xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision d34e60ca8532511acb8c93ef26297e349fbec86a)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 #else
104 static bool ViewMISchedDAGs = false;
105 #endif // NDEBUG
106 
107 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
108 /// size of the ready lists.
109 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
110   cl::desc("Limit ready list to N instructions"), cl::init(256));
111 
112 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
113   cl::desc("Enable register pressure scheduling."), cl::init(true));
114 
115 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
116   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
117 
118 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
119                                         cl::desc("Enable memop clustering."),
120                                         cl::init(true));
121 
122 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
123   cl::desc("Verify machine instrs before and after machine scheduling"));
124 
125 // DAG subtrees must have at least this many nodes.
126 static const unsigned MinSubtreeSize = 8;
127 
128 // Pin the vtables to this file.
129 void MachineSchedStrategy::anchor() {}
130 
131 void ScheduleDAGMutation::anchor() {}
132 
133 //===----------------------------------------------------------------------===//
134 // Machine Instruction Scheduling Pass and Registry
135 //===----------------------------------------------------------------------===//
136 
137 MachineSchedContext::MachineSchedContext() {
138   RegClassInfo = new RegisterClassInfo();
139 }
140 
141 MachineSchedContext::~MachineSchedContext() {
142   delete RegClassInfo;
143 }
144 
145 namespace {
146 
147 /// Base class for a machine scheduler class that can run at any point.
148 class MachineSchedulerBase : public MachineSchedContext,
149                              public MachineFunctionPass {
150 public:
151   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
152 
153   void print(raw_ostream &O, const Module* = nullptr) const override;
154 
155 protected:
156   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
157 };
158 
159 /// MachineScheduler runs after coalescing and before register allocation.
160 class MachineScheduler : public MachineSchedulerBase {
161 public:
162   MachineScheduler();
163 
164   void getAnalysisUsage(AnalysisUsage &AU) const override;
165 
166   bool runOnMachineFunction(MachineFunction&) override;
167 
168   static char ID; // Class identification, replacement for typeinfo
169 
170 protected:
171   ScheduleDAGInstrs *createMachineScheduler();
172 };
173 
174 /// PostMachineScheduler runs after shortly before code emission.
175 class PostMachineScheduler : public MachineSchedulerBase {
176 public:
177   PostMachineScheduler();
178 
179   void getAnalysisUsage(AnalysisUsage &AU) const override;
180 
181   bool runOnMachineFunction(MachineFunction&) override;
182 
183   static char ID; // Class identification, replacement for typeinfo
184 
185 protected:
186   ScheduleDAGInstrs *createPostMachineScheduler();
187 };
188 
189 } // end anonymous namespace
190 
191 char MachineScheduler::ID = 0;
192 
193 char &llvm::MachineSchedulerID = MachineScheduler::ID;
194 
195 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
196                       "Machine Instruction Scheduler", false, false)
197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
198 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
199 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
201 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
202                     "Machine Instruction Scheduler", false, false)
203 
204 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
205   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
206 }
207 
208 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
209   AU.setPreservesCFG();
210   AU.addRequiredID(MachineDominatorsID);
211   AU.addRequired<MachineLoopInfo>();
212   AU.addRequired<AAResultsWrapperPass>();
213   AU.addRequired<TargetPassConfig>();
214   AU.addRequired<SlotIndexes>();
215   AU.addPreserved<SlotIndexes>();
216   AU.addRequired<LiveIntervals>();
217   AU.addPreserved<LiveIntervals>();
218   MachineFunctionPass::getAnalysisUsage(AU);
219 }
220 
221 char PostMachineScheduler::ID = 0;
222 
223 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
224 
225 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
226                 "PostRA Machine Instruction Scheduler", false, false)
227 
228 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
229   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
230 }
231 
232 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
233   AU.setPreservesCFG();
234   AU.addRequiredID(MachineDominatorsID);
235   AU.addRequired<MachineLoopInfo>();
236   AU.addRequired<TargetPassConfig>();
237   MachineFunctionPass::getAnalysisUsage(AU);
238 }
239 
240 MachinePassRegistry MachineSchedRegistry::Registry;
241 
242 /// A dummy default scheduler factory indicates whether the scheduler
243 /// is overridden on the command line.
244 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
245   return nullptr;
246 }
247 
248 /// MachineSchedOpt allows command line selection of the scheduler.
249 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
250                RegisterPassParser<MachineSchedRegistry>>
251 MachineSchedOpt("misched",
252                 cl::init(&useDefaultMachineSched), cl::Hidden,
253                 cl::desc("Machine instruction scheduler to use"));
254 
255 static MachineSchedRegistry
256 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
257                      useDefaultMachineSched);
258 
259 static cl::opt<bool> EnableMachineSched(
260     "enable-misched",
261     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
262     cl::Hidden);
263 
264 static cl::opt<bool> EnablePostRAMachineSched(
265     "enable-post-misched",
266     cl::desc("Enable the post-ra machine instruction scheduling pass."),
267     cl::init(true), cl::Hidden);
268 
269 /// Decrement this iterator until reaching the top or a non-debug instr.
270 static MachineBasicBlock::const_iterator
271 priorNonDebug(MachineBasicBlock::const_iterator I,
272               MachineBasicBlock::const_iterator Beg) {
273   assert(I != Beg && "reached the top of the region, cannot decrement");
274   while (--I != Beg) {
275     if (!I->isDebugInstr())
276       break;
277   }
278   return I;
279 }
280 
281 /// Non-const version.
282 static MachineBasicBlock::iterator
283 priorNonDebug(MachineBasicBlock::iterator I,
284               MachineBasicBlock::const_iterator Beg) {
285   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
286       .getNonConstIterator();
287 }
288 
289 /// If this iterator is a debug value, increment until reaching the End or a
290 /// non-debug instruction.
291 static MachineBasicBlock::const_iterator
292 nextIfDebug(MachineBasicBlock::const_iterator I,
293             MachineBasicBlock::const_iterator End) {
294   for(; I != End; ++I) {
295     if (!I->isDebugInstr())
296       break;
297   }
298   return I;
299 }
300 
301 /// Non-const version.
302 static MachineBasicBlock::iterator
303 nextIfDebug(MachineBasicBlock::iterator I,
304             MachineBasicBlock::const_iterator End) {
305   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
306       .getNonConstIterator();
307 }
308 
309 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
310 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
311   // Select the scheduler, or set the default.
312   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
313   if (Ctor != useDefaultMachineSched)
314     return Ctor(this);
315 
316   // Get the default scheduler set by the target for this function.
317   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
318   if (Scheduler)
319     return Scheduler;
320 
321   // Default to GenericScheduler.
322   return createGenericSchedLive(this);
323 }
324 
325 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
326 /// the caller. We don't have a command line option to override the postRA
327 /// scheduler. The Target must configure it.
328 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
329   // Get the postRA scheduler set by the target for this function.
330   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
331   if (Scheduler)
332     return Scheduler;
333 
334   // Default to GenericScheduler.
335   return createGenericSchedPostRA(this);
336 }
337 
338 /// Top-level MachineScheduler pass driver.
339 ///
340 /// Visit blocks in function order. Divide each block into scheduling regions
341 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
342 /// consistent with the DAG builder, which traverses the interior of the
343 /// scheduling regions bottom-up.
344 ///
345 /// This design avoids exposing scheduling boundaries to the DAG builder,
346 /// simplifying the DAG builder's support for "special" target instructions.
347 /// At the same time the design allows target schedulers to operate across
348 /// scheduling boundaries, for example to bundle the boudary instructions
349 /// without reordering them. This creates complexity, because the target
350 /// scheduler must update the RegionBegin and RegionEnd positions cached by
351 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
352 /// design would be to split blocks at scheduling boundaries, but LLVM has a
353 /// general bias against block splitting purely for implementation simplicity.
354 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
355   if (skipFunction(mf.getFunction()))
356     return false;
357 
358   if (EnableMachineSched.getNumOccurrences()) {
359     if (!EnableMachineSched)
360       return false;
361   } else if (!mf.getSubtarget().enableMachineScheduler())
362     return false;
363 
364   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
365 
366   // Initialize the context of the pass.
367   MF = &mf;
368   MLI = &getAnalysis<MachineLoopInfo>();
369   MDT = &getAnalysis<MachineDominatorTree>();
370   PassConfig = &getAnalysis<TargetPassConfig>();
371   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
372 
373   LIS = &getAnalysis<LiveIntervals>();
374 
375   if (VerifyScheduling) {
376     LLVM_DEBUG(LIS->dump());
377     MF->verify(this, "Before machine scheduling.");
378   }
379   RegClassInfo->runOnMachineFunction(*MF);
380 
381   // Instantiate the selected scheduler for this target, function, and
382   // optimization level.
383   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
384   scheduleRegions(*Scheduler, false);
385 
386   LLVM_DEBUG(LIS->dump());
387   if (VerifyScheduling)
388     MF->verify(this, "After machine scheduling.");
389   return true;
390 }
391 
392 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
393   if (skipFunction(mf.getFunction()))
394     return false;
395 
396   if (EnablePostRAMachineSched.getNumOccurrences()) {
397     if (!EnablePostRAMachineSched)
398       return false;
399   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
400     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
401     return false;
402   }
403   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
404 
405   // Initialize the context of the pass.
406   MF = &mf;
407   MLI = &getAnalysis<MachineLoopInfo>();
408   PassConfig = &getAnalysis<TargetPassConfig>();
409 
410   if (VerifyScheduling)
411     MF->verify(this, "Before post machine scheduling.");
412 
413   // Instantiate the selected scheduler for this target, function, and
414   // optimization level.
415   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
416   scheduleRegions(*Scheduler, true);
417 
418   if (VerifyScheduling)
419     MF->verify(this, "After post machine scheduling.");
420   return true;
421 }
422 
423 /// Return true of the given instruction should not be included in a scheduling
424 /// region.
425 ///
426 /// MachineScheduler does not currently support scheduling across calls. To
427 /// handle calls, the DAG builder needs to be modified to create register
428 /// anti/output dependencies on the registers clobbered by the call's regmask
429 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
430 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
431 /// the boundary, but there would be no benefit to postRA scheduling across
432 /// calls this late anyway.
433 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
434                             MachineBasicBlock *MBB,
435                             MachineFunction *MF,
436                             const TargetInstrInfo *TII) {
437   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
438 }
439 
440 /// A region of an MBB for scheduling.
441 namespace {
442 struct SchedRegion {
443   /// RegionBegin is the first instruction in the scheduling region, and
444   /// RegionEnd is either MBB->end() or the scheduling boundary after the
445   /// last instruction in the scheduling region. These iterators cannot refer
446   /// to instructions outside of the identified scheduling region because
447   /// those may be reordered before scheduling this region.
448   MachineBasicBlock::iterator RegionBegin;
449   MachineBasicBlock::iterator RegionEnd;
450   unsigned NumRegionInstrs;
451 
452   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
453               unsigned N) :
454     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
455 };
456 } // end anonymous namespace
457 
458 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
459 
460 static void
461 getSchedRegions(MachineBasicBlock *MBB,
462                 MBBRegionsVector &Regions,
463                 bool RegionsTopDown) {
464   MachineFunction *MF = MBB->getParent();
465   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
466 
467   MachineBasicBlock::iterator I = nullptr;
468   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
469       RegionEnd != MBB->begin(); RegionEnd = I) {
470 
471     // Avoid decrementing RegionEnd for blocks with no terminator.
472     if (RegionEnd != MBB->end() ||
473         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
474       --RegionEnd;
475     }
476 
477     // The next region starts above the previous region. Look backward in the
478     // instruction stream until we find the nearest boundary.
479     unsigned NumRegionInstrs = 0;
480     I = RegionEnd;
481     for (;I != MBB->begin(); --I) {
482       MachineInstr &MI = *std::prev(I);
483       if (isSchedBoundary(&MI, &*MBB, MF, TII))
484         break;
485       if (!MI.isDebugInstr())
486         // MBB::size() uses instr_iterator to count. Here we need a bundle to
487         // count as a single instruction.
488         ++NumRegionInstrs;
489     }
490 
491     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
492   }
493 
494   if (RegionsTopDown)
495     std::reverse(Regions.begin(), Regions.end());
496 }
497 
498 /// Main driver for both MachineScheduler and PostMachineScheduler.
499 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
500                                            bool FixKillFlags) {
501   // Visit all machine basic blocks.
502   //
503   // TODO: Visit blocks in global postorder or postorder within the bottom-up
504   // loop tree. Then we can optionally compute global RegPressure.
505   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
506        MBB != MBBEnd; ++MBB) {
507 
508     Scheduler.startBlock(&*MBB);
509 
510 #ifndef NDEBUG
511     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
512       continue;
513     if (SchedOnlyBlock.getNumOccurrences()
514         && (int)SchedOnlyBlock != MBB->getNumber())
515       continue;
516 #endif
517 
518     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
519     // points to the scheduling boundary at the bottom of the region. The DAG
520     // does not include RegionEnd, but the region does (i.e. the next
521     // RegionEnd is above the previous RegionBegin). If the current block has
522     // no terminator then RegionEnd == MBB->end() for the bottom region.
523     //
524     // All the regions of MBB are first found and stored in MBBRegions, which
525     // will be processed (MBB) top-down if initialized with true.
526     //
527     // The Scheduler may insert instructions during either schedule() or
528     // exitRegion(), even for empty regions. So the local iterators 'I' and
529     // 'RegionEnd' are invalid across these calls. Instructions must not be
530     // added to other regions than the current one without updating MBBRegions.
531 
532     MBBRegionsVector MBBRegions;
533     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
534     for (MBBRegionsVector::iterator R = MBBRegions.begin();
535          R != MBBRegions.end(); ++R) {
536       MachineBasicBlock::iterator I = R->RegionBegin;
537       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
538       unsigned NumRegionInstrs = R->NumRegionInstrs;
539 
540       // Notify the scheduler of the region, even if we may skip scheduling
541       // it. Perhaps it still needs to be bundled.
542       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
543 
544       // Skip empty scheduling regions (0 or 1 schedulable instructions).
545       if (I == RegionEnd || I == std::prev(RegionEnd)) {
546         // Close the current region. Bundle the terminator if needed.
547         // This invalidates 'RegionEnd' and 'I'.
548         Scheduler.exitRegion();
549         continue;
550       }
551       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
552       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
553                         << " " << MBB->getName() << "\n  From: " << *I
554                         << "    To: ";
555                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
556                  else dbgs() << "End";
557                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
558       if (DumpCriticalPathLength) {
559         errs() << MF->getName();
560         errs() << ":%bb. " << MBB->getNumber();
561         errs() << " " << MBB->getName() << " \n";
562       }
563 
564       // Schedule a region: possibly reorder instructions.
565       // This invalidates the original region iterators.
566       Scheduler.schedule();
567 
568       // Close the current region.
569       Scheduler.exitRegion();
570     }
571     Scheduler.finishBlock();
572     // FIXME: Ideally, no further passes should rely on kill flags. However,
573     // thumb2 size reduction is currently an exception, so the PostMIScheduler
574     // needs to do this.
575     if (FixKillFlags)
576       Scheduler.fixupKills(*MBB);
577   }
578   Scheduler.finalizeSchedule();
579 }
580 
581 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
582   // unimplemented
583 }
584 
585 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
586 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
587   dbgs() << "Queue " << Name << ": ";
588   for (const SUnit *SU : Queue)
589     dbgs() << SU->NodeNum << " ";
590   dbgs() << "\n";
591 }
592 #endif
593 
594 //===----------------------------------------------------------------------===//
595 // ScheduleDAGMI - Basic machine instruction scheduling. This is
596 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
597 // virtual registers.
598 // ===----------------------------------------------------------------------===/
599 
600 // Provide a vtable anchor.
601 ScheduleDAGMI::~ScheduleDAGMI() = default;
602 
603 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
604   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
605 }
606 
607 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
608   if (SuccSU != &ExitSU) {
609     // Do not use WillCreateCycle, it assumes SD scheduling.
610     // If Pred is reachable from Succ, then the edge creates a cycle.
611     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
612       return false;
613     Topo.AddPred(SuccSU, PredDep.getSUnit());
614   }
615   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
616   // Return true regardless of whether a new edge needed to be inserted.
617   return true;
618 }
619 
620 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
621 /// NumPredsLeft reaches zero, release the successor node.
622 ///
623 /// FIXME: Adjust SuccSU height based on MinLatency.
624 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
625   SUnit *SuccSU = SuccEdge->getSUnit();
626 
627   if (SuccEdge->isWeak()) {
628     --SuccSU->WeakPredsLeft;
629     if (SuccEdge->isCluster())
630       NextClusterSucc = SuccSU;
631     return;
632   }
633 #ifndef NDEBUG
634   if (SuccSU->NumPredsLeft == 0) {
635     dbgs() << "*** Scheduling failed! ***\n";
636     SuccSU->dump(this);
637     dbgs() << " has been released too many times!\n";
638     llvm_unreachable(nullptr);
639   }
640 #endif
641   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
642   // CurrCycle may have advanced since then.
643   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
644     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
645 
646   --SuccSU->NumPredsLeft;
647   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
648     SchedImpl->releaseTopNode(SuccSU);
649 }
650 
651 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
652 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
653   for (SDep &Succ : SU->Succs)
654     releaseSucc(SU, &Succ);
655 }
656 
657 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
658 /// NumSuccsLeft reaches zero, release the predecessor node.
659 ///
660 /// FIXME: Adjust PredSU height based on MinLatency.
661 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
662   SUnit *PredSU = PredEdge->getSUnit();
663 
664   if (PredEdge->isWeak()) {
665     --PredSU->WeakSuccsLeft;
666     if (PredEdge->isCluster())
667       NextClusterPred = PredSU;
668     return;
669   }
670 #ifndef NDEBUG
671   if (PredSU->NumSuccsLeft == 0) {
672     dbgs() << "*** Scheduling failed! ***\n";
673     PredSU->dump(this);
674     dbgs() << " has been released too many times!\n";
675     llvm_unreachable(nullptr);
676   }
677 #endif
678   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
679   // CurrCycle may have advanced since then.
680   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
681     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
682 
683   --PredSU->NumSuccsLeft;
684   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
685     SchedImpl->releaseBottomNode(PredSU);
686 }
687 
688 /// releasePredecessors - Call releasePred on each of SU's predecessors.
689 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
690   for (SDep &Pred : SU->Preds)
691     releasePred(SU, &Pred);
692 }
693 
694 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
695   ScheduleDAGInstrs::startBlock(bb);
696   SchedImpl->enterMBB(bb);
697 }
698 
699 void ScheduleDAGMI::finishBlock() {
700   SchedImpl->leaveMBB();
701   ScheduleDAGInstrs::finishBlock();
702 }
703 
704 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
705 /// crossing a scheduling boundary. [begin, end) includes all instructions in
706 /// the region, including the boundary itself and single-instruction regions
707 /// that don't get scheduled.
708 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
709                                      MachineBasicBlock::iterator begin,
710                                      MachineBasicBlock::iterator end,
711                                      unsigned regioninstrs)
712 {
713   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
714 
715   SchedImpl->initPolicy(begin, end, regioninstrs);
716 }
717 
718 /// This is normally called from the main scheduler loop but may also be invoked
719 /// by the scheduling strategy to perform additional code motion.
720 void ScheduleDAGMI::moveInstruction(
721   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
722   // Advance RegionBegin if the first instruction moves down.
723   if (&*RegionBegin == MI)
724     ++RegionBegin;
725 
726   // Update the instruction stream.
727   BB->splice(InsertPos, BB, MI);
728 
729   // Update LiveIntervals
730   if (LIS)
731     LIS->handleMove(*MI, /*UpdateFlags=*/true);
732 
733   // Recede RegionBegin if an instruction moves above the first.
734   if (RegionBegin == InsertPos)
735     RegionBegin = MI;
736 }
737 
738 bool ScheduleDAGMI::checkSchedLimit() {
739 #ifndef NDEBUG
740   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
741     CurrentTop = CurrentBottom;
742     return false;
743   }
744   ++NumInstrsScheduled;
745 #endif
746   return true;
747 }
748 
749 /// Per-region scheduling driver, called back from
750 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
751 /// does not consider liveness or register pressure. It is useful for PostRA
752 /// scheduling and potentially other custom schedulers.
753 void ScheduleDAGMI::schedule() {
754   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
755   LLVM_DEBUG(SchedImpl->dumpPolicy());
756 
757   // Build the DAG.
758   buildSchedGraph(AA);
759 
760   Topo.InitDAGTopologicalSorting();
761 
762   postprocessDAG();
763 
764   SmallVector<SUnit*, 8> TopRoots, BotRoots;
765   findRootsAndBiasEdges(TopRoots, BotRoots);
766 
767   LLVM_DEBUG(if (EntrySU.getInstr() != nullptr) EntrySU.dumpAll(this);
768              for (const SUnit &SU
769                   : SUnits) SU.dumpAll(this);
770              if (ExitSU.getInstr() != nullptr) ExitSU.dumpAll(this););
771   if (ViewMISchedDAGs) viewGraph();
772 
773   // Initialize the strategy before modifying the DAG.
774   // This may initialize a DFSResult to be used for queue priority.
775   SchedImpl->initialize(this);
776 
777   // Initialize ready queues now that the DAG and priority data are finalized.
778   initQueues(TopRoots, BotRoots);
779 
780   bool IsTopNode = false;
781   while (true) {
782     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
783     SUnit *SU = SchedImpl->pickNode(IsTopNode);
784     if (!SU) break;
785 
786     assert(!SU->isScheduled && "Node already scheduled");
787     if (!checkSchedLimit())
788       break;
789 
790     MachineInstr *MI = SU->getInstr();
791     if (IsTopNode) {
792       assert(SU->isTopReady() && "node still has unscheduled dependencies");
793       if (&*CurrentTop == MI)
794         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
795       else
796         moveInstruction(MI, CurrentTop);
797     } else {
798       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
799       MachineBasicBlock::iterator priorII =
800         priorNonDebug(CurrentBottom, CurrentTop);
801       if (&*priorII == MI)
802         CurrentBottom = priorII;
803       else {
804         if (&*CurrentTop == MI)
805           CurrentTop = nextIfDebug(++CurrentTop, priorII);
806         moveInstruction(MI, CurrentBottom);
807         CurrentBottom = MI;
808       }
809     }
810     // Notify the scheduling strategy before updating the DAG.
811     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
812     // runs, it can then use the accurate ReadyCycle time to determine whether
813     // newly released nodes can move to the readyQ.
814     SchedImpl->schedNode(SU, IsTopNode);
815 
816     updateQueues(SU, IsTopNode);
817   }
818   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
819 
820   placeDebugValues();
821 
822   LLVM_DEBUG({
823     dbgs() << "*** Final schedule for "
824            << printMBBReference(*begin()->getParent()) << " ***\n";
825     dumpSchedule();
826     dbgs() << '\n';
827   });
828 }
829 
830 /// Apply each ScheduleDAGMutation step in order.
831 void ScheduleDAGMI::postprocessDAG() {
832   for (auto &m : Mutations)
833     m->apply(this);
834 }
835 
836 void ScheduleDAGMI::
837 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
838                       SmallVectorImpl<SUnit*> &BotRoots) {
839   for (SUnit &SU : SUnits) {
840     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
841 
842     // Order predecessors so DFSResult follows the critical path.
843     SU.biasCriticalPath();
844 
845     // A SUnit is ready to top schedule if it has no predecessors.
846     if (!SU.NumPredsLeft)
847       TopRoots.push_back(&SU);
848     // A SUnit is ready to bottom schedule if it has no successors.
849     if (!SU.NumSuccsLeft)
850       BotRoots.push_back(&SU);
851   }
852   ExitSU.biasCriticalPath();
853 }
854 
855 /// Identify DAG roots and setup scheduler queues.
856 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
857                                ArrayRef<SUnit*> BotRoots) {
858   NextClusterSucc = nullptr;
859   NextClusterPred = nullptr;
860 
861   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
862   //
863   // Nodes with unreleased weak edges can still be roots.
864   // Release top roots in forward order.
865   for (SUnit *SU : TopRoots)
866     SchedImpl->releaseTopNode(SU);
867 
868   // Release bottom roots in reverse order so the higher priority nodes appear
869   // first. This is more natural and slightly more efficient.
870   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
871          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
872     SchedImpl->releaseBottomNode(*I);
873   }
874 
875   releaseSuccessors(&EntrySU);
876   releasePredecessors(&ExitSU);
877 
878   SchedImpl->registerRoots();
879 
880   // Advance past initial DebugValues.
881   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
882   CurrentBottom = RegionEnd;
883 }
884 
885 /// Update scheduler queues after scheduling an instruction.
886 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
887   // Release dependent instructions for scheduling.
888   if (IsTopNode)
889     releaseSuccessors(SU);
890   else
891     releasePredecessors(SU);
892 
893   SU->isScheduled = true;
894 }
895 
896 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
897 void ScheduleDAGMI::placeDebugValues() {
898   // If first instruction was a DBG_VALUE then put it back.
899   if (FirstDbgValue) {
900     BB->splice(RegionBegin, BB, FirstDbgValue);
901     RegionBegin = FirstDbgValue;
902   }
903 
904   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
905          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
906     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
907     MachineInstr *DbgValue = P.first;
908     MachineBasicBlock::iterator OrigPrevMI = P.second;
909     if (&*RegionBegin == DbgValue)
910       ++RegionBegin;
911     BB->splice(++OrigPrevMI, BB, DbgValue);
912     if (OrigPrevMI == std::prev(RegionEnd))
913       RegionEnd = DbgValue;
914   }
915   DbgValues.clear();
916   FirstDbgValue = nullptr;
917 }
918 
919 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
920 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
921   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
922     if (SUnit *SU = getSUnit(&(*MI)))
923       SU->dump(this);
924     else
925       dbgs() << "Missing SUnit\n";
926   }
927 }
928 #endif
929 
930 //===----------------------------------------------------------------------===//
931 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
932 // preservation.
933 //===----------------------------------------------------------------------===//
934 
935 ScheduleDAGMILive::~ScheduleDAGMILive() {
936   delete DFSResult;
937 }
938 
939 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
940   const MachineInstr &MI = *SU.getInstr();
941   for (const MachineOperand &MO : MI.operands()) {
942     if (!MO.isReg())
943       continue;
944     if (!MO.readsReg())
945       continue;
946     if (TrackLaneMasks && !MO.isUse())
947       continue;
948 
949     unsigned Reg = MO.getReg();
950     if (!TargetRegisterInfo::isVirtualRegister(Reg))
951       continue;
952 
953     // Ignore re-defs.
954     if (TrackLaneMasks) {
955       bool FoundDef = false;
956       for (const MachineOperand &MO2 : MI.operands()) {
957         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
958           FoundDef = true;
959           break;
960         }
961       }
962       if (FoundDef)
963         continue;
964     }
965 
966     // Record this local VReg use.
967     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
968     for (; UI != VRegUses.end(); ++UI) {
969       if (UI->SU == &SU)
970         break;
971     }
972     if (UI == VRegUses.end())
973       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
974   }
975 }
976 
977 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
978 /// crossing a scheduling boundary. [begin, end) includes all instructions in
979 /// the region, including the boundary itself and single-instruction regions
980 /// that don't get scheduled.
981 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
982                                 MachineBasicBlock::iterator begin,
983                                 MachineBasicBlock::iterator end,
984                                 unsigned regioninstrs)
985 {
986   // ScheduleDAGMI initializes SchedImpl's per-region policy.
987   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
988 
989   // For convenience remember the end of the liveness region.
990   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
991 
992   SUPressureDiffs.clear();
993 
994   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
995   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
996 
997   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
998          "ShouldTrackLaneMasks requires ShouldTrackPressure");
999 }
1000 
1001 // Setup the register pressure trackers for the top scheduled top and bottom
1002 // scheduled regions.
1003 void ScheduleDAGMILive::initRegPressure() {
1004   VRegUses.clear();
1005   VRegUses.setUniverse(MRI.getNumVirtRegs());
1006   for (SUnit &SU : SUnits)
1007     collectVRegUses(SU);
1008 
1009   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1010                     ShouldTrackLaneMasks, false);
1011   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1012                     ShouldTrackLaneMasks, false);
1013 
1014   // Close the RPTracker to finalize live ins.
1015   RPTracker.closeRegion();
1016 
1017   LLVM_DEBUG(RPTracker.dump());
1018 
1019   // Initialize the live ins and live outs.
1020   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1021   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1022 
1023   // Close one end of the tracker so we can call
1024   // getMaxUpward/DownwardPressureDelta before advancing across any
1025   // instructions. This converts currently live regs into live ins/outs.
1026   TopRPTracker.closeTop();
1027   BotRPTracker.closeBottom();
1028 
1029   BotRPTracker.initLiveThru(RPTracker);
1030   if (!BotRPTracker.getLiveThru().empty()) {
1031     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1032     LLVM_DEBUG(dbgs() << "Live Thru: ";
1033                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1034   };
1035 
1036   // For each live out vreg reduce the pressure change associated with other
1037   // uses of the same vreg below the live-out reaching def.
1038   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1039 
1040   // Account for liveness generated by the region boundary.
1041   if (LiveRegionEnd != RegionEnd) {
1042     SmallVector<RegisterMaskPair, 8> LiveUses;
1043     BotRPTracker.recede(&LiveUses);
1044     updatePressureDiffs(LiveUses);
1045   }
1046 
1047   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1048              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1049              dbgs() << "Bottom Pressure:\n";
1050              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1051 
1052   assert((BotRPTracker.getPos() == RegionEnd ||
1053           (RegionEnd->isDebugInstr() &&
1054            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1055          "Can't find the region bottom");
1056 
1057   // Cache the list of excess pressure sets in this region. This will also track
1058   // the max pressure in the scheduled code for these sets.
1059   RegionCriticalPSets.clear();
1060   const std::vector<unsigned> &RegionPressure =
1061     RPTracker.getPressure().MaxSetPressure;
1062   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1063     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1064     if (RegionPressure[i] > Limit) {
1065       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1066                         << " Actual " << RegionPressure[i] << "\n");
1067       RegionCriticalPSets.push_back(PressureChange(i));
1068     }
1069   }
1070   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1071              for (const PressureChange &RCPS
1072                   : RegionCriticalPSets) dbgs()
1073              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1074              dbgs() << "\n");
1075 }
1076 
1077 void ScheduleDAGMILive::
1078 updateScheduledPressure(const SUnit *SU,
1079                         const std::vector<unsigned> &NewMaxPressure) {
1080   const PressureDiff &PDiff = getPressureDiff(SU);
1081   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1082   for (const PressureChange &PC : PDiff) {
1083     if (!PC.isValid())
1084       break;
1085     unsigned ID = PC.getPSet();
1086     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1087       ++CritIdx;
1088     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1089       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1090           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1091         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1092     }
1093     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1094     if (NewMaxPressure[ID] >= Limit - 2) {
1095       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1096                         << NewMaxPressure[ID]
1097                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1098                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1099                         << " livethru)\n");
1100     }
1101   }
1102 }
1103 
1104 /// Update the PressureDiff array for liveness after scheduling this
1105 /// instruction.
1106 void ScheduleDAGMILive::updatePressureDiffs(
1107     ArrayRef<RegisterMaskPair> LiveUses) {
1108   for (const RegisterMaskPair &P : LiveUses) {
1109     unsigned Reg = P.RegUnit;
1110     /// FIXME: Currently assuming single-use physregs.
1111     if (!TRI->isVirtualRegister(Reg))
1112       continue;
1113 
1114     if (ShouldTrackLaneMasks) {
1115       // If the register has just become live then other uses won't change
1116       // this fact anymore => decrement pressure.
1117       // If the register has just become dead then other uses make it come
1118       // back to life => increment pressure.
1119       bool Decrement = P.LaneMask.any();
1120 
1121       for (const VReg2SUnit &V2SU
1122            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1123         SUnit &SU = *V2SU.SU;
1124         if (SU.isScheduled || &SU == &ExitSU)
1125           continue;
1126 
1127         PressureDiff &PDiff = getPressureDiff(&SU);
1128         PDiff.addPressureChange(Reg, Decrement, &MRI);
1129         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1130                           << printReg(Reg, TRI) << ':'
1131                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1132                    dbgs() << "              to "; PDiff.dump(*TRI););
1133       }
1134     } else {
1135       assert(P.LaneMask.any());
1136       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1137       // This may be called before CurrentBottom has been initialized. However,
1138       // BotRPTracker must have a valid position. We want the value live into the
1139       // instruction or live out of the block, so ask for the previous
1140       // instruction's live-out.
1141       const LiveInterval &LI = LIS->getInterval(Reg);
1142       VNInfo *VNI;
1143       MachineBasicBlock::const_iterator I =
1144         nextIfDebug(BotRPTracker.getPos(), BB->end());
1145       if (I == BB->end())
1146         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1147       else {
1148         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1149         VNI = LRQ.valueIn();
1150       }
1151       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1152       assert(VNI && "No live value at use.");
1153       for (const VReg2SUnit &V2SU
1154            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1155         SUnit *SU = V2SU.SU;
1156         // If this use comes before the reaching def, it cannot be a last use,
1157         // so decrease its pressure change.
1158         if (!SU->isScheduled && SU != &ExitSU) {
1159           LiveQueryResult LRQ =
1160               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1161           if (LRQ.valueIn() == VNI) {
1162             PressureDiff &PDiff = getPressureDiff(SU);
1163             PDiff.addPressureChange(Reg, true, &MRI);
1164             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1165                               << *SU->getInstr();
1166                        dbgs() << "              to "; PDiff.dump(*TRI););
1167           }
1168         }
1169       }
1170     }
1171   }
1172 }
1173 
1174 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1175 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1176 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1177 ///
1178 /// This is a skeletal driver, with all the functionality pushed into helpers,
1179 /// so that it can be easily extended by experimental schedulers. Generally,
1180 /// implementing MachineSchedStrategy should be sufficient to implement a new
1181 /// scheduling algorithm. However, if a scheduler further subclasses
1182 /// ScheduleDAGMILive then it will want to override this virtual method in order
1183 /// to update any specialized state.
1184 void ScheduleDAGMILive::schedule() {
1185   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1186   LLVM_DEBUG(SchedImpl->dumpPolicy());
1187   buildDAGWithRegPressure();
1188 
1189   Topo.InitDAGTopologicalSorting();
1190 
1191   postprocessDAG();
1192 
1193   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1194   findRootsAndBiasEdges(TopRoots, BotRoots);
1195 
1196   // Initialize the strategy before modifying the DAG.
1197   // This may initialize a DFSResult to be used for queue priority.
1198   SchedImpl->initialize(this);
1199 
1200   LLVM_DEBUG(if (EntrySU.getInstr() != nullptr) EntrySU.dumpAll(this);
1201              for (const SUnit &SU
1202                   : SUnits) {
1203                SU.dumpAll(this);
1204                if (ShouldTrackPressure) {
1205                  dbgs() << "  Pressure Diff      : ";
1206                  getPressureDiff(&SU).dump(*TRI);
1207                }
1208                dbgs() << "  Single Issue       : ";
1209                if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1210                    SchedModel.mustEndGroup(SU.getInstr()))
1211                  dbgs() << "true;";
1212                else
1213                  dbgs() << "false;";
1214                dbgs() << '\n';
1215              } if (ExitSU.getInstr() != nullptr) ExitSU.dumpAll(this););
1216   if (ViewMISchedDAGs) viewGraph();
1217 
1218   // Initialize ready queues now that the DAG and priority data are finalized.
1219   initQueues(TopRoots, BotRoots);
1220 
1221   bool IsTopNode = false;
1222   while (true) {
1223     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1224     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1225     if (!SU) break;
1226 
1227     assert(!SU->isScheduled && "Node already scheduled");
1228     if (!checkSchedLimit())
1229       break;
1230 
1231     scheduleMI(SU, IsTopNode);
1232 
1233     if (DFSResult) {
1234       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1235       if (!ScheduledTrees.test(SubtreeID)) {
1236         ScheduledTrees.set(SubtreeID);
1237         DFSResult->scheduleTree(SubtreeID);
1238         SchedImpl->scheduleTree(SubtreeID);
1239       }
1240     }
1241 
1242     // Notify the scheduling strategy after updating the DAG.
1243     SchedImpl->schedNode(SU, IsTopNode);
1244 
1245     updateQueues(SU, IsTopNode);
1246   }
1247   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1248 
1249   placeDebugValues();
1250 
1251   LLVM_DEBUG({
1252     dbgs() << "*** Final schedule for "
1253            << printMBBReference(*begin()->getParent()) << " ***\n";
1254     dumpSchedule();
1255     dbgs() << '\n';
1256   });
1257 }
1258 
1259 /// Build the DAG and setup three register pressure trackers.
1260 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1261   if (!ShouldTrackPressure) {
1262     RPTracker.reset();
1263     RegionCriticalPSets.clear();
1264     buildSchedGraph(AA);
1265     return;
1266   }
1267 
1268   // Initialize the register pressure tracker used by buildSchedGraph.
1269   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1270                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1271 
1272   // Account for liveness generate by the region boundary.
1273   if (LiveRegionEnd != RegionEnd)
1274     RPTracker.recede();
1275 
1276   // Build the DAG, and compute current register pressure.
1277   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1278 
1279   // Initialize top/bottom trackers after computing region pressure.
1280   initRegPressure();
1281 }
1282 
1283 void ScheduleDAGMILive::computeDFSResult() {
1284   if (!DFSResult)
1285     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1286   DFSResult->clear();
1287   ScheduledTrees.clear();
1288   DFSResult->resize(SUnits.size());
1289   DFSResult->compute(SUnits);
1290   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1291 }
1292 
1293 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1294 /// only provides the critical path for single block loops. To handle loops that
1295 /// span blocks, we could use the vreg path latencies provided by
1296 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1297 /// available for use in the scheduler.
1298 ///
1299 /// The cyclic path estimation identifies a def-use pair that crosses the back
1300 /// edge and considers the depth and height of the nodes. For example, consider
1301 /// the following instruction sequence where each instruction has unit latency
1302 /// and defines an epomymous virtual register:
1303 ///
1304 /// a->b(a,c)->c(b)->d(c)->exit
1305 ///
1306 /// The cyclic critical path is a two cycles: b->c->b
1307 /// The acyclic critical path is four cycles: a->b->c->d->exit
1308 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1309 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1310 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1311 /// LiveInDepth = depth(b) = len(a->b) = 1
1312 ///
1313 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1314 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1315 /// CyclicCriticalPath = min(2, 2) = 2
1316 ///
1317 /// This could be relevant to PostRA scheduling, but is currently implemented
1318 /// assuming LiveIntervals.
1319 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1320   // This only applies to single block loop.
1321   if (!BB->isSuccessor(BB))
1322     return 0;
1323 
1324   unsigned MaxCyclicLatency = 0;
1325   // Visit each live out vreg def to find def/use pairs that cross iterations.
1326   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1327     unsigned Reg = P.RegUnit;
1328     if (!TRI->isVirtualRegister(Reg))
1329         continue;
1330     const LiveInterval &LI = LIS->getInterval(Reg);
1331     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1332     if (!DefVNI)
1333       continue;
1334 
1335     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1336     const SUnit *DefSU = getSUnit(DefMI);
1337     if (!DefSU)
1338       continue;
1339 
1340     unsigned LiveOutHeight = DefSU->getHeight();
1341     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1342     // Visit all local users of the vreg def.
1343     for (const VReg2SUnit &V2SU
1344          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1345       SUnit *SU = V2SU.SU;
1346       if (SU == &ExitSU)
1347         continue;
1348 
1349       // Only consider uses of the phi.
1350       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1351       if (!LRQ.valueIn()->isPHIDef())
1352         continue;
1353 
1354       // Assume that a path spanning two iterations is a cycle, which could
1355       // overestimate in strange cases. This allows cyclic latency to be
1356       // estimated as the minimum slack of the vreg's depth or height.
1357       unsigned CyclicLatency = 0;
1358       if (LiveOutDepth > SU->getDepth())
1359         CyclicLatency = LiveOutDepth - SU->getDepth();
1360 
1361       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1362       if (LiveInHeight > LiveOutHeight) {
1363         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1364           CyclicLatency = LiveInHeight - LiveOutHeight;
1365       } else
1366         CyclicLatency = 0;
1367 
1368       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1369                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1370       if (CyclicLatency > MaxCyclicLatency)
1371         MaxCyclicLatency = CyclicLatency;
1372     }
1373   }
1374   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1375   return MaxCyclicLatency;
1376 }
1377 
1378 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1379 /// the Top RP tracker in case the region beginning has changed.
1380 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1381                                    ArrayRef<SUnit*> BotRoots) {
1382   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1383   if (ShouldTrackPressure) {
1384     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1385     TopRPTracker.setPos(CurrentTop);
1386   }
1387 }
1388 
1389 /// Move an instruction and update register pressure.
1390 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1391   // Move the instruction to its new location in the instruction stream.
1392   MachineInstr *MI = SU->getInstr();
1393 
1394   if (IsTopNode) {
1395     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1396     if (&*CurrentTop == MI)
1397       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1398     else {
1399       moveInstruction(MI, CurrentTop);
1400       TopRPTracker.setPos(MI);
1401     }
1402 
1403     if (ShouldTrackPressure) {
1404       // Update top scheduled pressure.
1405       RegisterOperands RegOpers;
1406       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1407       if (ShouldTrackLaneMasks) {
1408         // Adjust liveness and add missing dead+read-undef flags.
1409         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1410         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1411       } else {
1412         // Adjust for missing dead-def flags.
1413         RegOpers.detectDeadDefs(*MI, *LIS);
1414       }
1415 
1416       TopRPTracker.advance(RegOpers);
1417       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1418       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1419                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1420 
1421       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1422     }
1423   } else {
1424     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1425     MachineBasicBlock::iterator priorII =
1426       priorNonDebug(CurrentBottom, CurrentTop);
1427     if (&*priorII == MI)
1428       CurrentBottom = priorII;
1429     else {
1430       if (&*CurrentTop == MI) {
1431         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1432         TopRPTracker.setPos(CurrentTop);
1433       }
1434       moveInstruction(MI, CurrentBottom);
1435       CurrentBottom = MI;
1436       BotRPTracker.setPos(CurrentBottom);
1437     }
1438     if (ShouldTrackPressure) {
1439       RegisterOperands RegOpers;
1440       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1441       if (ShouldTrackLaneMasks) {
1442         // Adjust liveness and add missing dead+read-undef flags.
1443         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1444         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1445       } else {
1446         // Adjust for missing dead-def flags.
1447         RegOpers.detectDeadDefs(*MI, *LIS);
1448       }
1449 
1450       if (BotRPTracker.getPos() != CurrentBottom)
1451         BotRPTracker.recedeSkipDebugValues();
1452       SmallVector<RegisterMaskPair, 8> LiveUses;
1453       BotRPTracker.recede(RegOpers, &LiveUses);
1454       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1455       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1456                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1457 
1458       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1459       updatePressureDiffs(LiveUses);
1460     }
1461   }
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1466 //===----------------------------------------------------------------------===//
1467 
1468 namespace {
1469 
1470 /// Post-process the DAG to create cluster edges between neighboring
1471 /// loads or between neighboring stores.
1472 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1473   struct MemOpInfo {
1474     SUnit *SU;
1475     unsigned BaseReg;
1476     int64_t Offset;
1477 
1478     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1479         : SU(su), BaseReg(reg), Offset(ofs) {}
1480 
1481     bool operator<(const MemOpInfo&RHS) const {
1482       return std::tie(BaseReg, Offset, SU->NodeNum) <
1483              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1484     }
1485   };
1486 
1487   const TargetInstrInfo *TII;
1488   const TargetRegisterInfo *TRI;
1489   bool IsLoad;
1490 
1491 public:
1492   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1493                            const TargetRegisterInfo *tri, bool IsLoad)
1494       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1495 
1496   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1497 
1498 protected:
1499   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1500 };
1501 
1502 class StoreClusterMutation : public BaseMemOpClusterMutation {
1503 public:
1504   StoreClusterMutation(const TargetInstrInfo *tii,
1505                        const TargetRegisterInfo *tri)
1506       : BaseMemOpClusterMutation(tii, tri, false) {}
1507 };
1508 
1509 class LoadClusterMutation : public BaseMemOpClusterMutation {
1510 public:
1511   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1512       : BaseMemOpClusterMutation(tii, tri, true) {}
1513 };
1514 
1515 } // end anonymous namespace
1516 
1517 namespace llvm {
1518 
1519 std::unique_ptr<ScheduleDAGMutation>
1520 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1521                              const TargetRegisterInfo *TRI) {
1522   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1523                             : nullptr;
1524 }
1525 
1526 std::unique_ptr<ScheduleDAGMutation>
1527 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1528                               const TargetRegisterInfo *TRI) {
1529   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1530                             : nullptr;
1531 }
1532 
1533 } // end namespace llvm
1534 
1535 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1536     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1537   SmallVector<MemOpInfo, 32> MemOpRecords;
1538   for (SUnit *SU : MemOps) {
1539     unsigned BaseReg;
1540     int64_t Offset;
1541     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1542       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1543   }
1544   if (MemOpRecords.size() < 2)
1545     return;
1546 
1547   llvm::sort(MemOpRecords.begin(), MemOpRecords.end());
1548   unsigned ClusterLength = 1;
1549   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1550     SUnit *SUa = MemOpRecords[Idx].SU;
1551     SUnit *SUb = MemOpRecords[Idx+1].SU;
1552     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1553                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1554                                  ClusterLength) &&
1555         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1556       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1557                         << SUb->NodeNum << ")\n");
1558       // Copy successor edges from SUa to SUb. Interleaving computation
1559       // dependent on SUa can prevent load combining due to register reuse.
1560       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1561       // loads should have effectively the same inputs.
1562       for (const SDep &Succ : SUa->Succs) {
1563         if (Succ.getSUnit() == SUb)
1564           continue;
1565         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1566                           << ")\n");
1567         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1568       }
1569       ++ClusterLength;
1570     } else
1571       ClusterLength = 1;
1572   }
1573 }
1574 
1575 /// Callback from DAG postProcessing to create cluster edges for loads.
1576 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1577   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1578 
1579   // Map DAG NodeNum to store chain ID.
1580   DenseMap<unsigned, unsigned> StoreChainIDs;
1581   // Map each store chain to a set of dependent MemOps.
1582   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1583   for (SUnit &SU : DAG->SUnits) {
1584     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1585         (!IsLoad && !SU.getInstr()->mayStore()))
1586       continue;
1587 
1588     unsigned ChainPredID = DAG->SUnits.size();
1589     for (const SDep &Pred : SU.Preds) {
1590       if (Pred.isCtrl()) {
1591         ChainPredID = Pred.getSUnit()->NodeNum;
1592         break;
1593       }
1594     }
1595     // Check if this chain-like pred has been seen
1596     // before. ChainPredID==MaxNodeID at the top of the schedule.
1597     unsigned NumChains = StoreChainDependents.size();
1598     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1599       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1600     if (Result.second)
1601       StoreChainDependents.resize(NumChains + 1);
1602     StoreChainDependents[Result.first->second].push_back(&SU);
1603   }
1604 
1605   // Iterate over the store chains.
1606   for (auto &SCD : StoreChainDependents)
1607     clusterNeighboringMemOps(SCD, DAG);
1608 }
1609 
1610 //===----------------------------------------------------------------------===//
1611 // CopyConstrain - DAG post-processing to encourage copy elimination.
1612 //===----------------------------------------------------------------------===//
1613 
1614 namespace {
1615 
1616 /// Post-process the DAG to create weak edges from all uses of a copy to
1617 /// the one use that defines the copy's source vreg, most likely an induction
1618 /// variable increment.
1619 class CopyConstrain : public ScheduleDAGMutation {
1620   // Transient state.
1621   SlotIndex RegionBeginIdx;
1622 
1623   // RegionEndIdx is the slot index of the last non-debug instruction in the
1624   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1625   SlotIndex RegionEndIdx;
1626 
1627 public:
1628   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1629 
1630   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1631 
1632 protected:
1633   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1634 };
1635 
1636 } // end anonymous namespace
1637 
1638 namespace llvm {
1639 
1640 std::unique_ptr<ScheduleDAGMutation>
1641 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1642                                const TargetRegisterInfo *TRI) {
1643   return llvm::make_unique<CopyConstrain>(TII, TRI);
1644 }
1645 
1646 } // end namespace llvm
1647 
1648 /// constrainLocalCopy handles two possibilities:
1649 /// 1) Local src:
1650 /// I0:     = dst
1651 /// I1: src = ...
1652 /// I2:     = dst
1653 /// I3: dst = src (copy)
1654 /// (create pred->succ edges I0->I1, I2->I1)
1655 ///
1656 /// 2) Local copy:
1657 /// I0: dst = src (copy)
1658 /// I1:     = dst
1659 /// I2: src = ...
1660 /// I3:     = dst
1661 /// (create pred->succ edges I1->I2, I3->I2)
1662 ///
1663 /// Although the MachineScheduler is currently constrained to single blocks,
1664 /// this algorithm should handle extended blocks. An EBB is a set of
1665 /// contiguously numbered blocks such that the previous block in the EBB is
1666 /// always the single predecessor.
1667 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1668   LiveIntervals *LIS = DAG->getLIS();
1669   MachineInstr *Copy = CopySU->getInstr();
1670 
1671   // Check for pure vreg copies.
1672   const MachineOperand &SrcOp = Copy->getOperand(1);
1673   unsigned SrcReg = SrcOp.getReg();
1674   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1675     return;
1676 
1677   const MachineOperand &DstOp = Copy->getOperand(0);
1678   unsigned DstReg = DstOp.getReg();
1679   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1680     return;
1681 
1682   // Check if either the dest or source is local. If it's live across a back
1683   // edge, it's not local. Note that if both vregs are live across the back
1684   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1685   // If both the copy's source and dest are local live intervals, then we
1686   // should treat the dest as the global for the purpose of adding
1687   // constraints. This adds edges from source's other uses to the copy.
1688   unsigned LocalReg = SrcReg;
1689   unsigned GlobalReg = DstReg;
1690   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1691   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1692     LocalReg = DstReg;
1693     GlobalReg = SrcReg;
1694     LocalLI = &LIS->getInterval(LocalReg);
1695     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1696       return;
1697   }
1698   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1699 
1700   // Find the global segment after the start of the local LI.
1701   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1702   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1703   // local live range. We could create edges from other global uses to the local
1704   // start, but the coalescer should have already eliminated these cases, so
1705   // don't bother dealing with it.
1706   if (GlobalSegment == GlobalLI->end())
1707     return;
1708 
1709   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1710   // returned the next global segment. But if GlobalSegment overlaps with
1711   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1712   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1713   if (GlobalSegment->contains(LocalLI->beginIndex()))
1714     ++GlobalSegment;
1715 
1716   if (GlobalSegment == GlobalLI->end())
1717     return;
1718 
1719   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1720   if (GlobalSegment != GlobalLI->begin()) {
1721     // Two address defs have no hole.
1722     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1723                                GlobalSegment->start)) {
1724       return;
1725     }
1726     // If the prior global segment may be defined by the same two-address
1727     // instruction that also defines LocalLI, then can't make a hole here.
1728     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1729                                LocalLI->beginIndex())) {
1730       return;
1731     }
1732     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1733     // it would be a disconnected component in the live range.
1734     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1735            "Disconnected LRG within the scheduling region.");
1736   }
1737   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1738   if (!GlobalDef)
1739     return;
1740 
1741   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1742   if (!GlobalSU)
1743     return;
1744 
1745   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1746   // constraining the uses of the last local def to precede GlobalDef.
1747   SmallVector<SUnit*,8> LocalUses;
1748   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1749   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1750   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1751   for (const SDep &Succ : LastLocalSU->Succs) {
1752     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1753       continue;
1754     if (Succ.getSUnit() == GlobalSU)
1755       continue;
1756     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1757       return;
1758     LocalUses.push_back(Succ.getSUnit());
1759   }
1760   // Open the top of the GlobalLI hole by constraining any earlier global uses
1761   // to precede the start of LocalLI.
1762   SmallVector<SUnit*,8> GlobalUses;
1763   MachineInstr *FirstLocalDef =
1764     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1765   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1766   for (const SDep &Pred : GlobalSU->Preds) {
1767     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1768       continue;
1769     if (Pred.getSUnit() == FirstLocalSU)
1770       continue;
1771     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1772       return;
1773     GlobalUses.push_back(Pred.getSUnit());
1774   }
1775   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1776   // Add the weak edges.
1777   for (SmallVectorImpl<SUnit*>::const_iterator
1778          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1779     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1780                       << GlobalSU->NodeNum << ")\n");
1781     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1782   }
1783   for (SmallVectorImpl<SUnit*>::const_iterator
1784          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1785     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1786                       << FirstLocalSU->NodeNum << ")\n");
1787     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1788   }
1789 }
1790 
1791 /// Callback from DAG postProcessing to create weak edges to encourage
1792 /// copy elimination.
1793 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1794   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1795   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1796 
1797   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1798   if (FirstPos == DAG->end())
1799     return;
1800   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1801   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1802       *priorNonDebug(DAG->end(), DAG->begin()));
1803 
1804   for (SUnit &SU : DAG->SUnits) {
1805     if (!SU.getInstr()->isCopy())
1806       continue;
1807 
1808     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1809   }
1810 }
1811 
1812 //===----------------------------------------------------------------------===//
1813 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1814 // and possibly other custom schedulers.
1815 //===----------------------------------------------------------------------===//
1816 
1817 static const unsigned InvalidCycle = ~0U;
1818 
1819 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1820 
1821 /// Given a Count of resource usage and a Latency value, return true if a
1822 /// SchedBoundary becomes resource limited.
1823 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1824                                unsigned Latency) {
1825   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1826 }
1827 
1828 void SchedBoundary::reset() {
1829   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1830   // Destroying and reconstructing it is very expensive though. So keep
1831   // invalid, placeholder HazardRecs.
1832   if (HazardRec && HazardRec->isEnabled()) {
1833     delete HazardRec;
1834     HazardRec = nullptr;
1835   }
1836   Available.clear();
1837   Pending.clear();
1838   CheckPending = false;
1839   CurrCycle = 0;
1840   CurrMOps = 0;
1841   MinReadyCycle = std::numeric_limits<unsigned>::max();
1842   ExpectedLatency = 0;
1843   DependentLatency = 0;
1844   RetiredMOps = 0;
1845   MaxExecutedResCount = 0;
1846   ZoneCritResIdx = 0;
1847   IsResourceLimited = false;
1848   ReservedCycles.clear();
1849 #ifndef NDEBUG
1850   // Track the maximum number of stall cycles that could arise either from the
1851   // latency of a DAG edge or the number of cycles that a processor resource is
1852   // reserved (SchedBoundary::ReservedCycles).
1853   MaxObservedStall = 0;
1854 #endif
1855   // Reserve a zero-count for invalid CritResIdx.
1856   ExecutedResCounts.resize(1);
1857   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1858 }
1859 
1860 void SchedRemainder::
1861 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1862   reset();
1863   if (!SchedModel->hasInstrSchedModel())
1864     return;
1865   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1866   for (SUnit &SU : DAG->SUnits) {
1867     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1868     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1869       * SchedModel->getMicroOpFactor();
1870     for (TargetSchedModel::ProcResIter
1871            PI = SchedModel->getWriteProcResBegin(SC),
1872            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1873       unsigned PIdx = PI->ProcResourceIdx;
1874       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1875       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1876     }
1877   }
1878 }
1879 
1880 void SchedBoundary::
1881 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1882   reset();
1883   DAG = dag;
1884   SchedModel = smodel;
1885   Rem = rem;
1886   if (SchedModel->hasInstrSchedModel()) {
1887     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1888     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1889   }
1890 }
1891 
1892 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1893 /// these "soft stalls" differently than the hard stall cycles based on CPU
1894 /// resources and computed by checkHazard(). A fully in-order model
1895 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1896 /// available for scheduling until they are ready. However, a weaker in-order
1897 /// model may use this for heuristics. For example, if a processor has in-order
1898 /// behavior when reading certain resources, this may come into play.
1899 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1900   if (!SU->isUnbuffered)
1901     return 0;
1902 
1903   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1904   if (ReadyCycle > CurrCycle)
1905     return ReadyCycle - CurrCycle;
1906   return 0;
1907 }
1908 
1909 /// Compute the next cycle at which the given processor resource can be
1910 /// scheduled.
1911 unsigned SchedBoundary::
1912 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1913   unsigned NextUnreserved = ReservedCycles[PIdx];
1914   // If this resource has never been used, always return cycle zero.
1915   if (NextUnreserved == InvalidCycle)
1916     return 0;
1917   // For bottom-up scheduling add the cycles needed for the current operation.
1918   if (!isTop())
1919     NextUnreserved += Cycles;
1920   return NextUnreserved;
1921 }
1922 
1923 /// Does this SU have a hazard within the current instruction group.
1924 ///
1925 /// The scheduler supports two modes of hazard recognition. The first is the
1926 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1927 /// supports highly complicated in-order reservation tables
1928 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1929 ///
1930 /// The second is a streamlined mechanism that checks for hazards based on
1931 /// simple counters that the scheduler itself maintains. It explicitly checks
1932 /// for instruction dispatch limitations, including the number of micro-ops that
1933 /// can dispatch per cycle.
1934 ///
1935 /// TODO: Also check whether the SU must start a new group.
1936 bool SchedBoundary::checkHazard(SUnit *SU) {
1937   if (HazardRec->isEnabled()
1938       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1939     return true;
1940   }
1941 
1942   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1943   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1944     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1945                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1946     return true;
1947   }
1948 
1949   if (CurrMOps > 0 &&
1950       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1951        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1952     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1953                       << (isTop() ? "begin" : "end") << " group\n");
1954     return true;
1955   }
1956 
1957   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1958     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1959     for (const MCWriteProcResEntry &PE :
1960           make_range(SchedModel->getWriteProcResBegin(SC),
1961                      SchedModel->getWriteProcResEnd(SC))) {
1962       unsigned ResIdx = PE.ProcResourceIdx;
1963       unsigned Cycles = PE.Cycles;
1964       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1965       if (NRCycle > CurrCycle) {
1966 #ifndef NDEBUG
1967         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1968 #endif
1969         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1970                           << SchedModel->getResourceName(ResIdx) << "="
1971                           << NRCycle << "c\n");
1972         return true;
1973       }
1974     }
1975   }
1976   return false;
1977 }
1978 
1979 // Find the unscheduled node in ReadySUs with the highest latency.
1980 unsigned SchedBoundary::
1981 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1982   SUnit *LateSU = nullptr;
1983   unsigned RemLatency = 0;
1984   for (SUnit *SU : ReadySUs) {
1985     unsigned L = getUnscheduledLatency(SU);
1986     if (L > RemLatency) {
1987       RemLatency = L;
1988       LateSU = SU;
1989     }
1990   }
1991   if (LateSU) {
1992     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1993                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
1994   }
1995   return RemLatency;
1996 }
1997 
1998 // Count resources in this zone and the remaining unscheduled
1999 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2000 // resource index, or zero if the zone is issue limited.
2001 unsigned SchedBoundary::
2002 getOtherResourceCount(unsigned &OtherCritIdx) {
2003   OtherCritIdx = 0;
2004   if (!SchedModel->hasInstrSchedModel())
2005     return 0;
2006 
2007   unsigned OtherCritCount = Rem->RemIssueCount
2008     + (RetiredMOps * SchedModel->getMicroOpFactor());
2009   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2010                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2011   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2012        PIdx != PEnd; ++PIdx) {
2013     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2014     if (OtherCount > OtherCritCount) {
2015       OtherCritCount = OtherCount;
2016       OtherCritIdx = PIdx;
2017     }
2018   }
2019   if (OtherCritIdx) {
2020     LLVM_DEBUG(
2021         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2022                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2023                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2024   }
2025   return OtherCritCount;
2026 }
2027 
2028 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2029   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2030 
2031 #ifndef NDEBUG
2032   // ReadyCycle was been bumped up to the CurrCycle when this node was
2033   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2034   // scheduling, so may now be greater than ReadyCycle.
2035   if (ReadyCycle > CurrCycle)
2036     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2037 #endif
2038 
2039   if (ReadyCycle < MinReadyCycle)
2040     MinReadyCycle = ReadyCycle;
2041 
2042   // Check for interlocks first. For the purpose of other heuristics, an
2043   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2044   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2045   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2046       Available.size() >= ReadyListLimit)
2047     Pending.push(SU);
2048   else
2049     Available.push(SU);
2050 }
2051 
2052 /// Move the boundary of scheduled code by one cycle.
2053 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2054   if (SchedModel->getMicroOpBufferSize() == 0) {
2055     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2056            "MinReadyCycle uninitialized");
2057     if (MinReadyCycle > NextCycle)
2058       NextCycle = MinReadyCycle;
2059   }
2060   // Update the current micro-ops, which will issue in the next cycle.
2061   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2062   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2063 
2064   // Decrement DependentLatency based on the next cycle.
2065   if ((NextCycle - CurrCycle) > DependentLatency)
2066     DependentLatency = 0;
2067   else
2068     DependentLatency -= (NextCycle - CurrCycle);
2069 
2070   if (!HazardRec->isEnabled()) {
2071     // Bypass HazardRec virtual calls.
2072     CurrCycle = NextCycle;
2073   } else {
2074     // Bypass getHazardType calls in case of long latency.
2075     for (; CurrCycle != NextCycle; ++CurrCycle) {
2076       if (isTop())
2077         HazardRec->AdvanceCycle();
2078       else
2079         HazardRec->RecedeCycle();
2080     }
2081   }
2082   CheckPending = true;
2083   IsResourceLimited =
2084       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2085                          getScheduledLatency());
2086 
2087   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2088                     << '\n');
2089 }
2090 
2091 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2092   ExecutedResCounts[PIdx] += Count;
2093   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2094     MaxExecutedResCount = ExecutedResCounts[PIdx];
2095 }
2096 
2097 /// Add the given processor resource to this scheduled zone.
2098 ///
2099 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2100 /// during which this resource is consumed.
2101 ///
2102 /// \return the next cycle at which the instruction may execute without
2103 /// oversubscribing resources.
2104 unsigned SchedBoundary::
2105 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2106   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2107   unsigned Count = Factor * Cycles;
2108   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2109                     << Cycles << "x" << Factor << "u\n");
2110 
2111   // Update Executed resources counts.
2112   incExecutedResources(PIdx, Count);
2113   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2114   Rem->RemainingCounts[PIdx] -= Count;
2115 
2116   // Check if this resource exceeds the current critical resource. If so, it
2117   // becomes the critical resource.
2118   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2119     ZoneCritResIdx = PIdx;
2120     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2121                       << SchedModel->getResourceName(PIdx) << ": "
2122                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2123                       << "c\n");
2124   }
2125   // For reserved resources, record the highest cycle using the resource.
2126   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2127   if (NextAvailable > CurrCycle) {
2128     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2129                       << SchedModel->getProcResource(PIdx)->Name
2130                       << " reserved until @" << NextAvailable << "\n");
2131   }
2132   return NextAvailable;
2133 }
2134 
2135 /// Move the boundary of scheduled code by one SUnit.
2136 void SchedBoundary::bumpNode(SUnit *SU) {
2137   // Update the reservation table.
2138   if (HazardRec->isEnabled()) {
2139     if (!isTop() && SU->isCall) {
2140       // Calls are scheduled with their preceding instructions. For bottom-up
2141       // scheduling, clear the pipeline state before emitting.
2142       HazardRec->Reset();
2143     }
2144     HazardRec->EmitInstruction(SU);
2145   }
2146   // checkHazard should prevent scheduling multiple instructions per cycle that
2147   // exceed the issue width.
2148   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2149   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2150   assert(
2151       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2152       "Cannot schedule this instruction's MicroOps in the current cycle.");
2153 
2154   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2155   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2156 
2157   unsigned NextCycle = CurrCycle;
2158   switch (SchedModel->getMicroOpBufferSize()) {
2159   case 0:
2160     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2161     break;
2162   case 1:
2163     if (ReadyCycle > NextCycle) {
2164       NextCycle = ReadyCycle;
2165       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2166     }
2167     break;
2168   default:
2169     // We don't currently model the OOO reorder buffer, so consider all
2170     // scheduled MOps to be "retired". We do loosely model in-order resource
2171     // latency. If this instruction uses an in-order resource, account for any
2172     // likely stall cycles.
2173     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2174       NextCycle = ReadyCycle;
2175     break;
2176   }
2177   RetiredMOps += IncMOps;
2178 
2179   // Update resource counts and critical resource.
2180   if (SchedModel->hasInstrSchedModel()) {
2181     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2182     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2183     Rem->RemIssueCount -= DecRemIssue;
2184     if (ZoneCritResIdx) {
2185       // Scale scheduled micro-ops for comparing with the critical resource.
2186       unsigned ScaledMOps =
2187         RetiredMOps * SchedModel->getMicroOpFactor();
2188 
2189       // If scaled micro-ops are now more than the previous critical resource by
2190       // a full cycle, then micro-ops issue becomes critical.
2191       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2192           >= (int)SchedModel->getLatencyFactor()) {
2193         ZoneCritResIdx = 0;
2194         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2195                           << ScaledMOps / SchedModel->getLatencyFactor()
2196                           << "c\n");
2197       }
2198     }
2199     for (TargetSchedModel::ProcResIter
2200            PI = SchedModel->getWriteProcResBegin(SC),
2201            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2202       unsigned RCycle =
2203         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2204       if (RCycle > NextCycle)
2205         NextCycle = RCycle;
2206     }
2207     if (SU->hasReservedResource) {
2208       // For reserved resources, record the highest cycle using the resource.
2209       // For top-down scheduling, this is the cycle in which we schedule this
2210       // instruction plus the number of cycles the operations reserves the
2211       // resource. For bottom-up is it simply the instruction's cycle.
2212       for (TargetSchedModel::ProcResIter
2213              PI = SchedModel->getWriteProcResBegin(SC),
2214              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2215         unsigned PIdx = PI->ProcResourceIdx;
2216         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2217           if (isTop()) {
2218             ReservedCycles[PIdx] =
2219               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2220           }
2221           else
2222             ReservedCycles[PIdx] = NextCycle;
2223         }
2224       }
2225     }
2226   }
2227   // Update ExpectedLatency and DependentLatency.
2228   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2229   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2230   if (SU->getDepth() > TopLatency) {
2231     TopLatency = SU->getDepth();
2232     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2233                       << SU->NodeNum << ") " << TopLatency << "c\n");
2234   }
2235   if (SU->getHeight() > BotLatency) {
2236     BotLatency = SU->getHeight();
2237     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2238                       << SU->NodeNum << ") " << BotLatency << "c\n");
2239   }
2240   // If we stall for any reason, bump the cycle.
2241   if (NextCycle > CurrCycle)
2242     bumpCycle(NextCycle);
2243   else
2244     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2245     // resource limited. If a stall occurred, bumpCycle does this.
2246     IsResourceLimited =
2247         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2248                            getScheduledLatency());
2249 
2250   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2251   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2252   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2253   // bump the cycle to avoid uselessly checking everything in the readyQ.
2254   CurrMOps += IncMOps;
2255 
2256   // Bump the cycle count for issue group constraints.
2257   // This must be done after NextCycle has been adjust for all other stalls.
2258   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2259   // currCycle to X.
2260   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2261       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2262     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2263                       << " group\n");
2264     bumpCycle(++NextCycle);
2265   }
2266 
2267   while (CurrMOps >= SchedModel->getIssueWidth()) {
2268     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2269                       << CurrCycle << '\n');
2270     bumpCycle(++NextCycle);
2271   }
2272   LLVM_DEBUG(dumpScheduledState());
2273 }
2274 
2275 /// Release pending ready nodes in to the available queue. This makes them
2276 /// visible to heuristics.
2277 void SchedBoundary::releasePending() {
2278   // If the available queue is empty, it is safe to reset MinReadyCycle.
2279   if (Available.empty())
2280     MinReadyCycle = std::numeric_limits<unsigned>::max();
2281 
2282   // Check to see if any of the pending instructions are ready to issue.  If
2283   // so, add them to the available queue.
2284   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2285   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2286     SUnit *SU = *(Pending.begin()+i);
2287     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2288 
2289     if (ReadyCycle < MinReadyCycle)
2290       MinReadyCycle = ReadyCycle;
2291 
2292     if (!IsBuffered && ReadyCycle > CurrCycle)
2293       continue;
2294 
2295     if (checkHazard(SU))
2296       continue;
2297 
2298     if (Available.size() >= ReadyListLimit)
2299       break;
2300 
2301     Available.push(SU);
2302     Pending.remove(Pending.begin()+i);
2303     --i; --e;
2304   }
2305   CheckPending = false;
2306 }
2307 
2308 /// Remove SU from the ready set for this boundary.
2309 void SchedBoundary::removeReady(SUnit *SU) {
2310   if (Available.isInQueue(SU))
2311     Available.remove(Available.find(SU));
2312   else {
2313     assert(Pending.isInQueue(SU) && "bad ready count");
2314     Pending.remove(Pending.find(SU));
2315   }
2316 }
2317 
2318 /// If this queue only has one ready candidate, return it. As a side effect,
2319 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2320 /// one node is ready. If multiple instructions are ready, return NULL.
2321 SUnit *SchedBoundary::pickOnlyChoice() {
2322   if (CheckPending)
2323     releasePending();
2324 
2325   if (CurrMOps > 0) {
2326     // Defer any ready instrs that now have a hazard.
2327     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2328       if (checkHazard(*I)) {
2329         Pending.push(*I);
2330         I = Available.remove(I);
2331         continue;
2332       }
2333       ++I;
2334     }
2335   }
2336   for (unsigned i = 0; Available.empty(); ++i) {
2337 //  FIXME: Re-enable assert once PR20057 is resolved.
2338 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2339 //           "permanent hazard");
2340     (void)i;
2341     bumpCycle(CurrCycle + 1);
2342     releasePending();
2343   }
2344 
2345   LLVM_DEBUG(Pending.dump());
2346   LLVM_DEBUG(Available.dump());
2347 
2348   if (Available.size() == 1)
2349     return *Available.begin();
2350   return nullptr;
2351 }
2352 
2353 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2354 // This is useful information to dump after bumpNode.
2355 // Note that the Queue contents are more useful before pickNodeFromQueue.
2356 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2357   unsigned ResFactor;
2358   unsigned ResCount;
2359   if (ZoneCritResIdx) {
2360     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2361     ResCount = getResourceCount(ZoneCritResIdx);
2362   } else {
2363     ResFactor = SchedModel->getMicroOpFactor();
2364     ResCount = RetiredMOps * ResFactor;
2365   }
2366   unsigned LFactor = SchedModel->getLatencyFactor();
2367   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2368          << "  Retired: " << RetiredMOps;
2369   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2370   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2371          << ResCount / ResFactor << " "
2372          << SchedModel->getResourceName(ZoneCritResIdx)
2373          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2374          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2375          << " limited.\n";
2376 }
2377 #endif
2378 
2379 //===----------------------------------------------------------------------===//
2380 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2381 //===----------------------------------------------------------------------===//
2382 
2383 void GenericSchedulerBase::SchedCandidate::
2384 initResourceDelta(const ScheduleDAGMI *DAG,
2385                   const TargetSchedModel *SchedModel) {
2386   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2387     return;
2388 
2389   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2390   for (TargetSchedModel::ProcResIter
2391          PI = SchedModel->getWriteProcResBegin(SC),
2392          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2393     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2394       ResDelta.CritResources += PI->Cycles;
2395     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2396       ResDelta.DemandedResources += PI->Cycles;
2397   }
2398 }
2399 
2400 /// Set the CandPolicy given a scheduling zone given the current resources and
2401 /// latencies inside and outside the zone.
2402 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2403                                      SchedBoundary &CurrZone,
2404                                      SchedBoundary *OtherZone) {
2405   // Apply preemptive heuristics based on the total latency and resources
2406   // inside and outside this zone. Potential stalls should be considered before
2407   // following this policy.
2408 
2409   // Compute remaining latency. We need this both to determine whether the
2410   // overall schedule has become latency-limited and whether the instructions
2411   // outside this zone are resource or latency limited.
2412   //
2413   // The "dependent" latency is updated incrementally during scheduling as the
2414   // max height/depth of scheduled nodes minus the cycles since it was
2415   // scheduled:
2416   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2417   //
2418   // The "independent" latency is the max ready queue depth:
2419   //   ILat = max N.depth for N in Available|Pending
2420   //
2421   // RemainingLatency is the greater of independent and dependent latency.
2422   unsigned RemLatency = CurrZone.getDependentLatency();
2423   RemLatency = std::max(RemLatency,
2424                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2425   RemLatency = std::max(RemLatency,
2426                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2427 
2428   // Compute the critical resource outside the zone.
2429   unsigned OtherCritIdx = 0;
2430   unsigned OtherCount =
2431     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2432 
2433   bool OtherResLimited = false;
2434   if (SchedModel->hasInstrSchedModel())
2435     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2436                                          OtherCount, RemLatency);
2437 
2438   // Schedule aggressively for latency in PostRA mode. We don't check for
2439   // acyclic latency during PostRA, and highly out-of-order processors will
2440   // skip PostRA scheduling.
2441   if (!OtherResLimited) {
2442     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2443       Policy.ReduceLatency |= true;
2444       LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2445                         << " RemainingLatency " << RemLatency << " + "
2446                         << CurrZone.getCurrCycle() << "c > CritPath "
2447                         << Rem.CriticalPath << "\n");
2448     }
2449   }
2450   // If the same resource is limiting inside and outside the zone, do nothing.
2451   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2452     return;
2453 
2454   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2455     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2456            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2457   } if (OtherResLimited) dbgs()
2458                  << "  RemainingLimit: "
2459                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2460              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2461              << "  Latency limited both directions.\n");
2462 
2463   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2464     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2465 
2466   if (OtherResLimited)
2467     Policy.DemandResIdx = OtherCritIdx;
2468 }
2469 
2470 #ifndef NDEBUG
2471 const char *GenericSchedulerBase::getReasonStr(
2472   GenericSchedulerBase::CandReason Reason) {
2473   switch (Reason) {
2474   case NoCand:         return "NOCAND    ";
2475   case Only1:          return "ONLY1     ";
2476   case PhysRegCopy:    return "PREG-COPY ";
2477   case RegExcess:      return "REG-EXCESS";
2478   case RegCritical:    return "REG-CRIT  ";
2479   case Stall:          return "STALL     ";
2480   case Cluster:        return "CLUSTER   ";
2481   case Weak:           return "WEAK      ";
2482   case RegMax:         return "REG-MAX   ";
2483   case ResourceReduce: return "RES-REDUCE";
2484   case ResourceDemand: return "RES-DEMAND";
2485   case TopDepthReduce: return "TOP-DEPTH ";
2486   case TopPathReduce:  return "TOP-PATH  ";
2487   case BotHeightReduce:return "BOT-HEIGHT";
2488   case BotPathReduce:  return "BOT-PATH  ";
2489   case NextDefUse:     return "DEF-USE   ";
2490   case NodeOrder:      return "ORDER     ";
2491   };
2492   llvm_unreachable("Unknown reason!");
2493 }
2494 
2495 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2496   PressureChange P;
2497   unsigned ResIdx = 0;
2498   unsigned Latency = 0;
2499   switch (Cand.Reason) {
2500   default:
2501     break;
2502   case RegExcess:
2503     P = Cand.RPDelta.Excess;
2504     break;
2505   case RegCritical:
2506     P = Cand.RPDelta.CriticalMax;
2507     break;
2508   case RegMax:
2509     P = Cand.RPDelta.CurrentMax;
2510     break;
2511   case ResourceReduce:
2512     ResIdx = Cand.Policy.ReduceResIdx;
2513     break;
2514   case ResourceDemand:
2515     ResIdx = Cand.Policy.DemandResIdx;
2516     break;
2517   case TopDepthReduce:
2518     Latency = Cand.SU->getDepth();
2519     break;
2520   case TopPathReduce:
2521     Latency = Cand.SU->getHeight();
2522     break;
2523   case BotHeightReduce:
2524     Latency = Cand.SU->getHeight();
2525     break;
2526   case BotPathReduce:
2527     Latency = Cand.SU->getDepth();
2528     break;
2529   }
2530   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2531   if (P.isValid())
2532     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2533            << ":" << P.getUnitInc() << " ";
2534   else
2535     dbgs() << "      ";
2536   if (ResIdx)
2537     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2538   else
2539     dbgs() << "         ";
2540   if (Latency)
2541     dbgs() << " " << Latency << " cycles ";
2542   else
2543     dbgs() << "          ";
2544   dbgs() << '\n';
2545 }
2546 #endif
2547 
2548 namespace llvm {
2549 /// Return true if this heuristic determines order.
2550 bool tryLess(int TryVal, int CandVal,
2551              GenericSchedulerBase::SchedCandidate &TryCand,
2552              GenericSchedulerBase::SchedCandidate &Cand,
2553              GenericSchedulerBase::CandReason Reason) {
2554   if (TryVal < CandVal) {
2555     TryCand.Reason = Reason;
2556     return true;
2557   }
2558   if (TryVal > CandVal) {
2559     if (Cand.Reason > Reason)
2560       Cand.Reason = Reason;
2561     return true;
2562   }
2563   return false;
2564 }
2565 
2566 bool tryGreater(int TryVal, int CandVal,
2567                 GenericSchedulerBase::SchedCandidate &TryCand,
2568                 GenericSchedulerBase::SchedCandidate &Cand,
2569                 GenericSchedulerBase::CandReason Reason) {
2570   if (TryVal > CandVal) {
2571     TryCand.Reason = Reason;
2572     return true;
2573   }
2574   if (TryVal < CandVal) {
2575     if (Cand.Reason > Reason)
2576       Cand.Reason = Reason;
2577     return true;
2578   }
2579   return false;
2580 }
2581 
2582 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2583                 GenericSchedulerBase::SchedCandidate &Cand,
2584                 SchedBoundary &Zone) {
2585   if (Zone.isTop()) {
2586     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2587       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2588                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2589         return true;
2590     }
2591     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2592                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2593       return true;
2594   } else {
2595     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2596       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2597                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2598         return true;
2599     }
2600     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2601                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2602       return true;
2603   }
2604   return false;
2605 }
2606 } // end namespace llvm
2607 
2608 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2609   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2610                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2611 }
2612 
2613 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2614   tracePick(Cand.Reason, Cand.AtTop);
2615 }
2616 
2617 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2618   assert(dag->hasVRegLiveness() &&
2619          "(PreRA)GenericScheduler needs vreg liveness");
2620   DAG = static_cast<ScheduleDAGMILive*>(dag);
2621   SchedModel = DAG->getSchedModel();
2622   TRI = DAG->TRI;
2623 
2624   Rem.init(DAG, SchedModel);
2625   Top.init(DAG, SchedModel, &Rem);
2626   Bot.init(DAG, SchedModel, &Rem);
2627 
2628   // Initialize resource counts.
2629 
2630   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2631   // are disabled, then these HazardRecs will be disabled.
2632   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2633   if (!Top.HazardRec) {
2634     Top.HazardRec =
2635         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2636             Itin, DAG);
2637   }
2638   if (!Bot.HazardRec) {
2639     Bot.HazardRec =
2640         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2641             Itin, DAG);
2642   }
2643   TopCand.SU = nullptr;
2644   BotCand.SU = nullptr;
2645 }
2646 
2647 /// Initialize the per-region scheduling policy.
2648 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2649                                   MachineBasicBlock::iterator End,
2650                                   unsigned NumRegionInstrs) {
2651   const MachineFunction &MF = *Begin->getMF();
2652   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2653 
2654   // Avoid setting up the register pressure tracker for small regions to save
2655   // compile time. As a rough heuristic, only track pressure when the number of
2656   // schedulable instructions exceeds half the integer register file.
2657   RegionPolicy.ShouldTrackPressure = true;
2658   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2659     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2660     if (TLI->isTypeLegal(LegalIntVT)) {
2661       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2662         TLI->getRegClassFor(LegalIntVT));
2663       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2664     }
2665   }
2666 
2667   // For generic targets, we default to bottom-up, because it's simpler and more
2668   // compile-time optimizations have been implemented in that direction.
2669   RegionPolicy.OnlyBottomUp = true;
2670 
2671   // Allow the subtarget to override default policy.
2672   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2673 
2674   // After subtarget overrides, apply command line options.
2675   if (!EnableRegPressure)
2676     RegionPolicy.ShouldTrackPressure = false;
2677 
2678   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2679   // e.g. -misched-bottomup=false allows scheduling in both directions.
2680   assert((!ForceTopDown || !ForceBottomUp) &&
2681          "-misched-topdown incompatible with -misched-bottomup");
2682   if (ForceBottomUp.getNumOccurrences() > 0) {
2683     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2684     if (RegionPolicy.OnlyBottomUp)
2685       RegionPolicy.OnlyTopDown = false;
2686   }
2687   if (ForceTopDown.getNumOccurrences() > 0) {
2688     RegionPolicy.OnlyTopDown = ForceTopDown;
2689     if (RegionPolicy.OnlyTopDown)
2690       RegionPolicy.OnlyBottomUp = false;
2691   }
2692 }
2693 
2694 void GenericScheduler::dumpPolicy() const {
2695   // Cannot completely remove virtual function even in release mode.
2696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2697   dbgs() << "GenericScheduler RegionPolicy: "
2698          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2699          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2700          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2701          << "\n";
2702 #endif
2703 }
2704 
2705 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2706 /// critical path by more cycles than it takes to drain the instruction buffer.
2707 /// We estimate an upper bounds on in-flight instructions as:
2708 ///
2709 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2710 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2711 /// InFlightResources = InFlightIterations * LoopResources
2712 ///
2713 /// TODO: Check execution resources in addition to IssueCount.
2714 void GenericScheduler::checkAcyclicLatency() {
2715   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2716     return;
2717 
2718   // Scaled number of cycles per loop iteration.
2719   unsigned IterCount =
2720     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2721              Rem.RemIssueCount);
2722   // Scaled acyclic critical path.
2723   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2724   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2725   unsigned InFlightCount =
2726     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2727   unsigned BufferLimit =
2728     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2729 
2730   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2731 
2732   LLVM_DEBUG(
2733       dbgs() << "IssueCycles="
2734              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2735              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2736              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2737              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2738              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2739       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2740 }
2741 
2742 void GenericScheduler::registerRoots() {
2743   Rem.CriticalPath = DAG->ExitSU.getDepth();
2744 
2745   // Some roots may not feed into ExitSU. Check all of them in case.
2746   for (const SUnit *SU : Bot.Available) {
2747     if (SU->getDepth() > Rem.CriticalPath)
2748       Rem.CriticalPath = SU->getDepth();
2749   }
2750   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2751   if (DumpCriticalPathLength) {
2752     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2753   }
2754 
2755   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2756     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2757     checkAcyclicLatency();
2758   }
2759 }
2760 
2761 namespace llvm {
2762 bool tryPressure(const PressureChange &TryP,
2763                  const PressureChange &CandP,
2764                  GenericSchedulerBase::SchedCandidate &TryCand,
2765                  GenericSchedulerBase::SchedCandidate &Cand,
2766                  GenericSchedulerBase::CandReason Reason,
2767                  const TargetRegisterInfo *TRI,
2768                  const MachineFunction &MF) {
2769   // If one candidate decreases and the other increases, go with it.
2770   // Invalid candidates have UnitInc==0.
2771   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2772                  Reason)) {
2773     return true;
2774   }
2775   // Do not compare the magnitude of pressure changes between top and bottom
2776   // boundary.
2777   if (Cand.AtTop != TryCand.AtTop)
2778     return false;
2779 
2780   // If both candidates affect the same set in the same boundary, go with the
2781   // smallest increase.
2782   unsigned TryPSet = TryP.getPSetOrMax();
2783   unsigned CandPSet = CandP.getPSetOrMax();
2784   if (TryPSet == CandPSet) {
2785     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2786                    Reason);
2787   }
2788 
2789   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2790                                  std::numeric_limits<int>::max();
2791 
2792   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2793                                    std::numeric_limits<int>::max();
2794 
2795   // If the candidates are decreasing pressure, reverse priority.
2796   if (TryP.getUnitInc() < 0)
2797     std::swap(TryRank, CandRank);
2798   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2799 }
2800 
2801 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2802   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2803 }
2804 
2805 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2806 /// their physreg def/use.
2807 ///
2808 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2809 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2810 /// with the operation that produces or consumes the physreg. We'll do this when
2811 /// regalloc has support for parallel copies.
2812 int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2813   const MachineInstr *MI = SU->getInstr();
2814   if (!MI->isCopy())
2815     return 0;
2816 
2817   unsigned ScheduledOper = isTop ? 1 : 0;
2818   unsigned UnscheduledOper = isTop ? 0 : 1;
2819   // If we have already scheduled the physreg produce/consumer, immediately
2820   // schedule the copy.
2821   if (TargetRegisterInfo::isPhysicalRegister(
2822         MI->getOperand(ScheduledOper).getReg()))
2823     return 1;
2824   // If the physreg is at the boundary, defer it. Otherwise schedule it
2825   // immediately to free the dependent. We can hoist the copy later.
2826   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2827   if (TargetRegisterInfo::isPhysicalRegister(
2828         MI->getOperand(UnscheduledOper).getReg()))
2829     return AtBoundary ? -1 : 1;
2830   return 0;
2831 }
2832 } // end namespace llvm
2833 
2834 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2835                                      bool AtTop,
2836                                      const RegPressureTracker &RPTracker,
2837                                      RegPressureTracker &TempTracker) {
2838   Cand.SU = SU;
2839   Cand.AtTop = AtTop;
2840   if (DAG->isTrackingPressure()) {
2841     if (AtTop) {
2842       TempTracker.getMaxDownwardPressureDelta(
2843         Cand.SU->getInstr(),
2844         Cand.RPDelta,
2845         DAG->getRegionCriticalPSets(),
2846         DAG->getRegPressure().MaxSetPressure);
2847     } else {
2848       if (VerifyScheduling) {
2849         TempTracker.getMaxUpwardPressureDelta(
2850           Cand.SU->getInstr(),
2851           &DAG->getPressureDiff(Cand.SU),
2852           Cand.RPDelta,
2853           DAG->getRegionCriticalPSets(),
2854           DAG->getRegPressure().MaxSetPressure);
2855       } else {
2856         RPTracker.getUpwardPressureDelta(
2857           Cand.SU->getInstr(),
2858           DAG->getPressureDiff(Cand.SU),
2859           Cand.RPDelta,
2860           DAG->getRegionCriticalPSets(),
2861           DAG->getRegPressure().MaxSetPressure);
2862       }
2863     }
2864   }
2865   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2866              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2867              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2868              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2869 }
2870 
2871 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2872 /// hierarchical. This may be more efficient than a graduated cost model because
2873 /// we don't need to evaluate all aspects of the model for each node in the
2874 /// queue. But it's really done to make the heuristics easier to debug and
2875 /// statistically analyze.
2876 ///
2877 /// \param Cand provides the policy and current best candidate.
2878 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2879 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2880 //              if Cand is from a different zone than TryCand.
2881 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2882                                     SchedCandidate &TryCand,
2883                                     SchedBoundary *Zone) const {
2884   // Initialize the candidate if needed.
2885   if (!Cand.isValid()) {
2886     TryCand.Reason = NodeOrder;
2887     return;
2888   }
2889 
2890   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2891                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2892                  TryCand, Cand, PhysRegCopy))
2893     return;
2894 
2895   // Avoid exceeding the target's limit.
2896   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2897                                                Cand.RPDelta.Excess,
2898                                                TryCand, Cand, RegExcess, TRI,
2899                                                DAG->MF))
2900     return;
2901 
2902   // Avoid increasing the max critical pressure in the scheduled region.
2903   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2904                                                Cand.RPDelta.CriticalMax,
2905                                                TryCand, Cand, RegCritical, TRI,
2906                                                DAG->MF))
2907     return;
2908 
2909   // We only compare a subset of features when comparing nodes between
2910   // Top and Bottom boundary. Some properties are simply incomparable, in many
2911   // other instances we should only override the other boundary if something
2912   // is a clear good pick on one boundary. Skip heuristics that are more
2913   // "tie-breaking" in nature.
2914   bool SameBoundary = Zone != nullptr;
2915   if (SameBoundary) {
2916     // For loops that are acyclic path limited, aggressively schedule for
2917     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2918     // heuristics to take precedence.
2919     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2920         tryLatency(TryCand, Cand, *Zone))
2921       return;
2922 
2923     // Prioritize instructions that read unbuffered resources by stall cycles.
2924     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2925                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2926       return;
2927   }
2928 
2929   // Keep clustered nodes together to encourage downstream peephole
2930   // optimizations which may reduce resource requirements.
2931   //
2932   // This is a best effort to set things up for a post-RA pass. Optimizations
2933   // like generating loads of multiple registers should ideally be done within
2934   // the scheduler pass by combining the loads during DAG postprocessing.
2935   const SUnit *CandNextClusterSU =
2936     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2937   const SUnit *TryCandNextClusterSU =
2938     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2939   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2940                  Cand.SU == CandNextClusterSU,
2941                  TryCand, Cand, Cluster))
2942     return;
2943 
2944   if (SameBoundary) {
2945     // Weak edges are for clustering and other constraints.
2946     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2947                 getWeakLeft(Cand.SU, Cand.AtTop),
2948                 TryCand, Cand, Weak))
2949       return;
2950   }
2951 
2952   // Avoid increasing the max pressure of the entire region.
2953   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2954                                                Cand.RPDelta.CurrentMax,
2955                                                TryCand, Cand, RegMax, TRI,
2956                                                DAG->MF))
2957     return;
2958 
2959   if (SameBoundary) {
2960     // Avoid critical resource consumption and balance the schedule.
2961     TryCand.initResourceDelta(DAG, SchedModel);
2962     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2963                 TryCand, Cand, ResourceReduce))
2964       return;
2965     if (tryGreater(TryCand.ResDelta.DemandedResources,
2966                    Cand.ResDelta.DemandedResources,
2967                    TryCand, Cand, ResourceDemand))
2968       return;
2969 
2970     // Avoid serializing long latency dependence chains.
2971     // For acyclic path limited loops, latency was already checked above.
2972     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2973         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2974       return;
2975 
2976     // Fall through to original instruction order.
2977     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2978         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2979       TryCand.Reason = NodeOrder;
2980     }
2981   }
2982 }
2983 
2984 /// Pick the best candidate from the queue.
2985 ///
2986 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2987 /// DAG building. To adjust for the current scheduling location we need to
2988 /// maintain the number of vreg uses remaining to be top-scheduled.
2989 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2990                                          const CandPolicy &ZonePolicy,
2991                                          const RegPressureTracker &RPTracker,
2992                                          SchedCandidate &Cand) {
2993   // getMaxPressureDelta temporarily modifies the tracker.
2994   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2995 
2996   ReadyQueue &Q = Zone.Available;
2997   for (SUnit *SU : Q) {
2998 
2999     SchedCandidate TryCand(ZonePolicy);
3000     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3001     // Pass SchedBoundary only when comparing nodes from the same boundary.
3002     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3003     tryCandidate(Cand, TryCand, ZoneArg);
3004     if (TryCand.Reason != NoCand) {
3005       // Initialize resource delta if needed in case future heuristics query it.
3006       if (TryCand.ResDelta == SchedResourceDelta())
3007         TryCand.initResourceDelta(DAG, SchedModel);
3008       Cand.setBest(TryCand);
3009       LLVM_DEBUG(traceCandidate(Cand));
3010     }
3011   }
3012 }
3013 
3014 /// Pick the best candidate node from either the top or bottom queue.
3015 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3016   // Schedule as far as possible in the direction of no choice. This is most
3017   // efficient, but also provides the best heuristics for CriticalPSets.
3018   if (SUnit *SU = Bot.pickOnlyChoice()) {
3019     IsTopNode = false;
3020     tracePick(Only1, false);
3021     return SU;
3022   }
3023   if (SUnit *SU = Top.pickOnlyChoice()) {
3024     IsTopNode = true;
3025     tracePick(Only1, true);
3026     return SU;
3027   }
3028   // Set the bottom-up policy based on the state of the current bottom zone and
3029   // the instructions outside the zone, including the top zone.
3030   CandPolicy BotPolicy;
3031   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3032   // Set the top-down policy based on the state of the current top zone and
3033   // the instructions outside the zone, including the bottom zone.
3034   CandPolicy TopPolicy;
3035   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3036 
3037   // See if BotCand is still valid (because we previously scheduled from Top).
3038   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3039   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3040       BotCand.Policy != BotPolicy) {
3041     BotCand.reset(CandPolicy());
3042     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3043     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3044   } else {
3045     LLVM_DEBUG(traceCandidate(BotCand));
3046 #ifndef NDEBUG
3047     if (VerifyScheduling) {
3048       SchedCandidate TCand;
3049       TCand.reset(CandPolicy());
3050       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3051       assert(TCand.SU == BotCand.SU &&
3052              "Last pick result should correspond to re-picking right now");
3053     }
3054 #endif
3055   }
3056 
3057   // Check if the top Q has a better candidate.
3058   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3059   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3060       TopCand.Policy != TopPolicy) {
3061     TopCand.reset(CandPolicy());
3062     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3063     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3064   } else {
3065     LLVM_DEBUG(traceCandidate(TopCand));
3066 #ifndef NDEBUG
3067     if (VerifyScheduling) {
3068       SchedCandidate TCand;
3069       TCand.reset(CandPolicy());
3070       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3071       assert(TCand.SU == TopCand.SU &&
3072            "Last pick result should correspond to re-picking right now");
3073     }
3074 #endif
3075   }
3076 
3077   // Pick best from BotCand and TopCand.
3078   assert(BotCand.isValid());
3079   assert(TopCand.isValid());
3080   SchedCandidate Cand = BotCand;
3081   TopCand.Reason = NoCand;
3082   tryCandidate(Cand, TopCand, nullptr);
3083   if (TopCand.Reason != NoCand) {
3084     Cand.setBest(TopCand);
3085     LLVM_DEBUG(traceCandidate(Cand));
3086   }
3087 
3088   IsTopNode = Cand.AtTop;
3089   tracePick(Cand);
3090   return Cand.SU;
3091 }
3092 
3093 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3094 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3095   if (DAG->top() == DAG->bottom()) {
3096     assert(Top.Available.empty() && Top.Pending.empty() &&
3097            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3098     return nullptr;
3099   }
3100   SUnit *SU;
3101   do {
3102     if (RegionPolicy.OnlyTopDown) {
3103       SU = Top.pickOnlyChoice();
3104       if (!SU) {
3105         CandPolicy NoPolicy;
3106         TopCand.reset(NoPolicy);
3107         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3108         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3109         tracePick(TopCand);
3110         SU = TopCand.SU;
3111       }
3112       IsTopNode = true;
3113     } else if (RegionPolicy.OnlyBottomUp) {
3114       SU = Bot.pickOnlyChoice();
3115       if (!SU) {
3116         CandPolicy NoPolicy;
3117         BotCand.reset(NoPolicy);
3118         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3119         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3120         tracePick(BotCand);
3121         SU = BotCand.SU;
3122       }
3123       IsTopNode = false;
3124     } else {
3125       SU = pickNodeBidirectional(IsTopNode);
3126     }
3127   } while (SU->isScheduled);
3128 
3129   if (SU->isTopReady())
3130     Top.removeReady(SU);
3131   if (SU->isBottomReady())
3132     Bot.removeReady(SU);
3133 
3134   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3135                     << *SU->getInstr());
3136   return SU;
3137 }
3138 
3139 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3140   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3141   if (!isTop)
3142     ++InsertPos;
3143   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3144 
3145   // Find already scheduled copies with a single physreg dependence and move
3146   // them just above the scheduled instruction.
3147   for (SDep &Dep : Deps) {
3148     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3149       continue;
3150     SUnit *DepSU = Dep.getSUnit();
3151     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3152       continue;
3153     MachineInstr *Copy = DepSU->getInstr();
3154     if (!Copy->isCopy())
3155       continue;
3156     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3157                Dep.getSUnit()->dump(DAG));
3158     DAG->moveInstruction(Copy, InsertPos);
3159   }
3160 }
3161 
3162 /// Update the scheduler's state after scheduling a node. This is the same node
3163 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3164 /// update it's state based on the current cycle before MachineSchedStrategy
3165 /// does.
3166 ///
3167 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3168 /// them here. See comments in biasPhysRegCopy.
3169 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3170   if (IsTopNode) {
3171     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3172     Top.bumpNode(SU);
3173     if (SU->hasPhysRegUses)
3174       reschedulePhysRegCopies(SU, true);
3175   } else {
3176     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3177     Bot.bumpNode(SU);
3178     if (SU->hasPhysRegDefs)
3179       reschedulePhysRegCopies(SU, false);
3180   }
3181 }
3182 
3183 /// Create the standard converging machine scheduler. This will be used as the
3184 /// default scheduler if the target does not set a default.
3185 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3186   ScheduleDAGMILive *DAG =
3187       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3188   // Register DAG post-processors.
3189   //
3190   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3191   // data and pass it to later mutations. Have a single mutation that gathers
3192   // the interesting nodes in one pass.
3193   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3194   return DAG;
3195 }
3196 
3197 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3198   return createGenericSchedLive(C);
3199 }
3200 
3201 static MachineSchedRegistry
3202 GenericSchedRegistry("converge", "Standard converging scheduler.",
3203                      createConveringSched);
3204 
3205 //===----------------------------------------------------------------------===//
3206 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3207 //===----------------------------------------------------------------------===//
3208 
3209 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3210   DAG = Dag;
3211   SchedModel = DAG->getSchedModel();
3212   TRI = DAG->TRI;
3213 
3214   Rem.init(DAG, SchedModel);
3215   Top.init(DAG, SchedModel, &Rem);
3216   BotRoots.clear();
3217 
3218   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3219   // or are disabled, then these HazardRecs will be disabled.
3220   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3221   if (!Top.HazardRec) {
3222     Top.HazardRec =
3223         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3224             Itin, DAG);
3225   }
3226 }
3227 
3228 void PostGenericScheduler::registerRoots() {
3229   Rem.CriticalPath = DAG->ExitSU.getDepth();
3230 
3231   // Some roots may not feed into ExitSU. Check all of them in case.
3232   for (const SUnit *SU : BotRoots) {
3233     if (SU->getDepth() > Rem.CriticalPath)
3234       Rem.CriticalPath = SU->getDepth();
3235   }
3236   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3237   if (DumpCriticalPathLength) {
3238     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3239   }
3240 }
3241 
3242 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3243 ///
3244 /// \param Cand provides the policy and current best candidate.
3245 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3246 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3247                                         SchedCandidate &TryCand) {
3248   // Initialize the candidate if needed.
3249   if (!Cand.isValid()) {
3250     TryCand.Reason = NodeOrder;
3251     return;
3252   }
3253 
3254   // Prioritize instructions that read unbuffered resources by stall cycles.
3255   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3256               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3257     return;
3258 
3259   // Keep clustered nodes together.
3260   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3261                  Cand.SU == DAG->getNextClusterSucc(),
3262                  TryCand, Cand, Cluster))
3263     return;
3264 
3265   // Avoid critical resource consumption and balance the schedule.
3266   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3267               TryCand, Cand, ResourceReduce))
3268     return;
3269   if (tryGreater(TryCand.ResDelta.DemandedResources,
3270                  Cand.ResDelta.DemandedResources,
3271                  TryCand, Cand, ResourceDemand))
3272     return;
3273 
3274   // Avoid serializing long latency dependence chains.
3275   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3276     return;
3277   }
3278 
3279   // Fall through to original instruction order.
3280   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3281     TryCand.Reason = NodeOrder;
3282 }
3283 
3284 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3285   ReadyQueue &Q = Top.Available;
3286   for (SUnit *SU : Q) {
3287     SchedCandidate TryCand(Cand.Policy);
3288     TryCand.SU = SU;
3289     TryCand.AtTop = true;
3290     TryCand.initResourceDelta(DAG, SchedModel);
3291     tryCandidate(Cand, TryCand);
3292     if (TryCand.Reason != NoCand) {
3293       Cand.setBest(TryCand);
3294       LLVM_DEBUG(traceCandidate(Cand));
3295     }
3296   }
3297 }
3298 
3299 /// Pick the next node to schedule.
3300 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3301   if (DAG->top() == DAG->bottom()) {
3302     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3303     return nullptr;
3304   }
3305   SUnit *SU;
3306   do {
3307     SU = Top.pickOnlyChoice();
3308     if (SU) {
3309       tracePick(Only1, true);
3310     } else {
3311       CandPolicy NoPolicy;
3312       SchedCandidate TopCand(NoPolicy);
3313       // Set the top-down policy based on the state of the current top zone and
3314       // the instructions outside the zone, including the bottom zone.
3315       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3316       pickNodeFromQueue(TopCand);
3317       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3318       tracePick(TopCand);
3319       SU = TopCand.SU;
3320     }
3321   } while (SU->isScheduled);
3322 
3323   IsTopNode = true;
3324   Top.removeReady(SU);
3325 
3326   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3327                     << *SU->getInstr());
3328   return SU;
3329 }
3330 
3331 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3332 /// scheduled/remaining flags in the DAG nodes.
3333 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3334   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3335   Top.bumpNode(SU);
3336 }
3337 
3338 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3339   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3340                            /*RemoveKillFlags=*/true);
3341 }
3342 
3343 //===----------------------------------------------------------------------===//
3344 // ILP Scheduler. Currently for experimental analysis of heuristics.
3345 //===----------------------------------------------------------------------===//
3346 
3347 namespace {
3348 
3349 /// Order nodes by the ILP metric.
3350 struct ILPOrder {
3351   const SchedDFSResult *DFSResult = nullptr;
3352   const BitVector *ScheduledTrees = nullptr;
3353   bool MaximizeILP;
3354 
3355   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3356 
3357   /// Apply a less-than relation on node priority.
3358   ///
3359   /// (Return true if A comes after B in the Q.)
3360   bool operator()(const SUnit *A, const SUnit *B) const {
3361     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3362     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3363     if (SchedTreeA != SchedTreeB) {
3364       // Unscheduled trees have lower priority.
3365       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3366         return ScheduledTrees->test(SchedTreeB);
3367 
3368       // Trees with shallower connections have have lower priority.
3369       if (DFSResult->getSubtreeLevel(SchedTreeA)
3370           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3371         return DFSResult->getSubtreeLevel(SchedTreeA)
3372           < DFSResult->getSubtreeLevel(SchedTreeB);
3373       }
3374     }
3375     if (MaximizeILP)
3376       return DFSResult->getILP(A) < DFSResult->getILP(B);
3377     else
3378       return DFSResult->getILP(A) > DFSResult->getILP(B);
3379   }
3380 };
3381 
3382 /// Schedule based on the ILP metric.
3383 class ILPScheduler : public MachineSchedStrategy {
3384   ScheduleDAGMILive *DAG = nullptr;
3385   ILPOrder Cmp;
3386 
3387   std::vector<SUnit*> ReadyQ;
3388 
3389 public:
3390   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3391 
3392   void initialize(ScheduleDAGMI *dag) override {
3393     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3394     DAG = static_cast<ScheduleDAGMILive*>(dag);
3395     DAG->computeDFSResult();
3396     Cmp.DFSResult = DAG->getDFSResult();
3397     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3398     ReadyQ.clear();
3399   }
3400 
3401   void registerRoots() override {
3402     // Restore the heap in ReadyQ with the updated DFS results.
3403     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3404   }
3405 
3406   /// Implement MachineSchedStrategy interface.
3407   /// -----------------------------------------
3408 
3409   /// Callback to select the highest priority node from the ready Q.
3410   SUnit *pickNode(bool &IsTopNode) override {
3411     if (ReadyQ.empty()) return nullptr;
3412     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3413     SUnit *SU = ReadyQ.back();
3414     ReadyQ.pop_back();
3415     IsTopNode = false;
3416     LLVM_DEBUG(dbgs() << "Pick node "
3417                       << "SU(" << SU->NodeNum << ") "
3418                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3419                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3420                       << " @"
3421                       << DAG->getDFSResult()->getSubtreeLevel(
3422                              DAG->getDFSResult()->getSubtreeID(SU))
3423                       << '\n'
3424                       << "Scheduling " << *SU->getInstr());
3425     return SU;
3426   }
3427 
3428   /// Scheduler callback to notify that a new subtree is scheduled.
3429   void scheduleTree(unsigned SubtreeID) override {
3430     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3431   }
3432 
3433   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3434   /// DFSResults, and resort the priority Q.
3435   void schedNode(SUnit *SU, bool IsTopNode) override {
3436     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3437   }
3438 
3439   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3440 
3441   void releaseBottomNode(SUnit *SU) override {
3442     ReadyQ.push_back(SU);
3443     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3444   }
3445 };
3446 
3447 } // end anonymous namespace
3448 
3449 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3450   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3451 }
3452 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3453   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3454 }
3455 
3456 static MachineSchedRegistry ILPMaxRegistry(
3457   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3458 static MachineSchedRegistry ILPMinRegistry(
3459   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3460 
3461 //===----------------------------------------------------------------------===//
3462 // Machine Instruction Shuffler for Correctness Testing
3463 //===----------------------------------------------------------------------===//
3464 
3465 #ifndef NDEBUG
3466 namespace {
3467 
3468 /// Apply a less-than relation on the node order, which corresponds to the
3469 /// instruction order prior to scheduling. IsReverse implements greater-than.
3470 template<bool IsReverse>
3471 struct SUnitOrder {
3472   bool operator()(SUnit *A, SUnit *B) const {
3473     if (IsReverse)
3474       return A->NodeNum > B->NodeNum;
3475     else
3476       return A->NodeNum < B->NodeNum;
3477   }
3478 };
3479 
3480 /// Reorder instructions as much as possible.
3481 class InstructionShuffler : public MachineSchedStrategy {
3482   bool IsAlternating;
3483   bool IsTopDown;
3484 
3485   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3486   // gives nodes with a higher number higher priority causing the latest
3487   // instructions to be scheduled first.
3488   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3489     TopQ;
3490 
3491   // When scheduling bottom-up, use greater-than as the queue priority.
3492   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3493     BottomQ;
3494 
3495 public:
3496   InstructionShuffler(bool alternate, bool topdown)
3497     : IsAlternating(alternate), IsTopDown(topdown) {}
3498 
3499   void initialize(ScheduleDAGMI*) override {
3500     TopQ.clear();
3501     BottomQ.clear();
3502   }
3503 
3504   /// Implement MachineSchedStrategy interface.
3505   /// -----------------------------------------
3506 
3507   SUnit *pickNode(bool &IsTopNode) override {
3508     SUnit *SU;
3509     if (IsTopDown) {
3510       do {
3511         if (TopQ.empty()) return nullptr;
3512         SU = TopQ.top();
3513         TopQ.pop();
3514       } while (SU->isScheduled);
3515       IsTopNode = true;
3516     } else {
3517       do {
3518         if (BottomQ.empty()) return nullptr;
3519         SU = BottomQ.top();
3520         BottomQ.pop();
3521       } while (SU->isScheduled);
3522       IsTopNode = false;
3523     }
3524     if (IsAlternating)
3525       IsTopDown = !IsTopDown;
3526     return SU;
3527   }
3528 
3529   void schedNode(SUnit *SU, bool IsTopNode) override {}
3530 
3531   void releaseTopNode(SUnit *SU) override {
3532     TopQ.push(SU);
3533   }
3534   void releaseBottomNode(SUnit *SU) override {
3535     BottomQ.push(SU);
3536   }
3537 };
3538 
3539 } // end anonymous namespace
3540 
3541 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3542   bool Alternate = !ForceTopDown && !ForceBottomUp;
3543   bool TopDown = !ForceBottomUp;
3544   assert((TopDown || !ForceTopDown) &&
3545          "-misched-topdown incompatible with -misched-bottomup");
3546   return new ScheduleDAGMILive(
3547       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3548 }
3549 
3550 static MachineSchedRegistry ShufflerRegistry(
3551   "shuffle", "Shuffle machine instructions alternating directions",
3552   createInstructionShuffler);
3553 #endif // !NDEBUG
3554 
3555 //===----------------------------------------------------------------------===//
3556 // GraphWriter support for ScheduleDAGMILive.
3557 //===----------------------------------------------------------------------===//
3558 
3559 #ifndef NDEBUG
3560 namespace llvm {
3561 
3562 template<> struct GraphTraits<
3563   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3564 
3565 template<>
3566 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3567   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3568 
3569   static std::string getGraphName(const ScheduleDAG *G) {
3570     return G->MF.getName();
3571   }
3572 
3573   static bool renderGraphFromBottomUp() {
3574     return true;
3575   }
3576 
3577   static bool isNodeHidden(const SUnit *Node) {
3578     if (ViewMISchedCutoff == 0)
3579       return false;
3580     return (Node->Preds.size() > ViewMISchedCutoff
3581          || Node->Succs.size() > ViewMISchedCutoff);
3582   }
3583 
3584   /// If you want to override the dot attributes printed for a particular
3585   /// edge, override this method.
3586   static std::string getEdgeAttributes(const SUnit *Node,
3587                                        SUnitIterator EI,
3588                                        const ScheduleDAG *Graph) {
3589     if (EI.isArtificialDep())
3590       return "color=cyan,style=dashed";
3591     if (EI.isCtrlDep())
3592       return "color=blue,style=dashed";
3593     return "";
3594   }
3595 
3596   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3597     std::string Str;
3598     raw_string_ostream SS(Str);
3599     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3600     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3601       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3602     SS << "SU:" << SU->NodeNum;
3603     if (DFS)
3604       SS << " I:" << DFS->getNumInstrs(SU);
3605     return SS.str();
3606   }
3607 
3608   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3609     return G->getGraphNodeLabel(SU);
3610   }
3611 
3612   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3613     std::string Str("shape=Mrecord");
3614     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3615     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3616       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3617     if (DFS) {
3618       Str += ",style=filled,fillcolor=\"#";
3619       Str += DOT::getColorString(DFS->getSubtreeID(N));
3620       Str += '"';
3621     }
3622     return Str;
3623   }
3624 };
3625 
3626 } // end namespace llvm
3627 #endif // NDEBUG
3628 
3629 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3630 /// rendered using 'dot'.
3631 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3632 #ifndef NDEBUG
3633   ViewGraph(this, Name, false, Title);
3634 #else
3635   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3636          << "systems with Graphviz or gv!\n";
3637 #endif  // NDEBUG
3638 }
3639 
3640 /// Out-of-line implementation with no arguments is handy for gdb.
3641 void ScheduleDAGMI::viewGraph() {
3642   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3643 }
3644