xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision c396f09ce96e56260cc7d5d3398615904b473265)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104                               cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
109 
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113   cl::desc("Limit ready list to N instructions"), cl::init(256));
114 
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116   cl::desc("Enable register pressure scheduling."), cl::init(true));
117 
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
120 
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122                                         cl::desc("Enable memop clustering."),
123                                         cl::init(true));
124 
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126   cl::desc("Verify machine instrs before and after machine scheduling"));
127 
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
130 
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
133 
134 void ScheduleDAGMutation::anchor() {}
135 
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
139 
140 MachineSchedContext::MachineSchedContext() {
141   RegClassInfo = new RegisterClassInfo();
142 }
143 
144 MachineSchedContext::~MachineSchedContext() {
145   delete RegClassInfo;
146 }
147 
148 namespace {
149 
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152                              public MachineFunctionPass {
153 public:
154   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
155 
156   void print(raw_ostream &O, const Module* = nullptr) const override;
157 
158 protected:
159   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
160 };
161 
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165   MachineScheduler();
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override;
168 
169   bool runOnMachineFunction(MachineFunction&) override;
170 
171   static char ID; // Class identification, replacement for typeinfo
172 
173 protected:
174   ScheduleDAGInstrs *createMachineScheduler();
175 };
176 
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180   PostMachineScheduler();
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override;
183 
184   bool runOnMachineFunction(MachineFunction&) override;
185 
186   static char ID; // Class identification, replacement for typeinfo
187 
188 protected:
189   ScheduleDAGInstrs *createPostMachineScheduler();
190 };
191 
192 } // end anonymous namespace
193 
194 char MachineScheduler::ID = 0;
195 
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
197 
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199                       "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205                     "Machine Instruction Scheduler", false, false)
206 
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
209 }
210 
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212   AU.setPreservesCFG();
213   AU.addRequiredID(MachineDominatorsID);
214   AU.addRequired<MachineLoopInfo>();
215   AU.addRequired<AAResultsWrapperPass>();
216   AU.addRequired<TargetPassConfig>();
217   AU.addRequired<SlotIndexes>();
218   AU.addPreserved<SlotIndexes>();
219   AU.addRequired<LiveIntervals>();
220   AU.addPreserved<LiveIntervals>();
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 char PostMachineScheduler::ID = 0;
225 
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
227 
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229                 "PostRA Machine Instruction Scheduler", false, false)
230 
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
233 }
234 
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236   AU.setPreservesCFG();
237   AU.addRequiredID(MachineDominatorsID);
238   AU.addRequired<MachineLoopInfo>();
239   AU.addRequired<TargetPassConfig>();
240   MachineFunctionPass::getAnalysisUsage(AU);
241 }
242 
243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
244     MachineSchedRegistry::Registry;
245 
246 /// A dummy default scheduler factory indicates whether the scheduler
247 /// is overridden on the command line.
248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
249   return nullptr;
250 }
251 
252 /// MachineSchedOpt allows command line selection of the scheduler.
253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
254                RegisterPassParser<MachineSchedRegistry>>
255 MachineSchedOpt("misched",
256                 cl::init(&useDefaultMachineSched), cl::Hidden,
257                 cl::desc("Machine instruction scheduler to use"));
258 
259 static MachineSchedRegistry
260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
261                      useDefaultMachineSched);
262 
263 static cl::opt<bool> EnableMachineSched(
264     "enable-misched",
265     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
266     cl::Hidden);
267 
268 static cl::opt<bool> EnablePostRAMachineSched(
269     "enable-post-misched",
270     cl::desc("Enable the post-ra machine instruction scheduling pass."),
271     cl::init(true), cl::Hidden);
272 
273 /// Decrement this iterator until reaching the top or a non-debug instr.
274 static MachineBasicBlock::const_iterator
275 priorNonDebug(MachineBasicBlock::const_iterator I,
276               MachineBasicBlock::const_iterator Beg) {
277   assert(I != Beg && "reached the top of the region, cannot decrement");
278   while (--I != Beg) {
279     if (!I->isDebugInstr())
280       break;
281   }
282   return I;
283 }
284 
285 /// Non-const version.
286 static MachineBasicBlock::iterator
287 priorNonDebug(MachineBasicBlock::iterator I,
288               MachineBasicBlock::const_iterator Beg) {
289   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
290       .getNonConstIterator();
291 }
292 
293 /// If this iterator is a debug value, increment until reaching the End or a
294 /// non-debug instruction.
295 static MachineBasicBlock::const_iterator
296 nextIfDebug(MachineBasicBlock::const_iterator I,
297             MachineBasicBlock::const_iterator End) {
298   for(; I != End; ++I) {
299     if (!I->isDebugInstr())
300       break;
301   }
302   return I;
303 }
304 
305 /// Non-const version.
306 static MachineBasicBlock::iterator
307 nextIfDebug(MachineBasicBlock::iterator I,
308             MachineBasicBlock::const_iterator End) {
309   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
310       .getNonConstIterator();
311 }
312 
313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
315   // Select the scheduler, or set the default.
316   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
317   if (Ctor != useDefaultMachineSched)
318     return Ctor(this);
319 
320   // Get the default scheduler set by the target for this function.
321   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
322   if (Scheduler)
323     return Scheduler;
324 
325   // Default to GenericScheduler.
326   return createGenericSchedLive(this);
327 }
328 
329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
330 /// the caller. We don't have a command line option to override the postRA
331 /// scheduler. The Target must configure it.
332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
333   // Get the postRA scheduler set by the target for this function.
334   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
335   if (Scheduler)
336     return Scheduler;
337 
338   // Default to GenericScheduler.
339   return createGenericSchedPostRA(this);
340 }
341 
342 /// Top-level MachineScheduler pass driver.
343 ///
344 /// Visit blocks in function order. Divide each block into scheduling regions
345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
346 /// consistent with the DAG builder, which traverses the interior of the
347 /// scheduling regions bottom-up.
348 ///
349 /// This design avoids exposing scheduling boundaries to the DAG builder,
350 /// simplifying the DAG builder's support for "special" target instructions.
351 /// At the same time the design allows target schedulers to operate across
352 /// scheduling boundaries, for example to bundle the boundary instructions
353 /// without reordering them. This creates complexity, because the target
354 /// scheduler must update the RegionBegin and RegionEnd positions cached by
355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
356 /// design would be to split blocks at scheduling boundaries, but LLVM has a
357 /// general bias against block splitting purely for implementation simplicity.
358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
359   if (skipFunction(mf.getFunction()))
360     return false;
361 
362   if (EnableMachineSched.getNumOccurrences()) {
363     if (!EnableMachineSched)
364       return false;
365   } else if (!mf.getSubtarget().enableMachineScheduler())
366     return false;
367 
368   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
369 
370   // Initialize the context of the pass.
371   MF = &mf;
372   MLI = &getAnalysis<MachineLoopInfo>();
373   MDT = &getAnalysis<MachineDominatorTree>();
374   PassConfig = &getAnalysis<TargetPassConfig>();
375   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
376 
377   LIS = &getAnalysis<LiveIntervals>();
378 
379   if (VerifyScheduling) {
380     LLVM_DEBUG(LIS->dump());
381     MF->verify(this, "Before machine scheduling.");
382   }
383   RegClassInfo->runOnMachineFunction(*MF);
384 
385   // Instantiate the selected scheduler for this target, function, and
386   // optimization level.
387   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
388   scheduleRegions(*Scheduler, false);
389 
390   LLVM_DEBUG(LIS->dump());
391   if (VerifyScheduling)
392     MF->verify(this, "After machine scheduling.");
393   return true;
394 }
395 
396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
397   if (skipFunction(mf.getFunction()))
398     return false;
399 
400   if (EnablePostRAMachineSched.getNumOccurrences()) {
401     if (!EnablePostRAMachineSched)
402       return false;
403   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
404     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
405     return false;
406   }
407   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
408 
409   // Initialize the context of the pass.
410   MF = &mf;
411   MLI = &getAnalysis<MachineLoopInfo>();
412   PassConfig = &getAnalysis<TargetPassConfig>();
413 
414   if (VerifyScheduling)
415     MF->verify(this, "Before post machine scheduling.");
416 
417   // Instantiate the selected scheduler for this target, function, and
418   // optimization level.
419   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
420   scheduleRegions(*Scheduler, true);
421 
422   if (VerifyScheduling)
423     MF->verify(this, "After post machine scheduling.");
424   return true;
425 }
426 
427 /// Return true of the given instruction should not be included in a scheduling
428 /// region.
429 ///
430 /// MachineScheduler does not currently support scheduling across calls. To
431 /// handle calls, the DAG builder needs to be modified to create register
432 /// anti/output dependencies on the registers clobbered by the call's regmask
433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
435 /// the boundary, but there would be no benefit to postRA scheduling across
436 /// calls this late anyway.
437 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
438                             MachineBasicBlock *MBB,
439                             MachineFunction *MF,
440                             const TargetInstrInfo *TII) {
441   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
442 }
443 
444 /// A region of an MBB for scheduling.
445 namespace {
446 struct SchedRegion {
447   /// RegionBegin is the first instruction in the scheduling region, and
448   /// RegionEnd is either MBB->end() or the scheduling boundary after the
449   /// last instruction in the scheduling region. These iterators cannot refer
450   /// to instructions outside of the identified scheduling region because
451   /// those may be reordered before scheduling this region.
452   MachineBasicBlock::iterator RegionBegin;
453   MachineBasicBlock::iterator RegionEnd;
454   unsigned NumRegionInstrs;
455 
456   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
457               unsigned N) :
458     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
459 };
460 } // end anonymous namespace
461 
462 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
463 
464 static void
465 getSchedRegions(MachineBasicBlock *MBB,
466                 MBBRegionsVector &Regions,
467                 bool RegionsTopDown) {
468   MachineFunction *MF = MBB->getParent();
469   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
470 
471   MachineBasicBlock::iterator I = nullptr;
472   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
473       RegionEnd != MBB->begin(); RegionEnd = I) {
474 
475     // Avoid decrementing RegionEnd for blocks with no terminator.
476     if (RegionEnd != MBB->end() ||
477         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
478       --RegionEnd;
479     }
480 
481     // The next region starts above the previous region. Look backward in the
482     // instruction stream until we find the nearest boundary.
483     unsigned NumRegionInstrs = 0;
484     I = RegionEnd;
485     for (;I != MBB->begin(); --I) {
486       MachineInstr &MI = *std::prev(I);
487       if (isSchedBoundary(&MI, &*MBB, MF, TII))
488         break;
489       if (!MI.isDebugInstr()) {
490         // MBB::size() uses instr_iterator to count. Here we need a bundle to
491         // count as a single instruction.
492         ++NumRegionInstrs;
493       }
494     }
495 
496     // It's possible we found a scheduling region that only has debug
497     // instructions. Don't bother scheduling these.
498     if (NumRegionInstrs != 0)
499       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
500   }
501 
502   if (RegionsTopDown)
503     std::reverse(Regions.begin(), Regions.end());
504 }
505 
506 /// Main driver for both MachineScheduler and PostMachineScheduler.
507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
508                                            bool FixKillFlags) {
509   // Visit all machine basic blocks.
510   //
511   // TODO: Visit blocks in global postorder or postorder within the bottom-up
512   // loop tree. Then we can optionally compute global RegPressure.
513   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
514        MBB != MBBEnd; ++MBB) {
515 
516     Scheduler.startBlock(&*MBB);
517 
518 #ifndef NDEBUG
519     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
520       continue;
521     if (SchedOnlyBlock.getNumOccurrences()
522         && (int)SchedOnlyBlock != MBB->getNumber())
523       continue;
524 #endif
525 
526     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
527     // points to the scheduling boundary at the bottom of the region. The DAG
528     // does not include RegionEnd, but the region does (i.e. the next
529     // RegionEnd is above the previous RegionBegin). If the current block has
530     // no terminator then RegionEnd == MBB->end() for the bottom region.
531     //
532     // All the regions of MBB are first found and stored in MBBRegions, which
533     // will be processed (MBB) top-down if initialized with true.
534     //
535     // The Scheduler may insert instructions during either schedule() or
536     // exitRegion(), even for empty regions. So the local iterators 'I' and
537     // 'RegionEnd' are invalid across these calls. Instructions must not be
538     // added to other regions than the current one without updating MBBRegions.
539 
540     MBBRegionsVector MBBRegions;
541     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
542     for (MBBRegionsVector::iterator R = MBBRegions.begin();
543          R != MBBRegions.end(); ++R) {
544       MachineBasicBlock::iterator I = R->RegionBegin;
545       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
546       unsigned NumRegionInstrs = R->NumRegionInstrs;
547 
548       // Notify the scheduler of the region, even if we may skip scheduling
549       // it. Perhaps it still needs to be bundled.
550       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
551 
552       // Skip empty scheduling regions (0 or 1 schedulable instructions).
553       if (I == RegionEnd || I == std::prev(RegionEnd)) {
554         // Close the current region. Bundle the terminator if needed.
555         // This invalidates 'RegionEnd' and 'I'.
556         Scheduler.exitRegion();
557         continue;
558       }
559       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
560       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
561                         << " " << MBB->getName() << "\n  From: " << *I
562                         << "    To: ";
563                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
564                  else dbgs() << "End";
565                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
566       if (DumpCriticalPathLength) {
567         errs() << MF->getName();
568         errs() << ":%bb. " << MBB->getNumber();
569         errs() << " " << MBB->getName() << " \n";
570       }
571 
572       // Schedule a region: possibly reorder instructions.
573       // This invalidates the original region iterators.
574       Scheduler.schedule();
575 
576       // Close the current region.
577       Scheduler.exitRegion();
578     }
579     Scheduler.finishBlock();
580     // FIXME: Ideally, no further passes should rely on kill flags. However,
581     // thumb2 size reduction is currently an exception, so the PostMIScheduler
582     // needs to do this.
583     if (FixKillFlags)
584       Scheduler.fixupKills(*MBB);
585   }
586   Scheduler.finalizeSchedule();
587 }
588 
589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
590   // unimplemented
591 }
592 
593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
594 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
595   dbgs() << "Queue " << Name << ": ";
596   for (const SUnit *SU : Queue)
597     dbgs() << SU->NodeNum << " ";
598   dbgs() << "\n";
599 }
600 #endif
601 
602 //===----------------------------------------------------------------------===//
603 // ScheduleDAGMI - Basic machine instruction scheduling. This is
604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
605 // virtual registers.
606 // ===----------------------------------------------------------------------===/
607 
608 // Provide a vtable anchor.
609 ScheduleDAGMI::~ScheduleDAGMI() = default;
610 
611 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
612 /// NumPredsLeft reaches zero, release the successor node.
613 ///
614 /// FIXME: Adjust SuccSU height based on MinLatency.
615 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
616   SUnit *SuccSU = SuccEdge->getSUnit();
617 
618   if (SuccEdge->isWeak()) {
619     --SuccSU->WeakPredsLeft;
620     if (SuccEdge->isCluster())
621       NextClusterSucc = SuccSU;
622     return;
623   }
624 #ifndef NDEBUG
625   if (SuccSU->NumPredsLeft == 0) {
626     dbgs() << "*** Scheduling failed! ***\n";
627     dumpNode(*SuccSU);
628     dbgs() << " has been released too many times!\n";
629     llvm_unreachable(nullptr);
630   }
631 #endif
632   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
633   // CurrCycle may have advanced since then.
634   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
635     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
636 
637   --SuccSU->NumPredsLeft;
638   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
639     SchedImpl->releaseTopNode(SuccSU);
640 }
641 
642 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
643 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
644   for (SDep &Succ : SU->Succs)
645     releaseSucc(SU, &Succ);
646 }
647 
648 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
649 /// NumSuccsLeft reaches zero, release the predecessor node.
650 ///
651 /// FIXME: Adjust PredSU height based on MinLatency.
652 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
653   SUnit *PredSU = PredEdge->getSUnit();
654 
655   if (PredEdge->isWeak()) {
656     --PredSU->WeakSuccsLeft;
657     if (PredEdge->isCluster())
658       NextClusterPred = PredSU;
659     return;
660   }
661 #ifndef NDEBUG
662   if (PredSU->NumSuccsLeft == 0) {
663     dbgs() << "*** Scheduling failed! ***\n";
664     dumpNode(*PredSU);
665     dbgs() << " has been released too many times!\n";
666     llvm_unreachable(nullptr);
667   }
668 #endif
669   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
670   // CurrCycle may have advanced since then.
671   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
672     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
673 
674   --PredSU->NumSuccsLeft;
675   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
676     SchedImpl->releaseBottomNode(PredSU);
677 }
678 
679 /// releasePredecessors - Call releasePred on each of SU's predecessors.
680 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
681   for (SDep &Pred : SU->Preds)
682     releasePred(SU, &Pred);
683 }
684 
685 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
686   ScheduleDAGInstrs::startBlock(bb);
687   SchedImpl->enterMBB(bb);
688 }
689 
690 void ScheduleDAGMI::finishBlock() {
691   SchedImpl->leaveMBB();
692   ScheduleDAGInstrs::finishBlock();
693 }
694 
695 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
696 /// crossing a scheduling boundary. [begin, end) includes all instructions in
697 /// the region, including the boundary itself and single-instruction regions
698 /// that don't get scheduled.
699 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
700                                      MachineBasicBlock::iterator begin,
701                                      MachineBasicBlock::iterator end,
702                                      unsigned regioninstrs)
703 {
704   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
705 
706   SchedImpl->initPolicy(begin, end, regioninstrs);
707 }
708 
709 /// This is normally called from the main scheduler loop but may also be invoked
710 /// by the scheduling strategy to perform additional code motion.
711 void ScheduleDAGMI::moveInstruction(
712   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
713   // Advance RegionBegin if the first instruction moves down.
714   if (&*RegionBegin == MI)
715     ++RegionBegin;
716 
717   // Update the instruction stream.
718   BB->splice(InsertPos, BB, MI);
719 
720   // Update LiveIntervals
721   if (LIS)
722     LIS->handleMove(*MI, /*UpdateFlags=*/true);
723 
724   // Recede RegionBegin if an instruction moves above the first.
725   if (RegionBegin == InsertPos)
726     RegionBegin = MI;
727 }
728 
729 bool ScheduleDAGMI::checkSchedLimit() {
730 #ifndef NDEBUG
731   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
732     CurrentTop = CurrentBottom;
733     return false;
734   }
735   ++NumInstrsScheduled;
736 #endif
737   return true;
738 }
739 
740 /// Per-region scheduling driver, called back from
741 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
742 /// does not consider liveness or register pressure. It is useful for PostRA
743 /// scheduling and potentially other custom schedulers.
744 void ScheduleDAGMI::schedule() {
745   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
746   LLVM_DEBUG(SchedImpl->dumpPolicy());
747 
748   // Build the DAG.
749   buildSchedGraph(AA);
750 
751   postprocessDAG();
752 
753   SmallVector<SUnit*, 8> TopRoots, BotRoots;
754   findRootsAndBiasEdges(TopRoots, BotRoots);
755 
756   LLVM_DEBUG(dump());
757   if (PrintDAGs) dump();
758   if (ViewMISchedDAGs) viewGraph();
759 
760   // Initialize the strategy before modifying the DAG.
761   // This may initialize a DFSResult to be used for queue priority.
762   SchedImpl->initialize(this);
763 
764   // Initialize ready queues now that the DAG and priority data are finalized.
765   initQueues(TopRoots, BotRoots);
766 
767   bool IsTopNode = false;
768   while (true) {
769     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
770     SUnit *SU = SchedImpl->pickNode(IsTopNode);
771     if (!SU) break;
772 
773     assert(!SU->isScheduled && "Node already scheduled");
774     if (!checkSchedLimit())
775       break;
776 
777     MachineInstr *MI = SU->getInstr();
778     if (IsTopNode) {
779       assert(SU->isTopReady() && "node still has unscheduled dependencies");
780       if (&*CurrentTop == MI)
781         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
782       else
783         moveInstruction(MI, CurrentTop);
784     } else {
785       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
786       MachineBasicBlock::iterator priorII =
787         priorNonDebug(CurrentBottom, CurrentTop);
788       if (&*priorII == MI)
789         CurrentBottom = priorII;
790       else {
791         if (&*CurrentTop == MI)
792           CurrentTop = nextIfDebug(++CurrentTop, priorII);
793         moveInstruction(MI, CurrentBottom);
794         CurrentBottom = MI;
795       }
796     }
797     // Notify the scheduling strategy before updating the DAG.
798     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
799     // runs, it can then use the accurate ReadyCycle time to determine whether
800     // newly released nodes can move to the readyQ.
801     SchedImpl->schedNode(SU, IsTopNode);
802 
803     updateQueues(SU, IsTopNode);
804   }
805   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
806 
807   placeDebugValues();
808 
809   LLVM_DEBUG({
810     dbgs() << "*** Final schedule for "
811            << printMBBReference(*begin()->getParent()) << " ***\n";
812     dumpSchedule();
813     dbgs() << '\n';
814   });
815 }
816 
817 /// Apply each ScheduleDAGMutation step in order.
818 void ScheduleDAGMI::postprocessDAG() {
819   for (auto &m : Mutations)
820     m->apply(this);
821 }
822 
823 void ScheduleDAGMI::
824 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
825                       SmallVectorImpl<SUnit*> &BotRoots) {
826   for (SUnit &SU : SUnits) {
827     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
828 
829     // Order predecessors so DFSResult follows the critical path.
830     SU.biasCriticalPath();
831 
832     // A SUnit is ready to top schedule if it has no predecessors.
833     if (!SU.NumPredsLeft)
834       TopRoots.push_back(&SU);
835     // A SUnit is ready to bottom schedule if it has no successors.
836     if (!SU.NumSuccsLeft)
837       BotRoots.push_back(&SU);
838   }
839   ExitSU.biasCriticalPath();
840 }
841 
842 /// Identify DAG roots and setup scheduler queues.
843 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
844                                ArrayRef<SUnit*> BotRoots) {
845   NextClusterSucc = nullptr;
846   NextClusterPred = nullptr;
847 
848   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
849   //
850   // Nodes with unreleased weak edges can still be roots.
851   // Release top roots in forward order.
852   for (SUnit *SU : TopRoots)
853     SchedImpl->releaseTopNode(SU);
854 
855   // Release bottom roots in reverse order so the higher priority nodes appear
856   // first. This is more natural and slightly more efficient.
857   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
858          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
859     SchedImpl->releaseBottomNode(*I);
860   }
861 
862   releaseSuccessors(&EntrySU);
863   releasePredecessors(&ExitSU);
864 
865   SchedImpl->registerRoots();
866 
867   // Advance past initial DebugValues.
868   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
869   CurrentBottom = RegionEnd;
870 }
871 
872 /// Update scheduler queues after scheduling an instruction.
873 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
874   // Release dependent instructions for scheduling.
875   if (IsTopNode)
876     releaseSuccessors(SU);
877   else
878     releasePredecessors(SU);
879 
880   SU->isScheduled = true;
881 }
882 
883 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
884 void ScheduleDAGMI::placeDebugValues() {
885   // If first instruction was a DBG_VALUE then put it back.
886   if (FirstDbgValue) {
887     BB->splice(RegionBegin, BB, FirstDbgValue);
888     RegionBegin = FirstDbgValue;
889   }
890 
891   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
892          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
893     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
894     MachineInstr *DbgValue = P.first;
895     MachineBasicBlock::iterator OrigPrevMI = P.second;
896     if (&*RegionBegin == DbgValue)
897       ++RegionBegin;
898     BB->splice(++OrigPrevMI, BB, DbgValue);
899     if (OrigPrevMI == std::prev(RegionEnd))
900       RegionEnd = DbgValue;
901   }
902   DbgValues.clear();
903   FirstDbgValue = nullptr;
904 }
905 
906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
907 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
908   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
909     if (SUnit *SU = getSUnit(&(*MI)))
910       dumpNode(*SU);
911     else
912       dbgs() << "Missing SUnit\n";
913   }
914 }
915 #endif
916 
917 //===----------------------------------------------------------------------===//
918 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
919 // preservation.
920 //===----------------------------------------------------------------------===//
921 
922 ScheduleDAGMILive::~ScheduleDAGMILive() {
923   delete DFSResult;
924 }
925 
926 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
927   const MachineInstr &MI = *SU.getInstr();
928   for (const MachineOperand &MO : MI.operands()) {
929     if (!MO.isReg())
930       continue;
931     if (!MO.readsReg())
932       continue;
933     if (TrackLaneMasks && !MO.isUse())
934       continue;
935 
936     unsigned Reg = MO.getReg();
937     if (!TargetRegisterInfo::isVirtualRegister(Reg))
938       continue;
939 
940     // Ignore re-defs.
941     if (TrackLaneMasks) {
942       bool FoundDef = false;
943       for (const MachineOperand &MO2 : MI.operands()) {
944         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
945           FoundDef = true;
946           break;
947         }
948       }
949       if (FoundDef)
950         continue;
951     }
952 
953     // Record this local VReg use.
954     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
955     for (; UI != VRegUses.end(); ++UI) {
956       if (UI->SU == &SU)
957         break;
958     }
959     if (UI == VRegUses.end())
960       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
961   }
962 }
963 
964 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
965 /// crossing a scheduling boundary. [begin, end) includes all instructions in
966 /// the region, including the boundary itself and single-instruction regions
967 /// that don't get scheduled.
968 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
969                                 MachineBasicBlock::iterator begin,
970                                 MachineBasicBlock::iterator end,
971                                 unsigned regioninstrs)
972 {
973   // ScheduleDAGMI initializes SchedImpl's per-region policy.
974   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
975 
976   // For convenience remember the end of the liveness region.
977   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
978 
979   SUPressureDiffs.clear();
980 
981   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
982   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
983 
984   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
985          "ShouldTrackLaneMasks requires ShouldTrackPressure");
986 }
987 
988 // Setup the register pressure trackers for the top scheduled top and bottom
989 // scheduled regions.
990 void ScheduleDAGMILive::initRegPressure() {
991   VRegUses.clear();
992   VRegUses.setUniverse(MRI.getNumVirtRegs());
993   for (SUnit &SU : SUnits)
994     collectVRegUses(SU);
995 
996   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
997                     ShouldTrackLaneMasks, false);
998   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
999                     ShouldTrackLaneMasks, false);
1000 
1001   // Close the RPTracker to finalize live ins.
1002   RPTracker.closeRegion();
1003 
1004   LLVM_DEBUG(RPTracker.dump());
1005 
1006   // Initialize the live ins and live outs.
1007   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1008   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1009 
1010   // Close one end of the tracker so we can call
1011   // getMaxUpward/DownwardPressureDelta before advancing across any
1012   // instructions. This converts currently live regs into live ins/outs.
1013   TopRPTracker.closeTop();
1014   BotRPTracker.closeBottom();
1015 
1016   BotRPTracker.initLiveThru(RPTracker);
1017   if (!BotRPTracker.getLiveThru().empty()) {
1018     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1019     LLVM_DEBUG(dbgs() << "Live Thru: ";
1020                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1021   };
1022 
1023   // For each live out vreg reduce the pressure change associated with other
1024   // uses of the same vreg below the live-out reaching def.
1025   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1026 
1027   // Account for liveness generated by the region boundary.
1028   if (LiveRegionEnd != RegionEnd) {
1029     SmallVector<RegisterMaskPair, 8> LiveUses;
1030     BotRPTracker.recede(&LiveUses);
1031     updatePressureDiffs(LiveUses);
1032   }
1033 
1034   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1035              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1036              dbgs() << "Bottom Pressure:\n";
1037              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1038 
1039   assert((BotRPTracker.getPos() == RegionEnd ||
1040           (RegionEnd->isDebugInstr() &&
1041            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1042          "Can't find the region bottom");
1043 
1044   // Cache the list of excess pressure sets in this region. This will also track
1045   // the max pressure in the scheduled code for these sets.
1046   RegionCriticalPSets.clear();
1047   const std::vector<unsigned> &RegionPressure =
1048     RPTracker.getPressure().MaxSetPressure;
1049   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1050     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1051     if (RegionPressure[i] > Limit) {
1052       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1053                         << " Actual " << RegionPressure[i] << "\n");
1054       RegionCriticalPSets.push_back(PressureChange(i));
1055     }
1056   }
1057   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1058              for (const PressureChange &RCPS
1059                   : RegionCriticalPSets) dbgs()
1060              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1061              dbgs() << "\n");
1062 }
1063 
1064 void ScheduleDAGMILive::
1065 updateScheduledPressure(const SUnit *SU,
1066                         const std::vector<unsigned> &NewMaxPressure) {
1067   const PressureDiff &PDiff = getPressureDiff(SU);
1068   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1069   for (const PressureChange &PC : PDiff) {
1070     if (!PC.isValid())
1071       break;
1072     unsigned ID = PC.getPSet();
1073     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1074       ++CritIdx;
1075     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1076       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1077           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1078         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1079     }
1080     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1081     if (NewMaxPressure[ID] >= Limit - 2) {
1082       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1083                         << NewMaxPressure[ID]
1084                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1085                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1086                         << " livethru)\n");
1087     }
1088   }
1089 }
1090 
1091 /// Update the PressureDiff array for liveness after scheduling this
1092 /// instruction.
1093 void ScheduleDAGMILive::updatePressureDiffs(
1094     ArrayRef<RegisterMaskPair> LiveUses) {
1095   for (const RegisterMaskPair &P : LiveUses) {
1096     unsigned Reg = P.RegUnit;
1097     /// FIXME: Currently assuming single-use physregs.
1098     if (!TRI->isVirtualRegister(Reg))
1099       continue;
1100 
1101     if (ShouldTrackLaneMasks) {
1102       // If the register has just become live then other uses won't change
1103       // this fact anymore => decrement pressure.
1104       // If the register has just become dead then other uses make it come
1105       // back to life => increment pressure.
1106       bool Decrement = P.LaneMask.any();
1107 
1108       for (const VReg2SUnit &V2SU
1109            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1110         SUnit &SU = *V2SU.SU;
1111         if (SU.isScheduled || &SU == &ExitSU)
1112           continue;
1113 
1114         PressureDiff &PDiff = getPressureDiff(&SU);
1115         PDiff.addPressureChange(Reg, Decrement, &MRI);
1116         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1117                           << printReg(Reg, TRI) << ':'
1118                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1119                    dbgs() << "              to "; PDiff.dump(*TRI););
1120       }
1121     } else {
1122       assert(P.LaneMask.any());
1123       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1124       // This may be called before CurrentBottom has been initialized. However,
1125       // BotRPTracker must have a valid position. We want the value live into the
1126       // instruction or live out of the block, so ask for the previous
1127       // instruction's live-out.
1128       const LiveInterval &LI = LIS->getInterval(Reg);
1129       VNInfo *VNI;
1130       MachineBasicBlock::const_iterator I =
1131         nextIfDebug(BotRPTracker.getPos(), BB->end());
1132       if (I == BB->end())
1133         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1134       else {
1135         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1136         VNI = LRQ.valueIn();
1137       }
1138       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1139       assert(VNI && "No live value at use.");
1140       for (const VReg2SUnit &V2SU
1141            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1142         SUnit *SU = V2SU.SU;
1143         // If this use comes before the reaching def, it cannot be a last use,
1144         // so decrease its pressure change.
1145         if (!SU->isScheduled && SU != &ExitSU) {
1146           LiveQueryResult LRQ =
1147               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1148           if (LRQ.valueIn() == VNI) {
1149             PressureDiff &PDiff = getPressureDiff(SU);
1150             PDiff.addPressureChange(Reg, true, &MRI);
1151             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1152                               << *SU->getInstr();
1153                        dbgs() << "              to "; PDiff.dump(*TRI););
1154           }
1155         }
1156       }
1157     }
1158   }
1159 }
1160 
1161 void ScheduleDAGMILive::dump() const {
1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1163   if (EntrySU.getInstr() != nullptr)
1164     dumpNodeAll(EntrySU);
1165   for (const SUnit &SU : SUnits) {
1166     dumpNodeAll(SU);
1167     if (ShouldTrackPressure) {
1168       dbgs() << "  Pressure Diff      : ";
1169       getPressureDiff(&SU).dump(*TRI);
1170     }
1171     dbgs() << "  Single Issue       : ";
1172     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1173         SchedModel.mustEndGroup(SU.getInstr()))
1174       dbgs() << "true;";
1175     else
1176       dbgs() << "false;";
1177     dbgs() << '\n';
1178   }
1179   if (ExitSU.getInstr() != nullptr)
1180     dumpNodeAll(ExitSU);
1181 #endif
1182 }
1183 
1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1186 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1187 ///
1188 /// This is a skeletal driver, with all the functionality pushed into helpers,
1189 /// so that it can be easily extended by experimental schedulers. Generally,
1190 /// implementing MachineSchedStrategy should be sufficient to implement a new
1191 /// scheduling algorithm. However, if a scheduler further subclasses
1192 /// ScheduleDAGMILive then it will want to override this virtual method in order
1193 /// to update any specialized state.
1194 void ScheduleDAGMILive::schedule() {
1195   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1196   LLVM_DEBUG(SchedImpl->dumpPolicy());
1197   buildDAGWithRegPressure();
1198 
1199   postprocessDAG();
1200 
1201   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1202   findRootsAndBiasEdges(TopRoots, BotRoots);
1203 
1204   // Initialize the strategy before modifying the DAG.
1205   // This may initialize a DFSResult to be used for queue priority.
1206   SchedImpl->initialize(this);
1207 
1208   LLVM_DEBUG(dump());
1209   if (PrintDAGs) dump();
1210   if (ViewMISchedDAGs) viewGraph();
1211 
1212   // Initialize ready queues now that the DAG and priority data are finalized.
1213   initQueues(TopRoots, BotRoots);
1214 
1215   bool IsTopNode = false;
1216   while (true) {
1217     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1218     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1219     if (!SU) break;
1220 
1221     assert(!SU->isScheduled && "Node already scheduled");
1222     if (!checkSchedLimit())
1223       break;
1224 
1225     scheduleMI(SU, IsTopNode);
1226 
1227     if (DFSResult) {
1228       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1229       if (!ScheduledTrees.test(SubtreeID)) {
1230         ScheduledTrees.set(SubtreeID);
1231         DFSResult->scheduleTree(SubtreeID);
1232         SchedImpl->scheduleTree(SubtreeID);
1233       }
1234     }
1235 
1236     // Notify the scheduling strategy after updating the DAG.
1237     SchedImpl->schedNode(SU, IsTopNode);
1238 
1239     updateQueues(SU, IsTopNode);
1240   }
1241   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1242 
1243   placeDebugValues();
1244 
1245   LLVM_DEBUG({
1246     dbgs() << "*** Final schedule for "
1247            << printMBBReference(*begin()->getParent()) << " ***\n";
1248     dumpSchedule();
1249     dbgs() << '\n';
1250   });
1251 }
1252 
1253 /// Build the DAG and setup three register pressure trackers.
1254 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1255   if (!ShouldTrackPressure) {
1256     RPTracker.reset();
1257     RegionCriticalPSets.clear();
1258     buildSchedGraph(AA);
1259     return;
1260   }
1261 
1262   // Initialize the register pressure tracker used by buildSchedGraph.
1263   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1264                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1265 
1266   // Account for liveness generate by the region boundary.
1267   if (LiveRegionEnd != RegionEnd)
1268     RPTracker.recede();
1269 
1270   // Build the DAG, and compute current register pressure.
1271   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1272 
1273   // Initialize top/bottom trackers after computing region pressure.
1274   initRegPressure();
1275 }
1276 
1277 void ScheduleDAGMILive::computeDFSResult() {
1278   if (!DFSResult)
1279     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1280   DFSResult->clear();
1281   ScheduledTrees.clear();
1282   DFSResult->resize(SUnits.size());
1283   DFSResult->compute(SUnits);
1284   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1285 }
1286 
1287 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1288 /// only provides the critical path for single block loops. To handle loops that
1289 /// span blocks, we could use the vreg path latencies provided by
1290 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1291 /// available for use in the scheduler.
1292 ///
1293 /// The cyclic path estimation identifies a def-use pair that crosses the back
1294 /// edge and considers the depth and height of the nodes. For example, consider
1295 /// the following instruction sequence where each instruction has unit latency
1296 /// and defines an epomymous virtual register:
1297 ///
1298 /// a->b(a,c)->c(b)->d(c)->exit
1299 ///
1300 /// The cyclic critical path is a two cycles: b->c->b
1301 /// The acyclic critical path is four cycles: a->b->c->d->exit
1302 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1303 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1304 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1305 /// LiveInDepth = depth(b) = len(a->b) = 1
1306 ///
1307 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1308 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1309 /// CyclicCriticalPath = min(2, 2) = 2
1310 ///
1311 /// This could be relevant to PostRA scheduling, but is currently implemented
1312 /// assuming LiveIntervals.
1313 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1314   // This only applies to single block loop.
1315   if (!BB->isSuccessor(BB))
1316     return 0;
1317 
1318   unsigned MaxCyclicLatency = 0;
1319   // Visit each live out vreg def to find def/use pairs that cross iterations.
1320   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1321     unsigned Reg = P.RegUnit;
1322     if (!TRI->isVirtualRegister(Reg))
1323         continue;
1324     const LiveInterval &LI = LIS->getInterval(Reg);
1325     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1326     if (!DefVNI)
1327       continue;
1328 
1329     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1330     const SUnit *DefSU = getSUnit(DefMI);
1331     if (!DefSU)
1332       continue;
1333 
1334     unsigned LiveOutHeight = DefSU->getHeight();
1335     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1336     // Visit all local users of the vreg def.
1337     for (const VReg2SUnit &V2SU
1338          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339       SUnit *SU = V2SU.SU;
1340       if (SU == &ExitSU)
1341         continue;
1342 
1343       // Only consider uses of the phi.
1344       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1345       if (!LRQ.valueIn()->isPHIDef())
1346         continue;
1347 
1348       // Assume that a path spanning two iterations is a cycle, which could
1349       // overestimate in strange cases. This allows cyclic latency to be
1350       // estimated as the minimum slack of the vreg's depth or height.
1351       unsigned CyclicLatency = 0;
1352       if (LiveOutDepth > SU->getDepth())
1353         CyclicLatency = LiveOutDepth - SU->getDepth();
1354 
1355       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1356       if (LiveInHeight > LiveOutHeight) {
1357         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1358           CyclicLatency = LiveInHeight - LiveOutHeight;
1359       } else
1360         CyclicLatency = 0;
1361 
1362       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1363                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1364       if (CyclicLatency > MaxCyclicLatency)
1365         MaxCyclicLatency = CyclicLatency;
1366     }
1367   }
1368   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1369   return MaxCyclicLatency;
1370 }
1371 
1372 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1373 /// the Top RP tracker in case the region beginning has changed.
1374 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1375                                    ArrayRef<SUnit*> BotRoots) {
1376   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1377   if (ShouldTrackPressure) {
1378     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1379     TopRPTracker.setPos(CurrentTop);
1380   }
1381 }
1382 
1383 /// Move an instruction and update register pressure.
1384 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1385   // Move the instruction to its new location in the instruction stream.
1386   MachineInstr *MI = SU->getInstr();
1387 
1388   if (IsTopNode) {
1389     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1390     if (&*CurrentTop == MI)
1391       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1392     else {
1393       moveInstruction(MI, CurrentTop);
1394       TopRPTracker.setPos(MI);
1395     }
1396 
1397     if (ShouldTrackPressure) {
1398       // Update top scheduled pressure.
1399       RegisterOperands RegOpers;
1400       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1401       if (ShouldTrackLaneMasks) {
1402         // Adjust liveness and add missing dead+read-undef flags.
1403         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1404         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1405       } else {
1406         // Adjust for missing dead-def flags.
1407         RegOpers.detectDeadDefs(*MI, *LIS);
1408       }
1409 
1410       TopRPTracker.advance(RegOpers);
1411       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1412       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1413                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1414 
1415       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1416     }
1417   } else {
1418     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1419     MachineBasicBlock::iterator priorII =
1420       priorNonDebug(CurrentBottom, CurrentTop);
1421     if (&*priorII == MI)
1422       CurrentBottom = priorII;
1423     else {
1424       if (&*CurrentTop == MI) {
1425         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1426         TopRPTracker.setPos(CurrentTop);
1427       }
1428       moveInstruction(MI, CurrentBottom);
1429       CurrentBottom = MI;
1430       BotRPTracker.setPos(CurrentBottom);
1431     }
1432     if (ShouldTrackPressure) {
1433       RegisterOperands RegOpers;
1434       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1435       if (ShouldTrackLaneMasks) {
1436         // Adjust liveness and add missing dead+read-undef flags.
1437         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1438         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1439       } else {
1440         // Adjust for missing dead-def flags.
1441         RegOpers.detectDeadDefs(*MI, *LIS);
1442       }
1443 
1444       if (BotRPTracker.getPos() != CurrentBottom)
1445         BotRPTracker.recedeSkipDebugValues();
1446       SmallVector<RegisterMaskPair, 8> LiveUses;
1447       BotRPTracker.recede(RegOpers, &LiveUses);
1448       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1449       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1450                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1451 
1452       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1453       updatePressureDiffs(LiveUses);
1454     }
1455   }
1456 }
1457 
1458 //===----------------------------------------------------------------------===//
1459 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1460 //===----------------------------------------------------------------------===//
1461 
1462 namespace {
1463 
1464 /// Post-process the DAG to create cluster edges between neighboring
1465 /// loads or between neighboring stores.
1466 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1467   struct MemOpInfo {
1468     SUnit *SU;
1469     const MachineOperand *BaseOp;
1470     int64_t Offset;
1471 
1472     MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs)
1473         : SU(su), BaseOp(Op), Offset(ofs) {}
1474 
1475     bool operator<(const MemOpInfo &RHS) const {
1476       if (BaseOp->getType() != RHS.BaseOp->getType())
1477         return BaseOp->getType() < RHS.BaseOp->getType();
1478 
1479       if (BaseOp->isReg())
1480         return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1481                std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1482                                RHS.SU->NodeNum);
1483       if (BaseOp->isFI()) {
1484         const MachineFunction &MF =
1485             *BaseOp->getParent()->getParent()->getParent();
1486         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1487         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1488                               TargetFrameLowering::StackGrowsDown;
1489         // Can't use tuple comparison here since we might need to use a
1490         // different order when the stack grows down.
1491         if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1492           return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1493                                 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1494 
1495         if (Offset != RHS.Offset)
1496           return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1497 
1498         return SU->NodeNum < RHS.SU->NodeNum;
1499       }
1500 
1501       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1502                        "index bases.");
1503     }
1504   };
1505 
1506   const TargetInstrInfo *TII;
1507   const TargetRegisterInfo *TRI;
1508   bool IsLoad;
1509 
1510 public:
1511   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1512                            const TargetRegisterInfo *tri, bool IsLoad)
1513       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1514 
1515   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1516 
1517 protected:
1518   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1519 };
1520 
1521 class StoreClusterMutation : public BaseMemOpClusterMutation {
1522 public:
1523   StoreClusterMutation(const TargetInstrInfo *tii,
1524                        const TargetRegisterInfo *tri)
1525       : BaseMemOpClusterMutation(tii, tri, false) {}
1526 };
1527 
1528 class LoadClusterMutation : public BaseMemOpClusterMutation {
1529 public:
1530   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1531       : BaseMemOpClusterMutation(tii, tri, true) {}
1532 };
1533 
1534 } // end anonymous namespace
1535 
1536 namespace llvm {
1537 
1538 std::unique_ptr<ScheduleDAGMutation>
1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1540                              const TargetRegisterInfo *TRI) {
1541   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1542                             : nullptr;
1543 }
1544 
1545 std::unique_ptr<ScheduleDAGMutation>
1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1547                               const TargetRegisterInfo *TRI) {
1548   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1549                             : nullptr;
1550 }
1551 
1552 } // end namespace llvm
1553 
1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1555     ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1556   SmallVector<MemOpInfo, 32> MemOpRecords;
1557   for (SUnit *SU : MemOps) {
1558     const MachineOperand *BaseOp;
1559     int64_t Offset;
1560     if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1561       MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1562   }
1563   if (MemOpRecords.size() < 2)
1564     return;
1565 
1566   llvm::sort(MemOpRecords);
1567   unsigned ClusterLength = 1;
1568   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1569     SUnit *SUa = MemOpRecords[Idx].SU;
1570     SUnit *SUb = MemOpRecords[Idx+1].SU;
1571     if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1572                                  *MemOpRecords[Idx + 1].BaseOp,
1573                                  ClusterLength) &&
1574         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1575       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1576                         << SUb->NodeNum << ")\n");
1577       // Copy successor edges from SUa to SUb. Interleaving computation
1578       // dependent on SUa can prevent load combining due to register reuse.
1579       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1580       // loads should have effectively the same inputs.
1581       for (const SDep &Succ : SUa->Succs) {
1582         if (Succ.getSUnit() == SUb)
1583           continue;
1584         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1585                           << ")\n");
1586         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1587       }
1588       ++ClusterLength;
1589     } else
1590       ClusterLength = 1;
1591   }
1592 }
1593 
1594 /// Callback from DAG postProcessing to create cluster edges for loads.
1595 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1596   // Map DAG NodeNum to store chain ID.
1597   DenseMap<unsigned, unsigned> StoreChainIDs;
1598   // Map each store chain to a set of dependent MemOps.
1599   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1600   for (SUnit &SU : DAG->SUnits) {
1601     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1602         (!IsLoad && !SU.getInstr()->mayStore()))
1603       continue;
1604 
1605     unsigned ChainPredID = DAG->SUnits.size();
1606     for (const SDep &Pred : SU.Preds) {
1607       if (Pred.isCtrl()) {
1608         ChainPredID = Pred.getSUnit()->NodeNum;
1609         break;
1610       }
1611     }
1612     // Check if this chain-like pred has been seen
1613     // before. ChainPredID==MaxNodeID at the top of the schedule.
1614     unsigned NumChains = StoreChainDependents.size();
1615     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1616       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1617     if (Result.second)
1618       StoreChainDependents.resize(NumChains + 1);
1619     StoreChainDependents[Result.first->second].push_back(&SU);
1620   }
1621 
1622   // Iterate over the store chains.
1623   for (auto &SCD : StoreChainDependents)
1624     clusterNeighboringMemOps(SCD, DAG);
1625 }
1626 
1627 //===----------------------------------------------------------------------===//
1628 // CopyConstrain - DAG post-processing to encourage copy elimination.
1629 //===----------------------------------------------------------------------===//
1630 
1631 namespace {
1632 
1633 /// Post-process the DAG to create weak edges from all uses of a copy to
1634 /// the one use that defines the copy's source vreg, most likely an induction
1635 /// variable increment.
1636 class CopyConstrain : public ScheduleDAGMutation {
1637   // Transient state.
1638   SlotIndex RegionBeginIdx;
1639 
1640   // RegionEndIdx is the slot index of the last non-debug instruction in the
1641   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1642   SlotIndex RegionEndIdx;
1643 
1644 public:
1645   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1646 
1647   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1648 
1649 protected:
1650   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1651 };
1652 
1653 } // end anonymous namespace
1654 
1655 namespace llvm {
1656 
1657 std::unique_ptr<ScheduleDAGMutation>
1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1659                                const TargetRegisterInfo *TRI) {
1660   return llvm::make_unique<CopyConstrain>(TII, TRI);
1661 }
1662 
1663 } // end namespace llvm
1664 
1665 /// constrainLocalCopy handles two possibilities:
1666 /// 1) Local src:
1667 /// I0:     = dst
1668 /// I1: src = ...
1669 /// I2:     = dst
1670 /// I3: dst = src (copy)
1671 /// (create pred->succ edges I0->I1, I2->I1)
1672 ///
1673 /// 2) Local copy:
1674 /// I0: dst = src (copy)
1675 /// I1:     = dst
1676 /// I2: src = ...
1677 /// I3:     = dst
1678 /// (create pred->succ edges I1->I2, I3->I2)
1679 ///
1680 /// Although the MachineScheduler is currently constrained to single blocks,
1681 /// this algorithm should handle extended blocks. An EBB is a set of
1682 /// contiguously numbered blocks such that the previous block in the EBB is
1683 /// always the single predecessor.
1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1685   LiveIntervals *LIS = DAG->getLIS();
1686   MachineInstr *Copy = CopySU->getInstr();
1687 
1688   // Check for pure vreg copies.
1689   const MachineOperand &SrcOp = Copy->getOperand(1);
1690   unsigned SrcReg = SrcOp.getReg();
1691   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1692     return;
1693 
1694   const MachineOperand &DstOp = Copy->getOperand(0);
1695   unsigned DstReg = DstOp.getReg();
1696   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1697     return;
1698 
1699   // Check if either the dest or source is local. If it's live across a back
1700   // edge, it's not local. Note that if both vregs are live across the back
1701   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1702   // If both the copy's source and dest are local live intervals, then we
1703   // should treat the dest as the global for the purpose of adding
1704   // constraints. This adds edges from source's other uses to the copy.
1705   unsigned LocalReg = SrcReg;
1706   unsigned GlobalReg = DstReg;
1707   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1708   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1709     LocalReg = DstReg;
1710     GlobalReg = SrcReg;
1711     LocalLI = &LIS->getInterval(LocalReg);
1712     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1713       return;
1714   }
1715   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1716 
1717   // Find the global segment after the start of the local LI.
1718   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1719   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1720   // local live range. We could create edges from other global uses to the local
1721   // start, but the coalescer should have already eliminated these cases, so
1722   // don't bother dealing with it.
1723   if (GlobalSegment == GlobalLI->end())
1724     return;
1725 
1726   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1727   // returned the next global segment. But if GlobalSegment overlaps with
1728   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1729   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1730   if (GlobalSegment->contains(LocalLI->beginIndex()))
1731     ++GlobalSegment;
1732 
1733   if (GlobalSegment == GlobalLI->end())
1734     return;
1735 
1736   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1737   if (GlobalSegment != GlobalLI->begin()) {
1738     // Two address defs have no hole.
1739     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1740                                GlobalSegment->start)) {
1741       return;
1742     }
1743     // If the prior global segment may be defined by the same two-address
1744     // instruction that also defines LocalLI, then can't make a hole here.
1745     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1746                                LocalLI->beginIndex())) {
1747       return;
1748     }
1749     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1750     // it would be a disconnected component in the live range.
1751     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1752            "Disconnected LRG within the scheduling region.");
1753   }
1754   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1755   if (!GlobalDef)
1756     return;
1757 
1758   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1759   if (!GlobalSU)
1760     return;
1761 
1762   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1763   // constraining the uses of the last local def to precede GlobalDef.
1764   SmallVector<SUnit*,8> LocalUses;
1765   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1766   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1767   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1768   for (const SDep &Succ : LastLocalSU->Succs) {
1769     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1770       continue;
1771     if (Succ.getSUnit() == GlobalSU)
1772       continue;
1773     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1774       return;
1775     LocalUses.push_back(Succ.getSUnit());
1776   }
1777   // Open the top of the GlobalLI hole by constraining any earlier global uses
1778   // to precede the start of LocalLI.
1779   SmallVector<SUnit*,8> GlobalUses;
1780   MachineInstr *FirstLocalDef =
1781     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1782   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1783   for (const SDep &Pred : GlobalSU->Preds) {
1784     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1785       continue;
1786     if (Pred.getSUnit() == FirstLocalSU)
1787       continue;
1788     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1789       return;
1790     GlobalUses.push_back(Pred.getSUnit());
1791   }
1792   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1793   // Add the weak edges.
1794   for (SmallVectorImpl<SUnit*>::const_iterator
1795          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1796     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1797                       << GlobalSU->NodeNum << ")\n");
1798     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1799   }
1800   for (SmallVectorImpl<SUnit*>::const_iterator
1801          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1802     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1803                       << FirstLocalSU->NodeNum << ")\n");
1804     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1805   }
1806 }
1807 
1808 /// Callback from DAG postProcessing to create weak edges to encourage
1809 /// copy elimination.
1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1811   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1812   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1813 
1814   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1815   if (FirstPos == DAG->end())
1816     return;
1817   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1818   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1819       *priorNonDebug(DAG->end(), DAG->begin()));
1820 
1821   for (SUnit &SU : DAG->SUnits) {
1822     if (!SU.getInstr()->isCopy())
1823       continue;
1824 
1825     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1826   }
1827 }
1828 
1829 //===----------------------------------------------------------------------===//
1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1831 // and possibly other custom schedulers.
1832 //===----------------------------------------------------------------------===//
1833 
1834 static const unsigned InvalidCycle = ~0U;
1835 
1836 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1837 
1838 /// Given a Count of resource usage and a Latency value, return true if a
1839 /// SchedBoundary becomes resource limited.
1840 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1841                                unsigned Latency) {
1842   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1843 }
1844 
1845 void SchedBoundary::reset() {
1846   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1847   // Destroying and reconstructing it is very expensive though. So keep
1848   // invalid, placeholder HazardRecs.
1849   if (HazardRec && HazardRec->isEnabled()) {
1850     delete HazardRec;
1851     HazardRec = nullptr;
1852   }
1853   Available.clear();
1854   Pending.clear();
1855   CheckPending = false;
1856   CurrCycle = 0;
1857   CurrMOps = 0;
1858   MinReadyCycle = std::numeric_limits<unsigned>::max();
1859   ExpectedLatency = 0;
1860   DependentLatency = 0;
1861   RetiredMOps = 0;
1862   MaxExecutedResCount = 0;
1863   ZoneCritResIdx = 0;
1864   IsResourceLimited = false;
1865   ReservedCycles.clear();
1866   ReservedCyclesIndex.clear();
1867 #ifndef NDEBUG
1868   // Track the maximum number of stall cycles that could arise either from the
1869   // latency of a DAG edge or the number of cycles that a processor resource is
1870   // reserved (SchedBoundary::ReservedCycles).
1871   MaxObservedStall = 0;
1872 #endif
1873   // Reserve a zero-count for invalid CritResIdx.
1874   ExecutedResCounts.resize(1);
1875   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1876 }
1877 
1878 void SchedRemainder::
1879 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1880   reset();
1881   if (!SchedModel->hasInstrSchedModel())
1882     return;
1883   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1884   for (SUnit &SU : DAG->SUnits) {
1885     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1886     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1887       * SchedModel->getMicroOpFactor();
1888     for (TargetSchedModel::ProcResIter
1889            PI = SchedModel->getWriteProcResBegin(SC),
1890            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1891       unsigned PIdx = PI->ProcResourceIdx;
1892       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1893       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1894     }
1895   }
1896 }
1897 
1898 void SchedBoundary::
1899 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1900   reset();
1901   DAG = dag;
1902   SchedModel = smodel;
1903   Rem = rem;
1904   if (SchedModel->hasInstrSchedModel()) {
1905     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
1906     ReservedCyclesIndex.resize(ResourceCount);
1907     ExecutedResCounts.resize(ResourceCount);
1908     unsigned NumUnits = 0;
1909 
1910     for (unsigned i = 0; i < ResourceCount; ++i) {
1911       ReservedCyclesIndex[i] = NumUnits;
1912       NumUnits += SchedModel->getProcResource(i)->NumUnits;
1913     }
1914 
1915     ReservedCycles.resize(NumUnits, InvalidCycle);
1916   }
1917 }
1918 
1919 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1920 /// these "soft stalls" differently than the hard stall cycles based on CPU
1921 /// resources and computed by checkHazard(). A fully in-order model
1922 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1923 /// available for scheduling until they are ready. However, a weaker in-order
1924 /// model may use this for heuristics. For example, if a processor has in-order
1925 /// behavior when reading certain resources, this may come into play.
1926 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1927   if (!SU->isUnbuffered)
1928     return 0;
1929 
1930   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1931   if (ReadyCycle > CurrCycle)
1932     return ReadyCycle - CurrCycle;
1933   return 0;
1934 }
1935 
1936 /// Compute the next cycle at which the given processor resource unit
1937 /// can be scheduled.
1938 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
1939                                                        unsigned Cycles) {
1940   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
1941   // If this resource has never been used, always return cycle zero.
1942   if (NextUnreserved == InvalidCycle)
1943     return 0;
1944   // For bottom-up scheduling add the cycles needed for the current operation.
1945   if (!isTop())
1946     NextUnreserved += Cycles;
1947   return NextUnreserved;
1948 }
1949 
1950 /// Compute the next cycle at which the given processor resource can be
1951 /// scheduled.  Returns the next cycle and the index of the processor resource
1952 /// instance in the reserved cycles vector.
1953 std::pair<unsigned, unsigned>
1954 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1955   unsigned MinNextUnreserved = InvalidCycle;
1956   unsigned InstanceIdx = 0;
1957   unsigned StartIndex = ReservedCyclesIndex[PIdx];
1958   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
1959   assert(NumberOfInstances > 0 &&
1960          "Cannot have zero instances of a ProcResource");
1961 
1962   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
1963        ++I) {
1964     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
1965     if (MinNextUnreserved > NextUnreserved) {
1966       InstanceIdx = I;
1967       MinNextUnreserved = NextUnreserved;
1968     }
1969   }
1970   return std::make_pair(MinNextUnreserved, InstanceIdx);
1971 }
1972 
1973 /// Does this SU have a hazard within the current instruction group.
1974 ///
1975 /// The scheduler supports two modes of hazard recognition. The first is the
1976 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1977 /// supports highly complicated in-order reservation tables
1978 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1979 ///
1980 /// The second is a streamlined mechanism that checks for hazards based on
1981 /// simple counters that the scheduler itself maintains. It explicitly checks
1982 /// for instruction dispatch limitations, including the number of micro-ops that
1983 /// can dispatch per cycle.
1984 ///
1985 /// TODO: Also check whether the SU must start a new group.
1986 bool SchedBoundary::checkHazard(SUnit *SU) {
1987   if (HazardRec->isEnabled()
1988       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1989     return true;
1990   }
1991 
1992   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1993   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1994     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1995                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1996     return true;
1997   }
1998 
1999   if (CurrMOps > 0 &&
2000       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
2001        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
2002     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
2003                       << (isTop() ? "begin" : "end") << " group\n");
2004     return true;
2005   }
2006 
2007   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
2008     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2009     for (const MCWriteProcResEntry &PE :
2010           make_range(SchedModel->getWriteProcResBegin(SC),
2011                      SchedModel->getWriteProcResEnd(SC))) {
2012       unsigned ResIdx = PE.ProcResourceIdx;
2013       unsigned Cycles = PE.Cycles;
2014       unsigned NRCycle, InstanceIdx;
2015       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
2016       if (NRCycle > CurrCycle) {
2017 #ifndef NDEBUG
2018         MaxObservedStall = std::max(Cycles, MaxObservedStall);
2019 #endif
2020         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
2021                           << SchedModel->getResourceName(ResIdx)
2022                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
2023                           << "=" << NRCycle << "c\n");
2024         return true;
2025       }
2026     }
2027   }
2028   return false;
2029 }
2030 
2031 // Find the unscheduled node in ReadySUs with the highest latency.
2032 unsigned SchedBoundary::
2033 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
2034   SUnit *LateSU = nullptr;
2035   unsigned RemLatency = 0;
2036   for (SUnit *SU : ReadySUs) {
2037     unsigned L = getUnscheduledLatency(SU);
2038     if (L > RemLatency) {
2039       RemLatency = L;
2040       LateSU = SU;
2041     }
2042   }
2043   if (LateSU) {
2044     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2045                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2046   }
2047   return RemLatency;
2048 }
2049 
2050 // Count resources in this zone and the remaining unscheduled
2051 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2052 // resource index, or zero if the zone is issue limited.
2053 unsigned SchedBoundary::
2054 getOtherResourceCount(unsigned &OtherCritIdx) {
2055   OtherCritIdx = 0;
2056   if (!SchedModel->hasInstrSchedModel())
2057     return 0;
2058 
2059   unsigned OtherCritCount = Rem->RemIssueCount
2060     + (RetiredMOps * SchedModel->getMicroOpFactor());
2061   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2062                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2063   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2064        PIdx != PEnd; ++PIdx) {
2065     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2066     if (OtherCount > OtherCritCount) {
2067       OtherCritCount = OtherCount;
2068       OtherCritIdx = PIdx;
2069     }
2070   }
2071   if (OtherCritIdx) {
2072     LLVM_DEBUG(
2073         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2074                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2075                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2076   }
2077   return OtherCritCount;
2078 }
2079 
2080 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2081   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2082 
2083 #ifndef NDEBUG
2084   // ReadyCycle was been bumped up to the CurrCycle when this node was
2085   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2086   // scheduling, so may now be greater than ReadyCycle.
2087   if (ReadyCycle > CurrCycle)
2088     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2089 #endif
2090 
2091   if (ReadyCycle < MinReadyCycle)
2092     MinReadyCycle = ReadyCycle;
2093 
2094   // Check for interlocks first. For the purpose of other heuristics, an
2095   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2096   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2097   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2098       Available.size() >= ReadyListLimit)
2099     Pending.push(SU);
2100   else
2101     Available.push(SU);
2102 }
2103 
2104 /// Move the boundary of scheduled code by one cycle.
2105 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2106   if (SchedModel->getMicroOpBufferSize() == 0) {
2107     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2108            "MinReadyCycle uninitialized");
2109     if (MinReadyCycle > NextCycle)
2110       NextCycle = MinReadyCycle;
2111   }
2112   // Update the current micro-ops, which will issue in the next cycle.
2113   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2114   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2115 
2116   // Decrement DependentLatency based on the next cycle.
2117   if ((NextCycle - CurrCycle) > DependentLatency)
2118     DependentLatency = 0;
2119   else
2120     DependentLatency -= (NextCycle - CurrCycle);
2121 
2122   if (!HazardRec->isEnabled()) {
2123     // Bypass HazardRec virtual calls.
2124     CurrCycle = NextCycle;
2125   } else {
2126     // Bypass getHazardType calls in case of long latency.
2127     for (; CurrCycle != NextCycle; ++CurrCycle) {
2128       if (isTop())
2129         HazardRec->AdvanceCycle();
2130       else
2131         HazardRec->RecedeCycle();
2132     }
2133   }
2134   CheckPending = true;
2135   IsResourceLimited =
2136       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2137                          getScheduledLatency());
2138 
2139   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2140                     << '\n');
2141 }
2142 
2143 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2144   ExecutedResCounts[PIdx] += Count;
2145   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2146     MaxExecutedResCount = ExecutedResCounts[PIdx];
2147 }
2148 
2149 /// Add the given processor resource to this scheduled zone.
2150 ///
2151 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2152 /// during which this resource is consumed.
2153 ///
2154 /// \return the next cycle at which the instruction may execute without
2155 /// oversubscribing resources.
2156 unsigned SchedBoundary::
2157 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2158   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2159   unsigned Count = Factor * Cycles;
2160   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2161                     << Cycles << "x" << Factor << "u\n");
2162 
2163   // Update Executed resources counts.
2164   incExecutedResources(PIdx, Count);
2165   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2166   Rem->RemainingCounts[PIdx] -= Count;
2167 
2168   // Check if this resource exceeds the current critical resource. If so, it
2169   // becomes the critical resource.
2170   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2171     ZoneCritResIdx = PIdx;
2172     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2173                       << SchedModel->getResourceName(PIdx) << ": "
2174                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2175                       << "c\n");
2176   }
2177   // For reserved resources, record the highest cycle using the resource.
2178   unsigned NextAvailable, InstanceIdx;
2179   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
2180   if (NextAvailable > CurrCycle) {
2181     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2182                       << SchedModel->getResourceName(PIdx)
2183                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
2184                       << " reserved until @" << NextAvailable << "\n");
2185   }
2186   return NextAvailable;
2187 }
2188 
2189 /// Move the boundary of scheduled code by one SUnit.
2190 void SchedBoundary::bumpNode(SUnit *SU) {
2191   // Update the reservation table.
2192   if (HazardRec->isEnabled()) {
2193     if (!isTop() && SU->isCall) {
2194       // Calls are scheduled with their preceding instructions. For bottom-up
2195       // scheduling, clear the pipeline state before emitting.
2196       HazardRec->Reset();
2197     }
2198     HazardRec->EmitInstruction(SU);
2199     // Scheduling an instruction may have made pending instructions available.
2200     CheckPending = true;
2201   }
2202   // checkHazard should prevent scheduling multiple instructions per cycle that
2203   // exceed the issue width.
2204   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2205   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2206   assert(
2207       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2208       "Cannot schedule this instruction's MicroOps in the current cycle.");
2209 
2210   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2211   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2212 
2213   unsigned NextCycle = CurrCycle;
2214   switch (SchedModel->getMicroOpBufferSize()) {
2215   case 0:
2216     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2217     break;
2218   case 1:
2219     if (ReadyCycle > NextCycle) {
2220       NextCycle = ReadyCycle;
2221       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2222     }
2223     break;
2224   default:
2225     // We don't currently model the OOO reorder buffer, so consider all
2226     // scheduled MOps to be "retired". We do loosely model in-order resource
2227     // latency. If this instruction uses an in-order resource, account for any
2228     // likely stall cycles.
2229     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2230       NextCycle = ReadyCycle;
2231     break;
2232   }
2233   RetiredMOps += IncMOps;
2234 
2235   // Update resource counts and critical resource.
2236   if (SchedModel->hasInstrSchedModel()) {
2237     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2238     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2239     Rem->RemIssueCount -= DecRemIssue;
2240     if (ZoneCritResIdx) {
2241       // Scale scheduled micro-ops for comparing with the critical resource.
2242       unsigned ScaledMOps =
2243         RetiredMOps * SchedModel->getMicroOpFactor();
2244 
2245       // If scaled micro-ops are now more than the previous critical resource by
2246       // a full cycle, then micro-ops issue becomes critical.
2247       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2248           >= (int)SchedModel->getLatencyFactor()) {
2249         ZoneCritResIdx = 0;
2250         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2251                           << ScaledMOps / SchedModel->getLatencyFactor()
2252                           << "c\n");
2253       }
2254     }
2255     for (TargetSchedModel::ProcResIter
2256            PI = SchedModel->getWriteProcResBegin(SC),
2257            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2258       unsigned RCycle =
2259         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2260       if (RCycle > NextCycle)
2261         NextCycle = RCycle;
2262     }
2263     if (SU->hasReservedResource) {
2264       // For reserved resources, record the highest cycle using the resource.
2265       // For top-down scheduling, this is the cycle in which we schedule this
2266       // instruction plus the number of cycles the operations reserves the
2267       // resource. For bottom-up is it simply the instruction's cycle.
2268       for (TargetSchedModel::ProcResIter
2269              PI = SchedModel->getWriteProcResBegin(SC),
2270              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2271         unsigned PIdx = PI->ProcResourceIdx;
2272         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2273           unsigned ReservedUntil, InstanceIdx;
2274           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
2275           if (isTop()) {
2276             ReservedCycles[InstanceIdx] =
2277                 std::max(ReservedUntil, NextCycle + PI->Cycles);
2278           } else
2279             ReservedCycles[InstanceIdx] = NextCycle;
2280         }
2281       }
2282     }
2283   }
2284   // Update ExpectedLatency and DependentLatency.
2285   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2286   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2287   if (SU->getDepth() > TopLatency) {
2288     TopLatency = SU->getDepth();
2289     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2290                       << SU->NodeNum << ") " << TopLatency << "c\n");
2291   }
2292   if (SU->getHeight() > BotLatency) {
2293     BotLatency = SU->getHeight();
2294     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2295                       << SU->NodeNum << ") " << BotLatency << "c\n");
2296   }
2297   // If we stall for any reason, bump the cycle.
2298   if (NextCycle > CurrCycle)
2299     bumpCycle(NextCycle);
2300   else
2301     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2302     // resource limited. If a stall occurred, bumpCycle does this.
2303     IsResourceLimited =
2304         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2305                            getScheduledLatency());
2306 
2307   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2308   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2309   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2310   // bump the cycle to avoid uselessly checking everything in the readyQ.
2311   CurrMOps += IncMOps;
2312 
2313   // Bump the cycle count for issue group constraints.
2314   // This must be done after NextCycle has been adjust for all other stalls.
2315   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2316   // currCycle to X.
2317   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2318       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2319     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2320                       << " group\n");
2321     bumpCycle(++NextCycle);
2322   }
2323 
2324   while (CurrMOps >= SchedModel->getIssueWidth()) {
2325     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2326                       << CurrCycle << '\n');
2327     bumpCycle(++NextCycle);
2328   }
2329   LLVM_DEBUG(dumpScheduledState());
2330 }
2331 
2332 /// Release pending ready nodes in to the available queue. This makes them
2333 /// visible to heuristics.
2334 void SchedBoundary::releasePending() {
2335   // If the available queue is empty, it is safe to reset MinReadyCycle.
2336   if (Available.empty())
2337     MinReadyCycle = std::numeric_limits<unsigned>::max();
2338 
2339   // Check to see if any of the pending instructions are ready to issue.  If
2340   // so, add them to the available queue.
2341   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2342   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2343     SUnit *SU = *(Pending.begin()+i);
2344     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2345 
2346     if (ReadyCycle < MinReadyCycle)
2347       MinReadyCycle = ReadyCycle;
2348 
2349     if (!IsBuffered && ReadyCycle > CurrCycle)
2350       continue;
2351 
2352     if (checkHazard(SU))
2353       continue;
2354 
2355     if (Available.size() >= ReadyListLimit)
2356       break;
2357 
2358     Available.push(SU);
2359     Pending.remove(Pending.begin()+i);
2360     --i; --e;
2361   }
2362   CheckPending = false;
2363 }
2364 
2365 /// Remove SU from the ready set for this boundary.
2366 void SchedBoundary::removeReady(SUnit *SU) {
2367   if (Available.isInQueue(SU))
2368     Available.remove(Available.find(SU));
2369   else {
2370     assert(Pending.isInQueue(SU) && "bad ready count");
2371     Pending.remove(Pending.find(SU));
2372   }
2373 }
2374 
2375 /// If this queue only has one ready candidate, return it. As a side effect,
2376 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2377 /// one node is ready. If multiple instructions are ready, return NULL.
2378 SUnit *SchedBoundary::pickOnlyChoice() {
2379   if (CheckPending)
2380     releasePending();
2381 
2382   if (CurrMOps > 0) {
2383     // Defer any ready instrs that now have a hazard.
2384     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2385       if (checkHazard(*I)) {
2386         Pending.push(*I);
2387         I = Available.remove(I);
2388         continue;
2389       }
2390       ++I;
2391     }
2392   }
2393   for (unsigned i = 0; Available.empty(); ++i) {
2394 //  FIXME: Re-enable assert once PR20057 is resolved.
2395 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2396 //           "permanent hazard");
2397     (void)i;
2398     bumpCycle(CurrCycle + 1);
2399     releasePending();
2400   }
2401 
2402   LLVM_DEBUG(Pending.dump());
2403   LLVM_DEBUG(Available.dump());
2404 
2405   if (Available.size() == 1)
2406     return *Available.begin();
2407   return nullptr;
2408 }
2409 
2410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2411 // This is useful information to dump after bumpNode.
2412 // Note that the Queue contents are more useful before pickNodeFromQueue.
2413 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2414   unsigned ResFactor;
2415   unsigned ResCount;
2416   if (ZoneCritResIdx) {
2417     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2418     ResCount = getResourceCount(ZoneCritResIdx);
2419   } else {
2420     ResFactor = SchedModel->getMicroOpFactor();
2421     ResCount = RetiredMOps * ResFactor;
2422   }
2423   unsigned LFactor = SchedModel->getLatencyFactor();
2424   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2425          << "  Retired: " << RetiredMOps;
2426   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2427   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2428          << ResCount / ResFactor << " "
2429          << SchedModel->getResourceName(ZoneCritResIdx)
2430          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2431          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2432          << " limited.\n";
2433 }
2434 #endif
2435 
2436 //===----------------------------------------------------------------------===//
2437 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2438 //===----------------------------------------------------------------------===//
2439 
2440 void GenericSchedulerBase::SchedCandidate::
2441 initResourceDelta(const ScheduleDAGMI *DAG,
2442                   const TargetSchedModel *SchedModel) {
2443   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2444     return;
2445 
2446   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2447   for (TargetSchedModel::ProcResIter
2448          PI = SchedModel->getWriteProcResBegin(SC),
2449          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2450     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2451       ResDelta.CritResources += PI->Cycles;
2452     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2453       ResDelta.DemandedResources += PI->Cycles;
2454   }
2455 }
2456 
2457 /// Compute remaining latency. We need this both to determine whether the
2458 /// overall schedule has become latency-limited and whether the instructions
2459 /// outside this zone are resource or latency limited.
2460 ///
2461 /// The "dependent" latency is updated incrementally during scheduling as the
2462 /// max height/depth of scheduled nodes minus the cycles since it was
2463 /// scheduled:
2464 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2465 ///
2466 /// The "independent" latency is the max ready queue depth:
2467 ///   ILat = max N.depth for N in Available|Pending
2468 ///
2469 /// RemainingLatency is the greater of independent and dependent latency.
2470 ///
2471 /// These computations are expensive, especially in DAGs with many edges, so
2472 /// only do them if necessary.
2473 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2474   unsigned RemLatency = CurrZone.getDependentLatency();
2475   RemLatency = std::max(RemLatency,
2476                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2477   RemLatency = std::max(RemLatency,
2478                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2479   return RemLatency;
2480 }
2481 
2482 /// Returns true if the current cycle plus remaning latency is greater than
2483 /// the critical path in the scheduling region.
2484 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2485                                                SchedBoundary &CurrZone,
2486                                                bool ComputeRemLatency,
2487                                                unsigned &RemLatency) const {
2488   // The current cycle is already greater than the critical path, so we are
2489   // already latency limited and don't need to compute the remaining latency.
2490   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2491     return true;
2492 
2493   // If we haven't scheduled anything yet, then we aren't latency limited.
2494   if (CurrZone.getCurrCycle() == 0)
2495     return false;
2496 
2497   if (ComputeRemLatency)
2498     RemLatency = computeRemLatency(CurrZone);
2499 
2500   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2501 }
2502 
2503 /// Set the CandPolicy given a scheduling zone given the current resources and
2504 /// latencies inside and outside the zone.
2505 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2506                                      SchedBoundary &CurrZone,
2507                                      SchedBoundary *OtherZone) {
2508   // Apply preemptive heuristics based on the total latency and resources
2509   // inside and outside this zone. Potential stalls should be considered before
2510   // following this policy.
2511 
2512   // Compute the critical resource outside the zone.
2513   unsigned OtherCritIdx = 0;
2514   unsigned OtherCount =
2515     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2516 
2517   bool OtherResLimited = false;
2518   unsigned RemLatency = 0;
2519   bool RemLatencyComputed = false;
2520   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2521     RemLatency = computeRemLatency(CurrZone);
2522     RemLatencyComputed = true;
2523     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2524                                          OtherCount, RemLatency);
2525   }
2526 
2527   // Schedule aggressively for latency in PostRA mode. We don't check for
2528   // acyclic latency during PostRA, and highly out-of-order processors will
2529   // skip PostRA scheduling.
2530   if (!OtherResLimited &&
2531       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2532                                        RemLatency))) {
2533     Policy.ReduceLatency |= true;
2534     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2535                       << " RemainingLatency " << RemLatency << " + "
2536                       << CurrZone.getCurrCycle() << "c > CritPath "
2537                       << Rem.CriticalPath << "\n");
2538   }
2539   // If the same resource is limiting inside and outside the zone, do nothing.
2540   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2541     return;
2542 
2543   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2544     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2545            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2546   } if (OtherResLimited) dbgs()
2547                  << "  RemainingLimit: "
2548                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2549              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2550              << "  Latency limited both directions.\n");
2551 
2552   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2553     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2554 
2555   if (OtherResLimited)
2556     Policy.DemandResIdx = OtherCritIdx;
2557 }
2558 
2559 #ifndef NDEBUG
2560 const char *GenericSchedulerBase::getReasonStr(
2561   GenericSchedulerBase::CandReason Reason) {
2562   switch (Reason) {
2563   case NoCand:         return "NOCAND    ";
2564   case Only1:          return "ONLY1     ";
2565   case PhysReg:        return "PHYS-REG  ";
2566   case RegExcess:      return "REG-EXCESS";
2567   case RegCritical:    return "REG-CRIT  ";
2568   case Stall:          return "STALL     ";
2569   case Cluster:        return "CLUSTER   ";
2570   case Weak:           return "WEAK      ";
2571   case RegMax:         return "REG-MAX   ";
2572   case ResourceReduce: return "RES-REDUCE";
2573   case ResourceDemand: return "RES-DEMAND";
2574   case TopDepthReduce: return "TOP-DEPTH ";
2575   case TopPathReduce:  return "TOP-PATH  ";
2576   case BotHeightReduce:return "BOT-HEIGHT";
2577   case BotPathReduce:  return "BOT-PATH  ";
2578   case NextDefUse:     return "DEF-USE   ";
2579   case NodeOrder:      return "ORDER     ";
2580   };
2581   llvm_unreachable("Unknown reason!");
2582 }
2583 
2584 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2585   PressureChange P;
2586   unsigned ResIdx = 0;
2587   unsigned Latency = 0;
2588   switch (Cand.Reason) {
2589   default:
2590     break;
2591   case RegExcess:
2592     P = Cand.RPDelta.Excess;
2593     break;
2594   case RegCritical:
2595     P = Cand.RPDelta.CriticalMax;
2596     break;
2597   case RegMax:
2598     P = Cand.RPDelta.CurrentMax;
2599     break;
2600   case ResourceReduce:
2601     ResIdx = Cand.Policy.ReduceResIdx;
2602     break;
2603   case ResourceDemand:
2604     ResIdx = Cand.Policy.DemandResIdx;
2605     break;
2606   case TopDepthReduce:
2607     Latency = Cand.SU->getDepth();
2608     break;
2609   case TopPathReduce:
2610     Latency = Cand.SU->getHeight();
2611     break;
2612   case BotHeightReduce:
2613     Latency = Cand.SU->getHeight();
2614     break;
2615   case BotPathReduce:
2616     Latency = Cand.SU->getDepth();
2617     break;
2618   }
2619   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2620   if (P.isValid())
2621     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2622            << ":" << P.getUnitInc() << " ";
2623   else
2624     dbgs() << "      ";
2625   if (ResIdx)
2626     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2627   else
2628     dbgs() << "         ";
2629   if (Latency)
2630     dbgs() << " " << Latency << " cycles ";
2631   else
2632     dbgs() << "          ";
2633   dbgs() << '\n';
2634 }
2635 #endif
2636 
2637 namespace llvm {
2638 /// Return true if this heuristic determines order.
2639 bool tryLess(int TryVal, int CandVal,
2640              GenericSchedulerBase::SchedCandidate &TryCand,
2641              GenericSchedulerBase::SchedCandidate &Cand,
2642              GenericSchedulerBase::CandReason Reason) {
2643   if (TryVal < CandVal) {
2644     TryCand.Reason = Reason;
2645     return true;
2646   }
2647   if (TryVal > CandVal) {
2648     if (Cand.Reason > Reason)
2649       Cand.Reason = Reason;
2650     return true;
2651   }
2652   return false;
2653 }
2654 
2655 bool tryGreater(int TryVal, int CandVal,
2656                 GenericSchedulerBase::SchedCandidate &TryCand,
2657                 GenericSchedulerBase::SchedCandidate &Cand,
2658                 GenericSchedulerBase::CandReason Reason) {
2659   if (TryVal > CandVal) {
2660     TryCand.Reason = Reason;
2661     return true;
2662   }
2663   if (TryVal < CandVal) {
2664     if (Cand.Reason > Reason)
2665       Cand.Reason = Reason;
2666     return true;
2667   }
2668   return false;
2669 }
2670 
2671 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2672                 GenericSchedulerBase::SchedCandidate &Cand,
2673                 SchedBoundary &Zone) {
2674   if (Zone.isTop()) {
2675     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2676       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2677                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2678         return true;
2679     }
2680     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2681                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2682       return true;
2683   } else {
2684     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2685       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2686                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2687         return true;
2688     }
2689     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2690                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2691       return true;
2692   }
2693   return false;
2694 }
2695 } // end namespace llvm
2696 
2697 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2698   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2699                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2700 }
2701 
2702 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2703   tracePick(Cand.Reason, Cand.AtTop);
2704 }
2705 
2706 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2707   assert(dag->hasVRegLiveness() &&
2708          "(PreRA)GenericScheduler needs vreg liveness");
2709   DAG = static_cast<ScheduleDAGMILive*>(dag);
2710   SchedModel = DAG->getSchedModel();
2711   TRI = DAG->TRI;
2712 
2713   Rem.init(DAG, SchedModel);
2714   Top.init(DAG, SchedModel, &Rem);
2715   Bot.init(DAG, SchedModel, &Rem);
2716 
2717   // Initialize resource counts.
2718 
2719   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2720   // are disabled, then these HazardRecs will be disabled.
2721   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2722   if (!Top.HazardRec) {
2723     Top.HazardRec =
2724         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2725             Itin, DAG);
2726   }
2727   if (!Bot.HazardRec) {
2728     Bot.HazardRec =
2729         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2730             Itin, DAG);
2731   }
2732   TopCand.SU = nullptr;
2733   BotCand.SU = nullptr;
2734 }
2735 
2736 /// Initialize the per-region scheduling policy.
2737 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2738                                   MachineBasicBlock::iterator End,
2739                                   unsigned NumRegionInstrs) {
2740   const MachineFunction &MF = *Begin->getMF();
2741   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2742 
2743   // Avoid setting up the register pressure tracker for small regions to save
2744   // compile time. As a rough heuristic, only track pressure when the number of
2745   // schedulable instructions exceeds half the integer register file.
2746   RegionPolicy.ShouldTrackPressure = true;
2747   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2748     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2749     if (TLI->isTypeLegal(LegalIntVT)) {
2750       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2751         TLI->getRegClassFor(LegalIntVT));
2752       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2753     }
2754   }
2755 
2756   // For generic targets, we default to bottom-up, because it's simpler and more
2757   // compile-time optimizations have been implemented in that direction.
2758   RegionPolicy.OnlyBottomUp = true;
2759 
2760   // Allow the subtarget to override default policy.
2761   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2762 
2763   // After subtarget overrides, apply command line options.
2764   if (!EnableRegPressure)
2765     RegionPolicy.ShouldTrackPressure = false;
2766 
2767   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2768   // e.g. -misched-bottomup=false allows scheduling in both directions.
2769   assert((!ForceTopDown || !ForceBottomUp) &&
2770          "-misched-topdown incompatible with -misched-bottomup");
2771   if (ForceBottomUp.getNumOccurrences() > 0) {
2772     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2773     if (RegionPolicy.OnlyBottomUp)
2774       RegionPolicy.OnlyTopDown = false;
2775   }
2776   if (ForceTopDown.getNumOccurrences() > 0) {
2777     RegionPolicy.OnlyTopDown = ForceTopDown;
2778     if (RegionPolicy.OnlyTopDown)
2779       RegionPolicy.OnlyBottomUp = false;
2780   }
2781 }
2782 
2783 void GenericScheduler::dumpPolicy() const {
2784   // Cannot completely remove virtual function even in release mode.
2785 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2786   dbgs() << "GenericScheduler RegionPolicy: "
2787          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2788          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2789          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2790          << "\n";
2791 #endif
2792 }
2793 
2794 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2795 /// critical path by more cycles than it takes to drain the instruction buffer.
2796 /// We estimate an upper bounds on in-flight instructions as:
2797 ///
2798 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2799 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2800 /// InFlightResources = InFlightIterations * LoopResources
2801 ///
2802 /// TODO: Check execution resources in addition to IssueCount.
2803 void GenericScheduler::checkAcyclicLatency() {
2804   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2805     return;
2806 
2807   // Scaled number of cycles per loop iteration.
2808   unsigned IterCount =
2809     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2810              Rem.RemIssueCount);
2811   // Scaled acyclic critical path.
2812   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2813   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2814   unsigned InFlightCount =
2815     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2816   unsigned BufferLimit =
2817     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2818 
2819   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2820 
2821   LLVM_DEBUG(
2822       dbgs() << "IssueCycles="
2823              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2824              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2825              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2826              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2827              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2828       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2829 }
2830 
2831 void GenericScheduler::registerRoots() {
2832   Rem.CriticalPath = DAG->ExitSU.getDepth();
2833 
2834   // Some roots may not feed into ExitSU. Check all of them in case.
2835   for (const SUnit *SU : Bot.Available) {
2836     if (SU->getDepth() > Rem.CriticalPath)
2837       Rem.CriticalPath = SU->getDepth();
2838   }
2839   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2840   if (DumpCriticalPathLength) {
2841     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2842   }
2843 
2844   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2845     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2846     checkAcyclicLatency();
2847   }
2848 }
2849 
2850 namespace llvm {
2851 bool tryPressure(const PressureChange &TryP,
2852                  const PressureChange &CandP,
2853                  GenericSchedulerBase::SchedCandidate &TryCand,
2854                  GenericSchedulerBase::SchedCandidate &Cand,
2855                  GenericSchedulerBase::CandReason Reason,
2856                  const TargetRegisterInfo *TRI,
2857                  const MachineFunction &MF) {
2858   // If one candidate decreases and the other increases, go with it.
2859   // Invalid candidates have UnitInc==0.
2860   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2861                  Reason)) {
2862     return true;
2863   }
2864   // Do not compare the magnitude of pressure changes between top and bottom
2865   // boundary.
2866   if (Cand.AtTop != TryCand.AtTop)
2867     return false;
2868 
2869   // If both candidates affect the same set in the same boundary, go with the
2870   // smallest increase.
2871   unsigned TryPSet = TryP.getPSetOrMax();
2872   unsigned CandPSet = CandP.getPSetOrMax();
2873   if (TryPSet == CandPSet) {
2874     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2875                    Reason);
2876   }
2877 
2878   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2879                                  std::numeric_limits<int>::max();
2880 
2881   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2882                                    std::numeric_limits<int>::max();
2883 
2884   // If the candidates are decreasing pressure, reverse priority.
2885   if (TryP.getUnitInc() < 0)
2886     std::swap(TryRank, CandRank);
2887   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2888 }
2889 
2890 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2891   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2892 }
2893 
2894 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2895 /// their physreg def/use.
2896 ///
2897 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2898 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2899 /// with the operation that produces or consumes the physreg. We'll do this when
2900 /// regalloc has support for parallel copies.
2901 int biasPhysReg(const SUnit *SU, bool isTop) {
2902   const MachineInstr *MI = SU->getInstr();
2903 
2904   if (MI->isCopy()) {
2905     unsigned ScheduledOper = isTop ? 1 : 0;
2906     unsigned UnscheduledOper = isTop ? 0 : 1;
2907     // If we have already scheduled the physreg produce/consumer, immediately
2908     // schedule the copy.
2909     if (TargetRegisterInfo::isPhysicalRegister(
2910             MI->getOperand(ScheduledOper).getReg()))
2911       return 1;
2912     // If the physreg is at the boundary, defer it. Otherwise schedule it
2913     // immediately to free the dependent. We can hoist the copy later.
2914     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2915     if (TargetRegisterInfo::isPhysicalRegister(
2916             MI->getOperand(UnscheduledOper).getReg()))
2917       return AtBoundary ? -1 : 1;
2918   }
2919 
2920   if (MI->isMoveImmediate()) {
2921     // If we have a move immediate and all successors have been assigned, bias
2922     // towards scheduling this later. Make sure all register defs are to
2923     // physical registers.
2924     bool DoBias = true;
2925     for (const MachineOperand &Op : MI->defs()) {
2926       if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) {
2927         DoBias = false;
2928         break;
2929       }
2930     }
2931 
2932     if (DoBias)
2933       return isTop ? -1 : 1;
2934   }
2935 
2936   return 0;
2937 }
2938 } // end namespace llvm
2939 
2940 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2941                                      bool AtTop,
2942                                      const RegPressureTracker &RPTracker,
2943                                      RegPressureTracker &TempTracker) {
2944   Cand.SU = SU;
2945   Cand.AtTop = AtTop;
2946   if (DAG->isTrackingPressure()) {
2947     if (AtTop) {
2948       TempTracker.getMaxDownwardPressureDelta(
2949         Cand.SU->getInstr(),
2950         Cand.RPDelta,
2951         DAG->getRegionCriticalPSets(),
2952         DAG->getRegPressure().MaxSetPressure);
2953     } else {
2954       if (VerifyScheduling) {
2955         TempTracker.getMaxUpwardPressureDelta(
2956           Cand.SU->getInstr(),
2957           &DAG->getPressureDiff(Cand.SU),
2958           Cand.RPDelta,
2959           DAG->getRegionCriticalPSets(),
2960           DAG->getRegPressure().MaxSetPressure);
2961       } else {
2962         RPTracker.getUpwardPressureDelta(
2963           Cand.SU->getInstr(),
2964           DAG->getPressureDiff(Cand.SU),
2965           Cand.RPDelta,
2966           DAG->getRegionCriticalPSets(),
2967           DAG->getRegPressure().MaxSetPressure);
2968       }
2969     }
2970   }
2971   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2972              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2973              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2974              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2975 }
2976 
2977 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2978 /// hierarchical. This may be more efficient than a graduated cost model because
2979 /// we don't need to evaluate all aspects of the model for each node in the
2980 /// queue. But it's really done to make the heuristics easier to debug and
2981 /// statistically analyze.
2982 ///
2983 /// \param Cand provides the policy and current best candidate.
2984 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2985 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2986 //              if Cand is from a different zone than TryCand.
2987 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2988                                     SchedCandidate &TryCand,
2989                                     SchedBoundary *Zone) const {
2990   // Initialize the candidate if needed.
2991   if (!Cand.isValid()) {
2992     TryCand.Reason = NodeOrder;
2993     return;
2994   }
2995 
2996   // Bias PhysReg Defs and copies to their uses and defined respectively.
2997   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
2998                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
2999     return;
3000 
3001   // Avoid exceeding the target's limit.
3002   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
3003                                                Cand.RPDelta.Excess,
3004                                                TryCand, Cand, RegExcess, TRI,
3005                                                DAG->MF))
3006     return;
3007 
3008   // Avoid increasing the max critical pressure in the scheduled region.
3009   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
3010                                                Cand.RPDelta.CriticalMax,
3011                                                TryCand, Cand, RegCritical, TRI,
3012                                                DAG->MF))
3013     return;
3014 
3015   // We only compare a subset of features when comparing nodes between
3016   // Top and Bottom boundary. Some properties are simply incomparable, in many
3017   // other instances we should only override the other boundary if something
3018   // is a clear good pick on one boundary. Skip heuristics that are more
3019   // "tie-breaking" in nature.
3020   bool SameBoundary = Zone != nullptr;
3021   if (SameBoundary) {
3022     // For loops that are acyclic path limited, aggressively schedule for
3023     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
3024     // heuristics to take precedence.
3025     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
3026         tryLatency(TryCand, Cand, *Zone))
3027       return;
3028 
3029     // Prioritize instructions that read unbuffered resources by stall cycles.
3030     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
3031                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3032       return;
3033   }
3034 
3035   // Keep clustered nodes together to encourage downstream peephole
3036   // optimizations which may reduce resource requirements.
3037   //
3038   // This is a best effort to set things up for a post-RA pass. Optimizations
3039   // like generating loads of multiple registers should ideally be done within
3040   // the scheduler pass by combining the loads during DAG postprocessing.
3041   const SUnit *CandNextClusterSU =
3042     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3043   const SUnit *TryCandNextClusterSU =
3044     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3045   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3046                  Cand.SU == CandNextClusterSU,
3047                  TryCand, Cand, Cluster))
3048     return;
3049 
3050   if (SameBoundary) {
3051     // Weak edges are for clustering and other constraints.
3052     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3053                 getWeakLeft(Cand.SU, Cand.AtTop),
3054                 TryCand, Cand, Weak))
3055       return;
3056   }
3057 
3058   // Avoid increasing the max pressure of the entire region.
3059   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3060                                                Cand.RPDelta.CurrentMax,
3061                                                TryCand, Cand, RegMax, TRI,
3062                                                DAG->MF))
3063     return;
3064 
3065   if (SameBoundary) {
3066     // Avoid critical resource consumption and balance the schedule.
3067     TryCand.initResourceDelta(DAG, SchedModel);
3068     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3069                 TryCand, Cand, ResourceReduce))
3070       return;
3071     if (tryGreater(TryCand.ResDelta.DemandedResources,
3072                    Cand.ResDelta.DemandedResources,
3073                    TryCand, Cand, ResourceDemand))
3074       return;
3075 
3076     // Avoid serializing long latency dependence chains.
3077     // For acyclic path limited loops, latency was already checked above.
3078     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3079         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3080       return;
3081 
3082     // Fall through to original instruction order.
3083     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3084         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3085       TryCand.Reason = NodeOrder;
3086     }
3087   }
3088 }
3089 
3090 /// Pick the best candidate from the queue.
3091 ///
3092 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3093 /// DAG building. To adjust for the current scheduling location we need to
3094 /// maintain the number of vreg uses remaining to be top-scheduled.
3095 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3096                                          const CandPolicy &ZonePolicy,
3097                                          const RegPressureTracker &RPTracker,
3098                                          SchedCandidate &Cand) {
3099   // getMaxPressureDelta temporarily modifies the tracker.
3100   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3101 
3102   ReadyQueue &Q = Zone.Available;
3103   for (SUnit *SU : Q) {
3104 
3105     SchedCandidate TryCand(ZonePolicy);
3106     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3107     // Pass SchedBoundary only when comparing nodes from the same boundary.
3108     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3109     tryCandidate(Cand, TryCand, ZoneArg);
3110     if (TryCand.Reason != NoCand) {
3111       // Initialize resource delta if needed in case future heuristics query it.
3112       if (TryCand.ResDelta == SchedResourceDelta())
3113         TryCand.initResourceDelta(DAG, SchedModel);
3114       Cand.setBest(TryCand);
3115       LLVM_DEBUG(traceCandidate(Cand));
3116     }
3117   }
3118 }
3119 
3120 /// Pick the best candidate node from either the top or bottom queue.
3121 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3122   // Schedule as far as possible in the direction of no choice. This is most
3123   // efficient, but also provides the best heuristics for CriticalPSets.
3124   if (SUnit *SU = Bot.pickOnlyChoice()) {
3125     IsTopNode = false;
3126     tracePick(Only1, false);
3127     return SU;
3128   }
3129   if (SUnit *SU = Top.pickOnlyChoice()) {
3130     IsTopNode = true;
3131     tracePick(Only1, true);
3132     return SU;
3133   }
3134   // Set the bottom-up policy based on the state of the current bottom zone and
3135   // the instructions outside the zone, including the top zone.
3136   CandPolicy BotPolicy;
3137   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3138   // Set the top-down policy based on the state of the current top zone and
3139   // the instructions outside the zone, including the bottom zone.
3140   CandPolicy TopPolicy;
3141   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3142 
3143   // See if BotCand is still valid (because we previously scheduled from Top).
3144   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3145   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3146       BotCand.Policy != BotPolicy) {
3147     BotCand.reset(CandPolicy());
3148     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3149     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3150   } else {
3151     LLVM_DEBUG(traceCandidate(BotCand));
3152 #ifndef NDEBUG
3153     if (VerifyScheduling) {
3154       SchedCandidate TCand;
3155       TCand.reset(CandPolicy());
3156       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3157       assert(TCand.SU == BotCand.SU &&
3158              "Last pick result should correspond to re-picking right now");
3159     }
3160 #endif
3161   }
3162 
3163   // Check if the top Q has a better candidate.
3164   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3165   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3166       TopCand.Policy != TopPolicy) {
3167     TopCand.reset(CandPolicy());
3168     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3169     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3170   } else {
3171     LLVM_DEBUG(traceCandidate(TopCand));
3172 #ifndef NDEBUG
3173     if (VerifyScheduling) {
3174       SchedCandidate TCand;
3175       TCand.reset(CandPolicy());
3176       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3177       assert(TCand.SU == TopCand.SU &&
3178            "Last pick result should correspond to re-picking right now");
3179     }
3180 #endif
3181   }
3182 
3183   // Pick best from BotCand and TopCand.
3184   assert(BotCand.isValid());
3185   assert(TopCand.isValid());
3186   SchedCandidate Cand = BotCand;
3187   TopCand.Reason = NoCand;
3188   tryCandidate(Cand, TopCand, nullptr);
3189   if (TopCand.Reason != NoCand) {
3190     Cand.setBest(TopCand);
3191     LLVM_DEBUG(traceCandidate(Cand));
3192   }
3193 
3194   IsTopNode = Cand.AtTop;
3195   tracePick(Cand);
3196   return Cand.SU;
3197 }
3198 
3199 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3200 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3201   if (DAG->top() == DAG->bottom()) {
3202     assert(Top.Available.empty() && Top.Pending.empty() &&
3203            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3204     return nullptr;
3205   }
3206   SUnit *SU;
3207   do {
3208     if (RegionPolicy.OnlyTopDown) {
3209       SU = Top.pickOnlyChoice();
3210       if (!SU) {
3211         CandPolicy NoPolicy;
3212         TopCand.reset(NoPolicy);
3213         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3214         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3215         tracePick(TopCand);
3216         SU = TopCand.SU;
3217       }
3218       IsTopNode = true;
3219     } else if (RegionPolicy.OnlyBottomUp) {
3220       SU = Bot.pickOnlyChoice();
3221       if (!SU) {
3222         CandPolicy NoPolicy;
3223         BotCand.reset(NoPolicy);
3224         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3225         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3226         tracePick(BotCand);
3227         SU = BotCand.SU;
3228       }
3229       IsTopNode = false;
3230     } else {
3231       SU = pickNodeBidirectional(IsTopNode);
3232     }
3233   } while (SU->isScheduled);
3234 
3235   if (SU->isTopReady())
3236     Top.removeReady(SU);
3237   if (SU->isBottomReady())
3238     Bot.removeReady(SU);
3239 
3240   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3241                     << *SU->getInstr());
3242   return SU;
3243 }
3244 
3245 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3246   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3247   if (!isTop)
3248     ++InsertPos;
3249   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3250 
3251   // Find already scheduled copies with a single physreg dependence and move
3252   // them just above the scheduled instruction.
3253   for (SDep &Dep : Deps) {
3254     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3255       continue;
3256     SUnit *DepSU = Dep.getSUnit();
3257     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3258       continue;
3259     MachineInstr *Copy = DepSU->getInstr();
3260     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3261       continue;
3262     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3263                DAG->dumpNode(*Dep.getSUnit()));
3264     DAG->moveInstruction(Copy, InsertPos);
3265   }
3266 }
3267 
3268 /// Update the scheduler's state after scheduling a node. This is the same node
3269 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3270 /// update it's state based on the current cycle before MachineSchedStrategy
3271 /// does.
3272 ///
3273 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3274 /// them here. See comments in biasPhysReg.
3275 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3276   if (IsTopNode) {
3277     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3278     Top.bumpNode(SU);
3279     if (SU->hasPhysRegUses)
3280       reschedulePhysReg(SU, true);
3281   } else {
3282     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3283     Bot.bumpNode(SU);
3284     if (SU->hasPhysRegDefs)
3285       reschedulePhysReg(SU, false);
3286   }
3287 }
3288 
3289 /// Create the standard converging machine scheduler. This will be used as the
3290 /// default scheduler if the target does not set a default.
3291 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3292   ScheduleDAGMILive *DAG =
3293       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3294   // Register DAG post-processors.
3295   //
3296   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3297   // data and pass it to later mutations. Have a single mutation that gathers
3298   // the interesting nodes in one pass.
3299   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3300   return DAG;
3301 }
3302 
3303 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3304   return createGenericSchedLive(C);
3305 }
3306 
3307 static MachineSchedRegistry
3308 GenericSchedRegistry("converge", "Standard converging scheduler.",
3309                      createConveringSched);
3310 
3311 //===----------------------------------------------------------------------===//
3312 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3313 //===----------------------------------------------------------------------===//
3314 
3315 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3316   DAG = Dag;
3317   SchedModel = DAG->getSchedModel();
3318   TRI = DAG->TRI;
3319 
3320   Rem.init(DAG, SchedModel);
3321   Top.init(DAG, SchedModel, &Rem);
3322   BotRoots.clear();
3323 
3324   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3325   // or are disabled, then these HazardRecs will be disabled.
3326   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3327   if (!Top.HazardRec) {
3328     Top.HazardRec =
3329         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3330             Itin, DAG);
3331   }
3332 }
3333 
3334 void PostGenericScheduler::registerRoots() {
3335   Rem.CriticalPath = DAG->ExitSU.getDepth();
3336 
3337   // Some roots may not feed into ExitSU. Check all of them in case.
3338   for (const SUnit *SU : BotRoots) {
3339     if (SU->getDepth() > Rem.CriticalPath)
3340       Rem.CriticalPath = SU->getDepth();
3341   }
3342   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3343   if (DumpCriticalPathLength) {
3344     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3345   }
3346 }
3347 
3348 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3349 ///
3350 /// \param Cand provides the policy and current best candidate.
3351 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3352 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3353                                         SchedCandidate &TryCand) {
3354   // Initialize the candidate if needed.
3355   if (!Cand.isValid()) {
3356     TryCand.Reason = NodeOrder;
3357     return;
3358   }
3359 
3360   // Prioritize instructions that read unbuffered resources by stall cycles.
3361   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3362               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3363     return;
3364 
3365   // Keep clustered nodes together.
3366   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3367                  Cand.SU == DAG->getNextClusterSucc(),
3368                  TryCand, Cand, Cluster))
3369     return;
3370 
3371   // Avoid critical resource consumption and balance the schedule.
3372   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3373               TryCand, Cand, ResourceReduce))
3374     return;
3375   if (tryGreater(TryCand.ResDelta.DemandedResources,
3376                  Cand.ResDelta.DemandedResources,
3377                  TryCand, Cand, ResourceDemand))
3378     return;
3379 
3380   // Avoid serializing long latency dependence chains.
3381   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3382     return;
3383   }
3384 
3385   // Fall through to original instruction order.
3386   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3387     TryCand.Reason = NodeOrder;
3388 }
3389 
3390 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3391   ReadyQueue &Q = Top.Available;
3392   for (SUnit *SU : Q) {
3393     SchedCandidate TryCand(Cand.Policy);
3394     TryCand.SU = SU;
3395     TryCand.AtTop = true;
3396     TryCand.initResourceDelta(DAG, SchedModel);
3397     tryCandidate(Cand, TryCand);
3398     if (TryCand.Reason != NoCand) {
3399       Cand.setBest(TryCand);
3400       LLVM_DEBUG(traceCandidate(Cand));
3401     }
3402   }
3403 }
3404 
3405 /// Pick the next node to schedule.
3406 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3407   if (DAG->top() == DAG->bottom()) {
3408     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3409     return nullptr;
3410   }
3411   SUnit *SU;
3412   do {
3413     SU = Top.pickOnlyChoice();
3414     if (SU) {
3415       tracePick(Only1, true);
3416     } else {
3417       CandPolicy NoPolicy;
3418       SchedCandidate TopCand(NoPolicy);
3419       // Set the top-down policy based on the state of the current top zone and
3420       // the instructions outside the zone, including the bottom zone.
3421       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3422       pickNodeFromQueue(TopCand);
3423       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3424       tracePick(TopCand);
3425       SU = TopCand.SU;
3426     }
3427   } while (SU->isScheduled);
3428 
3429   IsTopNode = true;
3430   Top.removeReady(SU);
3431 
3432   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3433                     << *SU->getInstr());
3434   return SU;
3435 }
3436 
3437 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3438 /// scheduled/remaining flags in the DAG nodes.
3439 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3440   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3441   Top.bumpNode(SU);
3442 }
3443 
3444 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3445   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3446                            /*RemoveKillFlags=*/true);
3447 }
3448 
3449 //===----------------------------------------------------------------------===//
3450 // ILP Scheduler. Currently for experimental analysis of heuristics.
3451 //===----------------------------------------------------------------------===//
3452 
3453 namespace {
3454 
3455 /// Order nodes by the ILP metric.
3456 struct ILPOrder {
3457   const SchedDFSResult *DFSResult = nullptr;
3458   const BitVector *ScheduledTrees = nullptr;
3459   bool MaximizeILP;
3460 
3461   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3462 
3463   /// Apply a less-than relation on node priority.
3464   ///
3465   /// (Return true if A comes after B in the Q.)
3466   bool operator()(const SUnit *A, const SUnit *B) const {
3467     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3468     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3469     if (SchedTreeA != SchedTreeB) {
3470       // Unscheduled trees have lower priority.
3471       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3472         return ScheduledTrees->test(SchedTreeB);
3473 
3474       // Trees with shallower connections have have lower priority.
3475       if (DFSResult->getSubtreeLevel(SchedTreeA)
3476           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3477         return DFSResult->getSubtreeLevel(SchedTreeA)
3478           < DFSResult->getSubtreeLevel(SchedTreeB);
3479       }
3480     }
3481     if (MaximizeILP)
3482       return DFSResult->getILP(A) < DFSResult->getILP(B);
3483     else
3484       return DFSResult->getILP(A) > DFSResult->getILP(B);
3485   }
3486 };
3487 
3488 /// Schedule based on the ILP metric.
3489 class ILPScheduler : public MachineSchedStrategy {
3490   ScheduleDAGMILive *DAG = nullptr;
3491   ILPOrder Cmp;
3492 
3493   std::vector<SUnit*> ReadyQ;
3494 
3495 public:
3496   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3497 
3498   void initialize(ScheduleDAGMI *dag) override {
3499     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3500     DAG = static_cast<ScheduleDAGMILive*>(dag);
3501     DAG->computeDFSResult();
3502     Cmp.DFSResult = DAG->getDFSResult();
3503     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3504     ReadyQ.clear();
3505   }
3506 
3507   void registerRoots() override {
3508     // Restore the heap in ReadyQ with the updated DFS results.
3509     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3510   }
3511 
3512   /// Implement MachineSchedStrategy interface.
3513   /// -----------------------------------------
3514 
3515   /// Callback to select the highest priority node from the ready Q.
3516   SUnit *pickNode(bool &IsTopNode) override {
3517     if (ReadyQ.empty()) return nullptr;
3518     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3519     SUnit *SU = ReadyQ.back();
3520     ReadyQ.pop_back();
3521     IsTopNode = false;
3522     LLVM_DEBUG(dbgs() << "Pick node "
3523                       << "SU(" << SU->NodeNum << ") "
3524                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3525                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3526                       << " @"
3527                       << DAG->getDFSResult()->getSubtreeLevel(
3528                              DAG->getDFSResult()->getSubtreeID(SU))
3529                       << '\n'
3530                       << "Scheduling " << *SU->getInstr());
3531     return SU;
3532   }
3533 
3534   /// Scheduler callback to notify that a new subtree is scheduled.
3535   void scheduleTree(unsigned SubtreeID) override {
3536     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3537   }
3538 
3539   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3540   /// DFSResults, and resort the priority Q.
3541   void schedNode(SUnit *SU, bool IsTopNode) override {
3542     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3543   }
3544 
3545   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3546 
3547   void releaseBottomNode(SUnit *SU) override {
3548     ReadyQ.push_back(SU);
3549     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3550   }
3551 };
3552 
3553 } // end anonymous namespace
3554 
3555 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3556   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3557 }
3558 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3559   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3560 }
3561 
3562 static MachineSchedRegistry ILPMaxRegistry(
3563   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3564 static MachineSchedRegistry ILPMinRegistry(
3565   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3566 
3567 //===----------------------------------------------------------------------===//
3568 // Machine Instruction Shuffler for Correctness Testing
3569 //===----------------------------------------------------------------------===//
3570 
3571 #ifndef NDEBUG
3572 namespace {
3573 
3574 /// Apply a less-than relation on the node order, which corresponds to the
3575 /// instruction order prior to scheduling. IsReverse implements greater-than.
3576 template<bool IsReverse>
3577 struct SUnitOrder {
3578   bool operator()(SUnit *A, SUnit *B) const {
3579     if (IsReverse)
3580       return A->NodeNum > B->NodeNum;
3581     else
3582       return A->NodeNum < B->NodeNum;
3583   }
3584 };
3585 
3586 /// Reorder instructions as much as possible.
3587 class InstructionShuffler : public MachineSchedStrategy {
3588   bool IsAlternating;
3589   bool IsTopDown;
3590 
3591   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3592   // gives nodes with a higher number higher priority causing the latest
3593   // instructions to be scheduled first.
3594   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3595     TopQ;
3596 
3597   // When scheduling bottom-up, use greater-than as the queue priority.
3598   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3599     BottomQ;
3600 
3601 public:
3602   InstructionShuffler(bool alternate, bool topdown)
3603     : IsAlternating(alternate), IsTopDown(topdown) {}
3604 
3605   void initialize(ScheduleDAGMI*) override {
3606     TopQ.clear();
3607     BottomQ.clear();
3608   }
3609 
3610   /// Implement MachineSchedStrategy interface.
3611   /// -----------------------------------------
3612 
3613   SUnit *pickNode(bool &IsTopNode) override {
3614     SUnit *SU;
3615     if (IsTopDown) {
3616       do {
3617         if (TopQ.empty()) return nullptr;
3618         SU = TopQ.top();
3619         TopQ.pop();
3620       } while (SU->isScheduled);
3621       IsTopNode = true;
3622     } else {
3623       do {
3624         if (BottomQ.empty()) return nullptr;
3625         SU = BottomQ.top();
3626         BottomQ.pop();
3627       } while (SU->isScheduled);
3628       IsTopNode = false;
3629     }
3630     if (IsAlternating)
3631       IsTopDown = !IsTopDown;
3632     return SU;
3633   }
3634 
3635   void schedNode(SUnit *SU, bool IsTopNode) override {}
3636 
3637   void releaseTopNode(SUnit *SU) override {
3638     TopQ.push(SU);
3639   }
3640   void releaseBottomNode(SUnit *SU) override {
3641     BottomQ.push(SU);
3642   }
3643 };
3644 
3645 } // end anonymous namespace
3646 
3647 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3648   bool Alternate = !ForceTopDown && !ForceBottomUp;
3649   bool TopDown = !ForceBottomUp;
3650   assert((TopDown || !ForceTopDown) &&
3651          "-misched-topdown incompatible with -misched-bottomup");
3652   return new ScheduleDAGMILive(
3653       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3654 }
3655 
3656 static MachineSchedRegistry ShufflerRegistry(
3657   "shuffle", "Shuffle machine instructions alternating directions",
3658   createInstructionShuffler);
3659 #endif // !NDEBUG
3660 
3661 //===----------------------------------------------------------------------===//
3662 // GraphWriter support for ScheduleDAGMILive.
3663 //===----------------------------------------------------------------------===//
3664 
3665 #ifndef NDEBUG
3666 namespace llvm {
3667 
3668 template<> struct GraphTraits<
3669   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3670 
3671 template<>
3672 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3673   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3674 
3675   static std::string getGraphName(const ScheduleDAG *G) {
3676     return G->MF.getName();
3677   }
3678 
3679   static bool renderGraphFromBottomUp() {
3680     return true;
3681   }
3682 
3683   static bool isNodeHidden(const SUnit *Node) {
3684     if (ViewMISchedCutoff == 0)
3685       return false;
3686     return (Node->Preds.size() > ViewMISchedCutoff
3687          || Node->Succs.size() > ViewMISchedCutoff);
3688   }
3689 
3690   /// If you want to override the dot attributes printed for a particular
3691   /// edge, override this method.
3692   static std::string getEdgeAttributes(const SUnit *Node,
3693                                        SUnitIterator EI,
3694                                        const ScheduleDAG *Graph) {
3695     if (EI.isArtificialDep())
3696       return "color=cyan,style=dashed";
3697     if (EI.isCtrlDep())
3698       return "color=blue,style=dashed";
3699     return "";
3700   }
3701 
3702   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3703     std::string Str;
3704     raw_string_ostream SS(Str);
3705     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3706     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3707       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3708     SS << "SU:" << SU->NodeNum;
3709     if (DFS)
3710       SS << " I:" << DFS->getNumInstrs(SU);
3711     return SS.str();
3712   }
3713 
3714   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3715     return G->getGraphNodeLabel(SU);
3716   }
3717 
3718   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3719     std::string Str("shape=Mrecord");
3720     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3721     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3722       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3723     if (DFS) {
3724       Str += ",style=filled,fillcolor=\"#";
3725       Str += DOT::getColorString(DFS->getSubtreeID(N));
3726       Str += '"';
3727     }
3728     return Str;
3729   }
3730 };
3731 
3732 } // end namespace llvm
3733 #endif // NDEBUG
3734 
3735 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3736 /// rendered using 'dot'.
3737 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3738 #ifndef NDEBUG
3739   ViewGraph(this, Name, false, Title);
3740 #else
3741   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3742          << "systems with Graphviz or gv!\n";
3743 #endif  // NDEBUG
3744 }
3745 
3746 /// Out-of-line implementation with no arguments is handy for gdb.
3747 void ScheduleDAGMI::viewGraph() {
3748   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3749 }
3750