1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDFS.h" 28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/GraphWriter.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include <queue> 36 37 using namespace llvm; 38 39 namespace llvm { 40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 41 cl::desc("Force top-down list scheduling")); 42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 43 cl::desc("Force bottom-up list scheduling")); 44 } 45 46 #ifndef NDEBUG 47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 48 cl::desc("Pop up a window to show MISched dags after they are processed")); 49 50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 52 #else 53 static bool ViewMISchedDAGs = false; 54 #endif // NDEBUG 55 56 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 57 cl::desc("Enable cyclic critical path analysis."), cl::init(false)); 58 59 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 60 cl::desc("Enable load clustering."), cl::init(true)); 61 62 // Experimental heuristics 63 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 64 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 65 66 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 67 cl::desc("Verify machine instrs before and after machine scheduling")); 68 69 // DAG subtrees must have at least this many nodes. 70 static const unsigned MinSubtreeSize = 8; 71 72 //===----------------------------------------------------------------------===// 73 // Machine Instruction Scheduling Pass and Registry 74 //===----------------------------------------------------------------------===// 75 76 MachineSchedContext::MachineSchedContext(): 77 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 78 RegClassInfo = new RegisterClassInfo(); 79 } 80 81 MachineSchedContext::~MachineSchedContext() { 82 delete RegClassInfo; 83 } 84 85 namespace { 86 /// MachineScheduler runs after coalescing and before register allocation. 87 class MachineScheduler : public MachineSchedContext, 88 public MachineFunctionPass { 89 public: 90 MachineScheduler(); 91 92 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 93 94 virtual void releaseMemory() {} 95 96 virtual bool runOnMachineFunction(MachineFunction&); 97 98 virtual void print(raw_ostream &O, const Module* = 0) const; 99 100 static char ID; // Class identification, replacement for typeinfo 101 }; 102 } // namespace 103 104 char MachineScheduler::ID = 0; 105 106 char &llvm::MachineSchedulerID = MachineScheduler::ID; 107 108 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 109 "Machine Instruction Scheduler", false, false) 110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 112 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 113 INITIALIZE_PASS_END(MachineScheduler, "misched", 114 "Machine Instruction Scheduler", false, false) 115 116 MachineScheduler::MachineScheduler() 117 : MachineFunctionPass(ID) { 118 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 119 } 120 121 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 122 AU.setPreservesCFG(); 123 AU.addRequiredID(MachineDominatorsID); 124 AU.addRequired<MachineLoopInfo>(); 125 AU.addRequired<AliasAnalysis>(); 126 AU.addRequired<TargetPassConfig>(); 127 AU.addRequired<SlotIndexes>(); 128 AU.addPreserved<SlotIndexes>(); 129 AU.addRequired<LiveIntervals>(); 130 AU.addPreserved<LiveIntervals>(); 131 MachineFunctionPass::getAnalysisUsage(AU); 132 } 133 134 MachinePassRegistry MachineSchedRegistry::Registry; 135 136 /// A dummy default scheduler factory indicates whether the scheduler 137 /// is overridden on the command line. 138 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 139 return 0; 140 } 141 142 /// MachineSchedOpt allows command line selection of the scheduler. 143 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 144 RegisterPassParser<MachineSchedRegistry> > 145 MachineSchedOpt("misched", 146 cl::init(&useDefaultMachineSched), cl::Hidden, 147 cl::desc("Machine instruction scheduler to use")); 148 149 static MachineSchedRegistry 150 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 151 useDefaultMachineSched); 152 153 /// Forward declare the standard machine scheduler. This will be used as the 154 /// default scheduler if the target does not set a default. 155 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 156 157 158 /// Decrement this iterator until reaching the top or a non-debug instr. 159 static MachineBasicBlock::iterator 160 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 161 assert(I != Beg && "reached the top of the region, cannot decrement"); 162 while (--I != Beg) { 163 if (!I->isDebugValue()) 164 break; 165 } 166 return I; 167 } 168 169 /// If this iterator is a debug value, increment until reaching the End or a 170 /// non-debug instruction. 171 static MachineBasicBlock::iterator 172 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 173 for(; I != End; ++I) { 174 if (!I->isDebugValue()) 175 break; 176 } 177 return I; 178 } 179 180 /// Top-level MachineScheduler pass driver. 181 /// 182 /// Visit blocks in function order. Divide each block into scheduling regions 183 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 184 /// consistent with the DAG builder, which traverses the interior of the 185 /// scheduling regions bottom-up. 186 /// 187 /// This design avoids exposing scheduling boundaries to the DAG builder, 188 /// simplifying the DAG builder's support for "special" target instructions. 189 /// At the same time the design allows target schedulers to operate across 190 /// scheduling boundaries, for example to bundle the boudary instructions 191 /// without reordering them. This creates complexity, because the target 192 /// scheduler must update the RegionBegin and RegionEnd positions cached by 193 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 194 /// design would be to split blocks at scheduling boundaries, but LLVM has a 195 /// general bias against block splitting purely for implementation simplicity. 196 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 197 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 198 199 // Initialize the context of the pass. 200 MF = &mf; 201 MLI = &getAnalysis<MachineLoopInfo>(); 202 MDT = &getAnalysis<MachineDominatorTree>(); 203 PassConfig = &getAnalysis<TargetPassConfig>(); 204 AA = &getAnalysis<AliasAnalysis>(); 205 206 LIS = &getAnalysis<LiveIntervals>(); 207 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 208 209 if (VerifyScheduling) { 210 DEBUG(LIS->dump()); 211 MF->verify(this, "Before machine scheduling."); 212 } 213 RegClassInfo->runOnMachineFunction(*MF); 214 215 // Select the scheduler, or set the default. 216 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 217 if (Ctor == useDefaultMachineSched) { 218 // Get the default scheduler set by the target. 219 Ctor = MachineSchedRegistry::getDefault(); 220 if (!Ctor) { 221 Ctor = createConvergingSched; 222 MachineSchedRegistry::setDefault(Ctor); 223 } 224 } 225 // Instantiate the selected scheduler. 226 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 227 228 // Visit all machine basic blocks. 229 // 230 // TODO: Visit blocks in global postorder or postorder within the bottom-up 231 // loop tree. Then we can optionally compute global RegPressure. 232 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 233 MBB != MBBEnd; ++MBB) { 234 235 Scheduler->startBlock(MBB); 236 237 // Break the block into scheduling regions [I, RegionEnd), and schedule each 238 // region as soon as it is discovered. RegionEnd points the scheduling 239 // boundary at the bottom of the region. The DAG does not include RegionEnd, 240 // but the region does (i.e. the next RegionEnd is above the previous 241 // RegionBegin). If the current block has no terminator then RegionEnd == 242 // MBB->end() for the bottom region. 243 // 244 // The Scheduler may insert instructions during either schedule() or 245 // exitRegion(), even for empty regions. So the local iterators 'I' and 246 // 'RegionEnd' are invalid across these calls. 247 unsigned RemainingInstrs = MBB->size(); 248 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 249 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 250 251 // Avoid decrementing RegionEnd for blocks with no terminator. 252 if (RegionEnd != MBB->end() 253 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 254 --RegionEnd; 255 // Count the boundary instruction. 256 --RemainingInstrs; 257 } 258 259 // The next region starts above the previous region. Look backward in the 260 // instruction stream until we find the nearest boundary. 261 unsigned NumRegionInstrs = 0; 262 MachineBasicBlock::iterator I = RegionEnd; 263 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 264 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 265 break; 266 } 267 // Notify the scheduler of the region, even if we may skip scheduling 268 // it. Perhaps it still needs to be bundled. 269 Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 270 271 // Skip empty scheduling regions (0 or 1 schedulable instructions). 272 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 273 // Close the current region. Bundle the terminator if needed. 274 // This invalidates 'RegionEnd' and 'I'. 275 Scheduler->exitRegion(); 276 continue; 277 } 278 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 279 DEBUG(dbgs() << MF->getName() 280 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 281 << "\n From: " << *I << " To: "; 282 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 283 else dbgs() << "End"; 284 dbgs() << " RegionInstrs: " << NumRegionInstrs 285 << " Remaining: " << RemainingInstrs << "\n"); 286 287 // Schedule a region: possibly reorder instructions. 288 // This invalidates 'RegionEnd' and 'I'. 289 Scheduler->schedule(); 290 291 // Close the current region. 292 Scheduler->exitRegion(); 293 294 // Scheduling has invalidated the current iterator 'I'. Ask the 295 // scheduler for the top of it's scheduled region. 296 RegionEnd = Scheduler->begin(); 297 } 298 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 299 Scheduler->finishBlock(); 300 } 301 Scheduler->finalizeSchedule(); 302 DEBUG(LIS->dump()); 303 if (VerifyScheduling) 304 MF->verify(this, "After machine scheduling."); 305 return true; 306 } 307 308 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 309 // unimplemented 310 } 311 312 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 313 void ReadyQueue::dump() { 314 dbgs() << Name << ": "; 315 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 316 dbgs() << Queue[i]->NodeNum << " "; 317 dbgs() << "\n"; 318 } 319 #endif 320 321 //===----------------------------------------------------------------------===// 322 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 323 // preservation. 324 //===----------------------------------------------------------------------===// 325 326 ScheduleDAGMI::~ScheduleDAGMI() { 327 delete DFSResult; 328 DeleteContainerPointers(Mutations); 329 delete SchedImpl; 330 } 331 332 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 333 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 334 } 335 336 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 337 if (SuccSU != &ExitSU) { 338 // Do not use WillCreateCycle, it assumes SD scheduling. 339 // If Pred is reachable from Succ, then the edge creates a cycle. 340 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 341 return false; 342 Topo.AddPred(SuccSU, PredDep.getSUnit()); 343 } 344 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 345 // Return true regardless of whether a new edge needed to be inserted. 346 return true; 347 } 348 349 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 350 /// NumPredsLeft reaches zero, release the successor node. 351 /// 352 /// FIXME: Adjust SuccSU height based on MinLatency. 353 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 354 SUnit *SuccSU = SuccEdge->getSUnit(); 355 356 if (SuccEdge->isWeak()) { 357 --SuccSU->WeakPredsLeft; 358 if (SuccEdge->isCluster()) 359 NextClusterSucc = SuccSU; 360 return; 361 } 362 #ifndef NDEBUG 363 if (SuccSU->NumPredsLeft == 0) { 364 dbgs() << "*** Scheduling failed! ***\n"; 365 SuccSU->dump(this); 366 dbgs() << " has been released too many times!\n"; 367 llvm_unreachable(0); 368 } 369 #endif 370 --SuccSU->NumPredsLeft; 371 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 372 SchedImpl->releaseTopNode(SuccSU); 373 } 374 375 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 376 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 377 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 378 I != E; ++I) { 379 releaseSucc(SU, &*I); 380 } 381 } 382 383 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 384 /// NumSuccsLeft reaches zero, release the predecessor node. 385 /// 386 /// FIXME: Adjust PredSU height based on MinLatency. 387 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 388 SUnit *PredSU = PredEdge->getSUnit(); 389 390 if (PredEdge->isWeak()) { 391 --PredSU->WeakSuccsLeft; 392 if (PredEdge->isCluster()) 393 NextClusterPred = PredSU; 394 return; 395 } 396 #ifndef NDEBUG 397 if (PredSU->NumSuccsLeft == 0) { 398 dbgs() << "*** Scheduling failed! ***\n"; 399 PredSU->dump(this); 400 dbgs() << " has been released too many times!\n"; 401 llvm_unreachable(0); 402 } 403 #endif 404 --PredSU->NumSuccsLeft; 405 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 406 SchedImpl->releaseBottomNode(PredSU); 407 } 408 409 /// releasePredecessors - Call releasePred on each of SU's predecessors. 410 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 411 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 412 I != E; ++I) { 413 releasePred(SU, &*I); 414 } 415 } 416 417 /// This is normally called from the main scheduler loop but may also be invoked 418 /// by the scheduling strategy to perform additional code motion. 419 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 420 MachineBasicBlock::iterator InsertPos) { 421 // Advance RegionBegin if the first instruction moves down. 422 if (&*RegionBegin == MI) 423 ++RegionBegin; 424 425 // Update the instruction stream. 426 BB->splice(InsertPos, BB, MI); 427 428 // Update LiveIntervals 429 LIS->handleMove(MI, /*UpdateFlags=*/true); 430 431 // Recede RegionBegin if an instruction moves above the first. 432 if (RegionBegin == InsertPos) 433 RegionBegin = MI; 434 } 435 436 bool ScheduleDAGMI::checkSchedLimit() { 437 #ifndef NDEBUG 438 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 439 CurrentTop = CurrentBottom; 440 return false; 441 } 442 ++NumInstrsScheduled; 443 #endif 444 return true; 445 } 446 447 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 448 /// crossing a scheduling boundary. [begin, end) includes all instructions in 449 /// the region, including the boundary itself and single-instruction regions 450 /// that don't get scheduled. 451 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 452 MachineBasicBlock::iterator begin, 453 MachineBasicBlock::iterator end, 454 unsigned regioninstrs) 455 { 456 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 457 458 // For convenience remember the end of the liveness region. 459 LiveRegionEnd = 460 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 461 } 462 463 // Setup the register pressure trackers for the top scheduled top and bottom 464 // scheduled regions. 465 void ScheduleDAGMI::initRegPressure() { 466 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 467 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 468 469 // Close the RPTracker to finalize live ins. 470 RPTracker.closeRegion(); 471 472 DEBUG(RPTracker.dump()); 473 474 // Initialize the live ins and live outs. 475 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 476 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 477 478 // Close one end of the tracker so we can call 479 // getMaxUpward/DownwardPressureDelta before advancing across any 480 // instructions. This converts currently live regs into live ins/outs. 481 TopRPTracker.closeTop(); 482 BotRPTracker.closeBottom(); 483 484 BotRPTracker.initLiveThru(RPTracker); 485 if (!BotRPTracker.getLiveThru().empty()) { 486 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 487 DEBUG(dbgs() << "Live Thru: "; 488 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 489 }; 490 491 // Account for liveness generated by the region boundary. 492 if (LiveRegionEnd != RegionEnd) 493 BotRPTracker.recede(); 494 495 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 496 497 // Cache the list of excess pressure sets in this region. This will also track 498 // the max pressure in the scheduled code for these sets. 499 RegionCriticalPSets.clear(); 500 const std::vector<unsigned> &RegionPressure = 501 RPTracker.getPressure().MaxSetPressure; 502 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 503 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 504 if (RegionPressure[i] > Limit) { 505 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 506 << " Limit " << Limit 507 << " Actual " << RegionPressure[i] << "\n"); 508 RegionCriticalPSets.push_back(PressureElement(i, 0)); 509 } 510 } 511 DEBUG(dbgs() << "Excess PSets: "; 512 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 513 dbgs() << TRI->getRegPressureSetName( 514 RegionCriticalPSets[i].PSetID) << " "; 515 dbgs() << "\n"); 516 } 517 518 // FIXME: When the pressure tracker deals in pressure differences then we won't 519 // iterate over all RegionCriticalPSets[i]. 520 void ScheduleDAGMI:: 521 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 522 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 523 unsigned ID = RegionCriticalPSets[i].PSetID; 524 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 525 if ((int)NewMaxPressure[ID] > MaxUnits) 526 MaxUnits = NewMaxPressure[ID]; 527 } 528 DEBUG( 529 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { 530 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 531 if (NewMaxPressure[i] > Limit ) { 532 dbgs() << " " << TRI->getRegPressureSetName(i) << ": " 533 << NewMaxPressure[i] << " > " << Limit << "\n"; 534 } 535 }); 536 } 537 538 /// schedule - Called back from MachineScheduler::runOnMachineFunction 539 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 540 /// only includes instructions that have DAG nodes, not scheduling boundaries. 541 /// 542 /// This is a skeletal driver, with all the functionality pushed into helpers, 543 /// so that it can be easilly extended by experimental schedulers. Generally, 544 /// implementing MachineSchedStrategy should be sufficient to implement a new 545 /// scheduling algorithm. However, if a scheduler further subclasses 546 /// ScheduleDAGMI then it will want to override this virtual method in order to 547 /// update any specialized state. 548 void ScheduleDAGMI::schedule() { 549 buildDAGWithRegPressure(); 550 551 Topo.InitDAGTopologicalSorting(); 552 553 postprocessDAG(); 554 555 SmallVector<SUnit*, 8> TopRoots, BotRoots; 556 findRootsAndBiasEdges(TopRoots, BotRoots); 557 558 // Initialize the strategy before modifying the DAG. 559 // This may initialize a DFSResult to be used for queue priority. 560 SchedImpl->initialize(this); 561 562 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 563 SUnits[su].dumpAll(this)); 564 if (ViewMISchedDAGs) viewGraph(); 565 566 // Initialize ready queues now that the DAG and priority data are finalized. 567 initQueues(TopRoots, BotRoots); 568 569 bool IsTopNode = false; 570 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 571 assert(!SU->isScheduled && "Node already scheduled"); 572 if (!checkSchedLimit()) 573 break; 574 575 scheduleMI(SU, IsTopNode); 576 577 updateQueues(SU, IsTopNode); 578 } 579 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 580 581 placeDebugValues(); 582 583 DEBUG({ 584 unsigned BBNum = begin()->getParent()->getNumber(); 585 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 586 dumpSchedule(); 587 dbgs() << '\n'; 588 }); 589 } 590 591 /// Build the DAG and setup three register pressure trackers. 592 void ScheduleDAGMI::buildDAGWithRegPressure() { 593 // Initialize the register pressure tracker used by buildSchedGraph. 594 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 595 /*TrackUntiedDefs=*/true); 596 597 // Account for liveness generate by the region boundary. 598 if (LiveRegionEnd != RegionEnd) 599 RPTracker.recede(); 600 601 // Build the DAG, and compute current register pressure. 602 buildSchedGraph(AA, &RPTracker); 603 604 // Initialize top/bottom trackers after computing region pressure. 605 initRegPressure(); 606 } 607 608 /// Apply each ScheduleDAGMutation step in order. 609 void ScheduleDAGMI::postprocessDAG() { 610 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 611 Mutations[i]->apply(this); 612 } 613 } 614 615 void ScheduleDAGMI::computeDFSResult() { 616 if (!DFSResult) 617 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 618 DFSResult->clear(); 619 ScheduledTrees.clear(); 620 DFSResult->resize(SUnits.size()); 621 DFSResult->compute(SUnits); 622 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 623 } 624 625 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 626 SmallVectorImpl<SUnit*> &BotRoots) { 627 for (std::vector<SUnit>::iterator 628 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 629 SUnit *SU = &(*I); 630 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 631 632 // Order predecessors so DFSResult follows the critical path. 633 SU->biasCriticalPath(); 634 635 // A SUnit is ready to top schedule if it has no predecessors. 636 if (!I->NumPredsLeft) 637 TopRoots.push_back(SU); 638 // A SUnit is ready to bottom schedule if it has no successors. 639 if (!I->NumSuccsLeft) 640 BotRoots.push_back(SU); 641 } 642 ExitSU.biasCriticalPath(); 643 } 644 645 /// Identify DAG roots and setup scheduler queues. 646 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 647 ArrayRef<SUnit*> BotRoots) { 648 NextClusterSucc = NULL; 649 NextClusterPred = NULL; 650 651 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 652 // 653 // Nodes with unreleased weak edges can still be roots. 654 // Release top roots in forward order. 655 for (SmallVectorImpl<SUnit*>::const_iterator 656 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 657 SchedImpl->releaseTopNode(*I); 658 } 659 // Release bottom roots in reverse order so the higher priority nodes appear 660 // first. This is more natural and slightly more efficient. 661 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 662 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 663 SchedImpl->releaseBottomNode(*I); 664 } 665 666 releaseSuccessors(&EntrySU); 667 releasePredecessors(&ExitSU); 668 669 SchedImpl->registerRoots(); 670 671 // Advance past initial DebugValues. 672 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 673 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 674 TopRPTracker.setPos(CurrentTop); 675 676 CurrentBottom = RegionEnd; 677 } 678 679 /// Move an instruction and update register pressure. 680 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 681 // Move the instruction to its new location in the instruction stream. 682 MachineInstr *MI = SU->getInstr(); 683 684 if (IsTopNode) { 685 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 686 if (&*CurrentTop == MI) 687 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 688 else { 689 moveInstruction(MI, CurrentTop); 690 TopRPTracker.setPos(MI); 691 } 692 693 // Update top scheduled pressure. 694 TopRPTracker.advance(); 695 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 696 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 697 } 698 else { 699 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 700 MachineBasicBlock::iterator priorII = 701 priorNonDebug(CurrentBottom, CurrentTop); 702 if (&*priorII == MI) 703 CurrentBottom = priorII; 704 else { 705 if (&*CurrentTop == MI) { 706 CurrentTop = nextIfDebug(++CurrentTop, priorII); 707 TopRPTracker.setPos(CurrentTop); 708 } 709 moveInstruction(MI, CurrentBottom); 710 CurrentBottom = MI; 711 } 712 // Update bottom scheduled pressure. 713 BotRPTracker.recede(); 714 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 715 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 716 } 717 } 718 719 /// Update scheduler queues after scheduling an instruction. 720 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 721 // Release dependent instructions for scheduling. 722 if (IsTopNode) 723 releaseSuccessors(SU); 724 else 725 releasePredecessors(SU); 726 727 SU->isScheduled = true; 728 729 if (DFSResult) { 730 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 731 if (!ScheduledTrees.test(SubtreeID)) { 732 ScheduledTrees.set(SubtreeID); 733 DFSResult->scheduleTree(SubtreeID); 734 SchedImpl->scheduleTree(SubtreeID); 735 } 736 } 737 738 // Notify the scheduling strategy after updating the DAG. 739 SchedImpl->schedNode(SU, IsTopNode); 740 } 741 742 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 743 void ScheduleDAGMI::placeDebugValues() { 744 // If first instruction was a DBG_VALUE then put it back. 745 if (FirstDbgValue) { 746 BB->splice(RegionBegin, BB, FirstDbgValue); 747 RegionBegin = FirstDbgValue; 748 } 749 750 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 751 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 752 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 753 MachineInstr *DbgValue = P.first; 754 MachineBasicBlock::iterator OrigPrevMI = P.second; 755 if (&*RegionBegin == DbgValue) 756 ++RegionBegin; 757 BB->splice(++OrigPrevMI, BB, DbgValue); 758 if (OrigPrevMI == llvm::prior(RegionEnd)) 759 RegionEnd = DbgValue; 760 } 761 DbgValues.clear(); 762 FirstDbgValue = NULL; 763 } 764 765 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 766 void ScheduleDAGMI::dumpSchedule() const { 767 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 768 if (SUnit *SU = getSUnit(&(*MI))) 769 SU->dump(this); 770 else 771 dbgs() << "Missing SUnit\n"; 772 } 773 } 774 #endif 775 776 //===----------------------------------------------------------------------===// 777 // LoadClusterMutation - DAG post-processing to cluster loads. 778 //===----------------------------------------------------------------------===// 779 780 namespace { 781 /// \brief Post-process the DAG to create cluster edges between neighboring 782 /// loads. 783 class LoadClusterMutation : public ScheduleDAGMutation { 784 struct LoadInfo { 785 SUnit *SU; 786 unsigned BaseReg; 787 unsigned Offset; 788 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 789 : SU(su), BaseReg(reg), Offset(ofs) {} 790 }; 791 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 792 const LoadClusterMutation::LoadInfo &RHS); 793 794 const TargetInstrInfo *TII; 795 const TargetRegisterInfo *TRI; 796 public: 797 LoadClusterMutation(const TargetInstrInfo *tii, 798 const TargetRegisterInfo *tri) 799 : TII(tii), TRI(tri) {} 800 801 virtual void apply(ScheduleDAGMI *DAG); 802 protected: 803 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 804 }; 805 } // anonymous 806 807 bool LoadClusterMutation::LoadInfoLess( 808 const LoadClusterMutation::LoadInfo &LHS, 809 const LoadClusterMutation::LoadInfo &RHS) { 810 if (LHS.BaseReg != RHS.BaseReg) 811 return LHS.BaseReg < RHS.BaseReg; 812 return LHS.Offset < RHS.Offset; 813 } 814 815 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 816 ScheduleDAGMI *DAG) { 817 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 818 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 819 SUnit *SU = Loads[Idx]; 820 unsigned BaseReg; 821 unsigned Offset; 822 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 823 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 824 } 825 if (LoadRecords.size() < 2) 826 return; 827 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 828 unsigned ClusterLength = 1; 829 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 830 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 831 ClusterLength = 1; 832 continue; 833 } 834 835 SUnit *SUa = LoadRecords[Idx].SU; 836 SUnit *SUb = LoadRecords[Idx+1].SU; 837 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 838 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 839 840 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 841 << SUb->NodeNum << ")\n"); 842 // Copy successor edges from SUa to SUb. Interleaving computation 843 // dependent on SUa can prevent load combining due to register reuse. 844 // Predecessor edges do not need to be copied from SUb to SUa since nearby 845 // loads should have effectively the same inputs. 846 for (SUnit::const_succ_iterator 847 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 848 if (SI->getSUnit() == SUb) 849 continue; 850 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 851 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 852 } 853 ++ClusterLength; 854 } 855 else 856 ClusterLength = 1; 857 } 858 } 859 860 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 861 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 862 // Map DAG NodeNum to store chain ID. 863 DenseMap<unsigned, unsigned> StoreChainIDs; 864 // Map each store chain to a set of dependent loads. 865 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 866 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 867 SUnit *SU = &DAG->SUnits[Idx]; 868 if (!SU->getInstr()->mayLoad()) 869 continue; 870 unsigned ChainPredID = DAG->SUnits.size(); 871 for (SUnit::const_pred_iterator 872 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 873 if (PI->isCtrl()) { 874 ChainPredID = PI->getSUnit()->NodeNum; 875 break; 876 } 877 } 878 // Check if this chain-like pred has been seen 879 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 880 unsigned NumChains = StoreChainDependents.size(); 881 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 882 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 883 if (Result.second) 884 StoreChainDependents.resize(NumChains + 1); 885 StoreChainDependents[Result.first->second].push_back(SU); 886 } 887 // Iterate over the store chains. 888 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 889 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 890 } 891 892 //===----------------------------------------------------------------------===// 893 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 894 //===----------------------------------------------------------------------===// 895 896 namespace { 897 /// \brief Post-process the DAG to create cluster edges between instructions 898 /// that may be fused by the processor into a single operation. 899 class MacroFusion : public ScheduleDAGMutation { 900 const TargetInstrInfo *TII; 901 public: 902 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 903 904 virtual void apply(ScheduleDAGMI *DAG); 905 }; 906 } // anonymous 907 908 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 909 /// fused operations. 910 void MacroFusion::apply(ScheduleDAGMI *DAG) { 911 // For now, assume targets can only fuse with the branch. 912 MachineInstr *Branch = DAG->ExitSU.getInstr(); 913 if (!Branch) 914 return; 915 916 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 917 SUnit *SU = &DAG->SUnits[--Idx]; 918 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 919 continue; 920 921 // Create a single weak edge from SU to ExitSU. The only effect is to cause 922 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 923 // need to copy predecessor edges from ExitSU to SU, since top-down 924 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 925 // of SU, we could create an artificial edge from the deepest root, but it 926 // hasn't been needed yet. 927 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 928 (void)Success; 929 assert(Success && "No DAG nodes should be reachable from ExitSU"); 930 931 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 932 break; 933 } 934 } 935 936 //===----------------------------------------------------------------------===// 937 // CopyConstrain - DAG post-processing to encourage copy elimination. 938 //===----------------------------------------------------------------------===// 939 940 namespace { 941 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 942 /// the one use that defines the copy's source vreg, most likely an induction 943 /// variable increment. 944 class CopyConstrain : public ScheduleDAGMutation { 945 // Transient state. 946 SlotIndex RegionBeginIdx; 947 // RegionEndIdx is the slot index of the last non-debug instruction in the 948 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 949 SlotIndex RegionEndIdx; 950 public: 951 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 952 953 virtual void apply(ScheduleDAGMI *DAG); 954 955 protected: 956 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); 957 }; 958 } // anonymous 959 960 /// constrainLocalCopy handles two possibilities: 961 /// 1) Local src: 962 /// I0: = dst 963 /// I1: src = ... 964 /// I2: = dst 965 /// I3: dst = src (copy) 966 /// (create pred->succ edges I0->I1, I2->I1) 967 /// 968 /// 2) Local copy: 969 /// I0: dst = src (copy) 970 /// I1: = dst 971 /// I2: src = ... 972 /// I3: = dst 973 /// (create pred->succ edges I1->I2, I3->I2) 974 /// 975 /// Although the MachineScheduler is currently constrained to single blocks, 976 /// this algorithm should handle extended blocks. An EBB is a set of 977 /// contiguously numbered blocks such that the previous block in the EBB is 978 /// always the single predecessor. 979 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { 980 LiveIntervals *LIS = DAG->getLIS(); 981 MachineInstr *Copy = CopySU->getInstr(); 982 983 // Check for pure vreg copies. 984 unsigned SrcReg = Copy->getOperand(1).getReg(); 985 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 986 return; 987 988 unsigned DstReg = Copy->getOperand(0).getReg(); 989 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 990 return; 991 992 // Check if either the dest or source is local. If it's live across a back 993 // edge, it's not local. Note that if both vregs are live across the back 994 // edge, we cannot successfully contrain the copy without cyclic scheduling. 995 unsigned LocalReg = DstReg; 996 unsigned GlobalReg = SrcReg; 997 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 998 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 999 LocalReg = SrcReg; 1000 GlobalReg = DstReg; 1001 LocalLI = &LIS->getInterval(LocalReg); 1002 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1003 return; 1004 } 1005 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1006 1007 // Find the global segment after the start of the local LI. 1008 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1009 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1010 // local live range. We could create edges from other global uses to the local 1011 // start, but the coalescer should have already eliminated these cases, so 1012 // don't bother dealing with it. 1013 if (GlobalSegment == GlobalLI->end()) 1014 return; 1015 1016 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1017 // returned the next global segment. But if GlobalSegment overlaps with 1018 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1019 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1020 if (GlobalSegment->contains(LocalLI->beginIndex())) 1021 ++GlobalSegment; 1022 1023 if (GlobalSegment == GlobalLI->end()) 1024 return; 1025 1026 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1027 if (GlobalSegment != GlobalLI->begin()) { 1028 // Two address defs have no hole. 1029 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, 1030 GlobalSegment->start)) { 1031 return; 1032 } 1033 // If the prior global segment may be defined by the same two-address 1034 // instruction that also defines LocalLI, then can't make a hole here. 1035 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, 1036 LocalLI->beginIndex())) { 1037 return; 1038 } 1039 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1040 // it would be a disconnected component in the live range. 1041 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && 1042 "Disconnected LRG within the scheduling region."); 1043 } 1044 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1045 if (!GlobalDef) 1046 return; 1047 1048 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1049 if (!GlobalSU) 1050 return; 1051 1052 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1053 // constraining the uses of the last local def to precede GlobalDef. 1054 SmallVector<SUnit*,8> LocalUses; 1055 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1056 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1057 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1058 for (SUnit::const_succ_iterator 1059 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1060 I != E; ++I) { 1061 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1062 continue; 1063 if (I->getSUnit() == GlobalSU) 1064 continue; 1065 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1066 return; 1067 LocalUses.push_back(I->getSUnit()); 1068 } 1069 // Open the top of the GlobalLI hole by constraining any earlier global uses 1070 // to precede the start of LocalLI. 1071 SmallVector<SUnit*,8> GlobalUses; 1072 MachineInstr *FirstLocalDef = 1073 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1074 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1075 for (SUnit::const_pred_iterator 1076 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1077 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1078 continue; 1079 if (I->getSUnit() == FirstLocalSU) 1080 continue; 1081 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1082 return; 1083 GlobalUses.push_back(I->getSUnit()); 1084 } 1085 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1086 // Add the weak edges. 1087 for (SmallVectorImpl<SUnit*>::const_iterator 1088 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1089 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1090 << GlobalSU->NodeNum << ")\n"); 1091 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1092 } 1093 for (SmallVectorImpl<SUnit*>::const_iterator 1094 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1095 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1096 << FirstLocalSU->NodeNum << ")\n"); 1097 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1098 } 1099 } 1100 1101 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1102 /// copy elimination. 1103 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1104 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1105 if (FirstPos == DAG->end()) 1106 return; 1107 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1108 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1109 &*priorNonDebug(DAG->end(), DAG->begin())); 1110 1111 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1112 SUnit *SU = &DAG->SUnits[Idx]; 1113 if (!SU->getInstr()->isCopy()) 1114 continue; 1115 1116 constrainLocalCopy(SU, DAG); 1117 } 1118 } 1119 1120 //===----------------------------------------------------------------------===// 1121 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy. 1122 //===----------------------------------------------------------------------===// 1123 1124 namespace { 1125 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 1126 /// the schedule. 1127 class ConvergingScheduler : public MachineSchedStrategy { 1128 public: 1129 /// Represent the type of SchedCandidate found within a single queue. 1130 /// pickNodeBidirectional depends on these listed by decreasing priority. 1131 enum CandReason { 1132 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, 1133 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 1134 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 1135 1136 #ifndef NDEBUG 1137 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 1138 #endif 1139 1140 /// Policy for scheduling the next instruction in the candidate's zone. 1141 struct CandPolicy { 1142 bool ReduceLatency; 1143 unsigned ReduceResIdx; 1144 unsigned DemandResIdx; 1145 1146 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 1147 }; 1148 1149 /// Status of an instruction's critical resource consumption. 1150 struct SchedResourceDelta { 1151 // Count critical resources in the scheduled region required by SU. 1152 unsigned CritResources; 1153 1154 // Count critical resources from another region consumed by SU. 1155 unsigned DemandedResources; 1156 1157 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 1158 1159 bool operator==(const SchedResourceDelta &RHS) const { 1160 return CritResources == RHS.CritResources 1161 && DemandedResources == RHS.DemandedResources; 1162 } 1163 bool operator!=(const SchedResourceDelta &RHS) const { 1164 return !operator==(RHS); 1165 } 1166 }; 1167 1168 /// Store the state used by ConvergingScheduler heuristics, required for the 1169 /// lifetime of one invocation of pickNode(). 1170 struct SchedCandidate { 1171 CandPolicy Policy; 1172 1173 // The best SUnit candidate. 1174 SUnit *SU; 1175 1176 // The reason for this candidate. 1177 CandReason Reason; 1178 1179 // Set of reasons that apply to multiple candidates. 1180 uint32_t RepeatReasonSet; 1181 1182 // Register pressure values for the best candidate. 1183 RegPressureDelta RPDelta; 1184 1185 // Critical resource consumption of the best candidate. 1186 SchedResourceDelta ResDelta; 1187 1188 SchedCandidate(const CandPolicy &policy) 1189 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} 1190 1191 bool isValid() const { return SU; } 1192 1193 // Copy the status of another candidate without changing policy. 1194 void setBest(SchedCandidate &Best) { 1195 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 1196 SU = Best.SU; 1197 Reason = Best.Reason; 1198 RPDelta = Best.RPDelta; 1199 ResDelta = Best.ResDelta; 1200 } 1201 1202 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 1203 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 1204 1205 void initResourceDelta(const ScheduleDAGMI *DAG, 1206 const TargetSchedModel *SchedModel); 1207 }; 1208 1209 /// Summarize the unscheduled region. 1210 struct SchedRemainder { 1211 // Critical path through the DAG in expected latency. 1212 unsigned CriticalPath; 1213 unsigned CyclicCritPath; 1214 1215 // Scaled count of micro-ops left to schedule. 1216 unsigned RemIssueCount; 1217 1218 bool IsAcyclicLatencyLimited; 1219 1220 // Unscheduled resources 1221 SmallVector<unsigned, 16> RemainingCounts; 1222 1223 void reset() { 1224 CriticalPath = 0; 1225 CyclicCritPath = 0; 1226 RemIssueCount = 0; 1227 IsAcyclicLatencyLimited = false; 1228 RemainingCounts.clear(); 1229 } 1230 1231 SchedRemainder() { reset(); } 1232 1233 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1234 }; 1235 1236 /// Each Scheduling boundary is associated with ready queues. It tracks the 1237 /// current cycle in the direction of movement, and maintains the state 1238 /// of "hazards" and other interlocks at the current cycle. 1239 struct SchedBoundary { 1240 ScheduleDAGMI *DAG; 1241 const TargetSchedModel *SchedModel; 1242 SchedRemainder *Rem; 1243 1244 ReadyQueue Available; 1245 ReadyQueue Pending; 1246 bool CheckPending; 1247 1248 // For heuristics, keep a list of the nodes that immediately depend on the 1249 // most recently scheduled node. 1250 SmallPtrSet<const SUnit*, 8> NextSUs; 1251 1252 ScheduleHazardRecognizer *HazardRec; 1253 1254 /// Number of cycles it takes to issue the instructions scheduled in this 1255 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. 1256 /// See getStalls(). 1257 unsigned CurrCycle; 1258 1259 /// Micro-ops issued in the current cycle 1260 unsigned CurrMOps; 1261 1262 /// MinReadyCycle - Cycle of the soonest available instruction. 1263 unsigned MinReadyCycle; 1264 1265 // The expected latency of the critical path in this scheduled zone. 1266 unsigned ExpectedLatency; 1267 1268 // The latency of dependence chains leading into this zone. 1269 // For each node scheduled bottom-up: DLat = max DLat, N.Depth. 1270 // For each cycle scheduled: DLat -= 1. 1271 unsigned DependentLatency; 1272 1273 /// Count the scheduled (issued) micro-ops that can be retired by 1274 /// time=CurrCycle assuming the first scheduled instr is retired at time=0. 1275 unsigned RetiredMOps; 1276 1277 // Count scheduled resources that have been executed. Resources are 1278 // considered executed if they become ready in the time that it takes to 1279 // saturate any resource including the one in question. Counts are scaled 1280 // for direct comparison with other resources. Counts can be compared with 1281 // MOps * getMicroOpFactor and Latency * getLatencyFactor. 1282 SmallVector<unsigned, 16> ExecutedResCounts; 1283 1284 /// Cache the max count for a single resource. 1285 unsigned MaxExecutedResCount; 1286 1287 // Cache the critical resources ID in this scheduled zone. 1288 unsigned ZoneCritResIdx; 1289 1290 // Is the scheduled region resource limited vs. latency limited. 1291 bool IsResourceLimited; 1292 1293 #ifndef NDEBUG 1294 // Remember the greatest operand latency as an upper bound on the number of 1295 // times we should retry the pending queue because of a hazard. 1296 unsigned MaxObservedLatency; 1297 #endif 1298 1299 void reset() { 1300 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1301 delete HazardRec; 1302 1303 Available.clear(); 1304 Pending.clear(); 1305 CheckPending = false; 1306 NextSUs.clear(); 1307 HazardRec = 0; 1308 CurrCycle = 0; 1309 CurrMOps = 0; 1310 MinReadyCycle = UINT_MAX; 1311 ExpectedLatency = 0; 1312 DependentLatency = 0; 1313 RetiredMOps = 0; 1314 MaxExecutedResCount = 0; 1315 ZoneCritResIdx = 0; 1316 IsResourceLimited = false; 1317 #ifndef NDEBUG 1318 MaxObservedLatency = 0; 1319 #endif 1320 // Reserve a zero-count for invalid CritResIdx. 1321 ExecutedResCounts.resize(1); 1322 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1323 } 1324 1325 /// Pending queues extend the ready queues with the same ID and the 1326 /// PendingFlag set. 1327 SchedBoundary(unsigned ID, const Twine &Name): 1328 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1329 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1330 HazardRec(0) { 1331 reset(); 1332 } 1333 1334 ~SchedBoundary() { delete HazardRec; } 1335 1336 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1337 SchedRemainder *rem); 1338 1339 bool isTop() const { 1340 return Available.getID() == ConvergingScheduler::TopQID; 1341 } 1342 1343 #ifndef NDEBUG 1344 const char *getResourceName(unsigned PIdx) { 1345 if (!PIdx) 1346 return "MOps"; 1347 return SchedModel->getProcResource(PIdx)->Name; 1348 } 1349 #endif 1350 1351 /// Get the number of latency cycles "covered" by the scheduled 1352 /// instructions. This is the larger of the critical path within the zone 1353 /// and the number of cycles required to issue the instructions. 1354 unsigned getScheduledLatency() const { 1355 return std::max(ExpectedLatency, CurrCycle); 1356 } 1357 1358 unsigned getUnscheduledLatency(SUnit *SU) const { 1359 return isTop() ? SU->getHeight() : SU->getDepth(); 1360 } 1361 1362 unsigned getResourceCount(unsigned ResIdx) const { 1363 return ExecutedResCounts[ResIdx]; 1364 } 1365 1366 /// Get the scaled count of scheduled micro-ops and resources, including 1367 /// executed resources. 1368 unsigned getCriticalCount() const { 1369 if (!ZoneCritResIdx) 1370 return RetiredMOps * SchedModel->getMicroOpFactor(); 1371 return getResourceCount(ZoneCritResIdx); 1372 } 1373 1374 /// Get a scaled count for the minimum execution time of the scheduled 1375 /// micro-ops that are ready to execute by getExecutedCount. Notice the 1376 /// feedback loop. 1377 unsigned getExecutedCount() const { 1378 return std::max(CurrCycle * SchedModel->getLatencyFactor(), 1379 MaxExecutedResCount); 1380 } 1381 1382 bool checkHazard(SUnit *SU); 1383 1384 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); 1385 1386 unsigned getOtherResourceCount(unsigned &OtherCritIdx); 1387 1388 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); 1389 1390 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1391 1392 void bumpCycle(unsigned NextCycle); 1393 1394 void incExecutedResources(unsigned PIdx, unsigned Count); 1395 1396 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); 1397 1398 void bumpNode(SUnit *SU); 1399 1400 void releasePending(); 1401 1402 void removeReady(SUnit *SU); 1403 1404 SUnit *pickOnlyChoice(); 1405 1406 #ifndef NDEBUG 1407 void dumpScheduledState(); 1408 #endif 1409 }; 1410 1411 private: 1412 ScheduleDAGMI *DAG; 1413 const TargetSchedModel *SchedModel; 1414 const TargetRegisterInfo *TRI; 1415 1416 // State of the top and bottom scheduled instruction boundaries. 1417 SchedRemainder Rem; 1418 SchedBoundary Top; 1419 SchedBoundary Bot; 1420 1421 public: 1422 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1423 enum { 1424 TopQID = 1, 1425 BotQID = 2, 1426 LogMaxQID = 2 1427 }; 1428 1429 ConvergingScheduler(): 1430 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1431 1432 virtual void initialize(ScheduleDAGMI *dag); 1433 1434 virtual SUnit *pickNode(bool &IsTopNode); 1435 1436 virtual void schedNode(SUnit *SU, bool IsTopNode); 1437 1438 virtual void releaseTopNode(SUnit *SU); 1439 1440 virtual void releaseBottomNode(SUnit *SU); 1441 1442 virtual void registerRoots(); 1443 1444 protected: 1445 void checkAcyclicLatency(); 1446 1447 void tryCandidate(SchedCandidate &Cand, 1448 SchedCandidate &TryCand, 1449 SchedBoundary &Zone, 1450 const RegPressureTracker &RPTracker, 1451 RegPressureTracker &TempTracker); 1452 1453 SUnit *pickNodeBidirectional(bool &IsTopNode); 1454 1455 void pickNodeFromQueue(SchedBoundary &Zone, 1456 const RegPressureTracker &RPTracker, 1457 SchedCandidate &Candidate); 1458 1459 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 1460 1461 #ifndef NDEBUG 1462 void traceCandidate(const SchedCandidate &Cand); 1463 #endif 1464 }; 1465 } // namespace 1466 1467 void ConvergingScheduler::SchedRemainder:: 1468 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1469 reset(); 1470 if (!SchedModel->hasInstrSchedModel()) 1471 return; 1472 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1473 for (std::vector<SUnit>::iterator 1474 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1475 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1476 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1477 * SchedModel->getMicroOpFactor(); 1478 for (TargetSchedModel::ProcResIter 1479 PI = SchedModel->getWriteProcResBegin(SC), 1480 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1481 unsigned PIdx = PI->ProcResourceIdx; 1482 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1483 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1484 } 1485 } 1486 } 1487 1488 void ConvergingScheduler::SchedBoundary:: 1489 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1490 reset(); 1491 DAG = dag; 1492 SchedModel = smodel; 1493 Rem = rem; 1494 if (SchedModel->hasInstrSchedModel()) 1495 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1496 } 1497 1498 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1499 DAG = dag; 1500 SchedModel = DAG->getSchedModel(); 1501 TRI = DAG->TRI; 1502 1503 Rem.init(DAG, SchedModel); 1504 Top.init(DAG, SchedModel, &Rem); 1505 Bot.init(DAG, SchedModel, &Rem); 1506 1507 // Initialize resource counts. 1508 1509 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1510 // are disabled, then these HazardRecs will be disabled. 1511 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1512 const TargetMachine &TM = DAG->MF.getTarget(); 1513 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1514 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1515 1516 assert((!ForceTopDown || !ForceBottomUp) && 1517 "-misched-topdown incompatible with -misched-bottomup"); 1518 } 1519 1520 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1521 if (SU->isScheduled) 1522 return; 1523 1524 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1525 I != E; ++I) { 1526 if (I->isWeak()) 1527 continue; 1528 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1529 unsigned Latency = I->getLatency(); 1530 #ifndef NDEBUG 1531 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); 1532 #endif 1533 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1534 SU->TopReadyCycle = PredReadyCycle + Latency; 1535 } 1536 Top.releaseNode(SU, SU->TopReadyCycle); 1537 } 1538 1539 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1540 if (SU->isScheduled) 1541 return; 1542 1543 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1544 1545 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1546 I != E; ++I) { 1547 if (I->isWeak()) 1548 continue; 1549 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1550 unsigned Latency = I->getLatency(); 1551 #ifndef NDEBUG 1552 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); 1553 #endif 1554 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1555 SU->BotReadyCycle = SuccReadyCycle + Latency; 1556 } 1557 Bot.releaseNode(SU, SU->BotReadyCycle); 1558 } 1559 1560 void ConvergingScheduler::checkAcyclicLatency() { 1561 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 1562 return; 1563 1564 unsigned BufferLimit = 1565 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 1566 unsigned LatencyLag = Rem.CriticalPath - Rem.CyclicCritPath; 1567 Rem.IsAcyclicLatencyLimited = 1568 (LatencyLag * SchedModel->getLatencyFactor()) > BufferLimit; 1569 1570 DEBUG(dbgs() << "BufferLimit " << BufferLimit << "u / " 1571 << Rem.RemIssueCount << "u = " 1572 << (BufferLimit + Rem.RemIssueCount) / Rem.RemIssueCount << " iters. " 1573 << "Latency = " << LatencyLag << "c = " 1574 << LatencyLag * SchedModel->getLatencyFactor() << "u\n"; 1575 if (Rem.IsAcyclicLatencyLimited) 1576 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 1577 } 1578 1579 void ConvergingScheduler::registerRoots() { 1580 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1581 1582 if (EnableCyclicPath) { 1583 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 1584 checkAcyclicLatency(); 1585 } 1586 // Some roots may not feed into ExitSU. Check all of them in case. 1587 for (std::vector<SUnit*>::const_iterator 1588 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1589 if ((*I)->getDepth() > Rem.CriticalPath) 1590 Rem.CriticalPath = (*I)->getDepth(); 1591 } 1592 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1593 } 1594 1595 /// Does this SU have a hazard within the current instruction group. 1596 /// 1597 /// The scheduler supports two modes of hazard recognition. The first is the 1598 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1599 /// supports highly complicated in-order reservation tables 1600 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1601 /// 1602 /// The second is a streamlined mechanism that checks for hazards based on 1603 /// simple counters that the scheduler itself maintains. It explicitly checks 1604 /// for instruction dispatch limitations, including the number of micro-ops that 1605 /// can dispatch per cycle. 1606 /// 1607 /// TODO: Also check whether the SU must start a new group. 1608 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1609 if (HazardRec->isEnabled()) 1610 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1611 1612 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1613 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1614 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1615 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1616 return true; 1617 } 1618 return false; 1619 } 1620 1621 // Find the unscheduled node in ReadySUs with the highest latency. 1622 unsigned ConvergingScheduler::SchedBoundary:: 1623 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1624 SUnit *LateSU = 0; 1625 unsigned RemLatency = 0; 1626 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1627 I != E; ++I) { 1628 unsigned L = getUnscheduledLatency(*I); 1629 if (L > RemLatency) { 1630 RemLatency = L; 1631 LateSU = *I; 1632 } 1633 } 1634 if (LateSU) { 1635 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1636 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1637 } 1638 return RemLatency; 1639 } 1640 1641 // Count resources in this zone and the remaining unscheduled 1642 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1643 // resource index, or zero if the zone is issue limited. 1644 unsigned ConvergingScheduler::SchedBoundary:: 1645 getOtherResourceCount(unsigned &OtherCritIdx) { 1646 OtherCritIdx = 0; 1647 if (!SchedModel->hasInstrSchedModel()) 1648 return 0; 1649 1650 unsigned OtherCritCount = Rem->RemIssueCount 1651 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1652 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1653 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1654 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1655 PIdx != PEnd; ++PIdx) { 1656 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1657 if (OtherCount > OtherCritCount) { 1658 OtherCritCount = OtherCount; 1659 OtherCritIdx = PIdx; 1660 } 1661 } 1662 if (OtherCritIdx) { 1663 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1664 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1665 << " " << getResourceName(OtherCritIdx) << "\n"); 1666 } 1667 return OtherCritCount; 1668 } 1669 1670 /// Set the CandPolicy for this zone given the current resources and latencies 1671 /// inside and outside the zone. 1672 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, 1673 SchedBoundary &OtherZone) { 1674 // Now that potential stalls have been considered, apply preemptive heuristics 1675 // based on the the total latency and resources inside and outside this 1676 // zone. 1677 1678 // Compute remaining latency. We need this both to determine whether the 1679 // overall schedule has become latency-limited and whether the instructions 1680 // outside this zone are resource or latency limited. 1681 // 1682 // The "dependent" latency is updated incrementally during scheduling as the 1683 // max height/depth of scheduled nodes minus the cycles since it was 1684 // scheduled: 1685 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 1686 // 1687 // The "independent" latency is the max ready queue depth: 1688 // ILat = max N.depth for N in Available|Pending 1689 // 1690 // RemainingLatency is the greater of independent and dependent latency. 1691 unsigned RemLatency = DependentLatency; 1692 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); 1693 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); 1694 1695 // Compute the critical resource outside the zone. 1696 unsigned OtherCritIdx; 1697 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); 1698 1699 bool OtherResLimited = false; 1700 if (SchedModel->hasInstrSchedModel()) { 1701 unsigned LFactor = SchedModel->getLatencyFactor(); 1702 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 1703 } 1704 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { 1705 Policy.ReduceLatency |= true; 1706 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " 1707 << RemLatency << " + " << CurrCycle << "c > CritPath " 1708 << Rem->CriticalPath << "\n"); 1709 } 1710 // If the same resource is limiting inside and outside the zone, do nothing. 1711 if (ZoneCritResIdx == OtherCritIdx) 1712 return; 1713 1714 DEBUG( 1715 if (IsResourceLimited) { 1716 dbgs() << " " << Available.getName() << " ResourceLimited: " 1717 << getResourceName(ZoneCritResIdx) << "\n"; 1718 } 1719 if (OtherResLimited) 1720 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; 1721 if (!IsResourceLimited && !OtherResLimited) 1722 dbgs() << " Latency limited both directions.\n"); 1723 1724 if (IsResourceLimited && !Policy.ReduceResIdx) 1725 Policy.ReduceResIdx = ZoneCritResIdx; 1726 1727 if (OtherResLimited) 1728 Policy.DemandResIdx = OtherCritIdx; 1729 } 1730 1731 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1732 unsigned ReadyCycle) { 1733 if (ReadyCycle < MinReadyCycle) 1734 MinReadyCycle = ReadyCycle; 1735 1736 // Check for interlocks first. For the purpose of other heuristics, an 1737 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1738 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1739 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1740 Pending.push(SU); 1741 else 1742 Available.push(SU); 1743 1744 // Record this node as an immediate dependent of the scheduled node. 1745 NextSUs.insert(SU); 1746 } 1747 1748 /// Move the boundary of scheduled code by one cycle. 1749 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { 1750 if (SchedModel->getMicroOpBufferSize() == 0) { 1751 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1752 if (MinReadyCycle > NextCycle) 1753 NextCycle = MinReadyCycle; 1754 } 1755 // Update the current micro-ops, which will issue in the next cycle. 1756 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1757 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1758 1759 // Decrement DependentLatency based on the next cycle. 1760 if ((NextCycle - CurrCycle) > DependentLatency) 1761 DependentLatency = 0; 1762 else 1763 DependentLatency -= (NextCycle - CurrCycle); 1764 1765 if (!HazardRec->isEnabled()) { 1766 // Bypass HazardRec virtual calls. 1767 CurrCycle = NextCycle; 1768 } 1769 else { 1770 // Bypass getHazardType calls in case of long latency. 1771 for (; CurrCycle != NextCycle; ++CurrCycle) { 1772 if (isTop()) 1773 HazardRec->AdvanceCycle(); 1774 else 1775 HazardRec->RecedeCycle(); 1776 } 1777 } 1778 CheckPending = true; 1779 unsigned LFactor = SchedModel->getLatencyFactor(); 1780 IsResourceLimited = 1781 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1782 > (int)LFactor; 1783 1784 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1785 } 1786 1787 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, 1788 unsigned Count) { 1789 ExecutedResCounts[PIdx] += Count; 1790 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1791 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1792 } 1793 1794 /// Add the given processor resource to this scheduled zone. 1795 /// 1796 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1797 /// during which this resource is consumed. 1798 /// 1799 /// \return the next cycle at which the instruction may execute without 1800 /// oversubscribing resources. 1801 unsigned ConvergingScheduler::SchedBoundary:: 1802 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { 1803 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1804 unsigned Count = Factor * Cycles; 1805 DEBUG(dbgs() << " " << getResourceName(PIdx) 1806 << " +" << Cycles << "x" << Factor << "u\n"); 1807 1808 // Update Executed resources counts. 1809 incExecutedResources(PIdx, Count); 1810 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1811 Rem->RemainingCounts[PIdx] -= Count; 1812 1813 // Check if this resource exceeds the current critical resource. If so, it 1814 // becomes the critical resource. 1815 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1816 ZoneCritResIdx = PIdx; 1817 DEBUG(dbgs() << " *** Critical resource " 1818 << getResourceName(PIdx) << ": " 1819 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1820 } 1821 // TODO: We don't yet model reserved resources. It's not hard though. 1822 return CurrCycle; 1823 } 1824 1825 /// Move the boundary of scheduled code by one SUnit. 1826 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1827 // Update the reservation table. 1828 if (HazardRec->isEnabled()) { 1829 if (!isTop() && SU->isCall) { 1830 // Calls are scheduled with their preceding instructions. For bottom-up 1831 // scheduling, clear the pipeline state before emitting. 1832 HazardRec->Reset(); 1833 } 1834 HazardRec->EmitInstruction(SU); 1835 } 1836 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1837 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1838 CurrMOps += IncMOps; 1839 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1840 // issue width. However, we commonly reach the maximum. In this case 1841 // opportunistically bump the cycle to avoid uselessly checking everything in 1842 // the readyQ. Furthermore, a single instruction may produce more than one 1843 // cycle's worth of micro-ops. 1844 // 1845 // TODO: Also check if this SU must end a dispatch group. 1846 unsigned NextCycle = CurrCycle; 1847 if (CurrMOps >= SchedModel->getIssueWidth()) { 1848 ++NextCycle; 1849 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 1850 << " at cycle " << CurrCycle << '\n'); 1851 } 1852 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1853 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1854 1855 switch (SchedModel->getMicroOpBufferSize()) { 1856 case 0: 1857 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1858 break; 1859 case 1: 1860 if (ReadyCycle > NextCycle) { 1861 NextCycle = ReadyCycle; 1862 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1863 } 1864 break; 1865 default: 1866 // We don't currently model the OOO reorder buffer, so consider all 1867 // scheduled MOps to be "retired". 1868 break; 1869 } 1870 RetiredMOps += IncMOps; 1871 1872 // Update resource counts and critical resource. 1873 if (SchedModel->hasInstrSchedModel()) { 1874 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1875 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1876 Rem->RemIssueCount -= DecRemIssue; 1877 if (ZoneCritResIdx) { 1878 // Scale scheduled micro-ops for comparing with the critical resource. 1879 unsigned ScaledMOps = 1880 RetiredMOps * SchedModel->getMicroOpFactor(); 1881 1882 // If scaled micro-ops are now more than the previous critical resource by 1883 // a full cycle, then micro-ops issue becomes critical. 1884 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1885 >= (int)SchedModel->getLatencyFactor()) { 1886 ZoneCritResIdx = 0; 1887 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1888 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1889 } 1890 } 1891 for (TargetSchedModel::ProcResIter 1892 PI = SchedModel->getWriteProcResBegin(SC), 1893 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1894 unsigned RCycle = 1895 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); 1896 if (RCycle > NextCycle) 1897 NextCycle = RCycle; 1898 } 1899 } 1900 // Update ExpectedLatency and DependentLatency. 1901 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 1902 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 1903 if (SU->getDepth() > TopLatency) { 1904 TopLatency = SU->getDepth(); 1905 DEBUG(dbgs() << " " << Available.getName() 1906 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 1907 } 1908 if (SU->getHeight() > BotLatency) { 1909 BotLatency = SU->getHeight(); 1910 DEBUG(dbgs() << " " << Available.getName() 1911 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 1912 } 1913 // If we stall for any reason, bump the cycle. 1914 if (NextCycle > CurrCycle) { 1915 bumpCycle(NextCycle); 1916 } 1917 else { 1918 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 1919 // resource limited. If a stall occured, bumpCycle does this. 1920 unsigned LFactor = SchedModel->getLatencyFactor(); 1921 IsResourceLimited = 1922 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1923 > (int)LFactor; 1924 } 1925 DEBUG(dumpScheduledState()); 1926 } 1927 1928 /// Release pending ready nodes in to the available queue. This makes them 1929 /// visible to heuristics. 1930 void ConvergingScheduler::SchedBoundary::releasePending() { 1931 // If the available queue is empty, it is safe to reset MinReadyCycle. 1932 if (Available.empty()) 1933 MinReadyCycle = UINT_MAX; 1934 1935 // Check to see if any of the pending instructions are ready to issue. If 1936 // so, add them to the available queue. 1937 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1938 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1939 SUnit *SU = *(Pending.begin()+i); 1940 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1941 1942 if (ReadyCycle < MinReadyCycle) 1943 MinReadyCycle = ReadyCycle; 1944 1945 if (!IsBuffered && ReadyCycle > CurrCycle) 1946 continue; 1947 1948 if (checkHazard(SU)) 1949 continue; 1950 1951 Available.push(SU); 1952 Pending.remove(Pending.begin()+i); 1953 --i; --e; 1954 } 1955 DEBUG(if (!Pending.empty()) Pending.dump()); 1956 CheckPending = false; 1957 } 1958 1959 /// Remove SU from the ready set for this boundary. 1960 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1961 if (Available.isInQueue(SU)) 1962 Available.remove(Available.find(SU)); 1963 else { 1964 assert(Pending.isInQueue(SU) && "bad ready count"); 1965 Pending.remove(Pending.find(SU)); 1966 } 1967 } 1968 1969 /// If this queue only has one ready candidate, return it. As a side effect, 1970 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1971 /// one node is ready. If multiple instructions are ready, return NULL. 1972 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1973 if (CheckPending) 1974 releasePending(); 1975 1976 if (CurrMOps > 0) { 1977 // Defer any ready instrs that now have a hazard. 1978 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1979 if (checkHazard(*I)) { 1980 Pending.push(*I); 1981 I = Available.remove(I); 1982 continue; 1983 } 1984 ++I; 1985 } 1986 } 1987 for (unsigned i = 0; Available.empty(); ++i) { 1988 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 1989 "permanent hazard"); (void)i; 1990 bumpCycle(CurrCycle + 1); 1991 releasePending(); 1992 } 1993 if (Available.size() == 1) 1994 return *Available.begin(); 1995 return NULL; 1996 } 1997 1998 #ifndef NDEBUG 1999 // This is useful information to dump after bumpNode. 2000 // Note that the Queue contents are more useful before pickNodeFromQueue. 2001 void ConvergingScheduler::SchedBoundary::dumpScheduledState() { 2002 unsigned ResFactor; 2003 unsigned ResCount; 2004 if (ZoneCritResIdx) { 2005 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2006 ResCount = getResourceCount(ZoneCritResIdx); 2007 } 2008 else { 2009 ResFactor = SchedModel->getMicroOpFactor(); 2010 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2011 } 2012 unsigned LFactor = SchedModel->getLatencyFactor(); 2013 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2014 << " Retired: " << RetiredMOps; 2015 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2016 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2017 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) 2018 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2019 << (IsResourceLimited ? " - Resource" : " - Latency") 2020 << " limited.\n"; 2021 } 2022 #endif 2023 2024 void ConvergingScheduler::SchedCandidate:: 2025 initResourceDelta(const ScheduleDAGMI *DAG, 2026 const TargetSchedModel *SchedModel) { 2027 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2028 return; 2029 2030 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2031 for (TargetSchedModel::ProcResIter 2032 PI = SchedModel->getWriteProcResBegin(SC), 2033 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2034 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2035 ResDelta.CritResources += PI->Cycles; 2036 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2037 ResDelta.DemandedResources += PI->Cycles; 2038 } 2039 } 2040 2041 2042 /// Return true if this heuristic determines order. 2043 static bool tryLess(int TryVal, int CandVal, 2044 ConvergingScheduler::SchedCandidate &TryCand, 2045 ConvergingScheduler::SchedCandidate &Cand, 2046 ConvergingScheduler::CandReason Reason) { 2047 if (TryVal < CandVal) { 2048 TryCand.Reason = Reason; 2049 return true; 2050 } 2051 if (TryVal > CandVal) { 2052 if (Cand.Reason > Reason) 2053 Cand.Reason = Reason; 2054 return true; 2055 } 2056 Cand.setRepeat(Reason); 2057 return false; 2058 } 2059 2060 static bool tryGreater(int TryVal, int CandVal, 2061 ConvergingScheduler::SchedCandidate &TryCand, 2062 ConvergingScheduler::SchedCandidate &Cand, 2063 ConvergingScheduler::CandReason Reason) { 2064 if (TryVal > CandVal) { 2065 TryCand.Reason = Reason; 2066 return true; 2067 } 2068 if (TryVal < CandVal) { 2069 if (Cand.Reason > Reason) 2070 Cand.Reason = Reason; 2071 return true; 2072 } 2073 Cand.setRepeat(Reason); 2074 return false; 2075 } 2076 2077 static bool tryPressure(const PressureElement &TryP, 2078 const PressureElement &CandP, 2079 ConvergingScheduler::SchedCandidate &TryCand, 2080 ConvergingScheduler::SchedCandidate &Cand, 2081 ConvergingScheduler::CandReason Reason) { 2082 // If both candidates affect the same set, go with the smallest increase. 2083 if (TryP.PSetID == CandP.PSetID) { 2084 return tryLess(TryP.UnitIncrease, CandP.UnitIncrease, TryCand, Cand, 2085 Reason); 2086 } 2087 // If one candidate decreases and the other increases, go with it. 2088 if (tryLess(TryP.UnitIncrease < 0, CandP.UnitIncrease < 0, TryCand, Cand, 2089 Reason)) { 2090 return true; 2091 } 2092 // If TryP has lower Rank, it has a higher priority. 2093 int TryRank = TryP.PSetRank(); 2094 int CandRank = CandP.PSetRank(); 2095 // If the candidates are decreasing pressure, reverse priority. 2096 if (TryP.UnitIncrease < 0) 2097 std::swap(TryRank, CandRank); 2098 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2099 } 2100 2101 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2102 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2103 } 2104 2105 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2106 /// their physreg def/use. 2107 /// 2108 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2109 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2110 /// with the operation that produces or consumes the physreg. We'll do this when 2111 /// regalloc has support for parallel copies. 2112 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2113 const MachineInstr *MI = SU->getInstr(); 2114 if (!MI->isCopy()) 2115 return 0; 2116 2117 unsigned ScheduledOper = isTop ? 1 : 0; 2118 unsigned UnscheduledOper = isTop ? 0 : 1; 2119 // If we have already scheduled the physreg produce/consumer, immediately 2120 // schedule the copy. 2121 if (TargetRegisterInfo::isPhysicalRegister( 2122 MI->getOperand(ScheduledOper).getReg())) 2123 return 1; 2124 // If the physreg is at the boundary, defer it. Otherwise schedule it 2125 // immediately to free the dependent. We can hoist the copy later. 2126 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2127 if (TargetRegisterInfo::isPhysicalRegister( 2128 MI->getOperand(UnscheduledOper).getReg())) 2129 return AtBoundary ? -1 : 1; 2130 return 0; 2131 } 2132 2133 static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand, 2134 ConvergingScheduler::SchedCandidate &Cand, 2135 ConvergingScheduler::SchedBoundary &Zone) { 2136 if (Zone.isTop()) { 2137 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2138 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2139 TryCand, Cand, ConvergingScheduler::TopDepthReduce)) 2140 return true; 2141 } 2142 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2143 TryCand, Cand, ConvergingScheduler::TopPathReduce)) 2144 return true; 2145 } 2146 else { 2147 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2148 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2149 TryCand, Cand, ConvergingScheduler::BotHeightReduce)) 2150 return true; 2151 } 2152 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2153 TryCand, Cand, ConvergingScheduler::BotPathReduce)) 2154 return true; 2155 } 2156 return false; 2157 } 2158 2159 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2160 /// hierarchical. This may be more efficient than a graduated cost model because 2161 /// we don't need to evaluate all aspects of the model for each node in the 2162 /// queue. But it's really done to make the heuristics easier to debug and 2163 /// statistically analyze. 2164 /// 2165 /// \param Cand provides the policy and current best candidate. 2166 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2167 /// \param Zone describes the scheduled zone that we are extending. 2168 /// \param RPTracker describes reg pressure within the scheduled zone. 2169 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2170 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 2171 SchedCandidate &TryCand, 2172 SchedBoundary &Zone, 2173 const RegPressureTracker &RPTracker, 2174 RegPressureTracker &TempTracker) { 2175 2176 // Always initialize TryCand's RPDelta. 2177 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 2178 DAG->getRegionCriticalPSets(), 2179 DAG->getRegPressure().MaxSetPressure); 2180 2181 // Initialize the candidate if needed. 2182 if (!Cand.isValid()) { 2183 TryCand.Reason = NodeOrder; 2184 return; 2185 } 2186 2187 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2188 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2189 TryCand, Cand, PhysRegCopy)) 2190 return; 2191 2192 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2193 // invalid; convert it to INT_MAX to give it lowest priority. 2194 if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand, 2195 RegExcess)) 2196 return; 2197 2198 // For loops that are acyclic path limited, aggressively schedule for latency. 2199 if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) 2200 return; 2201 2202 // Avoid increasing the max critical pressure in the scheduled region. 2203 if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax, 2204 TryCand, Cand, RegCritical)) 2205 return; 2206 2207 // Keep clustered nodes together to encourage downstream peephole 2208 // optimizations which may reduce resource requirements. 2209 // 2210 // This is a best effort to set things up for a post-RA pass. Optimizations 2211 // like generating loads of multiple registers should ideally be done within 2212 // the scheduler pass by combining the loads during DAG postprocessing. 2213 const SUnit *NextClusterSU = 2214 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2215 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2216 TryCand, Cand, Cluster)) 2217 return; 2218 2219 // Weak edges are for clustering and other constraints. 2220 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2221 getWeakLeft(Cand.SU, Zone.isTop()), 2222 TryCand, Cand, Weak)) { 2223 return; 2224 } 2225 // Avoid increasing the max pressure of the entire region. 2226 if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, 2227 TryCand, Cand, RegMax)) 2228 return; 2229 2230 // Avoid critical resource consumption and balance the schedule. 2231 TryCand.initResourceDelta(DAG, SchedModel); 2232 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2233 TryCand, Cand, ResourceReduce)) 2234 return; 2235 if (tryGreater(TryCand.ResDelta.DemandedResources, 2236 Cand.ResDelta.DemandedResources, 2237 TryCand, Cand, ResourceDemand)) 2238 return; 2239 2240 // Avoid serializing long latency dependence chains. 2241 // For acyclic path limited loops, latency was already checked above. 2242 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2243 && tryLatency(TryCand, Cand, Zone)) { 2244 return; 2245 } 2246 2247 // Prefer immediate defs/users of the last scheduled instruction. This is a 2248 // local pressure avoidance strategy that also makes the machine code 2249 // readable. 2250 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 2251 TryCand, Cand, NextDefUse)) 2252 return; 2253 2254 // Fall through to original instruction order. 2255 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2256 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2257 TryCand.Reason = NodeOrder; 2258 } 2259 } 2260 2261 #ifndef NDEBUG 2262 const char *ConvergingScheduler::getReasonStr( 2263 ConvergingScheduler::CandReason Reason) { 2264 switch (Reason) { 2265 case NoCand: return "NOCAND "; 2266 case PhysRegCopy: return "PREG-COPY"; 2267 case RegExcess: return "REG-EXCESS"; 2268 case RegCritical: return "REG-CRIT "; 2269 case Cluster: return "CLUSTER "; 2270 case Weak: return "WEAK "; 2271 case RegMax: return "REG-MAX "; 2272 case ResourceReduce: return "RES-REDUCE"; 2273 case ResourceDemand: return "RES-DEMAND"; 2274 case TopDepthReduce: return "TOP-DEPTH "; 2275 case TopPathReduce: return "TOP-PATH "; 2276 case BotHeightReduce:return "BOT-HEIGHT"; 2277 case BotPathReduce: return "BOT-PATH "; 2278 case NextDefUse: return "DEF-USE "; 2279 case NodeOrder: return "ORDER "; 2280 }; 2281 llvm_unreachable("Unknown reason!"); 2282 } 2283 2284 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { 2285 PressureElement P; 2286 unsigned ResIdx = 0; 2287 unsigned Latency = 0; 2288 switch (Cand.Reason) { 2289 default: 2290 break; 2291 case RegExcess: 2292 P = Cand.RPDelta.Excess; 2293 break; 2294 case RegCritical: 2295 P = Cand.RPDelta.CriticalMax; 2296 break; 2297 case RegMax: 2298 P = Cand.RPDelta.CurrentMax; 2299 break; 2300 case ResourceReduce: 2301 ResIdx = Cand.Policy.ReduceResIdx; 2302 break; 2303 case ResourceDemand: 2304 ResIdx = Cand.Policy.DemandResIdx; 2305 break; 2306 case TopDepthReduce: 2307 Latency = Cand.SU->getDepth(); 2308 break; 2309 case TopPathReduce: 2310 Latency = Cand.SU->getHeight(); 2311 break; 2312 case BotHeightReduce: 2313 Latency = Cand.SU->getHeight(); 2314 break; 2315 case BotPathReduce: 2316 Latency = Cand.SU->getDepth(); 2317 break; 2318 } 2319 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2320 if (P.isValid()) 2321 dbgs() << " " << TRI->getRegPressureSetName(P.PSetID) 2322 << ":" << P.UnitIncrease << " "; 2323 else 2324 dbgs() << " "; 2325 if (ResIdx) 2326 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2327 else 2328 dbgs() << " "; 2329 if (Latency) 2330 dbgs() << " " << Latency << " cycles "; 2331 else 2332 dbgs() << " "; 2333 dbgs() << '\n'; 2334 } 2335 #endif 2336 2337 /// Pick the best candidate from the top queue. 2338 /// 2339 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2340 /// DAG building. To adjust for the current scheduling location we need to 2341 /// maintain the number of vreg uses remaining to be top-scheduled. 2342 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2343 const RegPressureTracker &RPTracker, 2344 SchedCandidate &Cand) { 2345 ReadyQueue &Q = Zone.Available; 2346 2347 DEBUG(Q.dump()); 2348 2349 // getMaxPressureDelta temporarily modifies the tracker. 2350 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2351 2352 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2353 2354 SchedCandidate TryCand(Cand.Policy); 2355 TryCand.SU = *I; 2356 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2357 if (TryCand.Reason != NoCand) { 2358 // Initialize resource delta if needed in case future heuristics query it. 2359 if (TryCand.ResDelta == SchedResourceDelta()) 2360 TryCand.initResourceDelta(DAG, SchedModel); 2361 Cand.setBest(TryCand); 2362 DEBUG(traceCandidate(Cand)); 2363 } 2364 } 2365 } 2366 2367 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 2368 bool IsTop) { 2369 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2370 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 2371 } 2372 2373 /// Pick the best candidate node from either the top or bottom queue. 2374 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 2375 // Schedule as far as possible in the direction of no choice. This is most 2376 // efficient, but also provides the best heuristics for CriticalPSets. 2377 if (SUnit *SU = Bot.pickOnlyChoice()) { 2378 IsTopNode = false; 2379 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2380 return SU; 2381 } 2382 if (SUnit *SU = Top.pickOnlyChoice()) { 2383 IsTopNode = true; 2384 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2385 return SU; 2386 } 2387 CandPolicy NoPolicy; 2388 SchedCandidate BotCand(NoPolicy); 2389 SchedCandidate TopCand(NoPolicy); 2390 Bot.setPolicy(BotCand.Policy, Top); 2391 Top.setPolicy(TopCand.Policy, Bot); 2392 2393 // Prefer bottom scheduling when heuristics are silent. 2394 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2395 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2396 2397 // If either Q has a single candidate that provides the least increase in 2398 // Excess pressure, we can immediately schedule from that Q. 2399 // 2400 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2401 // affects picking from either Q. If scheduling in one direction must 2402 // increase pressure for one of the excess PSets, then schedule in that 2403 // direction first to provide more freedom in the other direction. 2404 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2405 || (BotCand.Reason == RegCritical 2406 && !BotCand.isRepeat(RegCritical))) 2407 { 2408 IsTopNode = false; 2409 tracePick(BotCand, IsTopNode); 2410 return BotCand.SU; 2411 } 2412 // Check if the top Q has a better candidate. 2413 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2414 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2415 2416 // Choose the queue with the most important (lowest enum) reason. 2417 if (TopCand.Reason < BotCand.Reason) { 2418 IsTopNode = true; 2419 tracePick(TopCand, IsTopNode); 2420 return TopCand.SU; 2421 } 2422 // Otherwise prefer the bottom candidate, in node order if all else failed. 2423 IsTopNode = false; 2424 tracePick(BotCand, IsTopNode); 2425 return BotCand.SU; 2426 } 2427 2428 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2429 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2430 if (DAG->top() == DAG->bottom()) { 2431 assert(Top.Available.empty() && Top.Pending.empty() && 2432 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2433 return NULL; 2434 } 2435 SUnit *SU; 2436 do { 2437 if (ForceTopDown) { 2438 SU = Top.pickOnlyChoice(); 2439 if (!SU) { 2440 CandPolicy NoPolicy; 2441 SchedCandidate TopCand(NoPolicy); 2442 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2443 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2444 SU = TopCand.SU; 2445 } 2446 IsTopNode = true; 2447 } 2448 else if (ForceBottomUp) { 2449 SU = Bot.pickOnlyChoice(); 2450 if (!SU) { 2451 CandPolicy NoPolicy; 2452 SchedCandidate BotCand(NoPolicy); 2453 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2454 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2455 SU = BotCand.SU; 2456 } 2457 IsTopNode = false; 2458 } 2459 else { 2460 SU = pickNodeBidirectional(IsTopNode); 2461 } 2462 } while (SU->isScheduled); 2463 2464 if (SU->isTopReady()) 2465 Top.removeReady(SU); 2466 if (SU->isBottomReady()) 2467 Bot.removeReady(SU); 2468 2469 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2470 return SU; 2471 } 2472 2473 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2474 2475 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2476 if (!isTop) 2477 ++InsertPos; 2478 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2479 2480 // Find already scheduled copies with a single physreg dependence and move 2481 // them just above the scheduled instruction. 2482 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2483 I != E; ++I) { 2484 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2485 continue; 2486 SUnit *DepSU = I->getSUnit(); 2487 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2488 continue; 2489 MachineInstr *Copy = DepSU->getInstr(); 2490 if (!Copy->isCopy()) 2491 continue; 2492 DEBUG(dbgs() << " Rescheduling physreg copy "; 2493 I->getSUnit()->dump(DAG)); 2494 DAG->moveInstruction(Copy, InsertPos); 2495 } 2496 } 2497 2498 /// Update the scheduler's state after scheduling a node. This is the same node 2499 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2500 /// it's state based on the current cycle before MachineSchedStrategy does. 2501 /// 2502 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2503 /// them here. See comments in biasPhysRegCopy. 2504 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2505 if (IsTopNode) { 2506 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); 2507 Top.bumpNode(SU); 2508 if (SU->hasPhysRegUses) 2509 reschedulePhysRegCopies(SU, true); 2510 } 2511 else { 2512 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); 2513 Bot.bumpNode(SU); 2514 if (SU->hasPhysRegDefs) 2515 reschedulePhysRegCopies(SU, false); 2516 } 2517 } 2518 2519 /// Create the standard converging machine scheduler. This will be used as the 2520 /// default scheduler if the target does not set a default. 2521 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2522 assert((!ForceTopDown || !ForceBottomUp) && 2523 "-misched-topdown incompatible with -misched-bottomup"); 2524 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2525 // Register DAG post-processors. 2526 // 2527 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2528 // data and pass it to later mutations. Have a single mutation that gathers 2529 // the interesting nodes in one pass. 2530 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 2531 if (EnableLoadCluster) 2532 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2533 if (EnableMacroFusion) 2534 DAG->addMutation(new MacroFusion(DAG->TII)); 2535 return DAG; 2536 } 2537 static MachineSchedRegistry 2538 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2539 createConvergingSched); 2540 2541 //===----------------------------------------------------------------------===// 2542 // ILP Scheduler. Currently for experimental analysis of heuristics. 2543 //===----------------------------------------------------------------------===// 2544 2545 namespace { 2546 /// \brief Order nodes by the ILP metric. 2547 struct ILPOrder { 2548 const SchedDFSResult *DFSResult; 2549 const BitVector *ScheduledTrees; 2550 bool MaximizeILP; 2551 2552 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2553 2554 /// \brief Apply a less-than relation on node priority. 2555 /// 2556 /// (Return true if A comes after B in the Q.) 2557 bool operator()(const SUnit *A, const SUnit *B) const { 2558 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2559 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2560 if (SchedTreeA != SchedTreeB) { 2561 // Unscheduled trees have lower priority. 2562 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2563 return ScheduledTrees->test(SchedTreeB); 2564 2565 // Trees with shallower connections have have lower priority. 2566 if (DFSResult->getSubtreeLevel(SchedTreeA) 2567 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2568 return DFSResult->getSubtreeLevel(SchedTreeA) 2569 < DFSResult->getSubtreeLevel(SchedTreeB); 2570 } 2571 } 2572 if (MaximizeILP) 2573 return DFSResult->getILP(A) < DFSResult->getILP(B); 2574 else 2575 return DFSResult->getILP(A) > DFSResult->getILP(B); 2576 } 2577 }; 2578 2579 /// \brief Schedule based on the ILP metric. 2580 class ILPScheduler : public MachineSchedStrategy { 2581 /// In case all subtrees are eventually connected to a common root through 2582 /// data dependence (e.g. reduction), place an upper limit on their size. 2583 /// 2584 /// FIXME: A subtree limit is generally good, but in the situation commented 2585 /// above, where multiple similar subtrees feed a common root, we should 2586 /// only split at a point where the resulting subtrees will be balanced. 2587 /// (a motivating test case must be found). 2588 static const unsigned SubtreeLimit = 16; 2589 2590 ScheduleDAGMI *DAG; 2591 ILPOrder Cmp; 2592 2593 std::vector<SUnit*> ReadyQ; 2594 public: 2595 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2596 2597 virtual void initialize(ScheduleDAGMI *dag) { 2598 DAG = dag; 2599 DAG->computeDFSResult(); 2600 Cmp.DFSResult = DAG->getDFSResult(); 2601 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2602 ReadyQ.clear(); 2603 } 2604 2605 virtual void registerRoots() { 2606 // Restore the heap in ReadyQ with the updated DFS results. 2607 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2608 } 2609 2610 /// Implement MachineSchedStrategy interface. 2611 /// ----------------------------------------- 2612 2613 /// Callback to select the highest priority node from the ready Q. 2614 virtual SUnit *pickNode(bool &IsTopNode) { 2615 if (ReadyQ.empty()) return NULL; 2616 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2617 SUnit *SU = ReadyQ.back(); 2618 ReadyQ.pop_back(); 2619 IsTopNode = false; 2620 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 2621 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2622 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2623 << DAG->getDFSResult()->getSubtreeLevel( 2624 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 2625 << "Scheduling " << *SU->getInstr()); 2626 return SU; 2627 } 2628 2629 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2630 virtual void scheduleTree(unsigned SubtreeID) { 2631 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2632 } 2633 2634 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2635 /// DFSResults, and resort the priority Q. 2636 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2637 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2638 } 2639 2640 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2641 2642 virtual void releaseBottomNode(SUnit *SU) { 2643 ReadyQ.push_back(SU); 2644 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2645 } 2646 }; 2647 } // namespace 2648 2649 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2650 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2651 } 2652 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2653 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2654 } 2655 static MachineSchedRegistry ILPMaxRegistry( 2656 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2657 static MachineSchedRegistry ILPMinRegistry( 2658 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2659 2660 //===----------------------------------------------------------------------===// 2661 // Machine Instruction Shuffler for Correctness Testing 2662 //===----------------------------------------------------------------------===// 2663 2664 #ifndef NDEBUG 2665 namespace { 2666 /// Apply a less-than relation on the node order, which corresponds to the 2667 /// instruction order prior to scheduling. IsReverse implements greater-than. 2668 template<bool IsReverse> 2669 struct SUnitOrder { 2670 bool operator()(SUnit *A, SUnit *B) const { 2671 if (IsReverse) 2672 return A->NodeNum > B->NodeNum; 2673 else 2674 return A->NodeNum < B->NodeNum; 2675 } 2676 }; 2677 2678 /// Reorder instructions as much as possible. 2679 class InstructionShuffler : public MachineSchedStrategy { 2680 bool IsAlternating; 2681 bool IsTopDown; 2682 2683 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2684 // gives nodes with a higher number higher priority causing the latest 2685 // instructions to be scheduled first. 2686 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2687 TopQ; 2688 // When scheduling bottom-up, use greater-than as the queue priority. 2689 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2690 BottomQ; 2691 public: 2692 InstructionShuffler(bool alternate, bool topdown) 2693 : IsAlternating(alternate), IsTopDown(topdown) {} 2694 2695 virtual void initialize(ScheduleDAGMI *) { 2696 TopQ.clear(); 2697 BottomQ.clear(); 2698 } 2699 2700 /// Implement MachineSchedStrategy interface. 2701 /// ----------------------------------------- 2702 2703 virtual SUnit *pickNode(bool &IsTopNode) { 2704 SUnit *SU; 2705 if (IsTopDown) { 2706 do { 2707 if (TopQ.empty()) return NULL; 2708 SU = TopQ.top(); 2709 TopQ.pop(); 2710 } while (SU->isScheduled); 2711 IsTopNode = true; 2712 } 2713 else { 2714 do { 2715 if (BottomQ.empty()) return NULL; 2716 SU = BottomQ.top(); 2717 BottomQ.pop(); 2718 } while (SU->isScheduled); 2719 IsTopNode = false; 2720 } 2721 if (IsAlternating) 2722 IsTopDown = !IsTopDown; 2723 return SU; 2724 } 2725 2726 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2727 2728 virtual void releaseTopNode(SUnit *SU) { 2729 TopQ.push(SU); 2730 } 2731 virtual void releaseBottomNode(SUnit *SU) { 2732 BottomQ.push(SU); 2733 } 2734 }; 2735 } // namespace 2736 2737 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2738 bool Alternate = !ForceTopDown && !ForceBottomUp; 2739 bool TopDown = !ForceBottomUp; 2740 assert((TopDown || !ForceTopDown) && 2741 "-misched-topdown incompatible with -misched-bottomup"); 2742 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2743 } 2744 static MachineSchedRegistry ShufflerRegistry( 2745 "shuffle", "Shuffle machine instructions alternating directions", 2746 createInstructionShuffler); 2747 #endif // !NDEBUG 2748 2749 //===----------------------------------------------------------------------===// 2750 // GraphWriter support for ScheduleDAGMI. 2751 //===----------------------------------------------------------------------===// 2752 2753 #ifndef NDEBUG 2754 namespace llvm { 2755 2756 template<> struct GraphTraits< 2757 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2758 2759 template<> 2760 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2761 2762 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2763 2764 static std::string getGraphName(const ScheduleDAG *G) { 2765 return G->MF.getName(); 2766 } 2767 2768 static bool renderGraphFromBottomUp() { 2769 return true; 2770 } 2771 2772 static bool isNodeHidden(const SUnit *Node) { 2773 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2774 } 2775 2776 static bool hasNodeAddressLabel(const SUnit *Node, 2777 const ScheduleDAG *Graph) { 2778 return false; 2779 } 2780 2781 /// If you want to override the dot attributes printed for a particular 2782 /// edge, override this method. 2783 static std::string getEdgeAttributes(const SUnit *Node, 2784 SUnitIterator EI, 2785 const ScheduleDAG *Graph) { 2786 if (EI.isArtificialDep()) 2787 return "color=cyan,style=dashed"; 2788 if (EI.isCtrlDep()) 2789 return "color=blue,style=dashed"; 2790 return ""; 2791 } 2792 2793 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 2794 std::string Str; 2795 raw_string_ostream SS(Str); 2796 SS << "SU(" << SU->NodeNum << ')'; 2797 return SS.str(); 2798 } 2799 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 2800 return G->getGraphNodeLabel(SU); 2801 } 2802 2803 static std::string getNodeAttributes(const SUnit *N, 2804 const ScheduleDAG *Graph) { 2805 std::string Str("shape=Mrecord"); 2806 const SchedDFSResult *DFS = 2807 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 2808 if (DFS) { 2809 Str += ",style=filled,fillcolor=\"#"; 2810 Str += DOT::getColorString(DFS->getSubtreeID(N)); 2811 Str += '"'; 2812 } 2813 return Str; 2814 } 2815 }; 2816 } // namespace llvm 2817 #endif // NDEBUG 2818 2819 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 2820 /// rendered using 'dot'. 2821 /// 2822 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 2823 #ifndef NDEBUG 2824 ViewGraph(this, Name, false, Title); 2825 #else 2826 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 2827 << "systems with Graphviz or gv!\n"; 2828 #endif // NDEBUG 2829 } 2830 2831 /// Out-of-line implementation with no arguments is handy for gdb. 2832 void ScheduleDAGMI::viewGraph() { 2833 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 2834 } 2835