1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 /// Forward declare the standard machine scheduler. This will be used as the 223 /// default scheduler if the target does not set a default. 224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 226 227 /// Decrement this iterator until reaching the top or a non-debug instr. 228 static MachineBasicBlock::const_iterator 229 priorNonDebug(MachineBasicBlock::const_iterator I, 230 MachineBasicBlock::const_iterator Beg) { 231 assert(I != Beg && "reached the top of the region, cannot decrement"); 232 while (--I != Beg) { 233 if (!I->isDebugValue()) 234 break; 235 } 236 return I; 237 } 238 239 /// Non-const version. 240 static MachineBasicBlock::iterator 241 priorNonDebug(MachineBasicBlock::iterator I, 242 MachineBasicBlock::const_iterator Beg) { 243 return const_cast<MachineInstr*>( 244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 245 } 246 247 /// If this iterator is a debug value, increment until reaching the End or a 248 /// non-debug instruction. 249 static MachineBasicBlock::const_iterator 250 nextIfDebug(MachineBasicBlock::const_iterator I, 251 MachineBasicBlock::const_iterator End) { 252 for(; I != End; ++I) { 253 if (!I->isDebugValue()) 254 break; 255 } 256 return I; 257 } 258 259 /// Non-const version. 260 static MachineBasicBlock::iterator 261 nextIfDebug(MachineBasicBlock::iterator I, 262 MachineBasicBlock::const_iterator End) { 263 // Cast the return value to nonconst MachineInstr, then cast to an 264 // instr_iterator, which does not check for null, finally return a 265 // bundle_iterator. 266 return MachineBasicBlock::instr_iterator( 267 const_cast<MachineInstr*>( 268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 269 } 270 271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 273 // Select the scheduler, or set the default. 274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 275 if (Ctor != useDefaultMachineSched) 276 return Ctor(this); 277 278 // Get the default scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedLive(this); 285 } 286 287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 288 /// the caller. We don't have a command line option to override the postRA 289 /// scheduler. The Target must configure it. 290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 291 // Get the postRA scheduler set by the target for this function. 292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 293 if (Scheduler) 294 return Scheduler; 295 296 // Default to GenericScheduler. 297 return createGenericSchedPostRA(this); 298 } 299 300 /// Top-level MachineScheduler pass driver. 301 /// 302 /// Visit blocks in function order. Divide each block into scheduling regions 303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 304 /// consistent with the DAG builder, which traverses the interior of the 305 /// scheduling regions bottom-up. 306 /// 307 /// This design avoids exposing scheduling boundaries to the DAG builder, 308 /// simplifying the DAG builder's support for "special" target instructions. 309 /// At the same time the design allows target schedulers to operate across 310 /// scheduling boundaries, for example to bundle the boudary instructions 311 /// without reordering them. This creates complexity, because the target 312 /// scheduler must update the RegionBegin and RegionEnd positions cached by 313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 314 /// design would be to split blocks at scheduling boundaries, but LLVM has a 315 /// general bias against block splitting purely for implementation simplicity. 316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 317 if (EnableMachineSched.getNumOccurrences()) { 318 if (!EnableMachineSched) 319 return false; 320 } else if (!mf.getSubtarget().enableMachineScheduler()) 321 return false; 322 323 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 324 325 // Initialize the context of the pass. 326 MF = &mf; 327 MLI = &getAnalysis<MachineLoopInfo>(); 328 MDT = &getAnalysis<MachineDominatorTree>(); 329 PassConfig = &getAnalysis<TargetPassConfig>(); 330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 331 332 LIS = &getAnalysis<LiveIntervals>(); 333 334 if (VerifyScheduling) { 335 DEBUG(LIS->dump()); 336 MF->verify(this, "Before machine scheduling."); 337 } 338 RegClassInfo->runOnMachineFunction(*MF); 339 340 // Instantiate the selected scheduler for this target, function, and 341 // optimization level. 342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 343 scheduleRegions(*Scheduler, false); 344 345 DEBUG(LIS->dump()); 346 if (VerifyScheduling) 347 MF->verify(this, "After machine scheduling."); 348 return true; 349 } 350 351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 352 if (skipOptnoneFunction(*mf.getFunction())) 353 return false; 354 355 if (!mf.getSubtarget().enablePostRAScheduler()) { 356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 357 return false; 358 } 359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 360 361 // Initialize the context of the pass. 362 MF = &mf; 363 PassConfig = &getAnalysis<TargetPassConfig>(); 364 365 if (VerifyScheduling) 366 MF->verify(this, "Before post machine scheduling."); 367 368 // Instantiate the selected scheduler for this target, function, and 369 // optimization level. 370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 371 scheduleRegions(*Scheduler, true); 372 373 if (VerifyScheduling) 374 MF->verify(this, "After post machine scheduling."); 375 return true; 376 } 377 378 /// Return true of the given instruction should not be included in a scheduling 379 /// region. 380 /// 381 /// MachineScheduler does not currently support scheduling across calls. To 382 /// handle calls, the DAG builder needs to be modified to create register 383 /// anti/output dependencies on the registers clobbered by the call's regmask 384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 386 /// the boundary, but there would be no benefit to postRA scheduling across 387 /// calls this late anyway. 388 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 389 MachineBasicBlock *MBB, 390 MachineFunction *MF, 391 const TargetInstrInfo *TII) { 392 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 393 } 394 395 /// Main driver for both MachineScheduler and PostMachineScheduler. 396 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 397 bool FixKillFlags) { 398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 399 400 // Visit all machine basic blocks. 401 // 402 // TODO: Visit blocks in global postorder or postorder within the bottom-up 403 // loop tree. Then we can optionally compute global RegPressure. 404 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 405 MBB != MBBEnd; ++MBB) { 406 407 Scheduler.startBlock(&*MBB); 408 409 #ifndef NDEBUG 410 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 411 continue; 412 if (SchedOnlyBlock.getNumOccurrences() 413 && (int)SchedOnlyBlock != MBB->getNumber()) 414 continue; 415 #endif 416 417 // Break the block into scheduling regions [I, RegionEnd), and schedule each 418 // region as soon as it is discovered. RegionEnd points the scheduling 419 // boundary at the bottom of the region. The DAG does not include RegionEnd, 420 // but the region does (i.e. the next RegionEnd is above the previous 421 // RegionBegin). If the current block has no terminator then RegionEnd == 422 // MBB->end() for the bottom region. 423 // 424 // The Scheduler may insert instructions during either schedule() or 425 // exitRegion(), even for empty regions. So the local iterators 'I' and 426 // 'RegionEnd' are invalid across these calls. 427 // 428 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 429 // as a single instruction. 430 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 431 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 432 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 433 434 // Avoid decrementing RegionEnd for blocks with no terminator. 435 if (RegionEnd != MBB->end() || 436 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 437 --RegionEnd; 438 // Count the boundary instruction. 439 --RemainingInstrs; 440 } 441 442 // The next region starts above the previous region. Look backward in the 443 // instruction stream until we find the nearest boundary. 444 unsigned NumRegionInstrs = 0; 445 MachineBasicBlock::iterator I = RegionEnd; 446 for(;I != MBB->begin(); --I, --RemainingInstrs) { 447 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 448 break; 449 if (!I->isDebugValue()) 450 ++NumRegionInstrs; 451 } 452 // Notify the scheduler of the region, even if we may skip scheduling 453 // it. Perhaps it still needs to be bundled. 454 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 455 456 // Skip empty scheduling regions (0 or 1 schedulable instructions). 457 if (I == RegionEnd || I == std::prev(RegionEnd)) { 458 // Close the current region. Bundle the terminator if needed. 459 // This invalidates 'RegionEnd' and 'I'. 460 Scheduler.exitRegion(); 461 continue; 462 } 463 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 464 DEBUG(dbgs() << MF->getName() 465 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 466 << "\n From: " << *I << " To: "; 467 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 468 else dbgs() << "End"; 469 dbgs() << " RegionInstrs: " << NumRegionInstrs 470 << " Remaining: " << RemainingInstrs << "\n"); 471 if (DumpCriticalPathLength) { 472 errs() << MF->getName(); 473 errs() << ":BB# " << MBB->getNumber(); 474 errs() << " " << MBB->getName() << " \n"; 475 } 476 477 // Schedule a region: possibly reorder instructions. 478 // This invalidates 'RegionEnd' and 'I'. 479 Scheduler.schedule(); 480 481 // Close the current region. 482 Scheduler.exitRegion(); 483 484 // Scheduling has invalidated the current iterator 'I'. Ask the 485 // scheduler for the top of it's scheduled region. 486 RegionEnd = Scheduler.begin(); 487 } 488 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 489 Scheduler.finishBlock(); 490 // FIXME: Ideally, no further passes should rely on kill flags. However, 491 // thumb2 size reduction is currently an exception, so the PostMIScheduler 492 // needs to do this. 493 if (FixKillFlags) 494 Scheduler.fixupKills(&*MBB); 495 } 496 Scheduler.finalizeSchedule(); 497 } 498 499 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 500 // unimplemented 501 } 502 503 LLVM_DUMP_METHOD 504 void ReadyQueue::dump() { 505 dbgs() << "Queue " << Name << ": "; 506 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 507 dbgs() << Queue[i]->NodeNum << " "; 508 dbgs() << "\n"; 509 } 510 511 //===----------------------------------------------------------------------===// 512 // ScheduleDAGMI - Basic machine instruction scheduling. This is 513 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 514 // virtual registers. 515 // ===----------------------------------------------------------------------===/ 516 517 // Provide a vtable anchor. 518 ScheduleDAGMI::~ScheduleDAGMI() { 519 } 520 521 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 522 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 523 } 524 525 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 526 if (SuccSU != &ExitSU) { 527 // Do not use WillCreateCycle, it assumes SD scheduling. 528 // If Pred is reachable from Succ, then the edge creates a cycle. 529 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 530 return false; 531 Topo.AddPred(SuccSU, PredDep.getSUnit()); 532 } 533 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 534 // Return true regardless of whether a new edge needed to be inserted. 535 return true; 536 } 537 538 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 539 /// NumPredsLeft reaches zero, release the successor node. 540 /// 541 /// FIXME: Adjust SuccSU height based on MinLatency. 542 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 543 SUnit *SuccSU = SuccEdge->getSUnit(); 544 545 if (SuccEdge->isWeak()) { 546 --SuccSU->WeakPredsLeft; 547 if (SuccEdge->isCluster()) 548 NextClusterSucc = SuccSU; 549 return; 550 } 551 #ifndef NDEBUG 552 if (SuccSU->NumPredsLeft == 0) { 553 dbgs() << "*** Scheduling failed! ***\n"; 554 SuccSU->dump(this); 555 dbgs() << " has been released too many times!\n"; 556 llvm_unreachable(nullptr); 557 } 558 #endif 559 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 560 // CurrCycle may have advanced since then. 561 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 562 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 563 564 --SuccSU->NumPredsLeft; 565 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 566 SchedImpl->releaseTopNode(SuccSU); 567 } 568 569 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 570 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 571 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 572 I != E; ++I) { 573 releaseSucc(SU, &*I); 574 } 575 } 576 577 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 578 /// NumSuccsLeft reaches zero, release the predecessor node. 579 /// 580 /// FIXME: Adjust PredSU height based on MinLatency. 581 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 582 SUnit *PredSU = PredEdge->getSUnit(); 583 584 if (PredEdge->isWeak()) { 585 --PredSU->WeakSuccsLeft; 586 if (PredEdge->isCluster()) 587 NextClusterPred = PredSU; 588 return; 589 } 590 #ifndef NDEBUG 591 if (PredSU->NumSuccsLeft == 0) { 592 dbgs() << "*** Scheduling failed! ***\n"; 593 PredSU->dump(this); 594 dbgs() << " has been released too many times!\n"; 595 llvm_unreachable(nullptr); 596 } 597 #endif 598 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 599 // CurrCycle may have advanced since then. 600 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 601 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 602 603 --PredSU->NumSuccsLeft; 604 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 605 SchedImpl->releaseBottomNode(PredSU); 606 } 607 608 /// releasePredecessors - Call releasePred on each of SU's predecessors. 609 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 610 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 611 I != E; ++I) { 612 releasePred(SU, &*I); 613 } 614 } 615 616 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 617 /// crossing a scheduling boundary. [begin, end) includes all instructions in 618 /// the region, including the boundary itself and single-instruction regions 619 /// that don't get scheduled. 620 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 621 MachineBasicBlock::iterator begin, 622 MachineBasicBlock::iterator end, 623 unsigned regioninstrs) 624 { 625 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 626 627 SchedImpl->initPolicy(begin, end, regioninstrs); 628 } 629 630 /// This is normally called from the main scheduler loop but may also be invoked 631 /// by the scheduling strategy to perform additional code motion. 632 void ScheduleDAGMI::moveInstruction( 633 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 634 // Advance RegionBegin if the first instruction moves down. 635 if (&*RegionBegin == MI) 636 ++RegionBegin; 637 638 // Update the instruction stream. 639 BB->splice(InsertPos, BB, MI); 640 641 // Update LiveIntervals 642 if (LIS) 643 LIS->handleMove(MI, /*UpdateFlags=*/true); 644 645 // Recede RegionBegin if an instruction moves above the first. 646 if (RegionBegin == InsertPos) 647 RegionBegin = MI; 648 } 649 650 bool ScheduleDAGMI::checkSchedLimit() { 651 #ifndef NDEBUG 652 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 653 CurrentTop = CurrentBottom; 654 return false; 655 } 656 ++NumInstrsScheduled; 657 #endif 658 return true; 659 } 660 661 /// Per-region scheduling driver, called back from 662 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 663 /// does not consider liveness or register pressure. It is useful for PostRA 664 /// scheduling and potentially other custom schedulers. 665 void ScheduleDAGMI::schedule() { 666 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 667 DEBUG(SchedImpl->dumpPolicy()); 668 669 // Build the DAG. 670 buildSchedGraph(AA); 671 672 Topo.InitDAGTopologicalSorting(); 673 674 postprocessDAG(); 675 676 SmallVector<SUnit*, 8> TopRoots, BotRoots; 677 findRootsAndBiasEdges(TopRoots, BotRoots); 678 679 // Initialize the strategy before modifying the DAG. 680 // This may initialize a DFSResult to be used for queue priority. 681 SchedImpl->initialize(this); 682 683 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 684 SUnits[su].dumpAll(this)); 685 if (ViewMISchedDAGs) viewGraph(); 686 687 // Initialize ready queues now that the DAG and priority data are finalized. 688 initQueues(TopRoots, BotRoots); 689 690 bool IsTopNode = false; 691 while (true) { 692 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 693 SUnit *SU = SchedImpl->pickNode(IsTopNode); 694 if (!SU) break; 695 696 assert(!SU->isScheduled && "Node already scheduled"); 697 if (!checkSchedLimit()) 698 break; 699 700 MachineInstr *MI = SU->getInstr(); 701 if (IsTopNode) { 702 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 703 if (&*CurrentTop == MI) 704 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 705 else 706 moveInstruction(MI, CurrentTop); 707 } 708 else { 709 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 710 MachineBasicBlock::iterator priorII = 711 priorNonDebug(CurrentBottom, CurrentTop); 712 if (&*priorII == MI) 713 CurrentBottom = priorII; 714 else { 715 if (&*CurrentTop == MI) 716 CurrentTop = nextIfDebug(++CurrentTop, priorII); 717 moveInstruction(MI, CurrentBottom); 718 CurrentBottom = MI; 719 } 720 } 721 // Notify the scheduling strategy before updating the DAG. 722 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 723 // runs, it can then use the accurate ReadyCycle time to determine whether 724 // newly released nodes can move to the readyQ. 725 SchedImpl->schedNode(SU, IsTopNode); 726 727 updateQueues(SU, IsTopNode); 728 } 729 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 730 731 placeDebugValues(); 732 733 DEBUG({ 734 unsigned BBNum = begin()->getParent()->getNumber(); 735 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 736 dumpSchedule(); 737 dbgs() << '\n'; 738 }); 739 } 740 741 /// Apply each ScheduleDAGMutation step in order. 742 void ScheduleDAGMI::postprocessDAG() { 743 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 744 Mutations[i]->apply(this); 745 } 746 } 747 748 void ScheduleDAGMI:: 749 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 750 SmallVectorImpl<SUnit*> &BotRoots) { 751 for (std::vector<SUnit>::iterator 752 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 753 SUnit *SU = &(*I); 754 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 755 756 // Order predecessors so DFSResult follows the critical path. 757 SU->biasCriticalPath(); 758 759 // A SUnit is ready to top schedule if it has no predecessors. 760 if (!I->NumPredsLeft) 761 TopRoots.push_back(SU); 762 // A SUnit is ready to bottom schedule if it has no successors. 763 if (!I->NumSuccsLeft) 764 BotRoots.push_back(SU); 765 } 766 ExitSU.biasCriticalPath(); 767 } 768 769 /// Identify DAG roots and setup scheduler queues. 770 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 771 ArrayRef<SUnit*> BotRoots) { 772 NextClusterSucc = nullptr; 773 NextClusterPred = nullptr; 774 775 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 776 // 777 // Nodes with unreleased weak edges can still be roots. 778 // Release top roots in forward order. 779 for (SmallVectorImpl<SUnit*>::const_iterator 780 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 781 SchedImpl->releaseTopNode(*I); 782 } 783 // Release bottom roots in reverse order so the higher priority nodes appear 784 // first. This is more natural and slightly more efficient. 785 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 786 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 787 SchedImpl->releaseBottomNode(*I); 788 } 789 790 releaseSuccessors(&EntrySU); 791 releasePredecessors(&ExitSU); 792 793 SchedImpl->registerRoots(); 794 795 // Advance past initial DebugValues. 796 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 797 CurrentBottom = RegionEnd; 798 } 799 800 /// Update scheduler queues after scheduling an instruction. 801 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 802 // Release dependent instructions for scheduling. 803 if (IsTopNode) 804 releaseSuccessors(SU); 805 else 806 releasePredecessors(SU); 807 808 SU->isScheduled = true; 809 } 810 811 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 812 void ScheduleDAGMI::placeDebugValues() { 813 // If first instruction was a DBG_VALUE then put it back. 814 if (FirstDbgValue) { 815 BB->splice(RegionBegin, BB, FirstDbgValue); 816 RegionBegin = FirstDbgValue; 817 } 818 819 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 820 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 821 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 822 MachineInstr *DbgValue = P.first; 823 MachineBasicBlock::iterator OrigPrevMI = P.second; 824 if (&*RegionBegin == DbgValue) 825 ++RegionBegin; 826 BB->splice(++OrigPrevMI, BB, DbgValue); 827 if (OrigPrevMI == std::prev(RegionEnd)) 828 RegionEnd = DbgValue; 829 } 830 DbgValues.clear(); 831 FirstDbgValue = nullptr; 832 } 833 834 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 835 void ScheduleDAGMI::dumpSchedule() const { 836 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 837 if (SUnit *SU = getSUnit(&(*MI))) 838 SU->dump(this); 839 else 840 dbgs() << "Missing SUnit\n"; 841 } 842 } 843 #endif 844 845 //===----------------------------------------------------------------------===// 846 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 847 // preservation. 848 //===----------------------------------------------------------------------===// 849 850 ScheduleDAGMILive::~ScheduleDAGMILive() { 851 delete DFSResult; 852 } 853 854 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 855 /// crossing a scheduling boundary. [begin, end) includes all instructions in 856 /// the region, including the boundary itself and single-instruction regions 857 /// that don't get scheduled. 858 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 859 MachineBasicBlock::iterator begin, 860 MachineBasicBlock::iterator end, 861 unsigned regioninstrs) 862 { 863 // ScheduleDAGMI initializes SchedImpl's per-region policy. 864 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 865 866 // For convenience remember the end of the liveness region. 867 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 868 869 SUPressureDiffs.clear(); 870 871 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 872 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 873 874 if (ShouldTrackLaneMasks) { 875 if (!ShouldTrackPressure) 876 report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure"); 877 // Dead subregister defs have no users and therefore no dependencies, 878 // moving them around may cause liveintervals to degrade into multiple 879 // components. Change independent components to have their own vreg to avoid 880 // this. 881 if (!DisconnectedComponentsRenamed) 882 LIS->renameDisconnectedComponents(); 883 } 884 } 885 886 // Setup the register pressure trackers for the top scheduled top and bottom 887 // scheduled regions. 888 void ScheduleDAGMILive::initRegPressure() { 889 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 890 ShouldTrackLaneMasks, false); 891 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 892 ShouldTrackLaneMasks, false); 893 894 // Close the RPTracker to finalize live ins. 895 RPTracker.closeRegion(); 896 897 DEBUG(RPTracker.dump()); 898 899 // Initialize the live ins and live outs. 900 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 901 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 902 903 // Close one end of the tracker so we can call 904 // getMaxUpward/DownwardPressureDelta before advancing across any 905 // instructions. This converts currently live regs into live ins/outs. 906 TopRPTracker.closeTop(); 907 BotRPTracker.closeBottom(); 908 909 BotRPTracker.initLiveThru(RPTracker); 910 if (!BotRPTracker.getLiveThru().empty()) { 911 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 912 DEBUG(dbgs() << "Live Thru: "; 913 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 914 }; 915 916 // For each live out vreg reduce the pressure change associated with other 917 // uses of the same vreg below the live-out reaching def. 918 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 919 920 // Account for liveness generated by the region boundary. 921 if (LiveRegionEnd != RegionEnd) { 922 SmallVector<RegisterMaskPair, 8> LiveUses; 923 BotRPTracker.recede(&LiveUses); 924 updatePressureDiffs(LiveUses); 925 } 926 927 DEBUG( 928 dbgs() << "Top Pressure:\n"; 929 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 930 dbgs() << "Bottom Pressure:\n"; 931 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 932 ); 933 934 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 935 936 // Cache the list of excess pressure sets in this region. This will also track 937 // the max pressure in the scheduled code for these sets. 938 RegionCriticalPSets.clear(); 939 const std::vector<unsigned> &RegionPressure = 940 RPTracker.getPressure().MaxSetPressure; 941 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 942 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 943 if (RegionPressure[i] > Limit) { 944 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 945 << " Limit " << Limit 946 << " Actual " << RegionPressure[i] << "\n"); 947 RegionCriticalPSets.push_back(PressureChange(i)); 948 } 949 } 950 DEBUG(dbgs() << "Excess PSets: "; 951 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 952 dbgs() << TRI->getRegPressureSetName( 953 RegionCriticalPSets[i].getPSet()) << " "; 954 dbgs() << "\n"); 955 } 956 957 void ScheduleDAGMILive:: 958 updateScheduledPressure(const SUnit *SU, 959 const std::vector<unsigned> &NewMaxPressure) { 960 const PressureDiff &PDiff = getPressureDiff(SU); 961 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 962 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 963 I != E; ++I) { 964 if (!I->isValid()) 965 break; 966 unsigned ID = I->getPSet(); 967 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 968 ++CritIdx; 969 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 970 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 971 && NewMaxPressure[ID] <= INT16_MAX) 972 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 973 } 974 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 975 if (NewMaxPressure[ID] >= Limit - 2) { 976 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 977 << NewMaxPressure[ID] 978 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 979 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 980 } 981 } 982 } 983 984 /// Update the PressureDiff array for liveness after scheduling this 985 /// instruction. 986 void ScheduleDAGMILive::updatePressureDiffs( 987 ArrayRef<RegisterMaskPair> LiveUses) { 988 for (const RegisterMaskPair &P : LiveUses) { 989 unsigned Reg = P.RegUnit; 990 /// FIXME: Currently assuming single-use physregs. 991 if (!TRI->isVirtualRegister(Reg)) 992 continue; 993 994 if (ShouldTrackLaneMasks) { 995 // If the register has just become live then other uses won't change 996 // this fact anymore => decrement pressure. 997 // If the register has just become dead then other uses make it come 998 // back to life => increment pressure. 999 bool Decrement = P.LaneMask != 0; 1000 1001 for (const VReg2SUnit &V2SU 1002 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1003 SUnit &SU = *V2SU.SU; 1004 if (SU.isScheduled || &SU == &ExitSU) 1005 continue; 1006 1007 PressureDiff &PDiff = getPressureDiff(&SU); 1008 PDiff.addPressureChange(Reg, Decrement, &MRI); 1009 DEBUG( 1010 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1011 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1012 << ' ' << *SU.getInstr(); 1013 dbgs() << " to "; 1014 PDiff.dump(*TRI); 1015 ); 1016 } 1017 } else { 1018 assert(P.LaneMask != 0); 1019 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1020 // This may be called before CurrentBottom has been initialized. However, 1021 // BotRPTracker must have a valid position. We want the value live into the 1022 // instruction or live out of the block, so ask for the previous 1023 // instruction's live-out. 1024 const LiveInterval &LI = LIS->getInterval(Reg); 1025 VNInfo *VNI; 1026 MachineBasicBlock::const_iterator I = 1027 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1028 if (I == BB->end()) 1029 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1030 else { 1031 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 1032 VNI = LRQ.valueIn(); 1033 } 1034 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1035 assert(VNI && "No live value at use."); 1036 for (const VReg2SUnit &V2SU 1037 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1038 SUnit *SU = V2SU.SU; 1039 // If this use comes before the reaching def, it cannot be a last use, 1040 // so decrease its pressure change. 1041 if (!SU->isScheduled && SU != &ExitSU) { 1042 LiveQueryResult LRQ 1043 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1044 if (LRQ.valueIn() == VNI) { 1045 PressureDiff &PDiff = getPressureDiff(SU); 1046 PDiff.addPressureChange(Reg, true, &MRI); 1047 DEBUG( 1048 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1049 << *SU->getInstr(); 1050 dbgs() << " to "; 1051 PDiff.dump(*TRI); 1052 ); 1053 } 1054 } 1055 } 1056 } 1057 } 1058 } 1059 1060 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1061 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1062 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1063 /// 1064 /// This is a skeletal driver, with all the functionality pushed into helpers, 1065 /// so that it can be easily extended by experimental schedulers. Generally, 1066 /// implementing MachineSchedStrategy should be sufficient to implement a new 1067 /// scheduling algorithm. However, if a scheduler further subclasses 1068 /// ScheduleDAGMILive then it will want to override this virtual method in order 1069 /// to update any specialized state. 1070 void ScheduleDAGMILive::schedule() { 1071 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1072 DEBUG(SchedImpl->dumpPolicy()); 1073 buildDAGWithRegPressure(); 1074 1075 Topo.InitDAGTopologicalSorting(); 1076 1077 postprocessDAG(); 1078 1079 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1080 findRootsAndBiasEdges(TopRoots, BotRoots); 1081 1082 // Initialize the strategy before modifying the DAG. 1083 // This may initialize a DFSResult to be used for queue priority. 1084 SchedImpl->initialize(this); 1085 1086 DEBUG( 1087 for (const SUnit &SU : SUnits) { 1088 SU.dumpAll(this); 1089 if (ShouldTrackPressure) { 1090 dbgs() << " Pressure Diff : "; 1091 getPressureDiff(&SU).dump(*TRI); 1092 } 1093 dbgs() << '\n'; 1094 } 1095 ); 1096 if (ViewMISchedDAGs) viewGraph(); 1097 1098 // Initialize ready queues now that the DAG and priority data are finalized. 1099 initQueues(TopRoots, BotRoots); 1100 1101 if (ShouldTrackPressure) { 1102 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1103 TopRPTracker.setPos(CurrentTop); 1104 } 1105 1106 bool IsTopNode = false; 1107 while (true) { 1108 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1109 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1110 if (!SU) break; 1111 1112 assert(!SU->isScheduled && "Node already scheduled"); 1113 if (!checkSchedLimit()) 1114 break; 1115 1116 scheduleMI(SU, IsTopNode); 1117 1118 if (DFSResult) { 1119 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1120 if (!ScheduledTrees.test(SubtreeID)) { 1121 ScheduledTrees.set(SubtreeID); 1122 DFSResult->scheduleTree(SubtreeID); 1123 SchedImpl->scheduleTree(SubtreeID); 1124 } 1125 } 1126 1127 // Notify the scheduling strategy after updating the DAG. 1128 SchedImpl->schedNode(SU, IsTopNode); 1129 1130 updateQueues(SU, IsTopNode); 1131 } 1132 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1133 1134 placeDebugValues(); 1135 1136 DEBUG({ 1137 unsigned BBNum = begin()->getParent()->getNumber(); 1138 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1139 dumpSchedule(); 1140 dbgs() << '\n'; 1141 }); 1142 } 1143 1144 /// Build the DAG and setup three register pressure trackers. 1145 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1146 if (!ShouldTrackPressure) { 1147 RPTracker.reset(); 1148 RegionCriticalPSets.clear(); 1149 buildSchedGraph(AA); 1150 return; 1151 } 1152 1153 // Initialize the register pressure tracker used by buildSchedGraph. 1154 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1155 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1156 1157 // Account for liveness generate by the region boundary. 1158 if (LiveRegionEnd != RegionEnd) 1159 RPTracker.recede(); 1160 1161 // Build the DAG, and compute current register pressure. 1162 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1163 1164 // Initialize top/bottom trackers after computing region pressure. 1165 initRegPressure(); 1166 } 1167 1168 void ScheduleDAGMILive::computeDFSResult() { 1169 if (!DFSResult) 1170 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1171 DFSResult->clear(); 1172 ScheduledTrees.clear(); 1173 DFSResult->resize(SUnits.size()); 1174 DFSResult->compute(SUnits); 1175 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1176 } 1177 1178 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1179 /// only provides the critical path for single block loops. To handle loops that 1180 /// span blocks, we could use the vreg path latencies provided by 1181 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1182 /// available for use in the scheduler. 1183 /// 1184 /// The cyclic path estimation identifies a def-use pair that crosses the back 1185 /// edge and considers the depth and height of the nodes. For example, consider 1186 /// the following instruction sequence where each instruction has unit latency 1187 /// and defines an epomymous virtual register: 1188 /// 1189 /// a->b(a,c)->c(b)->d(c)->exit 1190 /// 1191 /// The cyclic critical path is a two cycles: b->c->b 1192 /// The acyclic critical path is four cycles: a->b->c->d->exit 1193 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1194 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1195 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1196 /// LiveInDepth = depth(b) = len(a->b) = 1 1197 /// 1198 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1199 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1200 /// CyclicCriticalPath = min(2, 2) = 2 1201 /// 1202 /// This could be relevant to PostRA scheduling, but is currently implemented 1203 /// assuming LiveIntervals. 1204 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1205 // This only applies to single block loop. 1206 if (!BB->isSuccessor(BB)) 1207 return 0; 1208 1209 unsigned MaxCyclicLatency = 0; 1210 // Visit each live out vreg def to find def/use pairs that cross iterations. 1211 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1212 unsigned Reg = P.RegUnit; 1213 if (!TRI->isVirtualRegister(Reg)) 1214 continue; 1215 const LiveInterval &LI = LIS->getInterval(Reg); 1216 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1217 if (!DefVNI) 1218 continue; 1219 1220 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1221 const SUnit *DefSU = getSUnit(DefMI); 1222 if (!DefSU) 1223 continue; 1224 1225 unsigned LiveOutHeight = DefSU->getHeight(); 1226 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1227 // Visit all local users of the vreg def. 1228 for (const VReg2SUnit &V2SU 1229 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1230 SUnit *SU = V2SU.SU; 1231 if (SU == &ExitSU) 1232 continue; 1233 1234 // Only consider uses of the phi. 1235 LiveQueryResult LRQ = 1236 LI.Query(LIS->getInstructionIndex(SU->getInstr())); 1237 if (!LRQ.valueIn()->isPHIDef()) 1238 continue; 1239 1240 // Assume that a path spanning two iterations is a cycle, which could 1241 // overestimate in strange cases. This allows cyclic latency to be 1242 // estimated as the minimum slack of the vreg's depth or height. 1243 unsigned CyclicLatency = 0; 1244 if (LiveOutDepth > SU->getDepth()) 1245 CyclicLatency = LiveOutDepth - SU->getDepth(); 1246 1247 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1248 if (LiveInHeight > LiveOutHeight) { 1249 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1250 CyclicLatency = LiveInHeight - LiveOutHeight; 1251 } 1252 else 1253 CyclicLatency = 0; 1254 1255 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1256 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1257 if (CyclicLatency > MaxCyclicLatency) 1258 MaxCyclicLatency = CyclicLatency; 1259 } 1260 } 1261 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1262 return MaxCyclicLatency; 1263 } 1264 1265 /// Move an instruction and update register pressure. 1266 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1267 // Move the instruction to its new location in the instruction stream. 1268 MachineInstr *MI = SU->getInstr(); 1269 1270 if (IsTopNode) { 1271 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1272 if (&*CurrentTop == MI) 1273 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1274 else { 1275 moveInstruction(MI, CurrentTop); 1276 TopRPTracker.setPos(MI); 1277 } 1278 1279 if (ShouldTrackPressure) { 1280 // Update top scheduled pressure. 1281 RegisterOperands RegOpers; 1282 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1283 if (ShouldTrackLaneMasks) { 1284 // Adjust liveness and add missing dead+read-undef flags. 1285 SlotIndex SlotIdx = LIS->getInstructionIndex(MI).getRegSlot(); 1286 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1287 } else { 1288 // Adjust for missing dead-def flags. 1289 RegOpers.detectDeadDefs(*MI, *LIS); 1290 } 1291 1292 TopRPTracker.advance(RegOpers); 1293 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1294 DEBUG( 1295 dbgs() << "Top Pressure:\n"; 1296 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1297 ); 1298 1299 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1300 } 1301 } 1302 else { 1303 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1304 MachineBasicBlock::iterator priorII = 1305 priorNonDebug(CurrentBottom, CurrentTop); 1306 if (&*priorII == MI) 1307 CurrentBottom = priorII; 1308 else { 1309 if (&*CurrentTop == MI) { 1310 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1311 TopRPTracker.setPos(CurrentTop); 1312 } 1313 moveInstruction(MI, CurrentBottom); 1314 CurrentBottom = MI; 1315 } 1316 if (ShouldTrackPressure) { 1317 RegisterOperands RegOpers; 1318 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1319 if (ShouldTrackLaneMasks) { 1320 // Adjust liveness and add missing dead+read-undef flags. 1321 SlotIndex SlotIdx = LIS->getInstructionIndex(MI).getRegSlot(); 1322 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1323 } else { 1324 // Adjust for missing dead-def flags. 1325 RegOpers.detectDeadDefs(*MI, *LIS); 1326 } 1327 1328 BotRPTracker.recedeSkipDebugValues(); 1329 SmallVector<RegisterMaskPair, 8> LiveUses; 1330 BotRPTracker.recede(RegOpers, &LiveUses); 1331 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1332 DEBUG( 1333 dbgs() << "Bottom Pressure:\n"; 1334 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1335 ); 1336 1337 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1338 updatePressureDiffs(LiveUses); 1339 } 1340 } 1341 } 1342 1343 //===----------------------------------------------------------------------===// 1344 // LoadClusterMutation - DAG post-processing to cluster loads. 1345 //===----------------------------------------------------------------------===// 1346 1347 namespace { 1348 /// \brief Post-process the DAG to create cluster edges between neighboring 1349 /// loads. 1350 class LoadClusterMutation : public ScheduleDAGMutation { 1351 struct LoadInfo { 1352 SUnit *SU; 1353 unsigned BaseReg; 1354 unsigned Offset; 1355 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1356 : SU(su), BaseReg(reg), Offset(ofs) {} 1357 1358 bool operator<(const LoadInfo &RHS) const { 1359 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1360 } 1361 }; 1362 1363 const TargetInstrInfo *TII; 1364 const TargetRegisterInfo *TRI; 1365 public: 1366 LoadClusterMutation(const TargetInstrInfo *tii, 1367 const TargetRegisterInfo *tri) 1368 : TII(tii), TRI(tri) {} 1369 1370 void apply(ScheduleDAGMI *DAG) override; 1371 protected: 1372 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1373 }; 1374 } // anonymous 1375 1376 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1377 ScheduleDAGMI *DAG) { 1378 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1379 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1380 SUnit *SU = Loads[Idx]; 1381 unsigned BaseReg; 1382 unsigned Offset; 1383 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1384 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1385 } 1386 if (LoadRecords.size() < 2) 1387 return; 1388 std::sort(LoadRecords.begin(), LoadRecords.end()); 1389 unsigned ClusterLength = 1; 1390 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1391 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1392 ClusterLength = 1; 1393 continue; 1394 } 1395 1396 SUnit *SUa = LoadRecords[Idx].SU; 1397 SUnit *SUb = LoadRecords[Idx+1].SU; 1398 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1399 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1400 1401 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1402 << SUb->NodeNum << ")\n"); 1403 // Copy successor edges from SUa to SUb. Interleaving computation 1404 // dependent on SUa can prevent load combining due to register reuse. 1405 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1406 // loads should have effectively the same inputs. 1407 for (SUnit::const_succ_iterator 1408 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1409 if (SI->getSUnit() == SUb) 1410 continue; 1411 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1412 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1413 } 1414 ++ClusterLength; 1415 } 1416 else 1417 ClusterLength = 1; 1418 } 1419 } 1420 1421 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1422 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1423 // Map DAG NodeNum to store chain ID. 1424 DenseMap<unsigned, unsigned> StoreChainIDs; 1425 // Map each store chain to a set of dependent loads. 1426 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1427 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1428 SUnit *SU = &DAG->SUnits[Idx]; 1429 if (!SU->getInstr()->mayLoad()) 1430 continue; 1431 unsigned ChainPredID = DAG->SUnits.size(); 1432 for (SUnit::const_pred_iterator 1433 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1434 if (PI->isCtrl()) { 1435 ChainPredID = PI->getSUnit()->NodeNum; 1436 break; 1437 } 1438 } 1439 // Check if this chain-like pred has been seen 1440 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1441 unsigned NumChains = StoreChainDependents.size(); 1442 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1443 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1444 if (Result.second) 1445 StoreChainDependents.resize(NumChains + 1); 1446 StoreChainDependents[Result.first->second].push_back(SU); 1447 } 1448 // Iterate over the store chains. 1449 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1450 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1451 } 1452 1453 //===----------------------------------------------------------------------===// 1454 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1455 //===----------------------------------------------------------------------===// 1456 1457 namespace { 1458 /// \brief Post-process the DAG to create cluster edges between instructions 1459 /// that may be fused by the processor into a single operation. 1460 class MacroFusion : public ScheduleDAGMutation { 1461 const TargetInstrInfo &TII; 1462 const TargetRegisterInfo &TRI; 1463 public: 1464 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1465 : TII(TII), TRI(TRI) {} 1466 1467 void apply(ScheduleDAGMI *DAG) override; 1468 }; 1469 } // anonymous 1470 1471 /// Returns true if \p MI reads a register written by \p Other. 1472 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1473 const MachineInstr &Other) { 1474 for (const MachineOperand &MO : MI.uses()) { 1475 if (!MO.isReg() || !MO.readsReg()) 1476 continue; 1477 1478 unsigned Reg = MO.getReg(); 1479 if (Other.modifiesRegister(Reg, &TRI)) 1480 return true; 1481 } 1482 return false; 1483 } 1484 1485 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1486 /// fused operations. 1487 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1488 // For now, assume targets can only fuse with the branch. 1489 SUnit &ExitSU = DAG->ExitSU; 1490 MachineInstr *Branch = ExitSU.getInstr(); 1491 if (!Branch) 1492 return; 1493 1494 for (SUnit &SU : DAG->SUnits) { 1495 // SUnits with successors can't be schedule in front of the ExitSU. 1496 if (!SU.Succs.empty()) 1497 continue; 1498 // We only care if the node writes to a register that the branch reads. 1499 MachineInstr *Pred = SU.getInstr(); 1500 if (!HasDataDep(TRI, *Branch, *Pred)) 1501 continue; 1502 1503 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1504 continue; 1505 1506 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1507 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1508 // need to copy predecessor edges from ExitSU to SU, since top-down 1509 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1510 // of SU, we could create an artificial edge from the deepest root, but it 1511 // hasn't been needed yet. 1512 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1513 (void)Success; 1514 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1515 1516 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1517 break; 1518 } 1519 } 1520 1521 //===----------------------------------------------------------------------===// 1522 // CopyConstrain - DAG post-processing to encourage copy elimination. 1523 //===----------------------------------------------------------------------===// 1524 1525 namespace { 1526 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1527 /// the one use that defines the copy's source vreg, most likely an induction 1528 /// variable increment. 1529 class CopyConstrain : public ScheduleDAGMutation { 1530 // Transient state. 1531 SlotIndex RegionBeginIdx; 1532 // RegionEndIdx is the slot index of the last non-debug instruction in the 1533 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1534 SlotIndex RegionEndIdx; 1535 public: 1536 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1537 1538 void apply(ScheduleDAGMI *DAG) override; 1539 1540 protected: 1541 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1542 }; 1543 } // anonymous 1544 1545 /// constrainLocalCopy handles two possibilities: 1546 /// 1) Local src: 1547 /// I0: = dst 1548 /// I1: src = ... 1549 /// I2: = dst 1550 /// I3: dst = src (copy) 1551 /// (create pred->succ edges I0->I1, I2->I1) 1552 /// 1553 /// 2) Local copy: 1554 /// I0: dst = src (copy) 1555 /// I1: = dst 1556 /// I2: src = ... 1557 /// I3: = dst 1558 /// (create pred->succ edges I1->I2, I3->I2) 1559 /// 1560 /// Although the MachineScheduler is currently constrained to single blocks, 1561 /// this algorithm should handle extended blocks. An EBB is a set of 1562 /// contiguously numbered blocks such that the previous block in the EBB is 1563 /// always the single predecessor. 1564 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1565 LiveIntervals *LIS = DAG->getLIS(); 1566 MachineInstr *Copy = CopySU->getInstr(); 1567 1568 // Check for pure vreg copies. 1569 unsigned SrcReg = Copy->getOperand(1).getReg(); 1570 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1571 return; 1572 1573 unsigned DstReg = Copy->getOperand(0).getReg(); 1574 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1575 return; 1576 1577 // Check if either the dest or source is local. If it's live across a back 1578 // edge, it's not local. Note that if both vregs are live across the back 1579 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1580 // If both the copy's source and dest are local live intervals, then we 1581 // should treat the dest as the global for the purpose of adding 1582 // constraints. This adds edges from source's other uses to the copy. 1583 unsigned LocalReg = SrcReg; 1584 unsigned GlobalReg = DstReg; 1585 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1586 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1587 LocalReg = DstReg; 1588 GlobalReg = SrcReg; 1589 LocalLI = &LIS->getInterval(LocalReg); 1590 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1591 return; 1592 } 1593 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1594 1595 // Find the global segment after the start of the local LI. 1596 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1597 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1598 // local live range. We could create edges from other global uses to the local 1599 // start, but the coalescer should have already eliminated these cases, so 1600 // don't bother dealing with it. 1601 if (GlobalSegment == GlobalLI->end()) 1602 return; 1603 1604 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1605 // returned the next global segment. But if GlobalSegment overlaps with 1606 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1607 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1608 if (GlobalSegment->contains(LocalLI->beginIndex())) 1609 ++GlobalSegment; 1610 1611 if (GlobalSegment == GlobalLI->end()) 1612 return; 1613 1614 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1615 if (GlobalSegment != GlobalLI->begin()) { 1616 // Two address defs have no hole. 1617 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1618 GlobalSegment->start)) { 1619 return; 1620 } 1621 // If the prior global segment may be defined by the same two-address 1622 // instruction that also defines LocalLI, then can't make a hole here. 1623 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1624 LocalLI->beginIndex())) { 1625 return; 1626 } 1627 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1628 // it would be a disconnected component in the live range. 1629 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1630 "Disconnected LRG within the scheduling region."); 1631 } 1632 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1633 if (!GlobalDef) 1634 return; 1635 1636 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1637 if (!GlobalSU) 1638 return; 1639 1640 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1641 // constraining the uses of the last local def to precede GlobalDef. 1642 SmallVector<SUnit*,8> LocalUses; 1643 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1644 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1645 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1646 for (SUnit::const_succ_iterator 1647 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1648 I != E; ++I) { 1649 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1650 continue; 1651 if (I->getSUnit() == GlobalSU) 1652 continue; 1653 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1654 return; 1655 LocalUses.push_back(I->getSUnit()); 1656 } 1657 // Open the top of the GlobalLI hole by constraining any earlier global uses 1658 // to precede the start of LocalLI. 1659 SmallVector<SUnit*,8> GlobalUses; 1660 MachineInstr *FirstLocalDef = 1661 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1662 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1663 for (SUnit::const_pred_iterator 1664 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1665 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1666 continue; 1667 if (I->getSUnit() == FirstLocalSU) 1668 continue; 1669 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1670 return; 1671 GlobalUses.push_back(I->getSUnit()); 1672 } 1673 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1674 // Add the weak edges. 1675 for (SmallVectorImpl<SUnit*>::const_iterator 1676 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1677 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1678 << GlobalSU->NodeNum << ")\n"); 1679 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1680 } 1681 for (SmallVectorImpl<SUnit*>::const_iterator 1682 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1683 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1684 << FirstLocalSU->NodeNum << ")\n"); 1685 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1686 } 1687 } 1688 1689 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1690 /// copy elimination. 1691 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1692 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1693 1694 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1695 if (FirstPos == DAG->end()) 1696 return; 1697 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1698 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1699 &*priorNonDebug(DAG->end(), DAG->begin())); 1700 1701 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1702 SUnit *SU = &DAG->SUnits[Idx]; 1703 if (!SU->getInstr()->isCopy()) 1704 continue; 1705 1706 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1707 } 1708 } 1709 1710 //===----------------------------------------------------------------------===// 1711 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1712 // and possibly other custom schedulers. 1713 //===----------------------------------------------------------------------===// 1714 1715 static const unsigned InvalidCycle = ~0U; 1716 1717 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1718 1719 void SchedBoundary::reset() { 1720 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1721 // Destroying and reconstructing it is very expensive though. So keep 1722 // invalid, placeholder HazardRecs. 1723 if (HazardRec && HazardRec->isEnabled()) { 1724 delete HazardRec; 1725 HazardRec = nullptr; 1726 } 1727 Available.clear(); 1728 Pending.clear(); 1729 CheckPending = false; 1730 NextSUs.clear(); 1731 CurrCycle = 0; 1732 CurrMOps = 0; 1733 MinReadyCycle = UINT_MAX; 1734 ExpectedLatency = 0; 1735 DependentLatency = 0; 1736 RetiredMOps = 0; 1737 MaxExecutedResCount = 0; 1738 ZoneCritResIdx = 0; 1739 IsResourceLimited = false; 1740 ReservedCycles.clear(); 1741 #ifndef NDEBUG 1742 // Track the maximum number of stall cycles that could arise either from the 1743 // latency of a DAG edge or the number of cycles that a processor resource is 1744 // reserved (SchedBoundary::ReservedCycles). 1745 MaxObservedStall = 0; 1746 #endif 1747 // Reserve a zero-count for invalid CritResIdx. 1748 ExecutedResCounts.resize(1); 1749 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1750 } 1751 1752 void SchedRemainder:: 1753 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1754 reset(); 1755 if (!SchedModel->hasInstrSchedModel()) 1756 return; 1757 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1758 for (std::vector<SUnit>::iterator 1759 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1760 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1761 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1762 * SchedModel->getMicroOpFactor(); 1763 for (TargetSchedModel::ProcResIter 1764 PI = SchedModel->getWriteProcResBegin(SC), 1765 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1766 unsigned PIdx = PI->ProcResourceIdx; 1767 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1768 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1769 } 1770 } 1771 } 1772 1773 void SchedBoundary:: 1774 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1775 reset(); 1776 DAG = dag; 1777 SchedModel = smodel; 1778 Rem = rem; 1779 if (SchedModel->hasInstrSchedModel()) { 1780 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1781 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1782 } 1783 } 1784 1785 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1786 /// these "soft stalls" differently than the hard stall cycles based on CPU 1787 /// resources and computed by checkHazard(). A fully in-order model 1788 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1789 /// available for scheduling until they are ready. However, a weaker in-order 1790 /// model may use this for heuristics. For example, if a processor has in-order 1791 /// behavior when reading certain resources, this may come into play. 1792 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1793 if (!SU->isUnbuffered) 1794 return 0; 1795 1796 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1797 if (ReadyCycle > CurrCycle) 1798 return ReadyCycle - CurrCycle; 1799 return 0; 1800 } 1801 1802 /// Compute the next cycle at which the given processor resource can be 1803 /// scheduled. 1804 unsigned SchedBoundary:: 1805 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1806 unsigned NextUnreserved = ReservedCycles[PIdx]; 1807 // If this resource has never been used, always return cycle zero. 1808 if (NextUnreserved == InvalidCycle) 1809 return 0; 1810 // For bottom-up scheduling add the cycles needed for the current operation. 1811 if (!isTop()) 1812 NextUnreserved += Cycles; 1813 return NextUnreserved; 1814 } 1815 1816 /// Does this SU have a hazard within the current instruction group. 1817 /// 1818 /// The scheduler supports two modes of hazard recognition. The first is the 1819 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1820 /// supports highly complicated in-order reservation tables 1821 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1822 /// 1823 /// The second is a streamlined mechanism that checks for hazards based on 1824 /// simple counters that the scheduler itself maintains. It explicitly checks 1825 /// for instruction dispatch limitations, including the number of micro-ops that 1826 /// can dispatch per cycle. 1827 /// 1828 /// TODO: Also check whether the SU must start a new group. 1829 bool SchedBoundary::checkHazard(SUnit *SU) { 1830 if (HazardRec->isEnabled() 1831 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1832 return true; 1833 } 1834 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1835 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1836 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1837 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1838 return true; 1839 } 1840 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1841 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1842 for (TargetSchedModel::ProcResIter 1843 PI = SchedModel->getWriteProcResBegin(SC), 1844 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1845 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1846 if (NRCycle > CurrCycle) { 1847 #ifndef NDEBUG 1848 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1849 #endif 1850 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1851 << SchedModel->getResourceName(PI->ProcResourceIdx) 1852 << "=" << NRCycle << "c\n"); 1853 return true; 1854 } 1855 } 1856 } 1857 return false; 1858 } 1859 1860 // Find the unscheduled node in ReadySUs with the highest latency. 1861 unsigned SchedBoundary:: 1862 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1863 SUnit *LateSU = nullptr; 1864 unsigned RemLatency = 0; 1865 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1866 I != E; ++I) { 1867 unsigned L = getUnscheduledLatency(*I); 1868 if (L > RemLatency) { 1869 RemLatency = L; 1870 LateSU = *I; 1871 } 1872 } 1873 if (LateSU) { 1874 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1875 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1876 } 1877 return RemLatency; 1878 } 1879 1880 // Count resources in this zone and the remaining unscheduled 1881 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1882 // resource index, or zero if the zone is issue limited. 1883 unsigned SchedBoundary:: 1884 getOtherResourceCount(unsigned &OtherCritIdx) { 1885 OtherCritIdx = 0; 1886 if (!SchedModel->hasInstrSchedModel()) 1887 return 0; 1888 1889 unsigned OtherCritCount = Rem->RemIssueCount 1890 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1891 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1892 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1893 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1894 PIdx != PEnd; ++PIdx) { 1895 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1896 if (OtherCount > OtherCritCount) { 1897 OtherCritCount = OtherCount; 1898 OtherCritIdx = PIdx; 1899 } 1900 } 1901 if (OtherCritIdx) { 1902 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1903 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1904 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1905 } 1906 return OtherCritCount; 1907 } 1908 1909 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1910 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1911 1912 #ifndef NDEBUG 1913 // ReadyCycle was been bumped up to the CurrCycle when this node was 1914 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1915 // scheduling, so may now be greater than ReadyCycle. 1916 if (ReadyCycle > CurrCycle) 1917 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1918 #endif 1919 1920 if (ReadyCycle < MinReadyCycle) 1921 MinReadyCycle = ReadyCycle; 1922 1923 // Check for interlocks first. For the purpose of other heuristics, an 1924 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1925 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1926 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1927 Pending.push(SU); 1928 else 1929 Available.push(SU); 1930 1931 // Record this node as an immediate dependent of the scheduled node. 1932 NextSUs.insert(SU); 1933 } 1934 1935 void SchedBoundary::releaseTopNode(SUnit *SU) { 1936 if (SU->isScheduled) 1937 return; 1938 1939 releaseNode(SU, SU->TopReadyCycle); 1940 } 1941 1942 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1943 if (SU->isScheduled) 1944 return; 1945 1946 releaseNode(SU, SU->BotReadyCycle); 1947 } 1948 1949 /// Move the boundary of scheduled code by one cycle. 1950 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1951 if (SchedModel->getMicroOpBufferSize() == 0) { 1952 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1953 if (MinReadyCycle > NextCycle) 1954 NextCycle = MinReadyCycle; 1955 } 1956 // Update the current micro-ops, which will issue in the next cycle. 1957 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1958 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1959 1960 // Decrement DependentLatency based on the next cycle. 1961 if ((NextCycle - CurrCycle) > DependentLatency) 1962 DependentLatency = 0; 1963 else 1964 DependentLatency -= (NextCycle - CurrCycle); 1965 1966 if (!HazardRec->isEnabled()) { 1967 // Bypass HazardRec virtual calls. 1968 CurrCycle = NextCycle; 1969 } 1970 else { 1971 // Bypass getHazardType calls in case of long latency. 1972 for (; CurrCycle != NextCycle; ++CurrCycle) { 1973 if (isTop()) 1974 HazardRec->AdvanceCycle(); 1975 else 1976 HazardRec->RecedeCycle(); 1977 } 1978 } 1979 CheckPending = true; 1980 unsigned LFactor = SchedModel->getLatencyFactor(); 1981 IsResourceLimited = 1982 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1983 > (int)LFactor; 1984 1985 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1986 } 1987 1988 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1989 ExecutedResCounts[PIdx] += Count; 1990 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1991 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1992 } 1993 1994 /// Add the given processor resource to this scheduled zone. 1995 /// 1996 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1997 /// during which this resource is consumed. 1998 /// 1999 /// \return the next cycle at which the instruction may execute without 2000 /// oversubscribing resources. 2001 unsigned SchedBoundary:: 2002 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2003 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2004 unsigned Count = Factor * Cycles; 2005 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2006 << " +" << Cycles << "x" << Factor << "u\n"); 2007 2008 // Update Executed resources counts. 2009 incExecutedResources(PIdx, Count); 2010 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2011 Rem->RemainingCounts[PIdx] -= Count; 2012 2013 // Check if this resource exceeds the current critical resource. If so, it 2014 // becomes the critical resource. 2015 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2016 ZoneCritResIdx = PIdx; 2017 DEBUG(dbgs() << " *** Critical resource " 2018 << SchedModel->getResourceName(PIdx) << ": " 2019 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2020 } 2021 // For reserved resources, record the highest cycle using the resource. 2022 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2023 if (NextAvailable > CurrCycle) { 2024 DEBUG(dbgs() << " Resource conflict: " 2025 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2026 << NextAvailable << "\n"); 2027 } 2028 return NextAvailable; 2029 } 2030 2031 /// Move the boundary of scheduled code by one SUnit. 2032 void SchedBoundary::bumpNode(SUnit *SU) { 2033 // Update the reservation table. 2034 if (HazardRec->isEnabled()) { 2035 if (!isTop() && SU->isCall) { 2036 // Calls are scheduled with their preceding instructions. For bottom-up 2037 // scheduling, clear the pipeline state before emitting. 2038 HazardRec->Reset(); 2039 } 2040 HazardRec->EmitInstruction(SU); 2041 } 2042 // checkHazard should prevent scheduling multiple instructions per cycle that 2043 // exceed the issue width. 2044 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2045 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2046 assert( 2047 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2048 "Cannot schedule this instruction's MicroOps in the current cycle."); 2049 2050 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2051 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2052 2053 unsigned NextCycle = CurrCycle; 2054 switch (SchedModel->getMicroOpBufferSize()) { 2055 case 0: 2056 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2057 break; 2058 case 1: 2059 if (ReadyCycle > NextCycle) { 2060 NextCycle = ReadyCycle; 2061 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2062 } 2063 break; 2064 default: 2065 // We don't currently model the OOO reorder buffer, so consider all 2066 // scheduled MOps to be "retired". We do loosely model in-order resource 2067 // latency. If this instruction uses an in-order resource, account for any 2068 // likely stall cycles. 2069 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2070 NextCycle = ReadyCycle; 2071 break; 2072 } 2073 RetiredMOps += IncMOps; 2074 2075 // Update resource counts and critical resource. 2076 if (SchedModel->hasInstrSchedModel()) { 2077 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2078 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2079 Rem->RemIssueCount -= DecRemIssue; 2080 if (ZoneCritResIdx) { 2081 // Scale scheduled micro-ops for comparing with the critical resource. 2082 unsigned ScaledMOps = 2083 RetiredMOps * SchedModel->getMicroOpFactor(); 2084 2085 // If scaled micro-ops are now more than the previous critical resource by 2086 // a full cycle, then micro-ops issue becomes critical. 2087 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2088 >= (int)SchedModel->getLatencyFactor()) { 2089 ZoneCritResIdx = 0; 2090 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2091 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2092 } 2093 } 2094 for (TargetSchedModel::ProcResIter 2095 PI = SchedModel->getWriteProcResBegin(SC), 2096 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2097 unsigned RCycle = 2098 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2099 if (RCycle > NextCycle) 2100 NextCycle = RCycle; 2101 } 2102 if (SU->hasReservedResource) { 2103 // For reserved resources, record the highest cycle using the resource. 2104 // For top-down scheduling, this is the cycle in which we schedule this 2105 // instruction plus the number of cycles the operations reserves the 2106 // resource. For bottom-up is it simply the instruction's cycle. 2107 for (TargetSchedModel::ProcResIter 2108 PI = SchedModel->getWriteProcResBegin(SC), 2109 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2110 unsigned PIdx = PI->ProcResourceIdx; 2111 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2112 if (isTop()) { 2113 ReservedCycles[PIdx] = 2114 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2115 } 2116 else 2117 ReservedCycles[PIdx] = NextCycle; 2118 } 2119 } 2120 } 2121 } 2122 // Update ExpectedLatency and DependentLatency. 2123 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2124 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2125 if (SU->getDepth() > TopLatency) { 2126 TopLatency = SU->getDepth(); 2127 DEBUG(dbgs() << " " << Available.getName() 2128 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2129 } 2130 if (SU->getHeight() > BotLatency) { 2131 BotLatency = SU->getHeight(); 2132 DEBUG(dbgs() << " " << Available.getName() 2133 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2134 } 2135 // If we stall for any reason, bump the cycle. 2136 if (NextCycle > CurrCycle) { 2137 bumpCycle(NextCycle); 2138 } 2139 else { 2140 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2141 // resource limited. If a stall occurred, bumpCycle does this. 2142 unsigned LFactor = SchedModel->getLatencyFactor(); 2143 IsResourceLimited = 2144 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2145 > (int)LFactor; 2146 } 2147 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2148 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2149 // one cycle. Since we commonly reach the max MOps here, opportunistically 2150 // bump the cycle to avoid uselessly checking everything in the readyQ. 2151 CurrMOps += IncMOps; 2152 while (CurrMOps >= SchedModel->getIssueWidth()) { 2153 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2154 << " at cycle " << CurrCycle << '\n'); 2155 bumpCycle(++NextCycle); 2156 } 2157 DEBUG(dumpScheduledState()); 2158 } 2159 2160 /// Release pending ready nodes in to the available queue. This makes them 2161 /// visible to heuristics. 2162 void SchedBoundary::releasePending() { 2163 // If the available queue is empty, it is safe to reset MinReadyCycle. 2164 if (Available.empty()) 2165 MinReadyCycle = UINT_MAX; 2166 2167 // Check to see if any of the pending instructions are ready to issue. If 2168 // so, add them to the available queue. 2169 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2170 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2171 SUnit *SU = *(Pending.begin()+i); 2172 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2173 2174 if (ReadyCycle < MinReadyCycle) 2175 MinReadyCycle = ReadyCycle; 2176 2177 if (!IsBuffered && ReadyCycle > CurrCycle) 2178 continue; 2179 2180 if (checkHazard(SU)) 2181 continue; 2182 2183 Available.push(SU); 2184 Pending.remove(Pending.begin()+i); 2185 --i; --e; 2186 } 2187 DEBUG(if (!Pending.empty()) Pending.dump()); 2188 CheckPending = false; 2189 } 2190 2191 /// Remove SU from the ready set for this boundary. 2192 void SchedBoundary::removeReady(SUnit *SU) { 2193 if (Available.isInQueue(SU)) 2194 Available.remove(Available.find(SU)); 2195 else { 2196 assert(Pending.isInQueue(SU) && "bad ready count"); 2197 Pending.remove(Pending.find(SU)); 2198 } 2199 } 2200 2201 /// If this queue only has one ready candidate, return it. As a side effect, 2202 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2203 /// one node is ready. If multiple instructions are ready, return NULL. 2204 SUnit *SchedBoundary::pickOnlyChoice() { 2205 if (CheckPending) 2206 releasePending(); 2207 2208 if (CurrMOps > 0) { 2209 // Defer any ready instrs that now have a hazard. 2210 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2211 if (checkHazard(*I)) { 2212 Pending.push(*I); 2213 I = Available.remove(I); 2214 continue; 2215 } 2216 ++I; 2217 } 2218 } 2219 for (unsigned i = 0; Available.empty(); ++i) { 2220 // FIXME: Re-enable assert once PR20057 is resolved. 2221 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2222 // "permanent hazard"); 2223 (void)i; 2224 bumpCycle(CurrCycle + 1); 2225 releasePending(); 2226 } 2227 if (Available.size() == 1) 2228 return *Available.begin(); 2229 return nullptr; 2230 } 2231 2232 #ifndef NDEBUG 2233 // This is useful information to dump after bumpNode. 2234 // Note that the Queue contents are more useful before pickNodeFromQueue. 2235 void SchedBoundary::dumpScheduledState() { 2236 unsigned ResFactor; 2237 unsigned ResCount; 2238 if (ZoneCritResIdx) { 2239 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2240 ResCount = getResourceCount(ZoneCritResIdx); 2241 } 2242 else { 2243 ResFactor = SchedModel->getMicroOpFactor(); 2244 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2245 } 2246 unsigned LFactor = SchedModel->getLatencyFactor(); 2247 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2248 << " Retired: " << RetiredMOps; 2249 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2250 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2251 << ResCount / ResFactor << " " 2252 << SchedModel->getResourceName(ZoneCritResIdx) 2253 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2254 << (IsResourceLimited ? " - Resource" : " - Latency") 2255 << " limited.\n"; 2256 } 2257 #endif 2258 2259 //===----------------------------------------------------------------------===// 2260 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2261 //===----------------------------------------------------------------------===// 2262 2263 void GenericSchedulerBase::SchedCandidate:: 2264 initResourceDelta(const ScheduleDAGMI *DAG, 2265 const TargetSchedModel *SchedModel) { 2266 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2267 return; 2268 2269 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2270 for (TargetSchedModel::ProcResIter 2271 PI = SchedModel->getWriteProcResBegin(SC), 2272 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2273 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2274 ResDelta.CritResources += PI->Cycles; 2275 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2276 ResDelta.DemandedResources += PI->Cycles; 2277 } 2278 } 2279 2280 /// Set the CandPolicy given a scheduling zone given the current resources and 2281 /// latencies inside and outside the zone. 2282 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2283 bool IsPostRA, 2284 SchedBoundary &CurrZone, 2285 SchedBoundary *OtherZone) { 2286 // Apply preemptive heuristics based on the total latency and resources 2287 // inside and outside this zone. Potential stalls should be considered before 2288 // following this policy. 2289 2290 // Compute remaining latency. We need this both to determine whether the 2291 // overall schedule has become latency-limited and whether the instructions 2292 // outside this zone are resource or latency limited. 2293 // 2294 // The "dependent" latency is updated incrementally during scheduling as the 2295 // max height/depth of scheduled nodes minus the cycles since it was 2296 // scheduled: 2297 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2298 // 2299 // The "independent" latency is the max ready queue depth: 2300 // ILat = max N.depth for N in Available|Pending 2301 // 2302 // RemainingLatency is the greater of independent and dependent latency. 2303 unsigned RemLatency = CurrZone.getDependentLatency(); 2304 RemLatency = std::max(RemLatency, 2305 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2306 RemLatency = std::max(RemLatency, 2307 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2308 2309 // Compute the critical resource outside the zone. 2310 unsigned OtherCritIdx = 0; 2311 unsigned OtherCount = 2312 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2313 2314 bool OtherResLimited = false; 2315 if (SchedModel->hasInstrSchedModel()) { 2316 unsigned LFactor = SchedModel->getLatencyFactor(); 2317 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2318 } 2319 // Schedule aggressively for latency in PostRA mode. We don't check for 2320 // acyclic latency during PostRA, and highly out-of-order processors will 2321 // skip PostRA scheduling. 2322 if (!OtherResLimited) { 2323 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2324 Policy.ReduceLatency |= true; 2325 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2326 << " RemainingLatency " << RemLatency << " + " 2327 << CurrZone.getCurrCycle() << "c > CritPath " 2328 << Rem.CriticalPath << "\n"); 2329 } 2330 } 2331 // If the same resource is limiting inside and outside the zone, do nothing. 2332 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2333 return; 2334 2335 DEBUG( 2336 if (CurrZone.isResourceLimited()) { 2337 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2338 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2339 << "\n"; 2340 } 2341 if (OtherResLimited) 2342 dbgs() << " RemainingLimit: " 2343 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2344 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2345 dbgs() << " Latency limited both directions.\n"); 2346 2347 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2348 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2349 2350 if (OtherResLimited) 2351 Policy.DemandResIdx = OtherCritIdx; 2352 } 2353 2354 #ifndef NDEBUG 2355 const char *GenericSchedulerBase::getReasonStr( 2356 GenericSchedulerBase::CandReason Reason) { 2357 switch (Reason) { 2358 case NoCand: return "NOCAND "; 2359 case PhysRegCopy: return "PREG-COPY"; 2360 case RegExcess: return "REG-EXCESS"; 2361 case RegCritical: return "REG-CRIT "; 2362 case Stall: return "STALL "; 2363 case Cluster: return "CLUSTER "; 2364 case Weak: return "WEAK "; 2365 case RegMax: return "REG-MAX "; 2366 case ResourceReduce: return "RES-REDUCE"; 2367 case ResourceDemand: return "RES-DEMAND"; 2368 case TopDepthReduce: return "TOP-DEPTH "; 2369 case TopPathReduce: return "TOP-PATH "; 2370 case BotHeightReduce:return "BOT-HEIGHT"; 2371 case BotPathReduce: return "BOT-PATH "; 2372 case NextDefUse: return "DEF-USE "; 2373 case NodeOrder: return "ORDER "; 2374 }; 2375 llvm_unreachable("Unknown reason!"); 2376 } 2377 2378 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2379 PressureChange P; 2380 unsigned ResIdx = 0; 2381 unsigned Latency = 0; 2382 switch (Cand.Reason) { 2383 default: 2384 break; 2385 case RegExcess: 2386 P = Cand.RPDelta.Excess; 2387 break; 2388 case RegCritical: 2389 P = Cand.RPDelta.CriticalMax; 2390 break; 2391 case RegMax: 2392 P = Cand.RPDelta.CurrentMax; 2393 break; 2394 case ResourceReduce: 2395 ResIdx = Cand.Policy.ReduceResIdx; 2396 break; 2397 case ResourceDemand: 2398 ResIdx = Cand.Policy.DemandResIdx; 2399 break; 2400 case TopDepthReduce: 2401 Latency = Cand.SU->getDepth(); 2402 break; 2403 case TopPathReduce: 2404 Latency = Cand.SU->getHeight(); 2405 break; 2406 case BotHeightReduce: 2407 Latency = Cand.SU->getHeight(); 2408 break; 2409 case BotPathReduce: 2410 Latency = Cand.SU->getDepth(); 2411 break; 2412 } 2413 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2414 if (P.isValid()) 2415 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2416 << ":" << P.getUnitInc() << " "; 2417 else 2418 dbgs() << " "; 2419 if (ResIdx) 2420 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2421 else 2422 dbgs() << " "; 2423 if (Latency) 2424 dbgs() << " " << Latency << " cycles "; 2425 else 2426 dbgs() << " "; 2427 dbgs() << '\n'; 2428 } 2429 #endif 2430 2431 /// Return true if this heuristic determines order. 2432 static bool tryLess(int TryVal, int CandVal, 2433 GenericSchedulerBase::SchedCandidate &TryCand, 2434 GenericSchedulerBase::SchedCandidate &Cand, 2435 GenericSchedulerBase::CandReason Reason) { 2436 if (TryVal < CandVal) { 2437 TryCand.Reason = Reason; 2438 return true; 2439 } 2440 if (TryVal > CandVal) { 2441 if (Cand.Reason > Reason) 2442 Cand.Reason = Reason; 2443 return true; 2444 } 2445 Cand.setRepeat(Reason); 2446 return false; 2447 } 2448 2449 static bool tryGreater(int TryVal, int CandVal, 2450 GenericSchedulerBase::SchedCandidate &TryCand, 2451 GenericSchedulerBase::SchedCandidate &Cand, 2452 GenericSchedulerBase::CandReason Reason) { 2453 if (TryVal > CandVal) { 2454 TryCand.Reason = Reason; 2455 return true; 2456 } 2457 if (TryVal < CandVal) { 2458 if (Cand.Reason > Reason) 2459 Cand.Reason = Reason; 2460 return true; 2461 } 2462 Cand.setRepeat(Reason); 2463 return false; 2464 } 2465 2466 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2467 GenericSchedulerBase::SchedCandidate &Cand, 2468 SchedBoundary &Zone) { 2469 if (Zone.isTop()) { 2470 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2471 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2472 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2473 return true; 2474 } 2475 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2476 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2477 return true; 2478 } 2479 else { 2480 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2481 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2482 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2483 return true; 2484 } 2485 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2486 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2487 return true; 2488 } 2489 return false; 2490 } 2491 2492 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2493 bool IsTop) { 2494 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2495 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2496 } 2497 2498 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2499 assert(dag->hasVRegLiveness() && 2500 "(PreRA)GenericScheduler needs vreg liveness"); 2501 DAG = static_cast<ScheduleDAGMILive*>(dag); 2502 SchedModel = DAG->getSchedModel(); 2503 TRI = DAG->TRI; 2504 2505 Rem.init(DAG, SchedModel); 2506 Top.init(DAG, SchedModel, &Rem); 2507 Bot.init(DAG, SchedModel, &Rem); 2508 2509 // Initialize resource counts. 2510 2511 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2512 // are disabled, then these HazardRecs will be disabled. 2513 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2514 if (!Top.HazardRec) { 2515 Top.HazardRec = 2516 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2517 Itin, DAG); 2518 } 2519 if (!Bot.HazardRec) { 2520 Bot.HazardRec = 2521 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2522 Itin, DAG); 2523 } 2524 } 2525 2526 /// Initialize the per-region scheduling policy. 2527 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2528 MachineBasicBlock::iterator End, 2529 unsigned NumRegionInstrs) { 2530 const MachineFunction &MF = *Begin->getParent()->getParent(); 2531 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2532 2533 // Avoid setting up the register pressure tracker for small regions to save 2534 // compile time. As a rough heuristic, only track pressure when the number of 2535 // schedulable instructions exceeds half the integer register file. 2536 RegionPolicy.ShouldTrackPressure = true; 2537 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2538 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2539 if (TLI->isTypeLegal(LegalIntVT)) { 2540 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2541 TLI->getRegClassFor(LegalIntVT)); 2542 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2543 } 2544 } 2545 2546 // For generic targets, we default to bottom-up, because it's simpler and more 2547 // compile-time optimizations have been implemented in that direction. 2548 RegionPolicy.OnlyBottomUp = true; 2549 2550 // Allow the subtarget to override default policy. 2551 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2552 NumRegionInstrs); 2553 2554 // After subtarget overrides, apply command line options. 2555 if (!EnableRegPressure) 2556 RegionPolicy.ShouldTrackPressure = false; 2557 2558 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2559 // e.g. -misched-bottomup=false allows scheduling in both directions. 2560 assert((!ForceTopDown || !ForceBottomUp) && 2561 "-misched-topdown incompatible with -misched-bottomup"); 2562 if (ForceBottomUp.getNumOccurrences() > 0) { 2563 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2564 if (RegionPolicy.OnlyBottomUp) 2565 RegionPolicy.OnlyTopDown = false; 2566 } 2567 if (ForceTopDown.getNumOccurrences() > 0) { 2568 RegionPolicy.OnlyTopDown = ForceTopDown; 2569 if (RegionPolicy.OnlyTopDown) 2570 RegionPolicy.OnlyBottomUp = false; 2571 } 2572 } 2573 2574 void GenericScheduler::dumpPolicy() { 2575 dbgs() << "GenericScheduler RegionPolicy: " 2576 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2577 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2578 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2579 << "\n"; 2580 } 2581 2582 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2583 /// critical path by more cycles than it takes to drain the instruction buffer. 2584 /// We estimate an upper bounds on in-flight instructions as: 2585 /// 2586 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2587 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2588 /// InFlightResources = InFlightIterations * LoopResources 2589 /// 2590 /// TODO: Check execution resources in addition to IssueCount. 2591 void GenericScheduler::checkAcyclicLatency() { 2592 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2593 return; 2594 2595 // Scaled number of cycles per loop iteration. 2596 unsigned IterCount = 2597 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2598 Rem.RemIssueCount); 2599 // Scaled acyclic critical path. 2600 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2601 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2602 unsigned InFlightCount = 2603 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2604 unsigned BufferLimit = 2605 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2606 2607 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2608 2609 DEBUG(dbgs() << "IssueCycles=" 2610 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2611 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2612 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2613 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2614 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2615 if (Rem.IsAcyclicLatencyLimited) 2616 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2617 } 2618 2619 void GenericScheduler::registerRoots() { 2620 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2621 2622 // Some roots may not feed into ExitSU. Check all of them in case. 2623 for (std::vector<SUnit*>::const_iterator 2624 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2625 if ((*I)->getDepth() > Rem.CriticalPath) 2626 Rem.CriticalPath = (*I)->getDepth(); 2627 } 2628 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2629 if (DumpCriticalPathLength) { 2630 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2631 } 2632 2633 if (EnableCyclicPath) { 2634 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2635 checkAcyclicLatency(); 2636 } 2637 } 2638 2639 static bool tryPressure(const PressureChange &TryP, 2640 const PressureChange &CandP, 2641 GenericSchedulerBase::SchedCandidate &TryCand, 2642 GenericSchedulerBase::SchedCandidate &Cand, 2643 GenericSchedulerBase::CandReason Reason, 2644 const TargetRegisterInfo *TRI, 2645 const MachineFunction &MF) { 2646 unsigned TryPSet = TryP.getPSetOrMax(); 2647 unsigned CandPSet = CandP.getPSetOrMax(); 2648 // If both candidates affect the same set, go with the smallest increase. 2649 if (TryPSet == CandPSet) { 2650 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2651 Reason); 2652 } 2653 // If one candidate decreases and the other increases, go with it. 2654 // Invalid candidates have UnitInc==0. 2655 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2656 Reason)) { 2657 return true; 2658 } 2659 2660 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2661 std::numeric_limits<int>::max(); 2662 2663 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2664 std::numeric_limits<int>::max(); 2665 2666 // If the candidates are decreasing pressure, reverse priority. 2667 if (TryP.getUnitInc() < 0) 2668 std::swap(TryRank, CandRank); 2669 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2670 } 2671 2672 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2673 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2674 } 2675 2676 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2677 /// their physreg def/use. 2678 /// 2679 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2680 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2681 /// with the operation that produces or consumes the physreg. We'll do this when 2682 /// regalloc has support for parallel copies. 2683 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2684 const MachineInstr *MI = SU->getInstr(); 2685 if (!MI->isCopy()) 2686 return 0; 2687 2688 unsigned ScheduledOper = isTop ? 1 : 0; 2689 unsigned UnscheduledOper = isTop ? 0 : 1; 2690 // If we have already scheduled the physreg produce/consumer, immediately 2691 // schedule the copy. 2692 if (TargetRegisterInfo::isPhysicalRegister( 2693 MI->getOperand(ScheduledOper).getReg())) 2694 return 1; 2695 // If the physreg is at the boundary, defer it. Otherwise schedule it 2696 // immediately to free the dependent. We can hoist the copy later. 2697 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2698 if (TargetRegisterInfo::isPhysicalRegister( 2699 MI->getOperand(UnscheduledOper).getReg())) 2700 return AtBoundary ? -1 : 1; 2701 return 0; 2702 } 2703 2704 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2705 /// hierarchical. This may be more efficient than a graduated cost model because 2706 /// we don't need to evaluate all aspects of the model for each node in the 2707 /// queue. But it's really done to make the heuristics easier to debug and 2708 /// statistically analyze. 2709 /// 2710 /// \param Cand provides the policy and current best candidate. 2711 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2712 /// \param Zone describes the scheduled zone that we are extending. 2713 /// \param RPTracker describes reg pressure within the scheduled zone. 2714 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2715 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2716 SchedCandidate &TryCand, 2717 SchedBoundary &Zone, 2718 const RegPressureTracker &RPTracker, 2719 RegPressureTracker &TempTracker) { 2720 2721 if (DAG->isTrackingPressure()) { 2722 // Always initialize TryCand's RPDelta. 2723 if (Zone.isTop()) { 2724 TempTracker.getMaxDownwardPressureDelta( 2725 TryCand.SU->getInstr(), 2726 TryCand.RPDelta, 2727 DAG->getRegionCriticalPSets(), 2728 DAG->getRegPressure().MaxSetPressure); 2729 } 2730 else { 2731 if (VerifyScheduling) { 2732 TempTracker.getMaxUpwardPressureDelta( 2733 TryCand.SU->getInstr(), 2734 &DAG->getPressureDiff(TryCand.SU), 2735 TryCand.RPDelta, 2736 DAG->getRegionCriticalPSets(), 2737 DAG->getRegPressure().MaxSetPressure); 2738 } 2739 else { 2740 RPTracker.getUpwardPressureDelta( 2741 TryCand.SU->getInstr(), 2742 DAG->getPressureDiff(TryCand.SU), 2743 TryCand.RPDelta, 2744 DAG->getRegionCriticalPSets(), 2745 DAG->getRegPressure().MaxSetPressure); 2746 } 2747 } 2748 } 2749 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2750 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2751 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2752 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2753 2754 // Initialize the candidate if needed. 2755 if (!Cand.isValid()) { 2756 TryCand.Reason = NodeOrder; 2757 return; 2758 } 2759 2760 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2761 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2762 TryCand, Cand, PhysRegCopy)) 2763 return; 2764 2765 // Avoid exceeding the target's limit. 2766 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2767 Cand.RPDelta.Excess, 2768 TryCand, Cand, RegExcess, TRI, 2769 DAG->MF)) 2770 return; 2771 2772 // Avoid increasing the max critical pressure in the scheduled region. 2773 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2774 Cand.RPDelta.CriticalMax, 2775 TryCand, Cand, RegCritical, TRI, 2776 DAG->MF)) 2777 return; 2778 2779 // For loops that are acyclic path limited, aggressively schedule for latency. 2780 // This can result in very long dependence chains scheduled in sequence, so 2781 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2782 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2783 && tryLatency(TryCand, Cand, Zone)) 2784 return; 2785 2786 // Prioritize instructions that read unbuffered resources by stall cycles. 2787 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2788 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2789 return; 2790 2791 // Keep clustered nodes together to encourage downstream peephole 2792 // optimizations which may reduce resource requirements. 2793 // 2794 // This is a best effort to set things up for a post-RA pass. Optimizations 2795 // like generating loads of multiple registers should ideally be done within 2796 // the scheduler pass by combining the loads during DAG postprocessing. 2797 const SUnit *NextClusterSU = 2798 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2799 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2800 TryCand, Cand, Cluster)) 2801 return; 2802 2803 // Weak edges are for clustering and other constraints. 2804 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2805 getWeakLeft(Cand.SU, Zone.isTop()), 2806 TryCand, Cand, Weak)) { 2807 return; 2808 } 2809 // Avoid increasing the max pressure of the entire region. 2810 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2811 Cand.RPDelta.CurrentMax, 2812 TryCand, Cand, RegMax, TRI, 2813 DAG->MF)) 2814 return; 2815 2816 // Avoid critical resource consumption and balance the schedule. 2817 TryCand.initResourceDelta(DAG, SchedModel); 2818 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2819 TryCand, Cand, ResourceReduce)) 2820 return; 2821 if (tryGreater(TryCand.ResDelta.DemandedResources, 2822 Cand.ResDelta.DemandedResources, 2823 TryCand, Cand, ResourceDemand)) 2824 return; 2825 2826 // Avoid serializing long latency dependence chains. 2827 // For acyclic path limited loops, latency was already checked above. 2828 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2829 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2830 return; 2831 } 2832 2833 // Prefer immediate defs/users of the last scheduled instruction. This is a 2834 // local pressure avoidance strategy that also makes the machine code 2835 // readable. 2836 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2837 TryCand, Cand, NextDefUse)) 2838 return; 2839 2840 // Fall through to original instruction order. 2841 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2842 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2843 TryCand.Reason = NodeOrder; 2844 } 2845 } 2846 2847 /// Pick the best candidate from the queue. 2848 /// 2849 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2850 /// DAG building. To adjust for the current scheduling location we need to 2851 /// maintain the number of vreg uses remaining to be top-scheduled. 2852 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2853 const RegPressureTracker &RPTracker, 2854 SchedCandidate &Cand) { 2855 ReadyQueue &Q = Zone.Available; 2856 2857 DEBUG(Q.dump()); 2858 2859 // getMaxPressureDelta temporarily modifies the tracker. 2860 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2861 2862 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2863 2864 SchedCandidate TryCand(Cand.Policy); 2865 TryCand.SU = *I; 2866 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2867 if (TryCand.Reason != NoCand) { 2868 // Initialize resource delta if needed in case future heuristics query it. 2869 if (TryCand.ResDelta == SchedResourceDelta()) 2870 TryCand.initResourceDelta(DAG, SchedModel); 2871 Cand.setBest(TryCand); 2872 DEBUG(traceCandidate(Cand)); 2873 } 2874 } 2875 } 2876 2877 /// Pick the best candidate node from either the top or bottom queue. 2878 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2879 // Schedule as far as possible in the direction of no choice. This is most 2880 // efficient, but also provides the best heuristics for CriticalPSets. 2881 if (SUnit *SU = Bot.pickOnlyChoice()) { 2882 IsTopNode = false; 2883 DEBUG(dbgs() << "Pick Bot ONLY1\n"); 2884 return SU; 2885 } 2886 if (SUnit *SU = Top.pickOnlyChoice()) { 2887 IsTopNode = true; 2888 DEBUG(dbgs() << "Pick Top ONLY1\n"); 2889 return SU; 2890 } 2891 CandPolicy NoPolicy; 2892 SchedCandidate BotCand(NoPolicy); 2893 SchedCandidate TopCand(NoPolicy); 2894 // Set the bottom-up policy based on the state of the current bottom zone and 2895 // the instructions outside the zone, including the top zone. 2896 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2897 // Set the top-down policy based on the state of the current top zone and 2898 // the instructions outside the zone, including the bottom zone. 2899 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2900 2901 // Prefer bottom scheduling when heuristics are silent. 2902 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2903 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2904 2905 // If either Q has a single candidate that provides the least increase in 2906 // Excess pressure, we can immediately schedule from that Q. 2907 // 2908 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2909 // affects picking from either Q. If scheduling in one direction must 2910 // increase pressure for one of the excess PSets, then schedule in that 2911 // direction first to provide more freedom in the other direction. 2912 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2913 || (BotCand.Reason == RegCritical 2914 && !BotCand.isRepeat(RegCritical))) 2915 { 2916 IsTopNode = false; 2917 tracePick(BotCand, IsTopNode); 2918 return BotCand.SU; 2919 } 2920 // Check if the top Q has a better candidate. 2921 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2922 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2923 2924 // Choose the queue with the most important (lowest enum) reason. 2925 if (TopCand.Reason < BotCand.Reason) { 2926 IsTopNode = true; 2927 tracePick(TopCand, IsTopNode); 2928 return TopCand.SU; 2929 } 2930 // Otherwise prefer the bottom candidate, in node order if all else failed. 2931 IsTopNode = false; 2932 tracePick(BotCand, IsTopNode); 2933 return BotCand.SU; 2934 } 2935 2936 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2937 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2938 if (DAG->top() == DAG->bottom()) { 2939 assert(Top.Available.empty() && Top.Pending.empty() && 2940 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2941 return nullptr; 2942 } 2943 SUnit *SU; 2944 do { 2945 if (RegionPolicy.OnlyTopDown) { 2946 SU = Top.pickOnlyChoice(); 2947 if (!SU) { 2948 CandPolicy NoPolicy; 2949 SchedCandidate TopCand(NoPolicy); 2950 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2951 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2952 tracePick(TopCand, true); 2953 SU = TopCand.SU; 2954 } 2955 IsTopNode = true; 2956 } 2957 else if (RegionPolicy.OnlyBottomUp) { 2958 SU = Bot.pickOnlyChoice(); 2959 if (!SU) { 2960 CandPolicy NoPolicy; 2961 SchedCandidate BotCand(NoPolicy); 2962 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2963 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2964 tracePick(BotCand, false); 2965 SU = BotCand.SU; 2966 } 2967 IsTopNode = false; 2968 } 2969 else { 2970 SU = pickNodeBidirectional(IsTopNode); 2971 } 2972 } while (SU->isScheduled); 2973 2974 if (SU->isTopReady()) 2975 Top.removeReady(SU); 2976 if (SU->isBottomReady()) 2977 Bot.removeReady(SU); 2978 2979 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2980 return SU; 2981 } 2982 2983 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2984 2985 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2986 if (!isTop) 2987 ++InsertPos; 2988 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2989 2990 // Find already scheduled copies with a single physreg dependence and move 2991 // them just above the scheduled instruction. 2992 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2993 I != E; ++I) { 2994 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2995 continue; 2996 SUnit *DepSU = I->getSUnit(); 2997 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2998 continue; 2999 MachineInstr *Copy = DepSU->getInstr(); 3000 if (!Copy->isCopy()) 3001 continue; 3002 DEBUG(dbgs() << " Rescheduling physreg copy "; 3003 I->getSUnit()->dump(DAG)); 3004 DAG->moveInstruction(Copy, InsertPos); 3005 } 3006 } 3007 3008 /// Update the scheduler's state after scheduling a node. This is the same node 3009 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3010 /// update it's state based on the current cycle before MachineSchedStrategy 3011 /// does. 3012 /// 3013 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3014 /// them here. See comments in biasPhysRegCopy. 3015 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3016 if (IsTopNode) { 3017 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3018 Top.bumpNode(SU); 3019 if (SU->hasPhysRegUses) 3020 reschedulePhysRegCopies(SU, true); 3021 } 3022 else { 3023 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3024 Bot.bumpNode(SU); 3025 if (SU->hasPhysRegDefs) 3026 reschedulePhysRegCopies(SU, false); 3027 } 3028 } 3029 3030 /// Create the standard converging machine scheduler. This will be used as the 3031 /// default scheduler if the target does not set a default. 3032 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3033 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3034 // Register DAG post-processors. 3035 // 3036 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3037 // data and pass it to later mutations. Have a single mutation that gathers 3038 // the interesting nodes in one pass. 3039 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 3040 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 3041 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 3042 if (EnableMacroFusion) 3043 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 3044 return DAG; 3045 } 3046 3047 static MachineSchedRegistry 3048 GenericSchedRegistry("converge", "Standard converging scheduler.", 3049 createGenericSchedLive); 3050 3051 //===----------------------------------------------------------------------===// 3052 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3053 //===----------------------------------------------------------------------===// 3054 3055 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3056 DAG = Dag; 3057 SchedModel = DAG->getSchedModel(); 3058 TRI = DAG->TRI; 3059 3060 Rem.init(DAG, SchedModel); 3061 Top.init(DAG, SchedModel, &Rem); 3062 BotRoots.clear(); 3063 3064 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3065 // or are disabled, then these HazardRecs will be disabled. 3066 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3067 if (!Top.HazardRec) { 3068 Top.HazardRec = 3069 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3070 Itin, DAG); 3071 } 3072 } 3073 3074 3075 void PostGenericScheduler::registerRoots() { 3076 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3077 3078 // Some roots may not feed into ExitSU. Check all of them in case. 3079 for (SmallVectorImpl<SUnit*>::const_iterator 3080 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3081 if ((*I)->getDepth() > Rem.CriticalPath) 3082 Rem.CriticalPath = (*I)->getDepth(); 3083 } 3084 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3085 if (DumpCriticalPathLength) { 3086 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3087 } 3088 } 3089 3090 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3091 /// 3092 /// \param Cand provides the policy and current best candidate. 3093 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3094 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3095 SchedCandidate &TryCand) { 3096 3097 // Initialize the candidate if needed. 3098 if (!Cand.isValid()) { 3099 TryCand.Reason = NodeOrder; 3100 return; 3101 } 3102 3103 // Prioritize instructions that read unbuffered resources by stall cycles. 3104 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3105 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3106 return; 3107 3108 // Avoid critical resource consumption and balance the schedule. 3109 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3110 TryCand, Cand, ResourceReduce)) 3111 return; 3112 if (tryGreater(TryCand.ResDelta.DemandedResources, 3113 Cand.ResDelta.DemandedResources, 3114 TryCand, Cand, ResourceDemand)) 3115 return; 3116 3117 // Avoid serializing long latency dependence chains. 3118 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3119 return; 3120 } 3121 3122 // Fall through to original instruction order. 3123 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3124 TryCand.Reason = NodeOrder; 3125 } 3126 3127 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3128 ReadyQueue &Q = Top.Available; 3129 3130 DEBUG(Q.dump()); 3131 3132 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3133 SchedCandidate TryCand(Cand.Policy); 3134 TryCand.SU = *I; 3135 TryCand.initResourceDelta(DAG, SchedModel); 3136 tryCandidate(Cand, TryCand); 3137 if (TryCand.Reason != NoCand) { 3138 Cand.setBest(TryCand); 3139 DEBUG(traceCandidate(Cand)); 3140 } 3141 } 3142 } 3143 3144 /// Pick the next node to schedule. 3145 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3146 if (DAG->top() == DAG->bottom()) { 3147 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3148 return nullptr; 3149 } 3150 SUnit *SU; 3151 do { 3152 SU = Top.pickOnlyChoice(); 3153 if (!SU) { 3154 CandPolicy NoPolicy; 3155 SchedCandidate TopCand(NoPolicy); 3156 // Set the top-down policy based on the state of the current top zone and 3157 // the instructions outside the zone, including the bottom zone. 3158 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3159 pickNodeFromQueue(TopCand); 3160 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3161 tracePick(TopCand, true); 3162 SU = TopCand.SU; 3163 } 3164 } while (SU->isScheduled); 3165 3166 IsTopNode = true; 3167 Top.removeReady(SU); 3168 3169 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3170 return SU; 3171 } 3172 3173 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3174 /// scheduled/remaining flags in the DAG nodes. 3175 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3176 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3177 Top.bumpNode(SU); 3178 } 3179 3180 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3181 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3182 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3183 } 3184 3185 //===----------------------------------------------------------------------===// 3186 // ILP Scheduler. Currently for experimental analysis of heuristics. 3187 //===----------------------------------------------------------------------===// 3188 3189 namespace { 3190 /// \brief Order nodes by the ILP metric. 3191 struct ILPOrder { 3192 const SchedDFSResult *DFSResult; 3193 const BitVector *ScheduledTrees; 3194 bool MaximizeILP; 3195 3196 ILPOrder(bool MaxILP) 3197 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3198 3199 /// \brief Apply a less-than relation on node priority. 3200 /// 3201 /// (Return true if A comes after B in the Q.) 3202 bool operator()(const SUnit *A, const SUnit *B) const { 3203 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3204 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3205 if (SchedTreeA != SchedTreeB) { 3206 // Unscheduled trees have lower priority. 3207 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3208 return ScheduledTrees->test(SchedTreeB); 3209 3210 // Trees with shallower connections have have lower priority. 3211 if (DFSResult->getSubtreeLevel(SchedTreeA) 3212 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3213 return DFSResult->getSubtreeLevel(SchedTreeA) 3214 < DFSResult->getSubtreeLevel(SchedTreeB); 3215 } 3216 } 3217 if (MaximizeILP) 3218 return DFSResult->getILP(A) < DFSResult->getILP(B); 3219 else 3220 return DFSResult->getILP(A) > DFSResult->getILP(B); 3221 } 3222 }; 3223 3224 /// \brief Schedule based on the ILP metric. 3225 class ILPScheduler : public MachineSchedStrategy { 3226 ScheduleDAGMILive *DAG; 3227 ILPOrder Cmp; 3228 3229 std::vector<SUnit*> ReadyQ; 3230 public: 3231 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3232 3233 void initialize(ScheduleDAGMI *dag) override { 3234 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3235 DAG = static_cast<ScheduleDAGMILive*>(dag); 3236 DAG->computeDFSResult(); 3237 Cmp.DFSResult = DAG->getDFSResult(); 3238 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3239 ReadyQ.clear(); 3240 } 3241 3242 void registerRoots() override { 3243 // Restore the heap in ReadyQ with the updated DFS results. 3244 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3245 } 3246 3247 /// Implement MachineSchedStrategy interface. 3248 /// ----------------------------------------- 3249 3250 /// Callback to select the highest priority node from the ready Q. 3251 SUnit *pickNode(bool &IsTopNode) override { 3252 if (ReadyQ.empty()) return nullptr; 3253 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3254 SUnit *SU = ReadyQ.back(); 3255 ReadyQ.pop_back(); 3256 IsTopNode = false; 3257 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3258 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3259 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3260 << DAG->getDFSResult()->getSubtreeLevel( 3261 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3262 << "Scheduling " << *SU->getInstr()); 3263 return SU; 3264 } 3265 3266 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3267 void scheduleTree(unsigned SubtreeID) override { 3268 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3269 } 3270 3271 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3272 /// DFSResults, and resort the priority Q. 3273 void schedNode(SUnit *SU, bool IsTopNode) override { 3274 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3275 } 3276 3277 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3278 3279 void releaseBottomNode(SUnit *SU) override { 3280 ReadyQ.push_back(SU); 3281 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3282 } 3283 }; 3284 } // namespace 3285 3286 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3287 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3288 } 3289 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3290 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3291 } 3292 static MachineSchedRegistry ILPMaxRegistry( 3293 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3294 static MachineSchedRegistry ILPMinRegistry( 3295 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3296 3297 //===----------------------------------------------------------------------===// 3298 // Machine Instruction Shuffler for Correctness Testing 3299 //===----------------------------------------------------------------------===// 3300 3301 #ifndef NDEBUG 3302 namespace { 3303 /// Apply a less-than relation on the node order, which corresponds to the 3304 /// instruction order prior to scheduling. IsReverse implements greater-than. 3305 template<bool IsReverse> 3306 struct SUnitOrder { 3307 bool operator()(SUnit *A, SUnit *B) const { 3308 if (IsReverse) 3309 return A->NodeNum > B->NodeNum; 3310 else 3311 return A->NodeNum < B->NodeNum; 3312 } 3313 }; 3314 3315 /// Reorder instructions as much as possible. 3316 class InstructionShuffler : public MachineSchedStrategy { 3317 bool IsAlternating; 3318 bool IsTopDown; 3319 3320 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3321 // gives nodes with a higher number higher priority causing the latest 3322 // instructions to be scheduled first. 3323 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3324 TopQ; 3325 // When scheduling bottom-up, use greater-than as the queue priority. 3326 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3327 BottomQ; 3328 public: 3329 InstructionShuffler(bool alternate, bool topdown) 3330 : IsAlternating(alternate), IsTopDown(topdown) {} 3331 3332 void initialize(ScheduleDAGMI*) override { 3333 TopQ.clear(); 3334 BottomQ.clear(); 3335 } 3336 3337 /// Implement MachineSchedStrategy interface. 3338 /// ----------------------------------------- 3339 3340 SUnit *pickNode(bool &IsTopNode) override { 3341 SUnit *SU; 3342 if (IsTopDown) { 3343 do { 3344 if (TopQ.empty()) return nullptr; 3345 SU = TopQ.top(); 3346 TopQ.pop(); 3347 } while (SU->isScheduled); 3348 IsTopNode = true; 3349 } 3350 else { 3351 do { 3352 if (BottomQ.empty()) return nullptr; 3353 SU = BottomQ.top(); 3354 BottomQ.pop(); 3355 } while (SU->isScheduled); 3356 IsTopNode = false; 3357 } 3358 if (IsAlternating) 3359 IsTopDown = !IsTopDown; 3360 return SU; 3361 } 3362 3363 void schedNode(SUnit *SU, bool IsTopNode) override {} 3364 3365 void releaseTopNode(SUnit *SU) override { 3366 TopQ.push(SU); 3367 } 3368 void releaseBottomNode(SUnit *SU) override { 3369 BottomQ.push(SU); 3370 } 3371 }; 3372 } // namespace 3373 3374 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3375 bool Alternate = !ForceTopDown && !ForceBottomUp; 3376 bool TopDown = !ForceBottomUp; 3377 assert((TopDown || !ForceTopDown) && 3378 "-misched-topdown incompatible with -misched-bottomup"); 3379 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3380 } 3381 static MachineSchedRegistry ShufflerRegistry( 3382 "shuffle", "Shuffle machine instructions alternating directions", 3383 createInstructionShuffler); 3384 #endif // !NDEBUG 3385 3386 //===----------------------------------------------------------------------===// 3387 // GraphWriter support for ScheduleDAGMILive. 3388 //===----------------------------------------------------------------------===// 3389 3390 #ifndef NDEBUG 3391 namespace llvm { 3392 3393 template<> struct GraphTraits< 3394 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3395 3396 template<> 3397 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3398 3399 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3400 3401 static std::string getGraphName(const ScheduleDAG *G) { 3402 return G->MF.getName(); 3403 } 3404 3405 static bool renderGraphFromBottomUp() { 3406 return true; 3407 } 3408 3409 static bool isNodeHidden(const SUnit *Node) { 3410 if (ViewMISchedCutoff == 0) 3411 return false; 3412 return (Node->Preds.size() > ViewMISchedCutoff 3413 || Node->Succs.size() > ViewMISchedCutoff); 3414 } 3415 3416 /// If you want to override the dot attributes printed for a particular 3417 /// edge, override this method. 3418 static std::string getEdgeAttributes(const SUnit *Node, 3419 SUnitIterator EI, 3420 const ScheduleDAG *Graph) { 3421 if (EI.isArtificialDep()) 3422 return "color=cyan,style=dashed"; 3423 if (EI.isCtrlDep()) 3424 return "color=blue,style=dashed"; 3425 return ""; 3426 } 3427 3428 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3429 std::string Str; 3430 raw_string_ostream SS(Str); 3431 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3432 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3433 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3434 SS << "SU:" << SU->NodeNum; 3435 if (DFS) 3436 SS << " I:" << DFS->getNumInstrs(SU); 3437 return SS.str(); 3438 } 3439 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3440 return G->getGraphNodeLabel(SU); 3441 } 3442 3443 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3444 std::string Str("shape=Mrecord"); 3445 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3446 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3447 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3448 if (DFS) { 3449 Str += ",style=filled,fillcolor=\"#"; 3450 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3451 Str += '"'; 3452 } 3453 return Str; 3454 } 3455 }; 3456 } // namespace llvm 3457 #endif // NDEBUG 3458 3459 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3460 /// rendered using 'dot'. 3461 /// 3462 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3463 #ifndef NDEBUG 3464 ViewGraph(this, Name, false, Title); 3465 #else 3466 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3467 << "systems with Graphviz or gv!\n"; 3468 #endif // NDEBUG 3469 } 3470 3471 /// Out-of-line implementation with no arguments is handy for gdb. 3472 void ScheduleDAGMI::viewGraph() { 3473 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3474 } 3475