1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Forward declare the standard machine scheduler. This will be used as the 234 /// default scheduler if the target does not set a default. 235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 237 238 /// Decrement this iterator until reaching the top or a non-debug instr. 239 static MachineBasicBlock::const_iterator 240 priorNonDebug(MachineBasicBlock::const_iterator I, 241 MachineBasicBlock::const_iterator Beg) { 242 assert(I != Beg && "reached the top of the region, cannot decrement"); 243 while (--I != Beg) { 244 if (!I->isDebugValue()) 245 break; 246 } 247 return I; 248 } 249 250 /// Non-const version. 251 static MachineBasicBlock::iterator 252 priorNonDebug(MachineBasicBlock::iterator I, 253 MachineBasicBlock::const_iterator Beg) { 254 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 255 .getNonConstIterator(); 256 } 257 258 /// If this iterator is a debug value, increment until reaching the End or a 259 /// non-debug instruction. 260 static MachineBasicBlock::const_iterator 261 nextIfDebug(MachineBasicBlock::const_iterator I, 262 MachineBasicBlock::const_iterator End) { 263 for(; I != End; ++I) { 264 if (!I->isDebugValue()) 265 break; 266 } 267 return I; 268 } 269 270 /// Non-const version. 271 static MachineBasicBlock::iterator 272 nextIfDebug(MachineBasicBlock::iterator I, 273 MachineBasicBlock::const_iterator End) { 274 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 275 .getNonConstIterator(); 276 } 277 278 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 279 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 280 // Select the scheduler, or set the default. 281 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 282 if (Ctor != useDefaultMachineSched) 283 return Ctor(this); 284 285 // Get the default scheduler set by the target for this function. 286 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 287 if (Scheduler) 288 return Scheduler; 289 290 // Default to GenericScheduler. 291 return createGenericSchedLive(this); 292 } 293 294 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 295 /// the caller. We don't have a command line option to override the postRA 296 /// scheduler. The Target must configure it. 297 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 298 // Get the postRA scheduler set by the target for this function. 299 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 300 if (Scheduler) 301 return Scheduler; 302 303 // Default to GenericScheduler. 304 return createGenericSchedPostRA(this); 305 } 306 307 /// Top-level MachineScheduler pass driver. 308 /// 309 /// Visit blocks in function order. Divide each block into scheduling regions 310 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 311 /// consistent with the DAG builder, which traverses the interior of the 312 /// scheduling regions bottom-up. 313 /// 314 /// This design avoids exposing scheduling boundaries to the DAG builder, 315 /// simplifying the DAG builder's support for "special" target instructions. 316 /// At the same time the design allows target schedulers to operate across 317 /// scheduling boundaries, for example to bundle the boudary instructions 318 /// without reordering them. This creates complexity, because the target 319 /// scheduler must update the RegionBegin and RegionEnd positions cached by 320 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 321 /// design would be to split blocks at scheduling boundaries, but LLVM has a 322 /// general bias against block splitting purely for implementation simplicity. 323 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 324 if (skipFunction(*mf.getFunction())) 325 return false; 326 327 if (EnableMachineSched.getNumOccurrences()) { 328 if (!EnableMachineSched) 329 return false; 330 } else if (!mf.getSubtarget().enableMachineScheduler()) 331 return false; 332 333 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 334 335 // Initialize the context of the pass. 336 MF = &mf; 337 MLI = &getAnalysis<MachineLoopInfo>(); 338 MDT = &getAnalysis<MachineDominatorTree>(); 339 PassConfig = &getAnalysis<TargetPassConfig>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 LIS = &getAnalysis<LiveIntervals>(); 343 344 if (VerifyScheduling) { 345 DEBUG(LIS->dump()); 346 MF->verify(this, "Before machine scheduling."); 347 } 348 RegClassInfo->runOnMachineFunction(*MF); 349 350 // Instantiate the selected scheduler for this target, function, and 351 // optimization level. 352 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 353 scheduleRegions(*Scheduler, false); 354 355 DEBUG(LIS->dump()); 356 if (VerifyScheduling) 357 MF->verify(this, "After machine scheduling."); 358 return true; 359 } 360 361 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 362 if (skipFunction(*mf.getFunction())) 363 return false; 364 365 if (EnablePostRAMachineSched.getNumOccurrences()) { 366 if (!EnablePostRAMachineSched) 367 return false; 368 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 369 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 370 return false; 371 } 372 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 PassConfig = &getAnalysis<TargetPassConfig>(); 377 378 if (VerifyScheduling) 379 MF->verify(this, "Before post machine scheduling."); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 384 scheduleRegions(*Scheduler, true); 385 386 if (VerifyScheduling) 387 MF->verify(this, "After post machine scheduling."); 388 return true; 389 } 390 391 /// Return true of the given instruction should not be included in a scheduling 392 /// region. 393 /// 394 /// MachineScheduler does not currently support scheduling across calls. To 395 /// handle calls, the DAG builder needs to be modified to create register 396 /// anti/output dependencies on the registers clobbered by the call's regmask 397 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 398 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 399 /// the boundary, but there would be no benefit to postRA scheduling across 400 /// calls this late anyway. 401 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 402 MachineBasicBlock *MBB, 403 MachineFunction *MF, 404 const TargetInstrInfo *TII) { 405 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 406 } 407 408 /// Main driver for both MachineScheduler and PostMachineScheduler. 409 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 410 bool FixKillFlags) { 411 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 412 413 // Visit all machine basic blocks. 414 // 415 // TODO: Visit blocks in global postorder or postorder within the bottom-up 416 // loop tree. Then we can optionally compute global RegPressure. 417 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 418 MBB != MBBEnd; ++MBB) { 419 420 Scheduler.startBlock(&*MBB); 421 422 #ifndef NDEBUG 423 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 424 continue; 425 if (SchedOnlyBlock.getNumOccurrences() 426 && (int)SchedOnlyBlock != MBB->getNumber()) 427 continue; 428 #endif 429 430 // Break the block into scheduling regions [I, RegionEnd), and schedule each 431 // region as soon as it is discovered. RegionEnd points the scheduling 432 // boundary at the bottom of the region. The DAG does not include RegionEnd, 433 // but the region does (i.e. the next RegionEnd is above the previous 434 // RegionBegin). If the current block has no terminator then RegionEnd == 435 // MBB->end() for the bottom region. 436 // 437 // The Scheduler may insert instructions during either schedule() or 438 // exitRegion(), even for empty regions. So the local iterators 'I' and 439 // 'RegionEnd' are invalid across these calls. 440 // 441 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 442 // as a single instruction. 443 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 444 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 445 446 // Avoid decrementing RegionEnd for blocks with no terminator. 447 if (RegionEnd != MBB->end() || 448 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 449 --RegionEnd; 450 } 451 452 // The next region starts above the previous region. Look backward in the 453 // instruction stream until we find the nearest boundary. 454 unsigned NumRegionInstrs = 0; 455 MachineBasicBlock::iterator I = RegionEnd; 456 for (;I != MBB->begin(); --I) { 457 MachineInstr &MI = *std::prev(I); 458 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 459 break; 460 if (!MI.isDebugValue()) 461 ++NumRegionInstrs; 462 } 463 // Notify the scheduler of the region, even if we may skip scheduling 464 // it. Perhaps it still needs to be bundled. 465 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 466 467 // Skip empty scheduling regions (0 or 1 schedulable instructions). 468 if (I == RegionEnd || I == std::prev(RegionEnd)) { 469 // Close the current region. Bundle the terminator if needed. 470 // This invalidates 'RegionEnd' and 'I'. 471 Scheduler.exitRegion(); 472 continue; 473 } 474 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 475 DEBUG(dbgs() << MF->getName() 476 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 477 << "\n From: " << *I << " To: "; 478 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 479 else dbgs() << "End"; 480 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 481 if (DumpCriticalPathLength) { 482 errs() << MF->getName(); 483 errs() << ":BB# " << MBB->getNumber(); 484 errs() << " " << MBB->getName() << " \n"; 485 } 486 487 // Schedule a region: possibly reorder instructions. 488 // This invalidates 'RegionEnd' and 'I'. 489 Scheduler.schedule(); 490 491 // Close the current region. 492 Scheduler.exitRegion(); 493 494 // Scheduling has invalidated the current iterator 'I'. Ask the 495 // scheduler for the top of it's scheduled region. 496 RegionEnd = Scheduler.begin(); 497 } 498 Scheduler.finishBlock(); 499 // FIXME: Ideally, no further passes should rely on kill flags. However, 500 // thumb2 size reduction is currently an exception, so the PostMIScheduler 501 // needs to do this. 502 if (FixKillFlags) 503 Scheduler.fixupKills(&*MBB); 504 } 505 Scheduler.finalizeSchedule(); 506 } 507 508 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 509 // unimplemented 510 } 511 512 LLVM_DUMP_METHOD 513 void ReadyQueue::dump() { 514 dbgs() << "Queue " << Name << ": "; 515 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 516 dbgs() << Queue[i]->NodeNum << " "; 517 dbgs() << "\n"; 518 } 519 520 //===----------------------------------------------------------------------===// 521 // ScheduleDAGMI - Basic machine instruction scheduling. This is 522 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 523 // virtual registers. 524 // ===----------------------------------------------------------------------===/ 525 526 // Provide a vtable anchor. 527 ScheduleDAGMI::~ScheduleDAGMI() { 528 } 529 530 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 531 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 532 } 533 534 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 535 if (SuccSU != &ExitSU) { 536 // Do not use WillCreateCycle, it assumes SD scheduling. 537 // If Pred is reachable from Succ, then the edge creates a cycle. 538 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 539 return false; 540 Topo.AddPred(SuccSU, PredDep.getSUnit()); 541 } 542 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 543 // Return true regardless of whether a new edge needed to be inserted. 544 return true; 545 } 546 547 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 548 /// NumPredsLeft reaches zero, release the successor node. 549 /// 550 /// FIXME: Adjust SuccSU height based on MinLatency. 551 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 552 SUnit *SuccSU = SuccEdge->getSUnit(); 553 554 if (SuccEdge->isWeak()) { 555 --SuccSU->WeakPredsLeft; 556 if (SuccEdge->isCluster()) 557 NextClusterSucc = SuccSU; 558 return; 559 } 560 #ifndef NDEBUG 561 if (SuccSU->NumPredsLeft == 0) { 562 dbgs() << "*** Scheduling failed! ***\n"; 563 SuccSU->dump(this); 564 dbgs() << " has been released too many times!\n"; 565 llvm_unreachable(nullptr); 566 } 567 #endif 568 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 569 // CurrCycle may have advanced since then. 570 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 571 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 572 573 --SuccSU->NumPredsLeft; 574 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 575 SchedImpl->releaseTopNode(SuccSU); 576 } 577 578 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 579 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 580 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 581 I != E; ++I) { 582 releaseSucc(SU, &*I); 583 } 584 } 585 586 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 587 /// NumSuccsLeft reaches zero, release the predecessor node. 588 /// 589 /// FIXME: Adjust PredSU height based on MinLatency. 590 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 591 SUnit *PredSU = PredEdge->getSUnit(); 592 593 if (PredEdge->isWeak()) { 594 --PredSU->WeakSuccsLeft; 595 if (PredEdge->isCluster()) 596 NextClusterPred = PredSU; 597 return; 598 } 599 #ifndef NDEBUG 600 if (PredSU->NumSuccsLeft == 0) { 601 dbgs() << "*** Scheduling failed! ***\n"; 602 PredSU->dump(this); 603 dbgs() << " has been released too many times!\n"; 604 llvm_unreachable(nullptr); 605 } 606 #endif 607 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 608 // CurrCycle may have advanced since then. 609 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 610 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 611 612 --PredSU->NumSuccsLeft; 613 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 614 SchedImpl->releaseBottomNode(PredSU); 615 } 616 617 /// releasePredecessors - Call releasePred on each of SU's predecessors. 618 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 619 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 620 I != E; ++I) { 621 releasePred(SU, &*I); 622 } 623 } 624 625 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 626 /// crossing a scheduling boundary. [begin, end) includes all instructions in 627 /// the region, including the boundary itself and single-instruction regions 628 /// that don't get scheduled. 629 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 630 MachineBasicBlock::iterator begin, 631 MachineBasicBlock::iterator end, 632 unsigned regioninstrs) 633 { 634 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 635 636 SchedImpl->initPolicy(begin, end, regioninstrs); 637 } 638 639 /// This is normally called from the main scheduler loop but may also be invoked 640 /// by the scheduling strategy to perform additional code motion. 641 void ScheduleDAGMI::moveInstruction( 642 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 643 // Advance RegionBegin if the first instruction moves down. 644 if (&*RegionBegin == MI) 645 ++RegionBegin; 646 647 // Update the instruction stream. 648 BB->splice(InsertPos, BB, MI); 649 650 // Update LiveIntervals 651 if (LIS) 652 LIS->handleMove(*MI, /*UpdateFlags=*/true); 653 654 // Recede RegionBegin if an instruction moves above the first. 655 if (RegionBegin == InsertPos) 656 RegionBegin = MI; 657 } 658 659 bool ScheduleDAGMI::checkSchedLimit() { 660 #ifndef NDEBUG 661 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 662 CurrentTop = CurrentBottom; 663 return false; 664 } 665 ++NumInstrsScheduled; 666 #endif 667 return true; 668 } 669 670 /// Per-region scheduling driver, called back from 671 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 672 /// does not consider liveness or register pressure. It is useful for PostRA 673 /// scheduling and potentially other custom schedulers. 674 void ScheduleDAGMI::schedule() { 675 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 676 DEBUG(SchedImpl->dumpPolicy()); 677 678 // Build the DAG. 679 buildSchedGraph(AA); 680 681 Topo.InitDAGTopologicalSorting(); 682 683 postprocessDAG(); 684 685 SmallVector<SUnit*, 8> TopRoots, BotRoots; 686 findRootsAndBiasEdges(TopRoots, BotRoots); 687 688 // Initialize the strategy before modifying the DAG. 689 // This may initialize a DFSResult to be used for queue priority. 690 SchedImpl->initialize(this); 691 692 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 693 SUnits[su].dumpAll(this)); 694 if (ViewMISchedDAGs) viewGraph(); 695 696 // Initialize ready queues now that the DAG and priority data are finalized. 697 initQueues(TopRoots, BotRoots); 698 699 bool IsTopNode = false; 700 while (true) { 701 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 702 SUnit *SU = SchedImpl->pickNode(IsTopNode); 703 if (!SU) break; 704 705 assert(!SU->isScheduled && "Node already scheduled"); 706 if (!checkSchedLimit()) 707 break; 708 709 MachineInstr *MI = SU->getInstr(); 710 if (IsTopNode) { 711 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 712 if (&*CurrentTop == MI) 713 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 714 else 715 moveInstruction(MI, CurrentTop); 716 } else { 717 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 718 MachineBasicBlock::iterator priorII = 719 priorNonDebug(CurrentBottom, CurrentTop); 720 if (&*priorII == MI) 721 CurrentBottom = priorII; 722 else { 723 if (&*CurrentTop == MI) 724 CurrentTop = nextIfDebug(++CurrentTop, priorII); 725 moveInstruction(MI, CurrentBottom); 726 CurrentBottom = MI; 727 } 728 } 729 // Notify the scheduling strategy before updating the DAG. 730 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 731 // runs, it can then use the accurate ReadyCycle time to determine whether 732 // newly released nodes can move to the readyQ. 733 SchedImpl->schedNode(SU, IsTopNode); 734 735 updateQueues(SU, IsTopNode); 736 } 737 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 738 739 placeDebugValues(); 740 741 DEBUG({ 742 unsigned BBNum = begin()->getParent()->getNumber(); 743 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 744 dumpSchedule(); 745 dbgs() << '\n'; 746 }); 747 } 748 749 /// Apply each ScheduleDAGMutation step in order. 750 void ScheduleDAGMI::postprocessDAG() { 751 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 752 Mutations[i]->apply(this); 753 } 754 } 755 756 void ScheduleDAGMI:: 757 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 758 SmallVectorImpl<SUnit*> &BotRoots) { 759 for (std::vector<SUnit>::iterator 760 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 761 SUnit *SU = &(*I); 762 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 763 764 // Order predecessors so DFSResult follows the critical path. 765 SU->biasCriticalPath(); 766 767 // A SUnit is ready to top schedule if it has no predecessors. 768 if (!I->NumPredsLeft) 769 TopRoots.push_back(SU); 770 // A SUnit is ready to bottom schedule if it has no successors. 771 if (!I->NumSuccsLeft) 772 BotRoots.push_back(SU); 773 } 774 ExitSU.biasCriticalPath(); 775 } 776 777 /// Identify DAG roots and setup scheduler queues. 778 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 779 ArrayRef<SUnit*> BotRoots) { 780 NextClusterSucc = nullptr; 781 NextClusterPred = nullptr; 782 783 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 784 // 785 // Nodes with unreleased weak edges can still be roots. 786 // Release top roots in forward order. 787 for (SmallVectorImpl<SUnit*>::const_iterator 788 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 789 SchedImpl->releaseTopNode(*I); 790 } 791 // Release bottom roots in reverse order so the higher priority nodes appear 792 // first. This is more natural and slightly more efficient. 793 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 794 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 795 SchedImpl->releaseBottomNode(*I); 796 } 797 798 releaseSuccessors(&EntrySU); 799 releasePredecessors(&ExitSU); 800 801 SchedImpl->registerRoots(); 802 803 // Advance past initial DebugValues. 804 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 805 CurrentBottom = RegionEnd; 806 } 807 808 /// Update scheduler queues after scheduling an instruction. 809 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 810 // Release dependent instructions for scheduling. 811 if (IsTopNode) 812 releaseSuccessors(SU); 813 else 814 releasePredecessors(SU); 815 816 SU->isScheduled = true; 817 } 818 819 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 820 void ScheduleDAGMI::placeDebugValues() { 821 // If first instruction was a DBG_VALUE then put it back. 822 if (FirstDbgValue) { 823 BB->splice(RegionBegin, BB, FirstDbgValue); 824 RegionBegin = FirstDbgValue; 825 } 826 827 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 828 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 829 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 830 MachineInstr *DbgValue = P.first; 831 MachineBasicBlock::iterator OrigPrevMI = P.second; 832 if (&*RegionBegin == DbgValue) 833 ++RegionBegin; 834 BB->splice(++OrigPrevMI, BB, DbgValue); 835 if (OrigPrevMI == std::prev(RegionEnd)) 836 RegionEnd = DbgValue; 837 } 838 DbgValues.clear(); 839 FirstDbgValue = nullptr; 840 } 841 842 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 843 void ScheduleDAGMI::dumpSchedule() const { 844 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 845 if (SUnit *SU = getSUnit(&(*MI))) 846 SU->dump(this); 847 else 848 dbgs() << "Missing SUnit\n"; 849 } 850 } 851 #endif 852 853 //===----------------------------------------------------------------------===// 854 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 855 // preservation. 856 //===----------------------------------------------------------------------===// 857 858 ScheduleDAGMILive::~ScheduleDAGMILive() { 859 delete DFSResult; 860 } 861 862 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 863 /// crossing a scheduling boundary. [begin, end) includes all instructions in 864 /// the region, including the boundary itself and single-instruction regions 865 /// that don't get scheduled. 866 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 867 MachineBasicBlock::iterator begin, 868 MachineBasicBlock::iterator end, 869 unsigned regioninstrs) 870 { 871 // ScheduleDAGMI initializes SchedImpl's per-region policy. 872 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 873 874 // For convenience remember the end of the liveness region. 875 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 876 877 SUPressureDiffs.clear(); 878 879 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 880 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 881 882 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 883 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 884 } 885 886 // Setup the register pressure trackers for the top scheduled top and bottom 887 // scheduled regions. 888 void ScheduleDAGMILive::initRegPressure() { 889 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 890 ShouldTrackLaneMasks, false); 891 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 892 ShouldTrackLaneMasks, false); 893 894 // Close the RPTracker to finalize live ins. 895 RPTracker.closeRegion(); 896 897 DEBUG(RPTracker.dump()); 898 899 // Initialize the live ins and live outs. 900 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 901 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 902 903 // Close one end of the tracker so we can call 904 // getMaxUpward/DownwardPressureDelta before advancing across any 905 // instructions. This converts currently live regs into live ins/outs. 906 TopRPTracker.closeTop(); 907 BotRPTracker.closeBottom(); 908 909 BotRPTracker.initLiveThru(RPTracker); 910 if (!BotRPTracker.getLiveThru().empty()) { 911 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 912 DEBUG(dbgs() << "Live Thru: "; 913 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 914 }; 915 916 // For each live out vreg reduce the pressure change associated with other 917 // uses of the same vreg below the live-out reaching def. 918 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 919 920 // Account for liveness generated by the region boundary. 921 if (LiveRegionEnd != RegionEnd) { 922 SmallVector<RegisterMaskPair, 8> LiveUses; 923 BotRPTracker.recede(&LiveUses); 924 updatePressureDiffs(LiveUses); 925 } 926 927 DEBUG( 928 dbgs() << "Top Pressure:\n"; 929 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 930 dbgs() << "Bottom Pressure:\n"; 931 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 932 ); 933 934 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 935 936 // Cache the list of excess pressure sets in this region. This will also track 937 // the max pressure in the scheduled code for these sets. 938 RegionCriticalPSets.clear(); 939 const std::vector<unsigned> &RegionPressure = 940 RPTracker.getPressure().MaxSetPressure; 941 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 942 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 943 if (RegionPressure[i] > Limit) { 944 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 945 << " Limit " << Limit 946 << " Actual " << RegionPressure[i] << "\n"); 947 RegionCriticalPSets.push_back(PressureChange(i)); 948 } 949 } 950 DEBUG(dbgs() << "Excess PSets: "; 951 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 952 dbgs() << TRI->getRegPressureSetName( 953 RegionCriticalPSets[i].getPSet()) << " "; 954 dbgs() << "\n"); 955 } 956 957 void ScheduleDAGMILive:: 958 updateScheduledPressure(const SUnit *SU, 959 const std::vector<unsigned> &NewMaxPressure) { 960 const PressureDiff &PDiff = getPressureDiff(SU); 961 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 962 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 963 I != E; ++I) { 964 if (!I->isValid()) 965 break; 966 unsigned ID = I->getPSet(); 967 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 968 ++CritIdx; 969 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 970 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 971 && NewMaxPressure[ID] <= INT16_MAX) 972 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 973 } 974 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 975 if (NewMaxPressure[ID] >= Limit - 2) { 976 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 977 << NewMaxPressure[ID] 978 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 979 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 980 } 981 } 982 } 983 984 /// Update the PressureDiff array for liveness after scheduling this 985 /// instruction. 986 void ScheduleDAGMILive::updatePressureDiffs( 987 ArrayRef<RegisterMaskPair> LiveUses) { 988 for (const RegisterMaskPair &P : LiveUses) { 989 unsigned Reg = P.RegUnit; 990 /// FIXME: Currently assuming single-use physregs. 991 if (!TRI->isVirtualRegister(Reg)) 992 continue; 993 994 if (ShouldTrackLaneMasks) { 995 // If the register has just become live then other uses won't change 996 // this fact anymore => decrement pressure. 997 // If the register has just become dead then other uses make it come 998 // back to life => increment pressure. 999 bool Decrement = P.LaneMask != 0; 1000 1001 for (const VReg2SUnit &V2SU 1002 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1003 SUnit &SU = *V2SU.SU; 1004 if (SU.isScheduled || &SU == &ExitSU) 1005 continue; 1006 1007 PressureDiff &PDiff = getPressureDiff(&SU); 1008 PDiff.addPressureChange(Reg, Decrement, &MRI); 1009 DEBUG( 1010 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1011 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1012 << ' ' << *SU.getInstr(); 1013 dbgs() << " to "; 1014 PDiff.dump(*TRI); 1015 ); 1016 } 1017 } else { 1018 assert(P.LaneMask != 0); 1019 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1020 // This may be called before CurrentBottom has been initialized. However, 1021 // BotRPTracker must have a valid position. We want the value live into the 1022 // instruction or live out of the block, so ask for the previous 1023 // instruction's live-out. 1024 const LiveInterval &LI = LIS->getInterval(Reg); 1025 VNInfo *VNI; 1026 MachineBasicBlock::const_iterator I = 1027 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1028 if (I == BB->end()) 1029 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1030 else { 1031 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1032 VNI = LRQ.valueIn(); 1033 } 1034 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1035 assert(VNI && "No live value at use."); 1036 for (const VReg2SUnit &V2SU 1037 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1038 SUnit *SU = V2SU.SU; 1039 // If this use comes before the reaching def, it cannot be a last use, 1040 // so decrease its pressure change. 1041 if (!SU->isScheduled && SU != &ExitSU) { 1042 LiveQueryResult LRQ = 1043 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1044 if (LRQ.valueIn() == VNI) { 1045 PressureDiff &PDiff = getPressureDiff(SU); 1046 PDiff.addPressureChange(Reg, true, &MRI); 1047 DEBUG( 1048 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1049 << *SU->getInstr(); 1050 dbgs() << " to "; 1051 PDiff.dump(*TRI); 1052 ); 1053 } 1054 } 1055 } 1056 } 1057 } 1058 } 1059 1060 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1061 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1062 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1063 /// 1064 /// This is a skeletal driver, with all the functionality pushed into helpers, 1065 /// so that it can be easily extended by experimental schedulers. Generally, 1066 /// implementing MachineSchedStrategy should be sufficient to implement a new 1067 /// scheduling algorithm. However, if a scheduler further subclasses 1068 /// ScheduleDAGMILive then it will want to override this virtual method in order 1069 /// to update any specialized state. 1070 void ScheduleDAGMILive::schedule() { 1071 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1072 DEBUG(SchedImpl->dumpPolicy()); 1073 buildDAGWithRegPressure(); 1074 1075 Topo.InitDAGTopologicalSorting(); 1076 1077 postprocessDAG(); 1078 1079 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1080 findRootsAndBiasEdges(TopRoots, BotRoots); 1081 1082 // Initialize the strategy before modifying the DAG. 1083 // This may initialize a DFSResult to be used for queue priority. 1084 SchedImpl->initialize(this); 1085 1086 DEBUG( 1087 for (const SUnit &SU : SUnits) { 1088 SU.dumpAll(this); 1089 if (ShouldTrackPressure) { 1090 dbgs() << " Pressure Diff : "; 1091 getPressureDiff(&SU).dump(*TRI); 1092 } 1093 dbgs() << '\n'; 1094 } 1095 ); 1096 if (ViewMISchedDAGs) viewGraph(); 1097 1098 // Initialize ready queues now that the DAG and priority data are finalized. 1099 initQueues(TopRoots, BotRoots); 1100 1101 bool IsTopNode = false; 1102 while (true) { 1103 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1104 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1105 if (!SU) break; 1106 1107 assert(!SU->isScheduled && "Node already scheduled"); 1108 if (!checkSchedLimit()) 1109 break; 1110 1111 scheduleMI(SU, IsTopNode); 1112 1113 if (DFSResult) { 1114 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1115 if (!ScheduledTrees.test(SubtreeID)) { 1116 ScheduledTrees.set(SubtreeID); 1117 DFSResult->scheduleTree(SubtreeID); 1118 SchedImpl->scheduleTree(SubtreeID); 1119 } 1120 } 1121 1122 // Notify the scheduling strategy after updating the DAG. 1123 SchedImpl->schedNode(SU, IsTopNode); 1124 1125 updateQueues(SU, IsTopNode); 1126 } 1127 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1128 1129 placeDebugValues(); 1130 1131 DEBUG({ 1132 unsigned BBNum = begin()->getParent()->getNumber(); 1133 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1134 dumpSchedule(); 1135 dbgs() << '\n'; 1136 }); 1137 } 1138 1139 /// Build the DAG and setup three register pressure trackers. 1140 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1141 if (!ShouldTrackPressure) { 1142 RPTracker.reset(); 1143 RegionCriticalPSets.clear(); 1144 buildSchedGraph(AA); 1145 return; 1146 } 1147 1148 // Initialize the register pressure tracker used by buildSchedGraph. 1149 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1150 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1151 1152 // Account for liveness generate by the region boundary. 1153 if (LiveRegionEnd != RegionEnd) 1154 RPTracker.recede(); 1155 1156 // Build the DAG, and compute current register pressure. 1157 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1158 1159 // Initialize top/bottom trackers after computing region pressure. 1160 initRegPressure(); 1161 } 1162 1163 void ScheduleDAGMILive::computeDFSResult() { 1164 if (!DFSResult) 1165 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1166 DFSResult->clear(); 1167 ScheduledTrees.clear(); 1168 DFSResult->resize(SUnits.size()); 1169 DFSResult->compute(SUnits); 1170 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1171 } 1172 1173 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1174 /// only provides the critical path for single block loops. To handle loops that 1175 /// span blocks, we could use the vreg path latencies provided by 1176 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1177 /// available for use in the scheduler. 1178 /// 1179 /// The cyclic path estimation identifies a def-use pair that crosses the back 1180 /// edge and considers the depth and height of the nodes. For example, consider 1181 /// the following instruction sequence where each instruction has unit latency 1182 /// and defines an epomymous virtual register: 1183 /// 1184 /// a->b(a,c)->c(b)->d(c)->exit 1185 /// 1186 /// The cyclic critical path is a two cycles: b->c->b 1187 /// The acyclic critical path is four cycles: a->b->c->d->exit 1188 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1189 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1190 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1191 /// LiveInDepth = depth(b) = len(a->b) = 1 1192 /// 1193 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1194 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1195 /// CyclicCriticalPath = min(2, 2) = 2 1196 /// 1197 /// This could be relevant to PostRA scheduling, but is currently implemented 1198 /// assuming LiveIntervals. 1199 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1200 // This only applies to single block loop. 1201 if (!BB->isSuccessor(BB)) 1202 return 0; 1203 1204 unsigned MaxCyclicLatency = 0; 1205 // Visit each live out vreg def to find def/use pairs that cross iterations. 1206 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1207 unsigned Reg = P.RegUnit; 1208 if (!TRI->isVirtualRegister(Reg)) 1209 continue; 1210 const LiveInterval &LI = LIS->getInterval(Reg); 1211 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1212 if (!DefVNI) 1213 continue; 1214 1215 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1216 const SUnit *DefSU = getSUnit(DefMI); 1217 if (!DefSU) 1218 continue; 1219 1220 unsigned LiveOutHeight = DefSU->getHeight(); 1221 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1222 // Visit all local users of the vreg def. 1223 for (const VReg2SUnit &V2SU 1224 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1225 SUnit *SU = V2SU.SU; 1226 if (SU == &ExitSU) 1227 continue; 1228 1229 // Only consider uses of the phi. 1230 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1231 if (!LRQ.valueIn()->isPHIDef()) 1232 continue; 1233 1234 // Assume that a path spanning two iterations is a cycle, which could 1235 // overestimate in strange cases. This allows cyclic latency to be 1236 // estimated as the minimum slack of the vreg's depth or height. 1237 unsigned CyclicLatency = 0; 1238 if (LiveOutDepth > SU->getDepth()) 1239 CyclicLatency = LiveOutDepth - SU->getDepth(); 1240 1241 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1242 if (LiveInHeight > LiveOutHeight) { 1243 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1244 CyclicLatency = LiveInHeight - LiveOutHeight; 1245 } else 1246 CyclicLatency = 0; 1247 1248 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1249 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1250 if (CyclicLatency > MaxCyclicLatency) 1251 MaxCyclicLatency = CyclicLatency; 1252 } 1253 } 1254 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1255 return MaxCyclicLatency; 1256 } 1257 1258 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1259 /// the Top RP tracker in case the region beginning has changed. 1260 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1261 ArrayRef<SUnit*> BotRoots) { 1262 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1263 if (ShouldTrackPressure) { 1264 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1265 TopRPTracker.setPos(CurrentTop); 1266 } 1267 } 1268 1269 /// Move an instruction and update register pressure. 1270 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1271 // Move the instruction to its new location in the instruction stream. 1272 MachineInstr *MI = SU->getInstr(); 1273 1274 if (IsTopNode) { 1275 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1276 if (&*CurrentTop == MI) 1277 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1278 else { 1279 moveInstruction(MI, CurrentTop); 1280 TopRPTracker.setPos(MI); 1281 } 1282 1283 if (ShouldTrackPressure) { 1284 // Update top scheduled pressure. 1285 RegisterOperands RegOpers; 1286 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1287 if (ShouldTrackLaneMasks) { 1288 // Adjust liveness and add missing dead+read-undef flags. 1289 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1290 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1291 } else { 1292 // Adjust for missing dead-def flags. 1293 RegOpers.detectDeadDefs(*MI, *LIS); 1294 } 1295 1296 TopRPTracker.advance(RegOpers); 1297 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1298 DEBUG( 1299 dbgs() << "Top Pressure:\n"; 1300 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1301 ); 1302 1303 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1304 } 1305 } else { 1306 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1307 MachineBasicBlock::iterator priorII = 1308 priorNonDebug(CurrentBottom, CurrentTop); 1309 if (&*priorII == MI) 1310 CurrentBottom = priorII; 1311 else { 1312 if (&*CurrentTop == MI) { 1313 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1314 TopRPTracker.setPos(CurrentTop); 1315 } 1316 moveInstruction(MI, CurrentBottom); 1317 CurrentBottom = MI; 1318 } 1319 if (ShouldTrackPressure) { 1320 RegisterOperands RegOpers; 1321 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1322 if (ShouldTrackLaneMasks) { 1323 // Adjust liveness and add missing dead+read-undef flags. 1324 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1325 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1326 } else { 1327 // Adjust for missing dead-def flags. 1328 RegOpers.detectDeadDefs(*MI, *LIS); 1329 } 1330 1331 BotRPTracker.recedeSkipDebugValues(); 1332 SmallVector<RegisterMaskPair, 8> LiveUses; 1333 BotRPTracker.recede(RegOpers, &LiveUses); 1334 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1335 DEBUG( 1336 dbgs() << "Bottom Pressure:\n"; 1337 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1338 ); 1339 1340 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1341 updatePressureDiffs(LiveUses); 1342 } 1343 } 1344 } 1345 1346 //===----------------------------------------------------------------------===// 1347 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1348 //===----------------------------------------------------------------------===// 1349 1350 namespace { 1351 /// \brief Post-process the DAG to create cluster edges between neighboring 1352 /// loads or between neighboring stores. 1353 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1354 struct MemOpInfo { 1355 SUnit *SU; 1356 unsigned BaseReg; 1357 int64_t Offset; 1358 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1359 : SU(su), BaseReg(reg), Offset(ofs) {} 1360 1361 bool operator<(const MemOpInfo&RHS) const { 1362 return std::tie(BaseReg, Offset, SU->NodeNum) < 1363 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1364 } 1365 }; 1366 1367 const TargetInstrInfo *TII; 1368 const TargetRegisterInfo *TRI; 1369 bool IsLoad; 1370 1371 public: 1372 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1373 const TargetRegisterInfo *tri, bool IsLoad) 1374 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1375 1376 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1377 1378 protected: 1379 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1380 }; 1381 1382 class StoreClusterMutation : public BaseMemOpClusterMutation { 1383 public: 1384 StoreClusterMutation(const TargetInstrInfo *tii, 1385 const TargetRegisterInfo *tri) 1386 : BaseMemOpClusterMutation(tii, tri, false) {} 1387 }; 1388 1389 class LoadClusterMutation : public BaseMemOpClusterMutation { 1390 public: 1391 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1392 : BaseMemOpClusterMutation(tii, tri, true) {} 1393 }; 1394 } // anonymous 1395 1396 namespace llvm { 1397 1398 std::unique_ptr<ScheduleDAGMutation> 1399 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1400 const TargetRegisterInfo *TRI) { 1401 return make_unique<LoadClusterMutation>(TII, TRI); 1402 } 1403 1404 std::unique_ptr<ScheduleDAGMutation> 1405 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1406 const TargetRegisterInfo *TRI) { 1407 return make_unique<StoreClusterMutation>(TII, TRI); 1408 } 1409 1410 } // namespace llvm 1411 1412 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1413 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1414 SmallVector<MemOpInfo, 32> MemOpRecords; 1415 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1416 SUnit *SU = MemOps[Idx]; 1417 unsigned BaseReg; 1418 int64_t Offset; 1419 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1420 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1421 } 1422 if (MemOpRecords.size() < 2) 1423 return; 1424 1425 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1426 unsigned ClusterLength = 1; 1427 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1428 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1429 ClusterLength = 1; 1430 continue; 1431 } 1432 1433 SUnit *SUa = MemOpRecords[Idx].SU; 1434 SUnit *SUb = MemOpRecords[Idx+1].SU; 1435 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1436 ClusterLength) && 1437 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1438 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1439 << SUb->NodeNum << ")\n"); 1440 // Copy successor edges from SUa to SUb. Interleaving computation 1441 // dependent on SUa can prevent load combining due to register reuse. 1442 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1443 // loads should have effectively the same inputs. 1444 for (SUnit::const_succ_iterator 1445 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1446 if (SI->getSUnit() == SUb) 1447 continue; 1448 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1449 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1450 } 1451 ++ClusterLength; 1452 } else 1453 ClusterLength = 1; 1454 } 1455 } 1456 1457 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1458 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1459 1460 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1461 1462 // Map DAG NodeNum to store chain ID. 1463 DenseMap<unsigned, unsigned> StoreChainIDs; 1464 // Map each store chain to a set of dependent MemOps. 1465 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1466 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1467 SUnit *SU = &DAG->SUnits[Idx]; 1468 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1469 (!IsLoad && !SU->getInstr()->mayStore())) 1470 continue; 1471 1472 unsigned ChainPredID = DAG->SUnits.size(); 1473 for (SUnit::const_pred_iterator 1474 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1475 if (PI->isCtrl()) { 1476 ChainPredID = PI->getSUnit()->NodeNum; 1477 break; 1478 } 1479 } 1480 // Check if this chain-like pred has been seen 1481 // before. ChainPredID==MaxNodeID at the top of the schedule. 1482 unsigned NumChains = StoreChainDependents.size(); 1483 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1484 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1485 if (Result.second) 1486 StoreChainDependents.resize(NumChains + 1); 1487 StoreChainDependents[Result.first->second].push_back(SU); 1488 } 1489 1490 // Iterate over the store chains. 1491 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1492 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1493 } 1494 1495 //===----------------------------------------------------------------------===// 1496 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1497 //===----------------------------------------------------------------------===// 1498 1499 namespace { 1500 /// \brief Post-process the DAG to create cluster edges between instructions 1501 /// that may be fused by the processor into a single operation. 1502 class MacroFusion : public ScheduleDAGMutation { 1503 const TargetInstrInfo &TII; 1504 const TargetRegisterInfo &TRI; 1505 public: 1506 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1507 : TII(TII), TRI(TRI) {} 1508 1509 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1510 }; 1511 } // anonymous 1512 1513 namespace llvm { 1514 1515 std::unique_ptr<ScheduleDAGMutation> 1516 createMacroFusionDAGMutation(const TargetInstrInfo *TII, 1517 const TargetRegisterInfo *TRI) { 1518 return make_unique<MacroFusion>(*TII, *TRI); 1519 } 1520 1521 } // namespace llvm 1522 1523 /// Returns true if \p MI reads a register written by \p Other. 1524 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1525 const MachineInstr &Other) { 1526 for (const MachineOperand &MO : MI.uses()) { 1527 if (!MO.isReg() || !MO.readsReg()) 1528 continue; 1529 1530 unsigned Reg = MO.getReg(); 1531 if (Other.modifiesRegister(Reg, &TRI)) 1532 return true; 1533 } 1534 return false; 1535 } 1536 1537 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1538 /// fused operations. 1539 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1540 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1541 1542 // For now, assume targets can only fuse with the branch. 1543 SUnit &ExitSU = DAG->ExitSU; 1544 MachineInstr *Branch = ExitSU.getInstr(); 1545 if (!Branch) 1546 return; 1547 1548 for (SUnit &SU : DAG->SUnits) { 1549 // SUnits with successors can't be schedule in front of the ExitSU. 1550 if (!SU.Succs.empty()) 1551 continue; 1552 // We only care if the node writes to a register that the branch reads. 1553 MachineInstr *Pred = SU.getInstr(); 1554 if (!HasDataDep(TRI, *Branch, *Pred)) 1555 continue; 1556 1557 if (!TII.shouldScheduleAdjacent(*Pred, *Branch)) 1558 continue; 1559 1560 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1561 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1562 // need to copy predecessor edges from ExitSU to SU, since top-down 1563 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1564 // of SU, we could create an artificial edge from the deepest root, but it 1565 // hasn't been needed yet. 1566 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1567 (void)Success; 1568 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1569 1570 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1571 break; 1572 } 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // CopyConstrain - DAG post-processing to encourage copy elimination. 1577 //===----------------------------------------------------------------------===// 1578 1579 namespace { 1580 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1581 /// the one use that defines the copy's source vreg, most likely an induction 1582 /// variable increment. 1583 class CopyConstrain : public ScheduleDAGMutation { 1584 // Transient state. 1585 SlotIndex RegionBeginIdx; 1586 // RegionEndIdx is the slot index of the last non-debug instruction in the 1587 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1588 SlotIndex RegionEndIdx; 1589 public: 1590 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1591 1592 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1593 1594 protected: 1595 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1596 }; 1597 } // anonymous 1598 1599 namespace llvm { 1600 1601 std::unique_ptr<ScheduleDAGMutation> 1602 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1603 const TargetRegisterInfo *TRI) { 1604 return make_unique<CopyConstrain>(TII, TRI); 1605 } 1606 1607 } // namespace llvm 1608 1609 /// constrainLocalCopy handles two possibilities: 1610 /// 1) Local src: 1611 /// I0: = dst 1612 /// I1: src = ... 1613 /// I2: = dst 1614 /// I3: dst = src (copy) 1615 /// (create pred->succ edges I0->I1, I2->I1) 1616 /// 1617 /// 2) Local copy: 1618 /// I0: dst = src (copy) 1619 /// I1: = dst 1620 /// I2: src = ... 1621 /// I3: = dst 1622 /// (create pred->succ edges I1->I2, I3->I2) 1623 /// 1624 /// Although the MachineScheduler is currently constrained to single blocks, 1625 /// this algorithm should handle extended blocks. An EBB is a set of 1626 /// contiguously numbered blocks such that the previous block in the EBB is 1627 /// always the single predecessor. 1628 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1629 LiveIntervals *LIS = DAG->getLIS(); 1630 MachineInstr *Copy = CopySU->getInstr(); 1631 1632 // Check for pure vreg copies. 1633 const MachineOperand &SrcOp = Copy->getOperand(1); 1634 unsigned SrcReg = SrcOp.getReg(); 1635 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1636 return; 1637 1638 const MachineOperand &DstOp = Copy->getOperand(0); 1639 unsigned DstReg = DstOp.getReg(); 1640 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1641 return; 1642 1643 // Check if either the dest or source is local. If it's live across a back 1644 // edge, it's not local. Note that if both vregs are live across the back 1645 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1646 // If both the copy's source and dest are local live intervals, then we 1647 // should treat the dest as the global for the purpose of adding 1648 // constraints. This adds edges from source's other uses to the copy. 1649 unsigned LocalReg = SrcReg; 1650 unsigned GlobalReg = DstReg; 1651 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1652 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1653 LocalReg = DstReg; 1654 GlobalReg = SrcReg; 1655 LocalLI = &LIS->getInterval(LocalReg); 1656 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1657 return; 1658 } 1659 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1660 1661 // Find the global segment after the start of the local LI. 1662 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1663 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1664 // local live range. We could create edges from other global uses to the local 1665 // start, but the coalescer should have already eliminated these cases, so 1666 // don't bother dealing with it. 1667 if (GlobalSegment == GlobalLI->end()) 1668 return; 1669 1670 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1671 // returned the next global segment. But if GlobalSegment overlaps with 1672 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1673 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1674 if (GlobalSegment->contains(LocalLI->beginIndex())) 1675 ++GlobalSegment; 1676 1677 if (GlobalSegment == GlobalLI->end()) 1678 return; 1679 1680 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1681 if (GlobalSegment != GlobalLI->begin()) { 1682 // Two address defs have no hole. 1683 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1684 GlobalSegment->start)) { 1685 return; 1686 } 1687 // If the prior global segment may be defined by the same two-address 1688 // instruction that also defines LocalLI, then can't make a hole here. 1689 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1690 LocalLI->beginIndex())) { 1691 return; 1692 } 1693 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1694 // it would be a disconnected component in the live range. 1695 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1696 "Disconnected LRG within the scheduling region."); 1697 } 1698 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1699 if (!GlobalDef) 1700 return; 1701 1702 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1703 if (!GlobalSU) 1704 return; 1705 1706 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1707 // constraining the uses of the last local def to precede GlobalDef. 1708 SmallVector<SUnit*,8> LocalUses; 1709 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1710 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1711 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1712 for (SUnit::const_succ_iterator 1713 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1714 I != E; ++I) { 1715 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1716 continue; 1717 if (I->getSUnit() == GlobalSU) 1718 continue; 1719 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1720 return; 1721 LocalUses.push_back(I->getSUnit()); 1722 } 1723 // Open the top of the GlobalLI hole by constraining any earlier global uses 1724 // to precede the start of LocalLI. 1725 SmallVector<SUnit*,8> GlobalUses; 1726 MachineInstr *FirstLocalDef = 1727 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1728 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1729 for (SUnit::const_pred_iterator 1730 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1731 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1732 continue; 1733 if (I->getSUnit() == FirstLocalSU) 1734 continue; 1735 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1736 return; 1737 GlobalUses.push_back(I->getSUnit()); 1738 } 1739 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1740 // Add the weak edges. 1741 for (SmallVectorImpl<SUnit*>::const_iterator 1742 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1743 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1744 << GlobalSU->NodeNum << ")\n"); 1745 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1746 } 1747 for (SmallVectorImpl<SUnit*>::const_iterator 1748 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1749 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1750 << FirstLocalSU->NodeNum << ")\n"); 1751 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1752 } 1753 } 1754 1755 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1756 /// copy elimination. 1757 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1758 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1759 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1760 1761 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1762 if (FirstPos == DAG->end()) 1763 return; 1764 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1765 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1766 *priorNonDebug(DAG->end(), DAG->begin())); 1767 1768 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1769 SUnit *SU = &DAG->SUnits[Idx]; 1770 if (!SU->getInstr()->isCopy()) 1771 continue; 1772 1773 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1774 } 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1779 // and possibly other custom schedulers. 1780 //===----------------------------------------------------------------------===// 1781 1782 static const unsigned InvalidCycle = ~0U; 1783 1784 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1785 1786 void SchedBoundary::reset() { 1787 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1788 // Destroying and reconstructing it is very expensive though. So keep 1789 // invalid, placeholder HazardRecs. 1790 if (HazardRec && HazardRec->isEnabled()) { 1791 delete HazardRec; 1792 HazardRec = nullptr; 1793 } 1794 Available.clear(); 1795 Pending.clear(); 1796 CheckPending = false; 1797 CurrCycle = 0; 1798 CurrMOps = 0; 1799 MinReadyCycle = UINT_MAX; 1800 ExpectedLatency = 0; 1801 DependentLatency = 0; 1802 RetiredMOps = 0; 1803 MaxExecutedResCount = 0; 1804 ZoneCritResIdx = 0; 1805 IsResourceLimited = false; 1806 ReservedCycles.clear(); 1807 #ifndef NDEBUG 1808 // Track the maximum number of stall cycles that could arise either from the 1809 // latency of a DAG edge or the number of cycles that a processor resource is 1810 // reserved (SchedBoundary::ReservedCycles). 1811 MaxObservedStall = 0; 1812 #endif 1813 // Reserve a zero-count for invalid CritResIdx. 1814 ExecutedResCounts.resize(1); 1815 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1816 } 1817 1818 void SchedRemainder:: 1819 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1820 reset(); 1821 if (!SchedModel->hasInstrSchedModel()) 1822 return; 1823 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1824 for (std::vector<SUnit>::iterator 1825 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1826 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1827 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1828 * SchedModel->getMicroOpFactor(); 1829 for (TargetSchedModel::ProcResIter 1830 PI = SchedModel->getWriteProcResBegin(SC), 1831 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1832 unsigned PIdx = PI->ProcResourceIdx; 1833 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1834 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1835 } 1836 } 1837 } 1838 1839 void SchedBoundary:: 1840 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1841 reset(); 1842 DAG = dag; 1843 SchedModel = smodel; 1844 Rem = rem; 1845 if (SchedModel->hasInstrSchedModel()) { 1846 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1847 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1848 } 1849 } 1850 1851 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1852 /// these "soft stalls" differently than the hard stall cycles based on CPU 1853 /// resources and computed by checkHazard(). A fully in-order model 1854 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1855 /// available for scheduling until they are ready. However, a weaker in-order 1856 /// model may use this for heuristics. For example, if a processor has in-order 1857 /// behavior when reading certain resources, this may come into play. 1858 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1859 if (!SU->isUnbuffered) 1860 return 0; 1861 1862 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1863 if (ReadyCycle > CurrCycle) 1864 return ReadyCycle - CurrCycle; 1865 return 0; 1866 } 1867 1868 /// Compute the next cycle at which the given processor resource can be 1869 /// scheduled. 1870 unsigned SchedBoundary:: 1871 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1872 unsigned NextUnreserved = ReservedCycles[PIdx]; 1873 // If this resource has never been used, always return cycle zero. 1874 if (NextUnreserved == InvalidCycle) 1875 return 0; 1876 // For bottom-up scheduling add the cycles needed for the current operation. 1877 if (!isTop()) 1878 NextUnreserved += Cycles; 1879 return NextUnreserved; 1880 } 1881 1882 /// Does this SU have a hazard within the current instruction group. 1883 /// 1884 /// The scheduler supports two modes of hazard recognition. The first is the 1885 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1886 /// supports highly complicated in-order reservation tables 1887 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1888 /// 1889 /// The second is a streamlined mechanism that checks for hazards based on 1890 /// simple counters that the scheduler itself maintains. It explicitly checks 1891 /// for instruction dispatch limitations, including the number of micro-ops that 1892 /// can dispatch per cycle. 1893 /// 1894 /// TODO: Also check whether the SU must start a new group. 1895 bool SchedBoundary::checkHazard(SUnit *SU) { 1896 if (HazardRec->isEnabled() 1897 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1898 return true; 1899 } 1900 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1901 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1902 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1903 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1904 return true; 1905 } 1906 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1907 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1908 for (TargetSchedModel::ProcResIter 1909 PI = SchedModel->getWriteProcResBegin(SC), 1910 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1911 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1912 if (NRCycle > CurrCycle) { 1913 #ifndef NDEBUG 1914 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1915 #endif 1916 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1917 << SchedModel->getResourceName(PI->ProcResourceIdx) 1918 << "=" << NRCycle << "c\n"); 1919 return true; 1920 } 1921 } 1922 } 1923 return false; 1924 } 1925 1926 // Find the unscheduled node in ReadySUs with the highest latency. 1927 unsigned SchedBoundary:: 1928 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1929 SUnit *LateSU = nullptr; 1930 unsigned RemLatency = 0; 1931 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1932 I != E; ++I) { 1933 unsigned L = getUnscheduledLatency(*I); 1934 if (L > RemLatency) { 1935 RemLatency = L; 1936 LateSU = *I; 1937 } 1938 } 1939 if (LateSU) { 1940 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1941 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1942 } 1943 return RemLatency; 1944 } 1945 1946 // Count resources in this zone and the remaining unscheduled 1947 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1948 // resource index, or zero if the zone is issue limited. 1949 unsigned SchedBoundary:: 1950 getOtherResourceCount(unsigned &OtherCritIdx) { 1951 OtherCritIdx = 0; 1952 if (!SchedModel->hasInstrSchedModel()) 1953 return 0; 1954 1955 unsigned OtherCritCount = Rem->RemIssueCount 1956 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1957 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1958 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1959 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1960 PIdx != PEnd; ++PIdx) { 1961 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1962 if (OtherCount > OtherCritCount) { 1963 OtherCritCount = OtherCount; 1964 OtherCritIdx = PIdx; 1965 } 1966 } 1967 if (OtherCritIdx) { 1968 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1969 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1970 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1971 } 1972 return OtherCritCount; 1973 } 1974 1975 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1976 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1977 1978 #ifndef NDEBUG 1979 // ReadyCycle was been bumped up to the CurrCycle when this node was 1980 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1981 // scheduling, so may now be greater than ReadyCycle. 1982 if (ReadyCycle > CurrCycle) 1983 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1984 #endif 1985 1986 if (ReadyCycle < MinReadyCycle) 1987 MinReadyCycle = ReadyCycle; 1988 1989 // Check for interlocks first. For the purpose of other heuristics, an 1990 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1991 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1992 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 1993 Available.size() >= ReadyListLimit) 1994 Pending.push(SU); 1995 else 1996 Available.push(SU); 1997 } 1998 1999 /// Move the boundary of scheduled code by one cycle. 2000 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2001 if (SchedModel->getMicroOpBufferSize() == 0) { 2002 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 2003 if (MinReadyCycle > NextCycle) 2004 NextCycle = MinReadyCycle; 2005 } 2006 // Update the current micro-ops, which will issue in the next cycle. 2007 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2008 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2009 2010 // Decrement DependentLatency based on the next cycle. 2011 if ((NextCycle - CurrCycle) > DependentLatency) 2012 DependentLatency = 0; 2013 else 2014 DependentLatency -= (NextCycle - CurrCycle); 2015 2016 if (!HazardRec->isEnabled()) { 2017 // Bypass HazardRec virtual calls. 2018 CurrCycle = NextCycle; 2019 } else { 2020 // Bypass getHazardType calls in case of long latency. 2021 for (; CurrCycle != NextCycle; ++CurrCycle) { 2022 if (isTop()) 2023 HazardRec->AdvanceCycle(); 2024 else 2025 HazardRec->RecedeCycle(); 2026 } 2027 } 2028 CheckPending = true; 2029 unsigned LFactor = SchedModel->getLatencyFactor(); 2030 IsResourceLimited = 2031 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2032 > (int)LFactor; 2033 2034 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2035 } 2036 2037 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2038 ExecutedResCounts[PIdx] += Count; 2039 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2040 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2041 } 2042 2043 /// Add the given processor resource to this scheduled zone. 2044 /// 2045 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2046 /// during which this resource is consumed. 2047 /// 2048 /// \return the next cycle at which the instruction may execute without 2049 /// oversubscribing resources. 2050 unsigned SchedBoundary:: 2051 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2052 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2053 unsigned Count = Factor * Cycles; 2054 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2055 << " +" << Cycles << "x" << Factor << "u\n"); 2056 2057 // Update Executed resources counts. 2058 incExecutedResources(PIdx, Count); 2059 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2060 Rem->RemainingCounts[PIdx] -= Count; 2061 2062 // Check if this resource exceeds the current critical resource. If so, it 2063 // becomes the critical resource. 2064 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2065 ZoneCritResIdx = PIdx; 2066 DEBUG(dbgs() << " *** Critical resource " 2067 << SchedModel->getResourceName(PIdx) << ": " 2068 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2069 } 2070 // For reserved resources, record the highest cycle using the resource. 2071 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2072 if (NextAvailable > CurrCycle) { 2073 DEBUG(dbgs() << " Resource conflict: " 2074 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2075 << NextAvailable << "\n"); 2076 } 2077 return NextAvailable; 2078 } 2079 2080 /// Move the boundary of scheduled code by one SUnit. 2081 void SchedBoundary::bumpNode(SUnit *SU) { 2082 // Update the reservation table. 2083 if (HazardRec->isEnabled()) { 2084 if (!isTop() && SU->isCall) { 2085 // Calls are scheduled with their preceding instructions. For bottom-up 2086 // scheduling, clear the pipeline state before emitting. 2087 HazardRec->Reset(); 2088 } 2089 HazardRec->EmitInstruction(SU); 2090 } 2091 // checkHazard should prevent scheduling multiple instructions per cycle that 2092 // exceed the issue width. 2093 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2094 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2095 assert( 2096 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2097 "Cannot schedule this instruction's MicroOps in the current cycle."); 2098 2099 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2100 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2101 2102 unsigned NextCycle = CurrCycle; 2103 switch (SchedModel->getMicroOpBufferSize()) { 2104 case 0: 2105 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2106 break; 2107 case 1: 2108 if (ReadyCycle > NextCycle) { 2109 NextCycle = ReadyCycle; 2110 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2111 } 2112 break; 2113 default: 2114 // We don't currently model the OOO reorder buffer, so consider all 2115 // scheduled MOps to be "retired". We do loosely model in-order resource 2116 // latency. If this instruction uses an in-order resource, account for any 2117 // likely stall cycles. 2118 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2119 NextCycle = ReadyCycle; 2120 break; 2121 } 2122 RetiredMOps += IncMOps; 2123 2124 // Update resource counts and critical resource. 2125 if (SchedModel->hasInstrSchedModel()) { 2126 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2127 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2128 Rem->RemIssueCount -= DecRemIssue; 2129 if (ZoneCritResIdx) { 2130 // Scale scheduled micro-ops for comparing with the critical resource. 2131 unsigned ScaledMOps = 2132 RetiredMOps * SchedModel->getMicroOpFactor(); 2133 2134 // If scaled micro-ops are now more than the previous critical resource by 2135 // a full cycle, then micro-ops issue becomes critical. 2136 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2137 >= (int)SchedModel->getLatencyFactor()) { 2138 ZoneCritResIdx = 0; 2139 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2140 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2141 } 2142 } 2143 for (TargetSchedModel::ProcResIter 2144 PI = SchedModel->getWriteProcResBegin(SC), 2145 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2146 unsigned RCycle = 2147 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2148 if (RCycle > NextCycle) 2149 NextCycle = RCycle; 2150 } 2151 if (SU->hasReservedResource) { 2152 // For reserved resources, record the highest cycle using the resource. 2153 // For top-down scheduling, this is the cycle in which we schedule this 2154 // instruction plus the number of cycles the operations reserves the 2155 // resource. For bottom-up is it simply the instruction's cycle. 2156 for (TargetSchedModel::ProcResIter 2157 PI = SchedModel->getWriteProcResBegin(SC), 2158 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2159 unsigned PIdx = PI->ProcResourceIdx; 2160 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2161 if (isTop()) { 2162 ReservedCycles[PIdx] = 2163 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2164 } 2165 else 2166 ReservedCycles[PIdx] = NextCycle; 2167 } 2168 } 2169 } 2170 } 2171 // Update ExpectedLatency and DependentLatency. 2172 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2173 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2174 if (SU->getDepth() > TopLatency) { 2175 TopLatency = SU->getDepth(); 2176 DEBUG(dbgs() << " " << Available.getName() 2177 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2178 } 2179 if (SU->getHeight() > BotLatency) { 2180 BotLatency = SU->getHeight(); 2181 DEBUG(dbgs() << " " << Available.getName() 2182 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2183 } 2184 // If we stall for any reason, bump the cycle. 2185 if (NextCycle > CurrCycle) { 2186 bumpCycle(NextCycle); 2187 } else { 2188 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2189 // resource limited. If a stall occurred, bumpCycle does this. 2190 unsigned LFactor = SchedModel->getLatencyFactor(); 2191 IsResourceLimited = 2192 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2193 > (int)LFactor; 2194 } 2195 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2196 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2197 // one cycle. Since we commonly reach the max MOps here, opportunistically 2198 // bump the cycle to avoid uselessly checking everything in the readyQ. 2199 CurrMOps += IncMOps; 2200 while (CurrMOps >= SchedModel->getIssueWidth()) { 2201 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2202 << " at cycle " << CurrCycle << '\n'); 2203 bumpCycle(++NextCycle); 2204 } 2205 DEBUG(dumpScheduledState()); 2206 } 2207 2208 /// Release pending ready nodes in to the available queue. This makes them 2209 /// visible to heuristics. 2210 void SchedBoundary::releasePending() { 2211 // If the available queue is empty, it is safe to reset MinReadyCycle. 2212 if (Available.empty()) 2213 MinReadyCycle = UINT_MAX; 2214 2215 // Check to see if any of the pending instructions are ready to issue. If 2216 // so, add them to the available queue. 2217 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2218 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2219 SUnit *SU = *(Pending.begin()+i); 2220 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2221 2222 if (ReadyCycle < MinReadyCycle) 2223 MinReadyCycle = ReadyCycle; 2224 2225 if (!IsBuffered && ReadyCycle > CurrCycle) 2226 continue; 2227 2228 if (checkHazard(SU)) 2229 continue; 2230 2231 if (Available.size() >= ReadyListLimit) 2232 break; 2233 2234 Available.push(SU); 2235 Pending.remove(Pending.begin()+i); 2236 --i; --e; 2237 } 2238 CheckPending = false; 2239 } 2240 2241 /// Remove SU from the ready set for this boundary. 2242 void SchedBoundary::removeReady(SUnit *SU) { 2243 if (Available.isInQueue(SU)) 2244 Available.remove(Available.find(SU)); 2245 else { 2246 assert(Pending.isInQueue(SU) && "bad ready count"); 2247 Pending.remove(Pending.find(SU)); 2248 } 2249 } 2250 2251 /// If this queue only has one ready candidate, return it. As a side effect, 2252 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2253 /// one node is ready. If multiple instructions are ready, return NULL. 2254 SUnit *SchedBoundary::pickOnlyChoice() { 2255 if (CheckPending) 2256 releasePending(); 2257 2258 if (CurrMOps > 0) { 2259 // Defer any ready instrs that now have a hazard. 2260 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2261 if (checkHazard(*I)) { 2262 Pending.push(*I); 2263 I = Available.remove(I); 2264 continue; 2265 } 2266 ++I; 2267 } 2268 } 2269 for (unsigned i = 0; Available.empty(); ++i) { 2270 // FIXME: Re-enable assert once PR20057 is resolved. 2271 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2272 // "permanent hazard"); 2273 (void)i; 2274 bumpCycle(CurrCycle + 1); 2275 releasePending(); 2276 } 2277 2278 DEBUG(Pending.dump()); 2279 DEBUG(Available.dump()); 2280 2281 if (Available.size() == 1) 2282 return *Available.begin(); 2283 return nullptr; 2284 } 2285 2286 #ifndef NDEBUG 2287 // This is useful information to dump after bumpNode. 2288 // Note that the Queue contents are more useful before pickNodeFromQueue. 2289 void SchedBoundary::dumpScheduledState() { 2290 unsigned ResFactor; 2291 unsigned ResCount; 2292 if (ZoneCritResIdx) { 2293 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2294 ResCount = getResourceCount(ZoneCritResIdx); 2295 } else { 2296 ResFactor = SchedModel->getMicroOpFactor(); 2297 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2298 } 2299 unsigned LFactor = SchedModel->getLatencyFactor(); 2300 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2301 << " Retired: " << RetiredMOps; 2302 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2303 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2304 << ResCount / ResFactor << " " 2305 << SchedModel->getResourceName(ZoneCritResIdx) 2306 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2307 << (IsResourceLimited ? " - Resource" : " - Latency") 2308 << " limited.\n"; 2309 } 2310 #endif 2311 2312 //===----------------------------------------------------------------------===// 2313 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2314 //===----------------------------------------------------------------------===// 2315 2316 void GenericSchedulerBase::SchedCandidate:: 2317 initResourceDelta(const ScheduleDAGMI *DAG, 2318 const TargetSchedModel *SchedModel) { 2319 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2320 return; 2321 2322 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2323 for (TargetSchedModel::ProcResIter 2324 PI = SchedModel->getWriteProcResBegin(SC), 2325 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2326 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2327 ResDelta.CritResources += PI->Cycles; 2328 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2329 ResDelta.DemandedResources += PI->Cycles; 2330 } 2331 } 2332 2333 /// Set the CandPolicy given a scheduling zone given the current resources and 2334 /// latencies inside and outside the zone. 2335 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2336 SchedBoundary &CurrZone, 2337 SchedBoundary *OtherZone) { 2338 // Apply preemptive heuristics based on the total latency and resources 2339 // inside and outside this zone. Potential stalls should be considered before 2340 // following this policy. 2341 2342 // Compute remaining latency. We need this both to determine whether the 2343 // overall schedule has become latency-limited and whether the instructions 2344 // outside this zone are resource or latency limited. 2345 // 2346 // The "dependent" latency is updated incrementally during scheduling as the 2347 // max height/depth of scheduled nodes minus the cycles since it was 2348 // scheduled: 2349 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2350 // 2351 // The "independent" latency is the max ready queue depth: 2352 // ILat = max N.depth for N in Available|Pending 2353 // 2354 // RemainingLatency is the greater of independent and dependent latency. 2355 unsigned RemLatency = CurrZone.getDependentLatency(); 2356 RemLatency = std::max(RemLatency, 2357 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2358 RemLatency = std::max(RemLatency, 2359 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2360 2361 // Compute the critical resource outside the zone. 2362 unsigned OtherCritIdx = 0; 2363 unsigned OtherCount = 2364 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2365 2366 bool OtherResLimited = false; 2367 if (SchedModel->hasInstrSchedModel()) { 2368 unsigned LFactor = SchedModel->getLatencyFactor(); 2369 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2370 } 2371 // Schedule aggressively for latency in PostRA mode. We don't check for 2372 // acyclic latency during PostRA, and highly out-of-order processors will 2373 // skip PostRA scheduling. 2374 if (!OtherResLimited) { 2375 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2376 Policy.ReduceLatency |= true; 2377 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2378 << " RemainingLatency " << RemLatency << " + " 2379 << CurrZone.getCurrCycle() << "c > CritPath " 2380 << Rem.CriticalPath << "\n"); 2381 } 2382 } 2383 // If the same resource is limiting inside and outside the zone, do nothing. 2384 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2385 return; 2386 2387 DEBUG( 2388 if (CurrZone.isResourceLimited()) { 2389 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2390 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2391 << "\n"; 2392 } 2393 if (OtherResLimited) 2394 dbgs() << " RemainingLimit: " 2395 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2396 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2397 dbgs() << " Latency limited both directions.\n"); 2398 2399 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2400 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2401 2402 if (OtherResLimited) 2403 Policy.DemandResIdx = OtherCritIdx; 2404 } 2405 2406 #ifndef NDEBUG 2407 const char *GenericSchedulerBase::getReasonStr( 2408 GenericSchedulerBase::CandReason Reason) { 2409 switch (Reason) { 2410 case NoCand: return "NOCAND "; 2411 case Only1: return "ONLY1 "; 2412 case PhysRegCopy: return "PREG-COPY "; 2413 case RegExcess: return "REG-EXCESS"; 2414 case RegCritical: return "REG-CRIT "; 2415 case Stall: return "STALL "; 2416 case Cluster: return "CLUSTER "; 2417 case Weak: return "WEAK "; 2418 case RegMax: return "REG-MAX "; 2419 case ResourceReduce: return "RES-REDUCE"; 2420 case ResourceDemand: return "RES-DEMAND"; 2421 case TopDepthReduce: return "TOP-DEPTH "; 2422 case TopPathReduce: return "TOP-PATH "; 2423 case BotHeightReduce:return "BOT-HEIGHT"; 2424 case BotPathReduce: return "BOT-PATH "; 2425 case NextDefUse: return "DEF-USE "; 2426 case NodeOrder: return "ORDER "; 2427 }; 2428 llvm_unreachable("Unknown reason!"); 2429 } 2430 2431 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2432 PressureChange P; 2433 unsigned ResIdx = 0; 2434 unsigned Latency = 0; 2435 switch (Cand.Reason) { 2436 default: 2437 break; 2438 case RegExcess: 2439 P = Cand.RPDelta.Excess; 2440 break; 2441 case RegCritical: 2442 P = Cand.RPDelta.CriticalMax; 2443 break; 2444 case RegMax: 2445 P = Cand.RPDelta.CurrentMax; 2446 break; 2447 case ResourceReduce: 2448 ResIdx = Cand.Policy.ReduceResIdx; 2449 break; 2450 case ResourceDemand: 2451 ResIdx = Cand.Policy.DemandResIdx; 2452 break; 2453 case TopDepthReduce: 2454 Latency = Cand.SU->getDepth(); 2455 break; 2456 case TopPathReduce: 2457 Latency = Cand.SU->getHeight(); 2458 break; 2459 case BotHeightReduce: 2460 Latency = Cand.SU->getHeight(); 2461 break; 2462 case BotPathReduce: 2463 Latency = Cand.SU->getDepth(); 2464 break; 2465 } 2466 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2467 if (P.isValid()) 2468 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2469 << ":" << P.getUnitInc() << " "; 2470 else 2471 dbgs() << " "; 2472 if (ResIdx) 2473 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2474 else 2475 dbgs() << " "; 2476 if (Latency) 2477 dbgs() << " " << Latency << " cycles "; 2478 else 2479 dbgs() << " "; 2480 dbgs() << '\n'; 2481 } 2482 #endif 2483 2484 /// Return true if this heuristic determines order. 2485 static bool tryLess(int TryVal, int CandVal, 2486 GenericSchedulerBase::SchedCandidate &TryCand, 2487 GenericSchedulerBase::SchedCandidate &Cand, 2488 GenericSchedulerBase::CandReason Reason) { 2489 if (TryVal < CandVal) { 2490 TryCand.Reason = Reason; 2491 return true; 2492 } 2493 if (TryVal > CandVal) { 2494 if (Cand.Reason > Reason) 2495 Cand.Reason = Reason; 2496 return true; 2497 } 2498 return false; 2499 } 2500 2501 static bool tryGreater(int TryVal, int CandVal, 2502 GenericSchedulerBase::SchedCandidate &TryCand, 2503 GenericSchedulerBase::SchedCandidate &Cand, 2504 GenericSchedulerBase::CandReason Reason) { 2505 if (TryVal > CandVal) { 2506 TryCand.Reason = Reason; 2507 return true; 2508 } 2509 if (TryVal < CandVal) { 2510 if (Cand.Reason > Reason) 2511 Cand.Reason = Reason; 2512 return true; 2513 } 2514 return false; 2515 } 2516 2517 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2518 GenericSchedulerBase::SchedCandidate &Cand, 2519 SchedBoundary &Zone) { 2520 if (Zone.isTop()) { 2521 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2522 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2523 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2524 return true; 2525 } 2526 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2527 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2528 return true; 2529 } else { 2530 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2531 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2532 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2533 return true; 2534 } 2535 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2536 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2537 return true; 2538 } 2539 return false; 2540 } 2541 2542 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2543 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2544 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2545 } 2546 2547 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2548 tracePick(Cand.Reason, Cand.AtTop); 2549 } 2550 2551 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2552 assert(dag->hasVRegLiveness() && 2553 "(PreRA)GenericScheduler needs vreg liveness"); 2554 DAG = static_cast<ScheduleDAGMILive*>(dag); 2555 SchedModel = DAG->getSchedModel(); 2556 TRI = DAG->TRI; 2557 2558 Rem.init(DAG, SchedModel); 2559 Top.init(DAG, SchedModel, &Rem); 2560 Bot.init(DAG, SchedModel, &Rem); 2561 2562 // Initialize resource counts. 2563 2564 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2565 // are disabled, then these HazardRecs will be disabled. 2566 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2567 if (!Top.HazardRec) { 2568 Top.HazardRec = 2569 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2570 Itin, DAG); 2571 } 2572 if (!Bot.HazardRec) { 2573 Bot.HazardRec = 2574 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2575 Itin, DAG); 2576 } 2577 TopCand.SU = nullptr; 2578 BotCand.SU = nullptr; 2579 } 2580 2581 /// Initialize the per-region scheduling policy. 2582 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2583 MachineBasicBlock::iterator End, 2584 unsigned NumRegionInstrs) { 2585 const MachineFunction &MF = *Begin->getParent()->getParent(); 2586 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2587 2588 // Avoid setting up the register pressure tracker for small regions to save 2589 // compile time. As a rough heuristic, only track pressure when the number of 2590 // schedulable instructions exceeds half the integer register file. 2591 RegionPolicy.ShouldTrackPressure = true; 2592 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2593 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2594 if (TLI->isTypeLegal(LegalIntVT)) { 2595 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2596 TLI->getRegClassFor(LegalIntVT)); 2597 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2598 } 2599 } 2600 2601 // For generic targets, we default to bottom-up, because it's simpler and more 2602 // compile-time optimizations have been implemented in that direction. 2603 RegionPolicy.OnlyBottomUp = true; 2604 2605 // Allow the subtarget to override default policy. 2606 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2607 2608 // After subtarget overrides, apply command line options. 2609 if (!EnableRegPressure) 2610 RegionPolicy.ShouldTrackPressure = false; 2611 2612 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2613 // e.g. -misched-bottomup=false allows scheduling in both directions. 2614 assert((!ForceTopDown || !ForceBottomUp) && 2615 "-misched-topdown incompatible with -misched-bottomup"); 2616 if (ForceBottomUp.getNumOccurrences() > 0) { 2617 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2618 if (RegionPolicy.OnlyBottomUp) 2619 RegionPolicy.OnlyTopDown = false; 2620 } 2621 if (ForceTopDown.getNumOccurrences() > 0) { 2622 RegionPolicy.OnlyTopDown = ForceTopDown; 2623 if (RegionPolicy.OnlyTopDown) 2624 RegionPolicy.OnlyBottomUp = false; 2625 } 2626 } 2627 2628 void GenericScheduler::dumpPolicy() { 2629 dbgs() << "GenericScheduler RegionPolicy: " 2630 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2631 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2632 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2633 << "\n"; 2634 } 2635 2636 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2637 /// critical path by more cycles than it takes to drain the instruction buffer. 2638 /// We estimate an upper bounds on in-flight instructions as: 2639 /// 2640 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2641 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2642 /// InFlightResources = InFlightIterations * LoopResources 2643 /// 2644 /// TODO: Check execution resources in addition to IssueCount. 2645 void GenericScheduler::checkAcyclicLatency() { 2646 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2647 return; 2648 2649 // Scaled number of cycles per loop iteration. 2650 unsigned IterCount = 2651 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2652 Rem.RemIssueCount); 2653 // Scaled acyclic critical path. 2654 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2655 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2656 unsigned InFlightCount = 2657 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2658 unsigned BufferLimit = 2659 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2660 2661 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2662 2663 DEBUG(dbgs() << "IssueCycles=" 2664 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2665 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2666 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2667 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2668 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2669 if (Rem.IsAcyclicLatencyLimited) 2670 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2671 } 2672 2673 void GenericScheduler::registerRoots() { 2674 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2675 2676 // Some roots may not feed into ExitSU. Check all of them in case. 2677 for (std::vector<SUnit*>::const_iterator 2678 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2679 if ((*I)->getDepth() > Rem.CriticalPath) 2680 Rem.CriticalPath = (*I)->getDepth(); 2681 } 2682 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2683 if (DumpCriticalPathLength) { 2684 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2685 } 2686 2687 if (EnableCyclicPath) { 2688 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2689 checkAcyclicLatency(); 2690 } 2691 } 2692 2693 static bool tryPressure(const PressureChange &TryP, 2694 const PressureChange &CandP, 2695 GenericSchedulerBase::SchedCandidate &TryCand, 2696 GenericSchedulerBase::SchedCandidate &Cand, 2697 GenericSchedulerBase::CandReason Reason, 2698 const TargetRegisterInfo *TRI, 2699 const MachineFunction &MF) { 2700 // If one candidate decreases and the other increases, go with it. 2701 // Invalid candidates have UnitInc==0. 2702 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2703 Reason)) { 2704 return true; 2705 } 2706 // Do not compare the magnitude of pressure changes between top and bottom 2707 // boundary. 2708 if (Cand.AtTop != TryCand.AtTop) 2709 return false; 2710 2711 // If both candidates affect the same set in the same boundary, go with the 2712 // smallest increase. 2713 unsigned TryPSet = TryP.getPSetOrMax(); 2714 unsigned CandPSet = CandP.getPSetOrMax(); 2715 if (TryPSet == CandPSet) { 2716 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2717 Reason); 2718 } 2719 2720 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2721 std::numeric_limits<int>::max(); 2722 2723 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2724 std::numeric_limits<int>::max(); 2725 2726 // If the candidates are decreasing pressure, reverse priority. 2727 if (TryP.getUnitInc() < 0) 2728 std::swap(TryRank, CandRank); 2729 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2730 } 2731 2732 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2733 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2734 } 2735 2736 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2737 /// their physreg def/use. 2738 /// 2739 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2740 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2741 /// with the operation that produces or consumes the physreg. We'll do this when 2742 /// regalloc has support for parallel copies. 2743 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2744 const MachineInstr *MI = SU->getInstr(); 2745 if (!MI->isCopy()) 2746 return 0; 2747 2748 unsigned ScheduledOper = isTop ? 1 : 0; 2749 unsigned UnscheduledOper = isTop ? 0 : 1; 2750 // If we have already scheduled the physreg produce/consumer, immediately 2751 // schedule the copy. 2752 if (TargetRegisterInfo::isPhysicalRegister( 2753 MI->getOperand(ScheduledOper).getReg())) 2754 return 1; 2755 // If the physreg is at the boundary, defer it. Otherwise schedule it 2756 // immediately to free the dependent. We can hoist the copy later. 2757 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2758 if (TargetRegisterInfo::isPhysicalRegister( 2759 MI->getOperand(UnscheduledOper).getReg())) 2760 return AtBoundary ? -1 : 1; 2761 return 0; 2762 } 2763 2764 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2765 bool AtTop, 2766 const RegPressureTracker &RPTracker, 2767 RegPressureTracker &TempTracker) { 2768 Cand.SU = SU; 2769 Cand.AtTop = AtTop; 2770 if (DAG->isTrackingPressure()) { 2771 if (AtTop) { 2772 TempTracker.getMaxDownwardPressureDelta( 2773 Cand.SU->getInstr(), 2774 Cand.RPDelta, 2775 DAG->getRegionCriticalPSets(), 2776 DAG->getRegPressure().MaxSetPressure); 2777 } else { 2778 if (VerifyScheduling) { 2779 TempTracker.getMaxUpwardPressureDelta( 2780 Cand.SU->getInstr(), 2781 &DAG->getPressureDiff(Cand.SU), 2782 Cand.RPDelta, 2783 DAG->getRegionCriticalPSets(), 2784 DAG->getRegPressure().MaxSetPressure); 2785 } else { 2786 RPTracker.getUpwardPressureDelta( 2787 Cand.SU->getInstr(), 2788 DAG->getPressureDiff(Cand.SU), 2789 Cand.RPDelta, 2790 DAG->getRegionCriticalPSets(), 2791 DAG->getRegPressure().MaxSetPressure); 2792 } 2793 } 2794 } 2795 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2796 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2797 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2798 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2799 } 2800 2801 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2802 /// hierarchical. This may be more efficient than a graduated cost model because 2803 /// we don't need to evaluate all aspects of the model for each node in the 2804 /// queue. But it's really done to make the heuristics easier to debug and 2805 /// statistically analyze. 2806 /// 2807 /// \param Cand provides the policy and current best candidate. 2808 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2809 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2810 // if Cand is from a different zone than TryCand. 2811 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2812 SchedCandidate &TryCand, 2813 SchedBoundary *Zone) { 2814 // Initialize the candidate if needed. 2815 if (!Cand.isValid()) { 2816 TryCand.Reason = NodeOrder; 2817 return; 2818 } 2819 2820 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2821 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2822 TryCand, Cand, PhysRegCopy)) 2823 return; 2824 2825 // Avoid exceeding the target's limit. 2826 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2827 Cand.RPDelta.Excess, 2828 TryCand, Cand, RegExcess, TRI, 2829 DAG->MF)) 2830 return; 2831 2832 // Avoid increasing the max critical pressure in the scheduled region. 2833 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2834 Cand.RPDelta.CriticalMax, 2835 TryCand, Cand, RegCritical, TRI, 2836 DAG->MF)) 2837 return; 2838 2839 // We only compare a subset of features when comparing nodes between 2840 // Top and Bottom boundary. Some properties are simply incomparable, in many 2841 // other instances we should only override the other boundary if something 2842 // is a clear good pick on one boundary. Skip heuristics that are more 2843 // "tie-breaking" in nature. 2844 bool SameBoundary = Zone != nullptr; 2845 if (SameBoundary) { 2846 // For loops that are acyclic path limited, aggressively schedule for 2847 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2848 // heuristics to take precedence. 2849 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2850 tryLatency(TryCand, Cand, *Zone)) 2851 return; 2852 2853 // Prioritize instructions that read unbuffered resources by stall cycles. 2854 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2855 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2856 return; 2857 } 2858 2859 // Keep clustered nodes together to encourage downstream peephole 2860 // optimizations which may reduce resource requirements. 2861 // 2862 // This is a best effort to set things up for a post-RA pass. Optimizations 2863 // like generating loads of multiple registers should ideally be done within 2864 // the scheduler pass by combining the loads during DAG postprocessing. 2865 const SUnit *CandNextClusterSU = 2866 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2867 const SUnit *TryCandNextClusterSU = 2868 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2869 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2870 Cand.SU == CandNextClusterSU, 2871 TryCand, Cand, Cluster)) 2872 return; 2873 2874 if (SameBoundary) { 2875 // Weak edges are for clustering and other constraints. 2876 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2877 getWeakLeft(Cand.SU, Cand.AtTop), 2878 TryCand, Cand, Weak)) 2879 return; 2880 } 2881 2882 // Avoid increasing the max pressure of the entire region. 2883 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2884 Cand.RPDelta.CurrentMax, 2885 TryCand, Cand, RegMax, TRI, 2886 DAG->MF)) 2887 return; 2888 2889 if (SameBoundary) { 2890 // Avoid critical resource consumption and balance the schedule. 2891 TryCand.initResourceDelta(DAG, SchedModel); 2892 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2893 TryCand, Cand, ResourceReduce)) 2894 return; 2895 if (tryGreater(TryCand.ResDelta.DemandedResources, 2896 Cand.ResDelta.DemandedResources, 2897 TryCand, Cand, ResourceDemand)) 2898 return; 2899 2900 // Avoid serializing long latency dependence chains. 2901 // For acyclic path limited loops, latency was already checked above. 2902 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2903 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2904 return; 2905 2906 // Fall through to original instruction order. 2907 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2908 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2909 TryCand.Reason = NodeOrder; 2910 } 2911 } 2912 } 2913 2914 /// Pick the best candidate from the queue. 2915 /// 2916 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2917 /// DAG building. To adjust for the current scheduling location we need to 2918 /// maintain the number of vreg uses remaining to be top-scheduled. 2919 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2920 const CandPolicy &ZonePolicy, 2921 const RegPressureTracker &RPTracker, 2922 SchedCandidate &Cand) { 2923 // getMaxPressureDelta temporarily modifies the tracker. 2924 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2925 2926 ReadyQueue &Q = Zone.Available; 2927 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2928 2929 SchedCandidate TryCand(ZonePolicy); 2930 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2931 // Pass SchedBoundary only when comparing nodes from the same boundary. 2932 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2933 tryCandidate(Cand, TryCand, ZoneArg); 2934 if (TryCand.Reason != NoCand) { 2935 // Initialize resource delta if needed in case future heuristics query it. 2936 if (TryCand.ResDelta == SchedResourceDelta()) 2937 TryCand.initResourceDelta(DAG, SchedModel); 2938 Cand.setBest(TryCand); 2939 DEBUG(traceCandidate(Cand)); 2940 } 2941 } 2942 } 2943 2944 /// Pick the best candidate node from either the top or bottom queue. 2945 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2946 // Schedule as far as possible in the direction of no choice. This is most 2947 // efficient, but also provides the best heuristics for CriticalPSets. 2948 if (SUnit *SU = Bot.pickOnlyChoice()) { 2949 IsTopNode = false; 2950 tracePick(Only1, false); 2951 return SU; 2952 } 2953 if (SUnit *SU = Top.pickOnlyChoice()) { 2954 IsTopNode = true; 2955 tracePick(Only1, true); 2956 return SU; 2957 } 2958 // Set the bottom-up policy based on the state of the current bottom zone and 2959 // the instructions outside the zone, including the top zone. 2960 CandPolicy BotPolicy; 2961 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2962 // Set the top-down policy based on the state of the current top zone and 2963 // the instructions outside the zone, including the bottom zone. 2964 CandPolicy TopPolicy; 2965 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2966 2967 // See if BotCand is still valid (because we previously scheduled from Top). 2968 DEBUG(dbgs() << "Picking from Bot:\n"); 2969 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2970 BotCand.Policy != BotPolicy) { 2971 BotCand.reset(CandPolicy()); 2972 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2973 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2974 } else { 2975 DEBUG(traceCandidate(BotCand)); 2976 #ifndef NDEBUG 2977 if (VerifyScheduling) { 2978 SchedCandidate TCand; 2979 TCand.reset(CandPolicy()); 2980 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 2981 assert(TCand.SU == BotCand.SU && 2982 "Last pick result should correspond to re-picking right now"); 2983 } 2984 #endif 2985 } 2986 2987 // Check if the top Q has a better candidate. 2988 DEBUG(dbgs() << "Picking from Top:\n"); 2989 if (!TopCand.isValid() || TopCand.SU->isScheduled || 2990 TopCand.Policy != TopPolicy) { 2991 TopCand.reset(CandPolicy()); 2992 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 2993 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2994 } else { 2995 DEBUG(traceCandidate(TopCand)); 2996 #ifndef NDEBUG 2997 if (VerifyScheduling) { 2998 SchedCandidate TCand; 2999 TCand.reset(CandPolicy()); 3000 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3001 assert(TCand.SU == TopCand.SU && 3002 "Last pick result should correspond to re-picking right now"); 3003 } 3004 #endif 3005 } 3006 3007 // Pick best from BotCand and TopCand. 3008 assert(BotCand.isValid()); 3009 assert(TopCand.isValid()); 3010 SchedCandidate Cand = BotCand; 3011 TopCand.Reason = NoCand; 3012 tryCandidate(Cand, TopCand, nullptr); 3013 if (TopCand.Reason != NoCand) { 3014 Cand.setBest(TopCand); 3015 DEBUG(traceCandidate(Cand)); 3016 } 3017 3018 IsTopNode = Cand.AtTop; 3019 tracePick(Cand); 3020 return Cand.SU; 3021 } 3022 3023 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3024 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3025 if (DAG->top() == DAG->bottom()) { 3026 assert(Top.Available.empty() && Top.Pending.empty() && 3027 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3028 return nullptr; 3029 } 3030 SUnit *SU; 3031 do { 3032 if (RegionPolicy.OnlyTopDown) { 3033 SU = Top.pickOnlyChoice(); 3034 if (!SU) { 3035 CandPolicy NoPolicy; 3036 TopCand.reset(NoPolicy); 3037 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3038 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3039 tracePick(TopCand); 3040 SU = TopCand.SU; 3041 } 3042 IsTopNode = true; 3043 } else if (RegionPolicy.OnlyBottomUp) { 3044 SU = Bot.pickOnlyChoice(); 3045 if (!SU) { 3046 CandPolicy NoPolicy; 3047 BotCand.reset(NoPolicy); 3048 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3049 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3050 tracePick(BotCand); 3051 SU = BotCand.SU; 3052 } 3053 IsTopNode = false; 3054 } else { 3055 SU = pickNodeBidirectional(IsTopNode); 3056 } 3057 } while (SU->isScheduled); 3058 3059 if (SU->isTopReady()) 3060 Top.removeReady(SU); 3061 if (SU->isBottomReady()) 3062 Bot.removeReady(SU); 3063 3064 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3065 return SU; 3066 } 3067 3068 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3069 3070 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3071 if (!isTop) 3072 ++InsertPos; 3073 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3074 3075 // Find already scheduled copies with a single physreg dependence and move 3076 // them just above the scheduled instruction. 3077 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3078 I != E; ++I) { 3079 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3080 continue; 3081 SUnit *DepSU = I->getSUnit(); 3082 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3083 continue; 3084 MachineInstr *Copy = DepSU->getInstr(); 3085 if (!Copy->isCopy()) 3086 continue; 3087 DEBUG(dbgs() << " Rescheduling physreg copy "; 3088 I->getSUnit()->dump(DAG)); 3089 DAG->moveInstruction(Copy, InsertPos); 3090 } 3091 } 3092 3093 /// Update the scheduler's state after scheduling a node. This is the same node 3094 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3095 /// update it's state based on the current cycle before MachineSchedStrategy 3096 /// does. 3097 /// 3098 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3099 /// them here. See comments in biasPhysRegCopy. 3100 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3101 if (IsTopNode) { 3102 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3103 Top.bumpNode(SU); 3104 if (SU->hasPhysRegUses) 3105 reschedulePhysRegCopies(SU, true); 3106 } else { 3107 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3108 Bot.bumpNode(SU); 3109 if (SU->hasPhysRegDefs) 3110 reschedulePhysRegCopies(SU, false); 3111 } 3112 } 3113 3114 /// Create the standard converging machine scheduler. This will be used as the 3115 /// default scheduler if the target does not set a default. 3116 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3117 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3118 // Register DAG post-processors. 3119 // 3120 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3121 // data and pass it to later mutations. Have a single mutation that gathers 3122 // the interesting nodes in one pass. 3123 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3124 if (EnableMemOpCluster) { 3125 if (DAG->TII->enableClusterLoads()) 3126 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 3127 if (DAG->TII->enableClusterStores()) 3128 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 3129 } 3130 if (EnableMacroFusion) 3131 DAG->addMutation(createMacroFusionDAGMutation(DAG->TII, DAG->TRI)); 3132 return DAG; 3133 } 3134 3135 static MachineSchedRegistry 3136 GenericSchedRegistry("converge", "Standard converging scheduler.", 3137 createGenericSchedLive); 3138 3139 //===----------------------------------------------------------------------===// 3140 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3141 //===----------------------------------------------------------------------===// 3142 3143 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3144 DAG = Dag; 3145 SchedModel = DAG->getSchedModel(); 3146 TRI = DAG->TRI; 3147 3148 Rem.init(DAG, SchedModel); 3149 Top.init(DAG, SchedModel, &Rem); 3150 BotRoots.clear(); 3151 3152 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3153 // or are disabled, then these HazardRecs will be disabled. 3154 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3155 if (!Top.HazardRec) { 3156 Top.HazardRec = 3157 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3158 Itin, DAG); 3159 } 3160 } 3161 3162 3163 void PostGenericScheduler::registerRoots() { 3164 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3165 3166 // Some roots may not feed into ExitSU. Check all of them in case. 3167 for (SmallVectorImpl<SUnit*>::const_iterator 3168 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3169 if ((*I)->getDepth() > Rem.CriticalPath) 3170 Rem.CriticalPath = (*I)->getDepth(); 3171 } 3172 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3173 if (DumpCriticalPathLength) { 3174 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3175 } 3176 } 3177 3178 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3179 /// 3180 /// \param Cand provides the policy and current best candidate. 3181 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3182 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3183 SchedCandidate &TryCand) { 3184 3185 // Initialize the candidate if needed. 3186 if (!Cand.isValid()) { 3187 TryCand.Reason = NodeOrder; 3188 return; 3189 } 3190 3191 // Prioritize instructions that read unbuffered resources by stall cycles. 3192 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3193 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3194 return; 3195 3196 // Avoid critical resource consumption and balance the schedule. 3197 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3198 TryCand, Cand, ResourceReduce)) 3199 return; 3200 if (tryGreater(TryCand.ResDelta.DemandedResources, 3201 Cand.ResDelta.DemandedResources, 3202 TryCand, Cand, ResourceDemand)) 3203 return; 3204 3205 // Avoid serializing long latency dependence chains. 3206 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3207 return; 3208 } 3209 3210 // Fall through to original instruction order. 3211 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3212 TryCand.Reason = NodeOrder; 3213 } 3214 3215 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3216 ReadyQueue &Q = Top.Available; 3217 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3218 SchedCandidate TryCand(Cand.Policy); 3219 TryCand.SU = *I; 3220 TryCand.AtTop = true; 3221 TryCand.initResourceDelta(DAG, SchedModel); 3222 tryCandidate(Cand, TryCand); 3223 if (TryCand.Reason != NoCand) { 3224 Cand.setBest(TryCand); 3225 DEBUG(traceCandidate(Cand)); 3226 } 3227 } 3228 } 3229 3230 /// Pick the next node to schedule. 3231 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3232 if (DAG->top() == DAG->bottom()) { 3233 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3234 return nullptr; 3235 } 3236 SUnit *SU; 3237 do { 3238 SU = Top.pickOnlyChoice(); 3239 if (SU) { 3240 tracePick(Only1, true); 3241 } else { 3242 CandPolicy NoPolicy; 3243 SchedCandidate TopCand(NoPolicy); 3244 // Set the top-down policy based on the state of the current top zone and 3245 // the instructions outside the zone, including the bottom zone. 3246 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3247 pickNodeFromQueue(TopCand); 3248 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3249 tracePick(TopCand); 3250 SU = TopCand.SU; 3251 } 3252 } while (SU->isScheduled); 3253 3254 IsTopNode = true; 3255 Top.removeReady(SU); 3256 3257 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3258 return SU; 3259 } 3260 3261 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3262 /// scheduled/remaining flags in the DAG nodes. 3263 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3264 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3265 Top.bumpNode(SU); 3266 } 3267 3268 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3269 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3270 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3271 } 3272 3273 //===----------------------------------------------------------------------===// 3274 // ILP Scheduler. Currently for experimental analysis of heuristics. 3275 //===----------------------------------------------------------------------===// 3276 3277 namespace { 3278 /// \brief Order nodes by the ILP metric. 3279 struct ILPOrder { 3280 const SchedDFSResult *DFSResult; 3281 const BitVector *ScheduledTrees; 3282 bool MaximizeILP; 3283 3284 ILPOrder(bool MaxILP) 3285 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3286 3287 /// \brief Apply a less-than relation on node priority. 3288 /// 3289 /// (Return true if A comes after B in the Q.) 3290 bool operator()(const SUnit *A, const SUnit *B) const { 3291 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3292 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3293 if (SchedTreeA != SchedTreeB) { 3294 // Unscheduled trees have lower priority. 3295 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3296 return ScheduledTrees->test(SchedTreeB); 3297 3298 // Trees with shallower connections have have lower priority. 3299 if (DFSResult->getSubtreeLevel(SchedTreeA) 3300 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3301 return DFSResult->getSubtreeLevel(SchedTreeA) 3302 < DFSResult->getSubtreeLevel(SchedTreeB); 3303 } 3304 } 3305 if (MaximizeILP) 3306 return DFSResult->getILP(A) < DFSResult->getILP(B); 3307 else 3308 return DFSResult->getILP(A) > DFSResult->getILP(B); 3309 } 3310 }; 3311 3312 /// \brief Schedule based on the ILP metric. 3313 class ILPScheduler : public MachineSchedStrategy { 3314 ScheduleDAGMILive *DAG; 3315 ILPOrder Cmp; 3316 3317 std::vector<SUnit*> ReadyQ; 3318 public: 3319 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3320 3321 void initialize(ScheduleDAGMI *dag) override { 3322 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3323 DAG = static_cast<ScheduleDAGMILive*>(dag); 3324 DAG->computeDFSResult(); 3325 Cmp.DFSResult = DAG->getDFSResult(); 3326 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3327 ReadyQ.clear(); 3328 } 3329 3330 void registerRoots() override { 3331 // Restore the heap in ReadyQ with the updated DFS results. 3332 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3333 } 3334 3335 /// Implement MachineSchedStrategy interface. 3336 /// ----------------------------------------- 3337 3338 /// Callback to select the highest priority node from the ready Q. 3339 SUnit *pickNode(bool &IsTopNode) override { 3340 if (ReadyQ.empty()) return nullptr; 3341 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3342 SUnit *SU = ReadyQ.back(); 3343 ReadyQ.pop_back(); 3344 IsTopNode = false; 3345 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3346 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3347 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3348 << DAG->getDFSResult()->getSubtreeLevel( 3349 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3350 << "Scheduling " << *SU->getInstr()); 3351 return SU; 3352 } 3353 3354 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3355 void scheduleTree(unsigned SubtreeID) override { 3356 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3357 } 3358 3359 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3360 /// DFSResults, and resort the priority Q. 3361 void schedNode(SUnit *SU, bool IsTopNode) override { 3362 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3363 } 3364 3365 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3366 3367 void releaseBottomNode(SUnit *SU) override { 3368 ReadyQ.push_back(SU); 3369 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3370 } 3371 }; 3372 } // namespace 3373 3374 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3375 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3376 } 3377 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3378 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3379 } 3380 static MachineSchedRegistry ILPMaxRegistry( 3381 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3382 static MachineSchedRegistry ILPMinRegistry( 3383 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3384 3385 //===----------------------------------------------------------------------===// 3386 // Machine Instruction Shuffler for Correctness Testing 3387 //===----------------------------------------------------------------------===// 3388 3389 #ifndef NDEBUG 3390 namespace { 3391 /// Apply a less-than relation on the node order, which corresponds to the 3392 /// instruction order prior to scheduling. IsReverse implements greater-than. 3393 template<bool IsReverse> 3394 struct SUnitOrder { 3395 bool operator()(SUnit *A, SUnit *B) const { 3396 if (IsReverse) 3397 return A->NodeNum > B->NodeNum; 3398 else 3399 return A->NodeNum < B->NodeNum; 3400 } 3401 }; 3402 3403 /// Reorder instructions as much as possible. 3404 class InstructionShuffler : public MachineSchedStrategy { 3405 bool IsAlternating; 3406 bool IsTopDown; 3407 3408 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3409 // gives nodes with a higher number higher priority causing the latest 3410 // instructions to be scheduled first. 3411 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3412 TopQ; 3413 // When scheduling bottom-up, use greater-than as the queue priority. 3414 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3415 BottomQ; 3416 public: 3417 InstructionShuffler(bool alternate, bool topdown) 3418 : IsAlternating(alternate), IsTopDown(topdown) {} 3419 3420 void initialize(ScheduleDAGMI*) override { 3421 TopQ.clear(); 3422 BottomQ.clear(); 3423 } 3424 3425 /// Implement MachineSchedStrategy interface. 3426 /// ----------------------------------------- 3427 3428 SUnit *pickNode(bool &IsTopNode) override { 3429 SUnit *SU; 3430 if (IsTopDown) { 3431 do { 3432 if (TopQ.empty()) return nullptr; 3433 SU = TopQ.top(); 3434 TopQ.pop(); 3435 } while (SU->isScheduled); 3436 IsTopNode = true; 3437 } else { 3438 do { 3439 if (BottomQ.empty()) return nullptr; 3440 SU = BottomQ.top(); 3441 BottomQ.pop(); 3442 } while (SU->isScheduled); 3443 IsTopNode = false; 3444 } 3445 if (IsAlternating) 3446 IsTopDown = !IsTopDown; 3447 return SU; 3448 } 3449 3450 void schedNode(SUnit *SU, bool IsTopNode) override {} 3451 3452 void releaseTopNode(SUnit *SU) override { 3453 TopQ.push(SU); 3454 } 3455 void releaseBottomNode(SUnit *SU) override { 3456 BottomQ.push(SU); 3457 } 3458 }; 3459 } // namespace 3460 3461 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3462 bool Alternate = !ForceTopDown && !ForceBottomUp; 3463 bool TopDown = !ForceBottomUp; 3464 assert((TopDown || !ForceTopDown) && 3465 "-misched-topdown incompatible with -misched-bottomup"); 3466 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3467 } 3468 static MachineSchedRegistry ShufflerRegistry( 3469 "shuffle", "Shuffle machine instructions alternating directions", 3470 createInstructionShuffler); 3471 #endif // !NDEBUG 3472 3473 //===----------------------------------------------------------------------===// 3474 // GraphWriter support for ScheduleDAGMILive. 3475 //===----------------------------------------------------------------------===// 3476 3477 #ifndef NDEBUG 3478 namespace llvm { 3479 3480 template<> struct GraphTraits< 3481 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3482 3483 template<> 3484 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3485 3486 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3487 3488 static std::string getGraphName(const ScheduleDAG *G) { 3489 return G->MF.getName(); 3490 } 3491 3492 static bool renderGraphFromBottomUp() { 3493 return true; 3494 } 3495 3496 static bool isNodeHidden(const SUnit *Node) { 3497 if (ViewMISchedCutoff == 0) 3498 return false; 3499 return (Node->Preds.size() > ViewMISchedCutoff 3500 || Node->Succs.size() > ViewMISchedCutoff); 3501 } 3502 3503 /// If you want to override the dot attributes printed for a particular 3504 /// edge, override this method. 3505 static std::string getEdgeAttributes(const SUnit *Node, 3506 SUnitIterator EI, 3507 const ScheduleDAG *Graph) { 3508 if (EI.isArtificialDep()) 3509 return "color=cyan,style=dashed"; 3510 if (EI.isCtrlDep()) 3511 return "color=blue,style=dashed"; 3512 return ""; 3513 } 3514 3515 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3516 std::string Str; 3517 raw_string_ostream SS(Str); 3518 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3519 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3520 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3521 SS << "SU:" << SU->NodeNum; 3522 if (DFS) 3523 SS << " I:" << DFS->getNumInstrs(SU); 3524 return SS.str(); 3525 } 3526 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3527 return G->getGraphNodeLabel(SU); 3528 } 3529 3530 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3531 std::string Str("shape=Mrecord"); 3532 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3533 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3534 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3535 if (DFS) { 3536 Str += ",style=filled,fillcolor=\"#"; 3537 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3538 Str += '"'; 3539 } 3540 return Str; 3541 } 3542 }; 3543 } // namespace llvm 3544 #endif // NDEBUG 3545 3546 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3547 /// rendered using 'dot'. 3548 /// 3549 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3550 #ifndef NDEBUG 3551 ViewGraph(this, Name, false, Title); 3552 #else 3553 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3554 << "systems with Graphviz or gv!\n"; 3555 #endif // NDEBUG 3556 } 3557 3558 /// Out-of-line implementation with no arguments is handy for gdb. 3559 void ScheduleDAGMI::viewGraph() { 3560 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3561 } 3562