1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/MC/LaneBitmask.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/GraphWriter.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 namespace llvm { 77 78 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 79 cl::desc("Force top-down list scheduling")); 80 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 81 cl::desc("Force bottom-up list scheduling")); 82 cl::opt<bool> 83 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 84 cl::desc("Print critical path length to stdout")); 85 86 cl::opt<bool> VerifyScheduling( 87 "verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 } // end namespace llvm 91 92 #ifndef NDEBUG 93 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 94 cl::desc("Pop up a window to show MISched dags after they are processed")); 95 96 /// In some situations a few uninteresting nodes depend on nearly all other 97 /// nodes in the graph, provide a cutoff to hide them. 98 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 99 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 100 101 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 102 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 103 104 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 105 cl::desc("Only schedule this function")); 106 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 107 cl::desc("Only schedule this MBB#")); 108 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 109 cl::desc("Print schedule DAGs")); 110 #else 111 static const bool ViewMISchedDAGs = false; 112 static const bool PrintDAGs = false; 113 #endif // NDEBUG 114 115 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 116 /// size of the ready lists. 117 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 118 cl::desc("Limit ready list to N instructions"), cl::init(256)); 119 120 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 121 cl::desc("Enable register pressure scheduling."), cl::init(true)); 122 123 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 124 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 125 126 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 127 cl::desc("Enable memop clustering."), 128 cl::init(true)); 129 130 // DAG subtrees must have at least this many nodes. 131 static const unsigned MinSubtreeSize = 8; 132 133 // Pin the vtables to this file. 134 void MachineSchedStrategy::anchor() {} 135 136 void ScheduleDAGMutation::anchor() {} 137 138 //===----------------------------------------------------------------------===// 139 // Machine Instruction Scheduling Pass and Registry 140 //===----------------------------------------------------------------------===// 141 142 MachineSchedContext::MachineSchedContext() { 143 RegClassInfo = new RegisterClassInfo(); 144 } 145 146 MachineSchedContext::~MachineSchedContext() { 147 delete RegClassInfo; 148 } 149 150 namespace { 151 152 /// Base class for a machine scheduler class that can run at any point. 153 class MachineSchedulerBase : public MachineSchedContext, 154 public MachineFunctionPass { 155 public: 156 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 157 158 void print(raw_ostream &O, const Module* = nullptr) const override; 159 160 protected: 161 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 162 }; 163 164 /// MachineScheduler runs after coalescing and before register allocation. 165 class MachineScheduler : public MachineSchedulerBase { 166 public: 167 MachineScheduler(); 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override; 170 171 bool runOnMachineFunction(MachineFunction&) override; 172 173 static char ID; // Class identification, replacement for typeinfo 174 175 protected: 176 ScheduleDAGInstrs *createMachineScheduler(); 177 }; 178 179 /// PostMachineScheduler runs after shortly before code emission. 180 class PostMachineScheduler : public MachineSchedulerBase { 181 public: 182 PostMachineScheduler(); 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override; 185 186 bool runOnMachineFunction(MachineFunction&) override; 187 188 static char ID; // Class identification, replacement for typeinfo 189 190 protected: 191 ScheduleDAGInstrs *createPostMachineScheduler(); 192 }; 193 194 } // end anonymous namespace 195 196 char MachineScheduler::ID = 0; 197 198 char &llvm::MachineSchedulerID = MachineScheduler::ID; 199 200 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 203 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 204 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 205 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 206 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 207 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 208 "Machine Instruction Scheduler", false, false) 209 210 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 211 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 212 } 213 214 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 215 AU.setPreservesCFG(); 216 AU.addRequired<MachineDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 AU.addRequired<AAResultsWrapperPass>(); 219 AU.addRequired<TargetPassConfig>(); 220 AU.addRequired<SlotIndexes>(); 221 AU.addPreserved<SlotIndexes>(); 222 AU.addRequired<LiveIntervals>(); 223 AU.addPreserved<LiveIntervals>(); 224 MachineFunctionPass::getAnalysisUsage(AU); 225 } 226 227 char PostMachineScheduler::ID = 0; 228 229 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 230 231 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 232 "PostRA Machine Instruction Scheduler", false, false) 233 234 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 235 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 236 } 237 238 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 239 AU.setPreservesCFG(); 240 AU.addRequired<MachineDominatorTree>(); 241 AU.addRequired<MachineLoopInfo>(); 242 AU.addRequired<AAResultsWrapperPass>(); 243 AU.addRequired<TargetPassConfig>(); 244 MachineFunctionPass::getAnalysisUsage(AU); 245 } 246 247 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 248 MachineSchedRegistry::Registry; 249 250 /// A dummy default scheduler factory indicates whether the scheduler 251 /// is overridden on the command line. 252 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 253 return nullptr; 254 } 255 256 /// MachineSchedOpt allows command line selection of the scheduler. 257 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 258 RegisterPassParser<MachineSchedRegistry>> 259 MachineSchedOpt("misched", 260 cl::init(&useDefaultMachineSched), cl::Hidden, 261 cl::desc("Machine instruction scheduler to use")); 262 263 static MachineSchedRegistry 264 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 265 useDefaultMachineSched); 266 267 static cl::opt<bool> EnableMachineSched( 268 "enable-misched", 269 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 270 cl::Hidden); 271 272 static cl::opt<bool> EnablePostRAMachineSched( 273 "enable-post-misched", 274 cl::desc("Enable the post-ra machine instruction scheduling pass."), 275 cl::init(true), cl::Hidden); 276 277 /// Decrement this iterator until reaching the top or a non-debug instr. 278 static MachineBasicBlock::const_iterator 279 priorNonDebug(MachineBasicBlock::const_iterator I, 280 MachineBasicBlock::const_iterator Beg) { 281 assert(I != Beg && "reached the top of the region, cannot decrement"); 282 while (--I != Beg) { 283 if (!I->isDebugInstr()) 284 break; 285 } 286 return I; 287 } 288 289 /// Non-const version. 290 static MachineBasicBlock::iterator 291 priorNonDebug(MachineBasicBlock::iterator I, 292 MachineBasicBlock::const_iterator Beg) { 293 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 294 .getNonConstIterator(); 295 } 296 297 /// If this iterator is a debug value, increment until reaching the End or a 298 /// non-debug instruction. 299 static MachineBasicBlock::const_iterator 300 nextIfDebug(MachineBasicBlock::const_iterator I, 301 MachineBasicBlock::const_iterator End) { 302 for(; I != End; ++I) { 303 if (!I->isDebugInstr()) 304 break; 305 } 306 return I; 307 } 308 309 /// Non-const version. 310 static MachineBasicBlock::iterator 311 nextIfDebug(MachineBasicBlock::iterator I, 312 MachineBasicBlock::const_iterator End) { 313 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 314 .getNonConstIterator(); 315 } 316 317 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 318 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 319 // Select the scheduler, or set the default. 320 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 321 if (Ctor != useDefaultMachineSched) 322 return Ctor(this); 323 324 // Get the default scheduler set by the target for this function. 325 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 326 if (Scheduler) 327 return Scheduler; 328 329 // Default to GenericScheduler. 330 return createGenericSchedLive(this); 331 } 332 333 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 334 /// the caller. We don't have a command line option to override the postRA 335 /// scheduler. The Target must configure it. 336 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 337 // Get the postRA scheduler set by the target for this function. 338 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 339 if (Scheduler) 340 return Scheduler; 341 342 // Default to GenericScheduler. 343 return createGenericSchedPostRA(this); 344 } 345 346 /// Top-level MachineScheduler pass driver. 347 /// 348 /// Visit blocks in function order. Divide each block into scheduling regions 349 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 350 /// consistent with the DAG builder, which traverses the interior of the 351 /// scheduling regions bottom-up. 352 /// 353 /// This design avoids exposing scheduling boundaries to the DAG builder, 354 /// simplifying the DAG builder's support for "special" target instructions. 355 /// At the same time the design allows target schedulers to operate across 356 /// scheduling boundaries, for example to bundle the boundary instructions 357 /// without reordering them. This creates complexity, because the target 358 /// scheduler must update the RegionBegin and RegionEnd positions cached by 359 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 360 /// design would be to split blocks at scheduling boundaries, but LLVM has a 361 /// general bias against block splitting purely for implementation simplicity. 362 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 363 if (skipFunction(mf.getFunction())) 364 return false; 365 366 if (EnableMachineSched.getNumOccurrences()) { 367 if (!EnableMachineSched) 368 return false; 369 } else if (!mf.getSubtarget().enableMachineScheduler()) 370 return false; 371 372 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 MLI = &getAnalysis<MachineLoopInfo>(); 377 MDT = &getAnalysis<MachineDominatorTree>(); 378 PassConfig = &getAnalysis<TargetPassConfig>(); 379 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 380 381 LIS = &getAnalysis<LiveIntervals>(); 382 383 if (VerifyScheduling) { 384 LLVM_DEBUG(LIS->dump()); 385 MF->verify(this, "Before machine scheduling."); 386 } 387 RegClassInfo->runOnMachineFunction(*MF); 388 389 // Instantiate the selected scheduler for this target, function, and 390 // optimization level. 391 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 392 scheduleRegions(*Scheduler, false); 393 394 LLVM_DEBUG(LIS->dump()); 395 if (VerifyScheduling) 396 MF->verify(this, "After machine scheduling."); 397 return true; 398 } 399 400 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 401 if (skipFunction(mf.getFunction())) 402 return false; 403 404 if (EnablePostRAMachineSched.getNumOccurrences()) { 405 if (!EnablePostRAMachineSched) 406 return false; 407 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 408 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 409 return false; 410 } 411 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 412 413 // Initialize the context of the pass. 414 MF = &mf; 415 MLI = &getAnalysis<MachineLoopInfo>(); 416 PassConfig = &getAnalysis<TargetPassConfig>(); 417 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 418 419 if (VerifyScheduling) 420 MF->verify(this, "Before post machine scheduling."); 421 422 // Instantiate the selected scheduler for this target, function, and 423 // optimization level. 424 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 425 scheduleRegions(*Scheduler, true); 426 427 if (VerifyScheduling) 428 MF->verify(this, "After post machine scheduling."); 429 return true; 430 } 431 432 /// Return true of the given instruction should not be included in a scheduling 433 /// region. 434 /// 435 /// MachineScheduler does not currently support scheduling across calls. To 436 /// handle calls, the DAG builder needs to be modified to create register 437 /// anti/output dependencies on the registers clobbered by the call's regmask 438 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 439 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 440 /// the boundary, but there would be no benefit to postRA scheduling across 441 /// calls this late anyway. 442 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 443 MachineBasicBlock *MBB, 444 MachineFunction *MF, 445 const TargetInstrInfo *TII) { 446 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 447 } 448 449 /// A region of an MBB for scheduling. 450 namespace { 451 struct SchedRegion { 452 /// RegionBegin is the first instruction in the scheduling region, and 453 /// RegionEnd is either MBB->end() or the scheduling boundary after the 454 /// last instruction in the scheduling region. These iterators cannot refer 455 /// to instructions outside of the identified scheduling region because 456 /// those may be reordered before scheduling this region. 457 MachineBasicBlock::iterator RegionBegin; 458 MachineBasicBlock::iterator RegionEnd; 459 unsigned NumRegionInstrs; 460 461 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 462 unsigned N) : 463 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 464 }; 465 } // end anonymous namespace 466 467 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 468 469 static void 470 getSchedRegions(MachineBasicBlock *MBB, 471 MBBRegionsVector &Regions, 472 bool RegionsTopDown) { 473 MachineFunction *MF = MBB->getParent(); 474 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 475 476 MachineBasicBlock::iterator I = nullptr; 477 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 478 RegionEnd != MBB->begin(); RegionEnd = I) { 479 480 // Avoid decrementing RegionEnd for blocks with no terminator. 481 if (RegionEnd != MBB->end() || 482 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 483 --RegionEnd; 484 } 485 486 // The next region starts above the previous region. Look backward in the 487 // instruction stream until we find the nearest boundary. 488 unsigned NumRegionInstrs = 0; 489 I = RegionEnd; 490 for (;I != MBB->begin(); --I) { 491 MachineInstr &MI = *std::prev(I); 492 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 493 break; 494 if (!MI.isDebugInstr()) { 495 // MBB::size() uses instr_iterator to count. Here we need a bundle to 496 // count as a single instruction. 497 ++NumRegionInstrs; 498 } 499 } 500 501 // It's possible we found a scheduling region that only has debug 502 // instructions. Don't bother scheduling these. 503 if (NumRegionInstrs != 0) 504 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 505 } 506 507 if (RegionsTopDown) 508 std::reverse(Regions.begin(), Regions.end()); 509 } 510 511 /// Main driver for both MachineScheduler and PostMachineScheduler. 512 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 513 bool FixKillFlags) { 514 // Visit all machine basic blocks. 515 // 516 // TODO: Visit blocks in global postorder or postorder within the bottom-up 517 // loop tree. Then we can optionally compute global RegPressure. 518 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 519 MBB != MBBEnd; ++MBB) { 520 521 Scheduler.startBlock(&*MBB); 522 523 #ifndef NDEBUG 524 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 525 continue; 526 if (SchedOnlyBlock.getNumOccurrences() 527 && (int)SchedOnlyBlock != MBB->getNumber()) 528 continue; 529 #endif 530 531 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 532 // points to the scheduling boundary at the bottom of the region. The DAG 533 // does not include RegionEnd, but the region does (i.e. the next 534 // RegionEnd is above the previous RegionBegin). If the current block has 535 // no terminator then RegionEnd == MBB->end() for the bottom region. 536 // 537 // All the regions of MBB are first found and stored in MBBRegions, which 538 // will be processed (MBB) top-down if initialized with true. 539 // 540 // The Scheduler may insert instructions during either schedule() or 541 // exitRegion(), even for empty regions. So the local iterators 'I' and 542 // 'RegionEnd' are invalid across these calls. Instructions must not be 543 // added to other regions than the current one without updating MBBRegions. 544 545 MBBRegionsVector MBBRegions; 546 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 547 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 548 R != MBBRegions.end(); ++R) { 549 MachineBasicBlock::iterator I = R->RegionBegin; 550 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 551 unsigned NumRegionInstrs = R->NumRegionInstrs; 552 553 // Notify the scheduler of the region, even if we may skip scheduling 554 // it. Perhaps it still needs to be bundled. 555 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 556 557 // Skip empty scheduling regions (0 or 1 schedulable instructions). 558 if (I == RegionEnd || I == std::prev(RegionEnd)) { 559 // Close the current region. Bundle the terminator if needed. 560 // This invalidates 'RegionEnd' and 'I'. 561 Scheduler.exitRegion(); 562 continue; 563 } 564 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 565 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 566 << " " << MBB->getName() << "\n From: " << *I 567 << " To: "; 568 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 569 else dbgs() << "End"; 570 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 571 if (DumpCriticalPathLength) { 572 errs() << MF->getName(); 573 errs() << ":%bb. " << MBB->getNumber(); 574 errs() << " " << MBB->getName() << " \n"; 575 } 576 577 // Schedule a region: possibly reorder instructions. 578 // This invalidates the original region iterators. 579 Scheduler.schedule(); 580 581 // Close the current region. 582 Scheduler.exitRegion(); 583 } 584 Scheduler.finishBlock(); 585 // FIXME: Ideally, no further passes should rely on kill flags. However, 586 // thumb2 size reduction is currently an exception, so the PostMIScheduler 587 // needs to do this. 588 if (FixKillFlags) 589 Scheduler.fixupKills(*MBB); 590 } 591 Scheduler.finalizeSchedule(); 592 } 593 594 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 595 // unimplemented 596 } 597 598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 599 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 600 dbgs() << "Queue " << Name << ": "; 601 for (const SUnit *SU : Queue) 602 dbgs() << SU->NodeNum << " "; 603 dbgs() << "\n"; 604 } 605 #endif 606 607 //===----------------------------------------------------------------------===// 608 // ScheduleDAGMI - Basic machine instruction scheduling. This is 609 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 610 // virtual registers. 611 // ===----------------------------------------------------------------------===/ 612 613 // Provide a vtable anchor. 614 ScheduleDAGMI::~ScheduleDAGMI() = default; 615 616 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 617 /// NumPredsLeft reaches zero, release the successor node. 618 /// 619 /// FIXME: Adjust SuccSU height based on MinLatency. 620 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 621 SUnit *SuccSU = SuccEdge->getSUnit(); 622 623 if (SuccEdge->isWeak()) { 624 --SuccSU->WeakPredsLeft; 625 if (SuccEdge->isCluster()) 626 NextClusterSucc = SuccSU; 627 return; 628 } 629 #ifndef NDEBUG 630 if (SuccSU->NumPredsLeft == 0) { 631 dbgs() << "*** Scheduling failed! ***\n"; 632 dumpNode(*SuccSU); 633 dbgs() << " has been released too many times!\n"; 634 llvm_unreachable(nullptr); 635 } 636 #endif 637 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 638 // CurrCycle may have advanced since then. 639 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 640 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 641 642 --SuccSU->NumPredsLeft; 643 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 644 SchedImpl->releaseTopNode(SuccSU); 645 } 646 647 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 648 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 649 for (SDep &Succ : SU->Succs) 650 releaseSucc(SU, &Succ); 651 } 652 653 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 654 /// NumSuccsLeft reaches zero, release the predecessor node. 655 /// 656 /// FIXME: Adjust PredSU height based on MinLatency. 657 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 658 SUnit *PredSU = PredEdge->getSUnit(); 659 660 if (PredEdge->isWeak()) { 661 --PredSU->WeakSuccsLeft; 662 if (PredEdge->isCluster()) 663 NextClusterPred = PredSU; 664 return; 665 } 666 #ifndef NDEBUG 667 if (PredSU->NumSuccsLeft == 0) { 668 dbgs() << "*** Scheduling failed! ***\n"; 669 dumpNode(*PredSU); 670 dbgs() << " has been released too many times!\n"; 671 llvm_unreachable(nullptr); 672 } 673 #endif 674 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 675 // CurrCycle may have advanced since then. 676 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 677 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 678 679 --PredSU->NumSuccsLeft; 680 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 681 SchedImpl->releaseBottomNode(PredSU); 682 } 683 684 /// releasePredecessors - Call releasePred on each of SU's predecessors. 685 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 686 for (SDep &Pred : SU->Preds) 687 releasePred(SU, &Pred); 688 } 689 690 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 691 ScheduleDAGInstrs::startBlock(bb); 692 SchedImpl->enterMBB(bb); 693 } 694 695 void ScheduleDAGMI::finishBlock() { 696 SchedImpl->leaveMBB(); 697 ScheduleDAGInstrs::finishBlock(); 698 } 699 700 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 701 /// crossing a scheduling boundary. [begin, end) includes all instructions in 702 /// the region, including the boundary itself and single-instruction regions 703 /// that don't get scheduled. 704 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 705 MachineBasicBlock::iterator begin, 706 MachineBasicBlock::iterator end, 707 unsigned regioninstrs) 708 { 709 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 710 711 SchedImpl->initPolicy(begin, end, regioninstrs); 712 } 713 714 /// This is normally called from the main scheduler loop but may also be invoked 715 /// by the scheduling strategy to perform additional code motion. 716 void ScheduleDAGMI::moveInstruction( 717 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 718 // Advance RegionBegin if the first instruction moves down. 719 if (&*RegionBegin == MI) 720 ++RegionBegin; 721 722 // Update the instruction stream. 723 BB->splice(InsertPos, BB, MI); 724 725 // Update LiveIntervals 726 if (LIS) 727 LIS->handleMove(*MI, /*UpdateFlags=*/true); 728 729 // Recede RegionBegin if an instruction moves above the first. 730 if (RegionBegin == InsertPos) 731 RegionBegin = MI; 732 } 733 734 bool ScheduleDAGMI::checkSchedLimit() { 735 #ifndef NDEBUG 736 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 737 CurrentTop = CurrentBottom; 738 return false; 739 } 740 ++NumInstrsScheduled; 741 #endif 742 return true; 743 } 744 745 /// Per-region scheduling driver, called back from 746 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 747 /// does not consider liveness or register pressure. It is useful for PostRA 748 /// scheduling and potentially other custom schedulers. 749 void ScheduleDAGMI::schedule() { 750 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 751 LLVM_DEBUG(SchedImpl->dumpPolicy()); 752 753 // Build the DAG. 754 buildSchedGraph(AA); 755 756 postprocessDAG(); 757 758 SmallVector<SUnit*, 8> TopRoots, BotRoots; 759 findRootsAndBiasEdges(TopRoots, BotRoots); 760 761 LLVM_DEBUG(dump()); 762 if (PrintDAGs) dump(); 763 if (ViewMISchedDAGs) viewGraph(); 764 765 // Initialize the strategy before modifying the DAG. 766 // This may initialize a DFSResult to be used for queue priority. 767 SchedImpl->initialize(this); 768 769 // Initialize ready queues now that the DAG and priority data are finalized. 770 initQueues(TopRoots, BotRoots); 771 772 bool IsTopNode = false; 773 while (true) { 774 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 775 SUnit *SU = SchedImpl->pickNode(IsTopNode); 776 if (!SU) break; 777 778 assert(!SU->isScheduled && "Node already scheduled"); 779 if (!checkSchedLimit()) 780 break; 781 782 MachineInstr *MI = SU->getInstr(); 783 if (IsTopNode) { 784 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 785 if (&*CurrentTop == MI) 786 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 787 else 788 moveInstruction(MI, CurrentTop); 789 } else { 790 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 791 MachineBasicBlock::iterator priorII = 792 priorNonDebug(CurrentBottom, CurrentTop); 793 if (&*priorII == MI) 794 CurrentBottom = priorII; 795 else { 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, priorII); 798 moveInstruction(MI, CurrentBottom); 799 CurrentBottom = MI; 800 } 801 } 802 // Notify the scheduling strategy before updating the DAG. 803 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 804 // runs, it can then use the accurate ReadyCycle time to determine whether 805 // newly released nodes can move to the readyQ. 806 SchedImpl->schedNode(SU, IsTopNode); 807 808 updateQueues(SU, IsTopNode); 809 } 810 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 811 812 placeDebugValues(); 813 814 LLVM_DEBUG({ 815 dbgs() << "*** Final schedule for " 816 << printMBBReference(*begin()->getParent()) << " ***\n"; 817 dumpSchedule(); 818 dbgs() << '\n'; 819 }); 820 } 821 822 /// Apply each ScheduleDAGMutation step in order. 823 void ScheduleDAGMI::postprocessDAG() { 824 for (auto &m : Mutations) 825 m->apply(this); 826 } 827 828 void ScheduleDAGMI:: 829 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 830 SmallVectorImpl<SUnit*> &BotRoots) { 831 for (SUnit &SU : SUnits) { 832 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 833 834 // Order predecessors so DFSResult follows the critical path. 835 SU.biasCriticalPath(); 836 837 // A SUnit is ready to top schedule if it has no predecessors. 838 if (!SU.NumPredsLeft) 839 TopRoots.push_back(&SU); 840 // A SUnit is ready to bottom schedule if it has no successors. 841 if (!SU.NumSuccsLeft) 842 BotRoots.push_back(&SU); 843 } 844 ExitSU.biasCriticalPath(); 845 } 846 847 /// Identify DAG roots and setup scheduler queues. 848 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 849 ArrayRef<SUnit*> BotRoots) { 850 NextClusterSucc = nullptr; 851 NextClusterPred = nullptr; 852 853 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 854 // 855 // Nodes with unreleased weak edges can still be roots. 856 // Release top roots in forward order. 857 for (SUnit *SU : TopRoots) 858 SchedImpl->releaseTopNode(SU); 859 860 // Release bottom roots in reverse order so the higher priority nodes appear 861 // first. This is more natural and slightly more efficient. 862 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 863 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 864 SchedImpl->releaseBottomNode(*I); 865 } 866 867 releaseSuccessors(&EntrySU); 868 releasePredecessors(&ExitSU); 869 870 SchedImpl->registerRoots(); 871 872 // Advance past initial DebugValues. 873 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 874 CurrentBottom = RegionEnd; 875 } 876 877 /// Update scheduler queues after scheduling an instruction. 878 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 879 // Release dependent instructions for scheduling. 880 if (IsTopNode) 881 releaseSuccessors(SU); 882 else 883 releasePredecessors(SU); 884 885 SU->isScheduled = true; 886 } 887 888 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 889 void ScheduleDAGMI::placeDebugValues() { 890 // If first instruction was a DBG_VALUE then put it back. 891 if (FirstDbgValue) { 892 BB->splice(RegionBegin, BB, FirstDbgValue); 893 RegionBegin = FirstDbgValue; 894 } 895 896 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 897 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 898 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 899 MachineInstr *DbgValue = P.first; 900 MachineBasicBlock::iterator OrigPrevMI = P.second; 901 if (&*RegionBegin == DbgValue) 902 ++RegionBegin; 903 BB->splice(++OrigPrevMI, BB, DbgValue); 904 if (OrigPrevMI == std::prev(RegionEnd)) 905 RegionEnd = DbgValue; 906 } 907 DbgValues.clear(); 908 FirstDbgValue = nullptr; 909 } 910 911 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 912 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 913 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 914 if (SUnit *SU = getSUnit(&(*MI))) 915 dumpNode(*SU); 916 else 917 dbgs() << "Missing SUnit\n"; 918 } 919 } 920 #endif 921 922 //===----------------------------------------------------------------------===// 923 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 924 // preservation. 925 //===----------------------------------------------------------------------===// 926 927 ScheduleDAGMILive::~ScheduleDAGMILive() { 928 delete DFSResult; 929 } 930 931 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 932 const MachineInstr &MI = *SU.getInstr(); 933 for (const MachineOperand &MO : MI.operands()) { 934 if (!MO.isReg()) 935 continue; 936 if (!MO.readsReg()) 937 continue; 938 if (TrackLaneMasks && !MO.isUse()) 939 continue; 940 941 Register Reg = MO.getReg(); 942 if (!Register::isVirtualRegister(Reg)) 943 continue; 944 945 // Ignore re-defs. 946 if (TrackLaneMasks) { 947 bool FoundDef = false; 948 for (const MachineOperand &MO2 : MI.operands()) { 949 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 950 FoundDef = true; 951 break; 952 } 953 } 954 if (FoundDef) 955 continue; 956 } 957 958 // Record this local VReg use. 959 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 960 for (; UI != VRegUses.end(); ++UI) { 961 if (UI->SU == &SU) 962 break; 963 } 964 if (UI == VRegUses.end()) 965 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 966 } 967 } 968 969 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 970 /// crossing a scheduling boundary. [begin, end) includes all instructions in 971 /// the region, including the boundary itself and single-instruction regions 972 /// that don't get scheduled. 973 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 974 MachineBasicBlock::iterator begin, 975 MachineBasicBlock::iterator end, 976 unsigned regioninstrs) 977 { 978 // ScheduleDAGMI initializes SchedImpl's per-region policy. 979 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 980 981 // For convenience remember the end of the liveness region. 982 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 983 984 SUPressureDiffs.clear(); 985 986 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 987 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 988 989 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 990 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 991 } 992 993 // Setup the register pressure trackers for the top scheduled and bottom 994 // scheduled regions. 995 void ScheduleDAGMILive::initRegPressure() { 996 VRegUses.clear(); 997 VRegUses.setUniverse(MRI.getNumVirtRegs()); 998 for (SUnit &SU : SUnits) 999 collectVRegUses(SU); 1000 1001 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1002 ShouldTrackLaneMasks, false); 1003 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1004 ShouldTrackLaneMasks, false); 1005 1006 // Close the RPTracker to finalize live ins. 1007 RPTracker.closeRegion(); 1008 1009 LLVM_DEBUG(RPTracker.dump()); 1010 1011 // Initialize the live ins and live outs. 1012 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1013 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1014 1015 // Close one end of the tracker so we can call 1016 // getMaxUpward/DownwardPressureDelta before advancing across any 1017 // instructions. This converts currently live regs into live ins/outs. 1018 TopRPTracker.closeTop(); 1019 BotRPTracker.closeBottom(); 1020 1021 BotRPTracker.initLiveThru(RPTracker); 1022 if (!BotRPTracker.getLiveThru().empty()) { 1023 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1024 LLVM_DEBUG(dbgs() << "Live Thru: "; 1025 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1026 }; 1027 1028 // For each live out vreg reduce the pressure change associated with other 1029 // uses of the same vreg below the live-out reaching def. 1030 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1031 1032 // Account for liveness generated by the region boundary. 1033 if (LiveRegionEnd != RegionEnd) { 1034 SmallVector<RegisterMaskPair, 8> LiveUses; 1035 BotRPTracker.recede(&LiveUses); 1036 updatePressureDiffs(LiveUses); 1037 } 1038 1039 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1040 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1041 dbgs() << "Bottom Pressure:\n"; 1042 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1043 1044 assert((BotRPTracker.getPos() == RegionEnd || 1045 (RegionEnd->isDebugInstr() && 1046 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1047 "Can't find the region bottom"); 1048 1049 // Cache the list of excess pressure sets in this region. This will also track 1050 // the max pressure in the scheduled code for these sets. 1051 RegionCriticalPSets.clear(); 1052 const std::vector<unsigned> &RegionPressure = 1053 RPTracker.getPressure().MaxSetPressure; 1054 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1055 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1056 if (RegionPressure[i] > Limit) { 1057 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1058 << " Actual " << RegionPressure[i] << "\n"); 1059 RegionCriticalPSets.push_back(PressureChange(i)); 1060 } 1061 } 1062 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1063 for (const PressureChange &RCPS 1064 : RegionCriticalPSets) dbgs() 1065 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1066 dbgs() << "\n"); 1067 } 1068 1069 void ScheduleDAGMILive:: 1070 updateScheduledPressure(const SUnit *SU, 1071 const std::vector<unsigned> &NewMaxPressure) { 1072 const PressureDiff &PDiff = getPressureDiff(SU); 1073 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1074 for (const PressureChange &PC : PDiff) { 1075 if (!PC.isValid()) 1076 break; 1077 unsigned ID = PC.getPSet(); 1078 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1079 ++CritIdx; 1080 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1081 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1082 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1083 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1084 } 1085 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1086 if (NewMaxPressure[ID] >= Limit - 2) { 1087 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1088 << NewMaxPressure[ID] 1089 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1090 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1091 << " livethru)\n"); 1092 } 1093 } 1094 } 1095 1096 /// Update the PressureDiff array for liveness after scheduling this 1097 /// instruction. 1098 void ScheduleDAGMILive::updatePressureDiffs( 1099 ArrayRef<RegisterMaskPair> LiveUses) { 1100 for (const RegisterMaskPair &P : LiveUses) { 1101 unsigned Reg = P.RegUnit; 1102 /// FIXME: Currently assuming single-use physregs. 1103 if (!Register::isVirtualRegister(Reg)) 1104 continue; 1105 1106 if (ShouldTrackLaneMasks) { 1107 // If the register has just become live then other uses won't change 1108 // this fact anymore => decrement pressure. 1109 // If the register has just become dead then other uses make it come 1110 // back to life => increment pressure. 1111 bool Decrement = P.LaneMask.any(); 1112 1113 for (const VReg2SUnit &V2SU 1114 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1115 SUnit &SU = *V2SU.SU; 1116 if (SU.isScheduled || &SU == &ExitSU) 1117 continue; 1118 1119 PressureDiff &PDiff = getPressureDiff(&SU); 1120 PDiff.addPressureChange(Reg, Decrement, &MRI); 1121 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1122 << printReg(Reg, TRI) << ':' 1123 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1124 dbgs() << " to "; PDiff.dump(*TRI);); 1125 } 1126 } else { 1127 assert(P.LaneMask.any()); 1128 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1129 // This may be called before CurrentBottom has been initialized. However, 1130 // BotRPTracker must have a valid position. We want the value live into the 1131 // instruction or live out of the block, so ask for the previous 1132 // instruction's live-out. 1133 const LiveInterval &LI = LIS->getInterval(Reg); 1134 VNInfo *VNI; 1135 MachineBasicBlock::const_iterator I = 1136 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1137 if (I == BB->end()) 1138 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1139 else { 1140 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1141 VNI = LRQ.valueIn(); 1142 } 1143 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1144 assert(VNI && "No live value at use."); 1145 for (const VReg2SUnit &V2SU 1146 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1147 SUnit *SU = V2SU.SU; 1148 // If this use comes before the reaching def, it cannot be a last use, 1149 // so decrease its pressure change. 1150 if (!SU->isScheduled && SU != &ExitSU) { 1151 LiveQueryResult LRQ = 1152 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1153 if (LRQ.valueIn() == VNI) { 1154 PressureDiff &PDiff = getPressureDiff(SU); 1155 PDiff.addPressureChange(Reg, true, &MRI); 1156 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1157 << *SU->getInstr(); 1158 dbgs() << " to "; PDiff.dump(*TRI);); 1159 } 1160 } 1161 } 1162 } 1163 } 1164 } 1165 1166 void ScheduleDAGMILive::dump() const { 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 if (EntrySU.getInstr() != nullptr) 1169 dumpNodeAll(EntrySU); 1170 for (const SUnit &SU : SUnits) { 1171 dumpNodeAll(SU); 1172 if (ShouldTrackPressure) { 1173 dbgs() << " Pressure Diff : "; 1174 getPressureDiff(&SU).dump(*TRI); 1175 } 1176 dbgs() << " Single Issue : "; 1177 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1178 SchedModel.mustEndGroup(SU.getInstr())) 1179 dbgs() << "true;"; 1180 else 1181 dbgs() << "false;"; 1182 dbgs() << '\n'; 1183 } 1184 if (ExitSU.getInstr() != nullptr) 1185 dumpNodeAll(ExitSU); 1186 #endif 1187 } 1188 1189 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1190 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1191 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1192 /// 1193 /// This is a skeletal driver, with all the functionality pushed into helpers, 1194 /// so that it can be easily extended by experimental schedulers. Generally, 1195 /// implementing MachineSchedStrategy should be sufficient to implement a new 1196 /// scheduling algorithm. However, if a scheduler further subclasses 1197 /// ScheduleDAGMILive then it will want to override this virtual method in order 1198 /// to update any specialized state. 1199 void ScheduleDAGMILive::schedule() { 1200 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1201 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1202 buildDAGWithRegPressure(); 1203 1204 postprocessDAG(); 1205 1206 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1207 findRootsAndBiasEdges(TopRoots, BotRoots); 1208 1209 // Initialize the strategy before modifying the DAG. 1210 // This may initialize a DFSResult to be used for queue priority. 1211 SchedImpl->initialize(this); 1212 1213 LLVM_DEBUG(dump()); 1214 if (PrintDAGs) dump(); 1215 if (ViewMISchedDAGs) viewGraph(); 1216 1217 // Initialize ready queues now that the DAG and priority data are finalized. 1218 initQueues(TopRoots, BotRoots); 1219 1220 bool IsTopNode = false; 1221 while (true) { 1222 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1223 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1224 if (!SU) break; 1225 1226 assert(!SU->isScheduled && "Node already scheduled"); 1227 if (!checkSchedLimit()) 1228 break; 1229 1230 scheduleMI(SU, IsTopNode); 1231 1232 if (DFSResult) { 1233 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1234 if (!ScheduledTrees.test(SubtreeID)) { 1235 ScheduledTrees.set(SubtreeID); 1236 DFSResult->scheduleTree(SubtreeID); 1237 SchedImpl->scheduleTree(SubtreeID); 1238 } 1239 } 1240 1241 // Notify the scheduling strategy after updating the DAG. 1242 SchedImpl->schedNode(SU, IsTopNode); 1243 1244 updateQueues(SU, IsTopNode); 1245 } 1246 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1247 1248 placeDebugValues(); 1249 1250 LLVM_DEBUG({ 1251 dbgs() << "*** Final schedule for " 1252 << printMBBReference(*begin()->getParent()) << " ***\n"; 1253 dumpSchedule(); 1254 dbgs() << '\n'; 1255 }); 1256 } 1257 1258 /// Build the DAG and setup three register pressure trackers. 1259 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1260 if (!ShouldTrackPressure) { 1261 RPTracker.reset(); 1262 RegionCriticalPSets.clear(); 1263 buildSchedGraph(AA); 1264 return; 1265 } 1266 1267 // Initialize the register pressure tracker used by buildSchedGraph. 1268 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1269 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1270 1271 // Account for liveness generate by the region boundary. 1272 if (LiveRegionEnd != RegionEnd) 1273 RPTracker.recede(); 1274 1275 // Build the DAG, and compute current register pressure. 1276 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1277 1278 // Initialize top/bottom trackers after computing region pressure. 1279 initRegPressure(); 1280 } 1281 1282 void ScheduleDAGMILive::computeDFSResult() { 1283 if (!DFSResult) 1284 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1285 DFSResult->clear(); 1286 ScheduledTrees.clear(); 1287 DFSResult->resize(SUnits.size()); 1288 DFSResult->compute(SUnits); 1289 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1290 } 1291 1292 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1293 /// only provides the critical path for single block loops. To handle loops that 1294 /// span blocks, we could use the vreg path latencies provided by 1295 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1296 /// available for use in the scheduler. 1297 /// 1298 /// The cyclic path estimation identifies a def-use pair that crosses the back 1299 /// edge and considers the depth and height of the nodes. For example, consider 1300 /// the following instruction sequence where each instruction has unit latency 1301 /// and defines an epomymous virtual register: 1302 /// 1303 /// a->b(a,c)->c(b)->d(c)->exit 1304 /// 1305 /// The cyclic critical path is a two cycles: b->c->b 1306 /// The acyclic critical path is four cycles: a->b->c->d->exit 1307 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1308 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1309 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1310 /// LiveInDepth = depth(b) = len(a->b) = 1 1311 /// 1312 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1313 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1314 /// CyclicCriticalPath = min(2, 2) = 2 1315 /// 1316 /// This could be relevant to PostRA scheduling, but is currently implemented 1317 /// assuming LiveIntervals. 1318 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1319 // This only applies to single block loop. 1320 if (!BB->isSuccessor(BB)) 1321 return 0; 1322 1323 unsigned MaxCyclicLatency = 0; 1324 // Visit each live out vreg def to find def/use pairs that cross iterations. 1325 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1326 unsigned Reg = P.RegUnit; 1327 if (!Register::isVirtualRegister(Reg)) 1328 continue; 1329 const LiveInterval &LI = LIS->getInterval(Reg); 1330 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1331 if (!DefVNI) 1332 continue; 1333 1334 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1335 const SUnit *DefSU = getSUnit(DefMI); 1336 if (!DefSU) 1337 continue; 1338 1339 unsigned LiveOutHeight = DefSU->getHeight(); 1340 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1341 // Visit all local users of the vreg def. 1342 for (const VReg2SUnit &V2SU 1343 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1344 SUnit *SU = V2SU.SU; 1345 if (SU == &ExitSU) 1346 continue; 1347 1348 // Only consider uses of the phi. 1349 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1350 if (!LRQ.valueIn()->isPHIDef()) 1351 continue; 1352 1353 // Assume that a path spanning two iterations is a cycle, which could 1354 // overestimate in strange cases. This allows cyclic latency to be 1355 // estimated as the minimum slack of the vreg's depth or height. 1356 unsigned CyclicLatency = 0; 1357 if (LiveOutDepth > SU->getDepth()) 1358 CyclicLatency = LiveOutDepth - SU->getDepth(); 1359 1360 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1361 if (LiveInHeight > LiveOutHeight) { 1362 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1363 CyclicLatency = LiveInHeight - LiveOutHeight; 1364 } else 1365 CyclicLatency = 0; 1366 1367 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1368 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1369 if (CyclicLatency > MaxCyclicLatency) 1370 MaxCyclicLatency = CyclicLatency; 1371 } 1372 } 1373 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1374 return MaxCyclicLatency; 1375 } 1376 1377 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1378 /// the Top RP tracker in case the region beginning has changed. 1379 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1380 ArrayRef<SUnit*> BotRoots) { 1381 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1382 if (ShouldTrackPressure) { 1383 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1384 TopRPTracker.setPos(CurrentTop); 1385 } 1386 } 1387 1388 /// Move an instruction and update register pressure. 1389 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1390 // Move the instruction to its new location in the instruction stream. 1391 MachineInstr *MI = SU->getInstr(); 1392 1393 if (IsTopNode) { 1394 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1395 if (&*CurrentTop == MI) 1396 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1397 else { 1398 moveInstruction(MI, CurrentTop); 1399 TopRPTracker.setPos(MI); 1400 } 1401 1402 if (ShouldTrackPressure) { 1403 // Update top scheduled pressure. 1404 RegisterOperands RegOpers; 1405 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1406 if (ShouldTrackLaneMasks) { 1407 // Adjust liveness and add missing dead+read-undef flags. 1408 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1409 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1410 } else { 1411 // Adjust for missing dead-def flags. 1412 RegOpers.detectDeadDefs(*MI, *LIS); 1413 } 1414 1415 TopRPTracker.advance(RegOpers); 1416 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1417 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1418 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1419 1420 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1421 } 1422 } else { 1423 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1424 MachineBasicBlock::iterator priorII = 1425 priorNonDebug(CurrentBottom, CurrentTop); 1426 if (&*priorII == MI) 1427 CurrentBottom = priorII; 1428 else { 1429 if (&*CurrentTop == MI) { 1430 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1431 TopRPTracker.setPos(CurrentTop); 1432 } 1433 moveInstruction(MI, CurrentBottom); 1434 CurrentBottom = MI; 1435 BotRPTracker.setPos(CurrentBottom); 1436 } 1437 if (ShouldTrackPressure) { 1438 RegisterOperands RegOpers; 1439 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1440 if (ShouldTrackLaneMasks) { 1441 // Adjust liveness and add missing dead+read-undef flags. 1442 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1443 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1444 } else { 1445 // Adjust for missing dead-def flags. 1446 RegOpers.detectDeadDefs(*MI, *LIS); 1447 } 1448 1449 if (BotRPTracker.getPos() != CurrentBottom) 1450 BotRPTracker.recedeSkipDebugValues(); 1451 SmallVector<RegisterMaskPair, 8> LiveUses; 1452 BotRPTracker.recede(RegOpers, &LiveUses); 1453 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1454 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1455 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1456 1457 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1458 updatePressureDiffs(LiveUses); 1459 } 1460 } 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1465 //===----------------------------------------------------------------------===// 1466 1467 namespace { 1468 1469 /// Post-process the DAG to create cluster edges between neighboring 1470 /// loads or between neighboring stores. 1471 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1472 struct MemOpInfo { 1473 SUnit *SU; 1474 const MachineOperand *BaseOp; 1475 int64_t Offset; 1476 1477 MemOpInfo(SUnit *su, const MachineOperand *Op, int64_t ofs) 1478 : SU(su), BaseOp(Op), Offset(ofs) {} 1479 1480 bool operator<(const MemOpInfo &RHS) const { 1481 if (BaseOp->getType() != RHS.BaseOp->getType()) 1482 return BaseOp->getType() < RHS.BaseOp->getType(); 1483 1484 if (BaseOp->isReg()) 1485 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) < 1486 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset, 1487 RHS.SU->NodeNum); 1488 if (BaseOp->isFI()) { 1489 const MachineFunction &MF = 1490 *BaseOp->getParent()->getParent()->getParent(); 1491 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1492 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1493 TargetFrameLowering::StackGrowsDown; 1494 // Can't use tuple comparison here since we might need to use a 1495 // different order when the stack grows down. 1496 if (BaseOp->getIndex() != RHS.BaseOp->getIndex()) 1497 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex() 1498 : BaseOp->getIndex() < RHS.BaseOp->getIndex(); 1499 1500 if (Offset != RHS.Offset) 1501 return Offset < RHS.Offset; 1502 1503 return SU->NodeNum < RHS.SU->NodeNum; 1504 } 1505 1506 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1507 "index bases."); 1508 } 1509 }; 1510 1511 const TargetInstrInfo *TII; 1512 const TargetRegisterInfo *TRI; 1513 bool IsLoad; 1514 1515 public: 1516 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1517 const TargetRegisterInfo *tri, bool IsLoad) 1518 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1519 1520 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1521 1522 protected: 1523 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1524 }; 1525 1526 class StoreClusterMutation : public BaseMemOpClusterMutation { 1527 public: 1528 StoreClusterMutation(const TargetInstrInfo *tii, 1529 const TargetRegisterInfo *tri) 1530 : BaseMemOpClusterMutation(tii, tri, false) {} 1531 }; 1532 1533 class LoadClusterMutation : public BaseMemOpClusterMutation { 1534 public: 1535 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1536 : BaseMemOpClusterMutation(tii, tri, true) {} 1537 }; 1538 1539 } // end anonymous namespace 1540 1541 namespace llvm { 1542 1543 std::unique_ptr<ScheduleDAGMutation> 1544 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1545 const TargetRegisterInfo *TRI) { 1546 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1547 : nullptr; 1548 } 1549 1550 std::unique_ptr<ScheduleDAGMutation> 1551 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1552 const TargetRegisterInfo *TRI) { 1553 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1554 : nullptr; 1555 } 1556 1557 } // end namespace llvm 1558 1559 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1560 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1561 SmallVector<MemOpInfo, 32> MemOpRecords; 1562 for (SUnit *SU : MemOps) { 1563 const MachineOperand *BaseOp; 1564 int64_t Offset; 1565 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI)) 1566 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset)); 1567 } 1568 if (MemOpRecords.size() < 2) 1569 return; 1570 1571 llvm::sort(MemOpRecords); 1572 unsigned ClusterLength = 1; 1573 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1574 SUnit *SUa = MemOpRecords[Idx].SU; 1575 SUnit *SUb = MemOpRecords[Idx+1].SU; 1576 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp, 1577 *MemOpRecords[Idx + 1].BaseOp, 1578 ClusterLength) && 1579 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1580 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1581 << SUb->NodeNum << ")\n"); 1582 // Copy successor edges from SUa to SUb. Interleaving computation 1583 // dependent on SUa can prevent load combining due to register reuse. 1584 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1585 // loads should have effectively the same inputs. 1586 for (const SDep &Succ : SUa->Succs) { 1587 if (Succ.getSUnit() == SUb) 1588 continue; 1589 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1590 << ")\n"); 1591 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1592 } 1593 ++ClusterLength; 1594 } else 1595 ClusterLength = 1; 1596 } 1597 } 1598 1599 /// Callback from DAG postProcessing to create cluster edges for loads. 1600 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1601 // Map DAG NodeNum to store chain ID. 1602 DenseMap<unsigned, unsigned> StoreChainIDs; 1603 // Map each store chain to a set of dependent MemOps. 1604 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1605 for (SUnit &SU : DAG->SUnits) { 1606 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1607 (!IsLoad && !SU.getInstr()->mayStore())) 1608 continue; 1609 1610 unsigned ChainPredID = DAG->SUnits.size(); 1611 for (const SDep &Pred : SU.Preds) { 1612 if (Pred.isCtrl()) { 1613 ChainPredID = Pred.getSUnit()->NodeNum; 1614 break; 1615 } 1616 } 1617 // Check if this chain-like pred has been seen 1618 // before. ChainPredID==MaxNodeID at the top of the schedule. 1619 unsigned NumChains = StoreChainDependents.size(); 1620 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1621 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1622 if (Result.second) 1623 StoreChainDependents.resize(NumChains + 1); 1624 StoreChainDependents[Result.first->second].push_back(&SU); 1625 } 1626 1627 // Iterate over the store chains. 1628 for (auto &SCD : StoreChainDependents) 1629 clusterNeighboringMemOps(SCD, DAG); 1630 } 1631 1632 //===----------------------------------------------------------------------===// 1633 // CopyConstrain - DAG post-processing to encourage copy elimination. 1634 //===----------------------------------------------------------------------===// 1635 1636 namespace { 1637 1638 /// Post-process the DAG to create weak edges from all uses of a copy to 1639 /// the one use that defines the copy's source vreg, most likely an induction 1640 /// variable increment. 1641 class CopyConstrain : public ScheduleDAGMutation { 1642 // Transient state. 1643 SlotIndex RegionBeginIdx; 1644 1645 // RegionEndIdx is the slot index of the last non-debug instruction in the 1646 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1647 SlotIndex RegionEndIdx; 1648 1649 public: 1650 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1651 1652 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1653 1654 protected: 1655 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1656 }; 1657 1658 } // end anonymous namespace 1659 1660 namespace llvm { 1661 1662 std::unique_ptr<ScheduleDAGMutation> 1663 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1664 const TargetRegisterInfo *TRI) { 1665 return std::make_unique<CopyConstrain>(TII, TRI); 1666 } 1667 1668 } // end namespace llvm 1669 1670 /// constrainLocalCopy handles two possibilities: 1671 /// 1) Local src: 1672 /// I0: = dst 1673 /// I1: src = ... 1674 /// I2: = dst 1675 /// I3: dst = src (copy) 1676 /// (create pred->succ edges I0->I1, I2->I1) 1677 /// 1678 /// 2) Local copy: 1679 /// I0: dst = src (copy) 1680 /// I1: = dst 1681 /// I2: src = ... 1682 /// I3: = dst 1683 /// (create pred->succ edges I1->I2, I3->I2) 1684 /// 1685 /// Although the MachineScheduler is currently constrained to single blocks, 1686 /// this algorithm should handle extended blocks. An EBB is a set of 1687 /// contiguously numbered blocks such that the previous block in the EBB is 1688 /// always the single predecessor. 1689 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1690 LiveIntervals *LIS = DAG->getLIS(); 1691 MachineInstr *Copy = CopySU->getInstr(); 1692 1693 // Check for pure vreg copies. 1694 const MachineOperand &SrcOp = Copy->getOperand(1); 1695 Register SrcReg = SrcOp.getReg(); 1696 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1697 return; 1698 1699 const MachineOperand &DstOp = Copy->getOperand(0); 1700 Register DstReg = DstOp.getReg(); 1701 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1702 return; 1703 1704 // Check if either the dest or source is local. If it's live across a back 1705 // edge, it's not local. Note that if both vregs are live across the back 1706 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1707 // If both the copy's source and dest are local live intervals, then we 1708 // should treat the dest as the global for the purpose of adding 1709 // constraints. This adds edges from source's other uses to the copy. 1710 unsigned LocalReg = SrcReg; 1711 unsigned GlobalReg = DstReg; 1712 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1713 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1714 LocalReg = DstReg; 1715 GlobalReg = SrcReg; 1716 LocalLI = &LIS->getInterval(LocalReg); 1717 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1718 return; 1719 } 1720 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1721 1722 // Find the global segment after the start of the local LI. 1723 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1724 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1725 // local live range. We could create edges from other global uses to the local 1726 // start, but the coalescer should have already eliminated these cases, so 1727 // don't bother dealing with it. 1728 if (GlobalSegment == GlobalLI->end()) 1729 return; 1730 1731 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1732 // returned the next global segment. But if GlobalSegment overlaps with 1733 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1734 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1735 if (GlobalSegment->contains(LocalLI->beginIndex())) 1736 ++GlobalSegment; 1737 1738 if (GlobalSegment == GlobalLI->end()) 1739 return; 1740 1741 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1742 if (GlobalSegment != GlobalLI->begin()) { 1743 // Two address defs have no hole. 1744 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1745 GlobalSegment->start)) { 1746 return; 1747 } 1748 // If the prior global segment may be defined by the same two-address 1749 // instruction that also defines LocalLI, then can't make a hole here. 1750 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1751 LocalLI->beginIndex())) { 1752 return; 1753 } 1754 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1755 // it would be a disconnected component in the live range. 1756 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1757 "Disconnected LRG within the scheduling region."); 1758 } 1759 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1760 if (!GlobalDef) 1761 return; 1762 1763 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1764 if (!GlobalSU) 1765 return; 1766 1767 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1768 // constraining the uses of the last local def to precede GlobalDef. 1769 SmallVector<SUnit*,8> LocalUses; 1770 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1771 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1772 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1773 for (const SDep &Succ : LastLocalSU->Succs) { 1774 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1775 continue; 1776 if (Succ.getSUnit() == GlobalSU) 1777 continue; 1778 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1779 return; 1780 LocalUses.push_back(Succ.getSUnit()); 1781 } 1782 // Open the top of the GlobalLI hole by constraining any earlier global uses 1783 // to precede the start of LocalLI. 1784 SmallVector<SUnit*,8> GlobalUses; 1785 MachineInstr *FirstLocalDef = 1786 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1787 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1788 for (const SDep &Pred : GlobalSU->Preds) { 1789 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1790 continue; 1791 if (Pred.getSUnit() == FirstLocalSU) 1792 continue; 1793 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1794 return; 1795 GlobalUses.push_back(Pred.getSUnit()); 1796 } 1797 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1798 // Add the weak edges. 1799 for (SmallVectorImpl<SUnit*>::const_iterator 1800 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1801 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1802 << GlobalSU->NodeNum << ")\n"); 1803 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1804 } 1805 for (SmallVectorImpl<SUnit*>::const_iterator 1806 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1807 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1808 << FirstLocalSU->NodeNum << ")\n"); 1809 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1810 } 1811 } 1812 1813 /// Callback from DAG postProcessing to create weak edges to encourage 1814 /// copy elimination. 1815 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1816 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1817 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1818 1819 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1820 if (FirstPos == DAG->end()) 1821 return; 1822 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1823 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1824 *priorNonDebug(DAG->end(), DAG->begin())); 1825 1826 for (SUnit &SU : DAG->SUnits) { 1827 if (!SU.getInstr()->isCopy()) 1828 continue; 1829 1830 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1831 } 1832 } 1833 1834 //===----------------------------------------------------------------------===// 1835 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1836 // and possibly other custom schedulers. 1837 //===----------------------------------------------------------------------===// 1838 1839 static const unsigned InvalidCycle = ~0U; 1840 1841 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1842 1843 /// Given a Count of resource usage and a Latency value, return true if a 1844 /// SchedBoundary becomes resource limited. 1845 /// If we are checking after scheduling a node, we should return true when 1846 /// we just reach the resource limit. 1847 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1848 unsigned Latency, bool AfterSchedNode) { 1849 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1850 if (AfterSchedNode) 1851 return ResCntFactor >= (int)LFactor; 1852 else 1853 return ResCntFactor > (int)LFactor; 1854 } 1855 1856 void SchedBoundary::reset() { 1857 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1858 // Destroying and reconstructing it is very expensive though. So keep 1859 // invalid, placeholder HazardRecs. 1860 if (HazardRec && HazardRec->isEnabled()) { 1861 delete HazardRec; 1862 HazardRec = nullptr; 1863 } 1864 Available.clear(); 1865 Pending.clear(); 1866 CheckPending = false; 1867 CurrCycle = 0; 1868 CurrMOps = 0; 1869 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1870 ExpectedLatency = 0; 1871 DependentLatency = 0; 1872 RetiredMOps = 0; 1873 MaxExecutedResCount = 0; 1874 ZoneCritResIdx = 0; 1875 IsResourceLimited = false; 1876 ReservedCycles.clear(); 1877 ReservedCyclesIndex.clear(); 1878 #ifndef NDEBUG 1879 // Track the maximum number of stall cycles that could arise either from the 1880 // latency of a DAG edge or the number of cycles that a processor resource is 1881 // reserved (SchedBoundary::ReservedCycles). 1882 MaxObservedStall = 0; 1883 #endif 1884 // Reserve a zero-count for invalid CritResIdx. 1885 ExecutedResCounts.resize(1); 1886 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1887 } 1888 1889 void SchedRemainder:: 1890 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1891 reset(); 1892 if (!SchedModel->hasInstrSchedModel()) 1893 return; 1894 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1895 for (SUnit &SU : DAG->SUnits) { 1896 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1897 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1898 * SchedModel->getMicroOpFactor(); 1899 for (TargetSchedModel::ProcResIter 1900 PI = SchedModel->getWriteProcResBegin(SC), 1901 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1902 unsigned PIdx = PI->ProcResourceIdx; 1903 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1904 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1905 } 1906 } 1907 } 1908 1909 void SchedBoundary:: 1910 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1911 reset(); 1912 DAG = dag; 1913 SchedModel = smodel; 1914 Rem = rem; 1915 if (SchedModel->hasInstrSchedModel()) { 1916 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 1917 ReservedCyclesIndex.resize(ResourceCount); 1918 ExecutedResCounts.resize(ResourceCount); 1919 unsigned NumUnits = 0; 1920 1921 for (unsigned i = 0; i < ResourceCount; ++i) { 1922 ReservedCyclesIndex[i] = NumUnits; 1923 NumUnits += SchedModel->getProcResource(i)->NumUnits; 1924 } 1925 1926 ReservedCycles.resize(NumUnits, InvalidCycle); 1927 } 1928 } 1929 1930 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1931 /// these "soft stalls" differently than the hard stall cycles based on CPU 1932 /// resources and computed by checkHazard(). A fully in-order model 1933 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1934 /// available for scheduling until they are ready. However, a weaker in-order 1935 /// model may use this for heuristics. For example, if a processor has in-order 1936 /// behavior when reading certain resources, this may come into play. 1937 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1938 if (!SU->isUnbuffered) 1939 return 0; 1940 1941 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1942 if (ReadyCycle > CurrCycle) 1943 return ReadyCycle - CurrCycle; 1944 return 0; 1945 } 1946 1947 /// Compute the next cycle at which the given processor resource unit 1948 /// can be scheduled. 1949 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 1950 unsigned Cycles) { 1951 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 1952 // If this resource has never been used, always return cycle zero. 1953 if (NextUnreserved == InvalidCycle) 1954 return 0; 1955 // For bottom-up scheduling add the cycles needed for the current operation. 1956 if (!isTop()) 1957 NextUnreserved += Cycles; 1958 return NextUnreserved; 1959 } 1960 1961 /// Compute the next cycle at which the given processor resource can be 1962 /// scheduled. Returns the next cycle and the index of the processor resource 1963 /// instance in the reserved cycles vector. 1964 std::pair<unsigned, unsigned> 1965 SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1966 unsigned MinNextUnreserved = InvalidCycle; 1967 unsigned InstanceIdx = 0; 1968 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 1969 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 1970 assert(NumberOfInstances > 0 && 1971 "Cannot have zero instances of a ProcResource"); 1972 1973 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 1974 ++I) { 1975 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 1976 if (MinNextUnreserved > NextUnreserved) { 1977 InstanceIdx = I; 1978 MinNextUnreserved = NextUnreserved; 1979 } 1980 } 1981 return std::make_pair(MinNextUnreserved, InstanceIdx); 1982 } 1983 1984 /// Does this SU have a hazard within the current instruction group. 1985 /// 1986 /// The scheduler supports two modes of hazard recognition. The first is the 1987 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1988 /// supports highly complicated in-order reservation tables 1989 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1990 /// 1991 /// The second is a streamlined mechanism that checks for hazards based on 1992 /// simple counters that the scheduler itself maintains. It explicitly checks 1993 /// for instruction dispatch limitations, including the number of micro-ops that 1994 /// can dispatch per cycle. 1995 /// 1996 /// TODO: Also check whether the SU must start a new group. 1997 bool SchedBoundary::checkHazard(SUnit *SU) { 1998 if (HazardRec->isEnabled() 1999 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2000 return true; 2001 } 2002 2003 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2004 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2005 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2006 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2007 return true; 2008 } 2009 2010 if (CurrMOps > 0 && 2011 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2012 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2013 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2014 << (isTop() ? "begin" : "end") << " group\n"); 2015 return true; 2016 } 2017 2018 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2019 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2020 for (const MCWriteProcResEntry &PE : 2021 make_range(SchedModel->getWriteProcResBegin(SC), 2022 SchedModel->getWriteProcResEnd(SC))) { 2023 unsigned ResIdx = PE.ProcResourceIdx; 2024 unsigned Cycles = PE.Cycles; 2025 unsigned NRCycle, InstanceIdx; 2026 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles); 2027 if (NRCycle > CurrCycle) { 2028 #ifndef NDEBUG 2029 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2030 #endif 2031 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2032 << SchedModel->getResourceName(ResIdx) 2033 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2034 << "=" << NRCycle << "c\n"); 2035 return true; 2036 } 2037 } 2038 } 2039 return false; 2040 } 2041 2042 // Find the unscheduled node in ReadySUs with the highest latency. 2043 unsigned SchedBoundary:: 2044 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2045 SUnit *LateSU = nullptr; 2046 unsigned RemLatency = 0; 2047 for (SUnit *SU : ReadySUs) { 2048 unsigned L = getUnscheduledLatency(SU); 2049 if (L > RemLatency) { 2050 RemLatency = L; 2051 LateSU = SU; 2052 } 2053 } 2054 if (LateSU) { 2055 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2056 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2057 } 2058 return RemLatency; 2059 } 2060 2061 // Count resources in this zone and the remaining unscheduled 2062 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2063 // resource index, or zero if the zone is issue limited. 2064 unsigned SchedBoundary:: 2065 getOtherResourceCount(unsigned &OtherCritIdx) { 2066 OtherCritIdx = 0; 2067 if (!SchedModel->hasInstrSchedModel()) 2068 return 0; 2069 2070 unsigned OtherCritCount = Rem->RemIssueCount 2071 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2072 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2073 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2074 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2075 PIdx != PEnd; ++PIdx) { 2076 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2077 if (OtherCount > OtherCritCount) { 2078 OtherCritCount = OtherCount; 2079 OtherCritIdx = PIdx; 2080 } 2081 } 2082 if (OtherCritIdx) { 2083 LLVM_DEBUG( 2084 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2085 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2086 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2087 } 2088 return OtherCritCount; 2089 } 2090 2091 template void SchedBoundary::releaseNode<true>(SUnit *SU, unsigned ReadyCycle, 2092 unsigned Idx); 2093 template void SchedBoundary::releaseNode<false>(SUnit *SU, unsigned ReadyCycle, 2094 unsigned Idx); 2095 2096 template <bool InPQueue> 2097 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, unsigned Idx) { 2098 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2099 2100 #ifndef NDEBUG 2101 // ReadyCycle was been bumped up to the CurrCycle when this node was 2102 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2103 // scheduling, so may now be greater than ReadyCycle. 2104 if (ReadyCycle > CurrCycle) 2105 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2106 #endif 2107 2108 if (ReadyCycle < MinReadyCycle) 2109 MinReadyCycle = ReadyCycle; 2110 2111 // Check for interlocks first. For the purpose of other heuristics, an 2112 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2113 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2114 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2115 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2116 2117 if (!HazardDetected) { 2118 Available.push(SU); 2119 2120 if (InPQueue) 2121 Pending.remove(Pending.begin() + Idx); 2122 return; 2123 } 2124 2125 if (!InPQueue) 2126 Pending.push(SU); 2127 } 2128 2129 /// Move the boundary of scheduled code by one cycle. 2130 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2131 if (SchedModel->getMicroOpBufferSize() == 0) { 2132 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2133 "MinReadyCycle uninitialized"); 2134 if (MinReadyCycle > NextCycle) 2135 NextCycle = MinReadyCycle; 2136 } 2137 // Update the current micro-ops, which will issue in the next cycle. 2138 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2139 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2140 2141 // Decrement DependentLatency based on the next cycle. 2142 if ((NextCycle - CurrCycle) > DependentLatency) 2143 DependentLatency = 0; 2144 else 2145 DependentLatency -= (NextCycle - CurrCycle); 2146 2147 if (!HazardRec->isEnabled()) { 2148 // Bypass HazardRec virtual calls. 2149 CurrCycle = NextCycle; 2150 } else { 2151 // Bypass getHazardType calls in case of long latency. 2152 for (; CurrCycle != NextCycle; ++CurrCycle) { 2153 if (isTop()) 2154 HazardRec->AdvanceCycle(); 2155 else 2156 HazardRec->RecedeCycle(); 2157 } 2158 } 2159 CheckPending = true; 2160 IsResourceLimited = 2161 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2162 getScheduledLatency(), true); 2163 2164 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2165 << '\n'); 2166 } 2167 2168 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2169 ExecutedResCounts[PIdx] += Count; 2170 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2171 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2172 } 2173 2174 /// Add the given processor resource to this scheduled zone. 2175 /// 2176 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2177 /// during which this resource is consumed. 2178 /// 2179 /// \return the next cycle at which the instruction may execute without 2180 /// oversubscribing resources. 2181 unsigned SchedBoundary:: 2182 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2183 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2184 unsigned Count = Factor * Cycles; 2185 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2186 << Cycles << "x" << Factor << "u\n"); 2187 2188 // Update Executed resources counts. 2189 incExecutedResources(PIdx, Count); 2190 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2191 Rem->RemainingCounts[PIdx] -= Count; 2192 2193 // Check if this resource exceeds the current critical resource. If so, it 2194 // becomes the critical resource. 2195 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2196 ZoneCritResIdx = PIdx; 2197 LLVM_DEBUG(dbgs() << " *** Critical resource " 2198 << SchedModel->getResourceName(PIdx) << ": " 2199 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2200 << "c\n"); 2201 } 2202 // For reserved resources, record the highest cycle using the resource. 2203 unsigned NextAvailable, InstanceIdx; 2204 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles); 2205 if (NextAvailable > CurrCycle) { 2206 LLVM_DEBUG(dbgs() << " Resource conflict: " 2207 << SchedModel->getResourceName(PIdx) 2208 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2209 << " reserved until @" << NextAvailable << "\n"); 2210 } 2211 return NextAvailable; 2212 } 2213 2214 /// Move the boundary of scheduled code by one SUnit. 2215 void SchedBoundary::bumpNode(SUnit *SU) { 2216 // Update the reservation table. 2217 if (HazardRec->isEnabled()) { 2218 if (!isTop() && SU->isCall) { 2219 // Calls are scheduled with their preceding instructions. For bottom-up 2220 // scheduling, clear the pipeline state before emitting. 2221 HazardRec->Reset(); 2222 } 2223 HazardRec->EmitInstruction(SU); 2224 // Scheduling an instruction may have made pending instructions available. 2225 CheckPending = true; 2226 } 2227 // checkHazard should prevent scheduling multiple instructions per cycle that 2228 // exceed the issue width. 2229 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2230 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2231 assert( 2232 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2233 "Cannot schedule this instruction's MicroOps in the current cycle."); 2234 2235 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2236 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2237 2238 unsigned NextCycle = CurrCycle; 2239 switch (SchedModel->getMicroOpBufferSize()) { 2240 case 0: 2241 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2242 break; 2243 case 1: 2244 if (ReadyCycle > NextCycle) { 2245 NextCycle = ReadyCycle; 2246 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2247 } 2248 break; 2249 default: 2250 // We don't currently model the OOO reorder buffer, so consider all 2251 // scheduled MOps to be "retired". We do loosely model in-order resource 2252 // latency. If this instruction uses an in-order resource, account for any 2253 // likely stall cycles. 2254 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2255 NextCycle = ReadyCycle; 2256 break; 2257 } 2258 RetiredMOps += IncMOps; 2259 2260 // Update resource counts and critical resource. 2261 if (SchedModel->hasInstrSchedModel()) { 2262 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2263 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2264 Rem->RemIssueCount -= DecRemIssue; 2265 if (ZoneCritResIdx) { 2266 // Scale scheduled micro-ops for comparing with the critical resource. 2267 unsigned ScaledMOps = 2268 RetiredMOps * SchedModel->getMicroOpFactor(); 2269 2270 // If scaled micro-ops are now more than the previous critical resource by 2271 // a full cycle, then micro-ops issue becomes critical. 2272 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2273 >= (int)SchedModel->getLatencyFactor()) { 2274 ZoneCritResIdx = 0; 2275 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2276 << ScaledMOps / SchedModel->getLatencyFactor() 2277 << "c\n"); 2278 } 2279 } 2280 for (TargetSchedModel::ProcResIter 2281 PI = SchedModel->getWriteProcResBegin(SC), 2282 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2283 unsigned RCycle = 2284 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2285 if (RCycle > NextCycle) 2286 NextCycle = RCycle; 2287 } 2288 if (SU->hasReservedResource) { 2289 // For reserved resources, record the highest cycle using the resource. 2290 // For top-down scheduling, this is the cycle in which we schedule this 2291 // instruction plus the number of cycles the operations reserves the 2292 // resource. For bottom-up is it simply the instruction's cycle. 2293 for (TargetSchedModel::ProcResIter 2294 PI = SchedModel->getWriteProcResBegin(SC), 2295 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2296 unsigned PIdx = PI->ProcResourceIdx; 2297 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2298 unsigned ReservedUntil, InstanceIdx; 2299 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0); 2300 if (isTop()) { 2301 ReservedCycles[InstanceIdx] = 2302 std::max(ReservedUntil, NextCycle + PI->Cycles); 2303 } else 2304 ReservedCycles[InstanceIdx] = NextCycle; 2305 } 2306 } 2307 } 2308 } 2309 // Update ExpectedLatency and DependentLatency. 2310 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2311 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2312 if (SU->getDepth() > TopLatency) { 2313 TopLatency = SU->getDepth(); 2314 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2315 << SU->NodeNum << ") " << TopLatency << "c\n"); 2316 } 2317 if (SU->getHeight() > BotLatency) { 2318 BotLatency = SU->getHeight(); 2319 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2320 << SU->NodeNum << ") " << BotLatency << "c\n"); 2321 } 2322 // If we stall for any reason, bump the cycle. 2323 if (NextCycle > CurrCycle) 2324 bumpCycle(NextCycle); 2325 else 2326 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2327 // resource limited. If a stall occurred, bumpCycle does this. 2328 IsResourceLimited = 2329 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2330 getScheduledLatency(), true); 2331 2332 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2333 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2334 // one cycle. Since we commonly reach the max MOps here, opportunistically 2335 // bump the cycle to avoid uselessly checking everything in the readyQ. 2336 CurrMOps += IncMOps; 2337 2338 // Bump the cycle count for issue group constraints. 2339 // This must be done after NextCycle has been adjust for all other stalls. 2340 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2341 // currCycle to X. 2342 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2343 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2344 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2345 << " group\n"); 2346 bumpCycle(++NextCycle); 2347 } 2348 2349 while (CurrMOps >= SchedModel->getIssueWidth()) { 2350 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2351 << CurrCycle << '\n'); 2352 bumpCycle(++NextCycle); 2353 } 2354 LLVM_DEBUG(dumpScheduledState()); 2355 } 2356 2357 /// Release pending ready nodes in to the available queue. This makes them 2358 /// visible to heuristics. 2359 void SchedBoundary::releasePending() { 2360 // If the available queue is empty, it is safe to reset MinReadyCycle. 2361 if (Available.empty()) 2362 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2363 2364 // Check to see if any of the pending instructions are ready to issue. If 2365 // so, add them to the available queue. 2366 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2367 SUnit *SU = *(Pending.begin() + I); 2368 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2369 2370 if (ReadyCycle < MinReadyCycle) 2371 MinReadyCycle = ReadyCycle; 2372 2373 if (Available.size() >= ReadyListLimit) 2374 break; 2375 2376 releaseNode<true>(SU, ReadyCycle, I); 2377 if (E != Pending.size()) { 2378 --I; 2379 --E; 2380 } 2381 } 2382 CheckPending = false; 2383 } 2384 2385 /// Remove SU from the ready set for this boundary. 2386 void SchedBoundary::removeReady(SUnit *SU) { 2387 if (Available.isInQueue(SU)) 2388 Available.remove(Available.find(SU)); 2389 else { 2390 assert(Pending.isInQueue(SU) && "bad ready count"); 2391 Pending.remove(Pending.find(SU)); 2392 } 2393 } 2394 2395 /// If this queue only has one ready candidate, return it. As a side effect, 2396 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2397 /// one node is ready. If multiple instructions are ready, return NULL. 2398 SUnit *SchedBoundary::pickOnlyChoice() { 2399 if (CheckPending) 2400 releasePending(); 2401 2402 if (CurrMOps > 0) { 2403 // Defer any ready instrs that now have a hazard. 2404 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2405 if (checkHazard(*I)) { 2406 Pending.push(*I); 2407 I = Available.remove(I); 2408 continue; 2409 } 2410 ++I; 2411 } 2412 } 2413 for (unsigned i = 0; Available.empty(); ++i) { 2414 // FIXME: Re-enable assert once PR20057 is resolved. 2415 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2416 // "permanent hazard"); 2417 (void)i; 2418 bumpCycle(CurrCycle + 1); 2419 releasePending(); 2420 } 2421 2422 LLVM_DEBUG(Pending.dump()); 2423 LLVM_DEBUG(Available.dump()); 2424 2425 if (Available.size() == 1) 2426 return *Available.begin(); 2427 return nullptr; 2428 } 2429 2430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2431 // This is useful information to dump after bumpNode. 2432 // Note that the Queue contents are more useful before pickNodeFromQueue. 2433 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2434 unsigned ResFactor; 2435 unsigned ResCount; 2436 if (ZoneCritResIdx) { 2437 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2438 ResCount = getResourceCount(ZoneCritResIdx); 2439 } else { 2440 ResFactor = SchedModel->getMicroOpFactor(); 2441 ResCount = RetiredMOps * ResFactor; 2442 } 2443 unsigned LFactor = SchedModel->getLatencyFactor(); 2444 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2445 << " Retired: " << RetiredMOps; 2446 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2447 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2448 << ResCount / ResFactor << " " 2449 << SchedModel->getResourceName(ZoneCritResIdx) 2450 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2451 << (IsResourceLimited ? " - Resource" : " - Latency") 2452 << " limited.\n"; 2453 } 2454 #endif 2455 2456 //===----------------------------------------------------------------------===// 2457 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2458 //===----------------------------------------------------------------------===// 2459 2460 void GenericSchedulerBase::SchedCandidate:: 2461 initResourceDelta(const ScheduleDAGMI *DAG, 2462 const TargetSchedModel *SchedModel) { 2463 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2464 return; 2465 2466 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2467 for (TargetSchedModel::ProcResIter 2468 PI = SchedModel->getWriteProcResBegin(SC), 2469 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2470 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2471 ResDelta.CritResources += PI->Cycles; 2472 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2473 ResDelta.DemandedResources += PI->Cycles; 2474 } 2475 } 2476 2477 /// Compute remaining latency. We need this both to determine whether the 2478 /// overall schedule has become latency-limited and whether the instructions 2479 /// outside this zone are resource or latency limited. 2480 /// 2481 /// The "dependent" latency is updated incrementally during scheduling as the 2482 /// max height/depth of scheduled nodes minus the cycles since it was 2483 /// scheduled: 2484 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2485 /// 2486 /// The "independent" latency is the max ready queue depth: 2487 /// ILat = max N.depth for N in Available|Pending 2488 /// 2489 /// RemainingLatency is the greater of independent and dependent latency. 2490 /// 2491 /// These computations are expensive, especially in DAGs with many edges, so 2492 /// only do them if necessary. 2493 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2494 unsigned RemLatency = CurrZone.getDependentLatency(); 2495 RemLatency = std::max(RemLatency, 2496 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2497 RemLatency = std::max(RemLatency, 2498 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2499 return RemLatency; 2500 } 2501 2502 /// Returns true if the current cycle plus remaning latency is greater than 2503 /// the critical path in the scheduling region. 2504 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2505 SchedBoundary &CurrZone, 2506 bool ComputeRemLatency, 2507 unsigned &RemLatency) const { 2508 // The current cycle is already greater than the critical path, so we are 2509 // already latency limited and don't need to compute the remaining latency. 2510 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2511 return true; 2512 2513 // If we haven't scheduled anything yet, then we aren't latency limited. 2514 if (CurrZone.getCurrCycle() == 0) 2515 return false; 2516 2517 if (ComputeRemLatency) 2518 RemLatency = computeRemLatency(CurrZone); 2519 2520 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2521 } 2522 2523 /// Set the CandPolicy given a scheduling zone given the current resources and 2524 /// latencies inside and outside the zone. 2525 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2526 SchedBoundary &CurrZone, 2527 SchedBoundary *OtherZone) { 2528 // Apply preemptive heuristics based on the total latency and resources 2529 // inside and outside this zone. Potential stalls should be considered before 2530 // following this policy. 2531 2532 // Compute the critical resource outside the zone. 2533 unsigned OtherCritIdx = 0; 2534 unsigned OtherCount = 2535 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2536 2537 bool OtherResLimited = false; 2538 unsigned RemLatency = 0; 2539 bool RemLatencyComputed = false; 2540 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2541 RemLatency = computeRemLatency(CurrZone); 2542 RemLatencyComputed = true; 2543 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2544 OtherCount, RemLatency, false); 2545 } 2546 2547 // Schedule aggressively for latency in PostRA mode. We don't check for 2548 // acyclic latency during PostRA, and highly out-of-order processors will 2549 // skip PostRA scheduling. 2550 if (!OtherResLimited && 2551 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2552 RemLatency))) { 2553 Policy.ReduceLatency |= true; 2554 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2555 << " RemainingLatency " << RemLatency << " + " 2556 << CurrZone.getCurrCycle() << "c > CritPath " 2557 << Rem.CriticalPath << "\n"); 2558 } 2559 // If the same resource is limiting inside and outside the zone, do nothing. 2560 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2561 return; 2562 2563 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2564 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2565 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2566 } if (OtherResLimited) dbgs() 2567 << " RemainingLimit: " 2568 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2569 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2570 << " Latency limited both directions.\n"); 2571 2572 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2573 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2574 2575 if (OtherResLimited) 2576 Policy.DemandResIdx = OtherCritIdx; 2577 } 2578 2579 #ifndef NDEBUG 2580 const char *GenericSchedulerBase::getReasonStr( 2581 GenericSchedulerBase::CandReason Reason) { 2582 switch (Reason) { 2583 case NoCand: return "NOCAND "; 2584 case Only1: return "ONLY1 "; 2585 case PhysReg: return "PHYS-REG "; 2586 case RegExcess: return "REG-EXCESS"; 2587 case RegCritical: return "REG-CRIT "; 2588 case Stall: return "STALL "; 2589 case Cluster: return "CLUSTER "; 2590 case Weak: return "WEAK "; 2591 case RegMax: return "REG-MAX "; 2592 case ResourceReduce: return "RES-REDUCE"; 2593 case ResourceDemand: return "RES-DEMAND"; 2594 case TopDepthReduce: return "TOP-DEPTH "; 2595 case TopPathReduce: return "TOP-PATH "; 2596 case BotHeightReduce:return "BOT-HEIGHT"; 2597 case BotPathReduce: return "BOT-PATH "; 2598 case NextDefUse: return "DEF-USE "; 2599 case NodeOrder: return "ORDER "; 2600 }; 2601 llvm_unreachable("Unknown reason!"); 2602 } 2603 2604 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2605 PressureChange P; 2606 unsigned ResIdx = 0; 2607 unsigned Latency = 0; 2608 switch (Cand.Reason) { 2609 default: 2610 break; 2611 case RegExcess: 2612 P = Cand.RPDelta.Excess; 2613 break; 2614 case RegCritical: 2615 P = Cand.RPDelta.CriticalMax; 2616 break; 2617 case RegMax: 2618 P = Cand.RPDelta.CurrentMax; 2619 break; 2620 case ResourceReduce: 2621 ResIdx = Cand.Policy.ReduceResIdx; 2622 break; 2623 case ResourceDemand: 2624 ResIdx = Cand.Policy.DemandResIdx; 2625 break; 2626 case TopDepthReduce: 2627 Latency = Cand.SU->getDepth(); 2628 break; 2629 case TopPathReduce: 2630 Latency = Cand.SU->getHeight(); 2631 break; 2632 case BotHeightReduce: 2633 Latency = Cand.SU->getHeight(); 2634 break; 2635 case BotPathReduce: 2636 Latency = Cand.SU->getDepth(); 2637 break; 2638 } 2639 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2640 if (P.isValid()) 2641 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2642 << ":" << P.getUnitInc() << " "; 2643 else 2644 dbgs() << " "; 2645 if (ResIdx) 2646 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2647 else 2648 dbgs() << " "; 2649 if (Latency) 2650 dbgs() << " " << Latency << " cycles "; 2651 else 2652 dbgs() << " "; 2653 dbgs() << '\n'; 2654 } 2655 #endif 2656 2657 namespace llvm { 2658 /// Return true if this heuristic determines order. 2659 bool tryLess(int TryVal, int CandVal, 2660 GenericSchedulerBase::SchedCandidate &TryCand, 2661 GenericSchedulerBase::SchedCandidate &Cand, 2662 GenericSchedulerBase::CandReason Reason) { 2663 if (TryVal < CandVal) { 2664 TryCand.Reason = Reason; 2665 return true; 2666 } 2667 if (TryVal > CandVal) { 2668 if (Cand.Reason > Reason) 2669 Cand.Reason = Reason; 2670 return true; 2671 } 2672 return false; 2673 } 2674 2675 bool tryGreater(int TryVal, int CandVal, 2676 GenericSchedulerBase::SchedCandidate &TryCand, 2677 GenericSchedulerBase::SchedCandidate &Cand, 2678 GenericSchedulerBase::CandReason Reason) { 2679 if (TryVal > CandVal) { 2680 TryCand.Reason = Reason; 2681 return true; 2682 } 2683 if (TryVal < CandVal) { 2684 if (Cand.Reason > Reason) 2685 Cand.Reason = Reason; 2686 return true; 2687 } 2688 return false; 2689 } 2690 2691 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2692 GenericSchedulerBase::SchedCandidate &Cand, 2693 SchedBoundary &Zone) { 2694 if (Zone.isTop()) { 2695 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2696 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2697 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2698 return true; 2699 } 2700 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2701 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2702 return true; 2703 } else { 2704 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2705 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2706 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2707 return true; 2708 } 2709 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2710 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2711 return true; 2712 } 2713 return false; 2714 } 2715 } // end namespace llvm 2716 2717 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2718 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2719 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2720 } 2721 2722 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2723 tracePick(Cand.Reason, Cand.AtTop); 2724 } 2725 2726 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2727 assert(dag->hasVRegLiveness() && 2728 "(PreRA)GenericScheduler needs vreg liveness"); 2729 DAG = static_cast<ScheduleDAGMILive*>(dag); 2730 SchedModel = DAG->getSchedModel(); 2731 TRI = DAG->TRI; 2732 2733 Rem.init(DAG, SchedModel); 2734 Top.init(DAG, SchedModel, &Rem); 2735 Bot.init(DAG, SchedModel, &Rem); 2736 2737 // Initialize resource counts. 2738 2739 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2740 // are disabled, then these HazardRecs will be disabled. 2741 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2742 if (!Top.HazardRec) { 2743 Top.HazardRec = 2744 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2745 Itin, DAG); 2746 } 2747 if (!Bot.HazardRec) { 2748 Bot.HazardRec = 2749 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2750 Itin, DAG); 2751 } 2752 TopCand.SU = nullptr; 2753 BotCand.SU = nullptr; 2754 } 2755 2756 /// Initialize the per-region scheduling policy. 2757 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2758 MachineBasicBlock::iterator End, 2759 unsigned NumRegionInstrs) { 2760 const MachineFunction &MF = *Begin->getMF(); 2761 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2762 2763 // Avoid setting up the register pressure tracker for small regions to save 2764 // compile time. As a rough heuristic, only track pressure when the number of 2765 // schedulable instructions exceeds half the integer register file. 2766 RegionPolicy.ShouldTrackPressure = true; 2767 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2768 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2769 if (TLI->isTypeLegal(LegalIntVT)) { 2770 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2771 TLI->getRegClassFor(LegalIntVT)); 2772 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2773 } 2774 } 2775 2776 // For generic targets, we default to bottom-up, because it's simpler and more 2777 // compile-time optimizations have been implemented in that direction. 2778 RegionPolicy.OnlyBottomUp = true; 2779 2780 // Allow the subtarget to override default policy. 2781 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2782 2783 // After subtarget overrides, apply command line options. 2784 if (!EnableRegPressure) { 2785 RegionPolicy.ShouldTrackPressure = false; 2786 RegionPolicy.ShouldTrackLaneMasks = false; 2787 } 2788 2789 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2790 // e.g. -misched-bottomup=false allows scheduling in both directions. 2791 assert((!ForceTopDown || !ForceBottomUp) && 2792 "-misched-topdown incompatible with -misched-bottomup"); 2793 if (ForceBottomUp.getNumOccurrences() > 0) { 2794 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2795 if (RegionPolicy.OnlyBottomUp) 2796 RegionPolicy.OnlyTopDown = false; 2797 } 2798 if (ForceTopDown.getNumOccurrences() > 0) { 2799 RegionPolicy.OnlyTopDown = ForceTopDown; 2800 if (RegionPolicy.OnlyTopDown) 2801 RegionPolicy.OnlyBottomUp = false; 2802 } 2803 } 2804 2805 void GenericScheduler::dumpPolicy() const { 2806 // Cannot completely remove virtual function even in release mode. 2807 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2808 dbgs() << "GenericScheduler RegionPolicy: " 2809 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2810 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2811 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2812 << "\n"; 2813 #endif 2814 } 2815 2816 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2817 /// critical path by more cycles than it takes to drain the instruction buffer. 2818 /// We estimate an upper bounds on in-flight instructions as: 2819 /// 2820 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2821 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2822 /// InFlightResources = InFlightIterations * LoopResources 2823 /// 2824 /// TODO: Check execution resources in addition to IssueCount. 2825 void GenericScheduler::checkAcyclicLatency() { 2826 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2827 return; 2828 2829 // Scaled number of cycles per loop iteration. 2830 unsigned IterCount = 2831 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2832 Rem.RemIssueCount); 2833 // Scaled acyclic critical path. 2834 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2835 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2836 unsigned InFlightCount = 2837 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2838 unsigned BufferLimit = 2839 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2840 2841 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2842 2843 LLVM_DEBUG( 2844 dbgs() << "IssueCycles=" 2845 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2846 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2847 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2848 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2849 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2850 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2851 } 2852 2853 void GenericScheduler::registerRoots() { 2854 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2855 2856 // Some roots may not feed into ExitSU. Check all of them in case. 2857 for (const SUnit *SU : Bot.Available) { 2858 if (SU->getDepth() > Rem.CriticalPath) 2859 Rem.CriticalPath = SU->getDepth(); 2860 } 2861 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2862 if (DumpCriticalPathLength) { 2863 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2864 } 2865 2866 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2867 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2868 checkAcyclicLatency(); 2869 } 2870 } 2871 2872 namespace llvm { 2873 bool tryPressure(const PressureChange &TryP, 2874 const PressureChange &CandP, 2875 GenericSchedulerBase::SchedCandidate &TryCand, 2876 GenericSchedulerBase::SchedCandidate &Cand, 2877 GenericSchedulerBase::CandReason Reason, 2878 const TargetRegisterInfo *TRI, 2879 const MachineFunction &MF) { 2880 // If one candidate decreases and the other increases, go with it. 2881 // Invalid candidates have UnitInc==0. 2882 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2883 Reason)) { 2884 return true; 2885 } 2886 // Do not compare the magnitude of pressure changes between top and bottom 2887 // boundary. 2888 if (Cand.AtTop != TryCand.AtTop) 2889 return false; 2890 2891 // If both candidates affect the same set in the same boundary, go with the 2892 // smallest increase. 2893 unsigned TryPSet = TryP.getPSetOrMax(); 2894 unsigned CandPSet = CandP.getPSetOrMax(); 2895 if (TryPSet == CandPSet) { 2896 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2897 Reason); 2898 } 2899 2900 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2901 std::numeric_limits<int>::max(); 2902 2903 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2904 std::numeric_limits<int>::max(); 2905 2906 // If the candidates are decreasing pressure, reverse priority. 2907 if (TryP.getUnitInc() < 0) 2908 std::swap(TryRank, CandRank); 2909 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2910 } 2911 2912 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2913 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2914 } 2915 2916 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2917 /// their physreg def/use. 2918 /// 2919 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2920 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2921 /// with the operation that produces or consumes the physreg. We'll do this when 2922 /// regalloc has support for parallel copies. 2923 int biasPhysReg(const SUnit *SU, bool isTop) { 2924 const MachineInstr *MI = SU->getInstr(); 2925 2926 if (MI->isCopy()) { 2927 unsigned ScheduledOper = isTop ? 1 : 0; 2928 unsigned UnscheduledOper = isTop ? 0 : 1; 2929 // If we have already scheduled the physreg produce/consumer, immediately 2930 // schedule the copy. 2931 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 2932 return 1; 2933 // If the physreg is at the boundary, defer it. Otherwise schedule it 2934 // immediately to free the dependent. We can hoist the copy later. 2935 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2936 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 2937 return AtBoundary ? -1 : 1; 2938 } 2939 2940 if (MI->isMoveImmediate()) { 2941 // If we have a move immediate and all successors have been assigned, bias 2942 // towards scheduling this later. Make sure all register defs are to 2943 // physical registers. 2944 bool DoBias = true; 2945 for (const MachineOperand &Op : MI->defs()) { 2946 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 2947 DoBias = false; 2948 break; 2949 } 2950 } 2951 2952 if (DoBias) 2953 return isTop ? -1 : 1; 2954 } 2955 2956 return 0; 2957 } 2958 } // end namespace llvm 2959 2960 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2961 bool AtTop, 2962 const RegPressureTracker &RPTracker, 2963 RegPressureTracker &TempTracker) { 2964 Cand.SU = SU; 2965 Cand.AtTop = AtTop; 2966 if (DAG->isTrackingPressure()) { 2967 if (AtTop) { 2968 TempTracker.getMaxDownwardPressureDelta( 2969 Cand.SU->getInstr(), 2970 Cand.RPDelta, 2971 DAG->getRegionCriticalPSets(), 2972 DAG->getRegPressure().MaxSetPressure); 2973 } else { 2974 if (VerifyScheduling) { 2975 TempTracker.getMaxUpwardPressureDelta( 2976 Cand.SU->getInstr(), 2977 &DAG->getPressureDiff(Cand.SU), 2978 Cand.RPDelta, 2979 DAG->getRegionCriticalPSets(), 2980 DAG->getRegPressure().MaxSetPressure); 2981 } else { 2982 RPTracker.getUpwardPressureDelta( 2983 Cand.SU->getInstr(), 2984 DAG->getPressureDiff(Cand.SU), 2985 Cand.RPDelta, 2986 DAG->getRegionCriticalPSets(), 2987 DAG->getRegPressure().MaxSetPressure); 2988 } 2989 } 2990 } 2991 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2992 << " Try SU(" << Cand.SU->NodeNum << ") " 2993 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2994 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2995 } 2996 2997 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2998 /// hierarchical. This may be more efficient than a graduated cost model because 2999 /// we don't need to evaluate all aspects of the model for each node in the 3000 /// queue. But it's really done to make the heuristics easier to debug and 3001 /// statistically analyze. 3002 /// 3003 /// \param Cand provides the policy and current best candidate. 3004 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3005 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3006 // if Cand is from a different zone than TryCand. 3007 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 3008 SchedCandidate &TryCand, 3009 SchedBoundary *Zone) const { 3010 // Initialize the candidate if needed. 3011 if (!Cand.isValid()) { 3012 TryCand.Reason = NodeOrder; 3013 return; 3014 } 3015 3016 // Bias PhysReg Defs and copies to their uses and defined respectively. 3017 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3018 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3019 return; 3020 3021 // Avoid exceeding the target's limit. 3022 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3023 Cand.RPDelta.Excess, 3024 TryCand, Cand, RegExcess, TRI, 3025 DAG->MF)) 3026 return; 3027 3028 // Avoid increasing the max critical pressure in the scheduled region. 3029 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3030 Cand.RPDelta.CriticalMax, 3031 TryCand, Cand, RegCritical, TRI, 3032 DAG->MF)) 3033 return; 3034 3035 // We only compare a subset of features when comparing nodes between 3036 // Top and Bottom boundary. Some properties are simply incomparable, in many 3037 // other instances we should only override the other boundary if something 3038 // is a clear good pick on one boundary. Skip heuristics that are more 3039 // "tie-breaking" in nature. 3040 bool SameBoundary = Zone != nullptr; 3041 if (SameBoundary) { 3042 // For loops that are acyclic path limited, aggressively schedule for 3043 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3044 // heuristics to take precedence. 3045 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3046 tryLatency(TryCand, Cand, *Zone)) 3047 return; 3048 3049 // Prioritize instructions that read unbuffered resources by stall cycles. 3050 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3051 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3052 return; 3053 } 3054 3055 // Keep clustered nodes together to encourage downstream peephole 3056 // optimizations which may reduce resource requirements. 3057 // 3058 // This is a best effort to set things up for a post-RA pass. Optimizations 3059 // like generating loads of multiple registers should ideally be done within 3060 // the scheduler pass by combining the loads during DAG postprocessing. 3061 const SUnit *CandNextClusterSU = 3062 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3063 const SUnit *TryCandNextClusterSU = 3064 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3065 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3066 Cand.SU == CandNextClusterSU, 3067 TryCand, Cand, Cluster)) 3068 return; 3069 3070 if (SameBoundary) { 3071 // Weak edges are for clustering and other constraints. 3072 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3073 getWeakLeft(Cand.SU, Cand.AtTop), 3074 TryCand, Cand, Weak)) 3075 return; 3076 } 3077 3078 // Avoid increasing the max pressure of the entire region. 3079 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3080 Cand.RPDelta.CurrentMax, 3081 TryCand, Cand, RegMax, TRI, 3082 DAG->MF)) 3083 return; 3084 3085 if (SameBoundary) { 3086 // Avoid critical resource consumption and balance the schedule. 3087 TryCand.initResourceDelta(DAG, SchedModel); 3088 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3089 TryCand, Cand, ResourceReduce)) 3090 return; 3091 if (tryGreater(TryCand.ResDelta.DemandedResources, 3092 Cand.ResDelta.DemandedResources, 3093 TryCand, Cand, ResourceDemand)) 3094 return; 3095 3096 // Avoid serializing long latency dependence chains. 3097 // For acyclic path limited loops, latency was already checked above. 3098 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3099 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3100 return; 3101 3102 // Fall through to original instruction order. 3103 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3104 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3105 TryCand.Reason = NodeOrder; 3106 } 3107 } 3108 } 3109 3110 /// Pick the best candidate from the queue. 3111 /// 3112 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3113 /// DAG building. To adjust for the current scheduling location we need to 3114 /// maintain the number of vreg uses remaining to be top-scheduled. 3115 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3116 const CandPolicy &ZonePolicy, 3117 const RegPressureTracker &RPTracker, 3118 SchedCandidate &Cand) { 3119 // getMaxPressureDelta temporarily modifies the tracker. 3120 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3121 3122 ReadyQueue &Q = Zone.Available; 3123 for (SUnit *SU : Q) { 3124 3125 SchedCandidate TryCand(ZonePolicy); 3126 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3127 // Pass SchedBoundary only when comparing nodes from the same boundary. 3128 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3129 tryCandidate(Cand, TryCand, ZoneArg); 3130 if (TryCand.Reason != NoCand) { 3131 // Initialize resource delta if needed in case future heuristics query it. 3132 if (TryCand.ResDelta == SchedResourceDelta()) 3133 TryCand.initResourceDelta(DAG, SchedModel); 3134 Cand.setBest(TryCand); 3135 LLVM_DEBUG(traceCandidate(Cand)); 3136 } 3137 } 3138 } 3139 3140 /// Pick the best candidate node from either the top or bottom queue. 3141 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3142 // Schedule as far as possible in the direction of no choice. This is most 3143 // efficient, but also provides the best heuristics for CriticalPSets. 3144 if (SUnit *SU = Bot.pickOnlyChoice()) { 3145 IsTopNode = false; 3146 tracePick(Only1, false); 3147 return SU; 3148 } 3149 if (SUnit *SU = Top.pickOnlyChoice()) { 3150 IsTopNode = true; 3151 tracePick(Only1, true); 3152 return SU; 3153 } 3154 // Set the bottom-up policy based on the state of the current bottom zone and 3155 // the instructions outside the zone, including the top zone. 3156 CandPolicy BotPolicy; 3157 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3158 // Set the top-down policy based on the state of the current top zone and 3159 // the instructions outside the zone, including the bottom zone. 3160 CandPolicy TopPolicy; 3161 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3162 3163 // See if BotCand is still valid (because we previously scheduled from Top). 3164 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3165 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3166 BotCand.Policy != BotPolicy) { 3167 BotCand.reset(CandPolicy()); 3168 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3169 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3170 } else { 3171 LLVM_DEBUG(traceCandidate(BotCand)); 3172 #ifndef NDEBUG 3173 if (VerifyScheduling) { 3174 SchedCandidate TCand; 3175 TCand.reset(CandPolicy()); 3176 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3177 assert(TCand.SU == BotCand.SU && 3178 "Last pick result should correspond to re-picking right now"); 3179 } 3180 #endif 3181 } 3182 3183 // Check if the top Q has a better candidate. 3184 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3185 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3186 TopCand.Policy != TopPolicy) { 3187 TopCand.reset(CandPolicy()); 3188 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3189 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3190 } else { 3191 LLVM_DEBUG(traceCandidate(TopCand)); 3192 #ifndef NDEBUG 3193 if (VerifyScheduling) { 3194 SchedCandidate TCand; 3195 TCand.reset(CandPolicy()); 3196 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3197 assert(TCand.SU == TopCand.SU && 3198 "Last pick result should correspond to re-picking right now"); 3199 } 3200 #endif 3201 } 3202 3203 // Pick best from BotCand and TopCand. 3204 assert(BotCand.isValid()); 3205 assert(TopCand.isValid()); 3206 SchedCandidate Cand = BotCand; 3207 TopCand.Reason = NoCand; 3208 tryCandidate(Cand, TopCand, nullptr); 3209 if (TopCand.Reason != NoCand) { 3210 Cand.setBest(TopCand); 3211 LLVM_DEBUG(traceCandidate(Cand)); 3212 } 3213 3214 IsTopNode = Cand.AtTop; 3215 tracePick(Cand); 3216 return Cand.SU; 3217 } 3218 3219 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3220 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3221 if (DAG->top() == DAG->bottom()) { 3222 assert(Top.Available.empty() && Top.Pending.empty() && 3223 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3224 return nullptr; 3225 } 3226 SUnit *SU; 3227 do { 3228 if (RegionPolicy.OnlyTopDown) { 3229 SU = Top.pickOnlyChoice(); 3230 if (!SU) { 3231 CandPolicy NoPolicy; 3232 TopCand.reset(NoPolicy); 3233 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3234 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3235 tracePick(TopCand); 3236 SU = TopCand.SU; 3237 } 3238 IsTopNode = true; 3239 } else if (RegionPolicy.OnlyBottomUp) { 3240 SU = Bot.pickOnlyChoice(); 3241 if (!SU) { 3242 CandPolicy NoPolicy; 3243 BotCand.reset(NoPolicy); 3244 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3245 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3246 tracePick(BotCand); 3247 SU = BotCand.SU; 3248 } 3249 IsTopNode = false; 3250 } else { 3251 SU = pickNodeBidirectional(IsTopNode); 3252 } 3253 } while (SU->isScheduled); 3254 3255 if (SU->isTopReady()) 3256 Top.removeReady(SU); 3257 if (SU->isBottomReady()) 3258 Bot.removeReady(SU); 3259 3260 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3261 << *SU->getInstr()); 3262 return SU; 3263 } 3264 3265 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3266 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3267 if (!isTop) 3268 ++InsertPos; 3269 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3270 3271 // Find already scheduled copies with a single physreg dependence and move 3272 // them just above the scheduled instruction. 3273 for (SDep &Dep : Deps) { 3274 if (Dep.getKind() != SDep::Data || 3275 !Register::isPhysicalRegister(Dep.getReg())) 3276 continue; 3277 SUnit *DepSU = Dep.getSUnit(); 3278 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3279 continue; 3280 MachineInstr *Copy = DepSU->getInstr(); 3281 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3282 continue; 3283 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3284 DAG->dumpNode(*Dep.getSUnit())); 3285 DAG->moveInstruction(Copy, InsertPos); 3286 } 3287 } 3288 3289 /// Update the scheduler's state after scheduling a node. This is the same node 3290 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3291 /// update it's state based on the current cycle before MachineSchedStrategy 3292 /// does. 3293 /// 3294 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3295 /// them here. See comments in biasPhysReg. 3296 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3297 if (IsTopNode) { 3298 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3299 Top.bumpNode(SU); 3300 if (SU->hasPhysRegUses) 3301 reschedulePhysReg(SU, true); 3302 } else { 3303 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3304 Bot.bumpNode(SU); 3305 if (SU->hasPhysRegDefs) 3306 reschedulePhysReg(SU, false); 3307 } 3308 } 3309 3310 /// Create the standard converging machine scheduler. This will be used as the 3311 /// default scheduler if the target does not set a default. 3312 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3313 ScheduleDAGMILive *DAG = 3314 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3315 // Register DAG post-processors. 3316 // 3317 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3318 // data and pass it to later mutations. Have a single mutation that gathers 3319 // the interesting nodes in one pass. 3320 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3321 return DAG; 3322 } 3323 3324 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3325 return createGenericSchedLive(C); 3326 } 3327 3328 static MachineSchedRegistry 3329 GenericSchedRegistry("converge", "Standard converging scheduler.", 3330 createConveringSched); 3331 3332 //===----------------------------------------------------------------------===// 3333 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3334 //===----------------------------------------------------------------------===// 3335 3336 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3337 DAG = Dag; 3338 SchedModel = DAG->getSchedModel(); 3339 TRI = DAG->TRI; 3340 3341 Rem.init(DAG, SchedModel); 3342 Top.init(DAG, SchedModel, &Rem); 3343 BotRoots.clear(); 3344 3345 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3346 // or are disabled, then these HazardRecs will be disabled. 3347 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3348 if (!Top.HazardRec) { 3349 Top.HazardRec = 3350 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3351 Itin, DAG); 3352 } 3353 } 3354 3355 void PostGenericScheduler::registerRoots() { 3356 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3357 3358 // Some roots may not feed into ExitSU. Check all of them in case. 3359 for (const SUnit *SU : BotRoots) { 3360 if (SU->getDepth() > Rem.CriticalPath) 3361 Rem.CriticalPath = SU->getDepth(); 3362 } 3363 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3364 if (DumpCriticalPathLength) { 3365 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3366 } 3367 } 3368 3369 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3370 /// 3371 /// \param Cand provides the policy and current best candidate. 3372 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3373 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3374 SchedCandidate &TryCand) { 3375 // Initialize the candidate if needed. 3376 if (!Cand.isValid()) { 3377 TryCand.Reason = NodeOrder; 3378 return; 3379 } 3380 3381 // Prioritize instructions that read unbuffered resources by stall cycles. 3382 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3383 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3384 return; 3385 3386 // Keep clustered nodes together. 3387 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3388 Cand.SU == DAG->getNextClusterSucc(), 3389 TryCand, Cand, Cluster)) 3390 return; 3391 3392 // Avoid critical resource consumption and balance the schedule. 3393 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3394 TryCand, Cand, ResourceReduce)) 3395 return; 3396 if (tryGreater(TryCand.ResDelta.DemandedResources, 3397 Cand.ResDelta.DemandedResources, 3398 TryCand, Cand, ResourceDemand)) 3399 return; 3400 3401 // Avoid serializing long latency dependence chains. 3402 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3403 return; 3404 } 3405 3406 // Fall through to original instruction order. 3407 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3408 TryCand.Reason = NodeOrder; 3409 } 3410 3411 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3412 ReadyQueue &Q = Top.Available; 3413 for (SUnit *SU : Q) { 3414 SchedCandidate TryCand(Cand.Policy); 3415 TryCand.SU = SU; 3416 TryCand.AtTop = true; 3417 TryCand.initResourceDelta(DAG, SchedModel); 3418 tryCandidate(Cand, TryCand); 3419 if (TryCand.Reason != NoCand) { 3420 Cand.setBest(TryCand); 3421 LLVM_DEBUG(traceCandidate(Cand)); 3422 } 3423 } 3424 } 3425 3426 /// Pick the next node to schedule. 3427 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3428 if (DAG->top() == DAG->bottom()) { 3429 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3430 return nullptr; 3431 } 3432 SUnit *SU; 3433 do { 3434 SU = Top.pickOnlyChoice(); 3435 if (SU) { 3436 tracePick(Only1, true); 3437 } else { 3438 CandPolicy NoPolicy; 3439 SchedCandidate TopCand(NoPolicy); 3440 // Set the top-down policy based on the state of the current top zone and 3441 // the instructions outside the zone, including the bottom zone. 3442 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3443 pickNodeFromQueue(TopCand); 3444 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3445 tracePick(TopCand); 3446 SU = TopCand.SU; 3447 } 3448 } while (SU->isScheduled); 3449 3450 IsTopNode = true; 3451 Top.removeReady(SU); 3452 3453 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3454 << *SU->getInstr()); 3455 return SU; 3456 } 3457 3458 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3459 /// scheduled/remaining flags in the DAG nodes. 3460 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3461 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3462 Top.bumpNode(SU); 3463 } 3464 3465 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3466 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3467 /*RemoveKillFlags=*/true); 3468 } 3469 3470 //===----------------------------------------------------------------------===// 3471 // ILP Scheduler. Currently for experimental analysis of heuristics. 3472 //===----------------------------------------------------------------------===// 3473 3474 namespace { 3475 3476 /// Order nodes by the ILP metric. 3477 struct ILPOrder { 3478 const SchedDFSResult *DFSResult = nullptr; 3479 const BitVector *ScheduledTrees = nullptr; 3480 bool MaximizeILP; 3481 3482 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3483 3484 /// Apply a less-than relation on node priority. 3485 /// 3486 /// (Return true if A comes after B in the Q.) 3487 bool operator()(const SUnit *A, const SUnit *B) const { 3488 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3489 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3490 if (SchedTreeA != SchedTreeB) { 3491 // Unscheduled trees have lower priority. 3492 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3493 return ScheduledTrees->test(SchedTreeB); 3494 3495 // Trees with shallower connections have have lower priority. 3496 if (DFSResult->getSubtreeLevel(SchedTreeA) 3497 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3498 return DFSResult->getSubtreeLevel(SchedTreeA) 3499 < DFSResult->getSubtreeLevel(SchedTreeB); 3500 } 3501 } 3502 if (MaximizeILP) 3503 return DFSResult->getILP(A) < DFSResult->getILP(B); 3504 else 3505 return DFSResult->getILP(A) > DFSResult->getILP(B); 3506 } 3507 }; 3508 3509 /// Schedule based on the ILP metric. 3510 class ILPScheduler : public MachineSchedStrategy { 3511 ScheduleDAGMILive *DAG = nullptr; 3512 ILPOrder Cmp; 3513 3514 std::vector<SUnit*> ReadyQ; 3515 3516 public: 3517 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3518 3519 void initialize(ScheduleDAGMI *dag) override { 3520 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3521 DAG = static_cast<ScheduleDAGMILive*>(dag); 3522 DAG->computeDFSResult(); 3523 Cmp.DFSResult = DAG->getDFSResult(); 3524 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3525 ReadyQ.clear(); 3526 } 3527 3528 void registerRoots() override { 3529 // Restore the heap in ReadyQ with the updated DFS results. 3530 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3531 } 3532 3533 /// Implement MachineSchedStrategy interface. 3534 /// ----------------------------------------- 3535 3536 /// Callback to select the highest priority node from the ready Q. 3537 SUnit *pickNode(bool &IsTopNode) override { 3538 if (ReadyQ.empty()) return nullptr; 3539 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3540 SUnit *SU = ReadyQ.back(); 3541 ReadyQ.pop_back(); 3542 IsTopNode = false; 3543 LLVM_DEBUG(dbgs() << "Pick node " 3544 << "SU(" << SU->NodeNum << ") " 3545 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3546 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3547 << " @" 3548 << DAG->getDFSResult()->getSubtreeLevel( 3549 DAG->getDFSResult()->getSubtreeID(SU)) 3550 << '\n' 3551 << "Scheduling " << *SU->getInstr()); 3552 return SU; 3553 } 3554 3555 /// Scheduler callback to notify that a new subtree is scheduled. 3556 void scheduleTree(unsigned SubtreeID) override { 3557 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3558 } 3559 3560 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3561 /// DFSResults, and resort the priority Q. 3562 void schedNode(SUnit *SU, bool IsTopNode) override { 3563 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3564 } 3565 3566 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3567 3568 void releaseBottomNode(SUnit *SU) override { 3569 ReadyQ.push_back(SU); 3570 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3571 } 3572 }; 3573 3574 } // end anonymous namespace 3575 3576 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3577 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3578 } 3579 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3580 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3581 } 3582 3583 static MachineSchedRegistry ILPMaxRegistry( 3584 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3585 static MachineSchedRegistry ILPMinRegistry( 3586 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3587 3588 //===----------------------------------------------------------------------===// 3589 // Machine Instruction Shuffler for Correctness Testing 3590 //===----------------------------------------------------------------------===// 3591 3592 #ifndef NDEBUG 3593 namespace { 3594 3595 /// Apply a less-than relation on the node order, which corresponds to the 3596 /// instruction order prior to scheduling. IsReverse implements greater-than. 3597 template<bool IsReverse> 3598 struct SUnitOrder { 3599 bool operator()(SUnit *A, SUnit *B) const { 3600 if (IsReverse) 3601 return A->NodeNum > B->NodeNum; 3602 else 3603 return A->NodeNum < B->NodeNum; 3604 } 3605 }; 3606 3607 /// Reorder instructions as much as possible. 3608 class InstructionShuffler : public MachineSchedStrategy { 3609 bool IsAlternating; 3610 bool IsTopDown; 3611 3612 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3613 // gives nodes with a higher number higher priority causing the latest 3614 // instructions to be scheduled first. 3615 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3616 TopQ; 3617 3618 // When scheduling bottom-up, use greater-than as the queue priority. 3619 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3620 BottomQ; 3621 3622 public: 3623 InstructionShuffler(bool alternate, bool topdown) 3624 : IsAlternating(alternate), IsTopDown(topdown) {} 3625 3626 void initialize(ScheduleDAGMI*) override { 3627 TopQ.clear(); 3628 BottomQ.clear(); 3629 } 3630 3631 /// Implement MachineSchedStrategy interface. 3632 /// ----------------------------------------- 3633 3634 SUnit *pickNode(bool &IsTopNode) override { 3635 SUnit *SU; 3636 if (IsTopDown) { 3637 do { 3638 if (TopQ.empty()) return nullptr; 3639 SU = TopQ.top(); 3640 TopQ.pop(); 3641 } while (SU->isScheduled); 3642 IsTopNode = true; 3643 } else { 3644 do { 3645 if (BottomQ.empty()) return nullptr; 3646 SU = BottomQ.top(); 3647 BottomQ.pop(); 3648 } while (SU->isScheduled); 3649 IsTopNode = false; 3650 } 3651 if (IsAlternating) 3652 IsTopDown = !IsTopDown; 3653 return SU; 3654 } 3655 3656 void schedNode(SUnit *SU, bool IsTopNode) override {} 3657 3658 void releaseTopNode(SUnit *SU) override { 3659 TopQ.push(SU); 3660 } 3661 void releaseBottomNode(SUnit *SU) override { 3662 BottomQ.push(SU); 3663 } 3664 }; 3665 3666 } // end anonymous namespace 3667 3668 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3669 bool Alternate = !ForceTopDown && !ForceBottomUp; 3670 bool TopDown = !ForceBottomUp; 3671 assert((TopDown || !ForceTopDown) && 3672 "-misched-topdown incompatible with -misched-bottomup"); 3673 return new ScheduleDAGMILive( 3674 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3675 } 3676 3677 static MachineSchedRegistry ShufflerRegistry( 3678 "shuffle", "Shuffle machine instructions alternating directions", 3679 createInstructionShuffler); 3680 #endif // !NDEBUG 3681 3682 //===----------------------------------------------------------------------===// 3683 // GraphWriter support for ScheduleDAGMILive. 3684 //===----------------------------------------------------------------------===// 3685 3686 #ifndef NDEBUG 3687 namespace llvm { 3688 3689 template<> struct GraphTraits< 3690 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3691 3692 template<> 3693 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3694 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3695 3696 static std::string getGraphName(const ScheduleDAG *G) { 3697 return G->MF.getName(); 3698 } 3699 3700 static bool renderGraphFromBottomUp() { 3701 return true; 3702 } 3703 3704 static bool isNodeHidden(const SUnit *Node) { 3705 if (ViewMISchedCutoff == 0) 3706 return false; 3707 return (Node->Preds.size() > ViewMISchedCutoff 3708 || Node->Succs.size() > ViewMISchedCutoff); 3709 } 3710 3711 /// If you want to override the dot attributes printed for a particular 3712 /// edge, override this method. 3713 static std::string getEdgeAttributes(const SUnit *Node, 3714 SUnitIterator EI, 3715 const ScheduleDAG *Graph) { 3716 if (EI.isArtificialDep()) 3717 return "color=cyan,style=dashed"; 3718 if (EI.isCtrlDep()) 3719 return "color=blue,style=dashed"; 3720 return ""; 3721 } 3722 3723 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3724 std::string Str; 3725 raw_string_ostream SS(Str); 3726 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3727 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3728 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3729 SS << "SU:" << SU->NodeNum; 3730 if (DFS) 3731 SS << " I:" << DFS->getNumInstrs(SU); 3732 return SS.str(); 3733 } 3734 3735 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3736 return G->getGraphNodeLabel(SU); 3737 } 3738 3739 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3740 std::string Str("shape=Mrecord"); 3741 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3742 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3743 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3744 if (DFS) { 3745 Str += ",style=filled,fillcolor=\"#"; 3746 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3747 Str += '"'; 3748 } 3749 return Str; 3750 } 3751 }; 3752 3753 } // end namespace llvm 3754 #endif // NDEBUG 3755 3756 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3757 /// rendered using 'dot'. 3758 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3759 #ifndef NDEBUG 3760 ViewGraph(this, Name, false, Title); 3761 #else 3762 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3763 << "systems with Graphviz or gv!\n"; 3764 #endif // NDEBUG 3765 } 3766 3767 /// Out-of-line implementation with no arguments is handy for gdb. 3768 void ScheduleDAGMI::viewGraph() { 3769 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3770 } 3771