1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 228 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequiredID(MachineDominatorsID); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<TargetPassConfig>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 MachinePassRegistry MachineSchedRegistry::Registry; 240 241 /// A dummy default scheduler factory indicates whether the scheduler 242 /// is overridden on the command line. 243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 244 return nullptr; 245 } 246 247 /// MachineSchedOpt allows command line selection of the scheduler. 248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 249 RegisterPassParser<MachineSchedRegistry>> 250 MachineSchedOpt("misched", 251 cl::init(&useDefaultMachineSched), cl::Hidden, 252 cl::desc("Machine instruction scheduler to use")); 253 254 static MachineSchedRegistry 255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 256 useDefaultMachineSched); 257 258 static cl::opt<bool> EnableMachineSched( 259 "enable-misched", 260 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 261 cl::Hidden); 262 263 static cl::opt<bool> EnablePostRAMachineSched( 264 "enable-post-misched", 265 cl::desc("Enable the post-ra machine instruction scheduling pass."), 266 cl::init(true), cl::Hidden); 267 268 /// Decrement this iterator until reaching the top or a non-debug instr. 269 static MachineBasicBlock::const_iterator 270 priorNonDebug(MachineBasicBlock::const_iterator I, 271 MachineBasicBlock::const_iterator Beg) { 272 assert(I != Beg && "reached the top of the region, cannot decrement"); 273 while (--I != Beg) { 274 if (!I->isDebugValue()) 275 break; 276 } 277 return I; 278 } 279 280 /// Non-const version. 281 static MachineBasicBlock::iterator 282 priorNonDebug(MachineBasicBlock::iterator I, 283 MachineBasicBlock::const_iterator Beg) { 284 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 285 .getNonConstIterator(); 286 } 287 288 /// If this iterator is a debug value, increment until reaching the End or a 289 /// non-debug instruction. 290 static MachineBasicBlock::const_iterator 291 nextIfDebug(MachineBasicBlock::const_iterator I, 292 MachineBasicBlock::const_iterator End) { 293 for(; I != End; ++I) { 294 if (!I->isDebugValue()) 295 break; 296 } 297 return I; 298 } 299 300 /// Non-const version. 301 static MachineBasicBlock::iterator 302 nextIfDebug(MachineBasicBlock::iterator I, 303 MachineBasicBlock::const_iterator End) { 304 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 305 .getNonConstIterator(); 306 } 307 308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 310 // Select the scheduler, or set the default. 311 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 312 if (Ctor != useDefaultMachineSched) 313 return Ctor(this); 314 315 // Get the default scheduler set by the target for this function. 316 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 317 if (Scheduler) 318 return Scheduler; 319 320 // Default to GenericScheduler. 321 return createGenericSchedLive(this); 322 } 323 324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 325 /// the caller. We don't have a command line option to override the postRA 326 /// scheduler. The Target must configure it. 327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 328 // Get the postRA scheduler set by the target for this function. 329 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 330 if (Scheduler) 331 return Scheduler; 332 333 // Default to GenericScheduler. 334 return createGenericSchedPostRA(this); 335 } 336 337 /// Top-level MachineScheduler pass driver. 338 /// 339 /// Visit blocks in function order. Divide each block into scheduling regions 340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 341 /// consistent with the DAG builder, which traverses the interior of the 342 /// scheduling regions bottom-up. 343 /// 344 /// This design avoids exposing scheduling boundaries to the DAG builder, 345 /// simplifying the DAG builder's support for "special" target instructions. 346 /// At the same time the design allows target schedulers to operate across 347 /// scheduling boundaries, for example to bundle the boudary instructions 348 /// without reordering them. This creates complexity, because the target 349 /// scheduler must update the RegionBegin and RegionEnd positions cached by 350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 351 /// design would be to split blocks at scheduling boundaries, but LLVM has a 352 /// general bias against block splitting purely for implementation simplicity. 353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 354 if (skipFunction(*mf.getFunction())) 355 return false; 356 357 if (EnableMachineSched.getNumOccurrences()) { 358 if (!EnableMachineSched) 359 return false; 360 } else if (!mf.getSubtarget().enableMachineScheduler()) 361 return false; 362 363 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 MDT = &getAnalysis<MachineDominatorTree>(); 369 PassConfig = &getAnalysis<TargetPassConfig>(); 370 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 371 372 LIS = &getAnalysis<LiveIntervals>(); 373 374 if (VerifyScheduling) { 375 DEBUG(LIS->dump()); 376 MF->verify(this, "Before machine scheduling."); 377 } 378 RegClassInfo->runOnMachineFunction(*MF); 379 380 // Instantiate the selected scheduler for this target, function, and 381 // optimization level. 382 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 383 scheduleRegions(*Scheduler, false); 384 385 DEBUG(LIS->dump()); 386 if (VerifyScheduling) 387 MF->verify(this, "After machine scheduling."); 388 return true; 389 } 390 391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 392 if (skipFunction(*mf.getFunction())) 393 return false; 394 395 if (EnablePostRAMachineSched.getNumOccurrences()) { 396 if (!EnablePostRAMachineSched) 397 return false; 398 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 399 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 400 return false; 401 } 402 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 403 404 // Initialize the context of the pass. 405 MF = &mf; 406 MLI = &getAnalysis<MachineLoopInfo>(); 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// A region of an MBB for scheduling. 440 namespace { 441 struct SchedRegion { 442 /// RegionBegin is the first instruction in the scheduling region, and 443 /// RegionEnd is either MBB->end() or the scheduling boundary after the 444 /// last instruction in the scheduling region. These iterators cannot refer 445 /// to instructions outside of the identified scheduling region because 446 /// those may be reordered before scheduling this region. 447 MachineBasicBlock::iterator RegionBegin; 448 MachineBasicBlock::iterator RegionEnd; 449 unsigned NumRegionInstrs; 450 451 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 452 unsigned N) : 453 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 454 }; 455 } // end anonymous namespace 456 457 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 458 459 static void 460 getSchedRegions(MachineBasicBlock *MBB, 461 MBBRegionsVector &Regions, 462 bool RegionsTopDown) { 463 MachineFunction *MF = MBB->getParent(); 464 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 465 466 MachineBasicBlock::iterator I = nullptr; 467 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 468 RegionEnd != MBB->begin(); RegionEnd = I) { 469 470 // Avoid decrementing RegionEnd for blocks with no terminator. 471 if (RegionEnd != MBB->end() || 472 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 473 --RegionEnd; 474 } 475 476 // The next region starts above the previous region. Look backward in the 477 // instruction stream until we find the nearest boundary. 478 unsigned NumRegionInstrs = 0; 479 I = RegionEnd; 480 for (;I != MBB->begin(); --I) { 481 MachineInstr &MI = *std::prev(I); 482 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 483 break; 484 if (!MI.isDebugValue()) 485 // MBB::size() uses instr_iterator to count. Here we need a bundle to 486 // count as a single instruction. 487 ++NumRegionInstrs; 488 } 489 490 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 491 } 492 493 if (RegionsTopDown) 494 std::reverse(Regions.begin(), Regions.end()); 495 } 496 497 /// Main driver for both MachineScheduler and PostMachineScheduler. 498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 499 bool FixKillFlags) { 500 // Visit all machine basic blocks. 501 // 502 // TODO: Visit blocks in global postorder or postorder within the bottom-up 503 // loop tree. Then we can optionally compute global RegPressure. 504 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 505 MBB != MBBEnd; ++MBB) { 506 507 Scheduler.startBlock(&*MBB); 508 509 #ifndef NDEBUG 510 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 511 continue; 512 if (SchedOnlyBlock.getNumOccurrences() 513 && (int)SchedOnlyBlock != MBB->getNumber()) 514 continue; 515 #endif 516 517 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 518 // points to the scheduling boundary at the bottom of the region. The DAG 519 // does not include RegionEnd, but the region does (i.e. the next 520 // RegionEnd is above the previous RegionBegin). If the current block has 521 // no terminator then RegionEnd == MBB->end() for the bottom region. 522 // 523 // All the regions of MBB are first found and stored in MBBRegions, which 524 // will be processed (MBB) top-down if initialized with true. 525 // 526 // The Scheduler may insert instructions during either schedule() or 527 // exitRegion(), even for empty regions. So the local iterators 'I' and 528 // 'RegionEnd' are invalid across these calls. Instructions must not be 529 // added to other regions than the current one without updating MBBRegions. 530 531 MBBRegionsVector MBBRegions; 532 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 533 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 534 R != MBBRegions.end(); ++R) { 535 MachineBasicBlock::iterator I = R->RegionBegin; 536 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 537 unsigned NumRegionInstrs = R->NumRegionInstrs; 538 539 // Notify the scheduler of the region, even if we may skip scheduling 540 // it. Perhaps it still needs to be bundled. 541 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (I == RegionEnd || I == std::prev(RegionEnd)) { 545 // Close the current region. Bundle the terminator if needed. 546 // This invalidates 'RegionEnd' and 'I'. 547 Scheduler.exitRegion(); 548 continue; 549 } 550 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 551 DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " " 552 << MBB->getName() << "\n From: " << *I << " To: "; 553 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 554 else dbgs() << "End"; 555 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 556 if (DumpCriticalPathLength) { 557 errs() << MF->getName(); 558 errs() << ":%bb. " << MBB->getNumber(); 559 errs() << " " << MBB->getName() << " \n"; 560 } 561 562 // Schedule a region: possibly reorder instructions. 563 // This invalidates the original region iterators. 564 Scheduler.schedule(); 565 566 // Close the current region. 567 Scheduler.exitRegion(); 568 } 569 Scheduler.finishBlock(); 570 // FIXME: Ideally, no further passes should rely on kill flags. However, 571 // thumb2 size reduction is currently an exception, so the PostMIScheduler 572 // needs to do this. 573 if (FixKillFlags) 574 Scheduler.fixupKills(*MBB); 575 } 576 Scheduler.finalizeSchedule(); 577 } 578 579 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 580 // unimplemented 581 } 582 583 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 584 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 585 dbgs() << "Queue " << Name << ": "; 586 for (const SUnit *SU : Queue) 587 dbgs() << SU->NodeNum << " "; 588 dbgs() << "\n"; 589 } 590 #endif 591 592 //===----------------------------------------------------------------------===// 593 // ScheduleDAGMI - Basic machine instruction scheduling. This is 594 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 595 // virtual registers. 596 // ===----------------------------------------------------------------------===/ 597 598 // Provide a vtable anchor. 599 ScheduleDAGMI::~ScheduleDAGMI() = default; 600 601 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 602 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 603 } 604 605 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 606 if (SuccSU != &ExitSU) { 607 // Do not use WillCreateCycle, it assumes SD scheduling. 608 // If Pred is reachable from Succ, then the edge creates a cycle. 609 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 610 return false; 611 Topo.AddPred(SuccSU, PredDep.getSUnit()); 612 } 613 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 614 // Return true regardless of whether a new edge needed to be inserted. 615 return true; 616 } 617 618 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 619 /// NumPredsLeft reaches zero, release the successor node. 620 /// 621 /// FIXME: Adjust SuccSU height based on MinLatency. 622 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 623 SUnit *SuccSU = SuccEdge->getSUnit(); 624 625 if (SuccEdge->isWeak()) { 626 --SuccSU->WeakPredsLeft; 627 if (SuccEdge->isCluster()) 628 NextClusterSucc = SuccSU; 629 return; 630 } 631 #ifndef NDEBUG 632 if (SuccSU->NumPredsLeft == 0) { 633 dbgs() << "*** Scheduling failed! ***\n"; 634 SuccSU->dump(this); 635 dbgs() << " has been released too many times!\n"; 636 llvm_unreachable(nullptr); 637 } 638 #endif 639 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 640 // CurrCycle may have advanced since then. 641 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 642 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 643 644 --SuccSU->NumPredsLeft; 645 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 646 SchedImpl->releaseTopNode(SuccSU); 647 } 648 649 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 650 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 651 for (SDep &Succ : SU->Succs) 652 releaseSucc(SU, &Succ); 653 } 654 655 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 656 /// NumSuccsLeft reaches zero, release the predecessor node. 657 /// 658 /// FIXME: Adjust PredSU height based on MinLatency. 659 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 660 SUnit *PredSU = PredEdge->getSUnit(); 661 662 if (PredEdge->isWeak()) { 663 --PredSU->WeakSuccsLeft; 664 if (PredEdge->isCluster()) 665 NextClusterPred = PredSU; 666 return; 667 } 668 #ifndef NDEBUG 669 if (PredSU->NumSuccsLeft == 0) { 670 dbgs() << "*** Scheduling failed! ***\n"; 671 PredSU->dump(this); 672 dbgs() << " has been released too many times!\n"; 673 llvm_unreachable(nullptr); 674 } 675 #endif 676 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 677 // CurrCycle may have advanced since then. 678 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 679 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 680 681 --PredSU->NumSuccsLeft; 682 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 683 SchedImpl->releaseBottomNode(PredSU); 684 } 685 686 /// releasePredecessors - Call releasePred on each of SU's predecessors. 687 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 688 for (SDep &Pred : SU->Preds) 689 releasePred(SU, &Pred); 690 } 691 692 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 693 ScheduleDAGInstrs::startBlock(bb); 694 SchedImpl->enterMBB(bb); 695 } 696 697 void ScheduleDAGMI::finishBlock() { 698 SchedImpl->leaveMBB(); 699 ScheduleDAGInstrs::finishBlock(); 700 } 701 702 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 703 /// crossing a scheduling boundary. [begin, end) includes all instructions in 704 /// the region, including the boundary itself and single-instruction regions 705 /// that don't get scheduled. 706 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 707 MachineBasicBlock::iterator begin, 708 MachineBasicBlock::iterator end, 709 unsigned regioninstrs) 710 { 711 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 712 713 SchedImpl->initPolicy(begin, end, regioninstrs); 714 } 715 716 /// This is normally called from the main scheduler loop but may also be invoked 717 /// by the scheduling strategy to perform additional code motion. 718 void ScheduleDAGMI::moveInstruction( 719 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 720 // Advance RegionBegin if the first instruction moves down. 721 if (&*RegionBegin == MI) 722 ++RegionBegin; 723 724 // Update the instruction stream. 725 BB->splice(InsertPos, BB, MI); 726 727 // Update LiveIntervals 728 if (LIS) 729 LIS->handleMove(*MI, /*UpdateFlags=*/true); 730 731 // Recede RegionBegin if an instruction moves above the first. 732 if (RegionBegin == InsertPos) 733 RegionBegin = MI; 734 } 735 736 bool ScheduleDAGMI::checkSchedLimit() { 737 #ifndef NDEBUG 738 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 739 CurrentTop = CurrentBottom; 740 return false; 741 } 742 ++NumInstrsScheduled; 743 #endif 744 return true; 745 } 746 747 /// Per-region scheduling driver, called back from 748 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 749 /// does not consider liveness or register pressure. It is useful for PostRA 750 /// scheduling and potentially other custom schedulers. 751 void ScheduleDAGMI::schedule() { 752 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 753 DEBUG(SchedImpl->dumpPolicy()); 754 755 // Build the DAG. 756 buildSchedGraph(AA); 757 758 Topo.InitDAGTopologicalSorting(); 759 760 postprocessDAG(); 761 762 SmallVector<SUnit*, 8> TopRoots, BotRoots; 763 findRootsAndBiasEdges(TopRoots, BotRoots); 764 765 // Initialize the strategy before modifying the DAG. 766 // This may initialize a DFSResult to be used for queue priority. 767 SchedImpl->initialize(this); 768 769 DEBUG( 770 if (EntrySU.getInstr() != nullptr) 771 EntrySU.dumpAll(this); 772 for (const SUnit &SU : SUnits) 773 SU.dumpAll(this); 774 if (ExitSU.getInstr() != nullptr) 775 ExitSU.dumpAll(this); 776 ); 777 if (ViewMISchedDAGs) viewGraph(); 778 779 // Initialize ready queues now that the DAG and priority data are finalized. 780 initQueues(TopRoots, BotRoots); 781 782 bool IsTopNode = false; 783 while (true) { 784 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 785 SUnit *SU = SchedImpl->pickNode(IsTopNode); 786 if (!SU) break; 787 788 assert(!SU->isScheduled && "Node already scheduled"); 789 if (!checkSchedLimit()) 790 break; 791 792 MachineInstr *MI = SU->getInstr(); 793 if (IsTopNode) { 794 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 795 if (&*CurrentTop == MI) 796 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 797 else 798 moveInstruction(MI, CurrentTop); 799 } else { 800 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 801 MachineBasicBlock::iterator priorII = 802 priorNonDebug(CurrentBottom, CurrentTop); 803 if (&*priorII == MI) 804 CurrentBottom = priorII; 805 else { 806 if (&*CurrentTop == MI) 807 CurrentTop = nextIfDebug(++CurrentTop, priorII); 808 moveInstruction(MI, CurrentBottom); 809 CurrentBottom = MI; 810 } 811 } 812 // Notify the scheduling strategy before updating the DAG. 813 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 814 // runs, it can then use the accurate ReadyCycle time to determine whether 815 // newly released nodes can move to the readyQ. 816 SchedImpl->schedNode(SU, IsTopNode); 817 818 updateQueues(SU, IsTopNode); 819 } 820 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 821 822 placeDebugValues(); 823 824 DEBUG({ 825 dbgs() << "*** Final schedule for " 826 << printMBBReference(*begin()->getParent()) << " ***\n"; 827 dumpSchedule(); 828 dbgs() << '\n'; 829 }); 830 } 831 832 /// Apply each ScheduleDAGMutation step in order. 833 void ScheduleDAGMI::postprocessDAG() { 834 for (auto &m : Mutations) 835 m->apply(this); 836 } 837 838 void ScheduleDAGMI:: 839 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 840 SmallVectorImpl<SUnit*> &BotRoots) { 841 for (SUnit &SU : SUnits) { 842 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 843 844 // Order predecessors so DFSResult follows the critical path. 845 SU.biasCriticalPath(); 846 847 // A SUnit is ready to top schedule if it has no predecessors. 848 if (!SU.NumPredsLeft) 849 TopRoots.push_back(&SU); 850 // A SUnit is ready to bottom schedule if it has no successors. 851 if (!SU.NumSuccsLeft) 852 BotRoots.push_back(&SU); 853 } 854 ExitSU.biasCriticalPath(); 855 } 856 857 /// Identify DAG roots and setup scheduler queues. 858 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 859 ArrayRef<SUnit*> BotRoots) { 860 NextClusterSucc = nullptr; 861 NextClusterPred = nullptr; 862 863 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 864 // 865 // Nodes with unreleased weak edges can still be roots. 866 // Release top roots in forward order. 867 for (SUnit *SU : TopRoots) 868 SchedImpl->releaseTopNode(SU); 869 870 // Release bottom roots in reverse order so the higher priority nodes appear 871 // first. This is more natural and slightly more efficient. 872 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 873 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 874 SchedImpl->releaseBottomNode(*I); 875 } 876 877 releaseSuccessors(&EntrySU); 878 releasePredecessors(&ExitSU); 879 880 SchedImpl->registerRoots(); 881 882 // Advance past initial DebugValues. 883 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 884 CurrentBottom = RegionEnd; 885 } 886 887 /// Update scheduler queues after scheduling an instruction. 888 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 889 // Release dependent instructions for scheduling. 890 if (IsTopNode) 891 releaseSuccessors(SU); 892 else 893 releasePredecessors(SU); 894 895 SU->isScheduled = true; 896 } 897 898 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 899 void ScheduleDAGMI::placeDebugValues() { 900 // If first instruction was a DBG_VALUE then put it back. 901 if (FirstDbgValue) { 902 BB->splice(RegionBegin, BB, FirstDbgValue); 903 RegionBegin = FirstDbgValue; 904 } 905 906 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 907 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 908 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 909 MachineInstr *DbgValue = P.first; 910 MachineBasicBlock::iterator OrigPrevMI = P.second; 911 if (&*RegionBegin == DbgValue) 912 ++RegionBegin; 913 BB->splice(++OrigPrevMI, BB, DbgValue); 914 if (OrigPrevMI == std::prev(RegionEnd)) 915 RegionEnd = DbgValue; 916 } 917 DbgValues.clear(); 918 FirstDbgValue = nullptr; 919 } 920 921 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 922 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 923 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 924 if (SUnit *SU = getSUnit(&(*MI))) 925 SU->dump(this); 926 else 927 dbgs() << "Missing SUnit\n"; 928 } 929 } 930 #endif 931 932 //===----------------------------------------------------------------------===// 933 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 934 // preservation. 935 //===----------------------------------------------------------------------===// 936 937 ScheduleDAGMILive::~ScheduleDAGMILive() { 938 delete DFSResult; 939 } 940 941 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 942 const MachineInstr &MI = *SU.getInstr(); 943 for (const MachineOperand &MO : MI.operands()) { 944 if (!MO.isReg()) 945 continue; 946 if (!MO.readsReg()) 947 continue; 948 if (TrackLaneMasks && !MO.isUse()) 949 continue; 950 951 unsigned Reg = MO.getReg(); 952 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 953 continue; 954 955 // Ignore re-defs. 956 if (TrackLaneMasks) { 957 bool FoundDef = false; 958 for (const MachineOperand &MO2 : MI.operands()) { 959 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 960 FoundDef = true; 961 break; 962 } 963 } 964 if (FoundDef) 965 continue; 966 } 967 968 // Record this local VReg use. 969 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 970 for (; UI != VRegUses.end(); ++UI) { 971 if (UI->SU == &SU) 972 break; 973 } 974 if (UI == VRegUses.end()) 975 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 976 } 977 } 978 979 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 980 /// crossing a scheduling boundary. [begin, end) includes all instructions in 981 /// the region, including the boundary itself and single-instruction regions 982 /// that don't get scheduled. 983 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 984 MachineBasicBlock::iterator begin, 985 MachineBasicBlock::iterator end, 986 unsigned regioninstrs) 987 { 988 // ScheduleDAGMI initializes SchedImpl's per-region policy. 989 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 990 991 // For convenience remember the end of the liveness region. 992 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 993 994 SUPressureDiffs.clear(); 995 996 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 997 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 998 999 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1000 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1001 } 1002 1003 // Setup the register pressure trackers for the top scheduled top and bottom 1004 // scheduled regions. 1005 void ScheduleDAGMILive::initRegPressure() { 1006 VRegUses.clear(); 1007 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1008 for (SUnit &SU : SUnits) 1009 collectVRegUses(SU); 1010 1011 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1012 ShouldTrackLaneMasks, false); 1013 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1014 ShouldTrackLaneMasks, false); 1015 1016 // Close the RPTracker to finalize live ins. 1017 RPTracker.closeRegion(); 1018 1019 DEBUG(RPTracker.dump()); 1020 1021 // Initialize the live ins and live outs. 1022 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1023 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1024 1025 // Close one end of the tracker so we can call 1026 // getMaxUpward/DownwardPressureDelta before advancing across any 1027 // instructions. This converts currently live regs into live ins/outs. 1028 TopRPTracker.closeTop(); 1029 BotRPTracker.closeBottom(); 1030 1031 BotRPTracker.initLiveThru(RPTracker); 1032 if (!BotRPTracker.getLiveThru().empty()) { 1033 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1034 DEBUG(dbgs() << "Live Thru: "; 1035 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1036 }; 1037 1038 // For each live out vreg reduce the pressure change associated with other 1039 // uses of the same vreg below the live-out reaching def. 1040 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1041 1042 // Account for liveness generated by the region boundary. 1043 if (LiveRegionEnd != RegionEnd) { 1044 SmallVector<RegisterMaskPair, 8> LiveUses; 1045 BotRPTracker.recede(&LiveUses); 1046 updatePressureDiffs(LiveUses); 1047 } 1048 1049 DEBUG( 1050 dbgs() << "Top Pressure:\n"; 1051 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1052 dbgs() << "Bottom Pressure:\n"; 1053 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1054 ); 1055 1056 assert((BotRPTracker.getPos() == RegionEnd || 1057 (RegionEnd->isDebugValue() && 1058 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1059 "Can't find the region bottom"); 1060 1061 // Cache the list of excess pressure sets in this region. This will also track 1062 // the max pressure in the scheduled code for these sets. 1063 RegionCriticalPSets.clear(); 1064 const std::vector<unsigned> &RegionPressure = 1065 RPTracker.getPressure().MaxSetPressure; 1066 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1067 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1068 if (RegionPressure[i] > Limit) { 1069 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1070 << " Limit " << Limit 1071 << " Actual " << RegionPressure[i] << "\n"); 1072 RegionCriticalPSets.push_back(PressureChange(i)); 1073 } 1074 } 1075 DEBUG(dbgs() << "Excess PSets: "; 1076 for (const PressureChange &RCPS : RegionCriticalPSets) 1077 dbgs() << TRI->getRegPressureSetName( 1078 RCPS.getPSet()) << " "; 1079 dbgs() << "\n"); 1080 } 1081 1082 void ScheduleDAGMILive:: 1083 updateScheduledPressure(const SUnit *SU, 1084 const std::vector<unsigned> &NewMaxPressure) { 1085 const PressureDiff &PDiff = getPressureDiff(SU); 1086 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1087 for (const PressureChange &PC : PDiff) { 1088 if (!PC.isValid()) 1089 break; 1090 unsigned ID = PC.getPSet(); 1091 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1092 ++CritIdx; 1093 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1094 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1095 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1096 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1097 } 1098 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1099 if (NewMaxPressure[ID] >= Limit - 2) { 1100 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1101 << NewMaxPressure[ID] 1102 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1103 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1104 } 1105 } 1106 } 1107 1108 /// Update the PressureDiff array for liveness after scheduling this 1109 /// instruction. 1110 void ScheduleDAGMILive::updatePressureDiffs( 1111 ArrayRef<RegisterMaskPair> LiveUses) { 1112 for (const RegisterMaskPair &P : LiveUses) { 1113 unsigned Reg = P.RegUnit; 1114 /// FIXME: Currently assuming single-use physregs. 1115 if (!TRI->isVirtualRegister(Reg)) 1116 continue; 1117 1118 if (ShouldTrackLaneMasks) { 1119 // If the register has just become live then other uses won't change 1120 // this fact anymore => decrement pressure. 1121 // If the register has just become dead then other uses make it come 1122 // back to life => increment pressure. 1123 bool Decrement = P.LaneMask.any(); 1124 1125 for (const VReg2SUnit &V2SU 1126 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1127 SUnit &SU = *V2SU.SU; 1128 if (SU.isScheduled || &SU == &ExitSU) 1129 continue; 1130 1131 PressureDiff &PDiff = getPressureDiff(&SU); 1132 PDiff.addPressureChange(Reg, Decrement, &MRI); 1133 DEBUG( 1134 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1135 << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1136 << ' ' << *SU.getInstr(); 1137 dbgs() << " to "; 1138 PDiff.dump(*TRI); 1139 ); 1140 } 1141 } else { 1142 assert(P.LaneMask.any()); 1143 DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1144 // This may be called before CurrentBottom has been initialized. However, 1145 // BotRPTracker must have a valid position. We want the value live into the 1146 // instruction or live out of the block, so ask for the previous 1147 // instruction's live-out. 1148 const LiveInterval &LI = LIS->getInterval(Reg); 1149 VNInfo *VNI; 1150 MachineBasicBlock::const_iterator I = 1151 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1152 if (I == BB->end()) 1153 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1154 else { 1155 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1156 VNI = LRQ.valueIn(); 1157 } 1158 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1159 assert(VNI && "No live value at use."); 1160 for (const VReg2SUnit &V2SU 1161 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1162 SUnit *SU = V2SU.SU; 1163 // If this use comes before the reaching def, it cannot be a last use, 1164 // so decrease its pressure change. 1165 if (!SU->isScheduled && SU != &ExitSU) { 1166 LiveQueryResult LRQ = 1167 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1168 if (LRQ.valueIn() == VNI) { 1169 PressureDiff &PDiff = getPressureDiff(SU); 1170 PDiff.addPressureChange(Reg, true, &MRI); 1171 DEBUG( 1172 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1173 << *SU->getInstr(); 1174 dbgs() << " to "; 1175 PDiff.dump(*TRI); 1176 ); 1177 } 1178 } 1179 } 1180 } 1181 } 1182 } 1183 1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1186 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1187 /// 1188 /// This is a skeletal driver, with all the functionality pushed into helpers, 1189 /// so that it can be easily extended by experimental schedulers. Generally, 1190 /// implementing MachineSchedStrategy should be sufficient to implement a new 1191 /// scheduling algorithm. However, if a scheduler further subclasses 1192 /// ScheduleDAGMILive then it will want to override this virtual method in order 1193 /// to update any specialized state. 1194 void ScheduleDAGMILive::schedule() { 1195 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1196 DEBUG(SchedImpl->dumpPolicy()); 1197 buildDAGWithRegPressure(); 1198 1199 Topo.InitDAGTopologicalSorting(); 1200 1201 postprocessDAG(); 1202 1203 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1204 findRootsAndBiasEdges(TopRoots, BotRoots); 1205 1206 // Initialize the strategy before modifying the DAG. 1207 // This may initialize a DFSResult to be used for queue priority. 1208 SchedImpl->initialize(this); 1209 1210 DEBUG( 1211 if (EntrySU.getInstr() != nullptr) 1212 EntrySU.dumpAll(this); 1213 for (const SUnit &SU : SUnits) { 1214 SU.dumpAll(this); 1215 if (ShouldTrackPressure) { 1216 dbgs() << " Pressure Diff : "; 1217 getPressureDiff(&SU).dump(*TRI); 1218 } 1219 dbgs() << " Single Issue : "; 1220 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1221 SchedModel.mustEndGroup(SU.getInstr())) 1222 dbgs() << "true;"; 1223 else 1224 dbgs() << "false;"; 1225 dbgs() << '\n'; 1226 } 1227 if (ExitSU.getInstr() != nullptr) 1228 ExitSU.dumpAll(this); 1229 ); 1230 if (ViewMISchedDAGs) viewGraph(); 1231 1232 // Initialize ready queues now that the DAG and priority data are finalized. 1233 initQueues(TopRoots, BotRoots); 1234 1235 bool IsTopNode = false; 1236 while (true) { 1237 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1238 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1239 if (!SU) break; 1240 1241 assert(!SU->isScheduled && "Node already scheduled"); 1242 if (!checkSchedLimit()) 1243 break; 1244 1245 scheduleMI(SU, IsTopNode); 1246 1247 if (DFSResult) { 1248 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1249 if (!ScheduledTrees.test(SubtreeID)) { 1250 ScheduledTrees.set(SubtreeID); 1251 DFSResult->scheduleTree(SubtreeID); 1252 SchedImpl->scheduleTree(SubtreeID); 1253 } 1254 } 1255 1256 // Notify the scheduling strategy after updating the DAG. 1257 SchedImpl->schedNode(SU, IsTopNode); 1258 1259 updateQueues(SU, IsTopNode); 1260 } 1261 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1262 1263 placeDebugValues(); 1264 1265 DEBUG({ 1266 dbgs() << "*** Final schedule for " 1267 << printMBBReference(*begin()->getParent()) << " ***\n"; 1268 dumpSchedule(); 1269 dbgs() << '\n'; 1270 }); 1271 } 1272 1273 /// Build the DAG and setup three register pressure trackers. 1274 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1275 if (!ShouldTrackPressure) { 1276 RPTracker.reset(); 1277 RegionCriticalPSets.clear(); 1278 buildSchedGraph(AA); 1279 return; 1280 } 1281 1282 // Initialize the register pressure tracker used by buildSchedGraph. 1283 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1284 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1285 1286 // Account for liveness generate by the region boundary. 1287 if (LiveRegionEnd != RegionEnd) 1288 RPTracker.recede(); 1289 1290 // Build the DAG, and compute current register pressure. 1291 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1292 1293 // Initialize top/bottom trackers after computing region pressure. 1294 initRegPressure(); 1295 } 1296 1297 void ScheduleDAGMILive::computeDFSResult() { 1298 if (!DFSResult) 1299 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1300 DFSResult->clear(); 1301 ScheduledTrees.clear(); 1302 DFSResult->resize(SUnits.size()); 1303 DFSResult->compute(SUnits); 1304 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1305 } 1306 1307 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1308 /// only provides the critical path for single block loops. To handle loops that 1309 /// span blocks, we could use the vreg path latencies provided by 1310 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1311 /// available for use in the scheduler. 1312 /// 1313 /// The cyclic path estimation identifies a def-use pair that crosses the back 1314 /// edge and considers the depth and height of the nodes. For example, consider 1315 /// the following instruction sequence where each instruction has unit latency 1316 /// and defines an epomymous virtual register: 1317 /// 1318 /// a->b(a,c)->c(b)->d(c)->exit 1319 /// 1320 /// The cyclic critical path is a two cycles: b->c->b 1321 /// The acyclic critical path is four cycles: a->b->c->d->exit 1322 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1323 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1324 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1325 /// LiveInDepth = depth(b) = len(a->b) = 1 1326 /// 1327 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1328 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1329 /// CyclicCriticalPath = min(2, 2) = 2 1330 /// 1331 /// This could be relevant to PostRA scheduling, but is currently implemented 1332 /// assuming LiveIntervals. 1333 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1334 // This only applies to single block loop. 1335 if (!BB->isSuccessor(BB)) 1336 return 0; 1337 1338 unsigned MaxCyclicLatency = 0; 1339 // Visit each live out vreg def to find def/use pairs that cross iterations. 1340 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1341 unsigned Reg = P.RegUnit; 1342 if (!TRI->isVirtualRegister(Reg)) 1343 continue; 1344 const LiveInterval &LI = LIS->getInterval(Reg); 1345 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1346 if (!DefVNI) 1347 continue; 1348 1349 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1350 const SUnit *DefSU = getSUnit(DefMI); 1351 if (!DefSU) 1352 continue; 1353 1354 unsigned LiveOutHeight = DefSU->getHeight(); 1355 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1356 // Visit all local users of the vreg def. 1357 for (const VReg2SUnit &V2SU 1358 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1359 SUnit *SU = V2SU.SU; 1360 if (SU == &ExitSU) 1361 continue; 1362 1363 // Only consider uses of the phi. 1364 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1365 if (!LRQ.valueIn()->isPHIDef()) 1366 continue; 1367 1368 // Assume that a path spanning two iterations is a cycle, which could 1369 // overestimate in strange cases. This allows cyclic latency to be 1370 // estimated as the minimum slack of the vreg's depth or height. 1371 unsigned CyclicLatency = 0; 1372 if (LiveOutDepth > SU->getDepth()) 1373 CyclicLatency = LiveOutDepth - SU->getDepth(); 1374 1375 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1376 if (LiveInHeight > LiveOutHeight) { 1377 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1378 CyclicLatency = LiveInHeight - LiveOutHeight; 1379 } else 1380 CyclicLatency = 0; 1381 1382 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1383 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1384 if (CyclicLatency > MaxCyclicLatency) 1385 MaxCyclicLatency = CyclicLatency; 1386 } 1387 } 1388 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1389 return MaxCyclicLatency; 1390 } 1391 1392 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1393 /// the Top RP tracker in case the region beginning has changed. 1394 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1395 ArrayRef<SUnit*> BotRoots) { 1396 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1397 if (ShouldTrackPressure) { 1398 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1399 TopRPTracker.setPos(CurrentTop); 1400 } 1401 } 1402 1403 /// Move an instruction and update register pressure. 1404 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1405 // Move the instruction to its new location in the instruction stream. 1406 MachineInstr *MI = SU->getInstr(); 1407 1408 if (IsTopNode) { 1409 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1410 if (&*CurrentTop == MI) 1411 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1412 else { 1413 moveInstruction(MI, CurrentTop); 1414 TopRPTracker.setPos(MI); 1415 } 1416 1417 if (ShouldTrackPressure) { 1418 // Update top scheduled pressure. 1419 RegisterOperands RegOpers; 1420 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1421 if (ShouldTrackLaneMasks) { 1422 // Adjust liveness and add missing dead+read-undef flags. 1423 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1424 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1425 } else { 1426 // Adjust for missing dead-def flags. 1427 RegOpers.detectDeadDefs(*MI, *LIS); 1428 } 1429 1430 TopRPTracker.advance(RegOpers); 1431 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1432 DEBUG( 1433 dbgs() << "Top Pressure:\n"; 1434 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1435 ); 1436 1437 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1438 } 1439 } else { 1440 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1441 MachineBasicBlock::iterator priorII = 1442 priorNonDebug(CurrentBottom, CurrentTop); 1443 if (&*priorII == MI) 1444 CurrentBottom = priorII; 1445 else { 1446 if (&*CurrentTop == MI) { 1447 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1448 TopRPTracker.setPos(CurrentTop); 1449 } 1450 moveInstruction(MI, CurrentBottom); 1451 CurrentBottom = MI; 1452 } 1453 if (ShouldTrackPressure) { 1454 RegisterOperands RegOpers; 1455 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1456 if (ShouldTrackLaneMasks) { 1457 // Adjust liveness and add missing dead+read-undef flags. 1458 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1459 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1460 } else { 1461 // Adjust for missing dead-def flags. 1462 RegOpers.detectDeadDefs(*MI, *LIS); 1463 } 1464 1465 if (BotRPTracker.getPos() != CurrentBottom) 1466 BotRPTracker.recedeSkipDebugValues(); 1467 SmallVector<RegisterMaskPair, 8> LiveUses; 1468 BotRPTracker.recede(RegOpers, &LiveUses); 1469 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1470 DEBUG( 1471 dbgs() << "Bottom Pressure:\n"; 1472 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1473 ); 1474 1475 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1476 updatePressureDiffs(LiveUses); 1477 } 1478 } 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1483 //===----------------------------------------------------------------------===// 1484 1485 namespace { 1486 1487 /// \brief Post-process the DAG to create cluster edges between neighboring 1488 /// loads or between neighboring stores. 1489 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1490 struct MemOpInfo { 1491 SUnit *SU; 1492 unsigned BaseReg; 1493 int64_t Offset; 1494 1495 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1496 : SU(su), BaseReg(reg), Offset(ofs) {} 1497 1498 bool operator<(const MemOpInfo&RHS) const { 1499 return std::tie(BaseReg, Offset, SU->NodeNum) < 1500 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1501 } 1502 }; 1503 1504 const TargetInstrInfo *TII; 1505 const TargetRegisterInfo *TRI; 1506 bool IsLoad; 1507 1508 public: 1509 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1510 const TargetRegisterInfo *tri, bool IsLoad) 1511 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1512 1513 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1514 1515 protected: 1516 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1517 }; 1518 1519 class StoreClusterMutation : public BaseMemOpClusterMutation { 1520 public: 1521 StoreClusterMutation(const TargetInstrInfo *tii, 1522 const TargetRegisterInfo *tri) 1523 : BaseMemOpClusterMutation(tii, tri, false) {} 1524 }; 1525 1526 class LoadClusterMutation : public BaseMemOpClusterMutation { 1527 public: 1528 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1529 : BaseMemOpClusterMutation(tii, tri, true) {} 1530 }; 1531 1532 } // end anonymous namespace 1533 1534 namespace llvm { 1535 1536 std::unique_ptr<ScheduleDAGMutation> 1537 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1538 const TargetRegisterInfo *TRI) { 1539 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1540 : nullptr; 1541 } 1542 1543 std::unique_ptr<ScheduleDAGMutation> 1544 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1545 const TargetRegisterInfo *TRI) { 1546 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1547 : nullptr; 1548 } 1549 1550 } // end namespace llvm 1551 1552 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1553 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1554 SmallVector<MemOpInfo, 32> MemOpRecords; 1555 for (SUnit *SU : MemOps) { 1556 unsigned BaseReg; 1557 int64_t Offset; 1558 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1559 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1560 } 1561 if (MemOpRecords.size() < 2) 1562 return; 1563 1564 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1565 unsigned ClusterLength = 1; 1566 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1567 SUnit *SUa = MemOpRecords[Idx].SU; 1568 SUnit *SUb = MemOpRecords[Idx+1].SU; 1569 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1570 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1571 ClusterLength) && 1572 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1573 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1574 << SUb->NodeNum << ")\n"); 1575 // Copy successor edges from SUa to SUb. Interleaving computation 1576 // dependent on SUa can prevent load combining due to register reuse. 1577 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1578 // loads should have effectively the same inputs. 1579 for (const SDep &Succ : SUa->Succs) { 1580 if (Succ.getSUnit() == SUb) 1581 continue; 1582 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1583 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1584 } 1585 ++ClusterLength; 1586 } else 1587 ClusterLength = 1; 1588 } 1589 } 1590 1591 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1592 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1593 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1594 1595 // Map DAG NodeNum to store chain ID. 1596 DenseMap<unsigned, unsigned> StoreChainIDs; 1597 // Map each store chain to a set of dependent MemOps. 1598 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1599 for (SUnit &SU : DAG->SUnits) { 1600 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1601 (!IsLoad && !SU.getInstr()->mayStore())) 1602 continue; 1603 1604 unsigned ChainPredID = DAG->SUnits.size(); 1605 for (const SDep &Pred : SU.Preds) { 1606 if (Pred.isCtrl()) { 1607 ChainPredID = Pred.getSUnit()->NodeNum; 1608 break; 1609 } 1610 } 1611 // Check if this chain-like pred has been seen 1612 // before. ChainPredID==MaxNodeID at the top of the schedule. 1613 unsigned NumChains = StoreChainDependents.size(); 1614 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1615 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1616 if (Result.second) 1617 StoreChainDependents.resize(NumChains + 1); 1618 StoreChainDependents[Result.first->second].push_back(&SU); 1619 } 1620 1621 // Iterate over the store chains. 1622 for (auto &SCD : StoreChainDependents) 1623 clusterNeighboringMemOps(SCD, DAG); 1624 } 1625 1626 //===----------------------------------------------------------------------===// 1627 // CopyConstrain - DAG post-processing to encourage copy elimination. 1628 //===----------------------------------------------------------------------===// 1629 1630 namespace { 1631 1632 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1633 /// the one use that defines the copy's source vreg, most likely an induction 1634 /// variable increment. 1635 class CopyConstrain : public ScheduleDAGMutation { 1636 // Transient state. 1637 SlotIndex RegionBeginIdx; 1638 1639 // RegionEndIdx is the slot index of the last non-debug instruction in the 1640 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1641 SlotIndex RegionEndIdx; 1642 1643 public: 1644 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1645 1646 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1647 1648 protected: 1649 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1650 }; 1651 1652 } // end anonymous namespace 1653 1654 namespace llvm { 1655 1656 std::unique_ptr<ScheduleDAGMutation> 1657 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1658 const TargetRegisterInfo *TRI) { 1659 return llvm::make_unique<CopyConstrain>(TII, TRI); 1660 } 1661 1662 } // end namespace llvm 1663 1664 /// constrainLocalCopy handles two possibilities: 1665 /// 1) Local src: 1666 /// I0: = dst 1667 /// I1: src = ... 1668 /// I2: = dst 1669 /// I3: dst = src (copy) 1670 /// (create pred->succ edges I0->I1, I2->I1) 1671 /// 1672 /// 2) Local copy: 1673 /// I0: dst = src (copy) 1674 /// I1: = dst 1675 /// I2: src = ... 1676 /// I3: = dst 1677 /// (create pred->succ edges I1->I2, I3->I2) 1678 /// 1679 /// Although the MachineScheduler is currently constrained to single blocks, 1680 /// this algorithm should handle extended blocks. An EBB is a set of 1681 /// contiguously numbered blocks such that the previous block in the EBB is 1682 /// always the single predecessor. 1683 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1684 LiveIntervals *LIS = DAG->getLIS(); 1685 MachineInstr *Copy = CopySU->getInstr(); 1686 1687 // Check for pure vreg copies. 1688 const MachineOperand &SrcOp = Copy->getOperand(1); 1689 unsigned SrcReg = SrcOp.getReg(); 1690 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1691 return; 1692 1693 const MachineOperand &DstOp = Copy->getOperand(0); 1694 unsigned DstReg = DstOp.getReg(); 1695 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1696 return; 1697 1698 // Check if either the dest or source is local. If it's live across a back 1699 // edge, it's not local. Note that if both vregs are live across the back 1700 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1701 // If both the copy's source and dest are local live intervals, then we 1702 // should treat the dest as the global for the purpose of adding 1703 // constraints. This adds edges from source's other uses to the copy. 1704 unsigned LocalReg = SrcReg; 1705 unsigned GlobalReg = DstReg; 1706 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1707 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1708 LocalReg = DstReg; 1709 GlobalReg = SrcReg; 1710 LocalLI = &LIS->getInterval(LocalReg); 1711 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1712 return; 1713 } 1714 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1715 1716 // Find the global segment after the start of the local LI. 1717 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1718 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1719 // local live range. We could create edges from other global uses to the local 1720 // start, but the coalescer should have already eliminated these cases, so 1721 // don't bother dealing with it. 1722 if (GlobalSegment == GlobalLI->end()) 1723 return; 1724 1725 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1726 // returned the next global segment. But if GlobalSegment overlaps with 1727 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1728 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1729 if (GlobalSegment->contains(LocalLI->beginIndex())) 1730 ++GlobalSegment; 1731 1732 if (GlobalSegment == GlobalLI->end()) 1733 return; 1734 1735 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1736 if (GlobalSegment != GlobalLI->begin()) { 1737 // Two address defs have no hole. 1738 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1739 GlobalSegment->start)) { 1740 return; 1741 } 1742 // If the prior global segment may be defined by the same two-address 1743 // instruction that also defines LocalLI, then can't make a hole here. 1744 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1745 LocalLI->beginIndex())) { 1746 return; 1747 } 1748 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1749 // it would be a disconnected component in the live range. 1750 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1751 "Disconnected LRG within the scheduling region."); 1752 } 1753 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1754 if (!GlobalDef) 1755 return; 1756 1757 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1758 if (!GlobalSU) 1759 return; 1760 1761 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1762 // constraining the uses of the last local def to precede GlobalDef. 1763 SmallVector<SUnit*,8> LocalUses; 1764 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1765 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1766 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1767 for (const SDep &Succ : LastLocalSU->Succs) { 1768 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1769 continue; 1770 if (Succ.getSUnit() == GlobalSU) 1771 continue; 1772 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1773 return; 1774 LocalUses.push_back(Succ.getSUnit()); 1775 } 1776 // Open the top of the GlobalLI hole by constraining any earlier global uses 1777 // to precede the start of LocalLI. 1778 SmallVector<SUnit*,8> GlobalUses; 1779 MachineInstr *FirstLocalDef = 1780 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1781 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1782 for (const SDep &Pred : GlobalSU->Preds) { 1783 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1784 continue; 1785 if (Pred.getSUnit() == FirstLocalSU) 1786 continue; 1787 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1788 return; 1789 GlobalUses.push_back(Pred.getSUnit()); 1790 } 1791 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1792 // Add the weak edges. 1793 for (SmallVectorImpl<SUnit*>::const_iterator 1794 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1795 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1796 << GlobalSU->NodeNum << ")\n"); 1797 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1798 } 1799 for (SmallVectorImpl<SUnit*>::const_iterator 1800 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1801 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1802 << FirstLocalSU->NodeNum << ")\n"); 1803 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1804 } 1805 } 1806 1807 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1808 /// copy elimination. 1809 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1810 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1811 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1812 1813 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1814 if (FirstPos == DAG->end()) 1815 return; 1816 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1817 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1818 *priorNonDebug(DAG->end(), DAG->begin())); 1819 1820 for (SUnit &SU : DAG->SUnits) { 1821 if (!SU.getInstr()->isCopy()) 1822 continue; 1823 1824 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1825 } 1826 } 1827 1828 //===----------------------------------------------------------------------===// 1829 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1830 // and possibly other custom schedulers. 1831 //===----------------------------------------------------------------------===// 1832 1833 static const unsigned InvalidCycle = ~0U; 1834 1835 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1836 1837 /// Given a Count of resource usage and a Latency value, return true if a 1838 /// SchedBoundary becomes resource limited. 1839 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1840 unsigned Latency) { 1841 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1842 } 1843 1844 void SchedBoundary::reset() { 1845 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1846 // Destroying and reconstructing it is very expensive though. So keep 1847 // invalid, placeholder HazardRecs. 1848 if (HazardRec && HazardRec->isEnabled()) { 1849 delete HazardRec; 1850 HazardRec = nullptr; 1851 } 1852 Available.clear(); 1853 Pending.clear(); 1854 CheckPending = false; 1855 CurrCycle = 0; 1856 CurrMOps = 0; 1857 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1858 ExpectedLatency = 0; 1859 DependentLatency = 0; 1860 RetiredMOps = 0; 1861 MaxExecutedResCount = 0; 1862 ZoneCritResIdx = 0; 1863 IsResourceLimited = false; 1864 ReservedCycles.clear(); 1865 #ifndef NDEBUG 1866 // Track the maximum number of stall cycles that could arise either from the 1867 // latency of a DAG edge or the number of cycles that a processor resource is 1868 // reserved (SchedBoundary::ReservedCycles). 1869 MaxObservedStall = 0; 1870 #endif 1871 // Reserve a zero-count for invalid CritResIdx. 1872 ExecutedResCounts.resize(1); 1873 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1874 } 1875 1876 void SchedRemainder:: 1877 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1878 reset(); 1879 if (!SchedModel->hasInstrSchedModel()) 1880 return; 1881 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1882 for (SUnit &SU : DAG->SUnits) { 1883 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1884 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1885 * SchedModel->getMicroOpFactor(); 1886 for (TargetSchedModel::ProcResIter 1887 PI = SchedModel->getWriteProcResBegin(SC), 1888 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1889 unsigned PIdx = PI->ProcResourceIdx; 1890 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1891 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1892 } 1893 } 1894 } 1895 1896 void SchedBoundary:: 1897 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1898 reset(); 1899 DAG = dag; 1900 SchedModel = smodel; 1901 Rem = rem; 1902 if (SchedModel->hasInstrSchedModel()) { 1903 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1904 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1905 } 1906 } 1907 1908 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1909 /// these "soft stalls" differently than the hard stall cycles based on CPU 1910 /// resources and computed by checkHazard(). A fully in-order model 1911 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1912 /// available for scheduling until they are ready. However, a weaker in-order 1913 /// model may use this for heuristics. For example, if a processor has in-order 1914 /// behavior when reading certain resources, this may come into play. 1915 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1916 if (!SU->isUnbuffered) 1917 return 0; 1918 1919 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1920 if (ReadyCycle > CurrCycle) 1921 return ReadyCycle - CurrCycle; 1922 return 0; 1923 } 1924 1925 /// Compute the next cycle at which the given processor resource can be 1926 /// scheduled. 1927 unsigned SchedBoundary:: 1928 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1929 unsigned NextUnreserved = ReservedCycles[PIdx]; 1930 // If this resource has never been used, always return cycle zero. 1931 if (NextUnreserved == InvalidCycle) 1932 return 0; 1933 // For bottom-up scheduling add the cycles needed for the current operation. 1934 if (!isTop()) 1935 NextUnreserved += Cycles; 1936 return NextUnreserved; 1937 } 1938 1939 /// Does this SU have a hazard within the current instruction group. 1940 /// 1941 /// The scheduler supports two modes of hazard recognition. The first is the 1942 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1943 /// supports highly complicated in-order reservation tables 1944 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1945 /// 1946 /// The second is a streamlined mechanism that checks for hazards based on 1947 /// simple counters that the scheduler itself maintains. It explicitly checks 1948 /// for instruction dispatch limitations, including the number of micro-ops that 1949 /// can dispatch per cycle. 1950 /// 1951 /// TODO: Also check whether the SU must start a new group. 1952 bool SchedBoundary::checkHazard(SUnit *SU) { 1953 if (HazardRec->isEnabled() 1954 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1955 return true; 1956 } 1957 1958 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1959 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1960 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1961 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1962 return true; 1963 } 1964 1965 if (CurrMOps > 0 && 1966 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1967 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1968 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1969 << (isTop()? "begin" : "end") << " group\n"); 1970 return true; 1971 } 1972 1973 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1974 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1975 for (const MCWriteProcResEntry &PE : 1976 make_range(SchedModel->getWriteProcResBegin(SC), 1977 SchedModel->getWriteProcResEnd(SC))) { 1978 unsigned ResIdx = PE.ProcResourceIdx; 1979 unsigned Cycles = PE.Cycles; 1980 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1981 if (NRCycle > CurrCycle) { 1982 #ifndef NDEBUG 1983 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1984 #endif 1985 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1986 << SchedModel->getResourceName(ResIdx) 1987 << "=" << NRCycle << "c\n"); 1988 return true; 1989 } 1990 } 1991 } 1992 return false; 1993 } 1994 1995 // Find the unscheduled node in ReadySUs with the highest latency. 1996 unsigned SchedBoundary:: 1997 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1998 SUnit *LateSU = nullptr; 1999 unsigned RemLatency = 0; 2000 for (SUnit *SU : ReadySUs) { 2001 unsigned L = getUnscheduledLatency(SU); 2002 if (L > RemLatency) { 2003 RemLatency = L; 2004 LateSU = SU; 2005 } 2006 } 2007 if (LateSU) { 2008 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2009 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2010 } 2011 return RemLatency; 2012 } 2013 2014 // Count resources in this zone and the remaining unscheduled 2015 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2016 // resource index, or zero if the zone is issue limited. 2017 unsigned SchedBoundary:: 2018 getOtherResourceCount(unsigned &OtherCritIdx) { 2019 OtherCritIdx = 0; 2020 if (!SchedModel->hasInstrSchedModel()) 2021 return 0; 2022 2023 unsigned OtherCritCount = Rem->RemIssueCount 2024 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2025 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2026 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2027 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2028 PIdx != PEnd; ++PIdx) { 2029 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2030 if (OtherCount > OtherCritCount) { 2031 OtherCritCount = OtherCount; 2032 OtherCritIdx = PIdx; 2033 } 2034 } 2035 if (OtherCritIdx) { 2036 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2037 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2038 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2039 } 2040 return OtherCritCount; 2041 } 2042 2043 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2044 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2045 2046 #ifndef NDEBUG 2047 // ReadyCycle was been bumped up to the CurrCycle when this node was 2048 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2049 // scheduling, so may now be greater than ReadyCycle. 2050 if (ReadyCycle > CurrCycle) 2051 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2052 #endif 2053 2054 if (ReadyCycle < MinReadyCycle) 2055 MinReadyCycle = ReadyCycle; 2056 2057 // Check for interlocks first. For the purpose of other heuristics, an 2058 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2059 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2060 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2061 Available.size() >= ReadyListLimit) 2062 Pending.push(SU); 2063 else 2064 Available.push(SU); 2065 } 2066 2067 /// Move the boundary of scheduled code by one cycle. 2068 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2069 if (SchedModel->getMicroOpBufferSize() == 0) { 2070 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2071 "MinReadyCycle uninitialized"); 2072 if (MinReadyCycle > NextCycle) 2073 NextCycle = MinReadyCycle; 2074 } 2075 // Update the current micro-ops, which will issue in the next cycle. 2076 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2077 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2078 2079 // Decrement DependentLatency based on the next cycle. 2080 if ((NextCycle - CurrCycle) > DependentLatency) 2081 DependentLatency = 0; 2082 else 2083 DependentLatency -= (NextCycle - CurrCycle); 2084 2085 if (!HazardRec->isEnabled()) { 2086 // Bypass HazardRec virtual calls. 2087 CurrCycle = NextCycle; 2088 } else { 2089 // Bypass getHazardType calls in case of long latency. 2090 for (; CurrCycle != NextCycle; ++CurrCycle) { 2091 if (isTop()) 2092 HazardRec->AdvanceCycle(); 2093 else 2094 HazardRec->RecedeCycle(); 2095 } 2096 } 2097 CheckPending = true; 2098 IsResourceLimited = 2099 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2100 getScheduledLatency()); 2101 2102 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2103 } 2104 2105 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2106 ExecutedResCounts[PIdx] += Count; 2107 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2108 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2109 } 2110 2111 /// Add the given processor resource to this scheduled zone. 2112 /// 2113 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2114 /// during which this resource is consumed. 2115 /// 2116 /// \return the next cycle at which the instruction may execute without 2117 /// oversubscribing resources. 2118 unsigned SchedBoundary:: 2119 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2120 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2121 unsigned Count = Factor * Cycles; 2122 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2123 << " +" << Cycles << "x" << Factor << "u\n"); 2124 2125 // Update Executed resources counts. 2126 incExecutedResources(PIdx, Count); 2127 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2128 Rem->RemainingCounts[PIdx] -= Count; 2129 2130 // Check if this resource exceeds the current critical resource. If so, it 2131 // becomes the critical resource. 2132 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2133 ZoneCritResIdx = PIdx; 2134 DEBUG(dbgs() << " *** Critical resource " 2135 << SchedModel->getResourceName(PIdx) << ": " 2136 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2137 } 2138 // For reserved resources, record the highest cycle using the resource. 2139 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2140 if (NextAvailable > CurrCycle) { 2141 DEBUG(dbgs() << " Resource conflict: " 2142 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2143 << NextAvailable << "\n"); 2144 } 2145 return NextAvailable; 2146 } 2147 2148 /// Move the boundary of scheduled code by one SUnit. 2149 void SchedBoundary::bumpNode(SUnit *SU) { 2150 // Update the reservation table. 2151 if (HazardRec->isEnabled()) { 2152 if (!isTop() && SU->isCall) { 2153 // Calls are scheduled with their preceding instructions. For bottom-up 2154 // scheduling, clear the pipeline state before emitting. 2155 HazardRec->Reset(); 2156 } 2157 HazardRec->EmitInstruction(SU); 2158 } 2159 // checkHazard should prevent scheduling multiple instructions per cycle that 2160 // exceed the issue width. 2161 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2162 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2163 assert( 2164 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2165 "Cannot schedule this instruction's MicroOps in the current cycle."); 2166 2167 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2168 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2169 2170 unsigned NextCycle = CurrCycle; 2171 switch (SchedModel->getMicroOpBufferSize()) { 2172 case 0: 2173 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2174 break; 2175 case 1: 2176 if (ReadyCycle > NextCycle) { 2177 NextCycle = ReadyCycle; 2178 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2179 } 2180 break; 2181 default: 2182 // We don't currently model the OOO reorder buffer, so consider all 2183 // scheduled MOps to be "retired". We do loosely model in-order resource 2184 // latency. If this instruction uses an in-order resource, account for any 2185 // likely stall cycles. 2186 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2187 NextCycle = ReadyCycle; 2188 break; 2189 } 2190 RetiredMOps += IncMOps; 2191 2192 // Update resource counts and critical resource. 2193 if (SchedModel->hasInstrSchedModel()) { 2194 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2195 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2196 Rem->RemIssueCount -= DecRemIssue; 2197 if (ZoneCritResIdx) { 2198 // Scale scheduled micro-ops for comparing with the critical resource. 2199 unsigned ScaledMOps = 2200 RetiredMOps * SchedModel->getMicroOpFactor(); 2201 2202 // If scaled micro-ops are now more than the previous critical resource by 2203 // a full cycle, then micro-ops issue becomes critical. 2204 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2205 >= (int)SchedModel->getLatencyFactor()) { 2206 ZoneCritResIdx = 0; 2207 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2208 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2209 } 2210 } 2211 for (TargetSchedModel::ProcResIter 2212 PI = SchedModel->getWriteProcResBegin(SC), 2213 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2214 unsigned RCycle = 2215 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2216 if (RCycle > NextCycle) 2217 NextCycle = RCycle; 2218 } 2219 if (SU->hasReservedResource) { 2220 // For reserved resources, record the highest cycle using the resource. 2221 // For top-down scheduling, this is the cycle in which we schedule this 2222 // instruction plus the number of cycles the operations reserves the 2223 // resource. For bottom-up is it simply the instruction's cycle. 2224 for (TargetSchedModel::ProcResIter 2225 PI = SchedModel->getWriteProcResBegin(SC), 2226 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2227 unsigned PIdx = PI->ProcResourceIdx; 2228 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2229 if (isTop()) { 2230 ReservedCycles[PIdx] = 2231 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2232 } 2233 else 2234 ReservedCycles[PIdx] = NextCycle; 2235 } 2236 } 2237 } 2238 } 2239 // Update ExpectedLatency and DependentLatency. 2240 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2241 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2242 if (SU->getDepth() > TopLatency) { 2243 TopLatency = SU->getDepth(); 2244 DEBUG(dbgs() << " " << Available.getName() 2245 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2246 } 2247 if (SU->getHeight() > BotLatency) { 2248 BotLatency = SU->getHeight(); 2249 DEBUG(dbgs() << " " << Available.getName() 2250 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2251 } 2252 // If we stall for any reason, bump the cycle. 2253 if (NextCycle > CurrCycle) 2254 bumpCycle(NextCycle); 2255 else 2256 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2257 // resource limited. If a stall occurred, bumpCycle does this. 2258 IsResourceLimited = 2259 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2260 getScheduledLatency()); 2261 2262 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2263 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2264 // one cycle. Since we commonly reach the max MOps here, opportunistically 2265 // bump the cycle to avoid uselessly checking everything in the readyQ. 2266 CurrMOps += IncMOps; 2267 2268 // Bump the cycle count for issue group constraints. 2269 // This must be done after NextCycle has been adjust for all other stalls. 2270 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2271 // currCycle to X. 2272 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2273 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2274 DEBUG(dbgs() << " Bump cycle to " 2275 << (isTop() ? "end" : "begin") << " group\n"); 2276 bumpCycle(++NextCycle); 2277 } 2278 2279 while (CurrMOps >= SchedModel->getIssueWidth()) { 2280 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2281 << " at cycle " << CurrCycle << '\n'); 2282 bumpCycle(++NextCycle); 2283 } 2284 DEBUG(dumpScheduledState()); 2285 } 2286 2287 /// Release pending ready nodes in to the available queue. This makes them 2288 /// visible to heuristics. 2289 void SchedBoundary::releasePending() { 2290 // If the available queue is empty, it is safe to reset MinReadyCycle. 2291 if (Available.empty()) 2292 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2293 2294 // Check to see if any of the pending instructions are ready to issue. If 2295 // so, add them to the available queue. 2296 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2297 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2298 SUnit *SU = *(Pending.begin()+i); 2299 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2300 2301 if (ReadyCycle < MinReadyCycle) 2302 MinReadyCycle = ReadyCycle; 2303 2304 if (!IsBuffered && ReadyCycle > CurrCycle) 2305 continue; 2306 2307 if (checkHazard(SU)) 2308 continue; 2309 2310 if (Available.size() >= ReadyListLimit) 2311 break; 2312 2313 Available.push(SU); 2314 Pending.remove(Pending.begin()+i); 2315 --i; --e; 2316 } 2317 CheckPending = false; 2318 } 2319 2320 /// Remove SU from the ready set for this boundary. 2321 void SchedBoundary::removeReady(SUnit *SU) { 2322 if (Available.isInQueue(SU)) 2323 Available.remove(Available.find(SU)); 2324 else { 2325 assert(Pending.isInQueue(SU) && "bad ready count"); 2326 Pending.remove(Pending.find(SU)); 2327 } 2328 } 2329 2330 /// If this queue only has one ready candidate, return it. As a side effect, 2331 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2332 /// one node is ready. If multiple instructions are ready, return NULL. 2333 SUnit *SchedBoundary::pickOnlyChoice() { 2334 if (CheckPending) 2335 releasePending(); 2336 2337 if (CurrMOps > 0) { 2338 // Defer any ready instrs that now have a hazard. 2339 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2340 if (checkHazard(*I)) { 2341 Pending.push(*I); 2342 I = Available.remove(I); 2343 continue; 2344 } 2345 ++I; 2346 } 2347 } 2348 for (unsigned i = 0; Available.empty(); ++i) { 2349 // FIXME: Re-enable assert once PR20057 is resolved. 2350 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2351 // "permanent hazard"); 2352 (void)i; 2353 bumpCycle(CurrCycle + 1); 2354 releasePending(); 2355 } 2356 2357 DEBUG(Pending.dump()); 2358 DEBUG(Available.dump()); 2359 2360 if (Available.size() == 1) 2361 return *Available.begin(); 2362 return nullptr; 2363 } 2364 2365 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2366 // This is useful information to dump after bumpNode. 2367 // Note that the Queue contents are more useful before pickNodeFromQueue. 2368 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2369 unsigned ResFactor; 2370 unsigned ResCount; 2371 if (ZoneCritResIdx) { 2372 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2373 ResCount = getResourceCount(ZoneCritResIdx); 2374 } else { 2375 ResFactor = SchedModel->getMicroOpFactor(); 2376 ResCount = RetiredMOps * ResFactor; 2377 } 2378 unsigned LFactor = SchedModel->getLatencyFactor(); 2379 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2380 << " Retired: " << RetiredMOps; 2381 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2382 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2383 << ResCount / ResFactor << " " 2384 << SchedModel->getResourceName(ZoneCritResIdx) 2385 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2386 << (IsResourceLimited ? " - Resource" : " - Latency") 2387 << " limited.\n"; 2388 } 2389 #endif 2390 2391 //===----------------------------------------------------------------------===// 2392 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2393 //===----------------------------------------------------------------------===// 2394 2395 void GenericSchedulerBase::SchedCandidate:: 2396 initResourceDelta(const ScheduleDAGMI *DAG, 2397 const TargetSchedModel *SchedModel) { 2398 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2399 return; 2400 2401 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2402 for (TargetSchedModel::ProcResIter 2403 PI = SchedModel->getWriteProcResBegin(SC), 2404 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2405 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2406 ResDelta.CritResources += PI->Cycles; 2407 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2408 ResDelta.DemandedResources += PI->Cycles; 2409 } 2410 } 2411 2412 /// Set the CandPolicy given a scheduling zone given the current resources and 2413 /// latencies inside and outside the zone. 2414 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2415 SchedBoundary &CurrZone, 2416 SchedBoundary *OtherZone) { 2417 // Apply preemptive heuristics based on the total latency and resources 2418 // inside and outside this zone. Potential stalls should be considered before 2419 // following this policy. 2420 2421 // Compute remaining latency. We need this both to determine whether the 2422 // overall schedule has become latency-limited and whether the instructions 2423 // outside this zone are resource or latency limited. 2424 // 2425 // The "dependent" latency is updated incrementally during scheduling as the 2426 // max height/depth of scheduled nodes minus the cycles since it was 2427 // scheduled: 2428 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2429 // 2430 // The "independent" latency is the max ready queue depth: 2431 // ILat = max N.depth for N in Available|Pending 2432 // 2433 // RemainingLatency is the greater of independent and dependent latency. 2434 unsigned RemLatency = CurrZone.getDependentLatency(); 2435 RemLatency = std::max(RemLatency, 2436 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2437 RemLatency = std::max(RemLatency, 2438 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2439 2440 // Compute the critical resource outside the zone. 2441 unsigned OtherCritIdx = 0; 2442 unsigned OtherCount = 2443 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2444 2445 bool OtherResLimited = false; 2446 if (SchedModel->hasInstrSchedModel()) 2447 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2448 OtherCount, RemLatency); 2449 2450 // Schedule aggressively for latency in PostRA mode. We don't check for 2451 // acyclic latency during PostRA, and highly out-of-order processors will 2452 // skip PostRA scheduling. 2453 if (!OtherResLimited) { 2454 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2455 Policy.ReduceLatency |= true; 2456 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2457 << " RemainingLatency " << RemLatency << " + " 2458 << CurrZone.getCurrCycle() << "c > CritPath " 2459 << Rem.CriticalPath << "\n"); 2460 } 2461 } 2462 // If the same resource is limiting inside and outside the zone, do nothing. 2463 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2464 return; 2465 2466 DEBUG( 2467 if (CurrZone.isResourceLimited()) { 2468 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2469 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2470 << "\n"; 2471 } 2472 if (OtherResLimited) 2473 dbgs() << " RemainingLimit: " 2474 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2475 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2476 dbgs() << " Latency limited both directions.\n"); 2477 2478 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2479 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2480 2481 if (OtherResLimited) 2482 Policy.DemandResIdx = OtherCritIdx; 2483 } 2484 2485 #ifndef NDEBUG 2486 const char *GenericSchedulerBase::getReasonStr( 2487 GenericSchedulerBase::CandReason Reason) { 2488 switch (Reason) { 2489 case NoCand: return "NOCAND "; 2490 case Only1: return "ONLY1 "; 2491 case PhysRegCopy: return "PREG-COPY "; 2492 case RegExcess: return "REG-EXCESS"; 2493 case RegCritical: return "REG-CRIT "; 2494 case Stall: return "STALL "; 2495 case Cluster: return "CLUSTER "; 2496 case Weak: return "WEAK "; 2497 case RegMax: return "REG-MAX "; 2498 case ResourceReduce: return "RES-REDUCE"; 2499 case ResourceDemand: return "RES-DEMAND"; 2500 case TopDepthReduce: return "TOP-DEPTH "; 2501 case TopPathReduce: return "TOP-PATH "; 2502 case BotHeightReduce:return "BOT-HEIGHT"; 2503 case BotPathReduce: return "BOT-PATH "; 2504 case NextDefUse: return "DEF-USE "; 2505 case NodeOrder: return "ORDER "; 2506 }; 2507 llvm_unreachable("Unknown reason!"); 2508 } 2509 2510 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2511 PressureChange P; 2512 unsigned ResIdx = 0; 2513 unsigned Latency = 0; 2514 switch (Cand.Reason) { 2515 default: 2516 break; 2517 case RegExcess: 2518 P = Cand.RPDelta.Excess; 2519 break; 2520 case RegCritical: 2521 P = Cand.RPDelta.CriticalMax; 2522 break; 2523 case RegMax: 2524 P = Cand.RPDelta.CurrentMax; 2525 break; 2526 case ResourceReduce: 2527 ResIdx = Cand.Policy.ReduceResIdx; 2528 break; 2529 case ResourceDemand: 2530 ResIdx = Cand.Policy.DemandResIdx; 2531 break; 2532 case TopDepthReduce: 2533 Latency = Cand.SU->getDepth(); 2534 break; 2535 case TopPathReduce: 2536 Latency = Cand.SU->getHeight(); 2537 break; 2538 case BotHeightReduce: 2539 Latency = Cand.SU->getHeight(); 2540 break; 2541 case BotPathReduce: 2542 Latency = Cand.SU->getDepth(); 2543 break; 2544 } 2545 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2546 if (P.isValid()) 2547 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2548 << ":" << P.getUnitInc() << " "; 2549 else 2550 dbgs() << " "; 2551 if (ResIdx) 2552 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2553 else 2554 dbgs() << " "; 2555 if (Latency) 2556 dbgs() << " " << Latency << " cycles "; 2557 else 2558 dbgs() << " "; 2559 dbgs() << '\n'; 2560 } 2561 #endif 2562 2563 /// Return true if this heuristic determines order. 2564 static bool tryLess(int TryVal, int CandVal, 2565 GenericSchedulerBase::SchedCandidate &TryCand, 2566 GenericSchedulerBase::SchedCandidate &Cand, 2567 GenericSchedulerBase::CandReason Reason) { 2568 if (TryVal < CandVal) { 2569 TryCand.Reason = Reason; 2570 return true; 2571 } 2572 if (TryVal > CandVal) { 2573 if (Cand.Reason > Reason) 2574 Cand.Reason = Reason; 2575 return true; 2576 } 2577 return false; 2578 } 2579 2580 static bool tryGreater(int TryVal, int CandVal, 2581 GenericSchedulerBase::SchedCandidate &TryCand, 2582 GenericSchedulerBase::SchedCandidate &Cand, 2583 GenericSchedulerBase::CandReason Reason) { 2584 if (TryVal > CandVal) { 2585 TryCand.Reason = Reason; 2586 return true; 2587 } 2588 if (TryVal < CandVal) { 2589 if (Cand.Reason > Reason) 2590 Cand.Reason = Reason; 2591 return true; 2592 } 2593 return false; 2594 } 2595 2596 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2597 GenericSchedulerBase::SchedCandidate &Cand, 2598 SchedBoundary &Zone) { 2599 if (Zone.isTop()) { 2600 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2601 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2602 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2603 return true; 2604 } 2605 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2606 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2607 return true; 2608 } else { 2609 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2610 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2611 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2612 return true; 2613 } 2614 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2615 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2616 return true; 2617 } 2618 return false; 2619 } 2620 2621 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2622 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2623 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2624 } 2625 2626 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2627 tracePick(Cand.Reason, Cand.AtTop); 2628 } 2629 2630 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2631 assert(dag->hasVRegLiveness() && 2632 "(PreRA)GenericScheduler needs vreg liveness"); 2633 DAG = static_cast<ScheduleDAGMILive*>(dag); 2634 SchedModel = DAG->getSchedModel(); 2635 TRI = DAG->TRI; 2636 2637 Rem.init(DAG, SchedModel); 2638 Top.init(DAG, SchedModel, &Rem); 2639 Bot.init(DAG, SchedModel, &Rem); 2640 2641 // Initialize resource counts. 2642 2643 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2644 // are disabled, then these HazardRecs will be disabled. 2645 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2646 if (!Top.HazardRec) { 2647 Top.HazardRec = 2648 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2649 Itin, DAG); 2650 } 2651 if (!Bot.HazardRec) { 2652 Bot.HazardRec = 2653 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2654 Itin, DAG); 2655 } 2656 TopCand.SU = nullptr; 2657 BotCand.SU = nullptr; 2658 } 2659 2660 /// Initialize the per-region scheduling policy. 2661 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2662 MachineBasicBlock::iterator End, 2663 unsigned NumRegionInstrs) { 2664 const MachineFunction &MF = *Begin->getMF(); 2665 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2666 2667 // Avoid setting up the register pressure tracker for small regions to save 2668 // compile time. As a rough heuristic, only track pressure when the number of 2669 // schedulable instructions exceeds half the integer register file. 2670 RegionPolicy.ShouldTrackPressure = true; 2671 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2672 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2673 if (TLI->isTypeLegal(LegalIntVT)) { 2674 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2675 TLI->getRegClassFor(LegalIntVT)); 2676 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2677 } 2678 } 2679 2680 // For generic targets, we default to bottom-up, because it's simpler and more 2681 // compile-time optimizations have been implemented in that direction. 2682 RegionPolicy.OnlyBottomUp = true; 2683 2684 // Allow the subtarget to override default policy. 2685 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2686 2687 // After subtarget overrides, apply command line options. 2688 if (!EnableRegPressure) 2689 RegionPolicy.ShouldTrackPressure = false; 2690 2691 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2692 // e.g. -misched-bottomup=false allows scheduling in both directions. 2693 assert((!ForceTopDown || !ForceBottomUp) && 2694 "-misched-topdown incompatible with -misched-bottomup"); 2695 if (ForceBottomUp.getNumOccurrences() > 0) { 2696 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2697 if (RegionPolicy.OnlyBottomUp) 2698 RegionPolicy.OnlyTopDown = false; 2699 } 2700 if (ForceTopDown.getNumOccurrences() > 0) { 2701 RegionPolicy.OnlyTopDown = ForceTopDown; 2702 if (RegionPolicy.OnlyTopDown) 2703 RegionPolicy.OnlyBottomUp = false; 2704 } 2705 } 2706 2707 void GenericScheduler::dumpPolicy() const { 2708 // Cannot completely remove virtual function even in release mode. 2709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2710 dbgs() << "GenericScheduler RegionPolicy: " 2711 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2712 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2713 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2714 << "\n"; 2715 #endif 2716 } 2717 2718 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2719 /// critical path by more cycles than it takes to drain the instruction buffer. 2720 /// We estimate an upper bounds on in-flight instructions as: 2721 /// 2722 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2723 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2724 /// InFlightResources = InFlightIterations * LoopResources 2725 /// 2726 /// TODO: Check execution resources in addition to IssueCount. 2727 void GenericScheduler::checkAcyclicLatency() { 2728 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2729 return; 2730 2731 // Scaled number of cycles per loop iteration. 2732 unsigned IterCount = 2733 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2734 Rem.RemIssueCount); 2735 // Scaled acyclic critical path. 2736 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2737 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2738 unsigned InFlightCount = 2739 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2740 unsigned BufferLimit = 2741 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2742 2743 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2744 2745 DEBUG(dbgs() << "IssueCycles=" 2746 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2747 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2748 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2749 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2750 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2751 if (Rem.IsAcyclicLatencyLimited) 2752 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2753 } 2754 2755 void GenericScheduler::registerRoots() { 2756 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2757 2758 // Some roots may not feed into ExitSU. Check all of them in case. 2759 for (const SUnit *SU : Bot.Available) { 2760 if (SU->getDepth() > Rem.CriticalPath) 2761 Rem.CriticalPath = SU->getDepth(); 2762 } 2763 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2764 if (DumpCriticalPathLength) { 2765 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2766 } 2767 2768 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2769 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2770 checkAcyclicLatency(); 2771 } 2772 } 2773 2774 static bool tryPressure(const PressureChange &TryP, 2775 const PressureChange &CandP, 2776 GenericSchedulerBase::SchedCandidate &TryCand, 2777 GenericSchedulerBase::SchedCandidate &Cand, 2778 GenericSchedulerBase::CandReason Reason, 2779 const TargetRegisterInfo *TRI, 2780 const MachineFunction &MF) { 2781 // If one candidate decreases and the other increases, go with it. 2782 // Invalid candidates have UnitInc==0. 2783 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2784 Reason)) { 2785 return true; 2786 } 2787 // Do not compare the magnitude of pressure changes between top and bottom 2788 // boundary. 2789 if (Cand.AtTop != TryCand.AtTop) 2790 return false; 2791 2792 // If both candidates affect the same set in the same boundary, go with the 2793 // smallest increase. 2794 unsigned TryPSet = TryP.getPSetOrMax(); 2795 unsigned CandPSet = CandP.getPSetOrMax(); 2796 if (TryPSet == CandPSet) { 2797 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2798 Reason); 2799 } 2800 2801 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2802 std::numeric_limits<int>::max(); 2803 2804 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2805 std::numeric_limits<int>::max(); 2806 2807 // If the candidates are decreasing pressure, reverse priority. 2808 if (TryP.getUnitInc() < 0) 2809 std::swap(TryRank, CandRank); 2810 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2811 } 2812 2813 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2814 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2815 } 2816 2817 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2818 /// their physreg def/use. 2819 /// 2820 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2821 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2822 /// with the operation that produces or consumes the physreg. We'll do this when 2823 /// regalloc has support for parallel copies. 2824 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2825 const MachineInstr *MI = SU->getInstr(); 2826 if (!MI->isCopy()) 2827 return 0; 2828 2829 unsigned ScheduledOper = isTop ? 1 : 0; 2830 unsigned UnscheduledOper = isTop ? 0 : 1; 2831 // If we have already scheduled the physreg produce/consumer, immediately 2832 // schedule the copy. 2833 if (TargetRegisterInfo::isPhysicalRegister( 2834 MI->getOperand(ScheduledOper).getReg())) 2835 return 1; 2836 // If the physreg is at the boundary, defer it. Otherwise schedule it 2837 // immediately to free the dependent. We can hoist the copy later. 2838 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2839 if (TargetRegisterInfo::isPhysicalRegister( 2840 MI->getOperand(UnscheduledOper).getReg())) 2841 return AtBoundary ? -1 : 1; 2842 return 0; 2843 } 2844 2845 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2846 bool AtTop, 2847 const RegPressureTracker &RPTracker, 2848 RegPressureTracker &TempTracker) { 2849 Cand.SU = SU; 2850 Cand.AtTop = AtTop; 2851 if (DAG->isTrackingPressure()) { 2852 if (AtTop) { 2853 TempTracker.getMaxDownwardPressureDelta( 2854 Cand.SU->getInstr(), 2855 Cand.RPDelta, 2856 DAG->getRegionCriticalPSets(), 2857 DAG->getRegPressure().MaxSetPressure); 2858 } else { 2859 if (VerifyScheduling) { 2860 TempTracker.getMaxUpwardPressureDelta( 2861 Cand.SU->getInstr(), 2862 &DAG->getPressureDiff(Cand.SU), 2863 Cand.RPDelta, 2864 DAG->getRegionCriticalPSets(), 2865 DAG->getRegPressure().MaxSetPressure); 2866 } else { 2867 RPTracker.getUpwardPressureDelta( 2868 Cand.SU->getInstr(), 2869 DAG->getPressureDiff(Cand.SU), 2870 Cand.RPDelta, 2871 DAG->getRegionCriticalPSets(), 2872 DAG->getRegPressure().MaxSetPressure); 2873 } 2874 } 2875 } 2876 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2877 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2878 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2879 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2880 } 2881 2882 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2883 /// hierarchical. This may be more efficient than a graduated cost model because 2884 /// we don't need to evaluate all aspects of the model for each node in the 2885 /// queue. But it's really done to make the heuristics easier to debug and 2886 /// statistically analyze. 2887 /// 2888 /// \param Cand provides the policy and current best candidate. 2889 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2890 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2891 // if Cand is from a different zone than TryCand. 2892 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2893 SchedCandidate &TryCand, 2894 SchedBoundary *Zone) { 2895 // Initialize the candidate if needed. 2896 if (!Cand.isValid()) { 2897 TryCand.Reason = NodeOrder; 2898 return; 2899 } 2900 2901 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2902 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2903 TryCand, Cand, PhysRegCopy)) 2904 return; 2905 2906 // Avoid exceeding the target's limit. 2907 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2908 Cand.RPDelta.Excess, 2909 TryCand, Cand, RegExcess, TRI, 2910 DAG->MF)) 2911 return; 2912 2913 // Avoid increasing the max critical pressure in the scheduled region. 2914 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2915 Cand.RPDelta.CriticalMax, 2916 TryCand, Cand, RegCritical, TRI, 2917 DAG->MF)) 2918 return; 2919 2920 // We only compare a subset of features when comparing nodes between 2921 // Top and Bottom boundary. Some properties are simply incomparable, in many 2922 // other instances we should only override the other boundary if something 2923 // is a clear good pick on one boundary. Skip heuristics that are more 2924 // "tie-breaking" in nature. 2925 bool SameBoundary = Zone != nullptr; 2926 if (SameBoundary) { 2927 // For loops that are acyclic path limited, aggressively schedule for 2928 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2929 // heuristics to take precedence. 2930 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2931 tryLatency(TryCand, Cand, *Zone)) 2932 return; 2933 2934 // Prioritize instructions that read unbuffered resources by stall cycles. 2935 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2936 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2937 return; 2938 } 2939 2940 // Keep clustered nodes together to encourage downstream peephole 2941 // optimizations which may reduce resource requirements. 2942 // 2943 // This is a best effort to set things up for a post-RA pass. Optimizations 2944 // like generating loads of multiple registers should ideally be done within 2945 // the scheduler pass by combining the loads during DAG postprocessing. 2946 const SUnit *CandNextClusterSU = 2947 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2948 const SUnit *TryCandNextClusterSU = 2949 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2950 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2951 Cand.SU == CandNextClusterSU, 2952 TryCand, Cand, Cluster)) 2953 return; 2954 2955 if (SameBoundary) { 2956 // Weak edges are for clustering and other constraints. 2957 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2958 getWeakLeft(Cand.SU, Cand.AtTop), 2959 TryCand, Cand, Weak)) 2960 return; 2961 } 2962 2963 // Avoid increasing the max pressure of the entire region. 2964 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2965 Cand.RPDelta.CurrentMax, 2966 TryCand, Cand, RegMax, TRI, 2967 DAG->MF)) 2968 return; 2969 2970 if (SameBoundary) { 2971 // Avoid critical resource consumption and balance the schedule. 2972 TryCand.initResourceDelta(DAG, SchedModel); 2973 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2974 TryCand, Cand, ResourceReduce)) 2975 return; 2976 if (tryGreater(TryCand.ResDelta.DemandedResources, 2977 Cand.ResDelta.DemandedResources, 2978 TryCand, Cand, ResourceDemand)) 2979 return; 2980 2981 // Avoid serializing long latency dependence chains. 2982 // For acyclic path limited loops, latency was already checked above. 2983 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2984 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2985 return; 2986 2987 // Fall through to original instruction order. 2988 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2989 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2990 TryCand.Reason = NodeOrder; 2991 } 2992 } 2993 } 2994 2995 /// Pick the best candidate from the queue. 2996 /// 2997 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2998 /// DAG building. To adjust for the current scheduling location we need to 2999 /// maintain the number of vreg uses remaining to be top-scheduled. 3000 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3001 const CandPolicy &ZonePolicy, 3002 const RegPressureTracker &RPTracker, 3003 SchedCandidate &Cand) { 3004 // getMaxPressureDelta temporarily modifies the tracker. 3005 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3006 3007 ReadyQueue &Q = Zone.Available; 3008 for (SUnit *SU : Q) { 3009 3010 SchedCandidate TryCand(ZonePolicy); 3011 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3012 // Pass SchedBoundary only when comparing nodes from the same boundary. 3013 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3014 tryCandidate(Cand, TryCand, ZoneArg); 3015 if (TryCand.Reason != NoCand) { 3016 // Initialize resource delta if needed in case future heuristics query it. 3017 if (TryCand.ResDelta == SchedResourceDelta()) 3018 TryCand.initResourceDelta(DAG, SchedModel); 3019 Cand.setBest(TryCand); 3020 DEBUG(traceCandidate(Cand)); 3021 } 3022 } 3023 } 3024 3025 /// Pick the best candidate node from either the top or bottom queue. 3026 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3027 // Schedule as far as possible in the direction of no choice. This is most 3028 // efficient, but also provides the best heuristics for CriticalPSets. 3029 if (SUnit *SU = Bot.pickOnlyChoice()) { 3030 IsTopNode = false; 3031 tracePick(Only1, false); 3032 return SU; 3033 } 3034 if (SUnit *SU = Top.pickOnlyChoice()) { 3035 IsTopNode = true; 3036 tracePick(Only1, true); 3037 return SU; 3038 } 3039 // Set the bottom-up policy based on the state of the current bottom zone and 3040 // the instructions outside the zone, including the top zone. 3041 CandPolicy BotPolicy; 3042 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3043 // Set the top-down policy based on the state of the current top zone and 3044 // the instructions outside the zone, including the bottom zone. 3045 CandPolicy TopPolicy; 3046 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3047 3048 // See if BotCand is still valid (because we previously scheduled from Top). 3049 DEBUG(dbgs() << "Picking from Bot:\n"); 3050 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3051 BotCand.Policy != BotPolicy) { 3052 BotCand.reset(CandPolicy()); 3053 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3054 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3055 } else { 3056 DEBUG(traceCandidate(BotCand)); 3057 #ifndef NDEBUG 3058 if (VerifyScheduling) { 3059 SchedCandidate TCand; 3060 TCand.reset(CandPolicy()); 3061 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3062 assert(TCand.SU == BotCand.SU && 3063 "Last pick result should correspond to re-picking right now"); 3064 } 3065 #endif 3066 } 3067 3068 // Check if the top Q has a better candidate. 3069 DEBUG(dbgs() << "Picking from Top:\n"); 3070 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3071 TopCand.Policy != TopPolicy) { 3072 TopCand.reset(CandPolicy()); 3073 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3074 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3075 } else { 3076 DEBUG(traceCandidate(TopCand)); 3077 #ifndef NDEBUG 3078 if (VerifyScheduling) { 3079 SchedCandidate TCand; 3080 TCand.reset(CandPolicy()); 3081 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3082 assert(TCand.SU == TopCand.SU && 3083 "Last pick result should correspond to re-picking right now"); 3084 } 3085 #endif 3086 } 3087 3088 // Pick best from BotCand and TopCand. 3089 assert(BotCand.isValid()); 3090 assert(TopCand.isValid()); 3091 SchedCandidate Cand = BotCand; 3092 TopCand.Reason = NoCand; 3093 tryCandidate(Cand, TopCand, nullptr); 3094 if (TopCand.Reason != NoCand) { 3095 Cand.setBest(TopCand); 3096 DEBUG(traceCandidate(Cand)); 3097 } 3098 3099 IsTopNode = Cand.AtTop; 3100 tracePick(Cand); 3101 return Cand.SU; 3102 } 3103 3104 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3105 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3106 if (DAG->top() == DAG->bottom()) { 3107 assert(Top.Available.empty() && Top.Pending.empty() && 3108 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3109 return nullptr; 3110 } 3111 SUnit *SU; 3112 do { 3113 if (RegionPolicy.OnlyTopDown) { 3114 SU = Top.pickOnlyChoice(); 3115 if (!SU) { 3116 CandPolicy NoPolicy; 3117 TopCand.reset(NoPolicy); 3118 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3119 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3120 tracePick(TopCand); 3121 SU = TopCand.SU; 3122 } 3123 IsTopNode = true; 3124 } else if (RegionPolicy.OnlyBottomUp) { 3125 SU = Bot.pickOnlyChoice(); 3126 if (!SU) { 3127 CandPolicy NoPolicy; 3128 BotCand.reset(NoPolicy); 3129 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3130 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3131 tracePick(BotCand); 3132 SU = BotCand.SU; 3133 } 3134 IsTopNode = false; 3135 } else { 3136 SU = pickNodeBidirectional(IsTopNode); 3137 } 3138 } while (SU->isScheduled); 3139 3140 if (SU->isTopReady()) 3141 Top.removeReady(SU); 3142 if (SU->isBottomReady()) 3143 Bot.removeReady(SU); 3144 3145 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3146 return SU; 3147 } 3148 3149 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3150 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3151 if (!isTop) 3152 ++InsertPos; 3153 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3154 3155 // Find already scheduled copies with a single physreg dependence and move 3156 // them just above the scheduled instruction. 3157 for (SDep &Dep : Deps) { 3158 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3159 continue; 3160 SUnit *DepSU = Dep.getSUnit(); 3161 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3162 continue; 3163 MachineInstr *Copy = DepSU->getInstr(); 3164 if (!Copy->isCopy()) 3165 continue; 3166 DEBUG(dbgs() << " Rescheduling physreg copy "; 3167 Dep.getSUnit()->dump(DAG)); 3168 DAG->moveInstruction(Copy, InsertPos); 3169 } 3170 } 3171 3172 /// Update the scheduler's state after scheduling a node. This is the same node 3173 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3174 /// update it's state based on the current cycle before MachineSchedStrategy 3175 /// does. 3176 /// 3177 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3178 /// them here. See comments in biasPhysRegCopy. 3179 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3180 if (IsTopNode) { 3181 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3182 Top.bumpNode(SU); 3183 if (SU->hasPhysRegUses) 3184 reschedulePhysRegCopies(SU, true); 3185 } else { 3186 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3187 Bot.bumpNode(SU); 3188 if (SU->hasPhysRegDefs) 3189 reschedulePhysRegCopies(SU, false); 3190 } 3191 } 3192 3193 /// Create the standard converging machine scheduler. This will be used as the 3194 /// default scheduler if the target does not set a default. 3195 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3196 ScheduleDAGMILive *DAG = 3197 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3198 // Register DAG post-processors. 3199 // 3200 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3201 // data and pass it to later mutations. Have a single mutation that gathers 3202 // the interesting nodes in one pass. 3203 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3204 return DAG; 3205 } 3206 3207 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3208 return createGenericSchedLive(C); 3209 } 3210 3211 static MachineSchedRegistry 3212 GenericSchedRegistry("converge", "Standard converging scheduler.", 3213 createConveringSched); 3214 3215 //===----------------------------------------------------------------------===// 3216 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3217 //===----------------------------------------------------------------------===// 3218 3219 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3220 DAG = Dag; 3221 SchedModel = DAG->getSchedModel(); 3222 TRI = DAG->TRI; 3223 3224 Rem.init(DAG, SchedModel); 3225 Top.init(DAG, SchedModel, &Rem); 3226 BotRoots.clear(); 3227 3228 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3229 // or are disabled, then these HazardRecs will be disabled. 3230 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3231 if (!Top.HazardRec) { 3232 Top.HazardRec = 3233 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3234 Itin, DAG); 3235 } 3236 } 3237 3238 void PostGenericScheduler::registerRoots() { 3239 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3240 3241 // Some roots may not feed into ExitSU. Check all of them in case. 3242 for (const SUnit *SU : BotRoots) { 3243 if (SU->getDepth() > Rem.CriticalPath) 3244 Rem.CriticalPath = SU->getDepth(); 3245 } 3246 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3247 if (DumpCriticalPathLength) { 3248 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3249 } 3250 } 3251 3252 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3253 /// 3254 /// \param Cand provides the policy and current best candidate. 3255 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3256 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3257 SchedCandidate &TryCand) { 3258 // Initialize the candidate if needed. 3259 if (!Cand.isValid()) { 3260 TryCand.Reason = NodeOrder; 3261 return; 3262 } 3263 3264 // Prioritize instructions that read unbuffered resources by stall cycles. 3265 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3266 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3267 return; 3268 3269 // Keep clustered nodes together. 3270 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3271 Cand.SU == DAG->getNextClusterSucc(), 3272 TryCand, Cand, Cluster)) 3273 return; 3274 3275 // Avoid critical resource consumption and balance the schedule. 3276 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3277 TryCand, Cand, ResourceReduce)) 3278 return; 3279 if (tryGreater(TryCand.ResDelta.DemandedResources, 3280 Cand.ResDelta.DemandedResources, 3281 TryCand, Cand, ResourceDemand)) 3282 return; 3283 3284 // Avoid serializing long latency dependence chains. 3285 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3286 return; 3287 } 3288 3289 // Fall through to original instruction order. 3290 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3291 TryCand.Reason = NodeOrder; 3292 } 3293 3294 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3295 ReadyQueue &Q = Top.Available; 3296 for (SUnit *SU : Q) { 3297 SchedCandidate TryCand(Cand.Policy); 3298 TryCand.SU = SU; 3299 TryCand.AtTop = true; 3300 TryCand.initResourceDelta(DAG, SchedModel); 3301 tryCandidate(Cand, TryCand); 3302 if (TryCand.Reason != NoCand) { 3303 Cand.setBest(TryCand); 3304 DEBUG(traceCandidate(Cand)); 3305 } 3306 } 3307 } 3308 3309 /// Pick the next node to schedule. 3310 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3311 if (DAG->top() == DAG->bottom()) { 3312 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3313 return nullptr; 3314 } 3315 SUnit *SU; 3316 do { 3317 SU = Top.pickOnlyChoice(); 3318 if (SU) { 3319 tracePick(Only1, true); 3320 } else { 3321 CandPolicy NoPolicy; 3322 SchedCandidate TopCand(NoPolicy); 3323 // Set the top-down policy based on the state of the current top zone and 3324 // the instructions outside the zone, including the bottom zone. 3325 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3326 pickNodeFromQueue(TopCand); 3327 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3328 tracePick(TopCand); 3329 SU = TopCand.SU; 3330 } 3331 } while (SU->isScheduled); 3332 3333 IsTopNode = true; 3334 Top.removeReady(SU); 3335 3336 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3337 return SU; 3338 } 3339 3340 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3341 /// scheduled/remaining flags in the DAG nodes. 3342 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3343 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3344 Top.bumpNode(SU); 3345 } 3346 3347 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3348 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3349 /*RemoveKillFlags=*/true); 3350 } 3351 3352 //===----------------------------------------------------------------------===// 3353 // ILP Scheduler. Currently for experimental analysis of heuristics. 3354 //===----------------------------------------------------------------------===// 3355 3356 namespace { 3357 3358 /// \brief Order nodes by the ILP metric. 3359 struct ILPOrder { 3360 const SchedDFSResult *DFSResult = nullptr; 3361 const BitVector *ScheduledTrees = nullptr; 3362 bool MaximizeILP; 3363 3364 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3365 3366 /// \brief Apply a less-than relation on node priority. 3367 /// 3368 /// (Return true if A comes after B in the Q.) 3369 bool operator()(const SUnit *A, const SUnit *B) const { 3370 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3371 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3372 if (SchedTreeA != SchedTreeB) { 3373 // Unscheduled trees have lower priority. 3374 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3375 return ScheduledTrees->test(SchedTreeB); 3376 3377 // Trees with shallower connections have have lower priority. 3378 if (DFSResult->getSubtreeLevel(SchedTreeA) 3379 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3380 return DFSResult->getSubtreeLevel(SchedTreeA) 3381 < DFSResult->getSubtreeLevel(SchedTreeB); 3382 } 3383 } 3384 if (MaximizeILP) 3385 return DFSResult->getILP(A) < DFSResult->getILP(B); 3386 else 3387 return DFSResult->getILP(A) > DFSResult->getILP(B); 3388 } 3389 }; 3390 3391 /// \brief Schedule based on the ILP metric. 3392 class ILPScheduler : public MachineSchedStrategy { 3393 ScheduleDAGMILive *DAG = nullptr; 3394 ILPOrder Cmp; 3395 3396 std::vector<SUnit*> ReadyQ; 3397 3398 public: 3399 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3400 3401 void initialize(ScheduleDAGMI *dag) override { 3402 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3403 DAG = static_cast<ScheduleDAGMILive*>(dag); 3404 DAG->computeDFSResult(); 3405 Cmp.DFSResult = DAG->getDFSResult(); 3406 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3407 ReadyQ.clear(); 3408 } 3409 3410 void registerRoots() override { 3411 // Restore the heap in ReadyQ with the updated DFS results. 3412 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3413 } 3414 3415 /// Implement MachineSchedStrategy interface. 3416 /// ----------------------------------------- 3417 3418 /// Callback to select the highest priority node from the ready Q. 3419 SUnit *pickNode(bool &IsTopNode) override { 3420 if (ReadyQ.empty()) return nullptr; 3421 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3422 SUnit *SU = ReadyQ.back(); 3423 ReadyQ.pop_back(); 3424 IsTopNode = false; 3425 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3426 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3427 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3428 << DAG->getDFSResult()->getSubtreeLevel( 3429 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3430 << "Scheduling " << *SU->getInstr()); 3431 return SU; 3432 } 3433 3434 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3435 void scheduleTree(unsigned SubtreeID) override { 3436 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3437 } 3438 3439 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3440 /// DFSResults, and resort the priority Q. 3441 void schedNode(SUnit *SU, bool IsTopNode) override { 3442 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3443 } 3444 3445 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3446 3447 void releaseBottomNode(SUnit *SU) override { 3448 ReadyQ.push_back(SU); 3449 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3450 } 3451 }; 3452 3453 } // end anonymous namespace 3454 3455 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3456 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3457 } 3458 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3459 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3460 } 3461 3462 static MachineSchedRegistry ILPMaxRegistry( 3463 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3464 static MachineSchedRegistry ILPMinRegistry( 3465 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3466 3467 //===----------------------------------------------------------------------===// 3468 // Machine Instruction Shuffler for Correctness Testing 3469 //===----------------------------------------------------------------------===// 3470 3471 #ifndef NDEBUG 3472 namespace { 3473 3474 /// Apply a less-than relation on the node order, which corresponds to the 3475 /// instruction order prior to scheduling. IsReverse implements greater-than. 3476 template<bool IsReverse> 3477 struct SUnitOrder { 3478 bool operator()(SUnit *A, SUnit *B) const { 3479 if (IsReverse) 3480 return A->NodeNum > B->NodeNum; 3481 else 3482 return A->NodeNum < B->NodeNum; 3483 } 3484 }; 3485 3486 /// Reorder instructions as much as possible. 3487 class InstructionShuffler : public MachineSchedStrategy { 3488 bool IsAlternating; 3489 bool IsTopDown; 3490 3491 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3492 // gives nodes with a higher number higher priority causing the latest 3493 // instructions to be scheduled first. 3494 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3495 TopQ; 3496 3497 // When scheduling bottom-up, use greater-than as the queue priority. 3498 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3499 BottomQ; 3500 3501 public: 3502 InstructionShuffler(bool alternate, bool topdown) 3503 : IsAlternating(alternate), IsTopDown(topdown) {} 3504 3505 void initialize(ScheduleDAGMI*) override { 3506 TopQ.clear(); 3507 BottomQ.clear(); 3508 } 3509 3510 /// Implement MachineSchedStrategy interface. 3511 /// ----------------------------------------- 3512 3513 SUnit *pickNode(bool &IsTopNode) override { 3514 SUnit *SU; 3515 if (IsTopDown) { 3516 do { 3517 if (TopQ.empty()) return nullptr; 3518 SU = TopQ.top(); 3519 TopQ.pop(); 3520 } while (SU->isScheduled); 3521 IsTopNode = true; 3522 } else { 3523 do { 3524 if (BottomQ.empty()) return nullptr; 3525 SU = BottomQ.top(); 3526 BottomQ.pop(); 3527 } while (SU->isScheduled); 3528 IsTopNode = false; 3529 } 3530 if (IsAlternating) 3531 IsTopDown = !IsTopDown; 3532 return SU; 3533 } 3534 3535 void schedNode(SUnit *SU, bool IsTopNode) override {} 3536 3537 void releaseTopNode(SUnit *SU) override { 3538 TopQ.push(SU); 3539 } 3540 void releaseBottomNode(SUnit *SU) override { 3541 BottomQ.push(SU); 3542 } 3543 }; 3544 3545 } // end anonymous namespace 3546 3547 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3548 bool Alternate = !ForceTopDown && !ForceBottomUp; 3549 bool TopDown = !ForceBottomUp; 3550 assert((TopDown || !ForceTopDown) && 3551 "-misched-topdown incompatible with -misched-bottomup"); 3552 return new ScheduleDAGMILive( 3553 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3554 } 3555 3556 static MachineSchedRegistry ShufflerRegistry( 3557 "shuffle", "Shuffle machine instructions alternating directions", 3558 createInstructionShuffler); 3559 #endif // !NDEBUG 3560 3561 //===----------------------------------------------------------------------===// 3562 // GraphWriter support for ScheduleDAGMILive. 3563 //===----------------------------------------------------------------------===// 3564 3565 #ifndef NDEBUG 3566 namespace llvm { 3567 3568 template<> struct GraphTraits< 3569 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3570 3571 template<> 3572 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3573 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3574 3575 static std::string getGraphName(const ScheduleDAG *G) { 3576 return G->MF.getName(); 3577 } 3578 3579 static bool renderGraphFromBottomUp() { 3580 return true; 3581 } 3582 3583 static bool isNodeHidden(const SUnit *Node) { 3584 if (ViewMISchedCutoff == 0) 3585 return false; 3586 return (Node->Preds.size() > ViewMISchedCutoff 3587 || Node->Succs.size() > ViewMISchedCutoff); 3588 } 3589 3590 /// If you want to override the dot attributes printed for a particular 3591 /// edge, override this method. 3592 static std::string getEdgeAttributes(const SUnit *Node, 3593 SUnitIterator EI, 3594 const ScheduleDAG *Graph) { 3595 if (EI.isArtificialDep()) 3596 return "color=cyan,style=dashed"; 3597 if (EI.isCtrlDep()) 3598 return "color=blue,style=dashed"; 3599 return ""; 3600 } 3601 3602 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3603 std::string Str; 3604 raw_string_ostream SS(Str); 3605 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3606 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3607 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3608 SS << "SU:" << SU->NodeNum; 3609 if (DFS) 3610 SS << " I:" << DFS->getNumInstrs(SU); 3611 return SS.str(); 3612 } 3613 3614 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3615 return G->getGraphNodeLabel(SU); 3616 } 3617 3618 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3619 std::string Str("shape=Mrecord"); 3620 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3621 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3622 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3623 if (DFS) { 3624 Str += ",style=filled,fillcolor=\"#"; 3625 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3626 Str += '"'; 3627 } 3628 return Str; 3629 } 3630 }; 3631 3632 } // end namespace llvm 3633 #endif // NDEBUG 3634 3635 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3636 /// rendered using 'dot'. 3637 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3638 #ifndef NDEBUG 3639 ViewGraph(this, Name, false, Title); 3640 #else 3641 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3642 << "systems with Graphviz or gv!\n"; 3643 #endif // NDEBUG 3644 } 3645 3646 /// Out-of-line implementation with no arguments is handy for gdb. 3647 void ScheduleDAGMI::viewGraph() { 3648 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3649 } 3650