xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision c94ca916f52ae5ebecf0860b6ced3cd4ab48e462)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/GraphWriter.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "misched"
37 
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                            cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                             cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                        cl::desc("Print critical path length to stdout"));
46 }
47 
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50   cl::desc("Pop up a window to show MISched dags after they are processed"));
51 
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56 
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59 
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61   cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63   cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67 
68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
69 /// size of the ready lists.
70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
71   cl::desc("Limit ready list to N instructions"), cl::init(256));
72 
73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
74   cl::desc("Enable register pressure scheduling."), cl::init(true));
75 
76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
77   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
78 
79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
80                                         cl::desc("Enable memop clustering."),
81                                         cl::init(true));
82 
83 // Experimental heuristics
84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
85   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
86 
87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
88   cl::desc("Verify machine instrs before and after machine scheduling"));
89 
90 // DAG subtrees must have at least this many nodes.
91 static const unsigned MinSubtreeSize = 8;
92 
93 // Pin the vtables to this file.
94 void MachineSchedStrategy::anchor() {}
95 void ScheduleDAGMutation::anchor() {}
96 
97 //===----------------------------------------------------------------------===//
98 // Machine Instruction Scheduling Pass and Registry
99 //===----------------------------------------------------------------------===//
100 
101 MachineSchedContext::MachineSchedContext():
102     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
103   RegClassInfo = new RegisterClassInfo();
104 }
105 
106 MachineSchedContext::~MachineSchedContext() {
107   delete RegClassInfo;
108 }
109 
110 namespace {
111 /// Base class for a machine scheduler class that can run at any point.
112 class MachineSchedulerBase : public MachineSchedContext,
113                              public MachineFunctionPass {
114 public:
115   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
116 
117   void print(raw_ostream &O, const Module* = nullptr) const override;
118 
119 protected:
120   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
121 };
122 
123 /// MachineScheduler runs after coalescing and before register allocation.
124 class MachineScheduler : public MachineSchedulerBase {
125 public:
126   MachineScheduler();
127 
128   void getAnalysisUsage(AnalysisUsage &AU) const override;
129 
130   bool runOnMachineFunction(MachineFunction&) override;
131 
132   static char ID; // Class identification, replacement for typeinfo
133 
134 protected:
135   ScheduleDAGInstrs *createMachineScheduler();
136 };
137 
138 /// PostMachineScheduler runs after shortly before code emission.
139 class PostMachineScheduler : public MachineSchedulerBase {
140 public:
141   PostMachineScheduler();
142 
143   void getAnalysisUsage(AnalysisUsage &AU) const override;
144 
145   bool runOnMachineFunction(MachineFunction&) override;
146 
147   static char ID; // Class identification, replacement for typeinfo
148 
149 protected:
150   ScheduleDAGInstrs *createPostMachineScheduler();
151 };
152 } // namespace
153 
154 char MachineScheduler::ID = 0;
155 
156 char &llvm::MachineSchedulerID = MachineScheduler::ID;
157 
158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
159                       "Machine Instruction Scheduler", false, false)
160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
164                     "Machine Instruction Scheduler", false, false)
165 
166 MachineScheduler::MachineScheduler()
167 : MachineSchedulerBase(ID) {
168   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
169 }
170 
171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
172   AU.setPreservesCFG();
173   AU.addRequiredID(MachineDominatorsID);
174   AU.addRequired<MachineLoopInfo>();
175   AU.addRequired<AAResultsWrapperPass>();
176   AU.addRequired<TargetPassConfig>();
177   AU.addRequired<SlotIndexes>();
178   AU.addPreserved<SlotIndexes>();
179   AU.addRequired<LiveIntervals>();
180   AU.addPreserved<LiveIntervals>();
181   MachineFunctionPass::getAnalysisUsage(AU);
182 }
183 
184 char PostMachineScheduler::ID = 0;
185 
186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
187 
188 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
189                 "PostRA Machine Instruction Scheduler", false, false)
190 
191 PostMachineScheduler::PostMachineScheduler()
192 : MachineSchedulerBase(ID) {
193   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
194 }
195 
196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
197   AU.setPreservesCFG();
198   AU.addRequiredID(MachineDominatorsID);
199   AU.addRequired<MachineLoopInfo>();
200   AU.addRequired<TargetPassConfig>();
201   MachineFunctionPass::getAnalysisUsage(AU);
202 }
203 
204 MachinePassRegistry MachineSchedRegistry::Registry;
205 
206 /// A dummy default scheduler factory indicates whether the scheduler
207 /// is overridden on the command line.
208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
209   return nullptr;
210 }
211 
212 /// MachineSchedOpt allows command line selection of the scheduler.
213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
214                RegisterPassParser<MachineSchedRegistry> >
215 MachineSchedOpt("misched",
216                 cl::init(&useDefaultMachineSched), cl::Hidden,
217                 cl::desc("Machine instruction scheduler to use"));
218 
219 static MachineSchedRegistry
220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
221                      useDefaultMachineSched);
222 
223 static cl::opt<bool> EnableMachineSched(
224     "enable-misched",
225     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
226     cl::Hidden);
227 
228 static cl::opt<bool> EnablePostRAMachineSched(
229     "enable-post-misched",
230     cl::desc("Enable the post-ra machine instruction scheduling pass."),
231     cl::init(true), cl::Hidden);
232 
233 /// Forward declare the standard machine scheduler. This will be used as the
234 /// default scheduler if the target does not set a default.
235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
237 
238 /// Decrement this iterator until reaching the top or a non-debug instr.
239 static MachineBasicBlock::const_iterator
240 priorNonDebug(MachineBasicBlock::const_iterator I,
241               MachineBasicBlock::const_iterator Beg) {
242   assert(I != Beg && "reached the top of the region, cannot decrement");
243   while (--I != Beg) {
244     if (!I->isDebugValue())
245       break;
246   }
247   return I;
248 }
249 
250 /// Non-const version.
251 static MachineBasicBlock::iterator
252 priorNonDebug(MachineBasicBlock::iterator I,
253               MachineBasicBlock::const_iterator Beg) {
254   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
255       .getNonConstIterator();
256 }
257 
258 /// If this iterator is a debug value, increment until reaching the End or a
259 /// non-debug instruction.
260 static MachineBasicBlock::const_iterator
261 nextIfDebug(MachineBasicBlock::const_iterator I,
262             MachineBasicBlock::const_iterator End) {
263   for(; I != End; ++I) {
264     if (!I->isDebugValue())
265       break;
266   }
267   return I;
268 }
269 
270 /// Non-const version.
271 static MachineBasicBlock::iterator
272 nextIfDebug(MachineBasicBlock::iterator I,
273             MachineBasicBlock::const_iterator End) {
274   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
275       .getNonConstIterator();
276 }
277 
278 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
279 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
280   // Select the scheduler, or set the default.
281   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
282   if (Ctor != useDefaultMachineSched)
283     return Ctor(this);
284 
285   // Get the default scheduler set by the target for this function.
286   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
287   if (Scheduler)
288     return Scheduler;
289 
290   // Default to GenericScheduler.
291   return createGenericSchedLive(this);
292 }
293 
294 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
295 /// the caller. We don't have a command line option to override the postRA
296 /// scheduler. The Target must configure it.
297 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
298   // Get the postRA scheduler set by the target for this function.
299   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
300   if (Scheduler)
301     return Scheduler;
302 
303   // Default to GenericScheduler.
304   return createGenericSchedPostRA(this);
305 }
306 
307 /// Top-level MachineScheduler pass driver.
308 ///
309 /// Visit blocks in function order. Divide each block into scheduling regions
310 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
311 /// consistent with the DAG builder, which traverses the interior of the
312 /// scheduling regions bottom-up.
313 ///
314 /// This design avoids exposing scheduling boundaries to the DAG builder,
315 /// simplifying the DAG builder's support for "special" target instructions.
316 /// At the same time the design allows target schedulers to operate across
317 /// scheduling boundaries, for example to bundle the boudary instructions
318 /// without reordering them. This creates complexity, because the target
319 /// scheduler must update the RegionBegin and RegionEnd positions cached by
320 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
321 /// design would be to split blocks at scheduling boundaries, but LLVM has a
322 /// general bias against block splitting purely for implementation simplicity.
323 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
324   if (skipFunction(*mf.getFunction()))
325     return false;
326 
327   if (EnableMachineSched.getNumOccurrences()) {
328     if (!EnableMachineSched)
329       return false;
330   } else if (!mf.getSubtarget().enableMachineScheduler())
331     return false;
332 
333   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
334 
335   // Initialize the context of the pass.
336   MF = &mf;
337   MLI = &getAnalysis<MachineLoopInfo>();
338   MDT = &getAnalysis<MachineDominatorTree>();
339   PassConfig = &getAnalysis<TargetPassConfig>();
340   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
341 
342   LIS = &getAnalysis<LiveIntervals>();
343 
344   if (VerifyScheduling) {
345     DEBUG(LIS->dump());
346     MF->verify(this, "Before machine scheduling.");
347   }
348   RegClassInfo->runOnMachineFunction(*MF);
349 
350   // Instantiate the selected scheduler for this target, function, and
351   // optimization level.
352   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
353   scheduleRegions(*Scheduler, false);
354 
355   DEBUG(LIS->dump());
356   if (VerifyScheduling)
357     MF->verify(this, "After machine scheduling.");
358   return true;
359 }
360 
361 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
362   if (skipFunction(*mf.getFunction()))
363     return false;
364 
365   if (EnablePostRAMachineSched.getNumOccurrences()) {
366     if (!EnablePostRAMachineSched)
367       return false;
368   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
369     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
370     return false;
371   }
372   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
373 
374   // Initialize the context of the pass.
375   MF = &mf;
376   PassConfig = &getAnalysis<TargetPassConfig>();
377 
378   if (VerifyScheduling)
379     MF->verify(this, "Before post machine scheduling.");
380 
381   // Instantiate the selected scheduler for this target, function, and
382   // optimization level.
383   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
384   scheduleRegions(*Scheduler, true);
385 
386   if (VerifyScheduling)
387     MF->verify(this, "After post machine scheduling.");
388   return true;
389 }
390 
391 /// Return true of the given instruction should not be included in a scheduling
392 /// region.
393 ///
394 /// MachineScheduler does not currently support scheduling across calls. To
395 /// handle calls, the DAG builder needs to be modified to create register
396 /// anti/output dependencies on the registers clobbered by the call's regmask
397 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
398 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
399 /// the boundary, but there would be no benefit to postRA scheduling across
400 /// calls this late anyway.
401 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
402                             MachineBasicBlock *MBB,
403                             MachineFunction *MF,
404                             const TargetInstrInfo *TII) {
405   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
406 }
407 
408 /// Main driver for both MachineScheduler and PostMachineScheduler.
409 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
410                                            bool FixKillFlags) {
411   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
412 
413   // Visit all machine basic blocks.
414   //
415   // TODO: Visit blocks in global postorder or postorder within the bottom-up
416   // loop tree. Then we can optionally compute global RegPressure.
417   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
418        MBB != MBBEnd; ++MBB) {
419 
420     Scheduler.startBlock(&*MBB);
421 
422 #ifndef NDEBUG
423     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
424       continue;
425     if (SchedOnlyBlock.getNumOccurrences()
426         && (int)SchedOnlyBlock != MBB->getNumber())
427       continue;
428 #endif
429 
430     // Break the block into scheduling regions [I, RegionEnd), and schedule each
431     // region as soon as it is discovered. RegionEnd points the scheduling
432     // boundary at the bottom of the region. The DAG does not include RegionEnd,
433     // but the region does (i.e. the next RegionEnd is above the previous
434     // RegionBegin). If the current block has no terminator then RegionEnd ==
435     // MBB->end() for the bottom region.
436     //
437     // The Scheduler may insert instructions during either schedule() or
438     // exitRegion(), even for empty regions. So the local iterators 'I' and
439     // 'RegionEnd' are invalid across these calls.
440     //
441     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
442     // as a single instruction.
443     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
444         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
445 
446       // Avoid decrementing RegionEnd for blocks with no terminator.
447       if (RegionEnd != MBB->end() ||
448           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
449         --RegionEnd;
450       }
451 
452       // The next region starts above the previous region. Look backward in the
453       // instruction stream until we find the nearest boundary.
454       unsigned NumRegionInstrs = 0;
455       MachineBasicBlock::iterator I = RegionEnd;
456       for (;I != MBB->begin(); --I) {
457         MachineInstr &MI = *std::prev(I);
458         if (isSchedBoundary(&MI, &*MBB, MF, TII))
459           break;
460         if (!MI.isDebugValue())
461           ++NumRegionInstrs;
462       }
463       // Notify the scheduler of the region, even if we may skip scheduling
464       // it. Perhaps it still needs to be bundled.
465       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
466 
467       // Skip empty scheduling regions (0 or 1 schedulable instructions).
468       if (I == RegionEnd || I == std::prev(RegionEnd)) {
469         // Close the current region. Bundle the terminator if needed.
470         // This invalidates 'RegionEnd' and 'I'.
471         Scheduler.exitRegion();
472         continue;
473       }
474       DEBUG(dbgs() << "********** MI Scheduling **********\n");
475       DEBUG(dbgs() << MF->getName()
476             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
477             << "\n  From: " << *I << "    To: ";
478             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
479             else dbgs() << "End";
480             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
481       if (DumpCriticalPathLength) {
482         errs() << MF->getName();
483         errs() << ":BB# " << MBB->getNumber();
484         errs() << " " << MBB->getName() << " \n";
485       }
486 
487       // Schedule a region: possibly reorder instructions.
488       // This invalidates 'RegionEnd' and 'I'.
489       Scheduler.schedule();
490 
491       // Close the current region.
492       Scheduler.exitRegion();
493 
494       // Scheduling has invalidated the current iterator 'I'. Ask the
495       // scheduler for the top of it's scheduled region.
496       RegionEnd = Scheduler.begin();
497     }
498     Scheduler.finishBlock();
499     // FIXME: Ideally, no further passes should rely on kill flags. However,
500     // thumb2 size reduction is currently an exception, so the PostMIScheduler
501     // needs to do this.
502     if (FixKillFlags)
503         Scheduler.fixupKills(&*MBB);
504   }
505   Scheduler.finalizeSchedule();
506 }
507 
508 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
509   // unimplemented
510 }
511 
512 LLVM_DUMP_METHOD
513 void ReadyQueue::dump() {
514   dbgs() << "Queue " << Name << ": ";
515   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
516     dbgs() << Queue[i]->NodeNum << " ";
517   dbgs() << "\n";
518 }
519 
520 //===----------------------------------------------------------------------===//
521 // ScheduleDAGMI - Basic machine instruction scheduling. This is
522 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
523 // virtual registers.
524 // ===----------------------------------------------------------------------===/
525 
526 // Provide a vtable anchor.
527 ScheduleDAGMI::~ScheduleDAGMI() {
528 }
529 
530 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
531   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
532 }
533 
534 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
535   if (SuccSU != &ExitSU) {
536     // Do not use WillCreateCycle, it assumes SD scheduling.
537     // If Pred is reachable from Succ, then the edge creates a cycle.
538     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
539       return false;
540     Topo.AddPred(SuccSU, PredDep.getSUnit());
541   }
542   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
543   // Return true regardless of whether a new edge needed to be inserted.
544   return true;
545 }
546 
547 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
548 /// NumPredsLeft reaches zero, release the successor node.
549 ///
550 /// FIXME: Adjust SuccSU height based on MinLatency.
551 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
552   SUnit *SuccSU = SuccEdge->getSUnit();
553 
554   if (SuccEdge->isWeak()) {
555     --SuccSU->WeakPredsLeft;
556     if (SuccEdge->isCluster())
557       NextClusterSucc = SuccSU;
558     return;
559   }
560 #ifndef NDEBUG
561   if (SuccSU->NumPredsLeft == 0) {
562     dbgs() << "*** Scheduling failed! ***\n";
563     SuccSU->dump(this);
564     dbgs() << " has been released too many times!\n";
565     llvm_unreachable(nullptr);
566   }
567 #endif
568   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
569   // CurrCycle may have advanced since then.
570   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
571     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
572 
573   --SuccSU->NumPredsLeft;
574   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
575     SchedImpl->releaseTopNode(SuccSU);
576 }
577 
578 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
579 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
580   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
581        I != E; ++I) {
582     releaseSucc(SU, &*I);
583   }
584 }
585 
586 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
587 /// NumSuccsLeft reaches zero, release the predecessor node.
588 ///
589 /// FIXME: Adjust PredSU height based on MinLatency.
590 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
591   SUnit *PredSU = PredEdge->getSUnit();
592 
593   if (PredEdge->isWeak()) {
594     --PredSU->WeakSuccsLeft;
595     if (PredEdge->isCluster())
596       NextClusterPred = PredSU;
597     return;
598   }
599 #ifndef NDEBUG
600   if (PredSU->NumSuccsLeft == 0) {
601     dbgs() << "*** Scheduling failed! ***\n";
602     PredSU->dump(this);
603     dbgs() << " has been released too many times!\n";
604     llvm_unreachable(nullptr);
605   }
606 #endif
607   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
608   // CurrCycle may have advanced since then.
609   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
610     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
611 
612   --PredSU->NumSuccsLeft;
613   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
614     SchedImpl->releaseBottomNode(PredSU);
615 }
616 
617 /// releasePredecessors - Call releasePred on each of SU's predecessors.
618 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
619   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
620        I != E; ++I) {
621     releasePred(SU, &*I);
622   }
623 }
624 
625 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
626 /// crossing a scheduling boundary. [begin, end) includes all instructions in
627 /// the region, including the boundary itself and single-instruction regions
628 /// that don't get scheduled.
629 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
630                                      MachineBasicBlock::iterator begin,
631                                      MachineBasicBlock::iterator end,
632                                      unsigned regioninstrs)
633 {
634   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
635 
636   SchedImpl->initPolicy(begin, end, regioninstrs);
637 }
638 
639 /// This is normally called from the main scheduler loop but may also be invoked
640 /// by the scheduling strategy to perform additional code motion.
641 void ScheduleDAGMI::moveInstruction(
642   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
643   // Advance RegionBegin if the first instruction moves down.
644   if (&*RegionBegin == MI)
645     ++RegionBegin;
646 
647   // Update the instruction stream.
648   BB->splice(InsertPos, BB, MI);
649 
650   // Update LiveIntervals
651   if (LIS)
652     LIS->handleMove(*MI, /*UpdateFlags=*/true);
653 
654   // Recede RegionBegin if an instruction moves above the first.
655   if (RegionBegin == InsertPos)
656     RegionBegin = MI;
657 }
658 
659 bool ScheduleDAGMI::checkSchedLimit() {
660 #ifndef NDEBUG
661   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
662     CurrentTop = CurrentBottom;
663     return false;
664   }
665   ++NumInstrsScheduled;
666 #endif
667   return true;
668 }
669 
670 /// Per-region scheduling driver, called back from
671 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
672 /// does not consider liveness or register pressure. It is useful for PostRA
673 /// scheduling and potentially other custom schedulers.
674 void ScheduleDAGMI::schedule() {
675   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
676   DEBUG(SchedImpl->dumpPolicy());
677 
678   // Build the DAG.
679   buildSchedGraph(AA);
680 
681   Topo.InitDAGTopologicalSorting();
682 
683   postprocessDAG();
684 
685   SmallVector<SUnit*, 8> TopRoots, BotRoots;
686   findRootsAndBiasEdges(TopRoots, BotRoots);
687 
688   // Initialize the strategy before modifying the DAG.
689   // This may initialize a DFSResult to be used for queue priority.
690   SchedImpl->initialize(this);
691 
692   DEBUG(
693     if (EntrySU.getInstr() != nullptr)
694       EntrySU.dumpAll(this);
695     for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
696       SUnits[su].dumpAll(this);
697     if (ExitSU.getInstr() != nullptr)
698       ExitSU.dumpAll(this);
699   );
700   if (ViewMISchedDAGs) viewGraph();
701 
702   // Initialize ready queues now that the DAG and priority data are finalized.
703   initQueues(TopRoots, BotRoots);
704 
705   bool IsTopNode = false;
706   while (true) {
707     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
708     SUnit *SU = SchedImpl->pickNode(IsTopNode);
709     if (!SU) break;
710 
711     assert(!SU->isScheduled && "Node already scheduled");
712     if (!checkSchedLimit())
713       break;
714 
715     MachineInstr *MI = SU->getInstr();
716     if (IsTopNode) {
717       assert(SU->isTopReady() && "node still has unscheduled dependencies");
718       if (&*CurrentTop == MI)
719         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
720       else
721         moveInstruction(MI, CurrentTop);
722     } else {
723       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
724       MachineBasicBlock::iterator priorII =
725         priorNonDebug(CurrentBottom, CurrentTop);
726       if (&*priorII == MI)
727         CurrentBottom = priorII;
728       else {
729         if (&*CurrentTop == MI)
730           CurrentTop = nextIfDebug(++CurrentTop, priorII);
731         moveInstruction(MI, CurrentBottom);
732         CurrentBottom = MI;
733       }
734     }
735     // Notify the scheduling strategy before updating the DAG.
736     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
737     // runs, it can then use the accurate ReadyCycle time to determine whether
738     // newly released nodes can move to the readyQ.
739     SchedImpl->schedNode(SU, IsTopNode);
740 
741     updateQueues(SU, IsTopNode);
742   }
743   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
744 
745   placeDebugValues();
746 
747   DEBUG({
748       unsigned BBNum = begin()->getParent()->getNumber();
749       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
750       dumpSchedule();
751       dbgs() << '\n';
752     });
753 }
754 
755 /// Apply each ScheduleDAGMutation step in order.
756 void ScheduleDAGMI::postprocessDAG() {
757   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
758     Mutations[i]->apply(this);
759   }
760 }
761 
762 void ScheduleDAGMI::
763 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
764                       SmallVectorImpl<SUnit*> &BotRoots) {
765   for (std::vector<SUnit>::iterator
766          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
767     SUnit *SU = &(*I);
768     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
769 
770     // Order predecessors so DFSResult follows the critical path.
771     SU->biasCriticalPath();
772 
773     // A SUnit is ready to top schedule if it has no predecessors.
774     if (!I->NumPredsLeft)
775       TopRoots.push_back(SU);
776     // A SUnit is ready to bottom schedule if it has no successors.
777     if (!I->NumSuccsLeft)
778       BotRoots.push_back(SU);
779   }
780   ExitSU.biasCriticalPath();
781 }
782 
783 /// Identify DAG roots and setup scheduler queues.
784 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
785                                ArrayRef<SUnit*> BotRoots) {
786   NextClusterSucc = nullptr;
787   NextClusterPred = nullptr;
788 
789   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
790   //
791   // Nodes with unreleased weak edges can still be roots.
792   // Release top roots in forward order.
793   for (SmallVectorImpl<SUnit*>::const_iterator
794          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
795     SchedImpl->releaseTopNode(*I);
796   }
797   // Release bottom roots in reverse order so the higher priority nodes appear
798   // first. This is more natural and slightly more efficient.
799   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
800          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
801     SchedImpl->releaseBottomNode(*I);
802   }
803 
804   releaseSuccessors(&EntrySU);
805   releasePredecessors(&ExitSU);
806 
807   SchedImpl->registerRoots();
808 
809   // Advance past initial DebugValues.
810   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
811   CurrentBottom = RegionEnd;
812 }
813 
814 /// Update scheduler queues after scheduling an instruction.
815 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
816   // Release dependent instructions for scheduling.
817   if (IsTopNode)
818     releaseSuccessors(SU);
819   else
820     releasePredecessors(SU);
821 
822   SU->isScheduled = true;
823 }
824 
825 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
826 void ScheduleDAGMI::placeDebugValues() {
827   // If first instruction was a DBG_VALUE then put it back.
828   if (FirstDbgValue) {
829     BB->splice(RegionBegin, BB, FirstDbgValue);
830     RegionBegin = FirstDbgValue;
831   }
832 
833   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
834          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
835     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
836     MachineInstr *DbgValue = P.first;
837     MachineBasicBlock::iterator OrigPrevMI = P.second;
838     if (&*RegionBegin == DbgValue)
839       ++RegionBegin;
840     BB->splice(++OrigPrevMI, BB, DbgValue);
841     if (OrigPrevMI == std::prev(RegionEnd))
842       RegionEnd = DbgValue;
843   }
844   DbgValues.clear();
845   FirstDbgValue = nullptr;
846 }
847 
848 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
849 void ScheduleDAGMI::dumpSchedule() const {
850   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
851     if (SUnit *SU = getSUnit(&(*MI)))
852       SU->dump(this);
853     else
854       dbgs() << "Missing SUnit\n";
855   }
856 }
857 #endif
858 
859 //===----------------------------------------------------------------------===//
860 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
861 // preservation.
862 //===----------------------------------------------------------------------===//
863 
864 ScheduleDAGMILive::~ScheduleDAGMILive() {
865   delete DFSResult;
866 }
867 
868 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
869   const MachineInstr &MI = *SU.getInstr();
870   for (const MachineOperand &MO : MI.operands()) {
871     if (!MO.isReg())
872       continue;
873     if (!MO.readsReg())
874       continue;
875     if (TrackLaneMasks && !MO.isUse())
876       continue;
877 
878     unsigned Reg = MO.getReg();
879     if (!TargetRegisterInfo::isVirtualRegister(Reg))
880       continue;
881 
882     // Ignore re-defs.
883     if (TrackLaneMasks) {
884       bool FoundDef = false;
885       for (const MachineOperand &MO2 : MI.operands()) {
886         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
887           FoundDef = true;
888           break;
889         }
890       }
891       if (FoundDef)
892         continue;
893     }
894 
895     // Record this local VReg use.
896     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
897     for (; UI != VRegUses.end(); ++UI) {
898       if (UI->SU == &SU)
899         break;
900     }
901     if (UI == VRegUses.end())
902       VRegUses.insert(VReg2SUnit(Reg, 0, &SU));
903   }
904 }
905 
906 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
907 /// crossing a scheduling boundary. [begin, end) includes all instructions in
908 /// the region, including the boundary itself and single-instruction regions
909 /// that don't get scheduled.
910 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
911                                 MachineBasicBlock::iterator begin,
912                                 MachineBasicBlock::iterator end,
913                                 unsigned regioninstrs)
914 {
915   // ScheduleDAGMI initializes SchedImpl's per-region policy.
916   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
917 
918   // For convenience remember the end of the liveness region.
919   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
920 
921   SUPressureDiffs.clear();
922 
923   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
924   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
925 
926   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
927          "ShouldTrackLaneMasks requires ShouldTrackPressure");
928 }
929 
930 // Setup the register pressure trackers for the top scheduled top and bottom
931 // scheduled regions.
932 void ScheduleDAGMILive::initRegPressure() {
933   VRegUses.clear();
934   VRegUses.setUniverse(MRI.getNumVirtRegs());
935   for (SUnit &SU : SUnits)
936     collectVRegUses(SU);
937 
938   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
939                     ShouldTrackLaneMasks, false);
940   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
941                     ShouldTrackLaneMasks, false);
942 
943   // Close the RPTracker to finalize live ins.
944   RPTracker.closeRegion();
945 
946   DEBUG(RPTracker.dump());
947 
948   // Initialize the live ins and live outs.
949   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
950   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
951 
952   // Close one end of the tracker so we can call
953   // getMaxUpward/DownwardPressureDelta before advancing across any
954   // instructions. This converts currently live regs into live ins/outs.
955   TopRPTracker.closeTop();
956   BotRPTracker.closeBottom();
957 
958   BotRPTracker.initLiveThru(RPTracker);
959   if (!BotRPTracker.getLiveThru().empty()) {
960     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
961     DEBUG(dbgs() << "Live Thru: ";
962           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
963   };
964 
965   // For each live out vreg reduce the pressure change associated with other
966   // uses of the same vreg below the live-out reaching def.
967   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
968 
969   // Account for liveness generated by the region boundary.
970   if (LiveRegionEnd != RegionEnd) {
971     SmallVector<RegisterMaskPair, 8> LiveUses;
972     BotRPTracker.recede(&LiveUses);
973     updatePressureDiffs(LiveUses);
974   }
975 
976   DEBUG(
977     dbgs() << "Top Pressure:\n";
978     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
979     dbgs() << "Bottom Pressure:\n";
980     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
981   );
982 
983   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
984 
985   // Cache the list of excess pressure sets in this region. This will also track
986   // the max pressure in the scheduled code for these sets.
987   RegionCriticalPSets.clear();
988   const std::vector<unsigned> &RegionPressure =
989     RPTracker.getPressure().MaxSetPressure;
990   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
991     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
992     if (RegionPressure[i] > Limit) {
993       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
994             << " Limit " << Limit
995             << " Actual " << RegionPressure[i] << "\n");
996       RegionCriticalPSets.push_back(PressureChange(i));
997     }
998   }
999   DEBUG(dbgs() << "Excess PSets: ";
1000         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
1001           dbgs() << TRI->getRegPressureSetName(
1002             RegionCriticalPSets[i].getPSet()) << " ";
1003         dbgs() << "\n");
1004 }
1005 
1006 void ScheduleDAGMILive::
1007 updateScheduledPressure(const SUnit *SU,
1008                         const std::vector<unsigned> &NewMaxPressure) {
1009   const PressureDiff &PDiff = getPressureDiff(SU);
1010   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1011   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
1012        I != E; ++I) {
1013     if (!I->isValid())
1014       break;
1015     unsigned ID = I->getPSet();
1016     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1017       ++CritIdx;
1018     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1019       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1020           && NewMaxPressure[ID] <= INT16_MAX)
1021         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1022     }
1023     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1024     if (NewMaxPressure[ID] >= Limit - 2) {
1025       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1026             << NewMaxPressure[ID]
1027             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
1028             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
1029     }
1030   }
1031 }
1032 
1033 /// Update the PressureDiff array for liveness after scheduling this
1034 /// instruction.
1035 void ScheduleDAGMILive::updatePressureDiffs(
1036     ArrayRef<RegisterMaskPair> LiveUses) {
1037   for (const RegisterMaskPair &P : LiveUses) {
1038     unsigned Reg = P.RegUnit;
1039     /// FIXME: Currently assuming single-use physregs.
1040     if (!TRI->isVirtualRegister(Reg))
1041       continue;
1042 
1043     if (ShouldTrackLaneMasks) {
1044       // If the register has just become live then other uses won't change
1045       // this fact anymore => decrement pressure.
1046       // If the register has just become dead then other uses make it come
1047       // back to life => increment pressure.
1048       bool Decrement = P.LaneMask != 0;
1049 
1050       for (const VReg2SUnit &V2SU
1051            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1052         SUnit &SU = *V2SU.SU;
1053         if (SU.isScheduled || &SU == &ExitSU)
1054           continue;
1055 
1056         PressureDiff &PDiff = getPressureDiff(&SU);
1057         PDiff.addPressureChange(Reg, Decrement, &MRI);
1058         DEBUG(
1059           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1060                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1061                  << ' ' << *SU.getInstr();
1062           dbgs() << "              to ";
1063           PDiff.dump(*TRI);
1064         );
1065       }
1066     } else {
1067       assert(P.LaneMask != 0);
1068       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1069       // This may be called before CurrentBottom has been initialized. However,
1070       // BotRPTracker must have a valid position. We want the value live into the
1071       // instruction or live out of the block, so ask for the previous
1072       // instruction's live-out.
1073       const LiveInterval &LI = LIS->getInterval(Reg);
1074       VNInfo *VNI;
1075       MachineBasicBlock::const_iterator I =
1076         nextIfDebug(BotRPTracker.getPos(), BB->end());
1077       if (I == BB->end())
1078         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1079       else {
1080         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1081         VNI = LRQ.valueIn();
1082       }
1083       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1084       assert(VNI && "No live value at use.");
1085       for (const VReg2SUnit &V2SU
1086            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1087         SUnit *SU = V2SU.SU;
1088         // If this use comes before the reaching def, it cannot be a last use,
1089         // so decrease its pressure change.
1090         if (!SU->isScheduled && SU != &ExitSU) {
1091           LiveQueryResult LRQ =
1092               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1093           if (LRQ.valueIn() == VNI) {
1094             PressureDiff &PDiff = getPressureDiff(SU);
1095             PDiff.addPressureChange(Reg, true, &MRI);
1096             DEBUG(
1097               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1098                      << *SU->getInstr();
1099               dbgs() << "              to ";
1100               PDiff.dump(*TRI);
1101             );
1102           }
1103         }
1104       }
1105     }
1106   }
1107 }
1108 
1109 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1110 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1111 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1112 ///
1113 /// This is a skeletal driver, with all the functionality pushed into helpers,
1114 /// so that it can be easily extended by experimental schedulers. Generally,
1115 /// implementing MachineSchedStrategy should be sufficient to implement a new
1116 /// scheduling algorithm. However, if a scheduler further subclasses
1117 /// ScheduleDAGMILive then it will want to override this virtual method in order
1118 /// to update any specialized state.
1119 void ScheduleDAGMILive::schedule() {
1120   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1121   DEBUG(SchedImpl->dumpPolicy());
1122   buildDAGWithRegPressure();
1123 
1124   Topo.InitDAGTopologicalSorting();
1125 
1126   postprocessDAG();
1127 
1128   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1129   findRootsAndBiasEdges(TopRoots, BotRoots);
1130 
1131   // Initialize the strategy before modifying the DAG.
1132   // This may initialize a DFSResult to be used for queue priority.
1133   SchedImpl->initialize(this);
1134 
1135   DEBUG(
1136     if (EntrySU.getInstr() != nullptr)
1137       EntrySU.dumpAll(this);
1138     for (const SUnit &SU : SUnits) {
1139       SU.dumpAll(this);
1140       if (ShouldTrackPressure) {
1141         dbgs() << "  Pressure Diff      : ";
1142         getPressureDiff(&SU).dump(*TRI);
1143       }
1144       dbgs() << '\n';
1145     }
1146     if (ExitSU.getInstr() != nullptr)
1147       ExitSU.dumpAll(this);
1148   );
1149   if (ViewMISchedDAGs) viewGraph();
1150 
1151   // Initialize ready queues now that the DAG and priority data are finalized.
1152   initQueues(TopRoots, BotRoots);
1153 
1154   bool IsTopNode = false;
1155   while (true) {
1156     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1157     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1158     if (!SU) break;
1159 
1160     assert(!SU->isScheduled && "Node already scheduled");
1161     if (!checkSchedLimit())
1162       break;
1163 
1164     scheduleMI(SU, IsTopNode);
1165 
1166     if (DFSResult) {
1167       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1168       if (!ScheduledTrees.test(SubtreeID)) {
1169         ScheduledTrees.set(SubtreeID);
1170         DFSResult->scheduleTree(SubtreeID);
1171         SchedImpl->scheduleTree(SubtreeID);
1172       }
1173     }
1174 
1175     // Notify the scheduling strategy after updating the DAG.
1176     SchedImpl->schedNode(SU, IsTopNode);
1177 
1178     updateQueues(SU, IsTopNode);
1179   }
1180   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1181 
1182   placeDebugValues();
1183 
1184   DEBUG({
1185       unsigned BBNum = begin()->getParent()->getNumber();
1186       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1187       dumpSchedule();
1188       dbgs() << '\n';
1189     });
1190 }
1191 
1192 /// Build the DAG and setup three register pressure trackers.
1193 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1194   if (!ShouldTrackPressure) {
1195     RPTracker.reset();
1196     RegionCriticalPSets.clear();
1197     buildSchedGraph(AA);
1198     return;
1199   }
1200 
1201   // Initialize the register pressure tracker used by buildSchedGraph.
1202   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1203                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1204 
1205   // Account for liveness generate by the region boundary.
1206   if (LiveRegionEnd != RegionEnd)
1207     RPTracker.recede();
1208 
1209   // Build the DAG, and compute current register pressure.
1210   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1211 
1212   // Initialize top/bottom trackers after computing region pressure.
1213   initRegPressure();
1214 }
1215 
1216 void ScheduleDAGMILive::computeDFSResult() {
1217   if (!DFSResult)
1218     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1219   DFSResult->clear();
1220   ScheduledTrees.clear();
1221   DFSResult->resize(SUnits.size());
1222   DFSResult->compute(SUnits);
1223   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1224 }
1225 
1226 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1227 /// only provides the critical path for single block loops. To handle loops that
1228 /// span blocks, we could use the vreg path latencies provided by
1229 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1230 /// available for use in the scheduler.
1231 ///
1232 /// The cyclic path estimation identifies a def-use pair that crosses the back
1233 /// edge and considers the depth and height of the nodes. For example, consider
1234 /// the following instruction sequence where each instruction has unit latency
1235 /// and defines an epomymous virtual register:
1236 ///
1237 /// a->b(a,c)->c(b)->d(c)->exit
1238 ///
1239 /// The cyclic critical path is a two cycles: b->c->b
1240 /// The acyclic critical path is four cycles: a->b->c->d->exit
1241 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1242 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1243 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1244 /// LiveInDepth = depth(b) = len(a->b) = 1
1245 ///
1246 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1247 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1248 /// CyclicCriticalPath = min(2, 2) = 2
1249 ///
1250 /// This could be relevant to PostRA scheduling, but is currently implemented
1251 /// assuming LiveIntervals.
1252 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1253   // This only applies to single block loop.
1254   if (!BB->isSuccessor(BB))
1255     return 0;
1256 
1257   unsigned MaxCyclicLatency = 0;
1258   // Visit each live out vreg def to find def/use pairs that cross iterations.
1259   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1260     unsigned Reg = P.RegUnit;
1261     if (!TRI->isVirtualRegister(Reg))
1262         continue;
1263     const LiveInterval &LI = LIS->getInterval(Reg);
1264     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1265     if (!DefVNI)
1266       continue;
1267 
1268     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1269     const SUnit *DefSU = getSUnit(DefMI);
1270     if (!DefSU)
1271       continue;
1272 
1273     unsigned LiveOutHeight = DefSU->getHeight();
1274     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1275     // Visit all local users of the vreg def.
1276     for (const VReg2SUnit &V2SU
1277          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1278       SUnit *SU = V2SU.SU;
1279       if (SU == &ExitSU)
1280         continue;
1281 
1282       // Only consider uses of the phi.
1283       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1284       if (!LRQ.valueIn()->isPHIDef())
1285         continue;
1286 
1287       // Assume that a path spanning two iterations is a cycle, which could
1288       // overestimate in strange cases. This allows cyclic latency to be
1289       // estimated as the minimum slack of the vreg's depth or height.
1290       unsigned CyclicLatency = 0;
1291       if (LiveOutDepth > SU->getDepth())
1292         CyclicLatency = LiveOutDepth - SU->getDepth();
1293 
1294       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1295       if (LiveInHeight > LiveOutHeight) {
1296         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1297           CyclicLatency = LiveInHeight - LiveOutHeight;
1298       } else
1299         CyclicLatency = 0;
1300 
1301       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1302             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1303       if (CyclicLatency > MaxCyclicLatency)
1304         MaxCyclicLatency = CyclicLatency;
1305     }
1306   }
1307   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1308   return MaxCyclicLatency;
1309 }
1310 
1311 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1312 /// the Top RP tracker in case the region beginning has changed.
1313 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1314                                    ArrayRef<SUnit*> BotRoots) {
1315   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1316   if (ShouldTrackPressure) {
1317     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1318     TopRPTracker.setPos(CurrentTop);
1319   }
1320 }
1321 
1322 /// Move an instruction and update register pressure.
1323 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1324   // Move the instruction to its new location in the instruction stream.
1325   MachineInstr *MI = SU->getInstr();
1326 
1327   if (IsTopNode) {
1328     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1329     if (&*CurrentTop == MI)
1330       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1331     else {
1332       moveInstruction(MI, CurrentTop);
1333       TopRPTracker.setPos(MI);
1334     }
1335 
1336     if (ShouldTrackPressure) {
1337       // Update top scheduled pressure.
1338       RegisterOperands RegOpers;
1339       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1340       if (ShouldTrackLaneMasks) {
1341         // Adjust liveness and add missing dead+read-undef flags.
1342         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1343         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1344       } else {
1345         // Adjust for missing dead-def flags.
1346         RegOpers.detectDeadDefs(*MI, *LIS);
1347       }
1348 
1349       TopRPTracker.advance(RegOpers);
1350       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1351       DEBUG(
1352         dbgs() << "Top Pressure:\n";
1353         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1354       );
1355 
1356       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1357     }
1358   } else {
1359     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1360     MachineBasicBlock::iterator priorII =
1361       priorNonDebug(CurrentBottom, CurrentTop);
1362     if (&*priorII == MI)
1363       CurrentBottom = priorII;
1364     else {
1365       if (&*CurrentTop == MI) {
1366         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1367         TopRPTracker.setPos(CurrentTop);
1368       }
1369       moveInstruction(MI, CurrentBottom);
1370       CurrentBottom = MI;
1371     }
1372     if (ShouldTrackPressure) {
1373       RegisterOperands RegOpers;
1374       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1375       if (ShouldTrackLaneMasks) {
1376         // Adjust liveness and add missing dead+read-undef flags.
1377         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1378         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1379       } else {
1380         // Adjust for missing dead-def flags.
1381         RegOpers.detectDeadDefs(*MI, *LIS);
1382       }
1383 
1384       BotRPTracker.recedeSkipDebugValues();
1385       SmallVector<RegisterMaskPair, 8> LiveUses;
1386       BotRPTracker.recede(RegOpers, &LiveUses);
1387       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1388       DEBUG(
1389         dbgs() << "Bottom Pressure:\n";
1390         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1391       );
1392 
1393       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1394       updatePressureDiffs(LiveUses);
1395     }
1396   }
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1401 //===----------------------------------------------------------------------===//
1402 
1403 namespace {
1404 /// \brief Post-process the DAG to create cluster edges between neighboring
1405 /// loads or between neighboring stores.
1406 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1407   struct MemOpInfo {
1408     SUnit *SU;
1409     unsigned BaseReg;
1410     int64_t Offset;
1411     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1412         : SU(su), BaseReg(reg), Offset(ofs) {}
1413 
1414     bool operator<(const MemOpInfo&RHS) const {
1415       return std::tie(BaseReg, Offset, SU->NodeNum) <
1416              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1417     }
1418   };
1419 
1420   const TargetInstrInfo *TII;
1421   const TargetRegisterInfo *TRI;
1422   bool IsLoad;
1423 
1424 public:
1425   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1426                            const TargetRegisterInfo *tri, bool IsLoad)
1427       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1428 
1429   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1430 
1431 protected:
1432   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1433 };
1434 
1435 class StoreClusterMutation : public BaseMemOpClusterMutation {
1436 public:
1437   StoreClusterMutation(const TargetInstrInfo *tii,
1438                        const TargetRegisterInfo *tri)
1439       : BaseMemOpClusterMutation(tii, tri, false) {}
1440 };
1441 
1442 class LoadClusterMutation : public BaseMemOpClusterMutation {
1443 public:
1444   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1445       : BaseMemOpClusterMutation(tii, tri, true) {}
1446 };
1447 } // anonymous
1448 
1449 namespace llvm {
1450 
1451 std::unique_ptr<ScheduleDAGMutation>
1452 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1453                              const TargetRegisterInfo *TRI) {
1454   return make_unique<LoadClusterMutation>(TII, TRI);
1455 }
1456 
1457 std::unique_ptr<ScheduleDAGMutation>
1458 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1459                               const TargetRegisterInfo *TRI) {
1460   return make_unique<StoreClusterMutation>(TII, TRI);
1461 }
1462 
1463 } // namespace llvm
1464 
1465 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1466     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1467   SmallVector<MemOpInfo, 32> MemOpRecords;
1468   for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) {
1469     SUnit *SU = MemOps[Idx];
1470     unsigned BaseReg;
1471     int64_t Offset;
1472     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1473       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1474   }
1475   if (MemOpRecords.size() < 2)
1476     return;
1477 
1478   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1479   unsigned ClusterLength = 1;
1480   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1481     if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) {
1482       ClusterLength = 1;
1483       continue;
1484     }
1485 
1486     SUnit *SUa = MemOpRecords[Idx].SU;
1487     SUnit *SUb = MemOpRecords[Idx+1].SU;
1488     if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(),
1489                                  ClusterLength) &&
1490         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1491       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1492             << SUb->NodeNum << ")\n");
1493       // Copy successor edges from SUa to SUb. Interleaving computation
1494       // dependent on SUa can prevent load combining due to register reuse.
1495       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1496       // loads should have effectively the same inputs.
1497       for (SUnit::const_succ_iterator
1498              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1499         if (SI->getSUnit() == SUb)
1500           continue;
1501         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1502         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1503       }
1504       ++ClusterLength;
1505     } else
1506       ClusterLength = 1;
1507   }
1508 }
1509 
1510 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1511 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1512 
1513   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1514 
1515   // Map DAG NodeNum to store chain ID.
1516   DenseMap<unsigned, unsigned> StoreChainIDs;
1517   // Map each store chain to a set of dependent MemOps.
1518   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1519   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1520     SUnit *SU = &DAG->SUnits[Idx];
1521     if ((IsLoad && !SU->getInstr()->mayLoad()) ||
1522         (!IsLoad && !SU->getInstr()->mayStore()))
1523       continue;
1524 
1525     unsigned ChainPredID = DAG->SUnits.size();
1526     for (SUnit::const_pred_iterator
1527            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1528       if (PI->isCtrl()) {
1529         ChainPredID = PI->getSUnit()->NodeNum;
1530         break;
1531       }
1532     }
1533     // Check if this chain-like pred has been seen
1534     // before. ChainPredID==MaxNodeID at the top of the schedule.
1535     unsigned NumChains = StoreChainDependents.size();
1536     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1537       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1538     if (Result.second)
1539       StoreChainDependents.resize(NumChains + 1);
1540     StoreChainDependents[Result.first->second].push_back(SU);
1541   }
1542 
1543   // Iterate over the store chains.
1544   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1545     clusterNeighboringMemOps(StoreChainDependents[Idx], DAG);
1546 }
1547 
1548 //===----------------------------------------------------------------------===//
1549 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1550 //===----------------------------------------------------------------------===//
1551 
1552 namespace {
1553 /// \brief Post-process the DAG to create cluster edges between instructions
1554 /// that may be fused by the processor into a single operation.
1555 class MacroFusion : public ScheduleDAGMutation {
1556   const TargetInstrInfo &TII;
1557 public:
1558   MacroFusion(const TargetInstrInfo &TII)
1559     : TII(TII) {}
1560 
1561   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1562 };
1563 } // anonymous
1564 
1565 namespace llvm {
1566 
1567 std::unique_ptr<ScheduleDAGMutation>
1568 createMacroFusionDAGMutation(const TargetInstrInfo *TII) {
1569   return make_unique<MacroFusion>(*TII);
1570 }
1571 
1572 } // namespace llvm
1573 
1574 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1575 /// fused operations.
1576 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
1577   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1578 
1579   // For now, assume targets can only fuse with the branch.
1580   SUnit &ExitSU = DAG->ExitSU;
1581   MachineInstr *Branch = ExitSU.getInstr();
1582   if (!Branch)
1583     return;
1584 
1585   for (SDep &PredDep : ExitSU.Preds) {
1586     if (PredDep.isWeak())
1587       continue;
1588     SUnit &SU = *PredDep.getSUnit();
1589     MachineInstr &Pred = *SU.getInstr();
1590     if (!TII.shouldScheduleAdjacent(Pred, *Branch))
1591       continue;
1592 
1593     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1594     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1595     // need to copy predecessor edges from ExitSU to SU, since top-down
1596     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1597     // of SU, we could create an artificial edge from the deepest root, but it
1598     // hasn't been needed yet.
1599     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1600     (void)Success;
1601     assert(Success && "No DAG nodes should be reachable from ExitSU");
1602 
1603     // Adjust latency of data deps between the nodes.
1604     for (SDep &PredDep : ExitSU.Preds) {
1605       if (PredDep.getSUnit() == &SU)
1606         PredDep.setLatency(0);
1607     }
1608     for (SDep &SuccDep : SU.Succs) {
1609       if (SuccDep.getSUnit() == &ExitSU)
1610         SuccDep.setLatency(0);
1611     }
1612 
1613     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1614     break;
1615   }
1616 }
1617 
1618 //===----------------------------------------------------------------------===//
1619 // CopyConstrain - DAG post-processing to encourage copy elimination.
1620 //===----------------------------------------------------------------------===//
1621 
1622 namespace {
1623 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1624 /// the one use that defines the copy's source vreg, most likely an induction
1625 /// variable increment.
1626 class CopyConstrain : public ScheduleDAGMutation {
1627   // Transient state.
1628   SlotIndex RegionBeginIdx;
1629   // RegionEndIdx is the slot index of the last non-debug instruction in the
1630   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1631   SlotIndex RegionEndIdx;
1632 public:
1633   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1634 
1635   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1636 
1637 protected:
1638   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1639 };
1640 } // anonymous
1641 
1642 namespace llvm {
1643 
1644 std::unique_ptr<ScheduleDAGMutation>
1645 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1646                              const TargetRegisterInfo *TRI) {
1647   return make_unique<CopyConstrain>(TII, TRI);
1648 }
1649 
1650 } // namespace llvm
1651 
1652 /// constrainLocalCopy handles two possibilities:
1653 /// 1) Local src:
1654 /// I0:     = dst
1655 /// I1: src = ...
1656 /// I2:     = dst
1657 /// I3: dst = src (copy)
1658 /// (create pred->succ edges I0->I1, I2->I1)
1659 ///
1660 /// 2) Local copy:
1661 /// I0: dst = src (copy)
1662 /// I1:     = dst
1663 /// I2: src = ...
1664 /// I3:     = dst
1665 /// (create pred->succ edges I1->I2, I3->I2)
1666 ///
1667 /// Although the MachineScheduler is currently constrained to single blocks,
1668 /// this algorithm should handle extended blocks. An EBB is a set of
1669 /// contiguously numbered blocks such that the previous block in the EBB is
1670 /// always the single predecessor.
1671 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1672   LiveIntervals *LIS = DAG->getLIS();
1673   MachineInstr *Copy = CopySU->getInstr();
1674 
1675   // Check for pure vreg copies.
1676   const MachineOperand &SrcOp = Copy->getOperand(1);
1677   unsigned SrcReg = SrcOp.getReg();
1678   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1679     return;
1680 
1681   const MachineOperand &DstOp = Copy->getOperand(0);
1682   unsigned DstReg = DstOp.getReg();
1683   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1684     return;
1685 
1686   // Check if either the dest or source is local. If it's live across a back
1687   // edge, it's not local. Note that if both vregs are live across the back
1688   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1689   // If both the copy's source and dest are local live intervals, then we
1690   // should treat the dest as the global for the purpose of adding
1691   // constraints. This adds edges from source's other uses to the copy.
1692   unsigned LocalReg = SrcReg;
1693   unsigned GlobalReg = DstReg;
1694   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1695   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1696     LocalReg = DstReg;
1697     GlobalReg = SrcReg;
1698     LocalLI = &LIS->getInterval(LocalReg);
1699     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1700       return;
1701   }
1702   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1703 
1704   // Find the global segment after the start of the local LI.
1705   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1706   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1707   // local live range. We could create edges from other global uses to the local
1708   // start, but the coalescer should have already eliminated these cases, so
1709   // don't bother dealing with it.
1710   if (GlobalSegment == GlobalLI->end())
1711     return;
1712 
1713   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1714   // returned the next global segment. But if GlobalSegment overlaps with
1715   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1716   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1717   if (GlobalSegment->contains(LocalLI->beginIndex()))
1718     ++GlobalSegment;
1719 
1720   if (GlobalSegment == GlobalLI->end())
1721     return;
1722 
1723   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1724   if (GlobalSegment != GlobalLI->begin()) {
1725     // Two address defs have no hole.
1726     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1727                                GlobalSegment->start)) {
1728       return;
1729     }
1730     // If the prior global segment may be defined by the same two-address
1731     // instruction that also defines LocalLI, then can't make a hole here.
1732     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1733                                LocalLI->beginIndex())) {
1734       return;
1735     }
1736     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1737     // it would be a disconnected component in the live range.
1738     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1739            "Disconnected LRG within the scheduling region.");
1740   }
1741   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1742   if (!GlobalDef)
1743     return;
1744 
1745   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1746   if (!GlobalSU)
1747     return;
1748 
1749   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1750   // constraining the uses of the last local def to precede GlobalDef.
1751   SmallVector<SUnit*,8> LocalUses;
1752   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1753   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1754   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1755   for (SUnit::const_succ_iterator
1756          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1757        I != E; ++I) {
1758     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1759       continue;
1760     if (I->getSUnit() == GlobalSU)
1761       continue;
1762     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1763       return;
1764     LocalUses.push_back(I->getSUnit());
1765   }
1766   // Open the top of the GlobalLI hole by constraining any earlier global uses
1767   // to precede the start of LocalLI.
1768   SmallVector<SUnit*,8> GlobalUses;
1769   MachineInstr *FirstLocalDef =
1770     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1771   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1772   for (SUnit::const_pred_iterator
1773          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1774     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1775       continue;
1776     if (I->getSUnit() == FirstLocalSU)
1777       continue;
1778     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1779       return;
1780     GlobalUses.push_back(I->getSUnit());
1781   }
1782   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1783   // Add the weak edges.
1784   for (SmallVectorImpl<SUnit*>::const_iterator
1785          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1786     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1787           << GlobalSU->NodeNum << ")\n");
1788     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1789   }
1790   for (SmallVectorImpl<SUnit*>::const_iterator
1791          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1792     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1793           << FirstLocalSU->NodeNum << ")\n");
1794     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1795   }
1796 }
1797 
1798 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1799 /// copy elimination.
1800 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1801   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1802   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1803 
1804   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1805   if (FirstPos == DAG->end())
1806     return;
1807   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1808   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1809       *priorNonDebug(DAG->end(), DAG->begin()));
1810 
1811   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1812     SUnit *SU = &DAG->SUnits[Idx];
1813     if (!SU->getInstr()->isCopy())
1814       continue;
1815 
1816     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1817   }
1818 }
1819 
1820 //===----------------------------------------------------------------------===//
1821 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1822 // and possibly other custom schedulers.
1823 //===----------------------------------------------------------------------===//
1824 
1825 static const unsigned InvalidCycle = ~0U;
1826 
1827 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1828 
1829 void SchedBoundary::reset() {
1830   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1831   // Destroying and reconstructing it is very expensive though. So keep
1832   // invalid, placeholder HazardRecs.
1833   if (HazardRec && HazardRec->isEnabled()) {
1834     delete HazardRec;
1835     HazardRec = nullptr;
1836   }
1837   Available.clear();
1838   Pending.clear();
1839   CheckPending = false;
1840   CurrCycle = 0;
1841   CurrMOps = 0;
1842   MinReadyCycle = UINT_MAX;
1843   ExpectedLatency = 0;
1844   DependentLatency = 0;
1845   RetiredMOps = 0;
1846   MaxExecutedResCount = 0;
1847   ZoneCritResIdx = 0;
1848   IsResourceLimited = false;
1849   ReservedCycles.clear();
1850 #ifndef NDEBUG
1851   // Track the maximum number of stall cycles that could arise either from the
1852   // latency of a DAG edge or the number of cycles that a processor resource is
1853   // reserved (SchedBoundary::ReservedCycles).
1854   MaxObservedStall = 0;
1855 #endif
1856   // Reserve a zero-count for invalid CritResIdx.
1857   ExecutedResCounts.resize(1);
1858   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1859 }
1860 
1861 void SchedRemainder::
1862 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1863   reset();
1864   if (!SchedModel->hasInstrSchedModel())
1865     return;
1866   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1867   for (std::vector<SUnit>::iterator
1868          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1869     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1870     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1871       * SchedModel->getMicroOpFactor();
1872     for (TargetSchedModel::ProcResIter
1873            PI = SchedModel->getWriteProcResBegin(SC),
1874            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1875       unsigned PIdx = PI->ProcResourceIdx;
1876       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1877       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1878     }
1879   }
1880 }
1881 
1882 void SchedBoundary::
1883 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1884   reset();
1885   DAG = dag;
1886   SchedModel = smodel;
1887   Rem = rem;
1888   if (SchedModel->hasInstrSchedModel()) {
1889     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1890     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1891   }
1892 }
1893 
1894 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1895 /// these "soft stalls" differently than the hard stall cycles based on CPU
1896 /// resources and computed by checkHazard(). A fully in-order model
1897 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1898 /// available for scheduling until they are ready. However, a weaker in-order
1899 /// model may use this for heuristics. For example, if a processor has in-order
1900 /// behavior when reading certain resources, this may come into play.
1901 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1902   if (!SU->isUnbuffered)
1903     return 0;
1904 
1905   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1906   if (ReadyCycle > CurrCycle)
1907     return ReadyCycle - CurrCycle;
1908   return 0;
1909 }
1910 
1911 /// Compute the next cycle at which the given processor resource can be
1912 /// scheduled.
1913 unsigned SchedBoundary::
1914 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1915   unsigned NextUnreserved = ReservedCycles[PIdx];
1916   // If this resource has never been used, always return cycle zero.
1917   if (NextUnreserved == InvalidCycle)
1918     return 0;
1919   // For bottom-up scheduling add the cycles needed for the current operation.
1920   if (!isTop())
1921     NextUnreserved += Cycles;
1922   return NextUnreserved;
1923 }
1924 
1925 /// Does this SU have a hazard within the current instruction group.
1926 ///
1927 /// The scheduler supports two modes of hazard recognition. The first is the
1928 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1929 /// supports highly complicated in-order reservation tables
1930 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1931 ///
1932 /// The second is a streamlined mechanism that checks for hazards based on
1933 /// simple counters that the scheduler itself maintains. It explicitly checks
1934 /// for instruction dispatch limitations, including the number of micro-ops that
1935 /// can dispatch per cycle.
1936 ///
1937 /// TODO: Also check whether the SU must start a new group.
1938 bool SchedBoundary::checkHazard(SUnit *SU) {
1939   if (HazardRec->isEnabled()
1940       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1941     return true;
1942   }
1943   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1944   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1945     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1946           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1947     return true;
1948   }
1949   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1950     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1951     for (TargetSchedModel::ProcResIter
1952            PI = SchedModel->getWriteProcResBegin(SC),
1953            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1954       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1955       if (NRCycle > CurrCycle) {
1956 #ifndef NDEBUG
1957         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1958 #endif
1959         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1960               << SchedModel->getResourceName(PI->ProcResourceIdx)
1961               << "=" << NRCycle << "c\n");
1962         return true;
1963       }
1964     }
1965   }
1966   return false;
1967 }
1968 
1969 // Find the unscheduled node in ReadySUs with the highest latency.
1970 unsigned SchedBoundary::
1971 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1972   SUnit *LateSU = nullptr;
1973   unsigned RemLatency = 0;
1974   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1975        I != E; ++I) {
1976     unsigned L = getUnscheduledLatency(*I);
1977     if (L > RemLatency) {
1978       RemLatency = L;
1979       LateSU = *I;
1980     }
1981   }
1982   if (LateSU) {
1983     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1984           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1985   }
1986   return RemLatency;
1987 }
1988 
1989 // Count resources in this zone and the remaining unscheduled
1990 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1991 // resource index, or zero if the zone is issue limited.
1992 unsigned SchedBoundary::
1993 getOtherResourceCount(unsigned &OtherCritIdx) {
1994   OtherCritIdx = 0;
1995   if (!SchedModel->hasInstrSchedModel())
1996     return 0;
1997 
1998   unsigned OtherCritCount = Rem->RemIssueCount
1999     + (RetiredMOps * SchedModel->getMicroOpFactor());
2000   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2001         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2002   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2003        PIdx != PEnd; ++PIdx) {
2004     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2005     if (OtherCount > OtherCritCount) {
2006       OtherCritCount = OtherCount;
2007       OtherCritIdx = PIdx;
2008     }
2009   }
2010   if (OtherCritIdx) {
2011     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2012           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2013           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2014   }
2015   return OtherCritCount;
2016 }
2017 
2018 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2019   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2020 
2021 #ifndef NDEBUG
2022   // ReadyCycle was been bumped up to the CurrCycle when this node was
2023   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2024   // scheduling, so may now be greater than ReadyCycle.
2025   if (ReadyCycle > CurrCycle)
2026     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2027 #endif
2028 
2029   if (ReadyCycle < MinReadyCycle)
2030     MinReadyCycle = ReadyCycle;
2031 
2032   // Check for interlocks first. For the purpose of other heuristics, an
2033   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2034   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2035   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2036       Available.size() >= ReadyListLimit)
2037     Pending.push(SU);
2038   else
2039     Available.push(SU);
2040 }
2041 
2042 /// Move the boundary of scheduled code by one cycle.
2043 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2044   if (SchedModel->getMicroOpBufferSize() == 0) {
2045     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
2046     if (MinReadyCycle > NextCycle)
2047       NextCycle = MinReadyCycle;
2048   }
2049   // Update the current micro-ops, which will issue in the next cycle.
2050   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2051   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2052 
2053   // Decrement DependentLatency based on the next cycle.
2054   if ((NextCycle - CurrCycle) > DependentLatency)
2055     DependentLatency = 0;
2056   else
2057     DependentLatency -= (NextCycle - CurrCycle);
2058 
2059   if (!HazardRec->isEnabled()) {
2060     // Bypass HazardRec virtual calls.
2061     CurrCycle = NextCycle;
2062   } else {
2063     // Bypass getHazardType calls in case of long latency.
2064     for (; CurrCycle != NextCycle; ++CurrCycle) {
2065       if (isTop())
2066         HazardRec->AdvanceCycle();
2067       else
2068         HazardRec->RecedeCycle();
2069     }
2070   }
2071   CheckPending = true;
2072   unsigned LFactor = SchedModel->getLatencyFactor();
2073   IsResourceLimited =
2074     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2075     > (int)LFactor;
2076 
2077   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2078 }
2079 
2080 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2081   ExecutedResCounts[PIdx] += Count;
2082   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2083     MaxExecutedResCount = ExecutedResCounts[PIdx];
2084 }
2085 
2086 /// Add the given processor resource to this scheduled zone.
2087 ///
2088 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2089 /// during which this resource is consumed.
2090 ///
2091 /// \return the next cycle at which the instruction may execute without
2092 /// oversubscribing resources.
2093 unsigned SchedBoundary::
2094 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2095   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2096   unsigned Count = Factor * Cycles;
2097   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2098         << " +" << Cycles << "x" << Factor << "u\n");
2099 
2100   // Update Executed resources counts.
2101   incExecutedResources(PIdx, Count);
2102   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2103   Rem->RemainingCounts[PIdx] -= Count;
2104 
2105   // Check if this resource exceeds the current critical resource. If so, it
2106   // becomes the critical resource.
2107   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2108     ZoneCritResIdx = PIdx;
2109     DEBUG(dbgs() << "  *** Critical resource "
2110           << SchedModel->getResourceName(PIdx) << ": "
2111           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2112   }
2113   // For reserved resources, record the highest cycle using the resource.
2114   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2115   if (NextAvailable > CurrCycle) {
2116     DEBUG(dbgs() << "  Resource conflict: "
2117           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2118           << NextAvailable << "\n");
2119   }
2120   return NextAvailable;
2121 }
2122 
2123 /// Move the boundary of scheduled code by one SUnit.
2124 void SchedBoundary::bumpNode(SUnit *SU) {
2125   // Update the reservation table.
2126   if (HazardRec->isEnabled()) {
2127     if (!isTop() && SU->isCall) {
2128       // Calls are scheduled with their preceding instructions. For bottom-up
2129       // scheduling, clear the pipeline state before emitting.
2130       HazardRec->Reset();
2131     }
2132     HazardRec->EmitInstruction(SU);
2133   }
2134   // checkHazard should prevent scheduling multiple instructions per cycle that
2135   // exceed the issue width.
2136   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2137   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2138   assert(
2139       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2140       "Cannot schedule this instruction's MicroOps in the current cycle.");
2141 
2142   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2143   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2144 
2145   unsigned NextCycle = CurrCycle;
2146   switch (SchedModel->getMicroOpBufferSize()) {
2147   case 0:
2148     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2149     break;
2150   case 1:
2151     if (ReadyCycle > NextCycle) {
2152       NextCycle = ReadyCycle;
2153       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2154     }
2155     break;
2156   default:
2157     // We don't currently model the OOO reorder buffer, so consider all
2158     // scheduled MOps to be "retired". We do loosely model in-order resource
2159     // latency. If this instruction uses an in-order resource, account for any
2160     // likely stall cycles.
2161     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2162       NextCycle = ReadyCycle;
2163     break;
2164   }
2165   RetiredMOps += IncMOps;
2166 
2167   // Update resource counts and critical resource.
2168   if (SchedModel->hasInstrSchedModel()) {
2169     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2170     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2171     Rem->RemIssueCount -= DecRemIssue;
2172     if (ZoneCritResIdx) {
2173       // Scale scheduled micro-ops for comparing with the critical resource.
2174       unsigned ScaledMOps =
2175         RetiredMOps * SchedModel->getMicroOpFactor();
2176 
2177       // If scaled micro-ops are now more than the previous critical resource by
2178       // a full cycle, then micro-ops issue becomes critical.
2179       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2180           >= (int)SchedModel->getLatencyFactor()) {
2181         ZoneCritResIdx = 0;
2182         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2183               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2184       }
2185     }
2186     for (TargetSchedModel::ProcResIter
2187            PI = SchedModel->getWriteProcResBegin(SC),
2188            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2189       unsigned RCycle =
2190         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2191       if (RCycle > NextCycle)
2192         NextCycle = RCycle;
2193     }
2194     if (SU->hasReservedResource) {
2195       // For reserved resources, record the highest cycle using the resource.
2196       // For top-down scheduling, this is the cycle in which we schedule this
2197       // instruction plus the number of cycles the operations reserves the
2198       // resource. For bottom-up is it simply the instruction's cycle.
2199       for (TargetSchedModel::ProcResIter
2200              PI = SchedModel->getWriteProcResBegin(SC),
2201              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2202         unsigned PIdx = PI->ProcResourceIdx;
2203         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2204           if (isTop()) {
2205             ReservedCycles[PIdx] =
2206               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2207           }
2208           else
2209             ReservedCycles[PIdx] = NextCycle;
2210         }
2211       }
2212     }
2213   }
2214   // Update ExpectedLatency and DependentLatency.
2215   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2216   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2217   if (SU->getDepth() > TopLatency) {
2218     TopLatency = SU->getDepth();
2219     DEBUG(dbgs() << "  " << Available.getName()
2220           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2221   }
2222   if (SU->getHeight() > BotLatency) {
2223     BotLatency = SU->getHeight();
2224     DEBUG(dbgs() << "  " << Available.getName()
2225           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2226   }
2227   // If we stall for any reason, bump the cycle.
2228   if (NextCycle > CurrCycle) {
2229     bumpCycle(NextCycle);
2230   } else {
2231     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2232     // resource limited. If a stall occurred, bumpCycle does this.
2233     unsigned LFactor = SchedModel->getLatencyFactor();
2234     IsResourceLimited =
2235       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2236       > (int)LFactor;
2237   }
2238   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2239   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2240   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2241   // bump the cycle to avoid uselessly checking everything in the readyQ.
2242   CurrMOps += IncMOps;
2243   while (CurrMOps >= SchedModel->getIssueWidth()) {
2244     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2245           << " at cycle " << CurrCycle << '\n');
2246     bumpCycle(++NextCycle);
2247   }
2248   DEBUG(dumpScheduledState());
2249 }
2250 
2251 /// Release pending ready nodes in to the available queue. This makes them
2252 /// visible to heuristics.
2253 void SchedBoundary::releasePending() {
2254   // If the available queue is empty, it is safe to reset MinReadyCycle.
2255   if (Available.empty())
2256     MinReadyCycle = UINT_MAX;
2257 
2258   // Check to see if any of the pending instructions are ready to issue.  If
2259   // so, add them to the available queue.
2260   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2261   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2262     SUnit *SU = *(Pending.begin()+i);
2263     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2264 
2265     if (ReadyCycle < MinReadyCycle)
2266       MinReadyCycle = ReadyCycle;
2267 
2268     if (!IsBuffered && ReadyCycle > CurrCycle)
2269       continue;
2270 
2271     if (checkHazard(SU))
2272       continue;
2273 
2274     if (Available.size() >= ReadyListLimit)
2275       break;
2276 
2277     Available.push(SU);
2278     Pending.remove(Pending.begin()+i);
2279     --i; --e;
2280   }
2281   CheckPending = false;
2282 }
2283 
2284 /// Remove SU from the ready set for this boundary.
2285 void SchedBoundary::removeReady(SUnit *SU) {
2286   if (Available.isInQueue(SU))
2287     Available.remove(Available.find(SU));
2288   else {
2289     assert(Pending.isInQueue(SU) && "bad ready count");
2290     Pending.remove(Pending.find(SU));
2291   }
2292 }
2293 
2294 /// If this queue only has one ready candidate, return it. As a side effect,
2295 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2296 /// one node is ready. If multiple instructions are ready, return NULL.
2297 SUnit *SchedBoundary::pickOnlyChoice() {
2298   if (CheckPending)
2299     releasePending();
2300 
2301   if (CurrMOps > 0) {
2302     // Defer any ready instrs that now have a hazard.
2303     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2304       if (checkHazard(*I)) {
2305         Pending.push(*I);
2306         I = Available.remove(I);
2307         continue;
2308       }
2309       ++I;
2310     }
2311   }
2312   for (unsigned i = 0; Available.empty(); ++i) {
2313 //  FIXME: Re-enable assert once PR20057 is resolved.
2314 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2315 //           "permanent hazard");
2316     (void)i;
2317     bumpCycle(CurrCycle + 1);
2318     releasePending();
2319   }
2320 
2321   DEBUG(Pending.dump());
2322   DEBUG(Available.dump());
2323 
2324   if (Available.size() == 1)
2325     return *Available.begin();
2326   return nullptr;
2327 }
2328 
2329 #ifndef NDEBUG
2330 // This is useful information to dump after bumpNode.
2331 // Note that the Queue contents are more useful before pickNodeFromQueue.
2332 void SchedBoundary::dumpScheduledState() {
2333   unsigned ResFactor;
2334   unsigned ResCount;
2335   if (ZoneCritResIdx) {
2336     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2337     ResCount = getResourceCount(ZoneCritResIdx);
2338   } else {
2339     ResFactor = SchedModel->getMicroOpFactor();
2340     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2341   }
2342   unsigned LFactor = SchedModel->getLatencyFactor();
2343   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2344          << "  Retired: " << RetiredMOps;
2345   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2346   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2347          << ResCount / ResFactor << " "
2348          << SchedModel->getResourceName(ZoneCritResIdx)
2349          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2350          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2351          << " limited.\n";
2352 }
2353 #endif
2354 
2355 //===----------------------------------------------------------------------===//
2356 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2357 //===----------------------------------------------------------------------===//
2358 
2359 void GenericSchedulerBase::SchedCandidate::
2360 initResourceDelta(const ScheduleDAGMI *DAG,
2361                   const TargetSchedModel *SchedModel) {
2362   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2363     return;
2364 
2365   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2366   for (TargetSchedModel::ProcResIter
2367          PI = SchedModel->getWriteProcResBegin(SC),
2368          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2369     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2370       ResDelta.CritResources += PI->Cycles;
2371     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2372       ResDelta.DemandedResources += PI->Cycles;
2373   }
2374 }
2375 
2376 /// Set the CandPolicy given a scheduling zone given the current resources and
2377 /// latencies inside and outside the zone.
2378 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2379                                      SchedBoundary &CurrZone,
2380                                      SchedBoundary *OtherZone) {
2381   // Apply preemptive heuristics based on the total latency and resources
2382   // inside and outside this zone. Potential stalls should be considered before
2383   // following this policy.
2384 
2385   // Compute remaining latency. We need this both to determine whether the
2386   // overall schedule has become latency-limited and whether the instructions
2387   // outside this zone are resource or latency limited.
2388   //
2389   // The "dependent" latency is updated incrementally during scheduling as the
2390   // max height/depth of scheduled nodes minus the cycles since it was
2391   // scheduled:
2392   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2393   //
2394   // The "independent" latency is the max ready queue depth:
2395   //   ILat = max N.depth for N in Available|Pending
2396   //
2397   // RemainingLatency is the greater of independent and dependent latency.
2398   unsigned RemLatency = CurrZone.getDependentLatency();
2399   RemLatency = std::max(RemLatency,
2400                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2401   RemLatency = std::max(RemLatency,
2402                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2403 
2404   // Compute the critical resource outside the zone.
2405   unsigned OtherCritIdx = 0;
2406   unsigned OtherCount =
2407     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2408 
2409   bool OtherResLimited = false;
2410   if (SchedModel->hasInstrSchedModel()) {
2411     unsigned LFactor = SchedModel->getLatencyFactor();
2412     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2413   }
2414   // Schedule aggressively for latency in PostRA mode. We don't check for
2415   // acyclic latency during PostRA, and highly out-of-order processors will
2416   // skip PostRA scheduling.
2417   if (!OtherResLimited) {
2418     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2419       Policy.ReduceLatency |= true;
2420       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2421             << " RemainingLatency " << RemLatency << " + "
2422             << CurrZone.getCurrCycle() << "c > CritPath "
2423             << Rem.CriticalPath << "\n");
2424     }
2425   }
2426   // If the same resource is limiting inside and outside the zone, do nothing.
2427   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2428     return;
2429 
2430   DEBUG(
2431     if (CurrZone.isResourceLimited()) {
2432       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2433              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2434              << "\n";
2435     }
2436     if (OtherResLimited)
2437       dbgs() << "  RemainingLimit: "
2438              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2439     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2440       dbgs() << "  Latency limited both directions.\n");
2441 
2442   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2443     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2444 
2445   if (OtherResLimited)
2446     Policy.DemandResIdx = OtherCritIdx;
2447 }
2448 
2449 #ifndef NDEBUG
2450 const char *GenericSchedulerBase::getReasonStr(
2451   GenericSchedulerBase::CandReason Reason) {
2452   switch (Reason) {
2453   case NoCand:         return "NOCAND    ";
2454   case Only1:          return "ONLY1     ";
2455   case PhysRegCopy:    return "PREG-COPY ";
2456   case RegExcess:      return "REG-EXCESS";
2457   case RegCritical:    return "REG-CRIT  ";
2458   case Stall:          return "STALL     ";
2459   case Cluster:        return "CLUSTER   ";
2460   case Weak:           return "WEAK      ";
2461   case RegMax:         return "REG-MAX   ";
2462   case ResourceReduce: return "RES-REDUCE";
2463   case ResourceDemand: return "RES-DEMAND";
2464   case TopDepthReduce: return "TOP-DEPTH ";
2465   case TopPathReduce:  return "TOP-PATH  ";
2466   case BotHeightReduce:return "BOT-HEIGHT";
2467   case BotPathReduce:  return "BOT-PATH  ";
2468   case NextDefUse:     return "DEF-USE   ";
2469   case NodeOrder:      return "ORDER     ";
2470   };
2471   llvm_unreachable("Unknown reason!");
2472 }
2473 
2474 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2475   PressureChange P;
2476   unsigned ResIdx = 0;
2477   unsigned Latency = 0;
2478   switch (Cand.Reason) {
2479   default:
2480     break;
2481   case RegExcess:
2482     P = Cand.RPDelta.Excess;
2483     break;
2484   case RegCritical:
2485     P = Cand.RPDelta.CriticalMax;
2486     break;
2487   case RegMax:
2488     P = Cand.RPDelta.CurrentMax;
2489     break;
2490   case ResourceReduce:
2491     ResIdx = Cand.Policy.ReduceResIdx;
2492     break;
2493   case ResourceDemand:
2494     ResIdx = Cand.Policy.DemandResIdx;
2495     break;
2496   case TopDepthReduce:
2497     Latency = Cand.SU->getDepth();
2498     break;
2499   case TopPathReduce:
2500     Latency = Cand.SU->getHeight();
2501     break;
2502   case BotHeightReduce:
2503     Latency = Cand.SU->getHeight();
2504     break;
2505   case BotPathReduce:
2506     Latency = Cand.SU->getDepth();
2507     break;
2508   }
2509   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2510   if (P.isValid())
2511     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2512            << ":" << P.getUnitInc() << " ";
2513   else
2514     dbgs() << "      ";
2515   if (ResIdx)
2516     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2517   else
2518     dbgs() << "         ";
2519   if (Latency)
2520     dbgs() << " " << Latency << " cycles ";
2521   else
2522     dbgs() << "          ";
2523   dbgs() << '\n';
2524 }
2525 #endif
2526 
2527 /// Return true if this heuristic determines order.
2528 static bool tryLess(int TryVal, int CandVal,
2529                     GenericSchedulerBase::SchedCandidate &TryCand,
2530                     GenericSchedulerBase::SchedCandidate &Cand,
2531                     GenericSchedulerBase::CandReason Reason) {
2532   if (TryVal < CandVal) {
2533     TryCand.Reason = Reason;
2534     return true;
2535   }
2536   if (TryVal > CandVal) {
2537     if (Cand.Reason > Reason)
2538       Cand.Reason = Reason;
2539     return true;
2540   }
2541   return false;
2542 }
2543 
2544 static bool tryGreater(int TryVal, int CandVal,
2545                        GenericSchedulerBase::SchedCandidate &TryCand,
2546                        GenericSchedulerBase::SchedCandidate &Cand,
2547                        GenericSchedulerBase::CandReason Reason) {
2548   if (TryVal > CandVal) {
2549     TryCand.Reason = Reason;
2550     return true;
2551   }
2552   if (TryVal < CandVal) {
2553     if (Cand.Reason > Reason)
2554       Cand.Reason = Reason;
2555     return true;
2556   }
2557   return false;
2558 }
2559 
2560 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2561                        GenericSchedulerBase::SchedCandidate &Cand,
2562                        SchedBoundary &Zone) {
2563   if (Zone.isTop()) {
2564     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2565       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2566                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2567         return true;
2568     }
2569     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2570                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2571       return true;
2572   } else {
2573     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2574       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2575                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2576         return true;
2577     }
2578     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2579                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2580       return true;
2581   }
2582   return false;
2583 }
2584 
2585 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2586   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2587         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2588 }
2589 
2590 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2591   tracePick(Cand.Reason, Cand.AtTop);
2592 }
2593 
2594 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2595   assert(dag->hasVRegLiveness() &&
2596          "(PreRA)GenericScheduler needs vreg liveness");
2597   DAG = static_cast<ScheduleDAGMILive*>(dag);
2598   SchedModel = DAG->getSchedModel();
2599   TRI = DAG->TRI;
2600 
2601   Rem.init(DAG, SchedModel);
2602   Top.init(DAG, SchedModel, &Rem);
2603   Bot.init(DAG, SchedModel, &Rem);
2604 
2605   // Initialize resource counts.
2606 
2607   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2608   // are disabled, then these HazardRecs will be disabled.
2609   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2610   if (!Top.HazardRec) {
2611     Top.HazardRec =
2612         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2613             Itin, DAG);
2614   }
2615   if (!Bot.HazardRec) {
2616     Bot.HazardRec =
2617         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2618             Itin, DAG);
2619   }
2620   TopCand.SU = nullptr;
2621   BotCand.SU = nullptr;
2622 }
2623 
2624 /// Initialize the per-region scheduling policy.
2625 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2626                                   MachineBasicBlock::iterator End,
2627                                   unsigned NumRegionInstrs) {
2628   const MachineFunction &MF = *Begin->getParent()->getParent();
2629   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2630 
2631   // Avoid setting up the register pressure tracker for small regions to save
2632   // compile time. As a rough heuristic, only track pressure when the number of
2633   // schedulable instructions exceeds half the integer register file.
2634   RegionPolicy.ShouldTrackPressure = true;
2635   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2636     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2637     if (TLI->isTypeLegal(LegalIntVT)) {
2638       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2639         TLI->getRegClassFor(LegalIntVT));
2640       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2641     }
2642   }
2643 
2644   // For generic targets, we default to bottom-up, because it's simpler and more
2645   // compile-time optimizations have been implemented in that direction.
2646   RegionPolicy.OnlyBottomUp = true;
2647 
2648   // Allow the subtarget to override default policy.
2649   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2650 
2651   // After subtarget overrides, apply command line options.
2652   if (!EnableRegPressure)
2653     RegionPolicy.ShouldTrackPressure = false;
2654 
2655   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2656   // e.g. -misched-bottomup=false allows scheduling in both directions.
2657   assert((!ForceTopDown || !ForceBottomUp) &&
2658          "-misched-topdown incompatible with -misched-bottomup");
2659   if (ForceBottomUp.getNumOccurrences() > 0) {
2660     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2661     if (RegionPolicy.OnlyBottomUp)
2662       RegionPolicy.OnlyTopDown = false;
2663   }
2664   if (ForceTopDown.getNumOccurrences() > 0) {
2665     RegionPolicy.OnlyTopDown = ForceTopDown;
2666     if (RegionPolicy.OnlyTopDown)
2667       RegionPolicy.OnlyBottomUp = false;
2668   }
2669 }
2670 
2671 void GenericScheduler::dumpPolicy() {
2672   dbgs() << "GenericScheduler RegionPolicy: "
2673          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2674          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2675          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2676          << "\n";
2677 }
2678 
2679 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2680 /// critical path by more cycles than it takes to drain the instruction buffer.
2681 /// We estimate an upper bounds on in-flight instructions as:
2682 ///
2683 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2684 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2685 /// InFlightResources = InFlightIterations * LoopResources
2686 ///
2687 /// TODO: Check execution resources in addition to IssueCount.
2688 void GenericScheduler::checkAcyclicLatency() {
2689   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2690     return;
2691 
2692   // Scaled number of cycles per loop iteration.
2693   unsigned IterCount =
2694     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2695              Rem.RemIssueCount);
2696   // Scaled acyclic critical path.
2697   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2698   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2699   unsigned InFlightCount =
2700     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2701   unsigned BufferLimit =
2702     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2703 
2704   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2705 
2706   DEBUG(dbgs() << "IssueCycles="
2707         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2708         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2709         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2710         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2711         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2712         if (Rem.IsAcyclicLatencyLimited)
2713           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2714 }
2715 
2716 void GenericScheduler::registerRoots() {
2717   Rem.CriticalPath = DAG->ExitSU.getDepth();
2718 
2719   // Some roots may not feed into ExitSU. Check all of them in case.
2720   for (std::vector<SUnit*>::const_iterator
2721          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2722     if ((*I)->getDepth() > Rem.CriticalPath)
2723       Rem.CriticalPath = (*I)->getDepth();
2724   }
2725   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2726   if (DumpCriticalPathLength) {
2727     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2728   }
2729 
2730   if (EnableCyclicPath) {
2731     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2732     checkAcyclicLatency();
2733   }
2734 }
2735 
2736 static bool tryPressure(const PressureChange &TryP,
2737                         const PressureChange &CandP,
2738                         GenericSchedulerBase::SchedCandidate &TryCand,
2739                         GenericSchedulerBase::SchedCandidate &Cand,
2740                         GenericSchedulerBase::CandReason Reason,
2741                         const TargetRegisterInfo *TRI,
2742                         const MachineFunction &MF) {
2743   // If one candidate decreases and the other increases, go with it.
2744   // Invalid candidates have UnitInc==0.
2745   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2746                  Reason)) {
2747     return true;
2748   }
2749   // Do not compare the magnitude of pressure changes between top and bottom
2750   // boundary.
2751   if (Cand.AtTop != TryCand.AtTop)
2752     return false;
2753 
2754   // If both candidates affect the same set in the same boundary, go with the
2755   // smallest increase.
2756   unsigned TryPSet = TryP.getPSetOrMax();
2757   unsigned CandPSet = CandP.getPSetOrMax();
2758   if (TryPSet == CandPSet) {
2759     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2760                    Reason);
2761   }
2762 
2763   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2764                                  std::numeric_limits<int>::max();
2765 
2766   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2767                                    std::numeric_limits<int>::max();
2768 
2769   // If the candidates are decreasing pressure, reverse priority.
2770   if (TryP.getUnitInc() < 0)
2771     std::swap(TryRank, CandRank);
2772   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2773 }
2774 
2775 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2776   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2777 }
2778 
2779 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2780 /// their physreg def/use.
2781 ///
2782 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2783 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2784 /// with the operation that produces or consumes the physreg. We'll do this when
2785 /// regalloc has support for parallel copies.
2786 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2787   const MachineInstr *MI = SU->getInstr();
2788   if (!MI->isCopy())
2789     return 0;
2790 
2791   unsigned ScheduledOper = isTop ? 1 : 0;
2792   unsigned UnscheduledOper = isTop ? 0 : 1;
2793   // If we have already scheduled the physreg produce/consumer, immediately
2794   // schedule the copy.
2795   if (TargetRegisterInfo::isPhysicalRegister(
2796         MI->getOperand(ScheduledOper).getReg()))
2797     return 1;
2798   // If the physreg is at the boundary, defer it. Otherwise schedule it
2799   // immediately to free the dependent. We can hoist the copy later.
2800   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2801   if (TargetRegisterInfo::isPhysicalRegister(
2802         MI->getOperand(UnscheduledOper).getReg()))
2803     return AtBoundary ? -1 : 1;
2804   return 0;
2805 }
2806 
2807 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2808                                      bool AtTop,
2809                                      const RegPressureTracker &RPTracker,
2810                                      RegPressureTracker &TempTracker) {
2811   Cand.SU = SU;
2812   Cand.AtTop = AtTop;
2813   if (DAG->isTrackingPressure()) {
2814     if (AtTop) {
2815       TempTracker.getMaxDownwardPressureDelta(
2816         Cand.SU->getInstr(),
2817         Cand.RPDelta,
2818         DAG->getRegionCriticalPSets(),
2819         DAG->getRegPressure().MaxSetPressure);
2820     } else {
2821       if (VerifyScheduling) {
2822         TempTracker.getMaxUpwardPressureDelta(
2823           Cand.SU->getInstr(),
2824           &DAG->getPressureDiff(Cand.SU),
2825           Cand.RPDelta,
2826           DAG->getRegionCriticalPSets(),
2827           DAG->getRegPressure().MaxSetPressure);
2828       } else {
2829         RPTracker.getUpwardPressureDelta(
2830           Cand.SU->getInstr(),
2831           DAG->getPressureDiff(Cand.SU),
2832           Cand.RPDelta,
2833           DAG->getRegionCriticalPSets(),
2834           DAG->getRegPressure().MaxSetPressure);
2835       }
2836     }
2837   }
2838   DEBUG(if (Cand.RPDelta.Excess.isValid())
2839           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2840                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2841                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2842 }
2843 
2844 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2845 /// hierarchical. This may be more efficient than a graduated cost model because
2846 /// we don't need to evaluate all aspects of the model for each node in the
2847 /// queue. But it's really done to make the heuristics easier to debug and
2848 /// statistically analyze.
2849 ///
2850 /// \param Cand provides the policy and current best candidate.
2851 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2852 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2853 //              if Cand is from a different zone than TryCand.
2854 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2855                                     SchedCandidate &TryCand,
2856                                     SchedBoundary *Zone) {
2857   // Initialize the candidate if needed.
2858   if (!Cand.isValid()) {
2859     TryCand.Reason = NodeOrder;
2860     return;
2861   }
2862 
2863   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2864                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2865                  TryCand, Cand, PhysRegCopy))
2866     return;
2867 
2868   // Avoid exceeding the target's limit.
2869   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2870                                                Cand.RPDelta.Excess,
2871                                                TryCand, Cand, RegExcess, TRI,
2872                                                DAG->MF))
2873     return;
2874 
2875   // Avoid increasing the max critical pressure in the scheduled region.
2876   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2877                                                Cand.RPDelta.CriticalMax,
2878                                                TryCand, Cand, RegCritical, TRI,
2879                                                DAG->MF))
2880     return;
2881 
2882   // We only compare a subset of features when comparing nodes between
2883   // Top and Bottom boundary. Some properties are simply incomparable, in many
2884   // other instances we should only override the other boundary if something
2885   // is a clear good pick on one boundary. Skip heuristics that are more
2886   // "tie-breaking" in nature.
2887   bool SameBoundary = Zone != nullptr;
2888   if (SameBoundary) {
2889     // For loops that are acyclic path limited, aggressively schedule for
2890     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2891     // heuristics to take precedence.
2892     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2893         tryLatency(TryCand, Cand, *Zone))
2894       return;
2895 
2896     // Prioritize instructions that read unbuffered resources by stall cycles.
2897     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2898                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2899       return;
2900   }
2901 
2902   // Keep clustered nodes together to encourage downstream peephole
2903   // optimizations which may reduce resource requirements.
2904   //
2905   // This is a best effort to set things up for a post-RA pass. Optimizations
2906   // like generating loads of multiple registers should ideally be done within
2907   // the scheduler pass by combining the loads during DAG postprocessing.
2908   const SUnit *CandNextClusterSU =
2909     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2910   const SUnit *TryCandNextClusterSU =
2911     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2912   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2913                  Cand.SU == CandNextClusterSU,
2914                  TryCand, Cand, Cluster))
2915     return;
2916 
2917   if (SameBoundary) {
2918     // Weak edges are for clustering and other constraints.
2919     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2920                 getWeakLeft(Cand.SU, Cand.AtTop),
2921                 TryCand, Cand, Weak))
2922       return;
2923   }
2924 
2925   // Avoid increasing the max pressure of the entire region.
2926   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2927                                                Cand.RPDelta.CurrentMax,
2928                                                TryCand, Cand, RegMax, TRI,
2929                                                DAG->MF))
2930     return;
2931 
2932   if (SameBoundary) {
2933     // Avoid critical resource consumption and balance the schedule.
2934     TryCand.initResourceDelta(DAG, SchedModel);
2935     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2936                 TryCand, Cand, ResourceReduce))
2937       return;
2938     if (tryGreater(TryCand.ResDelta.DemandedResources,
2939                    Cand.ResDelta.DemandedResources,
2940                    TryCand, Cand, ResourceDemand))
2941       return;
2942 
2943     // Avoid serializing long latency dependence chains.
2944     // For acyclic path limited loops, latency was already checked above.
2945     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2946         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2947       return;
2948 
2949     // Fall through to original instruction order.
2950     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2951         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2952       TryCand.Reason = NodeOrder;
2953     }
2954   }
2955 }
2956 
2957 /// Pick the best candidate from the queue.
2958 ///
2959 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2960 /// DAG building. To adjust for the current scheduling location we need to
2961 /// maintain the number of vreg uses remaining to be top-scheduled.
2962 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2963                                          const CandPolicy &ZonePolicy,
2964                                          const RegPressureTracker &RPTracker,
2965                                          SchedCandidate &Cand) {
2966   // getMaxPressureDelta temporarily modifies the tracker.
2967   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2968 
2969   ReadyQueue &Q = Zone.Available;
2970   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2971 
2972     SchedCandidate TryCand(ZonePolicy);
2973     initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker);
2974     // Pass SchedBoundary only when comparing nodes from the same boundary.
2975     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
2976     tryCandidate(Cand, TryCand, ZoneArg);
2977     if (TryCand.Reason != NoCand) {
2978       // Initialize resource delta if needed in case future heuristics query it.
2979       if (TryCand.ResDelta == SchedResourceDelta())
2980         TryCand.initResourceDelta(DAG, SchedModel);
2981       Cand.setBest(TryCand);
2982       DEBUG(traceCandidate(Cand));
2983     }
2984   }
2985 }
2986 
2987 /// Pick the best candidate node from either the top or bottom queue.
2988 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2989   // Schedule as far as possible in the direction of no choice. This is most
2990   // efficient, but also provides the best heuristics for CriticalPSets.
2991   if (SUnit *SU = Bot.pickOnlyChoice()) {
2992     IsTopNode = false;
2993     tracePick(Only1, false);
2994     return SU;
2995   }
2996   if (SUnit *SU = Top.pickOnlyChoice()) {
2997     IsTopNode = true;
2998     tracePick(Only1, true);
2999     return SU;
3000   }
3001   // Set the bottom-up policy based on the state of the current bottom zone and
3002   // the instructions outside the zone, including the top zone.
3003   CandPolicy BotPolicy;
3004   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3005   // Set the top-down policy based on the state of the current top zone and
3006   // the instructions outside the zone, including the bottom zone.
3007   CandPolicy TopPolicy;
3008   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3009 
3010   // See if BotCand is still valid (because we previously scheduled from Top).
3011   DEBUG(dbgs() << "Picking from Bot:\n");
3012   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3013       BotCand.Policy != BotPolicy) {
3014     BotCand.reset(CandPolicy());
3015     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3016     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3017   } else {
3018     DEBUG(traceCandidate(BotCand));
3019 #ifndef NDEBUG
3020     if (VerifyScheduling) {
3021       SchedCandidate TCand;
3022       TCand.reset(CandPolicy());
3023       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3024       assert(TCand.SU == BotCand.SU &&
3025              "Last pick result should correspond to re-picking right now");
3026     }
3027 #endif
3028   }
3029 
3030   // Check if the top Q has a better candidate.
3031   DEBUG(dbgs() << "Picking from Top:\n");
3032   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3033       TopCand.Policy != TopPolicy) {
3034     TopCand.reset(CandPolicy());
3035     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3036     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3037   } else {
3038     DEBUG(traceCandidate(TopCand));
3039 #ifndef NDEBUG
3040     if (VerifyScheduling) {
3041       SchedCandidate TCand;
3042       TCand.reset(CandPolicy());
3043       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3044       assert(TCand.SU == TopCand.SU &&
3045            "Last pick result should correspond to re-picking right now");
3046     }
3047 #endif
3048   }
3049 
3050   // Pick best from BotCand and TopCand.
3051   assert(BotCand.isValid());
3052   assert(TopCand.isValid());
3053   SchedCandidate Cand = BotCand;
3054   TopCand.Reason = NoCand;
3055   tryCandidate(Cand, TopCand, nullptr);
3056   if (TopCand.Reason != NoCand) {
3057     Cand.setBest(TopCand);
3058     DEBUG(traceCandidate(Cand));
3059   }
3060 
3061   IsTopNode = Cand.AtTop;
3062   tracePick(Cand);
3063   return Cand.SU;
3064 }
3065 
3066 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3067 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3068   if (DAG->top() == DAG->bottom()) {
3069     assert(Top.Available.empty() && Top.Pending.empty() &&
3070            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3071     return nullptr;
3072   }
3073   SUnit *SU;
3074   do {
3075     if (RegionPolicy.OnlyTopDown) {
3076       SU = Top.pickOnlyChoice();
3077       if (!SU) {
3078         CandPolicy NoPolicy;
3079         TopCand.reset(NoPolicy);
3080         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3081         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3082         tracePick(TopCand);
3083         SU = TopCand.SU;
3084       }
3085       IsTopNode = true;
3086     } else if (RegionPolicy.OnlyBottomUp) {
3087       SU = Bot.pickOnlyChoice();
3088       if (!SU) {
3089         CandPolicy NoPolicy;
3090         BotCand.reset(NoPolicy);
3091         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3092         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3093         tracePick(BotCand);
3094         SU = BotCand.SU;
3095       }
3096       IsTopNode = false;
3097     } else {
3098       SU = pickNodeBidirectional(IsTopNode);
3099     }
3100   } while (SU->isScheduled);
3101 
3102   if (SU->isTopReady())
3103     Top.removeReady(SU);
3104   if (SU->isBottomReady())
3105     Bot.removeReady(SU);
3106 
3107   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3108   return SU;
3109 }
3110 
3111 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3112 
3113   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3114   if (!isTop)
3115     ++InsertPos;
3116   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3117 
3118   // Find already scheduled copies with a single physreg dependence and move
3119   // them just above the scheduled instruction.
3120   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3121        I != E; ++I) {
3122     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3123       continue;
3124     SUnit *DepSU = I->getSUnit();
3125     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3126       continue;
3127     MachineInstr *Copy = DepSU->getInstr();
3128     if (!Copy->isCopy())
3129       continue;
3130     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3131           I->getSUnit()->dump(DAG));
3132     DAG->moveInstruction(Copy, InsertPos);
3133   }
3134 }
3135 
3136 /// Update the scheduler's state after scheduling a node. This is the same node
3137 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3138 /// update it's state based on the current cycle before MachineSchedStrategy
3139 /// does.
3140 ///
3141 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3142 /// them here. See comments in biasPhysRegCopy.
3143 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3144   if (IsTopNode) {
3145     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3146     Top.bumpNode(SU);
3147     if (SU->hasPhysRegUses)
3148       reschedulePhysRegCopies(SU, true);
3149   } else {
3150     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3151     Bot.bumpNode(SU);
3152     if (SU->hasPhysRegDefs)
3153       reschedulePhysRegCopies(SU, false);
3154   }
3155 }
3156 
3157 /// Create the standard converging machine scheduler. This will be used as the
3158 /// default scheduler if the target does not set a default.
3159 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3160   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3161   // Register DAG post-processors.
3162   //
3163   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3164   // data and pass it to later mutations. Have a single mutation that gathers
3165   // the interesting nodes in one pass.
3166   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3167   if (EnableMemOpCluster) {
3168     if (DAG->TII->enableClusterLoads())
3169       DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
3170     if (DAG->TII->enableClusterStores())
3171       DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
3172   }
3173   if (EnableMacroFusion)
3174     DAG->addMutation(createMacroFusionDAGMutation(DAG->TII));
3175   return DAG;
3176 }
3177 
3178 static MachineSchedRegistry
3179 GenericSchedRegistry("converge", "Standard converging scheduler.",
3180                      createGenericSchedLive);
3181 
3182 //===----------------------------------------------------------------------===//
3183 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3184 //===----------------------------------------------------------------------===//
3185 
3186 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3187   DAG = Dag;
3188   SchedModel = DAG->getSchedModel();
3189   TRI = DAG->TRI;
3190 
3191   Rem.init(DAG, SchedModel);
3192   Top.init(DAG, SchedModel, &Rem);
3193   BotRoots.clear();
3194 
3195   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3196   // or are disabled, then these HazardRecs will be disabled.
3197   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3198   if (!Top.HazardRec) {
3199     Top.HazardRec =
3200         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3201             Itin, DAG);
3202   }
3203 }
3204 
3205 
3206 void PostGenericScheduler::registerRoots() {
3207   Rem.CriticalPath = DAG->ExitSU.getDepth();
3208 
3209   // Some roots may not feed into ExitSU. Check all of them in case.
3210   for (SmallVectorImpl<SUnit*>::const_iterator
3211          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3212     if ((*I)->getDepth() > Rem.CriticalPath)
3213       Rem.CriticalPath = (*I)->getDepth();
3214   }
3215   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3216   if (DumpCriticalPathLength) {
3217     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3218   }
3219 }
3220 
3221 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3222 ///
3223 /// \param Cand provides the policy and current best candidate.
3224 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3225 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3226                                         SchedCandidate &TryCand) {
3227 
3228   // Initialize the candidate if needed.
3229   if (!Cand.isValid()) {
3230     TryCand.Reason = NodeOrder;
3231     return;
3232   }
3233 
3234   // Prioritize instructions that read unbuffered resources by stall cycles.
3235   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3236               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3237     return;
3238 
3239   // Avoid critical resource consumption and balance the schedule.
3240   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3241               TryCand, Cand, ResourceReduce))
3242     return;
3243   if (tryGreater(TryCand.ResDelta.DemandedResources,
3244                  Cand.ResDelta.DemandedResources,
3245                  TryCand, Cand, ResourceDemand))
3246     return;
3247 
3248   // Avoid serializing long latency dependence chains.
3249   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3250     return;
3251   }
3252 
3253   // Fall through to original instruction order.
3254   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3255     TryCand.Reason = NodeOrder;
3256 }
3257 
3258 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3259   ReadyQueue &Q = Top.Available;
3260   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3261     SchedCandidate TryCand(Cand.Policy);
3262     TryCand.SU = *I;
3263     TryCand.AtTop = true;
3264     TryCand.initResourceDelta(DAG, SchedModel);
3265     tryCandidate(Cand, TryCand);
3266     if (TryCand.Reason != NoCand) {
3267       Cand.setBest(TryCand);
3268       DEBUG(traceCandidate(Cand));
3269     }
3270   }
3271 }
3272 
3273 /// Pick the next node to schedule.
3274 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3275   if (DAG->top() == DAG->bottom()) {
3276     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3277     return nullptr;
3278   }
3279   SUnit *SU;
3280   do {
3281     SU = Top.pickOnlyChoice();
3282     if (SU) {
3283       tracePick(Only1, true);
3284     } else {
3285       CandPolicy NoPolicy;
3286       SchedCandidate TopCand(NoPolicy);
3287       // Set the top-down policy based on the state of the current top zone and
3288       // the instructions outside the zone, including the bottom zone.
3289       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3290       pickNodeFromQueue(TopCand);
3291       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3292       tracePick(TopCand);
3293       SU = TopCand.SU;
3294     }
3295   } while (SU->isScheduled);
3296 
3297   IsTopNode = true;
3298   Top.removeReady(SU);
3299 
3300   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3301   return SU;
3302 }
3303 
3304 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3305 /// scheduled/remaining flags in the DAG nodes.
3306 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3307   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3308   Top.bumpNode(SU);
3309 }
3310 
3311 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3312 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3313   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C),
3314                            /*RemoveKillFlags=*/true);
3315 }
3316 
3317 //===----------------------------------------------------------------------===//
3318 // ILP Scheduler. Currently for experimental analysis of heuristics.
3319 //===----------------------------------------------------------------------===//
3320 
3321 namespace {
3322 /// \brief Order nodes by the ILP metric.
3323 struct ILPOrder {
3324   const SchedDFSResult *DFSResult;
3325   const BitVector *ScheduledTrees;
3326   bool MaximizeILP;
3327 
3328   ILPOrder(bool MaxILP)
3329     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3330 
3331   /// \brief Apply a less-than relation on node priority.
3332   ///
3333   /// (Return true if A comes after B in the Q.)
3334   bool operator()(const SUnit *A, const SUnit *B) const {
3335     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3336     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3337     if (SchedTreeA != SchedTreeB) {
3338       // Unscheduled trees have lower priority.
3339       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3340         return ScheduledTrees->test(SchedTreeB);
3341 
3342       // Trees with shallower connections have have lower priority.
3343       if (DFSResult->getSubtreeLevel(SchedTreeA)
3344           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3345         return DFSResult->getSubtreeLevel(SchedTreeA)
3346           < DFSResult->getSubtreeLevel(SchedTreeB);
3347       }
3348     }
3349     if (MaximizeILP)
3350       return DFSResult->getILP(A) < DFSResult->getILP(B);
3351     else
3352       return DFSResult->getILP(A) > DFSResult->getILP(B);
3353   }
3354 };
3355 
3356 /// \brief Schedule based on the ILP metric.
3357 class ILPScheduler : public MachineSchedStrategy {
3358   ScheduleDAGMILive *DAG;
3359   ILPOrder Cmp;
3360 
3361   std::vector<SUnit*> ReadyQ;
3362 public:
3363   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3364 
3365   void initialize(ScheduleDAGMI *dag) override {
3366     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3367     DAG = static_cast<ScheduleDAGMILive*>(dag);
3368     DAG->computeDFSResult();
3369     Cmp.DFSResult = DAG->getDFSResult();
3370     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3371     ReadyQ.clear();
3372   }
3373 
3374   void registerRoots() override {
3375     // Restore the heap in ReadyQ with the updated DFS results.
3376     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3377   }
3378 
3379   /// Implement MachineSchedStrategy interface.
3380   /// -----------------------------------------
3381 
3382   /// Callback to select the highest priority node from the ready Q.
3383   SUnit *pickNode(bool &IsTopNode) override {
3384     if (ReadyQ.empty()) return nullptr;
3385     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3386     SUnit *SU = ReadyQ.back();
3387     ReadyQ.pop_back();
3388     IsTopNode = false;
3389     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3390           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3391           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3392           << DAG->getDFSResult()->getSubtreeLevel(
3393             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3394           << "Scheduling " << *SU->getInstr());
3395     return SU;
3396   }
3397 
3398   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3399   void scheduleTree(unsigned SubtreeID) override {
3400     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3401   }
3402 
3403   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3404   /// DFSResults, and resort the priority Q.
3405   void schedNode(SUnit *SU, bool IsTopNode) override {
3406     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3407   }
3408 
3409   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3410 
3411   void releaseBottomNode(SUnit *SU) override {
3412     ReadyQ.push_back(SU);
3413     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3414   }
3415 };
3416 } // namespace
3417 
3418 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3419   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3420 }
3421 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3422   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3423 }
3424 static MachineSchedRegistry ILPMaxRegistry(
3425   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3426 static MachineSchedRegistry ILPMinRegistry(
3427   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3428 
3429 //===----------------------------------------------------------------------===//
3430 // Machine Instruction Shuffler for Correctness Testing
3431 //===----------------------------------------------------------------------===//
3432 
3433 #ifndef NDEBUG
3434 namespace {
3435 /// Apply a less-than relation on the node order, which corresponds to the
3436 /// instruction order prior to scheduling. IsReverse implements greater-than.
3437 template<bool IsReverse>
3438 struct SUnitOrder {
3439   bool operator()(SUnit *A, SUnit *B) const {
3440     if (IsReverse)
3441       return A->NodeNum > B->NodeNum;
3442     else
3443       return A->NodeNum < B->NodeNum;
3444   }
3445 };
3446 
3447 /// Reorder instructions as much as possible.
3448 class InstructionShuffler : public MachineSchedStrategy {
3449   bool IsAlternating;
3450   bool IsTopDown;
3451 
3452   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3453   // gives nodes with a higher number higher priority causing the latest
3454   // instructions to be scheduled first.
3455   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3456     TopQ;
3457   // When scheduling bottom-up, use greater-than as the queue priority.
3458   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3459     BottomQ;
3460 public:
3461   InstructionShuffler(bool alternate, bool topdown)
3462     : IsAlternating(alternate), IsTopDown(topdown) {}
3463 
3464   void initialize(ScheduleDAGMI*) override {
3465     TopQ.clear();
3466     BottomQ.clear();
3467   }
3468 
3469   /// Implement MachineSchedStrategy interface.
3470   /// -----------------------------------------
3471 
3472   SUnit *pickNode(bool &IsTopNode) override {
3473     SUnit *SU;
3474     if (IsTopDown) {
3475       do {
3476         if (TopQ.empty()) return nullptr;
3477         SU = TopQ.top();
3478         TopQ.pop();
3479       } while (SU->isScheduled);
3480       IsTopNode = true;
3481     } else {
3482       do {
3483         if (BottomQ.empty()) return nullptr;
3484         SU = BottomQ.top();
3485         BottomQ.pop();
3486       } while (SU->isScheduled);
3487       IsTopNode = false;
3488     }
3489     if (IsAlternating)
3490       IsTopDown = !IsTopDown;
3491     return SU;
3492   }
3493 
3494   void schedNode(SUnit *SU, bool IsTopNode) override {}
3495 
3496   void releaseTopNode(SUnit *SU) override {
3497     TopQ.push(SU);
3498   }
3499   void releaseBottomNode(SUnit *SU) override {
3500     BottomQ.push(SU);
3501   }
3502 };
3503 } // namespace
3504 
3505 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3506   bool Alternate = !ForceTopDown && !ForceBottomUp;
3507   bool TopDown = !ForceBottomUp;
3508   assert((TopDown || !ForceTopDown) &&
3509          "-misched-topdown incompatible with -misched-bottomup");
3510   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3511 }
3512 static MachineSchedRegistry ShufflerRegistry(
3513   "shuffle", "Shuffle machine instructions alternating directions",
3514   createInstructionShuffler);
3515 #endif // !NDEBUG
3516 
3517 //===----------------------------------------------------------------------===//
3518 // GraphWriter support for ScheduleDAGMILive.
3519 //===----------------------------------------------------------------------===//
3520 
3521 #ifndef NDEBUG
3522 namespace llvm {
3523 
3524 template<> struct GraphTraits<
3525   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3526 
3527 template<>
3528 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3529 
3530   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3531 
3532   static std::string getGraphName(const ScheduleDAG *G) {
3533     return G->MF.getName();
3534   }
3535 
3536   static bool renderGraphFromBottomUp() {
3537     return true;
3538   }
3539 
3540   static bool isNodeHidden(const SUnit *Node) {
3541     if (ViewMISchedCutoff == 0)
3542       return false;
3543     return (Node->Preds.size() > ViewMISchedCutoff
3544          || Node->Succs.size() > ViewMISchedCutoff);
3545   }
3546 
3547   /// If you want to override the dot attributes printed for a particular
3548   /// edge, override this method.
3549   static std::string getEdgeAttributes(const SUnit *Node,
3550                                        SUnitIterator EI,
3551                                        const ScheduleDAG *Graph) {
3552     if (EI.isArtificialDep())
3553       return "color=cyan,style=dashed";
3554     if (EI.isCtrlDep())
3555       return "color=blue,style=dashed";
3556     return "";
3557   }
3558 
3559   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3560     std::string Str;
3561     raw_string_ostream SS(Str);
3562     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3563     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3564       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3565     SS << "SU:" << SU->NodeNum;
3566     if (DFS)
3567       SS << " I:" << DFS->getNumInstrs(SU);
3568     return SS.str();
3569   }
3570   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3571     return G->getGraphNodeLabel(SU);
3572   }
3573 
3574   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3575     std::string Str("shape=Mrecord");
3576     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3577     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3578       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3579     if (DFS) {
3580       Str += ",style=filled,fillcolor=\"#";
3581       Str += DOT::getColorString(DFS->getSubtreeID(N));
3582       Str += '"';
3583     }
3584     return Str;
3585   }
3586 };
3587 } // namespace llvm
3588 #endif // NDEBUG
3589 
3590 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3591 /// rendered using 'dot'.
3592 ///
3593 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3594 #ifndef NDEBUG
3595   ViewGraph(this, Name, false, Title);
3596 #else
3597   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3598          << "systems with Graphviz or gv!\n";
3599 #endif  // NDEBUG
3600 }
3601 
3602 /// Out-of-line implementation with no arguments is handy for gdb.
3603 void ScheduleDAGMI::viewGraph() {
3604   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3605 }
3606