xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision be8f8c4478dee41e124650fa9d166eaf5dc6b2be)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include <queue>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "misched"
37 
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                            cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                             cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                        cl::desc("Print critical path length to stdout"));
46 }
47 
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50   cl::desc("Pop up a window to show MISched dags after they are processed"));
51 
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56 
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59 
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61   cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63   cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67 
68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
69   cl::desc("Enable register pressure scheduling."), cl::init(true));
70 
71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
72   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
73 
74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
75   cl::desc("Enable load clustering."), cl::init(true));
76 
77 // Experimental heuristics
78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
79   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
80 
81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
82   cl::desc("Verify machine instrs before and after machine scheduling"));
83 
84 // DAG subtrees must have at least this many nodes.
85 static const unsigned MinSubtreeSize = 8;
86 
87 // Pin the vtables to this file.
88 void MachineSchedStrategy::anchor() {}
89 void ScheduleDAGMutation::anchor() {}
90 
91 //===----------------------------------------------------------------------===//
92 // Machine Instruction Scheduling Pass and Registry
93 //===----------------------------------------------------------------------===//
94 
95 MachineSchedContext::MachineSchedContext():
96     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
97   RegClassInfo = new RegisterClassInfo();
98 }
99 
100 MachineSchedContext::~MachineSchedContext() {
101   delete RegClassInfo;
102 }
103 
104 namespace {
105 /// Base class for a machine scheduler class that can run at any point.
106 class MachineSchedulerBase : public MachineSchedContext,
107                              public MachineFunctionPass {
108 public:
109   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
110 
111   void print(raw_ostream &O, const Module* = nullptr) const override;
112 
113 protected:
114   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
115 };
116 
117 /// MachineScheduler runs after coalescing and before register allocation.
118 class MachineScheduler : public MachineSchedulerBase {
119 public:
120   MachineScheduler();
121 
122   void getAnalysisUsage(AnalysisUsage &AU) const override;
123 
124   bool runOnMachineFunction(MachineFunction&) override;
125 
126   static char ID; // Class identification, replacement for typeinfo
127 
128 protected:
129   ScheduleDAGInstrs *createMachineScheduler();
130 };
131 
132 /// PostMachineScheduler runs after shortly before code emission.
133 class PostMachineScheduler : public MachineSchedulerBase {
134 public:
135   PostMachineScheduler();
136 
137   void getAnalysisUsage(AnalysisUsage &AU) const override;
138 
139   bool runOnMachineFunction(MachineFunction&) override;
140 
141   static char ID; // Class identification, replacement for typeinfo
142 
143 protected:
144   ScheduleDAGInstrs *createPostMachineScheduler();
145 };
146 } // namespace
147 
148 char MachineScheduler::ID = 0;
149 
150 char &llvm::MachineSchedulerID = MachineScheduler::ID;
151 
152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
153                       "Machine Instruction Scheduler", false, false)
154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
158                     "Machine Instruction Scheduler", false, false)
159 
160 MachineScheduler::MachineScheduler()
161 : MachineSchedulerBase(ID) {
162   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
163 }
164 
165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
166   AU.setPreservesCFG();
167   AU.addRequiredID(MachineDominatorsID);
168   AU.addRequired<MachineLoopInfo>();
169   AU.addRequired<AAResultsWrapperPass>();
170   AU.addRequired<TargetPassConfig>();
171   AU.addRequired<SlotIndexes>();
172   AU.addPreserved<SlotIndexes>();
173   AU.addRequired<LiveIntervals>();
174   AU.addPreserved<LiveIntervals>();
175   MachineFunctionPass::getAnalysisUsage(AU);
176 }
177 
178 char PostMachineScheduler::ID = 0;
179 
180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
181 
182 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
183                 "PostRA Machine Instruction Scheduler", false, false)
184 
185 PostMachineScheduler::PostMachineScheduler()
186 : MachineSchedulerBase(ID) {
187   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
188 }
189 
190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
191   AU.setPreservesCFG();
192   AU.addRequiredID(MachineDominatorsID);
193   AU.addRequired<MachineLoopInfo>();
194   AU.addRequired<TargetPassConfig>();
195   MachineFunctionPass::getAnalysisUsage(AU);
196 }
197 
198 MachinePassRegistry MachineSchedRegistry::Registry;
199 
200 /// A dummy default scheduler factory indicates whether the scheduler
201 /// is overridden on the command line.
202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
203   return nullptr;
204 }
205 
206 /// MachineSchedOpt allows command line selection of the scheduler.
207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
208                RegisterPassParser<MachineSchedRegistry> >
209 MachineSchedOpt("misched",
210                 cl::init(&useDefaultMachineSched), cl::Hidden,
211                 cl::desc("Machine instruction scheduler to use"));
212 
213 static MachineSchedRegistry
214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
215                      useDefaultMachineSched);
216 
217 static cl::opt<bool> EnableMachineSched(
218     "enable-misched",
219     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
220     cl::Hidden);
221 
222 static cl::opt<bool> EnablePostRAMachineSched(
223     "enable-post-misched",
224     cl::desc("Enable the post-ra machine instruction scheduling pass."),
225     cl::init(true), cl::Hidden);
226 
227 /// Forward declare the standard machine scheduler. This will be used as the
228 /// default scheduler if the target does not set a default.
229 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
230 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
231 
232 /// Decrement this iterator until reaching the top or a non-debug instr.
233 static MachineBasicBlock::const_iterator
234 priorNonDebug(MachineBasicBlock::const_iterator I,
235               MachineBasicBlock::const_iterator Beg) {
236   assert(I != Beg && "reached the top of the region, cannot decrement");
237   while (--I != Beg) {
238     if (!I->isDebugValue())
239       break;
240   }
241   return I;
242 }
243 
244 /// Non-const version.
245 static MachineBasicBlock::iterator
246 priorNonDebug(MachineBasicBlock::iterator I,
247               MachineBasicBlock::const_iterator Beg) {
248   return const_cast<MachineInstr*>(
249     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
250 }
251 
252 /// If this iterator is a debug value, increment until reaching the End or a
253 /// non-debug instruction.
254 static MachineBasicBlock::const_iterator
255 nextIfDebug(MachineBasicBlock::const_iterator I,
256             MachineBasicBlock::const_iterator End) {
257   for(; I != End; ++I) {
258     if (!I->isDebugValue())
259       break;
260   }
261   return I;
262 }
263 
264 /// Non-const version.
265 static MachineBasicBlock::iterator
266 nextIfDebug(MachineBasicBlock::iterator I,
267             MachineBasicBlock::const_iterator End) {
268   // Cast the return value to nonconst MachineInstr, then cast to an
269   // instr_iterator, which does not check for null, finally return a
270   // bundle_iterator.
271   return MachineBasicBlock::instr_iterator(
272     const_cast<MachineInstr*>(
273       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
274 }
275 
276 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
277 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
278   // Select the scheduler, or set the default.
279   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
280   if (Ctor != useDefaultMachineSched)
281     return Ctor(this);
282 
283   // Get the default scheduler set by the target for this function.
284   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
285   if (Scheduler)
286     return Scheduler;
287 
288   // Default to GenericScheduler.
289   return createGenericSchedLive(this);
290 }
291 
292 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
293 /// the caller. We don't have a command line option to override the postRA
294 /// scheduler. The Target must configure it.
295 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
296   // Get the postRA scheduler set by the target for this function.
297   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
298   if (Scheduler)
299     return Scheduler;
300 
301   // Default to GenericScheduler.
302   return createGenericSchedPostRA(this);
303 }
304 
305 /// Top-level MachineScheduler pass driver.
306 ///
307 /// Visit blocks in function order. Divide each block into scheduling regions
308 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
309 /// consistent with the DAG builder, which traverses the interior of the
310 /// scheduling regions bottom-up.
311 ///
312 /// This design avoids exposing scheduling boundaries to the DAG builder,
313 /// simplifying the DAG builder's support for "special" target instructions.
314 /// At the same time the design allows target schedulers to operate across
315 /// scheduling boundaries, for example to bundle the boudary instructions
316 /// without reordering them. This creates complexity, because the target
317 /// scheduler must update the RegionBegin and RegionEnd positions cached by
318 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
319 /// design would be to split blocks at scheduling boundaries, but LLVM has a
320 /// general bias against block splitting purely for implementation simplicity.
321 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
322   if (skipOptnoneFunction(*mf.getFunction()))
323     return false;
324 
325   if (EnableMachineSched.getNumOccurrences()) {
326     if (!EnableMachineSched)
327       return false;
328   } else if (!mf.getSubtarget().enableMachineScheduler())
329     return false;
330 
331   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
332 
333   // Initialize the context of the pass.
334   MF = &mf;
335   MLI = &getAnalysis<MachineLoopInfo>();
336   MDT = &getAnalysis<MachineDominatorTree>();
337   PassConfig = &getAnalysis<TargetPassConfig>();
338   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339 
340   LIS = &getAnalysis<LiveIntervals>();
341 
342   if (VerifyScheduling) {
343     DEBUG(LIS->dump());
344     MF->verify(this, "Before machine scheduling.");
345   }
346   RegClassInfo->runOnMachineFunction(*MF);
347 
348   // Instantiate the selected scheduler for this target, function, and
349   // optimization level.
350   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
351   scheduleRegions(*Scheduler, false);
352 
353   DEBUG(LIS->dump());
354   if (VerifyScheduling)
355     MF->verify(this, "After machine scheduling.");
356   return true;
357 }
358 
359 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
360   if (skipOptnoneFunction(*mf.getFunction()))
361     return false;
362 
363   if (EnablePostRAMachineSched.getNumOccurrences()) {
364     if (!EnablePostRAMachineSched)
365       return false;
366   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
367     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
368     return false;
369   }
370   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
371 
372   // Initialize the context of the pass.
373   MF = &mf;
374   PassConfig = &getAnalysis<TargetPassConfig>();
375 
376   if (VerifyScheduling)
377     MF->verify(this, "Before post machine scheduling.");
378 
379   // Instantiate the selected scheduler for this target, function, and
380   // optimization level.
381   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
382   scheduleRegions(*Scheduler, true);
383 
384   if (VerifyScheduling)
385     MF->verify(this, "After post machine scheduling.");
386   return true;
387 }
388 
389 /// Return true of the given instruction should not be included in a scheduling
390 /// region.
391 ///
392 /// MachineScheduler does not currently support scheduling across calls. To
393 /// handle calls, the DAG builder needs to be modified to create register
394 /// anti/output dependencies on the registers clobbered by the call's regmask
395 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
396 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
397 /// the boundary, but there would be no benefit to postRA scheduling across
398 /// calls this late anyway.
399 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
400                             MachineBasicBlock *MBB,
401                             MachineFunction *MF,
402                             const TargetInstrInfo *TII) {
403   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
404 }
405 
406 /// Main driver for both MachineScheduler and PostMachineScheduler.
407 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
408                                            bool FixKillFlags) {
409   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
410 
411   // Visit all machine basic blocks.
412   //
413   // TODO: Visit blocks in global postorder or postorder within the bottom-up
414   // loop tree. Then we can optionally compute global RegPressure.
415   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
416        MBB != MBBEnd; ++MBB) {
417 
418     Scheduler.startBlock(&*MBB);
419 
420 #ifndef NDEBUG
421     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
422       continue;
423     if (SchedOnlyBlock.getNumOccurrences()
424         && (int)SchedOnlyBlock != MBB->getNumber())
425       continue;
426 #endif
427 
428     // Break the block into scheduling regions [I, RegionEnd), and schedule each
429     // region as soon as it is discovered. RegionEnd points the scheduling
430     // boundary at the bottom of the region. The DAG does not include RegionEnd,
431     // but the region does (i.e. the next RegionEnd is above the previous
432     // RegionBegin). If the current block has no terminator then RegionEnd ==
433     // MBB->end() for the bottom region.
434     //
435     // The Scheduler may insert instructions during either schedule() or
436     // exitRegion(), even for empty regions. So the local iterators 'I' and
437     // 'RegionEnd' are invalid across these calls.
438     //
439     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
440     // as a single instruction.
441     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
442     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
443         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
444 
445       // Avoid decrementing RegionEnd for blocks with no terminator.
446       if (RegionEnd != MBB->end() ||
447           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
448         --RegionEnd;
449         // Count the boundary instruction.
450         --RemainingInstrs;
451       }
452 
453       // The next region starts above the previous region. Look backward in the
454       // instruction stream until we find the nearest boundary.
455       unsigned NumRegionInstrs = 0;
456       MachineBasicBlock::iterator I = RegionEnd;
457       for(;I != MBB->begin(); --I, --RemainingInstrs) {
458         if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
459           break;
460         if (!I->isDebugValue())
461           ++NumRegionInstrs;
462       }
463       // Notify the scheduler of the region, even if we may skip scheduling
464       // it. Perhaps it still needs to be bundled.
465       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
466 
467       // Skip empty scheduling regions (0 or 1 schedulable instructions).
468       if (I == RegionEnd || I == std::prev(RegionEnd)) {
469         // Close the current region. Bundle the terminator if needed.
470         // This invalidates 'RegionEnd' and 'I'.
471         Scheduler.exitRegion();
472         continue;
473       }
474       DEBUG(dbgs() << "********** MI Scheduling **********\n");
475       DEBUG(dbgs() << MF->getName()
476             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
477             << "\n  From: " << *I << "    To: ";
478             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
479             else dbgs() << "End";
480             dbgs() << " RegionInstrs: " << NumRegionInstrs
481             << " Remaining: " << RemainingInstrs << "\n");
482       if (DumpCriticalPathLength) {
483         errs() << MF->getName();
484         errs() << ":BB# " << MBB->getNumber();
485         errs() << " " << MBB->getName() << " \n";
486       }
487 
488       // Schedule a region: possibly reorder instructions.
489       // This invalidates 'RegionEnd' and 'I'.
490       Scheduler.schedule();
491 
492       // Close the current region.
493       Scheduler.exitRegion();
494 
495       // Scheduling has invalidated the current iterator 'I'. Ask the
496       // scheduler for the top of it's scheduled region.
497       RegionEnd = Scheduler.begin();
498     }
499     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
500     Scheduler.finishBlock();
501     // FIXME: Ideally, no further passes should rely on kill flags. However,
502     // thumb2 size reduction is currently an exception, so the PostMIScheduler
503     // needs to do this.
504     if (FixKillFlags)
505         Scheduler.fixupKills(&*MBB);
506   }
507   Scheduler.finalizeSchedule();
508 }
509 
510 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
511   // unimplemented
512 }
513 
514 LLVM_DUMP_METHOD
515 void ReadyQueue::dump() {
516   dbgs() << "Queue " << Name << ": ";
517   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
518     dbgs() << Queue[i]->NodeNum << " ";
519   dbgs() << "\n";
520 }
521 
522 //===----------------------------------------------------------------------===//
523 // ScheduleDAGMI - Basic machine instruction scheduling. This is
524 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
525 // virtual registers.
526 // ===----------------------------------------------------------------------===/
527 
528 // Provide a vtable anchor.
529 ScheduleDAGMI::~ScheduleDAGMI() {
530 }
531 
532 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
533   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
534 }
535 
536 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
537   if (SuccSU != &ExitSU) {
538     // Do not use WillCreateCycle, it assumes SD scheduling.
539     // If Pred is reachable from Succ, then the edge creates a cycle.
540     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
541       return false;
542     Topo.AddPred(SuccSU, PredDep.getSUnit());
543   }
544   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
545   // Return true regardless of whether a new edge needed to be inserted.
546   return true;
547 }
548 
549 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
550 /// NumPredsLeft reaches zero, release the successor node.
551 ///
552 /// FIXME: Adjust SuccSU height based on MinLatency.
553 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
554   SUnit *SuccSU = SuccEdge->getSUnit();
555 
556   if (SuccEdge->isWeak()) {
557     --SuccSU->WeakPredsLeft;
558     if (SuccEdge->isCluster())
559       NextClusterSucc = SuccSU;
560     return;
561   }
562 #ifndef NDEBUG
563   if (SuccSU->NumPredsLeft == 0) {
564     dbgs() << "*** Scheduling failed! ***\n";
565     SuccSU->dump(this);
566     dbgs() << " has been released too many times!\n";
567     llvm_unreachable(nullptr);
568   }
569 #endif
570   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
571   // CurrCycle may have advanced since then.
572   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
573     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
574 
575   --SuccSU->NumPredsLeft;
576   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
577     SchedImpl->releaseTopNode(SuccSU);
578 }
579 
580 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
581 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
582   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
583        I != E; ++I) {
584     releaseSucc(SU, &*I);
585   }
586 }
587 
588 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
589 /// NumSuccsLeft reaches zero, release the predecessor node.
590 ///
591 /// FIXME: Adjust PredSU height based on MinLatency.
592 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
593   SUnit *PredSU = PredEdge->getSUnit();
594 
595   if (PredEdge->isWeak()) {
596     --PredSU->WeakSuccsLeft;
597     if (PredEdge->isCluster())
598       NextClusterPred = PredSU;
599     return;
600   }
601 #ifndef NDEBUG
602   if (PredSU->NumSuccsLeft == 0) {
603     dbgs() << "*** Scheduling failed! ***\n";
604     PredSU->dump(this);
605     dbgs() << " has been released too many times!\n";
606     llvm_unreachable(nullptr);
607   }
608 #endif
609   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
610   // CurrCycle may have advanced since then.
611   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
612     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
613 
614   --PredSU->NumSuccsLeft;
615   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
616     SchedImpl->releaseBottomNode(PredSU);
617 }
618 
619 /// releasePredecessors - Call releasePred on each of SU's predecessors.
620 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
621   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
622        I != E; ++I) {
623     releasePred(SU, &*I);
624   }
625 }
626 
627 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
628 /// crossing a scheduling boundary. [begin, end) includes all instructions in
629 /// the region, including the boundary itself and single-instruction regions
630 /// that don't get scheduled.
631 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
632                                      MachineBasicBlock::iterator begin,
633                                      MachineBasicBlock::iterator end,
634                                      unsigned regioninstrs)
635 {
636   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
637 
638   SchedImpl->initPolicy(begin, end, regioninstrs);
639 }
640 
641 /// This is normally called from the main scheduler loop but may also be invoked
642 /// by the scheduling strategy to perform additional code motion.
643 void ScheduleDAGMI::moveInstruction(
644   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
645   // Advance RegionBegin if the first instruction moves down.
646   if (&*RegionBegin == MI)
647     ++RegionBegin;
648 
649   // Update the instruction stream.
650   BB->splice(InsertPos, BB, MI);
651 
652   // Update LiveIntervals
653   if (LIS)
654     LIS->handleMove(*MI, /*UpdateFlags=*/true);
655 
656   // Recede RegionBegin if an instruction moves above the first.
657   if (RegionBegin == InsertPos)
658     RegionBegin = MI;
659 }
660 
661 bool ScheduleDAGMI::checkSchedLimit() {
662 #ifndef NDEBUG
663   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
664     CurrentTop = CurrentBottom;
665     return false;
666   }
667   ++NumInstrsScheduled;
668 #endif
669   return true;
670 }
671 
672 /// Per-region scheduling driver, called back from
673 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
674 /// does not consider liveness or register pressure. It is useful for PostRA
675 /// scheduling and potentially other custom schedulers.
676 void ScheduleDAGMI::schedule() {
677   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
678   DEBUG(SchedImpl->dumpPolicy());
679 
680   // Build the DAG.
681   buildSchedGraph(AA);
682 
683   Topo.InitDAGTopologicalSorting();
684 
685   postprocessDAG();
686 
687   SmallVector<SUnit*, 8> TopRoots, BotRoots;
688   findRootsAndBiasEdges(TopRoots, BotRoots);
689 
690   // Initialize the strategy before modifying the DAG.
691   // This may initialize a DFSResult to be used for queue priority.
692   SchedImpl->initialize(this);
693 
694   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
695           SUnits[su].dumpAll(this));
696   if (ViewMISchedDAGs) viewGraph();
697 
698   // Initialize ready queues now that the DAG and priority data are finalized.
699   initQueues(TopRoots, BotRoots);
700 
701   bool IsTopNode = false;
702   while (true) {
703     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
704     SUnit *SU = SchedImpl->pickNode(IsTopNode);
705     if (!SU) break;
706 
707     assert(!SU->isScheduled && "Node already scheduled");
708     if (!checkSchedLimit())
709       break;
710 
711     MachineInstr *MI = SU->getInstr();
712     if (IsTopNode) {
713       assert(SU->isTopReady() && "node still has unscheduled dependencies");
714       if (&*CurrentTop == MI)
715         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
716       else
717         moveInstruction(MI, CurrentTop);
718     }
719     else {
720       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
721       MachineBasicBlock::iterator priorII =
722         priorNonDebug(CurrentBottom, CurrentTop);
723       if (&*priorII == MI)
724         CurrentBottom = priorII;
725       else {
726         if (&*CurrentTop == MI)
727           CurrentTop = nextIfDebug(++CurrentTop, priorII);
728         moveInstruction(MI, CurrentBottom);
729         CurrentBottom = MI;
730       }
731     }
732     // Notify the scheduling strategy before updating the DAG.
733     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
734     // runs, it can then use the accurate ReadyCycle time to determine whether
735     // newly released nodes can move to the readyQ.
736     SchedImpl->schedNode(SU, IsTopNode);
737 
738     updateQueues(SU, IsTopNode);
739   }
740   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
741 
742   placeDebugValues();
743 
744   DEBUG({
745       unsigned BBNum = begin()->getParent()->getNumber();
746       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
747       dumpSchedule();
748       dbgs() << '\n';
749     });
750 }
751 
752 /// Apply each ScheduleDAGMutation step in order.
753 void ScheduleDAGMI::postprocessDAG() {
754   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
755     Mutations[i]->apply(this);
756   }
757 }
758 
759 void ScheduleDAGMI::
760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
761                       SmallVectorImpl<SUnit*> &BotRoots) {
762   for (std::vector<SUnit>::iterator
763          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
764     SUnit *SU = &(*I);
765     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
766 
767     // Order predecessors so DFSResult follows the critical path.
768     SU->biasCriticalPath();
769 
770     // A SUnit is ready to top schedule if it has no predecessors.
771     if (!I->NumPredsLeft)
772       TopRoots.push_back(SU);
773     // A SUnit is ready to bottom schedule if it has no successors.
774     if (!I->NumSuccsLeft)
775       BotRoots.push_back(SU);
776   }
777   ExitSU.biasCriticalPath();
778 }
779 
780 /// Identify DAG roots and setup scheduler queues.
781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
782                                ArrayRef<SUnit*> BotRoots) {
783   NextClusterSucc = nullptr;
784   NextClusterPred = nullptr;
785 
786   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
787   //
788   // Nodes with unreleased weak edges can still be roots.
789   // Release top roots in forward order.
790   for (SmallVectorImpl<SUnit*>::const_iterator
791          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
792     SchedImpl->releaseTopNode(*I);
793   }
794   // Release bottom roots in reverse order so the higher priority nodes appear
795   // first. This is more natural and slightly more efficient.
796   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
797          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
798     SchedImpl->releaseBottomNode(*I);
799   }
800 
801   releaseSuccessors(&EntrySU);
802   releasePredecessors(&ExitSU);
803 
804   SchedImpl->registerRoots();
805 
806   // Advance past initial DebugValues.
807   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
808   CurrentBottom = RegionEnd;
809 }
810 
811 /// Update scheduler queues after scheduling an instruction.
812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
813   // Release dependent instructions for scheduling.
814   if (IsTopNode)
815     releaseSuccessors(SU);
816   else
817     releasePredecessors(SU);
818 
819   SU->isScheduled = true;
820 }
821 
822 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
823 void ScheduleDAGMI::placeDebugValues() {
824   // If first instruction was a DBG_VALUE then put it back.
825   if (FirstDbgValue) {
826     BB->splice(RegionBegin, BB, FirstDbgValue);
827     RegionBegin = FirstDbgValue;
828   }
829 
830   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
831          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
832     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
833     MachineInstr *DbgValue = P.first;
834     MachineBasicBlock::iterator OrigPrevMI = P.second;
835     if (&*RegionBegin == DbgValue)
836       ++RegionBegin;
837     BB->splice(++OrigPrevMI, BB, DbgValue);
838     if (OrigPrevMI == std::prev(RegionEnd))
839       RegionEnd = DbgValue;
840   }
841   DbgValues.clear();
842   FirstDbgValue = nullptr;
843 }
844 
845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
846 void ScheduleDAGMI::dumpSchedule() const {
847   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
848     if (SUnit *SU = getSUnit(&(*MI)))
849       SU->dump(this);
850     else
851       dbgs() << "Missing SUnit\n";
852   }
853 }
854 #endif
855 
856 //===----------------------------------------------------------------------===//
857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
858 // preservation.
859 //===----------------------------------------------------------------------===//
860 
861 ScheduleDAGMILive::~ScheduleDAGMILive() {
862   delete DFSResult;
863 }
864 
865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
866 /// crossing a scheduling boundary. [begin, end) includes all instructions in
867 /// the region, including the boundary itself and single-instruction regions
868 /// that don't get scheduled.
869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
870                                 MachineBasicBlock::iterator begin,
871                                 MachineBasicBlock::iterator end,
872                                 unsigned regioninstrs)
873 {
874   // ScheduleDAGMI initializes SchedImpl's per-region policy.
875   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
876 
877   // For convenience remember the end of the liveness region.
878   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
879 
880   SUPressureDiffs.clear();
881 
882   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
883   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
884 
885   if (ShouldTrackLaneMasks) {
886     if (!ShouldTrackPressure)
887       report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure");
888     // Dead subregister defs have no users and therefore no dependencies,
889     // moving them around may cause liveintervals to degrade into multiple
890     // components. Change independent components to have their own vreg to avoid
891     // this.
892     if (!DisconnectedComponentsRenamed)
893       LIS->renameDisconnectedComponents();
894   }
895 }
896 
897 // Setup the register pressure trackers for the top scheduled top and bottom
898 // scheduled regions.
899 void ScheduleDAGMILive::initRegPressure() {
900   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
901                     ShouldTrackLaneMasks, false);
902   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
903                     ShouldTrackLaneMasks, false);
904 
905   // Close the RPTracker to finalize live ins.
906   RPTracker.closeRegion();
907 
908   DEBUG(RPTracker.dump());
909 
910   // Initialize the live ins and live outs.
911   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
912   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
913 
914   // Close one end of the tracker so we can call
915   // getMaxUpward/DownwardPressureDelta before advancing across any
916   // instructions. This converts currently live regs into live ins/outs.
917   TopRPTracker.closeTop();
918   BotRPTracker.closeBottom();
919 
920   BotRPTracker.initLiveThru(RPTracker);
921   if (!BotRPTracker.getLiveThru().empty()) {
922     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
923     DEBUG(dbgs() << "Live Thru: ";
924           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
925   };
926 
927   // For each live out vreg reduce the pressure change associated with other
928   // uses of the same vreg below the live-out reaching def.
929   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
930 
931   // Account for liveness generated by the region boundary.
932   if (LiveRegionEnd != RegionEnd) {
933     SmallVector<RegisterMaskPair, 8> LiveUses;
934     BotRPTracker.recede(&LiveUses);
935     updatePressureDiffs(LiveUses);
936   }
937 
938   DEBUG(
939     dbgs() << "Top Pressure:\n";
940     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
941     dbgs() << "Bottom Pressure:\n";
942     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
943   );
944 
945   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
946 
947   // Cache the list of excess pressure sets in this region. This will also track
948   // the max pressure in the scheduled code for these sets.
949   RegionCriticalPSets.clear();
950   const std::vector<unsigned> &RegionPressure =
951     RPTracker.getPressure().MaxSetPressure;
952   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
953     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
954     if (RegionPressure[i] > Limit) {
955       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
956             << " Limit " << Limit
957             << " Actual " << RegionPressure[i] << "\n");
958       RegionCriticalPSets.push_back(PressureChange(i));
959     }
960   }
961   DEBUG(dbgs() << "Excess PSets: ";
962         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
963           dbgs() << TRI->getRegPressureSetName(
964             RegionCriticalPSets[i].getPSet()) << " ";
965         dbgs() << "\n");
966 }
967 
968 void ScheduleDAGMILive::
969 updateScheduledPressure(const SUnit *SU,
970                         const std::vector<unsigned> &NewMaxPressure) {
971   const PressureDiff &PDiff = getPressureDiff(SU);
972   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
973   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
974        I != E; ++I) {
975     if (!I->isValid())
976       break;
977     unsigned ID = I->getPSet();
978     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
979       ++CritIdx;
980     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
981       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
982           && NewMaxPressure[ID] <= INT16_MAX)
983         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
984     }
985     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
986     if (NewMaxPressure[ID] >= Limit - 2) {
987       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
988             << NewMaxPressure[ID]
989             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
990             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
991     }
992   }
993 }
994 
995 /// Update the PressureDiff array for liveness after scheduling this
996 /// instruction.
997 void ScheduleDAGMILive::updatePressureDiffs(
998     ArrayRef<RegisterMaskPair> LiveUses) {
999   for (const RegisterMaskPair &P : LiveUses) {
1000     unsigned Reg = P.RegUnit;
1001     /// FIXME: Currently assuming single-use physregs.
1002     if (!TRI->isVirtualRegister(Reg))
1003       continue;
1004 
1005     if (ShouldTrackLaneMasks) {
1006       // If the register has just become live then other uses won't change
1007       // this fact anymore => decrement pressure.
1008       // If the register has just become dead then other uses make it come
1009       // back to life => increment pressure.
1010       bool Decrement = P.LaneMask != 0;
1011 
1012       for (const VReg2SUnit &V2SU
1013            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1014         SUnit &SU = *V2SU.SU;
1015         if (SU.isScheduled || &SU == &ExitSU)
1016           continue;
1017 
1018         PressureDiff &PDiff = getPressureDiff(&SU);
1019         PDiff.addPressureChange(Reg, Decrement, &MRI);
1020         DEBUG(
1021           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1022                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1023                  << ' ' << *SU.getInstr();
1024           dbgs() << "              to ";
1025           PDiff.dump(*TRI);
1026         );
1027       }
1028     } else {
1029       assert(P.LaneMask != 0);
1030       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1031       // This may be called before CurrentBottom has been initialized. However,
1032       // BotRPTracker must have a valid position. We want the value live into the
1033       // instruction or live out of the block, so ask for the previous
1034       // instruction's live-out.
1035       const LiveInterval &LI = LIS->getInterval(Reg);
1036       VNInfo *VNI;
1037       MachineBasicBlock::const_iterator I =
1038         nextIfDebug(BotRPTracker.getPos(), BB->end());
1039       if (I == BB->end())
1040         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1041       else {
1042         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1043         VNI = LRQ.valueIn();
1044       }
1045       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1046       assert(VNI && "No live value at use.");
1047       for (const VReg2SUnit &V2SU
1048            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1049         SUnit *SU = V2SU.SU;
1050         // If this use comes before the reaching def, it cannot be a last use,
1051         // so decrease its pressure change.
1052         if (!SU->isScheduled && SU != &ExitSU) {
1053           LiveQueryResult LRQ =
1054               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1055           if (LRQ.valueIn() == VNI) {
1056             PressureDiff &PDiff = getPressureDiff(SU);
1057             PDiff.addPressureChange(Reg, true, &MRI);
1058             DEBUG(
1059               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1060                      << *SU->getInstr();
1061               dbgs() << "              to ";
1062               PDiff.dump(*TRI);
1063             );
1064           }
1065         }
1066       }
1067     }
1068   }
1069 }
1070 
1071 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1072 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1073 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1074 ///
1075 /// This is a skeletal driver, with all the functionality pushed into helpers,
1076 /// so that it can be easily extended by experimental schedulers. Generally,
1077 /// implementing MachineSchedStrategy should be sufficient to implement a new
1078 /// scheduling algorithm. However, if a scheduler further subclasses
1079 /// ScheduleDAGMILive then it will want to override this virtual method in order
1080 /// to update any specialized state.
1081 void ScheduleDAGMILive::schedule() {
1082   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1083   DEBUG(SchedImpl->dumpPolicy());
1084   buildDAGWithRegPressure();
1085 
1086   Topo.InitDAGTopologicalSorting();
1087 
1088   postprocessDAG();
1089 
1090   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1091   findRootsAndBiasEdges(TopRoots, BotRoots);
1092 
1093   // Initialize the strategy before modifying the DAG.
1094   // This may initialize a DFSResult to be used for queue priority.
1095   SchedImpl->initialize(this);
1096 
1097   DEBUG(
1098     for (const SUnit &SU : SUnits) {
1099       SU.dumpAll(this);
1100       if (ShouldTrackPressure) {
1101         dbgs() << "  Pressure Diff      : ";
1102         getPressureDiff(&SU).dump(*TRI);
1103       }
1104       dbgs() << '\n';
1105     }
1106   );
1107   if (ViewMISchedDAGs) viewGraph();
1108 
1109   // Initialize ready queues now that the DAG and priority data are finalized.
1110   initQueues(TopRoots, BotRoots);
1111 
1112   if (ShouldTrackPressure) {
1113     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1114     TopRPTracker.setPos(CurrentTop);
1115   }
1116 
1117   bool IsTopNode = false;
1118   while (true) {
1119     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1120     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1121     if (!SU) break;
1122 
1123     assert(!SU->isScheduled && "Node already scheduled");
1124     if (!checkSchedLimit())
1125       break;
1126 
1127     scheduleMI(SU, IsTopNode);
1128 
1129     if (DFSResult) {
1130       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1131       if (!ScheduledTrees.test(SubtreeID)) {
1132         ScheduledTrees.set(SubtreeID);
1133         DFSResult->scheduleTree(SubtreeID);
1134         SchedImpl->scheduleTree(SubtreeID);
1135       }
1136     }
1137 
1138     // Notify the scheduling strategy after updating the DAG.
1139     SchedImpl->schedNode(SU, IsTopNode);
1140 
1141     updateQueues(SU, IsTopNode);
1142   }
1143   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1144 
1145   placeDebugValues();
1146 
1147   DEBUG({
1148       unsigned BBNum = begin()->getParent()->getNumber();
1149       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1150       dumpSchedule();
1151       dbgs() << '\n';
1152     });
1153 }
1154 
1155 /// Build the DAG and setup three register pressure trackers.
1156 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1157   if (!ShouldTrackPressure) {
1158     RPTracker.reset();
1159     RegionCriticalPSets.clear();
1160     buildSchedGraph(AA);
1161     return;
1162   }
1163 
1164   // Initialize the register pressure tracker used by buildSchedGraph.
1165   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1166                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1167 
1168   // Account for liveness generate by the region boundary.
1169   if (LiveRegionEnd != RegionEnd)
1170     RPTracker.recede();
1171 
1172   // Build the DAG, and compute current register pressure.
1173   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1174 
1175   // Initialize top/bottom trackers after computing region pressure.
1176   initRegPressure();
1177 }
1178 
1179 void ScheduleDAGMILive::computeDFSResult() {
1180   if (!DFSResult)
1181     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1182   DFSResult->clear();
1183   ScheduledTrees.clear();
1184   DFSResult->resize(SUnits.size());
1185   DFSResult->compute(SUnits);
1186   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1187 }
1188 
1189 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1190 /// only provides the critical path for single block loops. To handle loops that
1191 /// span blocks, we could use the vreg path latencies provided by
1192 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1193 /// available for use in the scheduler.
1194 ///
1195 /// The cyclic path estimation identifies a def-use pair that crosses the back
1196 /// edge and considers the depth and height of the nodes. For example, consider
1197 /// the following instruction sequence where each instruction has unit latency
1198 /// and defines an epomymous virtual register:
1199 ///
1200 /// a->b(a,c)->c(b)->d(c)->exit
1201 ///
1202 /// The cyclic critical path is a two cycles: b->c->b
1203 /// The acyclic critical path is four cycles: a->b->c->d->exit
1204 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1205 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1206 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1207 /// LiveInDepth = depth(b) = len(a->b) = 1
1208 ///
1209 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1210 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1211 /// CyclicCriticalPath = min(2, 2) = 2
1212 ///
1213 /// This could be relevant to PostRA scheduling, but is currently implemented
1214 /// assuming LiveIntervals.
1215 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1216   // This only applies to single block loop.
1217   if (!BB->isSuccessor(BB))
1218     return 0;
1219 
1220   unsigned MaxCyclicLatency = 0;
1221   // Visit each live out vreg def to find def/use pairs that cross iterations.
1222   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1223     unsigned Reg = P.RegUnit;
1224     if (!TRI->isVirtualRegister(Reg))
1225         continue;
1226     const LiveInterval &LI = LIS->getInterval(Reg);
1227     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1228     if (!DefVNI)
1229       continue;
1230 
1231     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1232     const SUnit *DefSU = getSUnit(DefMI);
1233     if (!DefSU)
1234       continue;
1235 
1236     unsigned LiveOutHeight = DefSU->getHeight();
1237     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1238     // Visit all local users of the vreg def.
1239     for (const VReg2SUnit &V2SU
1240          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1241       SUnit *SU = V2SU.SU;
1242       if (SU == &ExitSU)
1243         continue;
1244 
1245       // Only consider uses of the phi.
1246       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1247       if (!LRQ.valueIn()->isPHIDef())
1248         continue;
1249 
1250       // Assume that a path spanning two iterations is a cycle, which could
1251       // overestimate in strange cases. This allows cyclic latency to be
1252       // estimated as the minimum slack of the vreg's depth or height.
1253       unsigned CyclicLatency = 0;
1254       if (LiveOutDepth > SU->getDepth())
1255         CyclicLatency = LiveOutDepth - SU->getDepth();
1256 
1257       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1258       if (LiveInHeight > LiveOutHeight) {
1259         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1260           CyclicLatency = LiveInHeight - LiveOutHeight;
1261       }
1262       else
1263         CyclicLatency = 0;
1264 
1265       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1266             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1267       if (CyclicLatency > MaxCyclicLatency)
1268         MaxCyclicLatency = CyclicLatency;
1269     }
1270   }
1271   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1272   return MaxCyclicLatency;
1273 }
1274 
1275 /// Move an instruction and update register pressure.
1276 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1277   // Move the instruction to its new location in the instruction stream.
1278   MachineInstr *MI = SU->getInstr();
1279 
1280   if (IsTopNode) {
1281     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1282     if (&*CurrentTop == MI)
1283       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1284     else {
1285       moveInstruction(MI, CurrentTop);
1286       TopRPTracker.setPos(MI);
1287     }
1288 
1289     if (ShouldTrackPressure) {
1290       // Update top scheduled pressure.
1291       RegisterOperands RegOpers;
1292       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1293       if (ShouldTrackLaneMasks) {
1294         // Adjust liveness and add missing dead+read-undef flags.
1295         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1296         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1297       } else {
1298         // Adjust for missing dead-def flags.
1299         RegOpers.detectDeadDefs(*MI, *LIS);
1300       }
1301 
1302       TopRPTracker.advance(RegOpers);
1303       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1304       DEBUG(
1305         dbgs() << "Top Pressure:\n";
1306         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1307       );
1308 
1309       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1310     }
1311   }
1312   else {
1313     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1314     MachineBasicBlock::iterator priorII =
1315       priorNonDebug(CurrentBottom, CurrentTop);
1316     if (&*priorII == MI)
1317       CurrentBottom = priorII;
1318     else {
1319       if (&*CurrentTop == MI) {
1320         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1321         TopRPTracker.setPos(CurrentTop);
1322       }
1323       moveInstruction(MI, CurrentBottom);
1324       CurrentBottom = MI;
1325     }
1326     if (ShouldTrackPressure) {
1327       RegisterOperands RegOpers;
1328       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1329       if (ShouldTrackLaneMasks) {
1330         // Adjust liveness and add missing dead+read-undef flags.
1331         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1332         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1333       } else {
1334         // Adjust for missing dead-def flags.
1335         RegOpers.detectDeadDefs(*MI, *LIS);
1336       }
1337 
1338       BotRPTracker.recedeSkipDebugValues();
1339       SmallVector<RegisterMaskPair, 8> LiveUses;
1340       BotRPTracker.recede(RegOpers, &LiveUses);
1341       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1342       DEBUG(
1343         dbgs() << "Bottom Pressure:\n";
1344         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1345       );
1346 
1347       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1348       updatePressureDiffs(LiveUses);
1349     }
1350   }
1351 }
1352 
1353 //===----------------------------------------------------------------------===//
1354 // LoadClusterMutation - DAG post-processing to cluster loads.
1355 //===----------------------------------------------------------------------===//
1356 
1357 namespace {
1358 /// \brief Post-process the DAG to create cluster edges between neighboring
1359 /// loads.
1360 class LoadClusterMutation : public ScheduleDAGMutation {
1361   struct LoadInfo {
1362     SUnit *SU;
1363     unsigned BaseReg;
1364     unsigned Offset;
1365     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1366       : SU(su), BaseReg(reg), Offset(ofs) {}
1367 
1368     bool operator<(const LoadInfo &RHS) const {
1369       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1370     }
1371   };
1372 
1373   const TargetInstrInfo *TII;
1374   const TargetRegisterInfo *TRI;
1375 public:
1376   LoadClusterMutation(const TargetInstrInfo *tii,
1377                       const TargetRegisterInfo *tri)
1378     : TII(tii), TRI(tri) {}
1379 
1380   void apply(ScheduleDAGMI *DAG) override;
1381 protected:
1382   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1383 };
1384 } // anonymous
1385 
1386 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1387                                                   ScheduleDAGMI *DAG) {
1388   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1389   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1390     SUnit *SU = Loads[Idx];
1391     unsigned BaseReg;
1392     unsigned Offset;
1393     if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1394       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1395   }
1396   if (LoadRecords.size() < 2)
1397     return;
1398   std::sort(LoadRecords.begin(), LoadRecords.end());
1399   unsigned ClusterLength = 1;
1400   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1401     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1402       ClusterLength = 1;
1403       continue;
1404     }
1405 
1406     SUnit *SUa = LoadRecords[Idx].SU;
1407     SUnit *SUb = LoadRecords[Idx+1].SU;
1408     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1409         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1410 
1411       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1412             << SUb->NodeNum << ")\n");
1413       // Copy successor edges from SUa to SUb. Interleaving computation
1414       // dependent on SUa can prevent load combining due to register reuse.
1415       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1416       // loads should have effectively the same inputs.
1417       for (SUnit::const_succ_iterator
1418              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1419         if (SI->getSUnit() == SUb)
1420           continue;
1421         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1422         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1423       }
1424       ++ClusterLength;
1425     }
1426     else
1427       ClusterLength = 1;
1428   }
1429 }
1430 
1431 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1432 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1433   // Map DAG NodeNum to store chain ID.
1434   DenseMap<unsigned, unsigned> StoreChainIDs;
1435   // Map each store chain to a set of dependent loads.
1436   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1437   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1438     SUnit *SU = &DAG->SUnits[Idx];
1439     if (!SU->getInstr()->mayLoad())
1440       continue;
1441     unsigned ChainPredID = DAG->SUnits.size();
1442     for (SUnit::const_pred_iterator
1443            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1444       if (PI->isCtrl()) {
1445         ChainPredID = PI->getSUnit()->NodeNum;
1446         break;
1447       }
1448     }
1449     // Check if this chain-like pred has been seen
1450     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1451     unsigned NumChains = StoreChainDependents.size();
1452     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1453       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1454     if (Result.second)
1455       StoreChainDependents.resize(NumChains + 1);
1456     StoreChainDependents[Result.first->second].push_back(SU);
1457   }
1458   // Iterate over the store chains.
1459   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1460     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1461 }
1462 
1463 //===----------------------------------------------------------------------===//
1464 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1465 //===----------------------------------------------------------------------===//
1466 
1467 namespace {
1468 /// \brief Post-process the DAG to create cluster edges between instructions
1469 /// that may be fused by the processor into a single operation.
1470 class MacroFusion : public ScheduleDAGMutation {
1471   const TargetInstrInfo &TII;
1472   const TargetRegisterInfo &TRI;
1473 public:
1474   MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1475     : TII(TII), TRI(TRI) {}
1476 
1477   void apply(ScheduleDAGMI *DAG) override;
1478 };
1479 } // anonymous
1480 
1481 /// Returns true if \p MI reads a register written by \p Other.
1482 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1483                        const MachineInstr &Other) {
1484   for (const MachineOperand &MO : MI.uses()) {
1485     if (!MO.isReg() || !MO.readsReg())
1486       continue;
1487 
1488     unsigned Reg = MO.getReg();
1489     if (Other.modifiesRegister(Reg, &TRI))
1490       return true;
1491   }
1492   return false;
1493 }
1494 
1495 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1496 /// fused operations.
1497 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1498   // For now, assume targets can only fuse with the branch.
1499   SUnit &ExitSU = DAG->ExitSU;
1500   MachineInstr *Branch = ExitSU.getInstr();
1501   if (!Branch)
1502     return;
1503 
1504   for (SUnit &SU : DAG->SUnits) {
1505     // SUnits with successors can't be schedule in front of the ExitSU.
1506     if (!SU.Succs.empty())
1507       continue;
1508     // We only care if the node writes to a register that the branch reads.
1509     MachineInstr *Pred = SU.getInstr();
1510     if (!HasDataDep(TRI, *Branch, *Pred))
1511       continue;
1512 
1513     if (!TII.shouldScheduleAdjacent(Pred, Branch))
1514       continue;
1515 
1516     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1517     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1518     // need to copy predecessor edges from ExitSU to SU, since top-down
1519     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1520     // of SU, we could create an artificial edge from the deepest root, but it
1521     // hasn't been needed yet.
1522     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1523     (void)Success;
1524     assert(Success && "No DAG nodes should be reachable from ExitSU");
1525 
1526     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1527     break;
1528   }
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 // CopyConstrain - DAG post-processing to encourage copy elimination.
1533 //===----------------------------------------------------------------------===//
1534 
1535 namespace {
1536 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1537 /// the one use that defines the copy's source vreg, most likely an induction
1538 /// variable increment.
1539 class CopyConstrain : public ScheduleDAGMutation {
1540   // Transient state.
1541   SlotIndex RegionBeginIdx;
1542   // RegionEndIdx is the slot index of the last non-debug instruction in the
1543   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1544   SlotIndex RegionEndIdx;
1545 public:
1546   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1547 
1548   void apply(ScheduleDAGMI *DAG) override;
1549 
1550 protected:
1551   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1552 };
1553 } // anonymous
1554 
1555 /// constrainLocalCopy handles two possibilities:
1556 /// 1) Local src:
1557 /// I0:     = dst
1558 /// I1: src = ...
1559 /// I2:     = dst
1560 /// I3: dst = src (copy)
1561 /// (create pred->succ edges I0->I1, I2->I1)
1562 ///
1563 /// 2) Local copy:
1564 /// I0: dst = src (copy)
1565 /// I1:     = dst
1566 /// I2: src = ...
1567 /// I3:     = dst
1568 /// (create pred->succ edges I1->I2, I3->I2)
1569 ///
1570 /// Although the MachineScheduler is currently constrained to single blocks,
1571 /// this algorithm should handle extended blocks. An EBB is a set of
1572 /// contiguously numbered blocks such that the previous block in the EBB is
1573 /// always the single predecessor.
1574 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1575   LiveIntervals *LIS = DAG->getLIS();
1576   MachineInstr *Copy = CopySU->getInstr();
1577 
1578   // Check for pure vreg copies.
1579   unsigned SrcReg = Copy->getOperand(1).getReg();
1580   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1581     return;
1582 
1583   unsigned DstReg = Copy->getOperand(0).getReg();
1584   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1585     return;
1586 
1587   // Check if either the dest or source is local. If it's live across a back
1588   // edge, it's not local. Note that if both vregs are live across the back
1589   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1590   // If both the copy's source and dest are local live intervals, then we
1591   // should treat the dest as the global for the purpose of adding
1592   // constraints. This adds edges from source's other uses to the copy.
1593   unsigned LocalReg = SrcReg;
1594   unsigned GlobalReg = DstReg;
1595   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1596   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1597     LocalReg = DstReg;
1598     GlobalReg = SrcReg;
1599     LocalLI = &LIS->getInterval(LocalReg);
1600     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1601       return;
1602   }
1603   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1604 
1605   // Find the global segment after the start of the local LI.
1606   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1607   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1608   // local live range. We could create edges from other global uses to the local
1609   // start, but the coalescer should have already eliminated these cases, so
1610   // don't bother dealing with it.
1611   if (GlobalSegment == GlobalLI->end())
1612     return;
1613 
1614   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1615   // returned the next global segment. But if GlobalSegment overlaps with
1616   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1617   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1618   if (GlobalSegment->contains(LocalLI->beginIndex()))
1619     ++GlobalSegment;
1620 
1621   if (GlobalSegment == GlobalLI->end())
1622     return;
1623 
1624   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1625   if (GlobalSegment != GlobalLI->begin()) {
1626     // Two address defs have no hole.
1627     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1628                                GlobalSegment->start)) {
1629       return;
1630     }
1631     // If the prior global segment may be defined by the same two-address
1632     // instruction that also defines LocalLI, then can't make a hole here.
1633     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1634                                LocalLI->beginIndex())) {
1635       return;
1636     }
1637     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1638     // it would be a disconnected component in the live range.
1639     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1640            "Disconnected LRG within the scheduling region.");
1641   }
1642   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1643   if (!GlobalDef)
1644     return;
1645 
1646   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1647   if (!GlobalSU)
1648     return;
1649 
1650   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1651   // constraining the uses of the last local def to precede GlobalDef.
1652   SmallVector<SUnit*,8> LocalUses;
1653   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1654   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1655   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1656   for (SUnit::const_succ_iterator
1657          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1658        I != E; ++I) {
1659     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1660       continue;
1661     if (I->getSUnit() == GlobalSU)
1662       continue;
1663     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1664       return;
1665     LocalUses.push_back(I->getSUnit());
1666   }
1667   // Open the top of the GlobalLI hole by constraining any earlier global uses
1668   // to precede the start of LocalLI.
1669   SmallVector<SUnit*,8> GlobalUses;
1670   MachineInstr *FirstLocalDef =
1671     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1672   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1673   for (SUnit::const_pred_iterator
1674          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1675     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1676       continue;
1677     if (I->getSUnit() == FirstLocalSU)
1678       continue;
1679     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1680       return;
1681     GlobalUses.push_back(I->getSUnit());
1682   }
1683   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1684   // Add the weak edges.
1685   for (SmallVectorImpl<SUnit*>::const_iterator
1686          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1687     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1688           << GlobalSU->NodeNum << ")\n");
1689     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1690   }
1691   for (SmallVectorImpl<SUnit*>::const_iterator
1692          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1693     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1694           << FirstLocalSU->NodeNum << ")\n");
1695     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1696   }
1697 }
1698 
1699 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1700 /// copy elimination.
1701 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1702   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1703 
1704   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1705   if (FirstPos == DAG->end())
1706     return;
1707   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1708   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1709       *priorNonDebug(DAG->end(), DAG->begin()));
1710 
1711   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1712     SUnit *SU = &DAG->SUnits[Idx];
1713     if (!SU->getInstr()->isCopy())
1714       continue;
1715 
1716     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1717   }
1718 }
1719 
1720 //===----------------------------------------------------------------------===//
1721 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1722 // and possibly other custom schedulers.
1723 //===----------------------------------------------------------------------===//
1724 
1725 static const unsigned InvalidCycle = ~0U;
1726 
1727 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1728 
1729 void SchedBoundary::reset() {
1730   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1731   // Destroying and reconstructing it is very expensive though. So keep
1732   // invalid, placeholder HazardRecs.
1733   if (HazardRec && HazardRec->isEnabled()) {
1734     delete HazardRec;
1735     HazardRec = nullptr;
1736   }
1737   Available.clear();
1738   Pending.clear();
1739   CheckPending = false;
1740   NextSUs.clear();
1741   CurrCycle = 0;
1742   CurrMOps = 0;
1743   MinReadyCycle = UINT_MAX;
1744   ExpectedLatency = 0;
1745   DependentLatency = 0;
1746   RetiredMOps = 0;
1747   MaxExecutedResCount = 0;
1748   ZoneCritResIdx = 0;
1749   IsResourceLimited = false;
1750   ReservedCycles.clear();
1751 #ifndef NDEBUG
1752   // Track the maximum number of stall cycles that could arise either from the
1753   // latency of a DAG edge or the number of cycles that a processor resource is
1754   // reserved (SchedBoundary::ReservedCycles).
1755   MaxObservedStall = 0;
1756 #endif
1757   // Reserve a zero-count for invalid CritResIdx.
1758   ExecutedResCounts.resize(1);
1759   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1760 }
1761 
1762 void SchedRemainder::
1763 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1764   reset();
1765   if (!SchedModel->hasInstrSchedModel())
1766     return;
1767   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1768   for (std::vector<SUnit>::iterator
1769          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1770     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1771     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1772       * SchedModel->getMicroOpFactor();
1773     for (TargetSchedModel::ProcResIter
1774            PI = SchedModel->getWriteProcResBegin(SC),
1775            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1776       unsigned PIdx = PI->ProcResourceIdx;
1777       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1778       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1779     }
1780   }
1781 }
1782 
1783 void SchedBoundary::
1784 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1785   reset();
1786   DAG = dag;
1787   SchedModel = smodel;
1788   Rem = rem;
1789   if (SchedModel->hasInstrSchedModel()) {
1790     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1791     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1792   }
1793 }
1794 
1795 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1796 /// these "soft stalls" differently than the hard stall cycles based on CPU
1797 /// resources and computed by checkHazard(). A fully in-order model
1798 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1799 /// available for scheduling until they are ready. However, a weaker in-order
1800 /// model may use this for heuristics. For example, if a processor has in-order
1801 /// behavior when reading certain resources, this may come into play.
1802 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1803   if (!SU->isUnbuffered)
1804     return 0;
1805 
1806   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1807   if (ReadyCycle > CurrCycle)
1808     return ReadyCycle - CurrCycle;
1809   return 0;
1810 }
1811 
1812 /// Compute the next cycle at which the given processor resource can be
1813 /// scheduled.
1814 unsigned SchedBoundary::
1815 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1816   unsigned NextUnreserved = ReservedCycles[PIdx];
1817   // If this resource has never been used, always return cycle zero.
1818   if (NextUnreserved == InvalidCycle)
1819     return 0;
1820   // For bottom-up scheduling add the cycles needed for the current operation.
1821   if (!isTop())
1822     NextUnreserved += Cycles;
1823   return NextUnreserved;
1824 }
1825 
1826 /// Does this SU have a hazard within the current instruction group.
1827 ///
1828 /// The scheduler supports two modes of hazard recognition. The first is the
1829 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1830 /// supports highly complicated in-order reservation tables
1831 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1832 ///
1833 /// The second is a streamlined mechanism that checks for hazards based on
1834 /// simple counters that the scheduler itself maintains. It explicitly checks
1835 /// for instruction dispatch limitations, including the number of micro-ops that
1836 /// can dispatch per cycle.
1837 ///
1838 /// TODO: Also check whether the SU must start a new group.
1839 bool SchedBoundary::checkHazard(SUnit *SU) {
1840   if (HazardRec->isEnabled()
1841       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1842     return true;
1843   }
1844   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1845   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1846     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1847           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1848     return true;
1849   }
1850   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1851     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1852     for (TargetSchedModel::ProcResIter
1853            PI = SchedModel->getWriteProcResBegin(SC),
1854            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1855       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1856       if (NRCycle > CurrCycle) {
1857 #ifndef NDEBUG
1858         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1859 #endif
1860         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1861               << SchedModel->getResourceName(PI->ProcResourceIdx)
1862               << "=" << NRCycle << "c\n");
1863         return true;
1864       }
1865     }
1866   }
1867   return false;
1868 }
1869 
1870 // Find the unscheduled node in ReadySUs with the highest latency.
1871 unsigned SchedBoundary::
1872 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1873   SUnit *LateSU = nullptr;
1874   unsigned RemLatency = 0;
1875   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1876        I != E; ++I) {
1877     unsigned L = getUnscheduledLatency(*I);
1878     if (L > RemLatency) {
1879       RemLatency = L;
1880       LateSU = *I;
1881     }
1882   }
1883   if (LateSU) {
1884     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1885           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1886   }
1887   return RemLatency;
1888 }
1889 
1890 // Count resources in this zone and the remaining unscheduled
1891 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1892 // resource index, or zero if the zone is issue limited.
1893 unsigned SchedBoundary::
1894 getOtherResourceCount(unsigned &OtherCritIdx) {
1895   OtherCritIdx = 0;
1896   if (!SchedModel->hasInstrSchedModel())
1897     return 0;
1898 
1899   unsigned OtherCritCount = Rem->RemIssueCount
1900     + (RetiredMOps * SchedModel->getMicroOpFactor());
1901   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1902         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1903   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1904        PIdx != PEnd; ++PIdx) {
1905     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1906     if (OtherCount > OtherCritCount) {
1907       OtherCritCount = OtherCount;
1908       OtherCritIdx = PIdx;
1909     }
1910   }
1911   if (OtherCritIdx) {
1912     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1913           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1914           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1915   }
1916   return OtherCritCount;
1917 }
1918 
1919 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1920   assert(SU->getInstr() && "Scheduled SUnit must have instr");
1921 
1922 #ifndef NDEBUG
1923   // ReadyCycle was been bumped up to the CurrCycle when this node was
1924   // scheduled, but CurrCycle may have been eagerly advanced immediately after
1925   // scheduling, so may now be greater than ReadyCycle.
1926   if (ReadyCycle > CurrCycle)
1927     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1928 #endif
1929 
1930   if (ReadyCycle < MinReadyCycle)
1931     MinReadyCycle = ReadyCycle;
1932 
1933   // Check for interlocks first. For the purpose of other heuristics, an
1934   // instruction that cannot issue appears as if it's not in the ReadyQueue.
1935   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1936   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1937     Pending.push(SU);
1938   else
1939     Available.push(SU);
1940 
1941   // Record this node as an immediate dependent of the scheduled node.
1942   NextSUs.insert(SU);
1943 }
1944 
1945 void SchedBoundary::releaseTopNode(SUnit *SU) {
1946   if (SU->isScheduled)
1947     return;
1948 
1949   releaseNode(SU, SU->TopReadyCycle);
1950 }
1951 
1952 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1953   if (SU->isScheduled)
1954     return;
1955 
1956   releaseNode(SU, SU->BotReadyCycle);
1957 }
1958 
1959 /// Move the boundary of scheduled code by one cycle.
1960 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1961   if (SchedModel->getMicroOpBufferSize() == 0) {
1962     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1963     if (MinReadyCycle > NextCycle)
1964       NextCycle = MinReadyCycle;
1965   }
1966   // Update the current micro-ops, which will issue in the next cycle.
1967   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1968   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1969 
1970   // Decrement DependentLatency based on the next cycle.
1971   if ((NextCycle - CurrCycle) > DependentLatency)
1972     DependentLatency = 0;
1973   else
1974     DependentLatency -= (NextCycle - CurrCycle);
1975 
1976   if (!HazardRec->isEnabled()) {
1977     // Bypass HazardRec virtual calls.
1978     CurrCycle = NextCycle;
1979   }
1980   else {
1981     // Bypass getHazardType calls in case of long latency.
1982     for (; CurrCycle != NextCycle; ++CurrCycle) {
1983       if (isTop())
1984         HazardRec->AdvanceCycle();
1985       else
1986         HazardRec->RecedeCycle();
1987     }
1988   }
1989   CheckPending = true;
1990   unsigned LFactor = SchedModel->getLatencyFactor();
1991   IsResourceLimited =
1992     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1993     > (int)LFactor;
1994 
1995   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1996 }
1997 
1998 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1999   ExecutedResCounts[PIdx] += Count;
2000   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2001     MaxExecutedResCount = ExecutedResCounts[PIdx];
2002 }
2003 
2004 /// Add the given processor resource to this scheduled zone.
2005 ///
2006 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2007 /// during which this resource is consumed.
2008 ///
2009 /// \return the next cycle at which the instruction may execute without
2010 /// oversubscribing resources.
2011 unsigned SchedBoundary::
2012 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2013   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2014   unsigned Count = Factor * Cycles;
2015   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2016         << " +" << Cycles << "x" << Factor << "u\n");
2017 
2018   // Update Executed resources counts.
2019   incExecutedResources(PIdx, Count);
2020   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2021   Rem->RemainingCounts[PIdx] -= Count;
2022 
2023   // Check if this resource exceeds the current critical resource. If so, it
2024   // becomes the critical resource.
2025   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2026     ZoneCritResIdx = PIdx;
2027     DEBUG(dbgs() << "  *** Critical resource "
2028           << SchedModel->getResourceName(PIdx) << ": "
2029           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2030   }
2031   // For reserved resources, record the highest cycle using the resource.
2032   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2033   if (NextAvailable > CurrCycle) {
2034     DEBUG(dbgs() << "  Resource conflict: "
2035           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2036           << NextAvailable << "\n");
2037   }
2038   return NextAvailable;
2039 }
2040 
2041 /// Move the boundary of scheduled code by one SUnit.
2042 void SchedBoundary::bumpNode(SUnit *SU) {
2043   // Update the reservation table.
2044   if (HazardRec->isEnabled()) {
2045     if (!isTop() && SU->isCall) {
2046       // Calls are scheduled with their preceding instructions. For bottom-up
2047       // scheduling, clear the pipeline state before emitting.
2048       HazardRec->Reset();
2049     }
2050     HazardRec->EmitInstruction(SU);
2051   }
2052   // checkHazard should prevent scheduling multiple instructions per cycle that
2053   // exceed the issue width.
2054   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2055   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2056   assert(
2057       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2058       "Cannot schedule this instruction's MicroOps in the current cycle.");
2059 
2060   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2061   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2062 
2063   unsigned NextCycle = CurrCycle;
2064   switch (SchedModel->getMicroOpBufferSize()) {
2065   case 0:
2066     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2067     break;
2068   case 1:
2069     if (ReadyCycle > NextCycle) {
2070       NextCycle = ReadyCycle;
2071       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2072     }
2073     break;
2074   default:
2075     // We don't currently model the OOO reorder buffer, so consider all
2076     // scheduled MOps to be "retired". We do loosely model in-order resource
2077     // latency. If this instruction uses an in-order resource, account for any
2078     // likely stall cycles.
2079     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2080       NextCycle = ReadyCycle;
2081     break;
2082   }
2083   RetiredMOps += IncMOps;
2084 
2085   // Update resource counts and critical resource.
2086   if (SchedModel->hasInstrSchedModel()) {
2087     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2088     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2089     Rem->RemIssueCount -= DecRemIssue;
2090     if (ZoneCritResIdx) {
2091       // Scale scheduled micro-ops for comparing with the critical resource.
2092       unsigned ScaledMOps =
2093         RetiredMOps * SchedModel->getMicroOpFactor();
2094 
2095       // If scaled micro-ops are now more than the previous critical resource by
2096       // a full cycle, then micro-ops issue becomes critical.
2097       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2098           >= (int)SchedModel->getLatencyFactor()) {
2099         ZoneCritResIdx = 0;
2100         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2101               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2102       }
2103     }
2104     for (TargetSchedModel::ProcResIter
2105            PI = SchedModel->getWriteProcResBegin(SC),
2106            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2107       unsigned RCycle =
2108         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2109       if (RCycle > NextCycle)
2110         NextCycle = RCycle;
2111     }
2112     if (SU->hasReservedResource) {
2113       // For reserved resources, record the highest cycle using the resource.
2114       // For top-down scheduling, this is the cycle in which we schedule this
2115       // instruction plus the number of cycles the operations reserves the
2116       // resource. For bottom-up is it simply the instruction's cycle.
2117       for (TargetSchedModel::ProcResIter
2118              PI = SchedModel->getWriteProcResBegin(SC),
2119              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2120         unsigned PIdx = PI->ProcResourceIdx;
2121         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2122           if (isTop()) {
2123             ReservedCycles[PIdx] =
2124               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2125           }
2126           else
2127             ReservedCycles[PIdx] = NextCycle;
2128         }
2129       }
2130     }
2131   }
2132   // Update ExpectedLatency and DependentLatency.
2133   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2134   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2135   if (SU->getDepth() > TopLatency) {
2136     TopLatency = SU->getDepth();
2137     DEBUG(dbgs() << "  " << Available.getName()
2138           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2139   }
2140   if (SU->getHeight() > BotLatency) {
2141     BotLatency = SU->getHeight();
2142     DEBUG(dbgs() << "  " << Available.getName()
2143           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2144   }
2145   // If we stall for any reason, bump the cycle.
2146   if (NextCycle > CurrCycle) {
2147     bumpCycle(NextCycle);
2148   }
2149   else {
2150     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2151     // resource limited. If a stall occurred, bumpCycle does this.
2152     unsigned LFactor = SchedModel->getLatencyFactor();
2153     IsResourceLimited =
2154       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2155       > (int)LFactor;
2156   }
2157   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2158   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2159   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2160   // bump the cycle to avoid uselessly checking everything in the readyQ.
2161   CurrMOps += IncMOps;
2162   while (CurrMOps >= SchedModel->getIssueWidth()) {
2163     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2164           << " at cycle " << CurrCycle << '\n');
2165     bumpCycle(++NextCycle);
2166   }
2167   DEBUG(dumpScheduledState());
2168 }
2169 
2170 /// Release pending ready nodes in to the available queue. This makes them
2171 /// visible to heuristics.
2172 void SchedBoundary::releasePending() {
2173   // If the available queue is empty, it is safe to reset MinReadyCycle.
2174   if (Available.empty())
2175     MinReadyCycle = UINT_MAX;
2176 
2177   // Check to see if any of the pending instructions are ready to issue.  If
2178   // so, add them to the available queue.
2179   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2180   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2181     SUnit *SU = *(Pending.begin()+i);
2182     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2183 
2184     if (ReadyCycle < MinReadyCycle)
2185       MinReadyCycle = ReadyCycle;
2186 
2187     if (!IsBuffered && ReadyCycle > CurrCycle)
2188       continue;
2189 
2190     if (checkHazard(SU))
2191       continue;
2192 
2193     Available.push(SU);
2194     Pending.remove(Pending.begin()+i);
2195     --i; --e;
2196   }
2197   DEBUG(if (!Pending.empty()) Pending.dump());
2198   CheckPending = false;
2199 }
2200 
2201 /// Remove SU from the ready set for this boundary.
2202 void SchedBoundary::removeReady(SUnit *SU) {
2203   if (Available.isInQueue(SU))
2204     Available.remove(Available.find(SU));
2205   else {
2206     assert(Pending.isInQueue(SU) && "bad ready count");
2207     Pending.remove(Pending.find(SU));
2208   }
2209 }
2210 
2211 /// If this queue only has one ready candidate, return it. As a side effect,
2212 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2213 /// one node is ready. If multiple instructions are ready, return NULL.
2214 SUnit *SchedBoundary::pickOnlyChoice() {
2215   if (CheckPending)
2216     releasePending();
2217 
2218   if (CurrMOps > 0) {
2219     // Defer any ready instrs that now have a hazard.
2220     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2221       if (checkHazard(*I)) {
2222         Pending.push(*I);
2223         I = Available.remove(I);
2224         continue;
2225       }
2226       ++I;
2227     }
2228   }
2229   for (unsigned i = 0; Available.empty(); ++i) {
2230 //  FIXME: Re-enable assert once PR20057 is resolved.
2231 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2232 //           "permanent hazard");
2233     (void)i;
2234     bumpCycle(CurrCycle + 1);
2235     releasePending();
2236   }
2237   if (Available.size() == 1)
2238     return *Available.begin();
2239   return nullptr;
2240 }
2241 
2242 #ifndef NDEBUG
2243 // This is useful information to dump after bumpNode.
2244 // Note that the Queue contents are more useful before pickNodeFromQueue.
2245 void SchedBoundary::dumpScheduledState() {
2246   unsigned ResFactor;
2247   unsigned ResCount;
2248   if (ZoneCritResIdx) {
2249     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2250     ResCount = getResourceCount(ZoneCritResIdx);
2251   }
2252   else {
2253     ResFactor = SchedModel->getMicroOpFactor();
2254     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2255   }
2256   unsigned LFactor = SchedModel->getLatencyFactor();
2257   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2258          << "  Retired: " << RetiredMOps;
2259   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2260   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2261          << ResCount / ResFactor << " "
2262          << SchedModel->getResourceName(ZoneCritResIdx)
2263          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2264          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2265          << " limited.\n";
2266 }
2267 #endif
2268 
2269 //===----------------------------------------------------------------------===//
2270 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2271 //===----------------------------------------------------------------------===//
2272 
2273 void GenericSchedulerBase::SchedCandidate::
2274 initResourceDelta(const ScheduleDAGMI *DAG,
2275                   const TargetSchedModel *SchedModel) {
2276   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2277     return;
2278 
2279   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2280   for (TargetSchedModel::ProcResIter
2281          PI = SchedModel->getWriteProcResBegin(SC),
2282          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2283     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2284       ResDelta.CritResources += PI->Cycles;
2285     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2286       ResDelta.DemandedResources += PI->Cycles;
2287   }
2288 }
2289 
2290 /// Set the CandPolicy given a scheduling zone given the current resources and
2291 /// latencies inside and outside the zone.
2292 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2293                                      bool IsPostRA,
2294                                      SchedBoundary &CurrZone,
2295                                      SchedBoundary *OtherZone) {
2296   // Apply preemptive heuristics based on the total latency and resources
2297   // inside and outside this zone. Potential stalls should be considered before
2298   // following this policy.
2299 
2300   // Compute remaining latency. We need this both to determine whether the
2301   // overall schedule has become latency-limited and whether the instructions
2302   // outside this zone are resource or latency limited.
2303   //
2304   // The "dependent" latency is updated incrementally during scheduling as the
2305   // max height/depth of scheduled nodes minus the cycles since it was
2306   // scheduled:
2307   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2308   //
2309   // The "independent" latency is the max ready queue depth:
2310   //   ILat = max N.depth for N in Available|Pending
2311   //
2312   // RemainingLatency is the greater of independent and dependent latency.
2313   unsigned RemLatency = CurrZone.getDependentLatency();
2314   RemLatency = std::max(RemLatency,
2315                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2316   RemLatency = std::max(RemLatency,
2317                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2318 
2319   // Compute the critical resource outside the zone.
2320   unsigned OtherCritIdx = 0;
2321   unsigned OtherCount =
2322     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2323 
2324   bool OtherResLimited = false;
2325   if (SchedModel->hasInstrSchedModel()) {
2326     unsigned LFactor = SchedModel->getLatencyFactor();
2327     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2328   }
2329   // Schedule aggressively for latency in PostRA mode. We don't check for
2330   // acyclic latency during PostRA, and highly out-of-order processors will
2331   // skip PostRA scheduling.
2332   if (!OtherResLimited) {
2333     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2334       Policy.ReduceLatency |= true;
2335       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2336             << " RemainingLatency " << RemLatency << " + "
2337             << CurrZone.getCurrCycle() << "c > CritPath "
2338             << Rem.CriticalPath << "\n");
2339     }
2340   }
2341   // If the same resource is limiting inside and outside the zone, do nothing.
2342   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2343     return;
2344 
2345   DEBUG(
2346     if (CurrZone.isResourceLimited()) {
2347       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2348              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2349              << "\n";
2350     }
2351     if (OtherResLimited)
2352       dbgs() << "  RemainingLimit: "
2353              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2354     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2355       dbgs() << "  Latency limited both directions.\n");
2356 
2357   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2358     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2359 
2360   if (OtherResLimited)
2361     Policy.DemandResIdx = OtherCritIdx;
2362 }
2363 
2364 #ifndef NDEBUG
2365 const char *GenericSchedulerBase::getReasonStr(
2366   GenericSchedulerBase::CandReason Reason) {
2367   switch (Reason) {
2368   case NoCand:         return "NOCAND    ";
2369   case PhysRegCopy:    return "PREG-COPY";
2370   case RegExcess:      return "REG-EXCESS";
2371   case RegCritical:    return "REG-CRIT  ";
2372   case Stall:          return "STALL     ";
2373   case Cluster:        return "CLUSTER   ";
2374   case Weak:           return "WEAK      ";
2375   case RegMax:         return "REG-MAX   ";
2376   case ResourceReduce: return "RES-REDUCE";
2377   case ResourceDemand: return "RES-DEMAND";
2378   case TopDepthReduce: return "TOP-DEPTH ";
2379   case TopPathReduce:  return "TOP-PATH  ";
2380   case BotHeightReduce:return "BOT-HEIGHT";
2381   case BotPathReduce:  return "BOT-PATH  ";
2382   case NextDefUse:     return "DEF-USE   ";
2383   case NodeOrder:      return "ORDER     ";
2384   };
2385   llvm_unreachable("Unknown reason!");
2386 }
2387 
2388 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2389   PressureChange P;
2390   unsigned ResIdx = 0;
2391   unsigned Latency = 0;
2392   switch (Cand.Reason) {
2393   default:
2394     break;
2395   case RegExcess:
2396     P = Cand.RPDelta.Excess;
2397     break;
2398   case RegCritical:
2399     P = Cand.RPDelta.CriticalMax;
2400     break;
2401   case RegMax:
2402     P = Cand.RPDelta.CurrentMax;
2403     break;
2404   case ResourceReduce:
2405     ResIdx = Cand.Policy.ReduceResIdx;
2406     break;
2407   case ResourceDemand:
2408     ResIdx = Cand.Policy.DemandResIdx;
2409     break;
2410   case TopDepthReduce:
2411     Latency = Cand.SU->getDepth();
2412     break;
2413   case TopPathReduce:
2414     Latency = Cand.SU->getHeight();
2415     break;
2416   case BotHeightReduce:
2417     Latency = Cand.SU->getHeight();
2418     break;
2419   case BotPathReduce:
2420     Latency = Cand.SU->getDepth();
2421     break;
2422   }
2423   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2424   if (P.isValid())
2425     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2426            << ":" << P.getUnitInc() << " ";
2427   else
2428     dbgs() << "      ";
2429   if (ResIdx)
2430     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2431   else
2432     dbgs() << "         ";
2433   if (Latency)
2434     dbgs() << " " << Latency << " cycles ";
2435   else
2436     dbgs() << "          ";
2437   dbgs() << '\n';
2438 }
2439 #endif
2440 
2441 /// Return true if this heuristic determines order.
2442 static bool tryLess(int TryVal, int CandVal,
2443                     GenericSchedulerBase::SchedCandidate &TryCand,
2444                     GenericSchedulerBase::SchedCandidate &Cand,
2445                     GenericSchedulerBase::CandReason Reason) {
2446   if (TryVal < CandVal) {
2447     TryCand.Reason = Reason;
2448     return true;
2449   }
2450   if (TryVal > CandVal) {
2451     if (Cand.Reason > Reason)
2452       Cand.Reason = Reason;
2453     return true;
2454   }
2455   Cand.setRepeat(Reason);
2456   return false;
2457 }
2458 
2459 static bool tryGreater(int TryVal, int CandVal,
2460                        GenericSchedulerBase::SchedCandidate &TryCand,
2461                        GenericSchedulerBase::SchedCandidate &Cand,
2462                        GenericSchedulerBase::CandReason Reason) {
2463   if (TryVal > CandVal) {
2464     TryCand.Reason = Reason;
2465     return true;
2466   }
2467   if (TryVal < CandVal) {
2468     if (Cand.Reason > Reason)
2469       Cand.Reason = Reason;
2470     return true;
2471   }
2472   Cand.setRepeat(Reason);
2473   return false;
2474 }
2475 
2476 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2477                        GenericSchedulerBase::SchedCandidate &Cand,
2478                        SchedBoundary &Zone) {
2479   if (Zone.isTop()) {
2480     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2481       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2482                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2483         return true;
2484     }
2485     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2486                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2487       return true;
2488   }
2489   else {
2490     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2491       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2492                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2493         return true;
2494     }
2495     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2496                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2497       return true;
2498   }
2499   return false;
2500 }
2501 
2502 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2503                       bool IsTop) {
2504   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2505         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2506 }
2507 
2508 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2509   assert(dag->hasVRegLiveness() &&
2510          "(PreRA)GenericScheduler needs vreg liveness");
2511   DAG = static_cast<ScheduleDAGMILive*>(dag);
2512   SchedModel = DAG->getSchedModel();
2513   TRI = DAG->TRI;
2514 
2515   Rem.init(DAG, SchedModel);
2516   Top.init(DAG, SchedModel, &Rem);
2517   Bot.init(DAG, SchedModel, &Rem);
2518 
2519   // Initialize resource counts.
2520 
2521   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2522   // are disabled, then these HazardRecs will be disabled.
2523   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2524   if (!Top.HazardRec) {
2525     Top.HazardRec =
2526         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2527             Itin, DAG);
2528   }
2529   if (!Bot.HazardRec) {
2530     Bot.HazardRec =
2531         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2532             Itin, DAG);
2533   }
2534 }
2535 
2536 /// Initialize the per-region scheduling policy.
2537 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2538                                   MachineBasicBlock::iterator End,
2539                                   unsigned NumRegionInstrs) {
2540   const MachineFunction &MF = *Begin->getParent()->getParent();
2541   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2542 
2543   // Avoid setting up the register pressure tracker for small regions to save
2544   // compile time. As a rough heuristic, only track pressure when the number of
2545   // schedulable instructions exceeds half the integer register file.
2546   RegionPolicy.ShouldTrackPressure = true;
2547   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2548     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2549     if (TLI->isTypeLegal(LegalIntVT)) {
2550       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2551         TLI->getRegClassFor(LegalIntVT));
2552       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2553     }
2554   }
2555 
2556   // For generic targets, we default to bottom-up, because it's simpler and more
2557   // compile-time optimizations have been implemented in that direction.
2558   RegionPolicy.OnlyBottomUp = true;
2559 
2560   // Allow the subtarget to override default policy.
2561   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2562                                         NumRegionInstrs);
2563 
2564   // After subtarget overrides, apply command line options.
2565   if (!EnableRegPressure)
2566     RegionPolicy.ShouldTrackPressure = false;
2567 
2568   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2569   // e.g. -misched-bottomup=false allows scheduling in both directions.
2570   assert((!ForceTopDown || !ForceBottomUp) &&
2571          "-misched-topdown incompatible with -misched-bottomup");
2572   if (ForceBottomUp.getNumOccurrences() > 0) {
2573     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2574     if (RegionPolicy.OnlyBottomUp)
2575       RegionPolicy.OnlyTopDown = false;
2576   }
2577   if (ForceTopDown.getNumOccurrences() > 0) {
2578     RegionPolicy.OnlyTopDown = ForceTopDown;
2579     if (RegionPolicy.OnlyTopDown)
2580       RegionPolicy.OnlyBottomUp = false;
2581   }
2582 }
2583 
2584 void GenericScheduler::dumpPolicy() {
2585   dbgs() << "GenericScheduler RegionPolicy: "
2586          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2587          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2588          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2589          << "\n";
2590 }
2591 
2592 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2593 /// critical path by more cycles than it takes to drain the instruction buffer.
2594 /// We estimate an upper bounds on in-flight instructions as:
2595 ///
2596 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2597 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2598 /// InFlightResources = InFlightIterations * LoopResources
2599 ///
2600 /// TODO: Check execution resources in addition to IssueCount.
2601 void GenericScheduler::checkAcyclicLatency() {
2602   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2603     return;
2604 
2605   // Scaled number of cycles per loop iteration.
2606   unsigned IterCount =
2607     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2608              Rem.RemIssueCount);
2609   // Scaled acyclic critical path.
2610   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2611   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2612   unsigned InFlightCount =
2613     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2614   unsigned BufferLimit =
2615     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2616 
2617   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2618 
2619   DEBUG(dbgs() << "IssueCycles="
2620         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2621         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2622         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2623         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2624         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2625         if (Rem.IsAcyclicLatencyLimited)
2626           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2627 }
2628 
2629 void GenericScheduler::registerRoots() {
2630   Rem.CriticalPath = DAG->ExitSU.getDepth();
2631 
2632   // Some roots may not feed into ExitSU. Check all of them in case.
2633   for (std::vector<SUnit*>::const_iterator
2634          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2635     if ((*I)->getDepth() > Rem.CriticalPath)
2636       Rem.CriticalPath = (*I)->getDepth();
2637   }
2638   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2639   if (DumpCriticalPathLength) {
2640     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2641   }
2642 
2643   if (EnableCyclicPath) {
2644     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2645     checkAcyclicLatency();
2646   }
2647 }
2648 
2649 static bool tryPressure(const PressureChange &TryP,
2650                         const PressureChange &CandP,
2651                         GenericSchedulerBase::SchedCandidate &TryCand,
2652                         GenericSchedulerBase::SchedCandidate &Cand,
2653                         GenericSchedulerBase::CandReason Reason,
2654                         const TargetRegisterInfo *TRI,
2655                         const MachineFunction &MF) {
2656   unsigned TryPSet = TryP.getPSetOrMax();
2657   unsigned CandPSet = CandP.getPSetOrMax();
2658   // If both candidates affect the same set, go with the smallest increase.
2659   if (TryPSet == CandPSet) {
2660     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2661                    Reason);
2662   }
2663   // If one candidate decreases and the other increases, go with it.
2664   // Invalid candidates have UnitInc==0.
2665   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2666                  Reason)) {
2667     return true;
2668   }
2669 
2670   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2671                                  std::numeric_limits<int>::max();
2672 
2673   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2674                                    std::numeric_limits<int>::max();
2675 
2676   // If the candidates are decreasing pressure, reverse priority.
2677   if (TryP.getUnitInc() < 0)
2678     std::swap(TryRank, CandRank);
2679   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2680 }
2681 
2682 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2683   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2684 }
2685 
2686 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2687 /// their physreg def/use.
2688 ///
2689 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2690 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2691 /// with the operation that produces or consumes the physreg. We'll do this when
2692 /// regalloc has support for parallel copies.
2693 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2694   const MachineInstr *MI = SU->getInstr();
2695   if (!MI->isCopy())
2696     return 0;
2697 
2698   unsigned ScheduledOper = isTop ? 1 : 0;
2699   unsigned UnscheduledOper = isTop ? 0 : 1;
2700   // If we have already scheduled the physreg produce/consumer, immediately
2701   // schedule the copy.
2702   if (TargetRegisterInfo::isPhysicalRegister(
2703         MI->getOperand(ScheduledOper).getReg()))
2704     return 1;
2705   // If the physreg is at the boundary, defer it. Otherwise schedule it
2706   // immediately to free the dependent. We can hoist the copy later.
2707   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2708   if (TargetRegisterInfo::isPhysicalRegister(
2709         MI->getOperand(UnscheduledOper).getReg()))
2710     return AtBoundary ? -1 : 1;
2711   return 0;
2712 }
2713 
2714 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2715 /// hierarchical. This may be more efficient than a graduated cost model because
2716 /// we don't need to evaluate all aspects of the model for each node in the
2717 /// queue. But it's really done to make the heuristics easier to debug and
2718 /// statistically analyze.
2719 ///
2720 /// \param Cand provides the policy and current best candidate.
2721 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2722 /// \param Zone describes the scheduled zone that we are extending.
2723 /// \param RPTracker describes reg pressure within the scheduled zone.
2724 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2725 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2726                                     SchedCandidate &TryCand,
2727                                     SchedBoundary &Zone,
2728                                     const RegPressureTracker &RPTracker,
2729                                     RegPressureTracker &TempTracker) {
2730 
2731   if (DAG->isTrackingPressure()) {
2732     // Always initialize TryCand's RPDelta.
2733     if (Zone.isTop()) {
2734       TempTracker.getMaxDownwardPressureDelta(
2735         TryCand.SU->getInstr(),
2736         TryCand.RPDelta,
2737         DAG->getRegionCriticalPSets(),
2738         DAG->getRegPressure().MaxSetPressure);
2739     }
2740     else {
2741       if (VerifyScheduling) {
2742         TempTracker.getMaxUpwardPressureDelta(
2743           TryCand.SU->getInstr(),
2744           &DAG->getPressureDiff(TryCand.SU),
2745           TryCand.RPDelta,
2746           DAG->getRegionCriticalPSets(),
2747           DAG->getRegPressure().MaxSetPressure);
2748       }
2749       else {
2750         RPTracker.getUpwardPressureDelta(
2751           TryCand.SU->getInstr(),
2752           DAG->getPressureDiff(TryCand.SU),
2753           TryCand.RPDelta,
2754           DAG->getRegionCriticalPSets(),
2755           DAG->getRegPressure().MaxSetPressure);
2756       }
2757     }
2758   }
2759   DEBUG(if (TryCand.RPDelta.Excess.isValid())
2760           dbgs() << "  Try  SU(" << TryCand.SU->NodeNum << ") "
2761                  << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2762                  << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2763 
2764   // Initialize the candidate if needed.
2765   if (!Cand.isValid()) {
2766     TryCand.Reason = NodeOrder;
2767     return;
2768   }
2769 
2770   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2771                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
2772                  TryCand, Cand, PhysRegCopy))
2773     return;
2774 
2775   // Avoid exceeding the target's limit.
2776   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2777                                                Cand.RPDelta.Excess,
2778                                                TryCand, Cand, RegExcess, TRI,
2779                                                DAG->MF))
2780     return;
2781 
2782   // Avoid increasing the max critical pressure in the scheduled region.
2783   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2784                                                Cand.RPDelta.CriticalMax,
2785                                                TryCand, Cand, RegCritical, TRI,
2786                                                DAG->MF))
2787     return;
2788 
2789   // For loops that are acyclic path limited, aggressively schedule for latency.
2790   // This can result in very long dependence chains scheduled in sequence, so
2791   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2792   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2793       && tryLatency(TryCand, Cand, Zone))
2794     return;
2795 
2796   // Prioritize instructions that read unbuffered resources by stall cycles.
2797   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2798               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2799     return;
2800 
2801   // Keep clustered nodes together to encourage downstream peephole
2802   // optimizations which may reduce resource requirements.
2803   //
2804   // This is a best effort to set things up for a post-RA pass. Optimizations
2805   // like generating loads of multiple registers should ideally be done within
2806   // the scheduler pass by combining the loads during DAG postprocessing.
2807   const SUnit *NextClusterSU =
2808     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2809   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2810                  TryCand, Cand, Cluster))
2811     return;
2812 
2813   // Weak edges are for clustering and other constraints.
2814   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2815               getWeakLeft(Cand.SU, Zone.isTop()),
2816               TryCand, Cand, Weak)) {
2817     return;
2818   }
2819   // Avoid increasing the max pressure of the entire region.
2820   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2821                                                Cand.RPDelta.CurrentMax,
2822                                                TryCand, Cand, RegMax, TRI,
2823                                                DAG->MF))
2824     return;
2825 
2826   // Avoid critical resource consumption and balance the schedule.
2827   TryCand.initResourceDelta(DAG, SchedModel);
2828   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2829               TryCand, Cand, ResourceReduce))
2830     return;
2831   if (tryGreater(TryCand.ResDelta.DemandedResources,
2832                  Cand.ResDelta.DemandedResources,
2833                  TryCand, Cand, ResourceDemand))
2834     return;
2835 
2836   // Avoid serializing long latency dependence chains.
2837   // For acyclic path limited loops, latency was already checked above.
2838   if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2839       !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2840     return;
2841   }
2842 
2843   // Prefer immediate defs/users of the last scheduled instruction. This is a
2844   // local pressure avoidance strategy that also makes the machine code
2845   // readable.
2846   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2847                  TryCand, Cand, NextDefUse))
2848     return;
2849 
2850   // Fall through to original instruction order.
2851   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2852       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2853     TryCand.Reason = NodeOrder;
2854   }
2855 }
2856 
2857 /// Pick the best candidate from the queue.
2858 ///
2859 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2860 /// DAG building. To adjust for the current scheduling location we need to
2861 /// maintain the number of vreg uses remaining to be top-scheduled.
2862 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2863                                          const RegPressureTracker &RPTracker,
2864                                          SchedCandidate &Cand) {
2865   ReadyQueue &Q = Zone.Available;
2866 
2867   DEBUG(Q.dump());
2868 
2869   // getMaxPressureDelta temporarily modifies the tracker.
2870   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2871 
2872   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2873 
2874     SchedCandidate TryCand(Cand.Policy);
2875     TryCand.SU = *I;
2876     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2877     if (TryCand.Reason != NoCand) {
2878       // Initialize resource delta if needed in case future heuristics query it.
2879       if (TryCand.ResDelta == SchedResourceDelta())
2880         TryCand.initResourceDelta(DAG, SchedModel);
2881       Cand.setBest(TryCand);
2882       DEBUG(traceCandidate(Cand));
2883     }
2884   }
2885 }
2886 
2887 /// Pick the best candidate node from either the top or bottom queue.
2888 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2889   // Schedule as far as possible in the direction of no choice. This is most
2890   // efficient, but also provides the best heuristics for CriticalPSets.
2891   if (SUnit *SU = Bot.pickOnlyChoice()) {
2892     IsTopNode = false;
2893     DEBUG(dbgs() << "Pick Bot ONLY1\n");
2894     return SU;
2895   }
2896   if (SUnit *SU = Top.pickOnlyChoice()) {
2897     IsTopNode = true;
2898     DEBUG(dbgs() << "Pick Top ONLY1\n");
2899     return SU;
2900   }
2901   CandPolicy NoPolicy;
2902   SchedCandidate BotCand(NoPolicy);
2903   SchedCandidate TopCand(NoPolicy);
2904   // Set the bottom-up policy based on the state of the current bottom zone and
2905   // the instructions outside the zone, including the top zone.
2906   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2907   // Set the top-down policy based on the state of the current top zone and
2908   // the instructions outside the zone, including the bottom zone.
2909   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2910 
2911   // Prefer bottom scheduling when heuristics are silent.
2912   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2913   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2914 
2915   // If either Q has a single candidate that provides the least increase in
2916   // Excess pressure, we can immediately schedule from that Q.
2917   //
2918   // RegionCriticalPSets summarizes the pressure within the scheduled region and
2919   // affects picking from either Q. If scheduling in one direction must
2920   // increase pressure for one of the excess PSets, then schedule in that
2921   // direction first to provide more freedom in the other direction.
2922   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2923       || (BotCand.Reason == RegCritical
2924           && !BotCand.isRepeat(RegCritical)))
2925   {
2926     IsTopNode = false;
2927     tracePick(BotCand, IsTopNode);
2928     return BotCand.SU;
2929   }
2930   // Check if the top Q has a better candidate.
2931   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2932   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2933 
2934   // Choose the queue with the most important (lowest enum) reason.
2935   if (TopCand.Reason < BotCand.Reason) {
2936     IsTopNode = true;
2937     tracePick(TopCand, IsTopNode);
2938     return TopCand.SU;
2939   }
2940   // Otherwise prefer the bottom candidate, in node order if all else failed.
2941   IsTopNode = false;
2942   tracePick(BotCand, IsTopNode);
2943   return BotCand.SU;
2944 }
2945 
2946 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2947 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2948   if (DAG->top() == DAG->bottom()) {
2949     assert(Top.Available.empty() && Top.Pending.empty() &&
2950            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2951     return nullptr;
2952   }
2953   SUnit *SU;
2954   do {
2955     if (RegionPolicy.OnlyTopDown) {
2956       SU = Top.pickOnlyChoice();
2957       if (!SU) {
2958         CandPolicy NoPolicy;
2959         SchedCandidate TopCand(NoPolicy);
2960         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2961         assert(TopCand.Reason != NoCand && "failed to find a candidate");
2962         tracePick(TopCand, true);
2963         SU = TopCand.SU;
2964       }
2965       IsTopNode = true;
2966     }
2967     else if (RegionPolicy.OnlyBottomUp) {
2968       SU = Bot.pickOnlyChoice();
2969       if (!SU) {
2970         CandPolicy NoPolicy;
2971         SchedCandidate BotCand(NoPolicy);
2972         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2973         assert(BotCand.Reason != NoCand && "failed to find a candidate");
2974         tracePick(BotCand, false);
2975         SU = BotCand.SU;
2976       }
2977       IsTopNode = false;
2978     }
2979     else {
2980       SU = pickNodeBidirectional(IsTopNode);
2981     }
2982   } while (SU->isScheduled);
2983 
2984   if (SU->isTopReady())
2985     Top.removeReady(SU);
2986   if (SU->isBottomReady())
2987     Bot.removeReady(SU);
2988 
2989   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2990   return SU;
2991 }
2992 
2993 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2994 
2995   MachineBasicBlock::iterator InsertPos = SU->getInstr();
2996   if (!isTop)
2997     ++InsertPos;
2998   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2999 
3000   // Find already scheduled copies with a single physreg dependence and move
3001   // them just above the scheduled instruction.
3002   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3003        I != E; ++I) {
3004     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3005       continue;
3006     SUnit *DepSU = I->getSUnit();
3007     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3008       continue;
3009     MachineInstr *Copy = DepSU->getInstr();
3010     if (!Copy->isCopy())
3011       continue;
3012     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3013           I->getSUnit()->dump(DAG));
3014     DAG->moveInstruction(Copy, InsertPos);
3015   }
3016 }
3017 
3018 /// Update the scheduler's state after scheduling a node. This is the same node
3019 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3020 /// update it's state based on the current cycle before MachineSchedStrategy
3021 /// does.
3022 ///
3023 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3024 /// them here. See comments in biasPhysRegCopy.
3025 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3026   if (IsTopNode) {
3027     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3028     Top.bumpNode(SU);
3029     if (SU->hasPhysRegUses)
3030       reschedulePhysRegCopies(SU, true);
3031   }
3032   else {
3033     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3034     Bot.bumpNode(SU);
3035     if (SU->hasPhysRegDefs)
3036       reschedulePhysRegCopies(SU, false);
3037   }
3038 }
3039 
3040 /// Create the standard converging machine scheduler. This will be used as the
3041 /// default scheduler if the target does not set a default.
3042 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3043   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3044   // Register DAG post-processors.
3045   //
3046   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3047   // data and pass it to later mutations. Have a single mutation that gathers
3048   // the interesting nodes in one pass.
3049   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
3050   if (EnableLoadCluster && DAG->TII->enableClusterLoads())
3051     DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
3052   if (EnableMacroFusion)
3053     DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
3054   return DAG;
3055 }
3056 
3057 static MachineSchedRegistry
3058 GenericSchedRegistry("converge", "Standard converging scheduler.",
3059                      createGenericSchedLive);
3060 
3061 //===----------------------------------------------------------------------===//
3062 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3063 //===----------------------------------------------------------------------===//
3064 
3065 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3066   DAG = Dag;
3067   SchedModel = DAG->getSchedModel();
3068   TRI = DAG->TRI;
3069 
3070   Rem.init(DAG, SchedModel);
3071   Top.init(DAG, SchedModel, &Rem);
3072   BotRoots.clear();
3073 
3074   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3075   // or are disabled, then these HazardRecs will be disabled.
3076   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3077   if (!Top.HazardRec) {
3078     Top.HazardRec =
3079         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3080             Itin, DAG);
3081   }
3082 }
3083 
3084 
3085 void PostGenericScheduler::registerRoots() {
3086   Rem.CriticalPath = DAG->ExitSU.getDepth();
3087 
3088   // Some roots may not feed into ExitSU. Check all of them in case.
3089   for (SmallVectorImpl<SUnit*>::const_iterator
3090          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3091     if ((*I)->getDepth() > Rem.CriticalPath)
3092       Rem.CriticalPath = (*I)->getDepth();
3093   }
3094   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3095   if (DumpCriticalPathLength) {
3096     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3097   }
3098 }
3099 
3100 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3101 ///
3102 /// \param Cand provides the policy and current best candidate.
3103 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3104 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3105                                         SchedCandidate &TryCand) {
3106 
3107   // Initialize the candidate if needed.
3108   if (!Cand.isValid()) {
3109     TryCand.Reason = NodeOrder;
3110     return;
3111   }
3112 
3113   // Prioritize instructions that read unbuffered resources by stall cycles.
3114   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3115               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3116     return;
3117 
3118   // Avoid critical resource consumption and balance the schedule.
3119   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3120               TryCand, Cand, ResourceReduce))
3121     return;
3122   if (tryGreater(TryCand.ResDelta.DemandedResources,
3123                  Cand.ResDelta.DemandedResources,
3124                  TryCand, Cand, ResourceDemand))
3125     return;
3126 
3127   // Avoid serializing long latency dependence chains.
3128   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3129     return;
3130   }
3131 
3132   // Fall through to original instruction order.
3133   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3134     TryCand.Reason = NodeOrder;
3135 }
3136 
3137 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3138   ReadyQueue &Q = Top.Available;
3139 
3140   DEBUG(Q.dump());
3141 
3142   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3143     SchedCandidate TryCand(Cand.Policy);
3144     TryCand.SU = *I;
3145     TryCand.initResourceDelta(DAG, SchedModel);
3146     tryCandidate(Cand, TryCand);
3147     if (TryCand.Reason != NoCand) {
3148       Cand.setBest(TryCand);
3149       DEBUG(traceCandidate(Cand));
3150     }
3151   }
3152 }
3153 
3154 /// Pick the next node to schedule.
3155 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3156   if (DAG->top() == DAG->bottom()) {
3157     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3158     return nullptr;
3159   }
3160   SUnit *SU;
3161   do {
3162     SU = Top.pickOnlyChoice();
3163     if (!SU) {
3164       CandPolicy NoPolicy;
3165       SchedCandidate TopCand(NoPolicy);
3166       // Set the top-down policy based on the state of the current top zone and
3167       // the instructions outside the zone, including the bottom zone.
3168       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3169       pickNodeFromQueue(TopCand);
3170       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3171       tracePick(TopCand, true);
3172       SU = TopCand.SU;
3173     }
3174   } while (SU->isScheduled);
3175 
3176   IsTopNode = true;
3177   Top.removeReady(SU);
3178 
3179   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3180   return SU;
3181 }
3182 
3183 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3184 /// scheduled/remaining flags in the DAG nodes.
3185 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3186   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3187   Top.bumpNode(SU);
3188 }
3189 
3190 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3191 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3192   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3193 }
3194 
3195 //===----------------------------------------------------------------------===//
3196 // ILP Scheduler. Currently for experimental analysis of heuristics.
3197 //===----------------------------------------------------------------------===//
3198 
3199 namespace {
3200 /// \brief Order nodes by the ILP metric.
3201 struct ILPOrder {
3202   const SchedDFSResult *DFSResult;
3203   const BitVector *ScheduledTrees;
3204   bool MaximizeILP;
3205 
3206   ILPOrder(bool MaxILP)
3207     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3208 
3209   /// \brief Apply a less-than relation on node priority.
3210   ///
3211   /// (Return true if A comes after B in the Q.)
3212   bool operator()(const SUnit *A, const SUnit *B) const {
3213     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3214     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3215     if (SchedTreeA != SchedTreeB) {
3216       // Unscheduled trees have lower priority.
3217       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3218         return ScheduledTrees->test(SchedTreeB);
3219 
3220       // Trees with shallower connections have have lower priority.
3221       if (DFSResult->getSubtreeLevel(SchedTreeA)
3222           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3223         return DFSResult->getSubtreeLevel(SchedTreeA)
3224           < DFSResult->getSubtreeLevel(SchedTreeB);
3225       }
3226     }
3227     if (MaximizeILP)
3228       return DFSResult->getILP(A) < DFSResult->getILP(B);
3229     else
3230       return DFSResult->getILP(A) > DFSResult->getILP(B);
3231   }
3232 };
3233 
3234 /// \brief Schedule based on the ILP metric.
3235 class ILPScheduler : public MachineSchedStrategy {
3236   ScheduleDAGMILive *DAG;
3237   ILPOrder Cmp;
3238 
3239   std::vector<SUnit*> ReadyQ;
3240 public:
3241   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3242 
3243   void initialize(ScheduleDAGMI *dag) override {
3244     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3245     DAG = static_cast<ScheduleDAGMILive*>(dag);
3246     DAG->computeDFSResult();
3247     Cmp.DFSResult = DAG->getDFSResult();
3248     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3249     ReadyQ.clear();
3250   }
3251 
3252   void registerRoots() override {
3253     // Restore the heap in ReadyQ with the updated DFS results.
3254     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3255   }
3256 
3257   /// Implement MachineSchedStrategy interface.
3258   /// -----------------------------------------
3259 
3260   /// Callback to select the highest priority node from the ready Q.
3261   SUnit *pickNode(bool &IsTopNode) override {
3262     if (ReadyQ.empty()) return nullptr;
3263     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3264     SUnit *SU = ReadyQ.back();
3265     ReadyQ.pop_back();
3266     IsTopNode = false;
3267     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3268           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3269           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3270           << DAG->getDFSResult()->getSubtreeLevel(
3271             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3272           << "Scheduling " << *SU->getInstr());
3273     return SU;
3274   }
3275 
3276   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3277   void scheduleTree(unsigned SubtreeID) override {
3278     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3279   }
3280 
3281   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3282   /// DFSResults, and resort the priority Q.
3283   void schedNode(SUnit *SU, bool IsTopNode) override {
3284     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3285   }
3286 
3287   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3288 
3289   void releaseBottomNode(SUnit *SU) override {
3290     ReadyQ.push_back(SU);
3291     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3292   }
3293 };
3294 } // namespace
3295 
3296 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3297   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3298 }
3299 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3300   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3301 }
3302 static MachineSchedRegistry ILPMaxRegistry(
3303   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3304 static MachineSchedRegistry ILPMinRegistry(
3305   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3306 
3307 //===----------------------------------------------------------------------===//
3308 // Machine Instruction Shuffler for Correctness Testing
3309 //===----------------------------------------------------------------------===//
3310 
3311 #ifndef NDEBUG
3312 namespace {
3313 /// Apply a less-than relation on the node order, which corresponds to the
3314 /// instruction order prior to scheduling. IsReverse implements greater-than.
3315 template<bool IsReverse>
3316 struct SUnitOrder {
3317   bool operator()(SUnit *A, SUnit *B) const {
3318     if (IsReverse)
3319       return A->NodeNum > B->NodeNum;
3320     else
3321       return A->NodeNum < B->NodeNum;
3322   }
3323 };
3324 
3325 /// Reorder instructions as much as possible.
3326 class InstructionShuffler : public MachineSchedStrategy {
3327   bool IsAlternating;
3328   bool IsTopDown;
3329 
3330   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3331   // gives nodes with a higher number higher priority causing the latest
3332   // instructions to be scheduled first.
3333   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3334     TopQ;
3335   // When scheduling bottom-up, use greater-than as the queue priority.
3336   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3337     BottomQ;
3338 public:
3339   InstructionShuffler(bool alternate, bool topdown)
3340     : IsAlternating(alternate), IsTopDown(topdown) {}
3341 
3342   void initialize(ScheduleDAGMI*) override {
3343     TopQ.clear();
3344     BottomQ.clear();
3345   }
3346 
3347   /// Implement MachineSchedStrategy interface.
3348   /// -----------------------------------------
3349 
3350   SUnit *pickNode(bool &IsTopNode) override {
3351     SUnit *SU;
3352     if (IsTopDown) {
3353       do {
3354         if (TopQ.empty()) return nullptr;
3355         SU = TopQ.top();
3356         TopQ.pop();
3357       } while (SU->isScheduled);
3358       IsTopNode = true;
3359     }
3360     else {
3361       do {
3362         if (BottomQ.empty()) return nullptr;
3363         SU = BottomQ.top();
3364         BottomQ.pop();
3365       } while (SU->isScheduled);
3366       IsTopNode = false;
3367     }
3368     if (IsAlternating)
3369       IsTopDown = !IsTopDown;
3370     return SU;
3371   }
3372 
3373   void schedNode(SUnit *SU, bool IsTopNode) override {}
3374 
3375   void releaseTopNode(SUnit *SU) override {
3376     TopQ.push(SU);
3377   }
3378   void releaseBottomNode(SUnit *SU) override {
3379     BottomQ.push(SU);
3380   }
3381 };
3382 } // namespace
3383 
3384 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3385   bool Alternate = !ForceTopDown && !ForceBottomUp;
3386   bool TopDown = !ForceBottomUp;
3387   assert((TopDown || !ForceTopDown) &&
3388          "-misched-topdown incompatible with -misched-bottomup");
3389   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3390 }
3391 static MachineSchedRegistry ShufflerRegistry(
3392   "shuffle", "Shuffle machine instructions alternating directions",
3393   createInstructionShuffler);
3394 #endif // !NDEBUG
3395 
3396 //===----------------------------------------------------------------------===//
3397 // GraphWriter support for ScheduleDAGMILive.
3398 //===----------------------------------------------------------------------===//
3399 
3400 #ifndef NDEBUG
3401 namespace llvm {
3402 
3403 template<> struct GraphTraits<
3404   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3405 
3406 template<>
3407 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3408 
3409   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3410 
3411   static std::string getGraphName(const ScheduleDAG *G) {
3412     return G->MF.getName();
3413   }
3414 
3415   static bool renderGraphFromBottomUp() {
3416     return true;
3417   }
3418 
3419   static bool isNodeHidden(const SUnit *Node) {
3420     if (ViewMISchedCutoff == 0)
3421       return false;
3422     return (Node->Preds.size() > ViewMISchedCutoff
3423          || Node->Succs.size() > ViewMISchedCutoff);
3424   }
3425 
3426   /// If you want to override the dot attributes printed for a particular
3427   /// edge, override this method.
3428   static std::string getEdgeAttributes(const SUnit *Node,
3429                                        SUnitIterator EI,
3430                                        const ScheduleDAG *Graph) {
3431     if (EI.isArtificialDep())
3432       return "color=cyan,style=dashed";
3433     if (EI.isCtrlDep())
3434       return "color=blue,style=dashed";
3435     return "";
3436   }
3437 
3438   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3439     std::string Str;
3440     raw_string_ostream SS(Str);
3441     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3442     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3443       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3444     SS << "SU:" << SU->NodeNum;
3445     if (DFS)
3446       SS << " I:" << DFS->getNumInstrs(SU);
3447     return SS.str();
3448   }
3449   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3450     return G->getGraphNodeLabel(SU);
3451   }
3452 
3453   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3454     std::string Str("shape=Mrecord");
3455     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3456     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3457       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3458     if (DFS) {
3459       Str += ",style=filled,fillcolor=\"#";
3460       Str += DOT::getColorString(DFS->getSubtreeID(N));
3461       Str += '"';
3462     }
3463     return Str;
3464   }
3465 };
3466 } // namespace llvm
3467 #endif // NDEBUG
3468 
3469 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3470 /// rendered using 'dot'.
3471 ///
3472 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3473 #ifndef NDEBUG
3474   ViewGraph(this, Name, false, Title);
3475 #else
3476   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3477          << "systems with Graphviz or gv!\n";
3478 #endif  // NDEBUG
3479 }
3480 
3481 /// Out-of-line implementation with no arguments is handy for gdb.
3482 void ScheduleDAGMI::viewGraph() {
3483   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3484 }
3485