3419 } 3420 3421 /// Implement MachineSchedStrategy interface. 3422 /// ----------------------------------------- 3423 3424 /// Callback to select the highest priority node from the ready Q. 3425 SUnit *pickNode(bool &IsTopNode) override { 3426 if (ReadyQ.empty()) return nullptr; 3427 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3428 SUnit *SU = ReadyQ.back(); 3429 ReadyQ.pop_back(); 3430 IsTopNode = false; 3431 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3432 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3433 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3434 << DAG->getDFSResult()->getSubtreeLevel( 3435 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3436 << "Scheduling " << *SU->getInstr()); 3437 return SU; 3438 } 3439 3440 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3441 void scheduleTree(unsigned SubtreeID) override { 3442 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3443 } 3444 3445 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3446 /// DFSResults, and resort the priority Q. 3447 void schedNode(SUnit *SU, bool IsTopNode) override { 3448 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3449 } 3450 3451 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3452 3453 void releaseBottomNode(SUnit *SU) override { 3454 ReadyQ.push_back(SU); 3455 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3456 } 3457 }; 3458 3459 } // end anonymous namespace 3460 3461 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3462 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3463 } 3464 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3465 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3466 } 3467 3468 static MachineSchedRegistry ILPMaxRegistry( 3469 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3470 static MachineSchedRegistry ILPMinRegistry( 3471 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3472 3473 //===----------------------------------------------------------------------===// 3474 // Machine Instruction Shuffler for Correctness Testing 3475 //===----------------------------------------------------------------------===// 3476 3477 #ifndef NDEBUG 3478 namespace { 3479 3480 /// Apply a less-than relation on the node order, which corresponds to the 3481 /// instruction order prior to scheduling. IsReverse implements greater-than. 3482 template<bool IsReverse> 3483 struct SUnitOrder { 3484 bool operator()(SUnit *A, SUnit *B) const { 3485 if (IsReverse) 3486 return A->NodeNum > B->NodeNum; 3487 else 3488 return A->NodeNum < B->NodeNum; 3489 } 3490 }; 3491 3492 /// Reorder instructions as much as possible. 3493 class InstructionShuffler : public MachineSchedStrategy { 3494 bool IsAlternating; 3495 bool IsTopDown; 3496 3497 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3498 // gives nodes with a higher number higher priority causing the latest 3499 // instructions to be scheduled first. 3500 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3501 TopQ; 3502 3503 // When scheduling bottom-up, use greater-than as the queue priority. 3504 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3505 BottomQ; 3506 3507 public: 3508 InstructionShuffler(bool alternate, bool topdown) 3509 : IsAlternating(alternate), IsTopDown(topdown) {} 3510 3511 void initialize(ScheduleDAGMI*) override { 3512 TopQ.clear(); 3513 BottomQ.clear(); 3514 } 3515 3516 /// Implement MachineSchedStrategy interface. 3517 /// ----------------------------------------- 3518 3519 SUnit *pickNode(bool &IsTopNode) override { 3520 SUnit *SU; 3521 if (IsTopDown) { 3522 do { 3523 if (TopQ.empty()) return nullptr; 3524 SU = TopQ.top(); 3525 TopQ.pop(); 3526 } while (SU->isScheduled); 3527 IsTopNode = true; 3528 } else { 3529 do { 3530 if (BottomQ.empty()) return nullptr; 3531 SU = BottomQ.top(); 3532 BottomQ.pop(); 3533 } while (SU->isScheduled); 3534 IsTopNode = false; 3535 } 3536 if (IsAlternating) 3537 IsTopDown = !IsTopDown; 3538 return SU; 3539 } 3540 3541 void schedNode(SUnit *SU, bool IsTopNode) override {} 3542 3543 void releaseTopNode(SUnit *SU) override { 3544 TopQ.push(SU); 3545 } 3546 void releaseBottomNode(SUnit *SU) override { 3547 BottomQ.push(SU); 3548 } 3549 }; 3550 3551 } // end anonymous namespace 3552 3553 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3554 bool Alternate = !ForceTopDown && !ForceBottomUp; 3555 bool TopDown = !ForceBottomUp; 3556 assert((TopDown || !ForceTopDown) && 3557 "-misched-topdown incompatible with -misched-bottomup"); 3558 return new ScheduleDAGMILive( 3559 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3560 } 3561 3562 static MachineSchedRegistry ShufflerRegistry( 3563 "shuffle", "Shuffle machine instructions alternating directions", 3564 createInstructionShuffler); 3565 #endif // !NDEBUG 3566 3567 //===----------------------------------------------------------------------===// 3568 // GraphWriter support for ScheduleDAGMILive. 3569 //===----------------------------------------------------------------------===// 3570 3571 #ifndef NDEBUG 3572 namespace llvm { 3573 3574 template<> struct GraphTraits< 3575 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3576 3577 template<> 3578 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3579 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3580 3581 static std::string getGraphName(const ScheduleDAG *G) { 3582 return G->MF.getName(); 3583 } 3584 3585 static bool renderGraphFromBottomUp() { 3586 return true; 3587 } 3588 3589 static bool isNodeHidden(const SUnit *Node) { 3590 if (ViewMISchedCutoff == 0) 3591 return false; 3592 return (Node->Preds.size() > ViewMISchedCutoff 3593 || Node->Succs.size() > ViewMISchedCutoff); 3594 } 3595 3596 /// If you want to override the dot attributes printed for a particular 3597 /// edge, override this method. 3598 static std::string getEdgeAttributes(const SUnit *Node, 3599 SUnitIterator EI, 3600 const ScheduleDAG *Graph) { 3601 if (EI.isArtificialDep()) 3602 return "color=cyan,style=dashed"; 3603 if (EI.isCtrlDep()) 3604 return "color=blue,style=dashed"; 3605 return ""; 3606 } 3607 3608 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3609 std::string Str; 3610 raw_string_ostream SS(Str); 3611 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3612 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3613 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3614 SS << "SU:" << SU->NodeNum; 3615 if (DFS) 3616 SS << " I:" << DFS->getNumInstrs(SU); 3617 return SS.str(); 3618 } 3619 3620 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3621 return G->getGraphNodeLabel(SU); 3622 } 3623 3624 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3625 std::string Str("shape=Mrecord"); 3626 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3627 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3628 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3629 if (DFS) { 3630 Str += ",style=filled,fillcolor=\"#"; 3631 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3632 Str += '"'; 3633 } 3634 return Str; 3635 } 3636 }; 3637 3638 } // end namespace llvm 3639 #endif // NDEBUG 3640 3641 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3642 /// rendered using 'dot'. 3643 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3644 #ifndef NDEBUG 3645 ViewGraph(this, Name, false, Title); 3646 #else 3647 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3648 << "systems with Graphviz or gv!\n"; 3649 #endif // NDEBUG 3650 } 3651 3652 /// Out-of-line implementation with no arguments is handy for gdb. 3653 void ScheduleDAGMI::viewGraph() { 3654 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3655 } 3656