1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/ScheduleDFS.h" 27 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/GraphWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include <queue> 35 36 using namespace llvm; 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 } 44 45 #ifndef NDEBUG 46 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 47 cl::desc("Pop up a window to show MISched dags after they are processed")); 48 49 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 50 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 51 52 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 53 cl::desc("Only schedule this function")); 54 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 55 cl::desc("Only schedule this MBB#")); 56 #else 57 static bool ViewMISchedDAGs = false; 58 #endif // NDEBUG 59 60 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 61 cl::desc("Enable register pressure scheduling."), cl::init(true)); 62 63 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 64 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 65 66 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 67 cl::desc("Enable load clustering."), cl::init(true)); 68 69 // Experimental heuristics 70 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 71 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 72 73 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 74 cl::desc("Verify machine instrs before and after machine scheduling")); 75 76 // DAG subtrees must have at least this many nodes. 77 static const unsigned MinSubtreeSize = 8; 78 79 // Pin the vtables to this file. 80 void MachineSchedStrategy::anchor() {} 81 void ScheduleDAGMutation::anchor() {} 82 83 //===----------------------------------------------------------------------===// 84 // Machine Instruction Scheduling Pass and Registry 85 //===----------------------------------------------------------------------===// 86 87 MachineSchedContext::MachineSchedContext(): 88 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 89 RegClassInfo = new RegisterClassInfo(); 90 } 91 92 MachineSchedContext::~MachineSchedContext() { 93 delete RegClassInfo; 94 } 95 96 namespace { 97 /// Base class for a machine scheduler class that can run at any point. 98 class MachineSchedulerBase : public MachineSchedContext, 99 public MachineFunctionPass { 100 public: 101 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 102 103 void print(raw_ostream &O, const Module* = nullptr) const override; 104 105 protected: 106 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 107 }; 108 109 /// MachineScheduler runs after coalescing and before register allocation. 110 class MachineScheduler : public MachineSchedulerBase { 111 public: 112 MachineScheduler(); 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override; 115 116 bool runOnMachineFunction(MachineFunction&) override; 117 118 static char ID; // Class identification, replacement for typeinfo 119 120 protected: 121 ScheduleDAGInstrs *createMachineScheduler(); 122 }; 123 124 /// PostMachineScheduler runs after shortly before code emission. 125 class PostMachineScheduler : public MachineSchedulerBase { 126 public: 127 PostMachineScheduler(); 128 129 void getAnalysisUsage(AnalysisUsage &AU) const override; 130 131 bool runOnMachineFunction(MachineFunction&) override; 132 133 static char ID; // Class identification, replacement for typeinfo 134 135 protected: 136 ScheduleDAGInstrs *createPostMachineScheduler(); 137 }; 138 } // namespace 139 140 char MachineScheduler::ID = 0; 141 142 char &llvm::MachineSchedulerID = MachineScheduler::ID; 143 144 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 145 "Machine Instruction Scheduler", false, false) 146 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_END(MachineScheduler, "misched", 150 "Machine Instruction Scheduler", false, false) 151 152 MachineScheduler::MachineScheduler() 153 : MachineSchedulerBase(ID) { 154 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 155 } 156 157 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 158 AU.setPreservesCFG(); 159 AU.addRequiredID(MachineDominatorsID); 160 AU.addRequired<MachineLoopInfo>(); 161 AU.addRequired<AliasAnalysis>(); 162 AU.addRequired<TargetPassConfig>(); 163 AU.addRequired<SlotIndexes>(); 164 AU.addPreserved<SlotIndexes>(); 165 AU.addRequired<LiveIntervals>(); 166 AU.addPreserved<LiveIntervals>(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 } 169 170 char PostMachineScheduler::ID = 0; 171 172 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 173 174 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 175 "PostRA Machine Instruction Scheduler", false, false) 176 177 PostMachineScheduler::PostMachineScheduler() 178 : MachineSchedulerBase(ID) { 179 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 180 } 181 182 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 183 AU.setPreservesCFG(); 184 AU.addRequiredID(MachineDominatorsID); 185 AU.addRequired<MachineLoopInfo>(); 186 AU.addRequired<TargetPassConfig>(); 187 MachineFunctionPass::getAnalysisUsage(AU); 188 } 189 190 MachinePassRegistry MachineSchedRegistry::Registry; 191 192 /// A dummy default scheduler factory indicates whether the scheduler 193 /// is overridden on the command line. 194 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 195 return nullptr; 196 } 197 198 /// MachineSchedOpt allows command line selection of the scheduler. 199 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 200 RegisterPassParser<MachineSchedRegistry> > 201 MachineSchedOpt("misched", 202 cl::init(&useDefaultMachineSched), cl::Hidden, 203 cl::desc("Machine instruction scheduler to use")); 204 205 static MachineSchedRegistry 206 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 207 useDefaultMachineSched); 208 209 /// Forward declare the standard machine scheduler. This will be used as the 210 /// default scheduler if the target does not set a default. 211 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 212 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 213 214 /// Decrement this iterator until reaching the top or a non-debug instr. 215 static MachineBasicBlock::const_iterator 216 priorNonDebug(MachineBasicBlock::const_iterator I, 217 MachineBasicBlock::const_iterator Beg) { 218 assert(I != Beg && "reached the top of the region, cannot decrement"); 219 while (--I != Beg) { 220 if (!I->isDebugValue()) 221 break; 222 } 223 return I; 224 } 225 226 /// Non-const version. 227 static MachineBasicBlock::iterator 228 priorNonDebug(MachineBasicBlock::iterator I, 229 MachineBasicBlock::const_iterator Beg) { 230 return const_cast<MachineInstr*>( 231 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 232 } 233 234 /// If this iterator is a debug value, increment until reaching the End or a 235 /// non-debug instruction. 236 static MachineBasicBlock::const_iterator 237 nextIfDebug(MachineBasicBlock::const_iterator I, 238 MachineBasicBlock::const_iterator End) { 239 for(; I != End; ++I) { 240 if (!I->isDebugValue()) 241 break; 242 } 243 return I; 244 } 245 246 /// Non-const version. 247 static MachineBasicBlock::iterator 248 nextIfDebug(MachineBasicBlock::iterator I, 249 MachineBasicBlock::const_iterator End) { 250 // Cast the return value to nonconst MachineInstr, then cast to an 251 // instr_iterator, which does not check for null, finally return a 252 // bundle_iterator. 253 return MachineBasicBlock::instr_iterator( 254 const_cast<MachineInstr*>( 255 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 256 } 257 258 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 259 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 260 // Select the scheduler, or set the default. 261 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 262 if (Ctor != useDefaultMachineSched) 263 return Ctor(this); 264 265 // Get the default scheduler set by the target for this function. 266 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 267 if (Scheduler) 268 return Scheduler; 269 270 // Default to GenericScheduler. 271 return createGenericSchedLive(this); 272 } 273 274 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 275 /// the caller. We don't have a command line option to override the postRA 276 /// scheduler. The Target must configure it. 277 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 278 // Get the postRA scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedPostRA(this); 285 } 286 287 /// Top-level MachineScheduler pass driver. 288 /// 289 /// Visit blocks in function order. Divide each block into scheduling regions 290 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 291 /// consistent with the DAG builder, which traverses the interior of the 292 /// scheduling regions bottom-up. 293 /// 294 /// This design avoids exposing scheduling boundaries to the DAG builder, 295 /// simplifying the DAG builder's support for "special" target instructions. 296 /// At the same time the design allows target schedulers to operate across 297 /// scheduling boundaries, for example to bundle the boudary instructions 298 /// without reordering them. This creates complexity, because the target 299 /// scheduler must update the RegionBegin and RegionEnd positions cached by 300 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 301 /// design would be to split blocks at scheduling boundaries, but LLVM has a 302 /// general bias against block splitting purely for implementation simplicity. 303 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 304 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 305 306 // Initialize the context of the pass. 307 MF = &mf; 308 MLI = &getAnalysis<MachineLoopInfo>(); 309 MDT = &getAnalysis<MachineDominatorTree>(); 310 PassConfig = &getAnalysis<TargetPassConfig>(); 311 AA = &getAnalysis<AliasAnalysis>(); 312 313 LIS = &getAnalysis<LiveIntervals>(); 314 315 if (VerifyScheduling) { 316 DEBUG(LIS->dump()); 317 MF->verify(this, "Before machine scheduling."); 318 } 319 RegClassInfo->runOnMachineFunction(*MF); 320 321 // Instantiate the selected scheduler for this target, function, and 322 // optimization level. 323 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 324 scheduleRegions(*Scheduler); 325 326 DEBUG(LIS->dump()); 327 if (VerifyScheduling) 328 MF->verify(this, "After machine scheduling."); 329 return true; 330 } 331 332 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 333 if (skipOptnoneFunction(*mf.getFunction())) 334 return false; 335 336 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 337 338 // Initialize the context of the pass. 339 MF = &mf; 340 PassConfig = &getAnalysis<TargetPassConfig>(); 341 342 if (VerifyScheduling) 343 MF->verify(this, "Before post machine scheduling."); 344 345 // Instantiate the selected scheduler for this target, function, and 346 // optimization level. 347 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 348 scheduleRegions(*Scheduler); 349 350 if (VerifyScheduling) 351 MF->verify(this, "After post machine scheduling."); 352 return true; 353 } 354 355 /// Return true of the given instruction should not be included in a scheduling 356 /// region. 357 /// 358 /// MachineScheduler does not currently support scheduling across calls. To 359 /// handle calls, the DAG builder needs to be modified to create register 360 /// anti/output dependencies on the registers clobbered by the call's regmask 361 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 362 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 363 /// the boundary, but there would be no benefit to postRA scheduling across 364 /// calls this late anyway. 365 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 366 MachineBasicBlock *MBB, 367 MachineFunction *MF, 368 const TargetInstrInfo *TII, 369 bool IsPostRA) { 370 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 371 } 372 373 /// Main driver for both MachineScheduler and PostMachineScheduler. 374 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 375 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 376 bool IsPostRA = Scheduler.isPostRA(); 377 378 // Visit all machine basic blocks. 379 // 380 // TODO: Visit blocks in global postorder or postorder within the bottom-up 381 // loop tree. Then we can optionally compute global RegPressure. 382 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 383 MBB != MBBEnd; ++MBB) { 384 385 Scheduler.startBlock(MBB); 386 387 #ifndef NDEBUG 388 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 389 continue; 390 if (SchedOnlyBlock.getNumOccurrences() 391 && (int)SchedOnlyBlock != MBB->getNumber()) 392 continue; 393 #endif 394 395 // Break the block into scheduling regions [I, RegionEnd), and schedule each 396 // region as soon as it is discovered. RegionEnd points the scheduling 397 // boundary at the bottom of the region. The DAG does not include RegionEnd, 398 // but the region does (i.e. the next RegionEnd is above the previous 399 // RegionBegin). If the current block has no terminator then RegionEnd == 400 // MBB->end() for the bottom region. 401 // 402 // The Scheduler may insert instructions during either schedule() or 403 // exitRegion(), even for empty regions. So the local iterators 'I' and 404 // 'RegionEnd' are invalid across these calls. 405 // 406 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 407 // as a single instruction. 408 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 409 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 410 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 411 412 // Avoid decrementing RegionEnd for blocks with no terminator. 413 if (RegionEnd != MBB->end() || 414 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { 415 --RegionEnd; 416 // Count the boundary instruction. 417 --RemainingInstrs; 418 } 419 420 // The next region starts above the previous region. Look backward in the 421 // instruction stream until we find the nearest boundary. 422 unsigned NumRegionInstrs = 0; 423 MachineBasicBlock::iterator I = RegionEnd; 424 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 425 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) 426 break; 427 } 428 // Notify the scheduler of the region, even if we may skip scheduling 429 // it. Perhaps it still needs to be bundled. 430 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 431 432 // Skip empty scheduling regions (0 or 1 schedulable instructions). 433 if (I == RegionEnd || I == std::prev(RegionEnd)) { 434 // Close the current region. Bundle the terminator if needed. 435 // This invalidates 'RegionEnd' and 'I'. 436 Scheduler.exitRegion(); 437 continue; 438 } 439 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 440 << "MI Scheduling **********\n"); 441 DEBUG(dbgs() << MF->getName() 442 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 443 << "\n From: " << *I << " To: "; 444 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 445 else dbgs() << "End"; 446 dbgs() << " RegionInstrs: " << NumRegionInstrs 447 << " Remaining: " << RemainingInstrs << "\n"); 448 449 // Schedule a region: possibly reorder instructions. 450 // This invalidates 'RegionEnd' and 'I'. 451 Scheduler.schedule(); 452 453 // Close the current region. 454 Scheduler.exitRegion(); 455 456 // Scheduling has invalidated the current iterator 'I'. Ask the 457 // scheduler for the top of it's scheduled region. 458 RegionEnd = Scheduler.begin(); 459 } 460 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 461 Scheduler.finishBlock(); 462 if (Scheduler.isPostRA()) { 463 // FIXME: Ideally, no further passes should rely on kill flags. However, 464 // thumb2 size reduction is currently an exception. 465 Scheduler.fixupKills(MBB); 466 } 467 } 468 Scheduler.finalizeSchedule(); 469 } 470 471 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 472 // unimplemented 473 } 474 475 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 476 void ReadyQueue::dump() { 477 dbgs() << Name << ": "; 478 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 479 dbgs() << Queue[i]->NodeNum << " "; 480 dbgs() << "\n"; 481 } 482 #endif 483 484 //===----------------------------------------------------------------------===// 485 // ScheduleDAGMI - Basic machine instruction scheduling. This is 486 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 487 // virtual registers. 488 // ===----------------------------------------------------------------------===/ 489 490 ScheduleDAGMI::~ScheduleDAGMI() { 491 DeleteContainerPointers(Mutations); 492 delete SchedImpl; 493 } 494 495 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 496 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 497 } 498 499 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 500 if (SuccSU != &ExitSU) { 501 // Do not use WillCreateCycle, it assumes SD scheduling. 502 // If Pred is reachable from Succ, then the edge creates a cycle. 503 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 504 return false; 505 Topo.AddPred(SuccSU, PredDep.getSUnit()); 506 } 507 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 508 // Return true regardless of whether a new edge needed to be inserted. 509 return true; 510 } 511 512 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 513 /// NumPredsLeft reaches zero, release the successor node. 514 /// 515 /// FIXME: Adjust SuccSU height based on MinLatency. 516 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 517 SUnit *SuccSU = SuccEdge->getSUnit(); 518 519 if (SuccEdge->isWeak()) { 520 --SuccSU->WeakPredsLeft; 521 if (SuccEdge->isCluster()) 522 NextClusterSucc = SuccSU; 523 return; 524 } 525 #ifndef NDEBUG 526 if (SuccSU->NumPredsLeft == 0) { 527 dbgs() << "*** Scheduling failed! ***\n"; 528 SuccSU->dump(this); 529 dbgs() << " has been released too many times!\n"; 530 llvm_unreachable(nullptr); 531 } 532 #endif 533 --SuccSU->NumPredsLeft; 534 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 535 SchedImpl->releaseTopNode(SuccSU); 536 } 537 538 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 539 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 540 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 541 I != E; ++I) { 542 releaseSucc(SU, &*I); 543 } 544 } 545 546 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 547 /// NumSuccsLeft reaches zero, release the predecessor node. 548 /// 549 /// FIXME: Adjust PredSU height based on MinLatency. 550 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 551 SUnit *PredSU = PredEdge->getSUnit(); 552 553 if (PredEdge->isWeak()) { 554 --PredSU->WeakSuccsLeft; 555 if (PredEdge->isCluster()) 556 NextClusterPred = PredSU; 557 return; 558 } 559 #ifndef NDEBUG 560 if (PredSU->NumSuccsLeft == 0) { 561 dbgs() << "*** Scheduling failed! ***\n"; 562 PredSU->dump(this); 563 dbgs() << " has been released too many times!\n"; 564 llvm_unreachable(nullptr); 565 } 566 #endif 567 --PredSU->NumSuccsLeft; 568 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 569 SchedImpl->releaseBottomNode(PredSU); 570 } 571 572 /// releasePredecessors - Call releasePred on each of SU's predecessors. 573 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 574 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 575 I != E; ++I) { 576 releasePred(SU, &*I); 577 } 578 } 579 580 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 581 /// crossing a scheduling boundary. [begin, end) includes all instructions in 582 /// the region, including the boundary itself and single-instruction regions 583 /// that don't get scheduled. 584 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 585 MachineBasicBlock::iterator begin, 586 MachineBasicBlock::iterator end, 587 unsigned regioninstrs) 588 { 589 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 590 591 SchedImpl->initPolicy(begin, end, regioninstrs); 592 } 593 594 /// This is normally called from the main scheduler loop but may also be invoked 595 /// by the scheduling strategy to perform additional code motion. 596 void ScheduleDAGMI::moveInstruction( 597 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 598 // Advance RegionBegin if the first instruction moves down. 599 if (&*RegionBegin == MI) 600 ++RegionBegin; 601 602 // Update the instruction stream. 603 BB->splice(InsertPos, BB, MI); 604 605 // Update LiveIntervals 606 if (LIS) 607 LIS->handleMove(MI, /*UpdateFlags=*/true); 608 609 // Recede RegionBegin if an instruction moves above the first. 610 if (RegionBegin == InsertPos) 611 RegionBegin = MI; 612 } 613 614 bool ScheduleDAGMI::checkSchedLimit() { 615 #ifndef NDEBUG 616 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 617 CurrentTop = CurrentBottom; 618 return false; 619 } 620 ++NumInstrsScheduled; 621 #endif 622 return true; 623 } 624 625 /// Per-region scheduling driver, called back from 626 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 627 /// does not consider liveness or register pressure. It is useful for PostRA 628 /// scheduling and potentially other custom schedulers. 629 void ScheduleDAGMI::schedule() { 630 // Build the DAG. 631 buildSchedGraph(AA); 632 633 Topo.InitDAGTopologicalSorting(); 634 635 postprocessDAG(); 636 637 SmallVector<SUnit*, 8> TopRoots, BotRoots; 638 findRootsAndBiasEdges(TopRoots, BotRoots); 639 640 // Initialize the strategy before modifying the DAG. 641 // This may initialize a DFSResult to be used for queue priority. 642 SchedImpl->initialize(this); 643 644 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 645 SUnits[su].dumpAll(this)); 646 if (ViewMISchedDAGs) viewGraph(); 647 648 // Initialize ready queues now that the DAG and priority data are finalized. 649 initQueues(TopRoots, BotRoots); 650 651 bool IsTopNode = false; 652 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 653 assert(!SU->isScheduled && "Node already scheduled"); 654 if (!checkSchedLimit()) 655 break; 656 657 MachineInstr *MI = SU->getInstr(); 658 if (IsTopNode) { 659 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 660 if (&*CurrentTop == MI) 661 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 662 else 663 moveInstruction(MI, CurrentTop); 664 } 665 else { 666 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 667 MachineBasicBlock::iterator priorII = 668 priorNonDebug(CurrentBottom, CurrentTop); 669 if (&*priorII == MI) 670 CurrentBottom = priorII; 671 else { 672 if (&*CurrentTop == MI) 673 CurrentTop = nextIfDebug(++CurrentTop, priorII); 674 moveInstruction(MI, CurrentBottom); 675 CurrentBottom = MI; 676 } 677 } 678 updateQueues(SU, IsTopNode); 679 680 // Notify the scheduling strategy after updating the DAG. 681 SchedImpl->schedNode(SU, IsTopNode); 682 } 683 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 684 685 placeDebugValues(); 686 687 DEBUG({ 688 unsigned BBNum = begin()->getParent()->getNumber(); 689 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 690 dumpSchedule(); 691 dbgs() << '\n'; 692 }); 693 } 694 695 /// Apply each ScheduleDAGMutation step in order. 696 void ScheduleDAGMI::postprocessDAG() { 697 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 698 Mutations[i]->apply(this); 699 } 700 } 701 702 void ScheduleDAGMI:: 703 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 704 SmallVectorImpl<SUnit*> &BotRoots) { 705 for (std::vector<SUnit>::iterator 706 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 707 SUnit *SU = &(*I); 708 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 709 710 // Order predecessors so DFSResult follows the critical path. 711 SU->biasCriticalPath(); 712 713 // A SUnit is ready to top schedule if it has no predecessors. 714 if (!I->NumPredsLeft) 715 TopRoots.push_back(SU); 716 // A SUnit is ready to bottom schedule if it has no successors. 717 if (!I->NumSuccsLeft) 718 BotRoots.push_back(SU); 719 } 720 ExitSU.biasCriticalPath(); 721 } 722 723 /// Identify DAG roots and setup scheduler queues. 724 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 725 ArrayRef<SUnit*> BotRoots) { 726 NextClusterSucc = nullptr; 727 NextClusterPred = nullptr; 728 729 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 730 // 731 // Nodes with unreleased weak edges can still be roots. 732 // Release top roots in forward order. 733 for (SmallVectorImpl<SUnit*>::const_iterator 734 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 735 SchedImpl->releaseTopNode(*I); 736 } 737 // Release bottom roots in reverse order so the higher priority nodes appear 738 // first. This is more natural and slightly more efficient. 739 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 740 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 741 SchedImpl->releaseBottomNode(*I); 742 } 743 744 releaseSuccessors(&EntrySU); 745 releasePredecessors(&ExitSU); 746 747 SchedImpl->registerRoots(); 748 749 // Advance past initial DebugValues. 750 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 751 CurrentBottom = RegionEnd; 752 } 753 754 /// Update scheduler queues after scheduling an instruction. 755 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 756 // Release dependent instructions for scheduling. 757 if (IsTopNode) 758 releaseSuccessors(SU); 759 else 760 releasePredecessors(SU); 761 762 SU->isScheduled = true; 763 } 764 765 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 766 void ScheduleDAGMI::placeDebugValues() { 767 // If first instruction was a DBG_VALUE then put it back. 768 if (FirstDbgValue) { 769 BB->splice(RegionBegin, BB, FirstDbgValue); 770 RegionBegin = FirstDbgValue; 771 } 772 773 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 774 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 775 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 776 MachineInstr *DbgValue = P.first; 777 MachineBasicBlock::iterator OrigPrevMI = P.second; 778 if (&*RegionBegin == DbgValue) 779 ++RegionBegin; 780 BB->splice(++OrigPrevMI, BB, DbgValue); 781 if (OrigPrevMI == std::prev(RegionEnd)) 782 RegionEnd = DbgValue; 783 } 784 DbgValues.clear(); 785 FirstDbgValue = nullptr; 786 } 787 788 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 789 void ScheduleDAGMI::dumpSchedule() const { 790 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 791 if (SUnit *SU = getSUnit(&(*MI))) 792 SU->dump(this); 793 else 794 dbgs() << "Missing SUnit\n"; 795 } 796 } 797 #endif 798 799 //===----------------------------------------------------------------------===// 800 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 801 // preservation. 802 //===----------------------------------------------------------------------===// 803 804 ScheduleDAGMILive::~ScheduleDAGMILive() { 805 delete DFSResult; 806 } 807 808 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 809 /// crossing a scheduling boundary. [begin, end) includes all instructions in 810 /// the region, including the boundary itself and single-instruction regions 811 /// that don't get scheduled. 812 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 813 MachineBasicBlock::iterator begin, 814 MachineBasicBlock::iterator end, 815 unsigned regioninstrs) 816 { 817 // ScheduleDAGMI initializes SchedImpl's per-region policy. 818 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 819 820 // For convenience remember the end of the liveness region. 821 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 822 823 SUPressureDiffs.clear(); 824 825 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 826 } 827 828 // Setup the register pressure trackers for the top scheduled top and bottom 829 // scheduled regions. 830 void ScheduleDAGMILive::initRegPressure() { 831 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 832 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 833 834 // Close the RPTracker to finalize live ins. 835 RPTracker.closeRegion(); 836 837 DEBUG(RPTracker.dump()); 838 839 // Initialize the live ins and live outs. 840 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 841 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 842 843 // Close one end of the tracker so we can call 844 // getMaxUpward/DownwardPressureDelta before advancing across any 845 // instructions. This converts currently live regs into live ins/outs. 846 TopRPTracker.closeTop(); 847 BotRPTracker.closeBottom(); 848 849 BotRPTracker.initLiveThru(RPTracker); 850 if (!BotRPTracker.getLiveThru().empty()) { 851 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 852 DEBUG(dbgs() << "Live Thru: "; 853 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 854 }; 855 856 // For each live out vreg reduce the pressure change associated with other 857 // uses of the same vreg below the live-out reaching def. 858 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 859 860 // Account for liveness generated by the region boundary. 861 if (LiveRegionEnd != RegionEnd) { 862 SmallVector<unsigned, 8> LiveUses; 863 BotRPTracker.recede(&LiveUses); 864 updatePressureDiffs(LiveUses); 865 } 866 867 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 868 869 // Cache the list of excess pressure sets in this region. This will also track 870 // the max pressure in the scheduled code for these sets. 871 RegionCriticalPSets.clear(); 872 const std::vector<unsigned> &RegionPressure = 873 RPTracker.getPressure().MaxSetPressure; 874 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 875 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 876 if (RegionPressure[i] > Limit) { 877 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 878 << " Limit " << Limit 879 << " Actual " << RegionPressure[i] << "\n"); 880 RegionCriticalPSets.push_back(PressureChange(i)); 881 } 882 } 883 DEBUG(dbgs() << "Excess PSets: "; 884 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 885 dbgs() << TRI->getRegPressureSetName( 886 RegionCriticalPSets[i].getPSet()) << " "; 887 dbgs() << "\n"); 888 } 889 890 void ScheduleDAGMILive:: 891 updateScheduledPressure(const SUnit *SU, 892 const std::vector<unsigned> &NewMaxPressure) { 893 const PressureDiff &PDiff = getPressureDiff(SU); 894 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 895 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 896 I != E; ++I) { 897 if (!I->isValid()) 898 break; 899 unsigned ID = I->getPSet(); 900 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 901 ++CritIdx; 902 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 903 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 904 && NewMaxPressure[ID] <= INT16_MAX) 905 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 906 } 907 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 908 if (NewMaxPressure[ID] >= Limit - 2) { 909 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 910 << NewMaxPressure[ID] << " > " << Limit << "(+ " 911 << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 912 } 913 } 914 } 915 916 /// Update the PressureDiff array for liveness after scheduling this 917 /// instruction. 918 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 919 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 920 /// FIXME: Currently assuming single-use physregs. 921 unsigned Reg = LiveUses[LUIdx]; 922 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 923 if (!TRI->isVirtualRegister(Reg)) 924 continue; 925 926 // This may be called before CurrentBottom has been initialized. However, 927 // BotRPTracker must have a valid position. We want the value live into the 928 // instruction or live out of the block, so ask for the previous 929 // instruction's live-out. 930 const LiveInterval &LI = LIS->getInterval(Reg); 931 VNInfo *VNI; 932 MachineBasicBlock::const_iterator I = 933 nextIfDebug(BotRPTracker.getPos(), BB->end()); 934 if (I == BB->end()) 935 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 936 else { 937 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 938 VNI = LRQ.valueIn(); 939 } 940 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 941 assert(VNI && "No live value at use."); 942 for (VReg2UseMap::iterator 943 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 944 SUnit *SU = UI->SU; 945 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 946 << *SU->getInstr()); 947 // If this use comes before the reaching def, it cannot be a last use, so 948 // descrease its pressure change. 949 if (!SU->isScheduled && SU != &ExitSU) { 950 LiveQueryResult LRQ 951 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 952 if (LRQ.valueIn() == VNI) 953 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 954 } 955 } 956 } 957 } 958 959 /// schedule - Called back from MachineScheduler::runOnMachineFunction 960 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 961 /// only includes instructions that have DAG nodes, not scheduling boundaries. 962 /// 963 /// This is a skeletal driver, with all the functionality pushed into helpers, 964 /// so that it can be easilly extended by experimental schedulers. Generally, 965 /// implementing MachineSchedStrategy should be sufficient to implement a new 966 /// scheduling algorithm. However, if a scheduler further subclasses 967 /// ScheduleDAGMILive then it will want to override this virtual method in order 968 /// to update any specialized state. 969 void ScheduleDAGMILive::schedule() { 970 buildDAGWithRegPressure(); 971 972 Topo.InitDAGTopologicalSorting(); 973 974 postprocessDAG(); 975 976 SmallVector<SUnit*, 8> TopRoots, BotRoots; 977 findRootsAndBiasEdges(TopRoots, BotRoots); 978 979 // Initialize the strategy before modifying the DAG. 980 // This may initialize a DFSResult to be used for queue priority. 981 SchedImpl->initialize(this); 982 983 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 984 SUnits[su].dumpAll(this)); 985 if (ViewMISchedDAGs) viewGraph(); 986 987 // Initialize ready queues now that the DAG and priority data are finalized. 988 initQueues(TopRoots, BotRoots); 989 990 if (ShouldTrackPressure) { 991 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 992 TopRPTracker.setPos(CurrentTop); 993 } 994 995 bool IsTopNode = false; 996 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 997 assert(!SU->isScheduled && "Node already scheduled"); 998 if (!checkSchedLimit()) 999 break; 1000 1001 scheduleMI(SU, IsTopNode); 1002 1003 updateQueues(SU, IsTopNode); 1004 1005 if (DFSResult) { 1006 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1007 if (!ScheduledTrees.test(SubtreeID)) { 1008 ScheduledTrees.set(SubtreeID); 1009 DFSResult->scheduleTree(SubtreeID); 1010 SchedImpl->scheduleTree(SubtreeID); 1011 } 1012 } 1013 1014 // Notify the scheduling strategy after updating the DAG. 1015 SchedImpl->schedNode(SU, IsTopNode); 1016 } 1017 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1018 1019 placeDebugValues(); 1020 1021 DEBUG({ 1022 unsigned BBNum = begin()->getParent()->getNumber(); 1023 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1024 dumpSchedule(); 1025 dbgs() << '\n'; 1026 }); 1027 } 1028 1029 /// Build the DAG and setup three register pressure trackers. 1030 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1031 if (!ShouldTrackPressure) { 1032 RPTracker.reset(); 1033 RegionCriticalPSets.clear(); 1034 buildSchedGraph(AA); 1035 return; 1036 } 1037 1038 // Initialize the register pressure tracker used by buildSchedGraph. 1039 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1040 /*TrackUntiedDefs=*/true); 1041 1042 // Account for liveness generate by the region boundary. 1043 if (LiveRegionEnd != RegionEnd) 1044 RPTracker.recede(); 1045 1046 // Build the DAG, and compute current register pressure. 1047 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1048 1049 // Initialize top/bottom trackers after computing region pressure. 1050 initRegPressure(); 1051 } 1052 1053 void ScheduleDAGMILive::computeDFSResult() { 1054 if (!DFSResult) 1055 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1056 DFSResult->clear(); 1057 ScheduledTrees.clear(); 1058 DFSResult->resize(SUnits.size()); 1059 DFSResult->compute(SUnits); 1060 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1061 } 1062 1063 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1064 /// only provides the critical path for single block loops. To handle loops that 1065 /// span blocks, we could use the vreg path latencies provided by 1066 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1067 /// available for use in the scheduler. 1068 /// 1069 /// The cyclic path estimation identifies a def-use pair that crosses the back 1070 /// edge and considers the depth and height of the nodes. For example, consider 1071 /// the following instruction sequence where each instruction has unit latency 1072 /// and defines an epomymous virtual register: 1073 /// 1074 /// a->b(a,c)->c(b)->d(c)->exit 1075 /// 1076 /// The cyclic critical path is a two cycles: b->c->b 1077 /// The acyclic critical path is four cycles: a->b->c->d->exit 1078 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1079 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1080 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1081 /// LiveInDepth = depth(b) = len(a->b) = 1 1082 /// 1083 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1084 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1085 /// CyclicCriticalPath = min(2, 2) = 2 1086 /// 1087 /// This could be relevant to PostRA scheduling, but is currently implemented 1088 /// assuming LiveIntervals. 1089 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1090 // This only applies to single block loop. 1091 if (!BB->isSuccessor(BB)) 1092 return 0; 1093 1094 unsigned MaxCyclicLatency = 0; 1095 // Visit each live out vreg def to find def/use pairs that cross iterations. 1096 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1097 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1098 RI != RE; ++RI) { 1099 unsigned Reg = *RI; 1100 if (!TRI->isVirtualRegister(Reg)) 1101 continue; 1102 const LiveInterval &LI = LIS->getInterval(Reg); 1103 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1104 if (!DefVNI) 1105 continue; 1106 1107 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1108 const SUnit *DefSU = getSUnit(DefMI); 1109 if (!DefSU) 1110 continue; 1111 1112 unsigned LiveOutHeight = DefSU->getHeight(); 1113 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1114 // Visit all local users of the vreg def. 1115 for (VReg2UseMap::iterator 1116 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1117 if (UI->SU == &ExitSU) 1118 continue; 1119 1120 // Only consider uses of the phi. 1121 LiveQueryResult LRQ = 1122 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1123 if (!LRQ.valueIn()->isPHIDef()) 1124 continue; 1125 1126 // Assume that a path spanning two iterations is a cycle, which could 1127 // overestimate in strange cases. This allows cyclic latency to be 1128 // estimated as the minimum slack of the vreg's depth or height. 1129 unsigned CyclicLatency = 0; 1130 if (LiveOutDepth > UI->SU->getDepth()) 1131 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1132 1133 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1134 if (LiveInHeight > LiveOutHeight) { 1135 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1136 CyclicLatency = LiveInHeight - LiveOutHeight; 1137 } 1138 else 1139 CyclicLatency = 0; 1140 1141 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1142 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1143 if (CyclicLatency > MaxCyclicLatency) 1144 MaxCyclicLatency = CyclicLatency; 1145 } 1146 } 1147 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1148 return MaxCyclicLatency; 1149 } 1150 1151 /// Move an instruction and update register pressure. 1152 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1153 // Move the instruction to its new location in the instruction stream. 1154 MachineInstr *MI = SU->getInstr(); 1155 1156 if (IsTopNode) { 1157 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1158 if (&*CurrentTop == MI) 1159 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1160 else { 1161 moveInstruction(MI, CurrentTop); 1162 TopRPTracker.setPos(MI); 1163 } 1164 1165 if (ShouldTrackPressure) { 1166 // Update top scheduled pressure. 1167 TopRPTracker.advance(); 1168 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1169 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1170 } 1171 } 1172 else { 1173 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1174 MachineBasicBlock::iterator priorII = 1175 priorNonDebug(CurrentBottom, CurrentTop); 1176 if (&*priorII == MI) 1177 CurrentBottom = priorII; 1178 else { 1179 if (&*CurrentTop == MI) { 1180 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1181 TopRPTracker.setPos(CurrentTop); 1182 } 1183 moveInstruction(MI, CurrentBottom); 1184 CurrentBottom = MI; 1185 } 1186 if (ShouldTrackPressure) { 1187 // Update bottom scheduled pressure. 1188 SmallVector<unsigned, 8> LiveUses; 1189 BotRPTracker.recede(&LiveUses); 1190 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1191 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1192 updatePressureDiffs(LiveUses); 1193 } 1194 } 1195 } 1196 1197 //===----------------------------------------------------------------------===// 1198 // LoadClusterMutation - DAG post-processing to cluster loads. 1199 //===----------------------------------------------------------------------===// 1200 1201 namespace { 1202 /// \brief Post-process the DAG to create cluster edges between neighboring 1203 /// loads. 1204 class LoadClusterMutation : public ScheduleDAGMutation { 1205 struct LoadInfo { 1206 SUnit *SU; 1207 unsigned BaseReg; 1208 unsigned Offset; 1209 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1210 : SU(su), BaseReg(reg), Offset(ofs) {} 1211 1212 bool operator<(const LoadInfo &RHS) const { 1213 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1214 } 1215 }; 1216 1217 const TargetInstrInfo *TII; 1218 const TargetRegisterInfo *TRI; 1219 public: 1220 LoadClusterMutation(const TargetInstrInfo *tii, 1221 const TargetRegisterInfo *tri) 1222 : TII(tii), TRI(tri) {} 1223 1224 void apply(ScheduleDAGMI *DAG) override; 1225 protected: 1226 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1227 }; 1228 } // anonymous 1229 1230 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1231 ScheduleDAGMI *DAG) { 1232 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1233 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1234 SUnit *SU = Loads[Idx]; 1235 unsigned BaseReg; 1236 unsigned Offset; 1237 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1238 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1239 } 1240 if (LoadRecords.size() < 2) 1241 return; 1242 std::sort(LoadRecords.begin(), LoadRecords.end()); 1243 unsigned ClusterLength = 1; 1244 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1245 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1246 ClusterLength = 1; 1247 continue; 1248 } 1249 1250 SUnit *SUa = LoadRecords[Idx].SU; 1251 SUnit *SUb = LoadRecords[Idx+1].SU; 1252 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1253 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1254 1255 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1256 << SUb->NodeNum << ")\n"); 1257 // Copy successor edges from SUa to SUb. Interleaving computation 1258 // dependent on SUa can prevent load combining due to register reuse. 1259 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1260 // loads should have effectively the same inputs. 1261 for (SUnit::const_succ_iterator 1262 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1263 if (SI->getSUnit() == SUb) 1264 continue; 1265 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1266 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1267 } 1268 ++ClusterLength; 1269 } 1270 else 1271 ClusterLength = 1; 1272 } 1273 } 1274 1275 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1276 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1277 // Map DAG NodeNum to store chain ID. 1278 DenseMap<unsigned, unsigned> StoreChainIDs; 1279 // Map each store chain to a set of dependent loads. 1280 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1281 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1282 SUnit *SU = &DAG->SUnits[Idx]; 1283 if (!SU->getInstr()->mayLoad()) 1284 continue; 1285 unsigned ChainPredID = DAG->SUnits.size(); 1286 for (SUnit::const_pred_iterator 1287 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1288 if (PI->isCtrl()) { 1289 ChainPredID = PI->getSUnit()->NodeNum; 1290 break; 1291 } 1292 } 1293 // Check if this chain-like pred has been seen 1294 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1295 unsigned NumChains = StoreChainDependents.size(); 1296 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1297 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1298 if (Result.second) 1299 StoreChainDependents.resize(NumChains + 1); 1300 StoreChainDependents[Result.first->second].push_back(SU); 1301 } 1302 // Iterate over the store chains. 1303 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1304 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1305 } 1306 1307 //===----------------------------------------------------------------------===// 1308 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1309 //===----------------------------------------------------------------------===// 1310 1311 namespace { 1312 /// \brief Post-process the DAG to create cluster edges between instructions 1313 /// that may be fused by the processor into a single operation. 1314 class MacroFusion : public ScheduleDAGMutation { 1315 const TargetInstrInfo *TII; 1316 public: 1317 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 1318 1319 void apply(ScheduleDAGMI *DAG) override; 1320 }; 1321 } // anonymous 1322 1323 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1324 /// fused operations. 1325 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1326 // For now, assume targets can only fuse with the branch. 1327 MachineInstr *Branch = DAG->ExitSU.getInstr(); 1328 if (!Branch) 1329 return; 1330 1331 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1332 SUnit *SU = &DAG->SUnits[--Idx]; 1333 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1334 continue; 1335 1336 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1337 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1338 // need to copy predecessor edges from ExitSU to SU, since top-down 1339 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1340 // of SU, we could create an artificial edge from the deepest root, but it 1341 // hasn't been needed yet. 1342 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1343 (void)Success; 1344 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1345 1346 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1347 break; 1348 } 1349 } 1350 1351 //===----------------------------------------------------------------------===// 1352 // CopyConstrain - DAG post-processing to encourage copy elimination. 1353 //===----------------------------------------------------------------------===// 1354 1355 namespace { 1356 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1357 /// the one use that defines the copy's source vreg, most likely an induction 1358 /// variable increment. 1359 class CopyConstrain : public ScheduleDAGMutation { 1360 // Transient state. 1361 SlotIndex RegionBeginIdx; 1362 // RegionEndIdx is the slot index of the last non-debug instruction in the 1363 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1364 SlotIndex RegionEndIdx; 1365 public: 1366 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1367 1368 void apply(ScheduleDAGMI *DAG) override; 1369 1370 protected: 1371 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1372 }; 1373 } // anonymous 1374 1375 /// constrainLocalCopy handles two possibilities: 1376 /// 1) Local src: 1377 /// I0: = dst 1378 /// I1: src = ... 1379 /// I2: = dst 1380 /// I3: dst = src (copy) 1381 /// (create pred->succ edges I0->I1, I2->I1) 1382 /// 1383 /// 2) Local copy: 1384 /// I0: dst = src (copy) 1385 /// I1: = dst 1386 /// I2: src = ... 1387 /// I3: = dst 1388 /// (create pred->succ edges I1->I2, I3->I2) 1389 /// 1390 /// Although the MachineScheduler is currently constrained to single blocks, 1391 /// this algorithm should handle extended blocks. An EBB is a set of 1392 /// contiguously numbered blocks such that the previous block in the EBB is 1393 /// always the single predecessor. 1394 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1395 LiveIntervals *LIS = DAG->getLIS(); 1396 MachineInstr *Copy = CopySU->getInstr(); 1397 1398 // Check for pure vreg copies. 1399 unsigned SrcReg = Copy->getOperand(1).getReg(); 1400 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1401 return; 1402 1403 unsigned DstReg = Copy->getOperand(0).getReg(); 1404 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1405 return; 1406 1407 // Check if either the dest or source is local. If it's live across a back 1408 // edge, it's not local. Note that if both vregs are live across the back 1409 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1410 unsigned LocalReg = DstReg; 1411 unsigned GlobalReg = SrcReg; 1412 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1413 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1414 LocalReg = SrcReg; 1415 GlobalReg = DstReg; 1416 LocalLI = &LIS->getInterval(LocalReg); 1417 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1418 return; 1419 } 1420 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1421 1422 // Find the global segment after the start of the local LI. 1423 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1424 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1425 // local live range. We could create edges from other global uses to the local 1426 // start, but the coalescer should have already eliminated these cases, so 1427 // don't bother dealing with it. 1428 if (GlobalSegment == GlobalLI->end()) 1429 return; 1430 1431 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1432 // returned the next global segment. But if GlobalSegment overlaps with 1433 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1434 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1435 if (GlobalSegment->contains(LocalLI->beginIndex())) 1436 ++GlobalSegment; 1437 1438 if (GlobalSegment == GlobalLI->end()) 1439 return; 1440 1441 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1442 if (GlobalSegment != GlobalLI->begin()) { 1443 // Two address defs have no hole. 1444 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1445 GlobalSegment->start)) { 1446 return; 1447 } 1448 // If the prior global segment may be defined by the same two-address 1449 // instruction that also defines LocalLI, then can't make a hole here. 1450 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1451 LocalLI->beginIndex())) { 1452 return; 1453 } 1454 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1455 // it would be a disconnected component in the live range. 1456 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1457 "Disconnected LRG within the scheduling region."); 1458 } 1459 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1460 if (!GlobalDef) 1461 return; 1462 1463 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1464 if (!GlobalSU) 1465 return; 1466 1467 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1468 // constraining the uses of the last local def to precede GlobalDef. 1469 SmallVector<SUnit*,8> LocalUses; 1470 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1471 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1472 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1473 for (SUnit::const_succ_iterator 1474 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1475 I != E; ++I) { 1476 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1477 continue; 1478 if (I->getSUnit() == GlobalSU) 1479 continue; 1480 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1481 return; 1482 LocalUses.push_back(I->getSUnit()); 1483 } 1484 // Open the top of the GlobalLI hole by constraining any earlier global uses 1485 // to precede the start of LocalLI. 1486 SmallVector<SUnit*,8> GlobalUses; 1487 MachineInstr *FirstLocalDef = 1488 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1489 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1490 for (SUnit::const_pred_iterator 1491 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1492 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1493 continue; 1494 if (I->getSUnit() == FirstLocalSU) 1495 continue; 1496 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1497 return; 1498 GlobalUses.push_back(I->getSUnit()); 1499 } 1500 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1501 // Add the weak edges. 1502 for (SmallVectorImpl<SUnit*>::const_iterator 1503 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1504 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1505 << GlobalSU->NodeNum << ")\n"); 1506 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1507 } 1508 for (SmallVectorImpl<SUnit*>::const_iterator 1509 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1510 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1511 << FirstLocalSU->NodeNum << ")\n"); 1512 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1513 } 1514 } 1515 1516 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1517 /// copy elimination. 1518 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1519 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1520 1521 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1522 if (FirstPos == DAG->end()) 1523 return; 1524 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1525 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1526 &*priorNonDebug(DAG->end(), DAG->begin())); 1527 1528 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1529 SUnit *SU = &DAG->SUnits[Idx]; 1530 if (!SU->getInstr()->isCopy()) 1531 continue; 1532 1533 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1534 } 1535 } 1536 1537 //===----------------------------------------------------------------------===// 1538 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1539 // and possibly other custom schedulers. 1540 //===----------------------------------------------------------------------===// 1541 1542 static const unsigned InvalidCycle = ~0U; 1543 1544 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1545 1546 void SchedBoundary::reset() { 1547 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1548 // Destroying and reconstructing it is very expensive though. So keep 1549 // invalid, placeholder HazardRecs. 1550 if (HazardRec && HazardRec->isEnabled()) { 1551 delete HazardRec; 1552 HazardRec = nullptr; 1553 } 1554 Available.clear(); 1555 Pending.clear(); 1556 CheckPending = false; 1557 NextSUs.clear(); 1558 CurrCycle = 0; 1559 CurrMOps = 0; 1560 MinReadyCycle = UINT_MAX; 1561 ExpectedLatency = 0; 1562 DependentLatency = 0; 1563 RetiredMOps = 0; 1564 MaxExecutedResCount = 0; 1565 ZoneCritResIdx = 0; 1566 IsResourceLimited = false; 1567 ReservedCycles.clear(); 1568 #ifndef NDEBUG 1569 // Track the maximum number of stall cycles that could arise either from the 1570 // latency of a DAG edge or the number of cycles that a processor resource is 1571 // reserved (SchedBoundary::ReservedCycles). 1572 MaxObservedLatency = 0; 1573 #endif 1574 // Reserve a zero-count for invalid CritResIdx. 1575 ExecutedResCounts.resize(1); 1576 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1577 } 1578 1579 void SchedRemainder:: 1580 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1581 reset(); 1582 if (!SchedModel->hasInstrSchedModel()) 1583 return; 1584 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1585 for (std::vector<SUnit>::iterator 1586 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1587 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1588 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1589 * SchedModel->getMicroOpFactor(); 1590 for (TargetSchedModel::ProcResIter 1591 PI = SchedModel->getWriteProcResBegin(SC), 1592 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1593 unsigned PIdx = PI->ProcResourceIdx; 1594 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1595 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1596 } 1597 } 1598 } 1599 1600 void SchedBoundary:: 1601 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1602 reset(); 1603 DAG = dag; 1604 SchedModel = smodel; 1605 Rem = rem; 1606 if (SchedModel->hasInstrSchedModel()) { 1607 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1608 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1609 } 1610 } 1611 1612 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1613 /// these "soft stalls" differently than the hard stall cycles based on CPU 1614 /// resources and computed by checkHazard(). A fully in-order model 1615 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1616 /// available for scheduling until they are ready. However, a weaker in-order 1617 /// model may use this for heuristics. For example, if a processor has in-order 1618 /// behavior when reading certain resources, this may come into play. 1619 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1620 if (!SU->isUnbuffered) 1621 return 0; 1622 1623 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1624 if (ReadyCycle > CurrCycle) 1625 return ReadyCycle - CurrCycle; 1626 return 0; 1627 } 1628 1629 /// Compute the next cycle at which the given processor resource can be 1630 /// scheduled. 1631 unsigned SchedBoundary:: 1632 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1633 unsigned NextUnreserved = ReservedCycles[PIdx]; 1634 // If this resource has never been used, always return cycle zero. 1635 if (NextUnreserved == InvalidCycle) 1636 return 0; 1637 // For bottom-up scheduling add the cycles needed for the current operation. 1638 if (!isTop()) 1639 NextUnreserved += Cycles; 1640 return NextUnreserved; 1641 } 1642 1643 /// Does this SU have a hazard within the current instruction group. 1644 /// 1645 /// The scheduler supports two modes of hazard recognition. The first is the 1646 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1647 /// supports highly complicated in-order reservation tables 1648 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1649 /// 1650 /// The second is a streamlined mechanism that checks for hazards based on 1651 /// simple counters that the scheduler itself maintains. It explicitly checks 1652 /// for instruction dispatch limitations, including the number of micro-ops that 1653 /// can dispatch per cycle. 1654 /// 1655 /// TODO: Also check whether the SU must start a new group. 1656 bool SchedBoundary::checkHazard(SUnit *SU) { 1657 if (HazardRec->isEnabled() 1658 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1659 return true; 1660 } 1661 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1662 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1663 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1664 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1665 return true; 1666 } 1667 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1668 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1669 for (TargetSchedModel::ProcResIter 1670 PI = SchedModel->getWriteProcResBegin(SC), 1671 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1672 if (getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles) > CurrCycle) 1673 return true; 1674 } 1675 } 1676 return false; 1677 } 1678 1679 // Find the unscheduled node in ReadySUs with the highest latency. 1680 unsigned SchedBoundary:: 1681 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1682 SUnit *LateSU = nullptr; 1683 unsigned RemLatency = 0; 1684 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1685 I != E; ++I) { 1686 unsigned L = getUnscheduledLatency(*I); 1687 if (L > RemLatency) { 1688 RemLatency = L; 1689 LateSU = *I; 1690 } 1691 } 1692 if (LateSU) { 1693 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1694 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1695 } 1696 return RemLatency; 1697 } 1698 1699 // Count resources in this zone and the remaining unscheduled 1700 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1701 // resource index, or zero if the zone is issue limited. 1702 unsigned SchedBoundary:: 1703 getOtherResourceCount(unsigned &OtherCritIdx) { 1704 OtherCritIdx = 0; 1705 if (!SchedModel->hasInstrSchedModel()) 1706 return 0; 1707 1708 unsigned OtherCritCount = Rem->RemIssueCount 1709 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1710 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1711 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1712 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1713 PIdx != PEnd; ++PIdx) { 1714 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1715 if (OtherCount > OtherCritCount) { 1716 OtherCritCount = OtherCount; 1717 OtherCritIdx = PIdx; 1718 } 1719 } 1720 if (OtherCritIdx) { 1721 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1722 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1723 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1724 } 1725 return OtherCritCount; 1726 } 1727 1728 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1729 if (ReadyCycle < MinReadyCycle) 1730 MinReadyCycle = ReadyCycle; 1731 1732 // Check for interlocks first. For the purpose of other heuristics, an 1733 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1734 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1735 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1736 Pending.push(SU); 1737 else 1738 Available.push(SU); 1739 1740 // Record this node as an immediate dependent of the scheduled node. 1741 NextSUs.insert(SU); 1742 } 1743 1744 void SchedBoundary::releaseTopNode(SUnit *SU) { 1745 if (SU->isScheduled) 1746 return; 1747 1748 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1749 I != E; ++I) { 1750 if (I->isWeak()) 1751 continue; 1752 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1753 unsigned Latency = I->getLatency(); 1754 #ifndef NDEBUG 1755 MaxObservedLatency = std::max(Latency, MaxObservedLatency); 1756 #endif 1757 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1758 SU->TopReadyCycle = PredReadyCycle + Latency; 1759 } 1760 releaseNode(SU, SU->TopReadyCycle); 1761 } 1762 1763 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1764 if (SU->isScheduled) 1765 return; 1766 1767 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1768 1769 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1770 I != E; ++I) { 1771 if (I->isWeak()) 1772 continue; 1773 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1774 unsigned Latency = I->getLatency(); 1775 #ifndef NDEBUG 1776 MaxObservedLatency = std::max(Latency, MaxObservedLatency); 1777 #endif 1778 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1779 SU->BotReadyCycle = SuccReadyCycle + Latency; 1780 } 1781 releaseNode(SU, SU->BotReadyCycle); 1782 } 1783 1784 /// Move the boundary of scheduled code by one cycle. 1785 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1786 if (SchedModel->getMicroOpBufferSize() == 0) { 1787 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1788 if (MinReadyCycle > NextCycle) 1789 NextCycle = MinReadyCycle; 1790 } 1791 // Update the current micro-ops, which will issue in the next cycle. 1792 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1793 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1794 1795 // Decrement DependentLatency based on the next cycle. 1796 if ((NextCycle - CurrCycle) > DependentLatency) 1797 DependentLatency = 0; 1798 else 1799 DependentLatency -= (NextCycle - CurrCycle); 1800 1801 if (!HazardRec->isEnabled()) { 1802 // Bypass HazardRec virtual calls. 1803 CurrCycle = NextCycle; 1804 } 1805 else { 1806 // Bypass getHazardType calls in case of long latency. 1807 for (; CurrCycle != NextCycle; ++CurrCycle) { 1808 if (isTop()) 1809 HazardRec->AdvanceCycle(); 1810 else 1811 HazardRec->RecedeCycle(); 1812 } 1813 } 1814 CheckPending = true; 1815 unsigned LFactor = SchedModel->getLatencyFactor(); 1816 IsResourceLimited = 1817 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1818 > (int)LFactor; 1819 1820 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1821 } 1822 1823 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1824 ExecutedResCounts[PIdx] += Count; 1825 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1826 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1827 } 1828 1829 /// Add the given processor resource to this scheduled zone. 1830 /// 1831 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1832 /// during which this resource is consumed. 1833 /// 1834 /// \return the next cycle at which the instruction may execute without 1835 /// oversubscribing resources. 1836 unsigned SchedBoundary:: 1837 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1838 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1839 unsigned Count = Factor * Cycles; 1840 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1841 << " +" << Cycles << "x" << Factor << "u\n"); 1842 1843 // Update Executed resources counts. 1844 incExecutedResources(PIdx, Count); 1845 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1846 Rem->RemainingCounts[PIdx] -= Count; 1847 1848 // Check if this resource exceeds the current critical resource. If so, it 1849 // becomes the critical resource. 1850 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1851 ZoneCritResIdx = PIdx; 1852 DEBUG(dbgs() << " *** Critical resource " 1853 << SchedModel->getResourceName(PIdx) << ": " 1854 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1855 } 1856 // For reserved resources, record the highest cycle using the resource. 1857 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1858 if (NextAvailable > CurrCycle) { 1859 DEBUG(dbgs() << " Resource conflict: " 1860 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1861 << NextAvailable << "\n"); 1862 } 1863 return NextAvailable; 1864 } 1865 1866 /// Move the boundary of scheduled code by one SUnit. 1867 void SchedBoundary::bumpNode(SUnit *SU) { 1868 // Update the reservation table. 1869 if (HazardRec->isEnabled()) { 1870 if (!isTop() && SU->isCall) { 1871 // Calls are scheduled with their preceding instructions. For bottom-up 1872 // scheduling, clear the pipeline state before emitting. 1873 HazardRec->Reset(); 1874 } 1875 HazardRec->EmitInstruction(SU); 1876 } 1877 // checkHazard should prevent scheduling multiple instructions per cycle that 1878 // exceed the issue width. 1879 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1880 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1881 assert( 1882 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1883 "Cannot schedule this instruction's MicroOps in the current cycle."); 1884 1885 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1886 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1887 1888 unsigned NextCycle = CurrCycle; 1889 switch (SchedModel->getMicroOpBufferSize()) { 1890 case 0: 1891 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1892 break; 1893 case 1: 1894 if (ReadyCycle > NextCycle) { 1895 NextCycle = ReadyCycle; 1896 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1897 } 1898 break; 1899 default: 1900 // We don't currently model the OOO reorder buffer, so consider all 1901 // scheduled MOps to be "retired". We do loosely model in-order resource 1902 // latency. If this instruction uses an in-order resource, account for any 1903 // likely stall cycles. 1904 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1905 NextCycle = ReadyCycle; 1906 break; 1907 } 1908 RetiredMOps += IncMOps; 1909 1910 // Update resource counts and critical resource. 1911 if (SchedModel->hasInstrSchedModel()) { 1912 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1913 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1914 Rem->RemIssueCount -= DecRemIssue; 1915 if (ZoneCritResIdx) { 1916 // Scale scheduled micro-ops for comparing with the critical resource. 1917 unsigned ScaledMOps = 1918 RetiredMOps * SchedModel->getMicroOpFactor(); 1919 1920 // If scaled micro-ops are now more than the previous critical resource by 1921 // a full cycle, then micro-ops issue becomes critical. 1922 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1923 >= (int)SchedModel->getLatencyFactor()) { 1924 ZoneCritResIdx = 0; 1925 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1926 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1927 } 1928 } 1929 for (TargetSchedModel::ProcResIter 1930 PI = SchedModel->getWriteProcResBegin(SC), 1931 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1932 unsigned RCycle = 1933 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 1934 if (RCycle > NextCycle) 1935 NextCycle = RCycle; 1936 } 1937 if (SU->hasReservedResource) { 1938 // For reserved resources, record the highest cycle using the resource. 1939 // For top-down scheduling, this is the cycle in which we schedule this 1940 // instruction plus the number of cycles the operations reserves the 1941 // resource. For bottom-up is it simply the instruction's cycle. 1942 for (TargetSchedModel::ProcResIter 1943 PI = SchedModel->getWriteProcResBegin(SC), 1944 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1945 unsigned PIdx = PI->ProcResourceIdx; 1946 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 1947 ReservedCycles[PIdx] = isTop() ? NextCycle + PI->Cycles : NextCycle; 1948 #ifndef NDEBUG 1949 MaxObservedLatency = std::max(PI->Cycles, MaxObservedLatency); 1950 #endif 1951 } 1952 } 1953 } 1954 } 1955 // Update ExpectedLatency and DependentLatency. 1956 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 1957 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 1958 if (SU->getDepth() > TopLatency) { 1959 TopLatency = SU->getDepth(); 1960 DEBUG(dbgs() << " " << Available.getName() 1961 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 1962 } 1963 if (SU->getHeight() > BotLatency) { 1964 BotLatency = SU->getHeight(); 1965 DEBUG(dbgs() << " " << Available.getName() 1966 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 1967 } 1968 // If we stall for any reason, bump the cycle. 1969 if (NextCycle > CurrCycle) { 1970 bumpCycle(NextCycle); 1971 } 1972 else { 1973 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 1974 // resource limited. If a stall occurred, bumpCycle does this. 1975 unsigned LFactor = SchedModel->getLatencyFactor(); 1976 IsResourceLimited = 1977 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1978 > (int)LFactor; 1979 } 1980 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 1981 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 1982 // one cycle. Since we commonly reach the max MOps here, opportunistically 1983 // bump the cycle to avoid uselessly checking everything in the readyQ. 1984 CurrMOps += IncMOps; 1985 while (CurrMOps >= SchedModel->getIssueWidth()) { 1986 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 1987 << " at cycle " << CurrCycle << '\n'); 1988 bumpCycle(++NextCycle); 1989 } 1990 DEBUG(dumpScheduledState()); 1991 } 1992 1993 /// Release pending ready nodes in to the available queue. This makes them 1994 /// visible to heuristics. 1995 void SchedBoundary::releasePending() { 1996 // If the available queue is empty, it is safe to reset MinReadyCycle. 1997 if (Available.empty()) 1998 MinReadyCycle = UINT_MAX; 1999 2000 // Check to see if any of the pending instructions are ready to issue. If 2001 // so, add them to the available queue. 2002 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2003 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2004 SUnit *SU = *(Pending.begin()+i); 2005 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2006 2007 if (ReadyCycle < MinReadyCycle) 2008 MinReadyCycle = ReadyCycle; 2009 2010 if (!IsBuffered && ReadyCycle > CurrCycle) 2011 continue; 2012 2013 if (checkHazard(SU)) 2014 continue; 2015 2016 Available.push(SU); 2017 Pending.remove(Pending.begin()+i); 2018 --i; --e; 2019 } 2020 DEBUG(if (!Pending.empty()) Pending.dump()); 2021 CheckPending = false; 2022 } 2023 2024 /// Remove SU from the ready set for this boundary. 2025 void SchedBoundary::removeReady(SUnit *SU) { 2026 if (Available.isInQueue(SU)) 2027 Available.remove(Available.find(SU)); 2028 else { 2029 assert(Pending.isInQueue(SU) && "bad ready count"); 2030 Pending.remove(Pending.find(SU)); 2031 } 2032 } 2033 2034 /// If this queue only has one ready candidate, return it. As a side effect, 2035 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2036 /// one node is ready. If multiple instructions are ready, return NULL. 2037 SUnit *SchedBoundary::pickOnlyChoice() { 2038 if (CheckPending) 2039 releasePending(); 2040 2041 if (CurrMOps > 0) { 2042 // Defer any ready instrs that now have a hazard. 2043 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2044 if (checkHazard(*I)) { 2045 Pending.push(*I); 2046 I = Available.remove(I); 2047 continue; 2048 } 2049 ++I; 2050 } 2051 } 2052 for (unsigned i = 0; Available.empty(); ++i) { 2053 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 2054 "permanent hazard"); (void)i; 2055 bumpCycle(CurrCycle + 1); 2056 releasePending(); 2057 } 2058 if (Available.size() == 1) 2059 return *Available.begin(); 2060 return nullptr; 2061 } 2062 2063 #ifndef NDEBUG 2064 // This is useful information to dump after bumpNode. 2065 // Note that the Queue contents are more useful before pickNodeFromQueue. 2066 void SchedBoundary::dumpScheduledState() { 2067 unsigned ResFactor; 2068 unsigned ResCount; 2069 if (ZoneCritResIdx) { 2070 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2071 ResCount = getResourceCount(ZoneCritResIdx); 2072 } 2073 else { 2074 ResFactor = SchedModel->getMicroOpFactor(); 2075 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2076 } 2077 unsigned LFactor = SchedModel->getLatencyFactor(); 2078 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2079 << " Retired: " << RetiredMOps; 2080 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2081 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2082 << ResCount / ResFactor << " " 2083 << SchedModel->getResourceName(ZoneCritResIdx) 2084 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2085 << (IsResourceLimited ? " - Resource" : " - Latency") 2086 << " limited.\n"; 2087 } 2088 #endif 2089 2090 //===----------------------------------------------------------------------===// 2091 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2092 //===----------------------------------------------------------------------===// 2093 2094 namespace { 2095 /// Base class for GenericScheduler. This class maintains information about 2096 /// scheduling candidates based on TargetSchedModel making it easy to implement 2097 /// heuristics for either preRA or postRA scheduling. 2098 class GenericSchedulerBase : public MachineSchedStrategy { 2099 public: 2100 /// Represent the type of SchedCandidate found within a single queue. 2101 /// pickNodeBidirectional depends on these listed by decreasing priority. 2102 enum CandReason { 2103 NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax, 2104 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 2105 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 2106 2107 #ifndef NDEBUG 2108 static const char *getReasonStr(GenericSchedulerBase::CandReason Reason); 2109 #endif 2110 2111 /// Policy for scheduling the next instruction in the candidate's zone. 2112 struct CandPolicy { 2113 bool ReduceLatency; 2114 unsigned ReduceResIdx; 2115 unsigned DemandResIdx; 2116 2117 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 2118 }; 2119 2120 /// Status of an instruction's critical resource consumption. 2121 struct SchedResourceDelta { 2122 // Count critical resources in the scheduled region required by SU. 2123 unsigned CritResources; 2124 2125 // Count critical resources from another region consumed by SU. 2126 unsigned DemandedResources; 2127 2128 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 2129 2130 bool operator==(const SchedResourceDelta &RHS) const { 2131 return CritResources == RHS.CritResources 2132 && DemandedResources == RHS.DemandedResources; 2133 } 2134 bool operator!=(const SchedResourceDelta &RHS) const { 2135 return !operator==(RHS); 2136 } 2137 }; 2138 2139 /// Store the state used by GenericScheduler heuristics, required for the 2140 /// lifetime of one invocation of pickNode(). 2141 struct SchedCandidate { 2142 CandPolicy Policy; 2143 2144 // The best SUnit candidate. 2145 SUnit *SU; 2146 2147 // The reason for this candidate. 2148 CandReason Reason; 2149 2150 // Set of reasons that apply to multiple candidates. 2151 uint32_t RepeatReasonSet; 2152 2153 // Register pressure values for the best candidate. 2154 RegPressureDelta RPDelta; 2155 2156 // Critical resource consumption of the best candidate. 2157 SchedResourceDelta ResDelta; 2158 2159 SchedCandidate(const CandPolicy &policy) 2160 : Policy(policy), SU(nullptr), Reason(NoCand), RepeatReasonSet(0) {} 2161 2162 bool isValid() const { return SU; } 2163 2164 // Copy the status of another candidate without changing policy. 2165 void setBest(SchedCandidate &Best) { 2166 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 2167 SU = Best.SU; 2168 Reason = Best.Reason; 2169 RPDelta = Best.RPDelta; 2170 ResDelta = Best.ResDelta; 2171 } 2172 2173 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 2174 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 2175 2176 void initResourceDelta(const ScheduleDAGMI *DAG, 2177 const TargetSchedModel *SchedModel); 2178 }; 2179 2180 protected: 2181 const MachineSchedContext *Context; 2182 const TargetSchedModel *SchedModel; 2183 const TargetRegisterInfo *TRI; 2184 2185 SchedRemainder Rem; 2186 protected: 2187 GenericSchedulerBase(const MachineSchedContext *C): 2188 Context(C), SchedModel(nullptr), TRI(nullptr) {} 2189 2190 void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, 2191 SchedBoundary *OtherZone); 2192 2193 #ifndef NDEBUG 2194 void traceCandidate(const SchedCandidate &Cand); 2195 #endif 2196 }; 2197 } // namespace 2198 2199 void GenericSchedulerBase::SchedCandidate:: 2200 initResourceDelta(const ScheduleDAGMI *DAG, 2201 const TargetSchedModel *SchedModel) { 2202 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2203 return; 2204 2205 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2206 for (TargetSchedModel::ProcResIter 2207 PI = SchedModel->getWriteProcResBegin(SC), 2208 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2209 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2210 ResDelta.CritResources += PI->Cycles; 2211 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2212 ResDelta.DemandedResources += PI->Cycles; 2213 } 2214 } 2215 2216 /// Set the CandPolicy given a scheduling zone given the current resources and 2217 /// latencies inside and outside the zone. 2218 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2219 bool IsPostRA, 2220 SchedBoundary &CurrZone, 2221 SchedBoundary *OtherZone) { 2222 // Apply preemptive heuristics based on the the total latency and resources 2223 // inside and outside this zone. Potential stalls should be considered before 2224 // following this policy. 2225 2226 // Compute remaining latency. We need this both to determine whether the 2227 // overall schedule has become latency-limited and whether the instructions 2228 // outside this zone are resource or latency limited. 2229 // 2230 // The "dependent" latency is updated incrementally during scheduling as the 2231 // max height/depth of scheduled nodes minus the cycles since it was 2232 // scheduled: 2233 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2234 // 2235 // The "independent" latency is the max ready queue depth: 2236 // ILat = max N.depth for N in Available|Pending 2237 // 2238 // RemainingLatency is the greater of independent and dependent latency. 2239 unsigned RemLatency = CurrZone.getDependentLatency(); 2240 RemLatency = std::max(RemLatency, 2241 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2242 RemLatency = std::max(RemLatency, 2243 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2244 2245 // Compute the critical resource outside the zone. 2246 unsigned OtherCritIdx = 0; 2247 unsigned OtherCount = 2248 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2249 2250 bool OtherResLimited = false; 2251 if (SchedModel->hasInstrSchedModel()) { 2252 unsigned LFactor = SchedModel->getLatencyFactor(); 2253 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2254 } 2255 // Schedule aggressively for latency in PostRA mode. We don't check for 2256 // acyclic latency during PostRA, and highly out-of-order processors will 2257 // skip PostRA scheduling. 2258 if (!OtherResLimited) { 2259 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2260 Policy.ReduceLatency |= true; 2261 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2262 << " RemainingLatency " << RemLatency << " + " 2263 << CurrZone.getCurrCycle() << "c > CritPath " 2264 << Rem.CriticalPath << "\n"); 2265 } 2266 } 2267 // If the same resource is limiting inside and outside the zone, do nothing. 2268 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2269 return; 2270 2271 DEBUG( 2272 if (CurrZone.isResourceLimited()) { 2273 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2274 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2275 << "\n"; 2276 } 2277 if (OtherResLimited) 2278 dbgs() << " RemainingLimit: " 2279 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2280 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2281 dbgs() << " Latency limited both directions.\n"); 2282 2283 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2284 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2285 2286 if (OtherResLimited) 2287 Policy.DemandResIdx = OtherCritIdx; 2288 } 2289 2290 #ifndef NDEBUG 2291 const char *GenericSchedulerBase::getReasonStr( 2292 GenericSchedulerBase::CandReason Reason) { 2293 switch (Reason) { 2294 case NoCand: return "NOCAND "; 2295 case PhysRegCopy: return "PREG-COPY"; 2296 case RegExcess: return "REG-EXCESS"; 2297 case RegCritical: return "REG-CRIT "; 2298 case Stall: return "STALL "; 2299 case Cluster: return "CLUSTER "; 2300 case Weak: return "WEAK "; 2301 case RegMax: return "REG-MAX "; 2302 case ResourceReduce: return "RES-REDUCE"; 2303 case ResourceDemand: return "RES-DEMAND"; 2304 case TopDepthReduce: return "TOP-DEPTH "; 2305 case TopPathReduce: return "TOP-PATH "; 2306 case BotHeightReduce:return "BOT-HEIGHT"; 2307 case BotPathReduce: return "BOT-PATH "; 2308 case NextDefUse: return "DEF-USE "; 2309 case NodeOrder: return "ORDER "; 2310 }; 2311 llvm_unreachable("Unknown reason!"); 2312 } 2313 2314 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2315 PressureChange P; 2316 unsigned ResIdx = 0; 2317 unsigned Latency = 0; 2318 switch (Cand.Reason) { 2319 default: 2320 break; 2321 case RegExcess: 2322 P = Cand.RPDelta.Excess; 2323 break; 2324 case RegCritical: 2325 P = Cand.RPDelta.CriticalMax; 2326 break; 2327 case RegMax: 2328 P = Cand.RPDelta.CurrentMax; 2329 break; 2330 case ResourceReduce: 2331 ResIdx = Cand.Policy.ReduceResIdx; 2332 break; 2333 case ResourceDemand: 2334 ResIdx = Cand.Policy.DemandResIdx; 2335 break; 2336 case TopDepthReduce: 2337 Latency = Cand.SU->getDepth(); 2338 break; 2339 case TopPathReduce: 2340 Latency = Cand.SU->getHeight(); 2341 break; 2342 case BotHeightReduce: 2343 Latency = Cand.SU->getHeight(); 2344 break; 2345 case BotPathReduce: 2346 Latency = Cand.SU->getDepth(); 2347 break; 2348 } 2349 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2350 if (P.isValid()) 2351 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2352 << ":" << P.getUnitInc() << " "; 2353 else 2354 dbgs() << " "; 2355 if (ResIdx) 2356 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2357 else 2358 dbgs() << " "; 2359 if (Latency) 2360 dbgs() << " " << Latency << " cycles "; 2361 else 2362 dbgs() << " "; 2363 dbgs() << '\n'; 2364 } 2365 #endif 2366 2367 /// Return true if this heuristic determines order. 2368 static bool tryLess(int TryVal, int CandVal, 2369 GenericSchedulerBase::SchedCandidate &TryCand, 2370 GenericSchedulerBase::SchedCandidate &Cand, 2371 GenericSchedulerBase::CandReason Reason) { 2372 if (TryVal < CandVal) { 2373 TryCand.Reason = Reason; 2374 return true; 2375 } 2376 if (TryVal > CandVal) { 2377 if (Cand.Reason > Reason) 2378 Cand.Reason = Reason; 2379 return true; 2380 } 2381 Cand.setRepeat(Reason); 2382 return false; 2383 } 2384 2385 static bool tryGreater(int TryVal, int CandVal, 2386 GenericSchedulerBase::SchedCandidate &TryCand, 2387 GenericSchedulerBase::SchedCandidate &Cand, 2388 GenericSchedulerBase::CandReason Reason) { 2389 if (TryVal > CandVal) { 2390 TryCand.Reason = Reason; 2391 return true; 2392 } 2393 if (TryVal < CandVal) { 2394 if (Cand.Reason > Reason) 2395 Cand.Reason = Reason; 2396 return true; 2397 } 2398 Cand.setRepeat(Reason); 2399 return false; 2400 } 2401 2402 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2403 GenericSchedulerBase::SchedCandidate &Cand, 2404 SchedBoundary &Zone) { 2405 if (Zone.isTop()) { 2406 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2407 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2408 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2409 return true; 2410 } 2411 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2412 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2413 return true; 2414 } 2415 else { 2416 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2417 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2418 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2419 return true; 2420 } 2421 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2422 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2423 return true; 2424 } 2425 return false; 2426 } 2427 2428 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2429 bool IsTop) { 2430 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2431 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2432 } 2433 2434 namespace { 2435 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance 2436 /// the schedule. 2437 class GenericScheduler : public GenericSchedulerBase { 2438 ScheduleDAGMILive *DAG; 2439 2440 // State of the top and bottom scheduled instruction boundaries. 2441 SchedBoundary Top; 2442 SchedBoundary Bot; 2443 2444 MachineSchedPolicy RegionPolicy; 2445 public: 2446 GenericScheduler(const MachineSchedContext *C): 2447 GenericSchedulerBase(C), DAG(nullptr), Top(SchedBoundary::TopQID, "TopQ"), 2448 Bot(SchedBoundary::BotQID, "BotQ") {} 2449 2450 void initPolicy(MachineBasicBlock::iterator Begin, 2451 MachineBasicBlock::iterator End, 2452 unsigned NumRegionInstrs) override; 2453 2454 bool shouldTrackPressure() const override { 2455 return RegionPolicy.ShouldTrackPressure; 2456 } 2457 2458 void initialize(ScheduleDAGMI *dag) override; 2459 2460 SUnit *pickNode(bool &IsTopNode) override; 2461 2462 void schedNode(SUnit *SU, bool IsTopNode) override; 2463 2464 void releaseTopNode(SUnit *SU) override { 2465 Top.releaseTopNode(SU); 2466 } 2467 2468 void releaseBottomNode(SUnit *SU) override { 2469 Bot.releaseBottomNode(SU); 2470 } 2471 2472 void registerRoots() override; 2473 2474 protected: 2475 void checkAcyclicLatency(); 2476 2477 void tryCandidate(SchedCandidate &Cand, 2478 SchedCandidate &TryCand, 2479 SchedBoundary &Zone, 2480 const RegPressureTracker &RPTracker, 2481 RegPressureTracker &TempTracker); 2482 2483 SUnit *pickNodeBidirectional(bool &IsTopNode); 2484 2485 void pickNodeFromQueue(SchedBoundary &Zone, 2486 const RegPressureTracker &RPTracker, 2487 SchedCandidate &Candidate); 2488 2489 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 2490 }; 2491 } // namespace 2492 2493 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2494 assert(dag->hasVRegLiveness() && 2495 "(PreRA)GenericScheduler needs vreg liveness"); 2496 DAG = static_cast<ScheduleDAGMILive*>(dag); 2497 SchedModel = DAG->getSchedModel(); 2498 TRI = DAG->TRI; 2499 2500 Rem.init(DAG, SchedModel); 2501 Top.init(DAG, SchedModel, &Rem); 2502 Bot.init(DAG, SchedModel, &Rem); 2503 2504 // Initialize resource counts. 2505 2506 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2507 // are disabled, then these HazardRecs will be disabled. 2508 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2509 const TargetMachine &TM = DAG->MF.getTarget(); 2510 if (!Top.HazardRec) { 2511 Top.HazardRec = 2512 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2513 } 2514 if (!Bot.HazardRec) { 2515 Bot.HazardRec = 2516 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2517 } 2518 } 2519 2520 /// Initialize the per-region scheduling policy. 2521 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2522 MachineBasicBlock::iterator End, 2523 unsigned NumRegionInstrs) { 2524 const TargetMachine &TM = Context->MF->getTarget(); 2525 const TargetLowering *TLI = TM.getTargetLowering(); 2526 2527 // Avoid setting up the register pressure tracker for small regions to save 2528 // compile time. As a rough heuristic, only track pressure when the number of 2529 // schedulable instructions exceeds half the integer register file. 2530 RegionPolicy.ShouldTrackPressure = true; 2531 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2532 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2533 if (TLI->isTypeLegal(LegalIntVT)) { 2534 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2535 TLI->getRegClassFor(LegalIntVT)); 2536 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2537 } 2538 } 2539 2540 // For generic targets, we default to bottom-up, because it's simpler and more 2541 // compile-time optimizations have been implemented in that direction. 2542 RegionPolicy.OnlyBottomUp = true; 2543 2544 // Allow the subtarget to override default policy. 2545 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 2546 ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs); 2547 2548 // After subtarget overrides, apply command line options. 2549 if (!EnableRegPressure) 2550 RegionPolicy.ShouldTrackPressure = false; 2551 2552 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2553 // e.g. -misched-bottomup=false allows scheduling in both directions. 2554 assert((!ForceTopDown || !ForceBottomUp) && 2555 "-misched-topdown incompatible with -misched-bottomup"); 2556 if (ForceBottomUp.getNumOccurrences() > 0) { 2557 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2558 if (RegionPolicy.OnlyBottomUp) 2559 RegionPolicy.OnlyTopDown = false; 2560 } 2561 if (ForceTopDown.getNumOccurrences() > 0) { 2562 RegionPolicy.OnlyTopDown = ForceTopDown; 2563 if (RegionPolicy.OnlyTopDown) 2564 RegionPolicy.OnlyBottomUp = false; 2565 } 2566 } 2567 2568 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2569 /// critical path by more cycles than it takes to drain the instruction buffer. 2570 /// We estimate an upper bounds on in-flight instructions as: 2571 /// 2572 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2573 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2574 /// InFlightResources = InFlightIterations * LoopResources 2575 /// 2576 /// TODO: Check execution resources in addition to IssueCount. 2577 void GenericScheduler::checkAcyclicLatency() { 2578 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2579 return; 2580 2581 // Scaled number of cycles per loop iteration. 2582 unsigned IterCount = 2583 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2584 Rem.RemIssueCount); 2585 // Scaled acyclic critical path. 2586 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2587 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2588 unsigned InFlightCount = 2589 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2590 unsigned BufferLimit = 2591 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2592 2593 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2594 2595 DEBUG(dbgs() << "IssueCycles=" 2596 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2597 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2598 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2599 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2600 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2601 if (Rem.IsAcyclicLatencyLimited) 2602 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2603 } 2604 2605 void GenericScheduler::registerRoots() { 2606 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2607 2608 // Some roots may not feed into ExitSU. Check all of them in case. 2609 for (std::vector<SUnit*>::const_iterator 2610 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2611 if ((*I)->getDepth() > Rem.CriticalPath) 2612 Rem.CriticalPath = (*I)->getDepth(); 2613 } 2614 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 2615 2616 if (EnableCyclicPath) { 2617 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2618 checkAcyclicLatency(); 2619 } 2620 } 2621 2622 static bool tryPressure(const PressureChange &TryP, 2623 const PressureChange &CandP, 2624 GenericSchedulerBase::SchedCandidate &TryCand, 2625 GenericSchedulerBase::SchedCandidate &Cand, 2626 GenericSchedulerBase::CandReason Reason) { 2627 int TryRank = TryP.getPSetOrMax(); 2628 int CandRank = CandP.getPSetOrMax(); 2629 // If both candidates affect the same set, go with the smallest increase. 2630 if (TryRank == CandRank) { 2631 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2632 Reason); 2633 } 2634 // If one candidate decreases and the other increases, go with it. 2635 // Invalid candidates have UnitInc==0. 2636 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2637 Reason)) { 2638 return true; 2639 } 2640 // If the candidates are decreasing pressure, reverse priority. 2641 if (TryP.getUnitInc() < 0) 2642 std::swap(TryRank, CandRank); 2643 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2644 } 2645 2646 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2647 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2648 } 2649 2650 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2651 /// their physreg def/use. 2652 /// 2653 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2654 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2655 /// with the operation that produces or consumes the physreg. We'll do this when 2656 /// regalloc has support for parallel copies. 2657 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2658 const MachineInstr *MI = SU->getInstr(); 2659 if (!MI->isCopy()) 2660 return 0; 2661 2662 unsigned ScheduledOper = isTop ? 1 : 0; 2663 unsigned UnscheduledOper = isTop ? 0 : 1; 2664 // If we have already scheduled the physreg produce/consumer, immediately 2665 // schedule the copy. 2666 if (TargetRegisterInfo::isPhysicalRegister( 2667 MI->getOperand(ScheduledOper).getReg())) 2668 return 1; 2669 // If the physreg is at the boundary, defer it. Otherwise schedule it 2670 // immediately to free the dependent. We can hoist the copy later. 2671 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2672 if (TargetRegisterInfo::isPhysicalRegister( 2673 MI->getOperand(UnscheduledOper).getReg())) 2674 return AtBoundary ? -1 : 1; 2675 return 0; 2676 } 2677 2678 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2679 /// hierarchical. This may be more efficient than a graduated cost model because 2680 /// we don't need to evaluate all aspects of the model for each node in the 2681 /// queue. But it's really done to make the heuristics easier to debug and 2682 /// statistically analyze. 2683 /// 2684 /// \param Cand provides the policy and current best candidate. 2685 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2686 /// \param Zone describes the scheduled zone that we are extending. 2687 /// \param RPTracker describes reg pressure within the scheduled zone. 2688 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2689 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2690 SchedCandidate &TryCand, 2691 SchedBoundary &Zone, 2692 const RegPressureTracker &RPTracker, 2693 RegPressureTracker &TempTracker) { 2694 2695 if (DAG->isTrackingPressure()) { 2696 // Always initialize TryCand's RPDelta. 2697 if (Zone.isTop()) { 2698 TempTracker.getMaxDownwardPressureDelta( 2699 TryCand.SU->getInstr(), 2700 TryCand.RPDelta, 2701 DAG->getRegionCriticalPSets(), 2702 DAG->getRegPressure().MaxSetPressure); 2703 } 2704 else { 2705 if (VerifyScheduling) { 2706 TempTracker.getMaxUpwardPressureDelta( 2707 TryCand.SU->getInstr(), 2708 &DAG->getPressureDiff(TryCand.SU), 2709 TryCand.RPDelta, 2710 DAG->getRegionCriticalPSets(), 2711 DAG->getRegPressure().MaxSetPressure); 2712 } 2713 else { 2714 RPTracker.getUpwardPressureDelta( 2715 TryCand.SU->getInstr(), 2716 DAG->getPressureDiff(TryCand.SU), 2717 TryCand.RPDelta, 2718 DAG->getRegionCriticalPSets(), 2719 DAG->getRegPressure().MaxSetPressure); 2720 } 2721 } 2722 } 2723 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2724 dbgs() << " SU(" << TryCand.SU->NodeNum << ") " 2725 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2726 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2727 2728 // Initialize the candidate if needed. 2729 if (!Cand.isValid()) { 2730 TryCand.Reason = NodeOrder; 2731 return; 2732 } 2733 2734 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2735 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2736 TryCand, Cand, PhysRegCopy)) 2737 return; 2738 2739 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2740 // invalid; convert it to INT_MAX to give it lowest priority. 2741 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2742 Cand.RPDelta.Excess, 2743 TryCand, Cand, RegExcess)) 2744 return; 2745 2746 // Avoid increasing the max critical pressure in the scheduled region. 2747 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2748 Cand.RPDelta.CriticalMax, 2749 TryCand, Cand, RegCritical)) 2750 return; 2751 2752 // For loops that are acyclic path limited, aggressively schedule for latency. 2753 // This can result in very long dependence chains scheduled in sequence, so 2754 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2755 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2756 && tryLatency(TryCand, Cand, Zone)) 2757 return; 2758 2759 // Prioritize instructions that read unbuffered resources by stall cycles. 2760 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2761 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2762 return; 2763 2764 // Keep clustered nodes together to encourage downstream peephole 2765 // optimizations which may reduce resource requirements. 2766 // 2767 // This is a best effort to set things up for a post-RA pass. Optimizations 2768 // like generating loads of multiple registers should ideally be done within 2769 // the scheduler pass by combining the loads during DAG postprocessing. 2770 const SUnit *NextClusterSU = 2771 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2772 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2773 TryCand, Cand, Cluster)) 2774 return; 2775 2776 // Weak edges are for clustering and other constraints. 2777 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2778 getWeakLeft(Cand.SU, Zone.isTop()), 2779 TryCand, Cand, Weak)) { 2780 return; 2781 } 2782 // Avoid increasing the max pressure of the entire region. 2783 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2784 Cand.RPDelta.CurrentMax, 2785 TryCand, Cand, RegMax)) 2786 return; 2787 2788 // Avoid critical resource consumption and balance the schedule. 2789 TryCand.initResourceDelta(DAG, SchedModel); 2790 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2791 TryCand, Cand, ResourceReduce)) 2792 return; 2793 if (tryGreater(TryCand.ResDelta.DemandedResources, 2794 Cand.ResDelta.DemandedResources, 2795 TryCand, Cand, ResourceDemand)) 2796 return; 2797 2798 // Avoid serializing long latency dependence chains. 2799 // For acyclic path limited loops, latency was already checked above. 2800 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2801 && tryLatency(TryCand, Cand, Zone)) { 2802 return; 2803 } 2804 2805 // Prefer immediate defs/users of the last scheduled instruction. This is a 2806 // local pressure avoidance strategy that also makes the machine code 2807 // readable. 2808 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2809 TryCand, Cand, NextDefUse)) 2810 return; 2811 2812 // Fall through to original instruction order. 2813 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2814 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2815 TryCand.Reason = NodeOrder; 2816 } 2817 } 2818 2819 /// Pick the best candidate from the queue. 2820 /// 2821 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2822 /// DAG building. To adjust for the current scheduling location we need to 2823 /// maintain the number of vreg uses remaining to be top-scheduled. 2824 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2825 const RegPressureTracker &RPTracker, 2826 SchedCandidate &Cand) { 2827 ReadyQueue &Q = Zone.Available; 2828 2829 DEBUG(Q.dump()); 2830 2831 // getMaxPressureDelta temporarily modifies the tracker. 2832 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2833 2834 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2835 2836 SchedCandidate TryCand(Cand.Policy); 2837 TryCand.SU = *I; 2838 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2839 if (TryCand.Reason != NoCand) { 2840 // Initialize resource delta if needed in case future heuristics query it. 2841 if (TryCand.ResDelta == SchedResourceDelta()) 2842 TryCand.initResourceDelta(DAG, SchedModel); 2843 Cand.setBest(TryCand); 2844 DEBUG(traceCandidate(Cand)); 2845 } 2846 } 2847 } 2848 2849 /// Pick the best candidate node from either the top or bottom queue. 2850 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2851 // Schedule as far as possible in the direction of no choice. This is most 2852 // efficient, but also provides the best heuristics for CriticalPSets. 2853 if (SUnit *SU = Bot.pickOnlyChoice()) { 2854 IsTopNode = false; 2855 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2856 return SU; 2857 } 2858 if (SUnit *SU = Top.pickOnlyChoice()) { 2859 IsTopNode = true; 2860 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2861 return SU; 2862 } 2863 CandPolicy NoPolicy; 2864 SchedCandidate BotCand(NoPolicy); 2865 SchedCandidate TopCand(NoPolicy); 2866 // Set the bottom-up policy based on the state of the current bottom zone and 2867 // the instructions outside the zone, including the top zone. 2868 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2869 // Set the top-down policy based on the state of the current top zone and 2870 // the instructions outside the zone, including the bottom zone. 2871 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2872 2873 // Prefer bottom scheduling when heuristics are silent. 2874 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2875 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2876 2877 // If either Q has a single candidate that provides the least increase in 2878 // Excess pressure, we can immediately schedule from that Q. 2879 // 2880 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2881 // affects picking from either Q. If scheduling in one direction must 2882 // increase pressure for one of the excess PSets, then schedule in that 2883 // direction first to provide more freedom in the other direction. 2884 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2885 || (BotCand.Reason == RegCritical 2886 && !BotCand.isRepeat(RegCritical))) 2887 { 2888 IsTopNode = false; 2889 tracePick(BotCand, IsTopNode); 2890 return BotCand.SU; 2891 } 2892 // Check if the top Q has a better candidate. 2893 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2894 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2895 2896 // Choose the queue with the most important (lowest enum) reason. 2897 if (TopCand.Reason < BotCand.Reason) { 2898 IsTopNode = true; 2899 tracePick(TopCand, IsTopNode); 2900 return TopCand.SU; 2901 } 2902 // Otherwise prefer the bottom candidate, in node order if all else failed. 2903 IsTopNode = false; 2904 tracePick(BotCand, IsTopNode); 2905 return BotCand.SU; 2906 } 2907 2908 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2909 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2910 if (DAG->top() == DAG->bottom()) { 2911 assert(Top.Available.empty() && Top.Pending.empty() && 2912 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2913 return nullptr; 2914 } 2915 SUnit *SU; 2916 do { 2917 if (RegionPolicy.OnlyTopDown) { 2918 SU = Top.pickOnlyChoice(); 2919 if (!SU) { 2920 CandPolicy NoPolicy; 2921 SchedCandidate TopCand(NoPolicy); 2922 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2923 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2924 tracePick(TopCand, true); 2925 SU = TopCand.SU; 2926 } 2927 IsTopNode = true; 2928 } 2929 else if (RegionPolicy.OnlyBottomUp) { 2930 SU = Bot.pickOnlyChoice(); 2931 if (!SU) { 2932 CandPolicy NoPolicy; 2933 SchedCandidate BotCand(NoPolicy); 2934 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2935 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2936 tracePick(BotCand, false); 2937 SU = BotCand.SU; 2938 } 2939 IsTopNode = false; 2940 } 2941 else { 2942 SU = pickNodeBidirectional(IsTopNode); 2943 } 2944 } while (SU->isScheduled); 2945 2946 if (SU->isTopReady()) 2947 Top.removeReady(SU); 2948 if (SU->isBottomReady()) 2949 Bot.removeReady(SU); 2950 2951 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2952 return SU; 2953 } 2954 2955 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2956 2957 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2958 if (!isTop) 2959 ++InsertPos; 2960 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2961 2962 // Find already scheduled copies with a single physreg dependence and move 2963 // them just above the scheduled instruction. 2964 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2965 I != E; ++I) { 2966 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2967 continue; 2968 SUnit *DepSU = I->getSUnit(); 2969 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2970 continue; 2971 MachineInstr *Copy = DepSU->getInstr(); 2972 if (!Copy->isCopy()) 2973 continue; 2974 DEBUG(dbgs() << " Rescheduling physreg copy "; 2975 I->getSUnit()->dump(DAG)); 2976 DAG->moveInstruction(Copy, InsertPos); 2977 } 2978 } 2979 2980 /// Update the scheduler's state after scheduling a node. This is the same node 2981 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2982 /// update it's state based on the current cycle before MachineSchedStrategy 2983 /// does. 2984 /// 2985 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2986 /// them here. See comments in biasPhysRegCopy. 2987 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2988 if (IsTopNode) { 2989 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2990 Top.bumpNode(SU); 2991 if (SU->hasPhysRegUses) 2992 reschedulePhysRegCopies(SU, true); 2993 } 2994 else { 2995 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2996 Bot.bumpNode(SU); 2997 if (SU->hasPhysRegDefs) 2998 reschedulePhysRegCopies(SU, false); 2999 } 3000 } 3001 3002 /// Create the standard converging machine scheduler. This will be used as the 3003 /// default scheduler if the target does not set a default. 3004 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3005 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, new GenericScheduler(C)); 3006 // Register DAG post-processors. 3007 // 3008 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3009 // data and pass it to later mutations. Have a single mutation that gathers 3010 // the interesting nodes in one pass. 3011 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 3012 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 3013 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 3014 if (EnableMacroFusion) 3015 DAG->addMutation(new MacroFusion(DAG->TII)); 3016 return DAG; 3017 } 3018 3019 static MachineSchedRegistry 3020 GenericSchedRegistry("converge", "Standard converging scheduler.", 3021 createGenericSchedLive); 3022 3023 //===----------------------------------------------------------------------===// 3024 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3025 //===----------------------------------------------------------------------===// 3026 3027 namespace { 3028 /// PostGenericScheduler - Interface to the scheduling algorithm used by 3029 /// ScheduleDAGMI. 3030 /// 3031 /// Callbacks from ScheduleDAGMI: 3032 /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ... 3033 class PostGenericScheduler : public GenericSchedulerBase { 3034 ScheduleDAGMI *DAG; 3035 SchedBoundary Top; 3036 SmallVector<SUnit*, 8> BotRoots; 3037 public: 3038 PostGenericScheduler(const MachineSchedContext *C): 3039 GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {} 3040 3041 virtual ~PostGenericScheduler() {} 3042 3043 void initPolicy(MachineBasicBlock::iterator Begin, 3044 MachineBasicBlock::iterator End, 3045 unsigned NumRegionInstrs) override { 3046 /* no configurable policy */ 3047 }; 3048 3049 /// PostRA scheduling does not track pressure. 3050 bool shouldTrackPressure() const override { return false; } 3051 3052 void initialize(ScheduleDAGMI *Dag) override { 3053 DAG = Dag; 3054 SchedModel = DAG->getSchedModel(); 3055 TRI = DAG->TRI; 3056 3057 Rem.init(DAG, SchedModel); 3058 Top.init(DAG, SchedModel, &Rem); 3059 BotRoots.clear(); 3060 3061 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3062 // or are disabled, then these HazardRecs will be disabled. 3063 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3064 const TargetMachine &TM = DAG->MF.getTarget(); 3065 if (!Top.HazardRec) { 3066 Top.HazardRec = 3067 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 3068 } 3069 } 3070 3071 void registerRoots() override; 3072 3073 SUnit *pickNode(bool &IsTopNode) override; 3074 3075 void scheduleTree(unsigned SubtreeID) override { 3076 llvm_unreachable("PostRA scheduler does not support subtree analysis."); 3077 } 3078 3079 void schedNode(SUnit *SU, bool IsTopNode) override; 3080 3081 void releaseTopNode(SUnit *SU) override { 3082 Top.releaseTopNode(SU); 3083 } 3084 3085 // Only called for roots. 3086 void releaseBottomNode(SUnit *SU) override { 3087 BotRoots.push_back(SU); 3088 } 3089 3090 protected: 3091 void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand); 3092 3093 void pickNodeFromQueue(SchedCandidate &Cand); 3094 }; 3095 } // namespace 3096 3097 void PostGenericScheduler::registerRoots() { 3098 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3099 3100 // Some roots may not feed into ExitSU. Check all of them in case. 3101 for (SmallVectorImpl<SUnit*>::const_iterator 3102 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3103 if ((*I)->getDepth() > Rem.CriticalPath) 3104 Rem.CriticalPath = (*I)->getDepth(); 3105 } 3106 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 3107 } 3108 3109 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3110 /// 3111 /// \param Cand provides the policy and current best candidate. 3112 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3113 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3114 SchedCandidate &TryCand) { 3115 3116 // Initialize the candidate if needed. 3117 if (!Cand.isValid()) { 3118 TryCand.Reason = NodeOrder; 3119 return; 3120 } 3121 3122 // Prioritize instructions that read unbuffered resources by stall cycles. 3123 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3124 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3125 return; 3126 3127 // Avoid critical resource consumption and balance the schedule. 3128 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3129 TryCand, Cand, ResourceReduce)) 3130 return; 3131 if (tryGreater(TryCand.ResDelta.DemandedResources, 3132 Cand.ResDelta.DemandedResources, 3133 TryCand, Cand, ResourceDemand)) 3134 return; 3135 3136 // Avoid serializing long latency dependence chains. 3137 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3138 return; 3139 } 3140 3141 // Fall through to original instruction order. 3142 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3143 TryCand.Reason = NodeOrder; 3144 } 3145 3146 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3147 ReadyQueue &Q = Top.Available; 3148 3149 DEBUG(Q.dump()); 3150 3151 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3152 SchedCandidate TryCand(Cand.Policy); 3153 TryCand.SU = *I; 3154 TryCand.initResourceDelta(DAG, SchedModel); 3155 tryCandidate(Cand, TryCand); 3156 if (TryCand.Reason != NoCand) { 3157 Cand.setBest(TryCand); 3158 DEBUG(traceCandidate(Cand)); 3159 } 3160 } 3161 } 3162 3163 /// Pick the next node to schedule. 3164 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3165 if (DAG->top() == DAG->bottom()) { 3166 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3167 return nullptr; 3168 } 3169 SUnit *SU; 3170 do { 3171 SU = Top.pickOnlyChoice(); 3172 if (!SU) { 3173 CandPolicy NoPolicy; 3174 SchedCandidate TopCand(NoPolicy); 3175 // Set the top-down policy based on the state of the current top zone and 3176 // the instructions outside the zone, including the bottom zone. 3177 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3178 pickNodeFromQueue(TopCand); 3179 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3180 tracePick(TopCand, true); 3181 SU = TopCand.SU; 3182 } 3183 } while (SU->isScheduled); 3184 3185 IsTopNode = true; 3186 Top.removeReady(SU); 3187 3188 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3189 return SU; 3190 } 3191 3192 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3193 /// scheduled/remaining flags in the DAG nodes. 3194 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3195 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3196 Top.bumpNode(SU); 3197 } 3198 3199 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3200 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3201 return new ScheduleDAGMI(C, new PostGenericScheduler(C), /*IsPostRA=*/true); 3202 } 3203 3204 //===----------------------------------------------------------------------===// 3205 // ILP Scheduler. Currently for experimental analysis of heuristics. 3206 //===----------------------------------------------------------------------===// 3207 3208 namespace { 3209 /// \brief Order nodes by the ILP metric. 3210 struct ILPOrder { 3211 const SchedDFSResult *DFSResult; 3212 const BitVector *ScheduledTrees; 3213 bool MaximizeILP; 3214 3215 ILPOrder(bool MaxILP) 3216 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3217 3218 /// \brief Apply a less-than relation on node priority. 3219 /// 3220 /// (Return true if A comes after B in the Q.) 3221 bool operator()(const SUnit *A, const SUnit *B) const { 3222 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3223 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3224 if (SchedTreeA != SchedTreeB) { 3225 // Unscheduled trees have lower priority. 3226 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3227 return ScheduledTrees->test(SchedTreeB); 3228 3229 // Trees with shallower connections have have lower priority. 3230 if (DFSResult->getSubtreeLevel(SchedTreeA) 3231 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3232 return DFSResult->getSubtreeLevel(SchedTreeA) 3233 < DFSResult->getSubtreeLevel(SchedTreeB); 3234 } 3235 } 3236 if (MaximizeILP) 3237 return DFSResult->getILP(A) < DFSResult->getILP(B); 3238 else 3239 return DFSResult->getILP(A) > DFSResult->getILP(B); 3240 } 3241 }; 3242 3243 /// \brief Schedule based on the ILP metric. 3244 class ILPScheduler : public MachineSchedStrategy { 3245 ScheduleDAGMILive *DAG; 3246 ILPOrder Cmp; 3247 3248 std::vector<SUnit*> ReadyQ; 3249 public: 3250 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3251 3252 void initialize(ScheduleDAGMI *dag) override { 3253 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3254 DAG = static_cast<ScheduleDAGMILive*>(dag); 3255 DAG->computeDFSResult(); 3256 Cmp.DFSResult = DAG->getDFSResult(); 3257 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3258 ReadyQ.clear(); 3259 } 3260 3261 void registerRoots() override { 3262 // Restore the heap in ReadyQ with the updated DFS results. 3263 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3264 } 3265 3266 /// Implement MachineSchedStrategy interface. 3267 /// ----------------------------------------- 3268 3269 /// Callback to select the highest priority node from the ready Q. 3270 SUnit *pickNode(bool &IsTopNode) override { 3271 if (ReadyQ.empty()) return nullptr; 3272 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3273 SUnit *SU = ReadyQ.back(); 3274 ReadyQ.pop_back(); 3275 IsTopNode = false; 3276 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3277 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3278 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3279 << DAG->getDFSResult()->getSubtreeLevel( 3280 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3281 << "Scheduling " << *SU->getInstr()); 3282 return SU; 3283 } 3284 3285 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3286 void scheduleTree(unsigned SubtreeID) override { 3287 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3288 } 3289 3290 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3291 /// DFSResults, and resort the priority Q. 3292 void schedNode(SUnit *SU, bool IsTopNode) override { 3293 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3294 } 3295 3296 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3297 3298 void releaseBottomNode(SUnit *SU) override { 3299 ReadyQ.push_back(SU); 3300 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3301 } 3302 }; 3303 } // namespace 3304 3305 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3306 return new ScheduleDAGMILive(C, new ILPScheduler(true)); 3307 } 3308 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3309 return new ScheduleDAGMILive(C, new ILPScheduler(false)); 3310 } 3311 static MachineSchedRegistry ILPMaxRegistry( 3312 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3313 static MachineSchedRegistry ILPMinRegistry( 3314 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3315 3316 //===----------------------------------------------------------------------===// 3317 // Machine Instruction Shuffler for Correctness Testing 3318 //===----------------------------------------------------------------------===// 3319 3320 #ifndef NDEBUG 3321 namespace { 3322 /// Apply a less-than relation on the node order, which corresponds to the 3323 /// instruction order prior to scheduling. IsReverse implements greater-than. 3324 template<bool IsReverse> 3325 struct SUnitOrder { 3326 bool operator()(SUnit *A, SUnit *B) const { 3327 if (IsReverse) 3328 return A->NodeNum > B->NodeNum; 3329 else 3330 return A->NodeNum < B->NodeNum; 3331 } 3332 }; 3333 3334 /// Reorder instructions as much as possible. 3335 class InstructionShuffler : public MachineSchedStrategy { 3336 bool IsAlternating; 3337 bool IsTopDown; 3338 3339 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3340 // gives nodes with a higher number higher priority causing the latest 3341 // instructions to be scheduled first. 3342 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3343 TopQ; 3344 // When scheduling bottom-up, use greater-than as the queue priority. 3345 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3346 BottomQ; 3347 public: 3348 InstructionShuffler(bool alternate, bool topdown) 3349 : IsAlternating(alternate), IsTopDown(topdown) {} 3350 3351 virtual void initialize(ScheduleDAGMI*) { 3352 TopQ.clear(); 3353 BottomQ.clear(); 3354 } 3355 3356 /// Implement MachineSchedStrategy interface. 3357 /// ----------------------------------------- 3358 3359 virtual SUnit *pickNode(bool &IsTopNode) { 3360 SUnit *SU; 3361 if (IsTopDown) { 3362 do { 3363 if (TopQ.empty()) return nullptr; 3364 SU = TopQ.top(); 3365 TopQ.pop(); 3366 } while (SU->isScheduled); 3367 IsTopNode = true; 3368 } 3369 else { 3370 do { 3371 if (BottomQ.empty()) return nullptr; 3372 SU = BottomQ.top(); 3373 BottomQ.pop(); 3374 } while (SU->isScheduled); 3375 IsTopNode = false; 3376 } 3377 if (IsAlternating) 3378 IsTopDown = !IsTopDown; 3379 return SU; 3380 } 3381 3382 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 3383 3384 virtual void releaseTopNode(SUnit *SU) { 3385 TopQ.push(SU); 3386 } 3387 virtual void releaseBottomNode(SUnit *SU) { 3388 BottomQ.push(SU); 3389 } 3390 }; 3391 } // namespace 3392 3393 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3394 bool Alternate = !ForceTopDown && !ForceBottomUp; 3395 bool TopDown = !ForceBottomUp; 3396 assert((TopDown || !ForceTopDown) && 3397 "-misched-topdown incompatible with -misched-bottomup"); 3398 return new ScheduleDAGMILive(C, new InstructionShuffler(Alternate, TopDown)); 3399 } 3400 static MachineSchedRegistry ShufflerRegistry( 3401 "shuffle", "Shuffle machine instructions alternating directions", 3402 createInstructionShuffler); 3403 #endif // !NDEBUG 3404 3405 //===----------------------------------------------------------------------===// 3406 // GraphWriter support for ScheduleDAGMILive. 3407 //===----------------------------------------------------------------------===// 3408 3409 #ifndef NDEBUG 3410 namespace llvm { 3411 3412 template<> struct GraphTraits< 3413 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3414 3415 template<> 3416 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3417 3418 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3419 3420 static std::string getGraphName(const ScheduleDAG *G) { 3421 return G->MF.getName(); 3422 } 3423 3424 static bool renderGraphFromBottomUp() { 3425 return true; 3426 } 3427 3428 static bool isNodeHidden(const SUnit *Node) { 3429 return (Node->Preds.size() > 10 || Node->Succs.size() > 10); 3430 } 3431 3432 static bool hasNodeAddressLabel(const SUnit *Node, 3433 const ScheduleDAG *Graph) { 3434 return false; 3435 } 3436 3437 /// If you want to override the dot attributes printed for a particular 3438 /// edge, override this method. 3439 static std::string getEdgeAttributes(const SUnit *Node, 3440 SUnitIterator EI, 3441 const ScheduleDAG *Graph) { 3442 if (EI.isArtificialDep()) 3443 return "color=cyan,style=dashed"; 3444 if (EI.isCtrlDep()) 3445 return "color=blue,style=dashed"; 3446 return ""; 3447 } 3448 3449 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3450 std::string Str; 3451 raw_string_ostream SS(Str); 3452 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3453 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3454 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3455 SS << "SU:" << SU->NodeNum; 3456 if (DFS) 3457 SS << " I:" << DFS->getNumInstrs(SU); 3458 return SS.str(); 3459 } 3460 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3461 return G->getGraphNodeLabel(SU); 3462 } 3463 3464 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3465 std::string Str("shape=Mrecord"); 3466 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3467 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3468 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3469 if (DFS) { 3470 Str += ",style=filled,fillcolor=\"#"; 3471 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3472 Str += '"'; 3473 } 3474 return Str; 3475 } 3476 }; 3477 } // namespace llvm 3478 #endif // NDEBUG 3479 3480 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3481 /// rendered using 'dot'. 3482 /// 3483 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3484 #ifndef NDEBUG 3485 ViewGraph(this, Name, false, Title); 3486 #else 3487 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3488 << "systems with Graphviz or gv!\n"; 3489 #endif // NDEBUG 3490 } 3491 3492 /// Out-of-line implementation with no arguments is handy for gdb. 3493 void ScheduleDAGMI::viewGraph() { 3494 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3495 } 3496