xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision b70355f0b49c29b4b2f8a87693c51cc73abd17c0)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineScheduler.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PriorityQueue.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachinePassRegistry.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/RegisterClassInfo.h"
36 #include "llvm/CodeGen/RegisterPressure.h"
37 #include "llvm/CodeGen/ScheduleDAG.h"
38 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
39 #include "llvm/CodeGen/ScheduleDAGMutation.h"
40 #include "llvm/CodeGen/ScheduleDFS.h"
41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetFrameLowering.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
104                               cl::desc("Print schedule DAGs"));
105 #else
106 static const bool ViewMISchedDAGs = false;
107 static const bool PrintDAGs = false;
108 #endif // NDEBUG
109 
110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
111 /// size of the ready lists.
112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
113   cl::desc("Limit ready list to N instructions"), cl::init(256));
114 
115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
116   cl::desc("Enable register pressure scheduling."), cl::init(true));
117 
118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
119   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
120 
121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
122                                         cl::desc("Enable memop clustering."),
123                                         cl::init(true));
124 
125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
126   cl::desc("Verify machine instrs before and after machine scheduling"));
127 
128 // DAG subtrees must have at least this many nodes.
129 static const unsigned MinSubtreeSize = 8;
130 
131 // Pin the vtables to this file.
132 void MachineSchedStrategy::anchor() {}
133 
134 void ScheduleDAGMutation::anchor() {}
135 
136 //===----------------------------------------------------------------------===//
137 // Machine Instruction Scheduling Pass and Registry
138 //===----------------------------------------------------------------------===//
139 
140 MachineSchedContext::MachineSchedContext() {
141   RegClassInfo = new RegisterClassInfo();
142 }
143 
144 MachineSchedContext::~MachineSchedContext() {
145   delete RegClassInfo;
146 }
147 
148 namespace {
149 
150 /// Base class for a machine scheduler class that can run at any point.
151 class MachineSchedulerBase : public MachineSchedContext,
152                              public MachineFunctionPass {
153 public:
154   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
155 
156   void print(raw_ostream &O, const Module* = nullptr) const override;
157 
158 protected:
159   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
160 };
161 
162 /// MachineScheduler runs after coalescing and before register allocation.
163 class MachineScheduler : public MachineSchedulerBase {
164 public:
165   MachineScheduler();
166 
167   void getAnalysisUsage(AnalysisUsage &AU) const override;
168 
169   bool runOnMachineFunction(MachineFunction&) override;
170 
171   static char ID; // Class identification, replacement for typeinfo
172 
173 protected:
174   ScheduleDAGInstrs *createMachineScheduler();
175 };
176 
177 /// PostMachineScheduler runs after shortly before code emission.
178 class PostMachineScheduler : public MachineSchedulerBase {
179 public:
180   PostMachineScheduler();
181 
182   void getAnalysisUsage(AnalysisUsage &AU) const override;
183 
184   bool runOnMachineFunction(MachineFunction&) override;
185 
186   static char ID; // Class identification, replacement for typeinfo
187 
188 protected:
189   ScheduleDAGInstrs *createPostMachineScheduler();
190 };
191 
192 } // end anonymous namespace
193 
194 char MachineScheduler::ID = 0;
195 
196 char &llvm::MachineSchedulerID = MachineScheduler::ID;
197 
198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
199                       "Machine Instruction Scheduler", false, false)
200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
205                     "Machine Instruction Scheduler", false, false)
206 
207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
208   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
209 }
210 
211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
212   AU.setPreservesCFG();
213   AU.addRequiredID(MachineDominatorsID);
214   AU.addRequired<MachineLoopInfo>();
215   AU.addRequired<AAResultsWrapperPass>();
216   AU.addRequired<TargetPassConfig>();
217   AU.addRequired<SlotIndexes>();
218   AU.addPreserved<SlotIndexes>();
219   AU.addRequired<LiveIntervals>();
220   AU.addPreserved<LiveIntervals>();
221   MachineFunctionPass::getAnalysisUsage(AU);
222 }
223 
224 char PostMachineScheduler::ID = 0;
225 
226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
227 
228 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
229                 "PostRA Machine Instruction Scheduler", false, false)
230 
231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
232   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
233 }
234 
235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
236   AU.setPreservesCFG();
237   AU.addRequiredID(MachineDominatorsID);
238   AU.addRequired<MachineLoopInfo>();
239   AU.addRequired<TargetPassConfig>();
240   MachineFunctionPass::getAnalysisUsage(AU);
241 }
242 
243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
244     MachineSchedRegistry::Registry;
245 
246 /// A dummy default scheduler factory indicates whether the scheduler
247 /// is overridden on the command line.
248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
249   return nullptr;
250 }
251 
252 /// MachineSchedOpt allows command line selection of the scheduler.
253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
254                RegisterPassParser<MachineSchedRegistry>>
255 MachineSchedOpt("misched",
256                 cl::init(&useDefaultMachineSched), cl::Hidden,
257                 cl::desc("Machine instruction scheduler to use"));
258 
259 static MachineSchedRegistry
260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
261                      useDefaultMachineSched);
262 
263 static cl::opt<bool> EnableMachineSched(
264     "enable-misched",
265     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
266     cl::Hidden);
267 
268 static cl::opt<bool> EnablePostRAMachineSched(
269     "enable-post-misched",
270     cl::desc("Enable the post-ra machine instruction scheduling pass."),
271     cl::init(true), cl::Hidden);
272 
273 /// Decrement this iterator until reaching the top or a non-debug instr.
274 static MachineBasicBlock::const_iterator
275 priorNonDebug(MachineBasicBlock::const_iterator I,
276               MachineBasicBlock::const_iterator Beg) {
277   assert(I != Beg && "reached the top of the region, cannot decrement");
278   while (--I != Beg) {
279     if (!I->isDebugInstr())
280       break;
281   }
282   return I;
283 }
284 
285 /// Non-const version.
286 static MachineBasicBlock::iterator
287 priorNonDebug(MachineBasicBlock::iterator I,
288               MachineBasicBlock::const_iterator Beg) {
289   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
290       .getNonConstIterator();
291 }
292 
293 /// If this iterator is a debug value, increment until reaching the End or a
294 /// non-debug instruction.
295 static MachineBasicBlock::const_iterator
296 nextIfDebug(MachineBasicBlock::const_iterator I,
297             MachineBasicBlock::const_iterator End) {
298   for(; I != End; ++I) {
299     if (!I->isDebugInstr())
300       break;
301   }
302   return I;
303 }
304 
305 /// Non-const version.
306 static MachineBasicBlock::iterator
307 nextIfDebug(MachineBasicBlock::iterator I,
308             MachineBasicBlock::const_iterator End) {
309   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
310       .getNonConstIterator();
311 }
312 
313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
315   // Select the scheduler, or set the default.
316   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
317   if (Ctor != useDefaultMachineSched)
318     return Ctor(this);
319 
320   // Get the default scheduler set by the target for this function.
321   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
322   if (Scheduler)
323     return Scheduler;
324 
325   // Default to GenericScheduler.
326   return createGenericSchedLive(this);
327 }
328 
329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
330 /// the caller. We don't have a command line option to override the postRA
331 /// scheduler. The Target must configure it.
332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
333   // Get the postRA scheduler set by the target for this function.
334   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
335   if (Scheduler)
336     return Scheduler;
337 
338   // Default to GenericScheduler.
339   return createGenericSchedPostRA(this);
340 }
341 
342 /// Top-level MachineScheduler pass driver.
343 ///
344 /// Visit blocks in function order. Divide each block into scheduling regions
345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
346 /// consistent with the DAG builder, which traverses the interior of the
347 /// scheduling regions bottom-up.
348 ///
349 /// This design avoids exposing scheduling boundaries to the DAG builder,
350 /// simplifying the DAG builder's support for "special" target instructions.
351 /// At the same time the design allows target schedulers to operate across
352 /// scheduling boundaries, for example to bundle the boundary instructions
353 /// without reordering them. This creates complexity, because the target
354 /// scheduler must update the RegionBegin and RegionEnd positions cached by
355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
356 /// design would be to split blocks at scheduling boundaries, but LLVM has a
357 /// general bias against block splitting purely for implementation simplicity.
358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
359   if (skipFunction(mf.getFunction()))
360     return false;
361 
362   if (EnableMachineSched.getNumOccurrences()) {
363     if (!EnableMachineSched)
364       return false;
365   } else if (!mf.getSubtarget().enableMachineScheduler())
366     return false;
367 
368   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
369 
370   // Initialize the context of the pass.
371   MF = &mf;
372   MLI = &getAnalysis<MachineLoopInfo>();
373   MDT = &getAnalysis<MachineDominatorTree>();
374   PassConfig = &getAnalysis<TargetPassConfig>();
375   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
376 
377   LIS = &getAnalysis<LiveIntervals>();
378 
379   if (VerifyScheduling) {
380     LLVM_DEBUG(LIS->dump());
381     MF->verify(this, "Before machine scheduling.");
382   }
383   RegClassInfo->runOnMachineFunction(*MF);
384 
385   // Instantiate the selected scheduler for this target, function, and
386   // optimization level.
387   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
388   scheduleRegions(*Scheduler, false);
389 
390   LLVM_DEBUG(LIS->dump());
391   if (VerifyScheduling)
392     MF->verify(this, "After machine scheduling.");
393   return true;
394 }
395 
396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
397   if (skipFunction(mf.getFunction()))
398     return false;
399 
400   if (EnablePostRAMachineSched.getNumOccurrences()) {
401     if (!EnablePostRAMachineSched)
402       return false;
403   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
404     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
405     return false;
406   }
407   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
408 
409   // Initialize the context of the pass.
410   MF = &mf;
411   MLI = &getAnalysis<MachineLoopInfo>();
412   PassConfig = &getAnalysis<TargetPassConfig>();
413 
414   if (VerifyScheduling)
415     MF->verify(this, "Before post machine scheduling.");
416 
417   // Instantiate the selected scheduler for this target, function, and
418   // optimization level.
419   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
420   scheduleRegions(*Scheduler, true);
421 
422   if (VerifyScheduling)
423     MF->verify(this, "After post machine scheduling.");
424   return true;
425 }
426 
427 /// Return true of the given instruction should not be included in a scheduling
428 /// region.
429 ///
430 /// MachineScheduler does not currently support scheduling across calls. To
431 /// handle calls, the DAG builder needs to be modified to create register
432 /// anti/output dependencies on the registers clobbered by the call's regmask
433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
435 /// the boundary, but there would be no benefit to postRA scheduling across
436 /// calls this late anyway.
437 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
438                             MachineBasicBlock *MBB,
439                             MachineFunction *MF,
440                             const TargetInstrInfo *TII) {
441   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
442 }
443 
444 /// A region of an MBB for scheduling.
445 namespace {
446 struct SchedRegion {
447   /// RegionBegin is the first instruction in the scheduling region, and
448   /// RegionEnd is either MBB->end() or the scheduling boundary after the
449   /// last instruction in the scheduling region. These iterators cannot refer
450   /// to instructions outside of the identified scheduling region because
451   /// those may be reordered before scheduling this region.
452   MachineBasicBlock::iterator RegionBegin;
453   MachineBasicBlock::iterator RegionEnd;
454   unsigned NumRegionInstrs;
455 
456   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
457               unsigned N) :
458     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
459 };
460 } // end anonymous namespace
461 
462 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
463 
464 static void
465 getSchedRegions(MachineBasicBlock *MBB,
466                 MBBRegionsVector &Regions,
467                 bool RegionsTopDown) {
468   MachineFunction *MF = MBB->getParent();
469   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
470 
471   MachineBasicBlock::iterator I = nullptr;
472   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
473       RegionEnd != MBB->begin(); RegionEnd = I) {
474 
475     // Avoid decrementing RegionEnd for blocks with no terminator.
476     if (RegionEnd != MBB->end() ||
477         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
478       --RegionEnd;
479     }
480 
481     // The next region starts above the previous region. Look backward in the
482     // instruction stream until we find the nearest boundary.
483     unsigned NumRegionInstrs = 0;
484     I = RegionEnd;
485     for (;I != MBB->begin(); --I) {
486       MachineInstr &MI = *std::prev(I);
487       if (isSchedBoundary(&MI, &*MBB, MF, TII))
488         break;
489       if (!MI.isDebugInstr()) {
490         // MBB::size() uses instr_iterator to count. Here we need a bundle to
491         // count as a single instruction.
492         ++NumRegionInstrs;
493       }
494     }
495 
496     // It's possible we found a scheduling region that only has debug
497     // instructions. Don't bother scheduling these.
498     if (NumRegionInstrs != 0)
499       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
500   }
501 
502   if (RegionsTopDown)
503     std::reverse(Regions.begin(), Regions.end());
504 }
505 
506 /// Main driver for both MachineScheduler and PostMachineScheduler.
507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
508                                            bool FixKillFlags) {
509   // Visit all machine basic blocks.
510   //
511   // TODO: Visit blocks in global postorder or postorder within the bottom-up
512   // loop tree. Then we can optionally compute global RegPressure.
513   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
514        MBB != MBBEnd; ++MBB) {
515 
516     Scheduler.startBlock(&*MBB);
517 
518 #ifndef NDEBUG
519     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
520       continue;
521     if (SchedOnlyBlock.getNumOccurrences()
522         && (int)SchedOnlyBlock != MBB->getNumber())
523       continue;
524 #endif
525 
526     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
527     // points to the scheduling boundary at the bottom of the region. The DAG
528     // does not include RegionEnd, but the region does (i.e. the next
529     // RegionEnd is above the previous RegionBegin). If the current block has
530     // no terminator then RegionEnd == MBB->end() for the bottom region.
531     //
532     // All the regions of MBB are first found and stored in MBBRegions, which
533     // will be processed (MBB) top-down if initialized with true.
534     //
535     // The Scheduler may insert instructions during either schedule() or
536     // exitRegion(), even for empty regions. So the local iterators 'I' and
537     // 'RegionEnd' are invalid across these calls. Instructions must not be
538     // added to other regions than the current one without updating MBBRegions.
539 
540     MBBRegionsVector MBBRegions;
541     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
542     for (MBBRegionsVector::iterator R = MBBRegions.begin();
543          R != MBBRegions.end(); ++R) {
544       MachineBasicBlock::iterator I = R->RegionBegin;
545       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
546       unsigned NumRegionInstrs = R->NumRegionInstrs;
547 
548       // Notify the scheduler of the region, even if we may skip scheduling
549       // it. Perhaps it still needs to be bundled.
550       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
551 
552       // Skip empty scheduling regions (0 or 1 schedulable instructions).
553       if (I == RegionEnd || I == std::prev(RegionEnd)) {
554         // Close the current region. Bundle the terminator if needed.
555         // This invalidates 'RegionEnd' and 'I'.
556         Scheduler.exitRegion();
557         continue;
558       }
559       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
560       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
561                         << " " << MBB->getName() << "\n  From: " << *I
562                         << "    To: ";
563                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
564                  else dbgs() << "End";
565                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
566       if (DumpCriticalPathLength) {
567         errs() << MF->getName();
568         errs() << ":%bb. " << MBB->getNumber();
569         errs() << " " << MBB->getName() << " \n";
570       }
571 
572       // Schedule a region: possibly reorder instructions.
573       // This invalidates the original region iterators.
574       Scheduler.schedule();
575 
576       // Close the current region.
577       Scheduler.exitRegion();
578     }
579     Scheduler.finishBlock();
580     // FIXME: Ideally, no further passes should rely on kill flags. However,
581     // thumb2 size reduction is currently an exception, so the PostMIScheduler
582     // needs to do this.
583     if (FixKillFlags)
584       Scheduler.fixupKills(*MBB);
585   }
586   Scheduler.finalizeSchedule();
587 }
588 
589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
590   // unimplemented
591 }
592 
593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
594 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
595   dbgs() << "Queue " << Name << ": ";
596   for (const SUnit *SU : Queue)
597     dbgs() << SU->NodeNum << " ";
598   dbgs() << "\n";
599 }
600 #endif
601 
602 //===----------------------------------------------------------------------===//
603 // ScheduleDAGMI - Basic machine instruction scheduling. This is
604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
605 // virtual registers.
606 // ===----------------------------------------------------------------------===/
607 
608 // Provide a vtable anchor.
609 ScheduleDAGMI::~ScheduleDAGMI() = default;
610 
611 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
612 /// NumPredsLeft reaches zero, release the successor node.
613 ///
614 /// FIXME: Adjust SuccSU height based on MinLatency.
615 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
616   SUnit *SuccSU = SuccEdge->getSUnit();
617 
618   if (SuccEdge->isWeak()) {
619     --SuccSU->WeakPredsLeft;
620     if (SuccEdge->isCluster())
621       NextClusterSucc = SuccSU;
622     return;
623   }
624 #ifndef NDEBUG
625   if (SuccSU->NumPredsLeft == 0) {
626     dbgs() << "*** Scheduling failed! ***\n";
627     dumpNode(*SuccSU);
628     dbgs() << " has been released too many times!\n";
629     llvm_unreachable(nullptr);
630   }
631 #endif
632   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
633   // CurrCycle may have advanced since then.
634   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
635     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
636 
637   --SuccSU->NumPredsLeft;
638   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
639     SchedImpl->releaseTopNode(SuccSU);
640 }
641 
642 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
643 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
644   for (SDep &Succ : SU->Succs)
645     releaseSucc(SU, &Succ);
646 }
647 
648 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
649 /// NumSuccsLeft reaches zero, release the predecessor node.
650 ///
651 /// FIXME: Adjust PredSU height based on MinLatency.
652 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
653   SUnit *PredSU = PredEdge->getSUnit();
654 
655   if (PredEdge->isWeak()) {
656     --PredSU->WeakSuccsLeft;
657     if (PredEdge->isCluster())
658       NextClusterPred = PredSU;
659     return;
660   }
661 #ifndef NDEBUG
662   if (PredSU->NumSuccsLeft == 0) {
663     dbgs() << "*** Scheduling failed! ***\n";
664     dumpNode(*PredSU);
665     dbgs() << " has been released too many times!\n";
666     llvm_unreachable(nullptr);
667   }
668 #endif
669   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
670   // CurrCycle may have advanced since then.
671   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
672     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
673 
674   --PredSU->NumSuccsLeft;
675   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
676     SchedImpl->releaseBottomNode(PredSU);
677 }
678 
679 /// releasePredecessors - Call releasePred on each of SU's predecessors.
680 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
681   for (SDep &Pred : SU->Preds)
682     releasePred(SU, &Pred);
683 }
684 
685 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
686   ScheduleDAGInstrs::startBlock(bb);
687   SchedImpl->enterMBB(bb);
688 }
689 
690 void ScheduleDAGMI::finishBlock() {
691   SchedImpl->leaveMBB();
692   ScheduleDAGInstrs::finishBlock();
693 }
694 
695 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
696 /// crossing a scheduling boundary. [begin, end) includes all instructions in
697 /// the region, including the boundary itself and single-instruction regions
698 /// that don't get scheduled.
699 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
700                                      MachineBasicBlock::iterator begin,
701                                      MachineBasicBlock::iterator end,
702                                      unsigned regioninstrs)
703 {
704   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
705 
706   SchedImpl->initPolicy(begin, end, regioninstrs);
707 }
708 
709 /// This is normally called from the main scheduler loop but may also be invoked
710 /// by the scheduling strategy to perform additional code motion.
711 void ScheduleDAGMI::moveInstruction(
712   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
713   // Advance RegionBegin if the first instruction moves down.
714   if (&*RegionBegin == MI)
715     ++RegionBegin;
716 
717   // Update the instruction stream.
718   BB->splice(InsertPos, BB, MI);
719 
720   // Update LiveIntervals
721   if (LIS)
722     LIS->handleMove(*MI, /*UpdateFlags=*/true);
723 
724   // Recede RegionBegin if an instruction moves above the first.
725   if (RegionBegin == InsertPos)
726     RegionBegin = MI;
727 }
728 
729 bool ScheduleDAGMI::checkSchedLimit() {
730 #ifndef NDEBUG
731   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
732     CurrentTop = CurrentBottom;
733     return false;
734   }
735   ++NumInstrsScheduled;
736 #endif
737   return true;
738 }
739 
740 /// Per-region scheduling driver, called back from
741 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
742 /// does not consider liveness or register pressure. It is useful for PostRA
743 /// scheduling and potentially other custom schedulers.
744 void ScheduleDAGMI::schedule() {
745   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
746   LLVM_DEBUG(SchedImpl->dumpPolicy());
747 
748   // Build the DAG.
749   buildSchedGraph(AA);
750 
751   postprocessDAG();
752 
753   SmallVector<SUnit*, 8> TopRoots, BotRoots;
754   findRootsAndBiasEdges(TopRoots, BotRoots);
755 
756   LLVM_DEBUG(dump());
757   if (PrintDAGs) dump();
758   if (ViewMISchedDAGs) viewGraph();
759 
760   // Initialize the strategy before modifying the DAG.
761   // This may initialize a DFSResult to be used for queue priority.
762   SchedImpl->initialize(this);
763 
764   // Initialize ready queues now that the DAG and priority data are finalized.
765   initQueues(TopRoots, BotRoots);
766 
767   bool IsTopNode = false;
768   while (true) {
769     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
770     SUnit *SU = SchedImpl->pickNode(IsTopNode);
771     if (!SU) break;
772 
773     assert(!SU->isScheduled && "Node already scheduled");
774     if (!checkSchedLimit())
775       break;
776 
777     MachineInstr *MI = SU->getInstr();
778     if (IsTopNode) {
779       assert(SU->isTopReady() && "node still has unscheduled dependencies");
780       if (&*CurrentTop == MI)
781         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
782       else
783         moveInstruction(MI, CurrentTop);
784     } else {
785       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
786       MachineBasicBlock::iterator priorII =
787         priorNonDebug(CurrentBottom, CurrentTop);
788       if (&*priorII == MI)
789         CurrentBottom = priorII;
790       else {
791         if (&*CurrentTop == MI)
792           CurrentTop = nextIfDebug(++CurrentTop, priorII);
793         moveInstruction(MI, CurrentBottom);
794         CurrentBottom = MI;
795       }
796     }
797     // Notify the scheduling strategy before updating the DAG.
798     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
799     // runs, it can then use the accurate ReadyCycle time to determine whether
800     // newly released nodes can move to the readyQ.
801     SchedImpl->schedNode(SU, IsTopNode);
802 
803     updateQueues(SU, IsTopNode);
804   }
805   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
806 
807   placeDebugValues();
808 
809   LLVM_DEBUG({
810     dbgs() << "*** Final schedule for "
811            << printMBBReference(*begin()->getParent()) << " ***\n";
812     dumpSchedule();
813     dbgs() << '\n';
814   });
815 }
816 
817 /// Apply each ScheduleDAGMutation step in order.
818 void ScheduleDAGMI::postprocessDAG() {
819   for (auto &m : Mutations)
820     m->apply(this);
821 }
822 
823 void ScheduleDAGMI::
824 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
825                       SmallVectorImpl<SUnit*> &BotRoots) {
826   for (SUnit &SU : SUnits) {
827     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
828 
829     // Order predecessors so DFSResult follows the critical path.
830     SU.biasCriticalPath();
831 
832     // A SUnit is ready to top schedule if it has no predecessors.
833     if (!SU.NumPredsLeft)
834       TopRoots.push_back(&SU);
835     // A SUnit is ready to bottom schedule if it has no successors.
836     if (!SU.NumSuccsLeft)
837       BotRoots.push_back(&SU);
838   }
839   ExitSU.biasCriticalPath();
840 }
841 
842 /// Identify DAG roots and setup scheduler queues.
843 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
844                                ArrayRef<SUnit*> BotRoots) {
845   NextClusterSucc = nullptr;
846   NextClusterPred = nullptr;
847 
848   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
849   //
850   // Nodes with unreleased weak edges can still be roots.
851   // Release top roots in forward order.
852   for (SUnit *SU : TopRoots)
853     SchedImpl->releaseTopNode(SU);
854 
855   // Release bottom roots in reverse order so the higher priority nodes appear
856   // first. This is more natural and slightly more efficient.
857   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
858          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
859     SchedImpl->releaseBottomNode(*I);
860   }
861 
862   releaseSuccessors(&EntrySU);
863   releasePredecessors(&ExitSU);
864 
865   SchedImpl->registerRoots();
866 
867   // Advance past initial DebugValues.
868   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
869   CurrentBottom = RegionEnd;
870 }
871 
872 /// Update scheduler queues after scheduling an instruction.
873 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
874   // Release dependent instructions for scheduling.
875   if (IsTopNode)
876     releaseSuccessors(SU);
877   else
878     releasePredecessors(SU);
879 
880   SU->isScheduled = true;
881 }
882 
883 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
884 void ScheduleDAGMI::placeDebugValues() {
885   // If first instruction was a DBG_VALUE then put it back.
886   if (FirstDbgValue) {
887     BB->splice(RegionBegin, BB, FirstDbgValue);
888     RegionBegin = FirstDbgValue;
889   }
890 
891   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
892          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
893     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
894     MachineInstr *DbgValue = P.first;
895     MachineBasicBlock::iterator OrigPrevMI = P.second;
896     if (&*RegionBegin == DbgValue)
897       ++RegionBegin;
898     BB->splice(++OrigPrevMI, BB, DbgValue);
899     if (OrigPrevMI == std::prev(RegionEnd))
900       RegionEnd = DbgValue;
901   }
902   DbgValues.clear();
903   FirstDbgValue = nullptr;
904 }
905 
906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
907 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
908   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
909     if (SUnit *SU = getSUnit(&(*MI)))
910       dumpNode(*SU);
911     else
912       dbgs() << "Missing SUnit\n";
913   }
914 }
915 #endif
916 
917 //===----------------------------------------------------------------------===//
918 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
919 // preservation.
920 //===----------------------------------------------------------------------===//
921 
922 ScheduleDAGMILive::~ScheduleDAGMILive() {
923   delete DFSResult;
924 }
925 
926 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
927   const MachineInstr &MI = *SU.getInstr();
928   for (const MachineOperand &MO : MI.operands()) {
929     if (!MO.isReg())
930       continue;
931     if (!MO.readsReg())
932       continue;
933     if (TrackLaneMasks && !MO.isUse())
934       continue;
935 
936     unsigned Reg = MO.getReg();
937     if (!TargetRegisterInfo::isVirtualRegister(Reg))
938       continue;
939 
940     // Ignore re-defs.
941     if (TrackLaneMasks) {
942       bool FoundDef = false;
943       for (const MachineOperand &MO2 : MI.operands()) {
944         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
945           FoundDef = true;
946           break;
947         }
948       }
949       if (FoundDef)
950         continue;
951     }
952 
953     // Record this local VReg use.
954     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
955     for (; UI != VRegUses.end(); ++UI) {
956       if (UI->SU == &SU)
957         break;
958     }
959     if (UI == VRegUses.end())
960       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
961   }
962 }
963 
964 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
965 /// crossing a scheduling boundary. [begin, end) includes all instructions in
966 /// the region, including the boundary itself and single-instruction regions
967 /// that don't get scheduled.
968 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
969                                 MachineBasicBlock::iterator begin,
970                                 MachineBasicBlock::iterator end,
971                                 unsigned regioninstrs)
972 {
973   // ScheduleDAGMI initializes SchedImpl's per-region policy.
974   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
975 
976   // For convenience remember the end of the liveness region.
977   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
978 
979   SUPressureDiffs.clear();
980 
981   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
982   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
983 
984   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
985          "ShouldTrackLaneMasks requires ShouldTrackPressure");
986 }
987 
988 // Setup the register pressure trackers for the top scheduled top and bottom
989 // scheduled regions.
990 void ScheduleDAGMILive::initRegPressure() {
991   VRegUses.clear();
992   VRegUses.setUniverse(MRI.getNumVirtRegs());
993   for (SUnit &SU : SUnits)
994     collectVRegUses(SU);
995 
996   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
997                     ShouldTrackLaneMasks, false);
998   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
999                     ShouldTrackLaneMasks, false);
1000 
1001   // Close the RPTracker to finalize live ins.
1002   RPTracker.closeRegion();
1003 
1004   LLVM_DEBUG(RPTracker.dump());
1005 
1006   // Initialize the live ins and live outs.
1007   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1008   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1009 
1010   // Close one end of the tracker so we can call
1011   // getMaxUpward/DownwardPressureDelta before advancing across any
1012   // instructions. This converts currently live regs into live ins/outs.
1013   TopRPTracker.closeTop();
1014   BotRPTracker.closeBottom();
1015 
1016   BotRPTracker.initLiveThru(RPTracker);
1017   if (!BotRPTracker.getLiveThru().empty()) {
1018     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1019     LLVM_DEBUG(dbgs() << "Live Thru: ";
1020                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1021   };
1022 
1023   // For each live out vreg reduce the pressure change associated with other
1024   // uses of the same vreg below the live-out reaching def.
1025   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1026 
1027   // Account for liveness generated by the region boundary.
1028   if (LiveRegionEnd != RegionEnd) {
1029     SmallVector<RegisterMaskPair, 8> LiveUses;
1030     BotRPTracker.recede(&LiveUses);
1031     updatePressureDiffs(LiveUses);
1032   }
1033 
1034   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1035              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1036              dbgs() << "Bottom Pressure:\n";
1037              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1038 
1039   assert((BotRPTracker.getPos() == RegionEnd ||
1040           (RegionEnd->isDebugInstr() &&
1041            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1042          "Can't find the region bottom");
1043 
1044   // Cache the list of excess pressure sets in this region. This will also track
1045   // the max pressure in the scheduled code for these sets.
1046   RegionCriticalPSets.clear();
1047   const std::vector<unsigned> &RegionPressure =
1048     RPTracker.getPressure().MaxSetPressure;
1049   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1050     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1051     if (RegionPressure[i] > Limit) {
1052       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1053                         << " Actual " << RegionPressure[i] << "\n");
1054       RegionCriticalPSets.push_back(PressureChange(i));
1055     }
1056   }
1057   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1058              for (const PressureChange &RCPS
1059                   : RegionCriticalPSets) dbgs()
1060              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1061              dbgs() << "\n");
1062 }
1063 
1064 void ScheduleDAGMILive::
1065 updateScheduledPressure(const SUnit *SU,
1066                         const std::vector<unsigned> &NewMaxPressure) {
1067   const PressureDiff &PDiff = getPressureDiff(SU);
1068   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1069   for (const PressureChange &PC : PDiff) {
1070     if (!PC.isValid())
1071       break;
1072     unsigned ID = PC.getPSet();
1073     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1074       ++CritIdx;
1075     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1076       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1077           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1078         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1079     }
1080     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1081     if (NewMaxPressure[ID] >= Limit - 2) {
1082       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1083                         << NewMaxPressure[ID]
1084                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1085                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1086                         << " livethru)\n");
1087     }
1088   }
1089 }
1090 
1091 /// Update the PressureDiff array for liveness after scheduling this
1092 /// instruction.
1093 void ScheduleDAGMILive::updatePressureDiffs(
1094     ArrayRef<RegisterMaskPair> LiveUses) {
1095   for (const RegisterMaskPair &P : LiveUses) {
1096     unsigned Reg = P.RegUnit;
1097     /// FIXME: Currently assuming single-use physregs.
1098     if (!TRI->isVirtualRegister(Reg))
1099       continue;
1100 
1101     if (ShouldTrackLaneMasks) {
1102       // If the register has just become live then other uses won't change
1103       // this fact anymore => decrement pressure.
1104       // If the register has just become dead then other uses make it come
1105       // back to life => increment pressure.
1106       bool Decrement = P.LaneMask.any();
1107 
1108       for (const VReg2SUnit &V2SU
1109            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1110         SUnit &SU = *V2SU.SU;
1111         if (SU.isScheduled || &SU == &ExitSU)
1112           continue;
1113 
1114         PressureDiff &PDiff = getPressureDiff(&SU);
1115         PDiff.addPressureChange(Reg, Decrement, &MRI);
1116         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1117                           << printReg(Reg, TRI) << ':'
1118                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1119                    dbgs() << "              to "; PDiff.dump(*TRI););
1120       }
1121     } else {
1122       assert(P.LaneMask.any());
1123       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1124       // This may be called before CurrentBottom has been initialized. However,
1125       // BotRPTracker must have a valid position. We want the value live into the
1126       // instruction or live out of the block, so ask for the previous
1127       // instruction's live-out.
1128       const LiveInterval &LI = LIS->getInterval(Reg);
1129       VNInfo *VNI;
1130       MachineBasicBlock::const_iterator I =
1131         nextIfDebug(BotRPTracker.getPos(), BB->end());
1132       if (I == BB->end())
1133         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1134       else {
1135         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1136         VNI = LRQ.valueIn();
1137       }
1138       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1139       assert(VNI && "No live value at use.");
1140       for (const VReg2SUnit &V2SU
1141            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1142         SUnit *SU = V2SU.SU;
1143         // If this use comes before the reaching def, it cannot be a last use,
1144         // so decrease its pressure change.
1145         if (!SU->isScheduled && SU != &ExitSU) {
1146           LiveQueryResult LRQ =
1147               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1148           if (LRQ.valueIn() == VNI) {
1149             PressureDiff &PDiff = getPressureDiff(SU);
1150             PDiff.addPressureChange(Reg, true, &MRI);
1151             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1152                               << *SU->getInstr();
1153                        dbgs() << "              to "; PDiff.dump(*TRI););
1154           }
1155         }
1156       }
1157     }
1158   }
1159 }
1160 
1161 void ScheduleDAGMILive::dump() const {
1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1163   if (EntrySU.getInstr() != nullptr)
1164     dumpNodeAll(EntrySU);
1165   for (const SUnit &SU : SUnits) {
1166     dumpNodeAll(SU);
1167     if (ShouldTrackPressure) {
1168       dbgs() << "  Pressure Diff      : ";
1169       getPressureDiff(&SU).dump(*TRI);
1170     }
1171     dbgs() << "  Single Issue       : ";
1172     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1173         SchedModel.mustEndGroup(SU.getInstr()))
1174       dbgs() << "true;";
1175     else
1176       dbgs() << "false;";
1177     dbgs() << '\n';
1178   }
1179   if (ExitSU.getInstr() != nullptr)
1180     dumpNodeAll(ExitSU);
1181 #endif
1182 }
1183 
1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1186 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1187 ///
1188 /// This is a skeletal driver, with all the functionality pushed into helpers,
1189 /// so that it can be easily extended by experimental schedulers. Generally,
1190 /// implementing MachineSchedStrategy should be sufficient to implement a new
1191 /// scheduling algorithm. However, if a scheduler further subclasses
1192 /// ScheduleDAGMILive then it will want to override this virtual method in order
1193 /// to update any specialized state.
1194 void ScheduleDAGMILive::schedule() {
1195   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1196   LLVM_DEBUG(SchedImpl->dumpPolicy());
1197   buildDAGWithRegPressure();
1198 
1199   postprocessDAG();
1200 
1201   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1202   findRootsAndBiasEdges(TopRoots, BotRoots);
1203 
1204   // Initialize the strategy before modifying the DAG.
1205   // This may initialize a DFSResult to be used for queue priority.
1206   SchedImpl->initialize(this);
1207 
1208   LLVM_DEBUG(dump());
1209   if (PrintDAGs) dump();
1210   if (ViewMISchedDAGs) viewGraph();
1211 
1212   // Initialize ready queues now that the DAG and priority data are finalized.
1213   initQueues(TopRoots, BotRoots);
1214 
1215   bool IsTopNode = false;
1216   while (true) {
1217     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1218     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1219     if (!SU) break;
1220 
1221     assert(!SU->isScheduled && "Node already scheduled");
1222     if (!checkSchedLimit())
1223       break;
1224 
1225     scheduleMI(SU, IsTopNode);
1226 
1227     if (DFSResult) {
1228       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1229       if (!ScheduledTrees.test(SubtreeID)) {
1230         ScheduledTrees.set(SubtreeID);
1231         DFSResult->scheduleTree(SubtreeID);
1232         SchedImpl->scheduleTree(SubtreeID);
1233       }
1234     }
1235 
1236     // Notify the scheduling strategy after updating the DAG.
1237     SchedImpl->schedNode(SU, IsTopNode);
1238 
1239     updateQueues(SU, IsTopNode);
1240   }
1241   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1242 
1243   placeDebugValues();
1244 
1245   LLVM_DEBUG({
1246     dbgs() << "*** Final schedule for "
1247            << printMBBReference(*begin()->getParent()) << " ***\n";
1248     dumpSchedule();
1249     dbgs() << '\n';
1250   });
1251 }
1252 
1253 /// Build the DAG and setup three register pressure trackers.
1254 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1255   if (!ShouldTrackPressure) {
1256     RPTracker.reset();
1257     RegionCriticalPSets.clear();
1258     buildSchedGraph(AA);
1259     return;
1260   }
1261 
1262   // Initialize the register pressure tracker used by buildSchedGraph.
1263   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1264                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1265 
1266   // Account for liveness generate by the region boundary.
1267   if (LiveRegionEnd != RegionEnd)
1268     RPTracker.recede();
1269 
1270   // Build the DAG, and compute current register pressure.
1271   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1272 
1273   // Initialize top/bottom trackers after computing region pressure.
1274   initRegPressure();
1275 }
1276 
1277 void ScheduleDAGMILive::computeDFSResult() {
1278   if (!DFSResult)
1279     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1280   DFSResult->clear();
1281   ScheduledTrees.clear();
1282   DFSResult->resize(SUnits.size());
1283   DFSResult->compute(SUnits);
1284   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1285 }
1286 
1287 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1288 /// only provides the critical path for single block loops. To handle loops that
1289 /// span blocks, we could use the vreg path latencies provided by
1290 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1291 /// available for use in the scheduler.
1292 ///
1293 /// The cyclic path estimation identifies a def-use pair that crosses the back
1294 /// edge and considers the depth and height of the nodes. For example, consider
1295 /// the following instruction sequence where each instruction has unit latency
1296 /// and defines an epomymous virtual register:
1297 ///
1298 /// a->b(a,c)->c(b)->d(c)->exit
1299 ///
1300 /// The cyclic critical path is a two cycles: b->c->b
1301 /// The acyclic critical path is four cycles: a->b->c->d->exit
1302 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1303 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1304 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1305 /// LiveInDepth = depth(b) = len(a->b) = 1
1306 ///
1307 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1308 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1309 /// CyclicCriticalPath = min(2, 2) = 2
1310 ///
1311 /// This could be relevant to PostRA scheduling, but is currently implemented
1312 /// assuming LiveIntervals.
1313 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1314   // This only applies to single block loop.
1315   if (!BB->isSuccessor(BB))
1316     return 0;
1317 
1318   unsigned MaxCyclicLatency = 0;
1319   // Visit each live out vreg def to find def/use pairs that cross iterations.
1320   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1321     unsigned Reg = P.RegUnit;
1322     if (!TRI->isVirtualRegister(Reg))
1323         continue;
1324     const LiveInterval &LI = LIS->getInterval(Reg);
1325     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1326     if (!DefVNI)
1327       continue;
1328 
1329     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1330     const SUnit *DefSU = getSUnit(DefMI);
1331     if (!DefSU)
1332       continue;
1333 
1334     unsigned LiveOutHeight = DefSU->getHeight();
1335     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1336     // Visit all local users of the vreg def.
1337     for (const VReg2SUnit &V2SU
1338          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1339       SUnit *SU = V2SU.SU;
1340       if (SU == &ExitSU)
1341         continue;
1342 
1343       // Only consider uses of the phi.
1344       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1345       if (!LRQ.valueIn()->isPHIDef())
1346         continue;
1347 
1348       // Assume that a path spanning two iterations is a cycle, which could
1349       // overestimate in strange cases. This allows cyclic latency to be
1350       // estimated as the minimum slack of the vreg's depth or height.
1351       unsigned CyclicLatency = 0;
1352       if (LiveOutDepth > SU->getDepth())
1353         CyclicLatency = LiveOutDepth - SU->getDepth();
1354 
1355       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1356       if (LiveInHeight > LiveOutHeight) {
1357         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1358           CyclicLatency = LiveInHeight - LiveOutHeight;
1359       } else
1360         CyclicLatency = 0;
1361 
1362       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1363                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1364       if (CyclicLatency > MaxCyclicLatency)
1365         MaxCyclicLatency = CyclicLatency;
1366     }
1367   }
1368   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1369   return MaxCyclicLatency;
1370 }
1371 
1372 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1373 /// the Top RP tracker in case the region beginning has changed.
1374 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1375                                    ArrayRef<SUnit*> BotRoots) {
1376   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1377   if (ShouldTrackPressure) {
1378     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1379     TopRPTracker.setPos(CurrentTop);
1380   }
1381 }
1382 
1383 /// Move an instruction and update register pressure.
1384 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1385   // Move the instruction to its new location in the instruction stream.
1386   MachineInstr *MI = SU->getInstr();
1387 
1388   if (IsTopNode) {
1389     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1390     if (&*CurrentTop == MI)
1391       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1392     else {
1393       moveInstruction(MI, CurrentTop);
1394       TopRPTracker.setPos(MI);
1395     }
1396 
1397     if (ShouldTrackPressure) {
1398       // Update top scheduled pressure.
1399       RegisterOperands RegOpers;
1400       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1401       if (ShouldTrackLaneMasks) {
1402         // Adjust liveness and add missing dead+read-undef flags.
1403         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1404         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1405       } else {
1406         // Adjust for missing dead-def flags.
1407         RegOpers.detectDeadDefs(*MI, *LIS);
1408       }
1409 
1410       TopRPTracker.advance(RegOpers);
1411       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1412       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1413                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1414 
1415       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1416     }
1417   } else {
1418     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1419     MachineBasicBlock::iterator priorII =
1420       priorNonDebug(CurrentBottom, CurrentTop);
1421     if (&*priorII == MI)
1422       CurrentBottom = priorII;
1423     else {
1424       if (&*CurrentTop == MI) {
1425         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1426         TopRPTracker.setPos(CurrentTop);
1427       }
1428       moveInstruction(MI, CurrentBottom);
1429       CurrentBottom = MI;
1430       BotRPTracker.setPos(CurrentBottom);
1431     }
1432     if (ShouldTrackPressure) {
1433       RegisterOperands RegOpers;
1434       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1435       if (ShouldTrackLaneMasks) {
1436         // Adjust liveness and add missing dead+read-undef flags.
1437         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1438         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1439       } else {
1440         // Adjust for missing dead-def flags.
1441         RegOpers.detectDeadDefs(*MI, *LIS);
1442       }
1443 
1444       if (BotRPTracker.getPos() != CurrentBottom)
1445         BotRPTracker.recedeSkipDebugValues();
1446       SmallVector<RegisterMaskPair, 8> LiveUses;
1447       BotRPTracker.recede(RegOpers, &LiveUses);
1448       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1449       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1450                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1451 
1452       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1453       updatePressureDiffs(LiveUses);
1454     }
1455   }
1456 }
1457 
1458 //===----------------------------------------------------------------------===//
1459 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1460 //===----------------------------------------------------------------------===//
1461 
1462 namespace {
1463 
1464 /// Post-process the DAG to create cluster edges between neighboring
1465 /// loads or between neighboring stores.
1466 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1467   struct MemOpInfo {
1468     SUnit *SU;
1469     MachineOperand *BaseOp;
1470     int64_t Offset;
1471 
1472     MemOpInfo(SUnit *su, MachineOperand *Op, int64_t ofs)
1473         : SU(su), BaseOp(Op), Offset(ofs) {}
1474 
1475     bool operator<(const MemOpInfo &RHS) const {
1476       if (BaseOp->getType() != RHS.BaseOp->getType())
1477         return BaseOp->getType() < RHS.BaseOp->getType();
1478 
1479       if (BaseOp->isReg())
1480         return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) <
1481                std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset,
1482                                RHS.SU->NodeNum);
1483       if (BaseOp->isFI()) {
1484         const MachineFunction &MF =
1485             *BaseOp->getParent()->getParent()->getParent();
1486         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
1487         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
1488                               TargetFrameLowering::StackGrowsDown;
1489         // Can't use tuple comparison here since we might need to use a
1490         // different order when the stack grows down.
1491         if (BaseOp->getIndex() != RHS.BaseOp->getIndex())
1492           return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex()
1493                                 : BaseOp->getIndex() < RHS.BaseOp->getIndex();
1494 
1495         if (Offset != RHS.Offset)
1496           return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset;
1497 
1498         return SU->NodeNum < RHS.SU->NodeNum;
1499       }
1500 
1501       llvm_unreachable("MemOpClusterMutation only supports register or frame "
1502                        "index bases.");
1503     }
1504   };
1505 
1506   const TargetInstrInfo *TII;
1507   const TargetRegisterInfo *TRI;
1508   bool IsLoad;
1509 
1510 public:
1511   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1512                            const TargetRegisterInfo *tri, bool IsLoad)
1513       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1514 
1515   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1516 
1517 protected:
1518   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
1519 };
1520 
1521 class StoreClusterMutation : public BaseMemOpClusterMutation {
1522 public:
1523   StoreClusterMutation(const TargetInstrInfo *tii,
1524                        const TargetRegisterInfo *tri)
1525       : BaseMemOpClusterMutation(tii, tri, false) {}
1526 };
1527 
1528 class LoadClusterMutation : public BaseMemOpClusterMutation {
1529 public:
1530   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1531       : BaseMemOpClusterMutation(tii, tri, true) {}
1532 };
1533 
1534 } // end anonymous namespace
1535 
1536 namespace llvm {
1537 
1538 std::unique_ptr<ScheduleDAGMutation>
1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1540                              const TargetRegisterInfo *TRI) {
1541   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1542                             : nullptr;
1543 }
1544 
1545 std::unique_ptr<ScheduleDAGMutation>
1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1547                               const TargetRegisterInfo *TRI) {
1548   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1549                             : nullptr;
1550 }
1551 
1552 } // end namespace llvm
1553 
1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1555     ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
1556   SmallVector<MemOpInfo, 32> MemOpRecords;
1557   for (SUnit *SU : MemOps) {
1558     MachineOperand *BaseOp;
1559     int64_t Offset;
1560     if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI))
1561       MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset));
1562   }
1563   if (MemOpRecords.size() < 2)
1564     return;
1565 
1566   llvm::sort(MemOpRecords);
1567   unsigned ClusterLength = 1;
1568   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1569     SUnit *SUa = MemOpRecords[Idx].SU;
1570     SUnit *SUb = MemOpRecords[Idx+1].SU;
1571     if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp,
1572                                  *MemOpRecords[Idx + 1].BaseOp,
1573                                  ClusterLength) &&
1574         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1575       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1576                         << SUb->NodeNum << ")\n");
1577       // Copy successor edges from SUa to SUb. Interleaving computation
1578       // dependent on SUa can prevent load combining due to register reuse.
1579       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1580       // loads should have effectively the same inputs.
1581       for (const SDep &Succ : SUa->Succs) {
1582         if (Succ.getSUnit() == SUb)
1583           continue;
1584         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1585                           << ")\n");
1586         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1587       }
1588       ++ClusterLength;
1589     } else
1590       ClusterLength = 1;
1591   }
1592 }
1593 
1594 /// Callback from DAG postProcessing to create cluster edges for loads.
1595 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
1596   // Map DAG NodeNum to store chain ID.
1597   DenseMap<unsigned, unsigned> StoreChainIDs;
1598   // Map each store chain to a set of dependent MemOps.
1599   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1600   for (SUnit &SU : DAG->SUnits) {
1601     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1602         (!IsLoad && !SU.getInstr()->mayStore()))
1603       continue;
1604 
1605     unsigned ChainPredID = DAG->SUnits.size();
1606     for (const SDep &Pred : SU.Preds) {
1607       if (Pred.isCtrl()) {
1608         ChainPredID = Pred.getSUnit()->NodeNum;
1609         break;
1610       }
1611     }
1612     // Check if this chain-like pred has been seen
1613     // before. ChainPredID==MaxNodeID at the top of the schedule.
1614     unsigned NumChains = StoreChainDependents.size();
1615     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1616       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1617     if (Result.second)
1618       StoreChainDependents.resize(NumChains + 1);
1619     StoreChainDependents[Result.first->second].push_back(&SU);
1620   }
1621 
1622   // Iterate over the store chains.
1623   for (auto &SCD : StoreChainDependents)
1624     clusterNeighboringMemOps(SCD, DAG);
1625 }
1626 
1627 //===----------------------------------------------------------------------===//
1628 // CopyConstrain - DAG post-processing to encourage copy elimination.
1629 //===----------------------------------------------------------------------===//
1630 
1631 namespace {
1632 
1633 /// Post-process the DAG to create weak edges from all uses of a copy to
1634 /// the one use that defines the copy's source vreg, most likely an induction
1635 /// variable increment.
1636 class CopyConstrain : public ScheduleDAGMutation {
1637   // Transient state.
1638   SlotIndex RegionBeginIdx;
1639 
1640   // RegionEndIdx is the slot index of the last non-debug instruction in the
1641   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1642   SlotIndex RegionEndIdx;
1643 
1644 public:
1645   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1646 
1647   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1648 
1649 protected:
1650   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1651 };
1652 
1653 } // end anonymous namespace
1654 
1655 namespace llvm {
1656 
1657 std::unique_ptr<ScheduleDAGMutation>
1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1659                                const TargetRegisterInfo *TRI) {
1660   return llvm::make_unique<CopyConstrain>(TII, TRI);
1661 }
1662 
1663 } // end namespace llvm
1664 
1665 /// constrainLocalCopy handles two possibilities:
1666 /// 1) Local src:
1667 /// I0:     = dst
1668 /// I1: src = ...
1669 /// I2:     = dst
1670 /// I3: dst = src (copy)
1671 /// (create pred->succ edges I0->I1, I2->I1)
1672 ///
1673 /// 2) Local copy:
1674 /// I0: dst = src (copy)
1675 /// I1:     = dst
1676 /// I2: src = ...
1677 /// I3:     = dst
1678 /// (create pred->succ edges I1->I2, I3->I2)
1679 ///
1680 /// Although the MachineScheduler is currently constrained to single blocks,
1681 /// this algorithm should handle extended blocks. An EBB is a set of
1682 /// contiguously numbered blocks such that the previous block in the EBB is
1683 /// always the single predecessor.
1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1685   LiveIntervals *LIS = DAG->getLIS();
1686   MachineInstr *Copy = CopySU->getInstr();
1687 
1688   // Check for pure vreg copies.
1689   const MachineOperand &SrcOp = Copy->getOperand(1);
1690   unsigned SrcReg = SrcOp.getReg();
1691   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1692     return;
1693 
1694   const MachineOperand &DstOp = Copy->getOperand(0);
1695   unsigned DstReg = DstOp.getReg();
1696   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1697     return;
1698 
1699   // Check if either the dest or source is local. If it's live across a back
1700   // edge, it's not local. Note that if both vregs are live across the back
1701   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1702   // If both the copy's source and dest are local live intervals, then we
1703   // should treat the dest as the global for the purpose of adding
1704   // constraints. This adds edges from source's other uses to the copy.
1705   unsigned LocalReg = SrcReg;
1706   unsigned GlobalReg = DstReg;
1707   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1708   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1709     LocalReg = DstReg;
1710     GlobalReg = SrcReg;
1711     LocalLI = &LIS->getInterval(LocalReg);
1712     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1713       return;
1714   }
1715   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1716 
1717   // Find the global segment after the start of the local LI.
1718   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1719   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1720   // local live range. We could create edges from other global uses to the local
1721   // start, but the coalescer should have already eliminated these cases, so
1722   // don't bother dealing with it.
1723   if (GlobalSegment == GlobalLI->end())
1724     return;
1725 
1726   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1727   // returned the next global segment. But if GlobalSegment overlaps with
1728   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1729   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1730   if (GlobalSegment->contains(LocalLI->beginIndex()))
1731     ++GlobalSegment;
1732 
1733   if (GlobalSegment == GlobalLI->end())
1734     return;
1735 
1736   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1737   if (GlobalSegment != GlobalLI->begin()) {
1738     // Two address defs have no hole.
1739     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1740                                GlobalSegment->start)) {
1741       return;
1742     }
1743     // If the prior global segment may be defined by the same two-address
1744     // instruction that also defines LocalLI, then can't make a hole here.
1745     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1746                                LocalLI->beginIndex())) {
1747       return;
1748     }
1749     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1750     // it would be a disconnected component in the live range.
1751     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1752            "Disconnected LRG within the scheduling region.");
1753   }
1754   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1755   if (!GlobalDef)
1756     return;
1757 
1758   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1759   if (!GlobalSU)
1760     return;
1761 
1762   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1763   // constraining the uses of the last local def to precede GlobalDef.
1764   SmallVector<SUnit*,8> LocalUses;
1765   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1766   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1767   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1768   for (const SDep &Succ : LastLocalSU->Succs) {
1769     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1770       continue;
1771     if (Succ.getSUnit() == GlobalSU)
1772       continue;
1773     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1774       return;
1775     LocalUses.push_back(Succ.getSUnit());
1776   }
1777   // Open the top of the GlobalLI hole by constraining any earlier global uses
1778   // to precede the start of LocalLI.
1779   SmallVector<SUnit*,8> GlobalUses;
1780   MachineInstr *FirstLocalDef =
1781     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1782   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1783   for (const SDep &Pred : GlobalSU->Preds) {
1784     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1785       continue;
1786     if (Pred.getSUnit() == FirstLocalSU)
1787       continue;
1788     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1789       return;
1790     GlobalUses.push_back(Pred.getSUnit());
1791   }
1792   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1793   // Add the weak edges.
1794   for (SmallVectorImpl<SUnit*>::const_iterator
1795          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1796     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1797                       << GlobalSU->NodeNum << ")\n");
1798     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1799   }
1800   for (SmallVectorImpl<SUnit*>::const_iterator
1801          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1802     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1803                       << FirstLocalSU->NodeNum << ")\n");
1804     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1805   }
1806 }
1807 
1808 /// Callback from DAG postProcessing to create weak edges to encourage
1809 /// copy elimination.
1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1811   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1812   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1813 
1814   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1815   if (FirstPos == DAG->end())
1816     return;
1817   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1818   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1819       *priorNonDebug(DAG->end(), DAG->begin()));
1820 
1821   for (SUnit &SU : DAG->SUnits) {
1822     if (!SU.getInstr()->isCopy())
1823       continue;
1824 
1825     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1826   }
1827 }
1828 
1829 //===----------------------------------------------------------------------===//
1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1831 // and possibly other custom schedulers.
1832 //===----------------------------------------------------------------------===//
1833 
1834 static const unsigned InvalidCycle = ~0U;
1835 
1836 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1837 
1838 /// Given a Count of resource usage and a Latency value, return true if a
1839 /// SchedBoundary becomes resource limited.
1840 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1841                                unsigned Latency) {
1842   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1843 }
1844 
1845 void SchedBoundary::reset() {
1846   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1847   // Destroying and reconstructing it is very expensive though. So keep
1848   // invalid, placeholder HazardRecs.
1849   if (HazardRec && HazardRec->isEnabled()) {
1850     delete HazardRec;
1851     HazardRec = nullptr;
1852   }
1853   Available.clear();
1854   Pending.clear();
1855   CheckPending = false;
1856   CurrCycle = 0;
1857   CurrMOps = 0;
1858   MinReadyCycle = std::numeric_limits<unsigned>::max();
1859   ExpectedLatency = 0;
1860   DependentLatency = 0;
1861   RetiredMOps = 0;
1862   MaxExecutedResCount = 0;
1863   ZoneCritResIdx = 0;
1864   IsResourceLimited = false;
1865   ReservedCycles.clear();
1866 #ifndef NDEBUG
1867   // Track the maximum number of stall cycles that could arise either from the
1868   // latency of a DAG edge or the number of cycles that a processor resource is
1869   // reserved (SchedBoundary::ReservedCycles).
1870   MaxObservedStall = 0;
1871 #endif
1872   // Reserve a zero-count for invalid CritResIdx.
1873   ExecutedResCounts.resize(1);
1874   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1875 }
1876 
1877 void SchedRemainder::
1878 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1879   reset();
1880   if (!SchedModel->hasInstrSchedModel())
1881     return;
1882   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1883   for (SUnit &SU : DAG->SUnits) {
1884     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1885     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1886       * SchedModel->getMicroOpFactor();
1887     for (TargetSchedModel::ProcResIter
1888            PI = SchedModel->getWriteProcResBegin(SC),
1889            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1890       unsigned PIdx = PI->ProcResourceIdx;
1891       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1892       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1893     }
1894   }
1895 }
1896 
1897 void SchedBoundary::
1898 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1899   reset();
1900   DAG = dag;
1901   SchedModel = smodel;
1902   Rem = rem;
1903   if (SchedModel->hasInstrSchedModel()) {
1904     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1905     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1906   }
1907 }
1908 
1909 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1910 /// these "soft stalls" differently than the hard stall cycles based on CPU
1911 /// resources and computed by checkHazard(). A fully in-order model
1912 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1913 /// available for scheduling until they are ready. However, a weaker in-order
1914 /// model may use this for heuristics. For example, if a processor has in-order
1915 /// behavior when reading certain resources, this may come into play.
1916 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1917   if (!SU->isUnbuffered)
1918     return 0;
1919 
1920   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1921   if (ReadyCycle > CurrCycle)
1922     return ReadyCycle - CurrCycle;
1923   return 0;
1924 }
1925 
1926 /// Compute the next cycle at which the given processor resource can be
1927 /// scheduled.
1928 unsigned SchedBoundary::
1929 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1930   unsigned NextUnreserved = ReservedCycles[PIdx];
1931   // If this resource has never been used, always return cycle zero.
1932   if (NextUnreserved == InvalidCycle)
1933     return 0;
1934   // For bottom-up scheduling add the cycles needed for the current operation.
1935   if (!isTop())
1936     NextUnreserved += Cycles;
1937   return NextUnreserved;
1938 }
1939 
1940 /// Does this SU have a hazard within the current instruction group.
1941 ///
1942 /// The scheduler supports two modes of hazard recognition. The first is the
1943 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1944 /// supports highly complicated in-order reservation tables
1945 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1946 ///
1947 /// The second is a streamlined mechanism that checks for hazards based on
1948 /// simple counters that the scheduler itself maintains. It explicitly checks
1949 /// for instruction dispatch limitations, including the number of micro-ops that
1950 /// can dispatch per cycle.
1951 ///
1952 /// TODO: Also check whether the SU must start a new group.
1953 bool SchedBoundary::checkHazard(SUnit *SU) {
1954   if (HazardRec->isEnabled()
1955       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1956     return true;
1957   }
1958 
1959   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1960   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1961     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1962                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1963     return true;
1964   }
1965 
1966   if (CurrMOps > 0 &&
1967       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1968        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1969     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1970                       << (isTop() ? "begin" : "end") << " group\n");
1971     return true;
1972   }
1973 
1974   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1975     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1976     for (const MCWriteProcResEntry &PE :
1977           make_range(SchedModel->getWriteProcResBegin(SC),
1978                      SchedModel->getWriteProcResEnd(SC))) {
1979       unsigned ResIdx = PE.ProcResourceIdx;
1980       unsigned Cycles = PE.Cycles;
1981       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1982       if (NRCycle > CurrCycle) {
1983 #ifndef NDEBUG
1984         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1985 #endif
1986         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1987                           << SchedModel->getResourceName(ResIdx) << "="
1988                           << NRCycle << "c\n");
1989         return true;
1990       }
1991     }
1992   }
1993   return false;
1994 }
1995 
1996 // Find the unscheduled node in ReadySUs with the highest latency.
1997 unsigned SchedBoundary::
1998 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1999   SUnit *LateSU = nullptr;
2000   unsigned RemLatency = 0;
2001   for (SUnit *SU : ReadySUs) {
2002     unsigned L = getUnscheduledLatency(SU);
2003     if (L > RemLatency) {
2004       RemLatency = L;
2005       LateSU = SU;
2006     }
2007   }
2008   if (LateSU) {
2009     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2010                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
2011   }
2012   return RemLatency;
2013 }
2014 
2015 // Count resources in this zone and the remaining unscheduled
2016 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2017 // resource index, or zero if the zone is issue limited.
2018 unsigned SchedBoundary::
2019 getOtherResourceCount(unsigned &OtherCritIdx) {
2020   OtherCritIdx = 0;
2021   if (!SchedModel->hasInstrSchedModel())
2022     return 0;
2023 
2024   unsigned OtherCritCount = Rem->RemIssueCount
2025     + (RetiredMOps * SchedModel->getMicroOpFactor());
2026   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2027                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2028   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2029        PIdx != PEnd; ++PIdx) {
2030     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2031     if (OtherCount > OtherCritCount) {
2032       OtherCritCount = OtherCount;
2033       OtherCritIdx = PIdx;
2034     }
2035   }
2036   if (OtherCritIdx) {
2037     LLVM_DEBUG(
2038         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2039                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2040                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2041   }
2042   return OtherCritCount;
2043 }
2044 
2045 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2046   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2047 
2048 #ifndef NDEBUG
2049   // ReadyCycle was been bumped up to the CurrCycle when this node was
2050   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2051   // scheduling, so may now be greater than ReadyCycle.
2052   if (ReadyCycle > CurrCycle)
2053     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2054 #endif
2055 
2056   if (ReadyCycle < MinReadyCycle)
2057     MinReadyCycle = ReadyCycle;
2058 
2059   // Check for interlocks first. For the purpose of other heuristics, an
2060   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2061   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2062   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2063       Available.size() >= ReadyListLimit)
2064     Pending.push(SU);
2065   else
2066     Available.push(SU);
2067 }
2068 
2069 /// Move the boundary of scheduled code by one cycle.
2070 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2071   if (SchedModel->getMicroOpBufferSize() == 0) {
2072     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2073            "MinReadyCycle uninitialized");
2074     if (MinReadyCycle > NextCycle)
2075       NextCycle = MinReadyCycle;
2076   }
2077   // Update the current micro-ops, which will issue in the next cycle.
2078   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2079   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2080 
2081   // Decrement DependentLatency based on the next cycle.
2082   if ((NextCycle - CurrCycle) > DependentLatency)
2083     DependentLatency = 0;
2084   else
2085     DependentLatency -= (NextCycle - CurrCycle);
2086 
2087   if (!HazardRec->isEnabled()) {
2088     // Bypass HazardRec virtual calls.
2089     CurrCycle = NextCycle;
2090   } else {
2091     // Bypass getHazardType calls in case of long latency.
2092     for (; CurrCycle != NextCycle; ++CurrCycle) {
2093       if (isTop())
2094         HazardRec->AdvanceCycle();
2095       else
2096         HazardRec->RecedeCycle();
2097     }
2098   }
2099   CheckPending = true;
2100   IsResourceLimited =
2101       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2102                          getScheduledLatency());
2103 
2104   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2105                     << '\n');
2106 }
2107 
2108 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2109   ExecutedResCounts[PIdx] += Count;
2110   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2111     MaxExecutedResCount = ExecutedResCounts[PIdx];
2112 }
2113 
2114 /// Add the given processor resource to this scheduled zone.
2115 ///
2116 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2117 /// during which this resource is consumed.
2118 ///
2119 /// \return the next cycle at which the instruction may execute without
2120 /// oversubscribing resources.
2121 unsigned SchedBoundary::
2122 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2123   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2124   unsigned Count = Factor * Cycles;
2125   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2126                     << Cycles << "x" << Factor << "u\n");
2127 
2128   // Update Executed resources counts.
2129   incExecutedResources(PIdx, Count);
2130   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2131   Rem->RemainingCounts[PIdx] -= Count;
2132 
2133   // Check if this resource exceeds the current critical resource. If so, it
2134   // becomes the critical resource.
2135   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2136     ZoneCritResIdx = PIdx;
2137     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2138                       << SchedModel->getResourceName(PIdx) << ": "
2139                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2140                       << "c\n");
2141   }
2142   // For reserved resources, record the highest cycle using the resource.
2143   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2144   if (NextAvailable > CurrCycle) {
2145     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2146                       << SchedModel->getProcResource(PIdx)->Name
2147                       << " reserved until @" << NextAvailable << "\n");
2148   }
2149   return NextAvailable;
2150 }
2151 
2152 /// Move the boundary of scheduled code by one SUnit.
2153 void SchedBoundary::bumpNode(SUnit *SU) {
2154   // Update the reservation table.
2155   if (HazardRec->isEnabled()) {
2156     if (!isTop() && SU->isCall) {
2157       // Calls are scheduled with their preceding instructions. For bottom-up
2158       // scheduling, clear the pipeline state before emitting.
2159       HazardRec->Reset();
2160     }
2161     HazardRec->EmitInstruction(SU);
2162   }
2163   // checkHazard should prevent scheduling multiple instructions per cycle that
2164   // exceed the issue width.
2165   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2166   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2167   assert(
2168       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2169       "Cannot schedule this instruction's MicroOps in the current cycle.");
2170 
2171   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2172   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2173 
2174   unsigned NextCycle = CurrCycle;
2175   switch (SchedModel->getMicroOpBufferSize()) {
2176   case 0:
2177     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2178     break;
2179   case 1:
2180     if (ReadyCycle > NextCycle) {
2181       NextCycle = ReadyCycle;
2182       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2183     }
2184     break;
2185   default:
2186     // We don't currently model the OOO reorder buffer, so consider all
2187     // scheduled MOps to be "retired". We do loosely model in-order resource
2188     // latency. If this instruction uses an in-order resource, account for any
2189     // likely stall cycles.
2190     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2191       NextCycle = ReadyCycle;
2192     break;
2193   }
2194   RetiredMOps += IncMOps;
2195 
2196   // Update resource counts and critical resource.
2197   if (SchedModel->hasInstrSchedModel()) {
2198     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2199     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2200     Rem->RemIssueCount -= DecRemIssue;
2201     if (ZoneCritResIdx) {
2202       // Scale scheduled micro-ops for comparing with the critical resource.
2203       unsigned ScaledMOps =
2204         RetiredMOps * SchedModel->getMicroOpFactor();
2205 
2206       // If scaled micro-ops are now more than the previous critical resource by
2207       // a full cycle, then micro-ops issue becomes critical.
2208       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2209           >= (int)SchedModel->getLatencyFactor()) {
2210         ZoneCritResIdx = 0;
2211         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2212                           << ScaledMOps / SchedModel->getLatencyFactor()
2213                           << "c\n");
2214       }
2215     }
2216     for (TargetSchedModel::ProcResIter
2217            PI = SchedModel->getWriteProcResBegin(SC),
2218            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2219       unsigned RCycle =
2220         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2221       if (RCycle > NextCycle)
2222         NextCycle = RCycle;
2223     }
2224     if (SU->hasReservedResource) {
2225       // For reserved resources, record the highest cycle using the resource.
2226       // For top-down scheduling, this is the cycle in which we schedule this
2227       // instruction plus the number of cycles the operations reserves the
2228       // resource. For bottom-up is it simply the instruction's cycle.
2229       for (TargetSchedModel::ProcResIter
2230              PI = SchedModel->getWriteProcResBegin(SC),
2231              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2232         unsigned PIdx = PI->ProcResourceIdx;
2233         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2234           if (isTop()) {
2235             ReservedCycles[PIdx] =
2236               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2237           }
2238           else
2239             ReservedCycles[PIdx] = NextCycle;
2240         }
2241       }
2242     }
2243   }
2244   // Update ExpectedLatency and DependentLatency.
2245   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2246   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2247   if (SU->getDepth() > TopLatency) {
2248     TopLatency = SU->getDepth();
2249     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2250                       << SU->NodeNum << ") " << TopLatency << "c\n");
2251   }
2252   if (SU->getHeight() > BotLatency) {
2253     BotLatency = SU->getHeight();
2254     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2255                       << SU->NodeNum << ") " << BotLatency << "c\n");
2256   }
2257   // If we stall for any reason, bump the cycle.
2258   if (NextCycle > CurrCycle)
2259     bumpCycle(NextCycle);
2260   else
2261     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2262     // resource limited. If a stall occurred, bumpCycle does this.
2263     IsResourceLimited =
2264         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2265                            getScheduledLatency());
2266 
2267   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2268   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2269   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2270   // bump the cycle to avoid uselessly checking everything in the readyQ.
2271   CurrMOps += IncMOps;
2272 
2273   // Bump the cycle count for issue group constraints.
2274   // This must be done after NextCycle has been adjust for all other stalls.
2275   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2276   // currCycle to X.
2277   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2278       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2279     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2280                       << " group\n");
2281     bumpCycle(++NextCycle);
2282   }
2283 
2284   while (CurrMOps >= SchedModel->getIssueWidth()) {
2285     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2286                       << CurrCycle << '\n');
2287     bumpCycle(++NextCycle);
2288   }
2289   LLVM_DEBUG(dumpScheduledState());
2290 }
2291 
2292 /// Release pending ready nodes in to the available queue. This makes them
2293 /// visible to heuristics.
2294 void SchedBoundary::releasePending() {
2295   // If the available queue is empty, it is safe to reset MinReadyCycle.
2296   if (Available.empty())
2297     MinReadyCycle = std::numeric_limits<unsigned>::max();
2298 
2299   // Check to see if any of the pending instructions are ready to issue.  If
2300   // so, add them to the available queue.
2301   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2302   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2303     SUnit *SU = *(Pending.begin()+i);
2304     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2305 
2306     if (ReadyCycle < MinReadyCycle)
2307       MinReadyCycle = ReadyCycle;
2308 
2309     if (!IsBuffered && ReadyCycle > CurrCycle)
2310       continue;
2311 
2312     if (checkHazard(SU))
2313       continue;
2314 
2315     if (Available.size() >= ReadyListLimit)
2316       break;
2317 
2318     Available.push(SU);
2319     Pending.remove(Pending.begin()+i);
2320     --i; --e;
2321   }
2322   CheckPending = false;
2323 }
2324 
2325 /// Remove SU from the ready set for this boundary.
2326 void SchedBoundary::removeReady(SUnit *SU) {
2327   if (Available.isInQueue(SU))
2328     Available.remove(Available.find(SU));
2329   else {
2330     assert(Pending.isInQueue(SU) && "bad ready count");
2331     Pending.remove(Pending.find(SU));
2332   }
2333 }
2334 
2335 /// If this queue only has one ready candidate, return it. As a side effect,
2336 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2337 /// one node is ready. If multiple instructions are ready, return NULL.
2338 SUnit *SchedBoundary::pickOnlyChoice() {
2339   if (CheckPending)
2340     releasePending();
2341 
2342   if (CurrMOps > 0) {
2343     // Defer any ready instrs that now have a hazard.
2344     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2345       if (checkHazard(*I)) {
2346         Pending.push(*I);
2347         I = Available.remove(I);
2348         continue;
2349       }
2350       ++I;
2351     }
2352   }
2353   for (unsigned i = 0; Available.empty(); ++i) {
2354 //  FIXME: Re-enable assert once PR20057 is resolved.
2355 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2356 //           "permanent hazard");
2357     (void)i;
2358     bumpCycle(CurrCycle + 1);
2359     releasePending();
2360   }
2361 
2362   LLVM_DEBUG(Pending.dump());
2363   LLVM_DEBUG(Available.dump());
2364 
2365   if (Available.size() == 1)
2366     return *Available.begin();
2367   return nullptr;
2368 }
2369 
2370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2371 // This is useful information to dump after bumpNode.
2372 // Note that the Queue contents are more useful before pickNodeFromQueue.
2373 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2374   unsigned ResFactor;
2375   unsigned ResCount;
2376   if (ZoneCritResIdx) {
2377     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2378     ResCount = getResourceCount(ZoneCritResIdx);
2379   } else {
2380     ResFactor = SchedModel->getMicroOpFactor();
2381     ResCount = RetiredMOps * ResFactor;
2382   }
2383   unsigned LFactor = SchedModel->getLatencyFactor();
2384   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2385          << "  Retired: " << RetiredMOps;
2386   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2387   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2388          << ResCount / ResFactor << " "
2389          << SchedModel->getResourceName(ZoneCritResIdx)
2390          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2391          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2392          << " limited.\n";
2393 }
2394 #endif
2395 
2396 //===----------------------------------------------------------------------===//
2397 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2398 //===----------------------------------------------------------------------===//
2399 
2400 void GenericSchedulerBase::SchedCandidate::
2401 initResourceDelta(const ScheduleDAGMI *DAG,
2402                   const TargetSchedModel *SchedModel) {
2403   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2404     return;
2405 
2406   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2407   for (TargetSchedModel::ProcResIter
2408          PI = SchedModel->getWriteProcResBegin(SC),
2409          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2410     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2411       ResDelta.CritResources += PI->Cycles;
2412     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2413       ResDelta.DemandedResources += PI->Cycles;
2414   }
2415 }
2416 
2417 /// Compute remaining latency. We need this both to determine whether the
2418 /// overall schedule has become latency-limited and whether the instructions
2419 /// outside this zone are resource or latency limited.
2420 ///
2421 /// The "dependent" latency is updated incrementally during scheduling as the
2422 /// max height/depth of scheduled nodes minus the cycles since it was
2423 /// scheduled:
2424 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2425 ///
2426 /// The "independent" latency is the max ready queue depth:
2427 ///   ILat = max N.depth for N in Available|Pending
2428 ///
2429 /// RemainingLatency is the greater of independent and dependent latency.
2430 ///
2431 /// These computations are expensive, especially in DAGs with many edges, so
2432 /// only do them if necessary.
2433 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2434   unsigned RemLatency = CurrZone.getDependentLatency();
2435   RemLatency = std::max(RemLatency,
2436                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2437   RemLatency = std::max(RemLatency,
2438                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2439   return RemLatency;
2440 }
2441 
2442 /// Returns true if the current cycle plus remaning latency is greater than
2443 /// the critical path in the scheduling region.
2444 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2445                                                SchedBoundary &CurrZone,
2446                                                bool ComputeRemLatency,
2447                                                unsigned &RemLatency) const {
2448   // The current cycle is already greater than the critical path, so we are
2449   // already latency limited and don't need to compute the remaining latency.
2450   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2451     return true;
2452 
2453   // If we haven't scheduled anything yet, then we aren't latency limited.
2454   if (CurrZone.getCurrCycle() == 0)
2455     return false;
2456 
2457   if (ComputeRemLatency)
2458     RemLatency = computeRemLatency(CurrZone);
2459 
2460   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2461 }
2462 
2463 /// Set the CandPolicy given a scheduling zone given the current resources and
2464 /// latencies inside and outside the zone.
2465 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2466                                      SchedBoundary &CurrZone,
2467                                      SchedBoundary *OtherZone) {
2468   // Apply preemptive heuristics based on the total latency and resources
2469   // inside and outside this zone. Potential stalls should be considered before
2470   // following this policy.
2471 
2472   // Compute the critical resource outside the zone.
2473   unsigned OtherCritIdx = 0;
2474   unsigned OtherCount =
2475     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2476 
2477   bool OtherResLimited = false;
2478   unsigned RemLatency = 0;
2479   bool RemLatencyComputed = false;
2480   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2481     RemLatency = computeRemLatency(CurrZone);
2482     RemLatencyComputed = true;
2483     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2484                                          OtherCount, RemLatency);
2485   }
2486 
2487   // Schedule aggressively for latency in PostRA mode. We don't check for
2488   // acyclic latency during PostRA, and highly out-of-order processors will
2489   // skip PostRA scheduling.
2490   if (!OtherResLimited &&
2491       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2492                                        RemLatency))) {
2493     Policy.ReduceLatency |= true;
2494     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2495                       << " RemainingLatency " << RemLatency << " + "
2496                       << CurrZone.getCurrCycle() << "c > CritPath "
2497                       << Rem.CriticalPath << "\n");
2498   }
2499   // If the same resource is limiting inside and outside the zone, do nothing.
2500   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2501     return;
2502 
2503   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2504     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2505            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2506   } if (OtherResLimited) dbgs()
2507                  << "  RemainingLimit: "
2508                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2509              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2510              << "  Latency limited both directions.\n");
2511 
2512   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2513     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2514 
2515   if (OtherResLimited)
2516     Policy.DemandResIdx = OtherCritIdx;
2517 }
2518 
2519 #ifndef NDEBUG
2520 const char *GenericSchedulerBase::getReasonStr(
2521   GenericSchedulerBase::CandReason Reason) {
2522   switch (Reason) {
2523   case NoCand:         return "NOCAND    ";
2524   case Only1:          return "ONLY1     ";
2525   case PhysReg:        return "PHYS-REG  ";
2526   case RegExcess:      return "REG-EXCESS";
2527   case RegCritical:    return "REG-CRIT  ";
2528   case Stall:          return "STALL     ";
2529   case Cluster:        return "CLUSTER   ";
2530   case Weak:           return "WEAK      ";
2531   case RegMax:         return "REG-MAX   ";
2532   case ResourceReduce: return "RES-REDUCE";
2533   case ResourceDemand: return "RES-DEMAND";
2534   case TopDepthReduce: return "TOP-DEPTH ";
2535   case TopPathReduce:  return "TOP-PATH  ";
2536   case BotHeightReduce:return "BOT-HEIGHT";
2537   case BotPathReduce:  return "BOT-PATH  ";
2538   case NextDefUse:     return "DEF-USE   ";
2539   case NodeOrder:      return "ORDER     ";
2540   };
2541   llvm_unreachable("Unknown reason!");
2542 }
2543 
2544 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2545   PressureChange P;
2546   unsigned ResIdx = 0;
2547   unsigned Latency = 0;
2548   switch (Cand.Reason) {
2549   default:
2550     break;
2551   case RegExcess:
2552     P = Cand.RPDelta.Excess;
2553     break;
2554   case RegCritical:
2555     P = Cand.RPDelta.CriticalMax;
2556     break;
2557   case RegMax:
2558     P = Cand.RPDelta.CurrentMax;
2559     break;
2560   case ResourceReduce:
2561     ResIdx = Cand.Policy.ReduceResIdx;
2562     break;
2563   case ResourceDemand:
2564     ResIdx = Cand.Policy.DemandResIdx;
2565     break;
2566   case TopDepthReduce:
2567     Latency = Cand.SU->getDepth();
2568     break;
2569   case TopPathReduce:
2570     Latency = Cand.SU->getHeight();
2571     break;
2572   case BotHeightReduce:
2573     Latency = Cand.SU->getHeight();
2574     break;
2575   case BotPathReduce:
2576     Latency = Cand.SU->getDepth();
2577     break;
2578   }
2579   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2580   if (P.isValid())
2581     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2582            << ":" << P.getUnitInc() << " ";
2583   else
2584     dbgs() << "      ";
2585   if (ResIdx)
2586     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2587   else
2588     dbgs() << "         ";
2589   if (Latency)
2590     dbgs() << " " << Latency << " cycles ";
2591   else
2592     dbgs() << "          ";
2593   dbgs() << '\n';
2594 }
2595 #endif
2596 
2597 namespace llvm {
2598 /// Return true if this heuristic determines order.
2599 bool tryLess(int TryVal, int CandVal,
2600              GenericSchedulerBase::SchedCandidate &TryCand,
2601              GenericSchedulerBase::SchedCandidate &Cand,
2602              GenericSchedulerBase::CandReason Reason) {
2603   if (TryVal < CandVal) {
2604     TryCand.Reason = Reason;
2605     return true;
2606   }
2607   if (TryVal > CandVal) {
2608     if (Cand.Reason > Reason)
2609       Cand.Reason = Reason;
2610     return true;
2611   }
2612   return false;
2613 }
2614 
2615 bool tryGreater(int TryVal, int CandVal,
2616                 GenericSchedulerBase::SchedCandidate &TryCand,
2617                 GenericSchedulerBase::SchedCandidate &Cand,
2618                 GenericSchedulerBase::CandReason Reason) {
2619   if (TryVal > CandVal) {
2620     TryCand.Reason = Reason;
2621     return true;
2622   }
2623   if (TryVal < CandVal) {
2624     if (Cand.Reason > Reason)
2625       Cand.Reason = Reason;
2626     return true;
2627   }
2628   return false;
2629 }
2630 
2631 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2632                 GenericSchedulerBase::SchedCandidate &Cand,
2633                 SchedBoundary &Zone) {
2634   if (Zone.isTop()) {
2635     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2636       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2637                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2638         return true;
2639     }
2640     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2641                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2642       return true;
2643   } else {
2644     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2645       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2646                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2647         return true;
2648     }
2649     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2650                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2651       return true;
2652   }
2653   return false;
2654 }
2655 } // end namespace llvm
2656 
2657 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2658   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2659                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2660 }
2661 
2662 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2663   tracePick(Cand.Reason, Cand.AtTop);
2664 }
2665 
2666 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2667   assert(dag->hasVRegLiveness() &&
2668          "(PreRA)GenericScheduler needs vreg liveness");
2669   DAG = static_cast<ScheduleDAGMILive*>(dag);
2670   SchedModel = DAG->getSchedModel();
2671   TRI = DAG->TRI;
2672 
2673   Rem.init(DAG, SchedModel);
2674   Top.init(DAG, SchedModel, &Rem);
2675   Bot.init(DAG, SchedModel, &Rem);
2676 
2677   // Initialize resource counts.
2678 
2679   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2680   // are disabled, then these HazardRecs will be disabled.
2681   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2682   if (!Top.HazardRec) {
2683     Top.HazardRec =
2684         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2685             Itin, DAG);
2686   }
2687   if (!Bot.HazardRec) {
2688     Bot.HazardRec =
2689         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2690             Itin, DAG);
2691   }
2692   TopCand.SU = nullptr;
2693   BotCand.SU = nullptr;
2694 }
2695 
2696 /// Initialize the per-region scheduling policy.
2697 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2698                                   MachineBasicBlock::iterator End,
2699                                   unsigned NumRegionInstrs) {
2700   const MachineFunction &MF = *Begin->getMF();
2701   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2702 
2703   // Avoid setting up the register pressure tracker for small regions to save
2704   // compile time. As a rough heuristic, only track pressure when the number of
2705   // schedulable instructions exceeds half the integer register file.
2706   RegionPolicy.ShouldTrackPressure = true;
2707   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2708     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2709     if (TLI->isTypeLegal(LegalIntVT)) {
2710       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2711         TLI->getRegClassFor(LegalIntVT));
2712       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2713     }
2714   }
2715 
2716   // For generic targets, we default to bottom-up, because it's simpler and more
2717   // compile-time optimizations have been implemented in that direction.
2718   RegionPolicy.OnlyBottomUp = true;
2719 
2720   // Allow the subtarget to override default policy.
2721   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2722 
2723   // After subtarget overrides, apply command line options.
2724   if (!EnableRegPressure)
2725     RegionPolicy.ShouldTrackPressure = false;
2726 
2727   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2728   // e.g. -misched-bottomup=false allows scheduling in both directions.
2729   assert((!ForceTopDown || !ForceBottomUp) &&
2730          "-misched-topdown incompatible with -misched-bottomup");
2731   if (ForceBottomUp.getNumOccurrences() > 0) {
2732     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2733     if (RegionPolicy.OnlyBottomUp)
2734       RegionPolicy.OnlyTopDown = false;
2735   }
2736   if (ForceTopDown.getNumOccurrences() > 0) {
2737     RegionPolicy.OnlyTopDown = ForceTopDown;
2738     if (RegionPolicy.OnlyTopDown)
2739       RegionPolicy.OnlyBottomUp = false;
2740   }
2741 }
2742 
2743 void GenericScheduler::dumpPolicy() const {
2744   // Cannot completely remove virtual function even in release mode.
2745 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2746   dbgs() << "GenericScheduler RegionPolicy: "
2747          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2748          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2749          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2750          << "\n";
2751 #endif
2752 }
2753 
2754 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2755 /// critical path by more cycles than it takes to drain the instruction buffer.
2756 /// We estimate an upper bounds on in-flight instructions as:
2757 ///
2758 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2759 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2760 /// InFlightResources = InFlightIterations * LoopResources
2761 ///
2762 /// TODO: Check execution resources in addition to IssueCount.
2763 void GenericScheduler::checkAcyclicLatency() {
2764   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2765     return;
2766 
2767   // Scaled number of cycles per loop iteration.
2768   unsigned IterCount =
2769     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2770              Rem.RemIssueCount);
2771   // Scaled acyclic critical path.
2772   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2773   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2774   unsigned InFlightCount =
2775     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2776   unsigned BufferLimit =
2777     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2778 
2779   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2780 
2781   LLVM_DEBUG(
2782       dbgs() << "IssueCycles="
2783              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2784              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2785              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2786              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2787              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2788       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2789 }
2790 
2791 void GenericScheduler::registerRoots() {
2792   Rem.CriticalPath = DAG->ExitSU.getDepth();
2793 
2794   // Some roots may not feed into ExitSU. Check all of them in case.
2795   for (const SUnit *SU : Bot.Available) {
2796     if (SU->getDepth() > Rem.CriticalPath)
2797       Rem.CriticalPath = SU->getDepth();
2798   }
2799   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2800   if (DumpCriticalPathLength) {
2801     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2802   }
2803 
2804   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2805     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2806     checkAcyclicLatency();
2807   }
2808 }
2809 
2810 namespace llvm {
2811 bool tryPressure(const PressureChange &TryP,
2812                  const PressureChange &CandP,
2813                  GenericSchedulerBase::SchedCandidate &TryCand,
2814                  GenericSchedulerBase::SchedCandidate &Cand,
2815                  GenericSchedulerBase::CandReason Reason,
2816                  const TargetRegisterInfo *TRI,
2817                  const MachineFunction &MF) {
2818   // If one candidate decreases and the other increases, go with it.
2819   // Invalid candidates have UnitInc==0.
2820   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2821                  Reason)) {
2822     return true;
2823   }
2824   // Do not compare the magnitude of pressure changes between top and bottom
2825   // boundary.
2826   if (Cand.AtTop != TryCand.AtTop)
2827     return false;
2828 
2829   // If both candidates affect the same set in the same boundary, go with the
2830   // smallest increase.
2831   unsigned TryPSet = TryP.getPSetOrMax();
2832   unsigned CandPSet = CandP.getPSetOrMax();
2833   if (TryPSet == CandPSet) {
2834     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2835                    Reason);
2836   }
2837 
2838   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2839                                  std::numeric_limits<int>::max();
2840 
2841   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2842                                    std::numeric_limits<int>::max();
2843 
2844   // If the candidates are decreasing pressure, reverse priority.
2845   if (TryP.getUnitInc() < 0)
2846     std::swap(TryRank, CandRank);
2847   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2848 }
2849 
2850 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2851   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2852 }
2853 
2854 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2855 /// their physreg def/use.
2856 ///
2857 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2858 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2859 /// with the operation that produces or consumes the physreg. We'll do this when
2860 /// regalloc has support for parallel copies.
2861 int biasPhysReg(const SUnit *SU, bool isTop) {
2862   const MachineInstr *MI = SU->getInstr();
2863 
2864   if (MI->isCopy()) {
2865     unsigned ScheduledOper = isTop ? 1 : 0;
2866     unsigned UnscheduledOper = isTop ? 0 : 1;
2867     // If we have already scheduled the physreg produce/consumer, immediately
2868     // schedule the copy.
2869     if (TargetRegisterInfo::isPhysicalRegister(
2870             MI->getOperand(ScheduledOper).getReg()))
2871       return 1;
2872     // If the physreg is at the boundary, defer it. Otherwise schedule it
2873     // immediately to free the dependent. We can hoist the copy later.
2874     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2875     if (TargetRegisterInfo::isPhysicalRegister(
2876             MI->getOperand(UnscheduledOper).getReg()))
2877       return AtBoundary ? -1 : 1;
2878   }
2879 
2880   if (MI->isMoveImmediate()) {
2881     // If we have a move immediate and all successors have been assigned, bias
2882     // towards scheduling this later. Make sure all register defs are to
2883     // physical registers.
2884     bool DoBias = true;
2885     for (const MachineOperand &Op : MI->defs()) {
2886       if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) {
2887         DoBias = false;
2888         break;
2889       }
2890     }
2891 
2892     if (DoBias)
2893       return isTop ? -1 : 1;
2894   }
2895 
2896   return 0;
2897 }
2898 } // end namespace llvm
2899 
2900 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2901                                      bool AtTop,
2902                                      const RegPressureTracker &RPTracker,
2903                                      RegPressureTracker &TempTracker) {
2904   Cand.SU = SU;
2905   Cand.AtTop = AtTop;
2906   if (DAG->isTrackingPressure()) {
2907     if (AtTop) {
2908       TempTracker.getMaxDownwardPressureDelta(
2909         Cand.SU->getInstr(),
2910         Cand.RPDelta,
2911         DAG->getRegionCriticalPSets(),
2912         DAG->getRegPressure().MaxSetPressure);
2913     } else {
2914       if (VerifyScheduling) {
2915         TempTracker.getMaxUpwardPressureDelta(
2916           Cand.SU->getInstr(),
2917           &DAG->getPressureDiff(Cand.SU),
2918           Cand.RPDelta,
2919           DAG->getRegionCriticalPSets(),
2920           DAG->getRegPressure().MaxSetPressure);
2921       } else {
2922         RPTracker.getUpwardPressureDelta(
2923           Cand.SU->getInstr(),
2924           DAG->getPressureDiff(Cand.SU),
2925           Cand.RPDelta,
2926           DAG->getRegionCriticalPSets(),
2927           DAG->getRegPressure().MaxSetPressure);
2928       }
2929     }
2930   }
2931   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2932              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2933              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2934              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2935 }
2936 
2937 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2938 /// hierarchical. This may be more efficient than a graduated cost model because
2939 /// we don't need to evaluate all aspects of the model for each node in the
2940 /// queue. But it's really done to make the heuristics easier to debug and
2941 /// statistically analyze.
2942 ///
2943 /// \param Cand provides the policy and current best candidate.
2944 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2945 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2946 //              if Cand is from a different zone than TryCand.
2947 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2948                                     SchedCandidate &TryCand,
2949                                     SchedBoundary *Zone) const {
2950   // Initialize the candidate if needed.
2951   if (!Cand.isValid()) {
2952     TryCand.Reason = NodeOrder;
2953     return;
2954   }
2955 
2956   // Bias PhysReg Defs and copies to their uses and defined respectively.
2957   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
2958                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
2959     return;
2960 
2961   // Avoid exceeding the target's limit.
2962   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2963                                                Cand.RPDelta.Excess,
2964                                                TryCand, Cand, RegExcess, TRI,
2965                                                DAG->MF))
2966     return;
2967 
2968   // Avoid increasing the max critical pressure in the scheduled region.
2969   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2970                                                Cand.RPDelta.CriticalMax,
2971                                                TryCand, Cand, RegCritical, TRI,
2972                                                DAG->MF))
2973     return;
2974 
2975   // We only compare a subset of features when comparing nodes between
2976   // Top and Bottom boundary. Some properties are simply incomparable, in many
2977   // other instances we should only override the other boundary if something
2978   // is a clear good pick on one boundary. Skip heuristics that are more
2979   // "tie-breaking" in nature.
2980   bool SameBoundary = Zone != nullptr;
2981   if (SameBoundary) {
2982     // For loops that are acyclic path limited, aggressively schedule for
2983     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2984     // heuristics to take precedence.
2985     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2986         tryLatency(TryCand, Cand, *Zone))
2987       return;
2988 
2989     // Prioritize instructions that read unbuffered resources by stall cycles.
2990     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2991                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2992       return;
2993   }
2994 
2995   // Keep clustered nodes together to encourage downstream peephole
2996   // optimizations which may reduce resource requirements.
2997   //
2998   // This is a best effort to set things up for a post-RA pass. Optimizations
2999   // like generating loads of multiple registers should ideally be done within
3000   // the scheduler pass by combining the loads during DAG postprocessing.
3001   const SUnit *CandNextClusterSU =
3002     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3003   const SUnit *TryCandNextClusterSU =
3004     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
3005   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
3006                  Cand.SU == CandNextClusterSU,
3007                  TryCand, Cand, Cluster))
3008     return;
3009 
3010   if (SameBoundary) {
3011     // Weak edges are for clustering and other constraints.
3012     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
3013                 getWeakLeft(Cand.SU, Cand.AtTop),
3014                 TryCand, Cand, Weak))
3015       return;
3016   }
3017 
3018   // Avoid increasing the max pressure of the entire region.
3019   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
3020                                                Cand.RPDelta.CurrentMax,
3021                                                TryCand, Cand, RegMax, TRI,
3022                                                DAG->MF))
3023     return;
3024 
3025   if (SameBoundary) {
3026     // Avoid critical resource consumption and balance the schedule.
3027     TryCand.initResourceDelta(DAG, SchedModel);
3028     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3029                 TryCand, Cand, ResourceReduce))
3030       return;
3031     if (tryGreater(TryCand.ResDelta.DemandedResources,
3032                    Cand.ResDelta.DemandedResources,
3033                    TryCand, Cand, ResourceDemand))
3034       return;
3035 
3036     // Avoid serializing long latency dependence chains.
3037     // For acyclic path limited loops, latency was already checked above.
3038     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3039         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3040       return;
3041 
3042     // Fall through to original instruction order.
3043     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3044         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3045       TryCand.Reason = NodeOrder;
3046     }
3047   }
3048 }
3049 
3050 /// Pick the best candidate from the queue.
3051 ///
3052 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3053 /// DAG building. To adjust for the current scheduling location we need to
3054 /// maintain the number of vreg uses remaining to be top-scheduled.
3055 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3056                                          const CandPolicy &ZonePolicy,
3057                                          const RegPressureTracker &RPTracker,
3058                                          SchedCandidate &Cand) {
3059   // getMaxPressureDelta temporarily modifies the tracker.
3060   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3061 
3062   ReadyQueue &Q = Zone.Available;
3063   for (SUnit *SU : Q) {
3064 
3065     SchedCandidate TryCand(ZonePolicy);
3066     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3067     // Pass SchedBoundary only when comparing nodes from the same boundary.
3068     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3069     tryCandidate(Cand, TryCand, ZoneArg);
3070     if (TryCand.Reason != NoCand) {
3071       // Initialize resource delta if needed in case future heuristics query it.
3072       if (TryCand.ResDelta == SchedResourceDelta())
3073         TryCand.initResourceDelta(DAG, SchedModel);
3074       Cand.setBest(TryCand);
3075       LLVM_DEBUG(traceCandidate(Cand));
3076     }
3077   }
3078 }
3079 
3080 /// Pick the best candidate node from either the top or bottom queue.
3081 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3082   // Schedule as far as possible in the direction of no choice. This is most
3083   // efficient, but also provides the best heuristics for CriticalPSets.
3084   if (SUnit *SU = Bot.pickOnlyChoice()) {
3085     IsTopNode = false;
3086     tracePick(Only1, false);
3087     return SU;
3088   }
3089   if (SUnit *SU = Top.pickOnlyChoice()) {
3090     IsTopNode = true;
3091     tracePick(Only1, true);
3092     return SU;
3093   }
3094   // Set the bottom-up policy based on the state of the current bottom zone and
3095   // the instructions outside the zone, including the top zone.
3096   CandPolicy BotPolicy;
3097   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3098   // Set the top-down policy based on the state of the current top zone and
3099   // the instructions outside the zone, including the bottom zone.
3100   CandPolicy TopPolicy;
3101   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3102 
3103   // See if BotCand is still valid (because we previously scheduled from Top).
3104   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3105   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3106       BotCand.Policy != BotPolicy) {
3107     BotCand.reset(CandPolicy());
3108     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3109     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3110   } else {
3111     LLVM_DEBUG(traceCandidate(BotCand));
3112 #ifndef NDEBUG
3113     if (VerifyScheduling) {
3114       SchedCandidate TCand;
3115       TCand.reset(CandPolicy());
3116       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3117       assert(TCand.SU == BotCand.SU &&
3118              "Last pick result should correspond to re-picking right now");
3119     }
3120 #endif
3121   }
3122 
3123   // Check if the top Q has a better candidate.
3124   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3125   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3126       TopCand.Policy != TopPolicy) {
3127     TopCand.reset(CandPolicy());
3128     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3129     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3130   } else {
3131     LLVM_DEBUG(traceCandidate(TopCand));
3132 #ifndef NDEBUG
3133     if (VerifyScheduling) {
3134       SchedCandidate TCand;
3135       TCand.reset(CandPolicy());
3136       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3137       assert(TCand.SU == TopCand.SU &&
3138            "Last pick result should correspond to re-picking right now");
3139     }
3140 #endif
3141   }
3142 
3143   // Pick best from BotCand and TopCand.
3144   assert(BotCand.isValid());
3145   assert(TopCand.isValid());
3146   SchedCandidate Cand = BotCand;
3147   TopCand.Reason = NoCand;
3148   tryCandidate(Cand, TopCand, nullptr);
3149   if (TopCand.Reason != NoCand) {
3150     Cand.setBest(TopCand);
3151     LLVM_DEBUG(traceCandidate(Cand));
3152   }
3153 
3154   IsTopNode = Cand.AtTop;
3155   tracePick(Cand);
3156   return Cand.SU;
3157 }
3158 
3159 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3160 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3161   if (DAG->top() == DAG->bottom()) {
3162     assert(Top.Available.empty() && Top.Pending.empty() &&
3163            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3164     return nullptr;
3165   }
3166   SUnit *SU;
3167   do {
3168     if (RegionPolicy.OnlyTopDown) {
3169       SU = Top.pickOnlyChoice();
3170       if (!SU) {
3171         CandPolicy NoPolicy;
3172         TopCand.reset(NoPolicy);
3173         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3174         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3175         tracePick(TopCand);
3176         SU = TopCand.SU;
3177       }
3178       IsTopNode = true;
3179     } else if (RegionPolicy.OnlyBottomUp) {
3180       SU = Bot.pickOnlyChoice();
3181       if (!SU) {
3182         CandPolicy NoPolicy;
3183         BotCand.reset(NoPolicy);
3184         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3185         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3186         tracePick(BotCand);
3187         SU = BotCand.SU;
3188       }
3189       IsTopNode = false;
3190     } else {
3191       SU = pickNodeBidirectional(IsTopNode);
3192     }
3193   } while (SU->isScheduled);
3194 
3195   if (SU->isTopReady())
3196     Top.removeReady(SU);
3197   if (SU->isBottomReady())
3198     Bot.removeReady(SU);
3199 
3200   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3201                     << *SU->getInstr());
3202   return SU;
3203 }
3204 
3205 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
3206   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3207   if (!isTop)
3208     ++InsertPos;
3209   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3210 
3211   // Find already scheduled copies with a single physreg dependence and move
3212   // them just above the scheduled instruction.
3213   for (SDep &Dep : Deps) {
3214     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3215       continue;
3216     SUnit *DepSU = Dep.getSUnit();
3217     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3218       continue;
3219     MachineInstr *Copy = DepSU->getInstr();
3220     if (!Copy->isCopy() && !Copy->isMoveImmediate())
3221       continue;
3222     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3223                DAG->dumpNode(*Dep.getSUnit()));
3224     DAG->moveInstruction(Copy, InsertPos);
3225   }
3226 }
3227 
3228 /// Update the scheduler's state after scheduling a node. This is the same node
3229 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3230 /// update it's state based on the current cycle before MachineSchedStrategy
3231 /// does.
3232 ///
3233 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3234 /// them here. See comments in biasPhysReg.
3235 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3236   if (IsTopNode) {
3237     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3238     Top.bumpNode(SU);
3239     if (SU->hasPhysRegUses)
3240       reschedulePhysReg(SU, true);
3241   } else {
3242     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3243     Bot.bumpNode(SU);
3244     if (SU->hasPhysRegDefs)
3245       reschedulePhysReg(SU, false);
3246   }
3247 }
3248 
3249 /// Create the standard converging machine scheduler. This will be used as the
3250 /// default scheduler if the target does not set a default.
3251 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3252   ScheduleDAGMILive *DAG =
3253       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3254   // Register DAG post-processors.
3255   //
3256   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3257   // data and pass it to later mutations. Have a single mutation that gathers
3258   // the interesting nodes in one pass.
3259   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3260   return DAG;
3261 }
3262 
3263 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3264   return createGenericSchedLive(C);
3265 }
3266 
3267 static MachineSchedRegistry
3268 GenericSchedRegistry("converge", "Standard converging scheduler.",
3269                      createConveringSched);
3270 
3271 //===----------------------------------------------------------------------===//
3272 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3273 //===----------------------------------------------------------------------===//
3274 
3275 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3276   DAG = Dag;
3277   SchedModel = DAG->getSchedModel();
3278   TRI = DAG->TRI;
3279 
3280   Rem.init(DAG, SchedModel);
3281   Top.init(DAG, SchedModel, &Rem);
3282   BotRoots.clear();
3283 
3284   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3285   // or are disabled, then these HazardRecs will be disabled.
3286   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3287   if (!Top.HazardRec) {
3288     Top.HazardRec =
3289         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3290             Itin, DAG);
3291   }
3292 }
3293 
3294 void PostGenericScheduler::registerRoots() {
3295   Rem.CriticalPath = DAG->ExitSU.getDepth();
3296 
3297   // Some roots may not feed into ExitSU. Check all of them in case.
3298   for (const SUnit *SU : BotRoots) {
3299     if (SU->getDepth() > Rem.CriticalPath)
3300       Rem.CriticalPath = SU->getDepth();
3301   }
3302   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3303   if (DumpCriticalPathLength) {
3304     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3305   }
3306 }
3307 
3308 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3309 ///
3310 /// \param Cand provides the policy and current best candidate.
3311 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3312 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3313                                         SchedCandidate &TryCand) {
3314   // Initialize the candidate if needed.
3315   if (!Cand.isValid()) {
3316     TryCand.Reason = NodeOrder;
3317     return;
3318   }
3319 
3320   // Prioritize instructions that read unbuffered resources by stall cycles.
3321   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3322               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3323     return;
3324 
3325   // Keep clustered nodes together.
3326   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3327                  Cand.SU == DAG->getNextClusterSucc(),
3328                  TryCand, Cand, Cluster))
3329     return;
3330 
3331   // Avoid critical resource consumption and balance the schedule.
3332   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3333               TryCand, Cand, ResourceReduce))
3334     return;
3335   if (tryGreater(TryCand.ResDelta.DemandedResources,
3336                  Cand.ResDelta.DemandedResources,
3337                  TryCand, Cand, ResourceDemand))
3338     return;
3339 
3340   // Avoid serializing long latency dependence chains.
3341   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3342     return;
3343   }
3344 
3345   // Fall through to original instruction order.
3346   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3347     TryCand.Reason = NodeOrder;
3348 }
3349 
3350 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3351   ReadyQueue &Q = Top.Available;
3352   for (SUnit *SU : Q) {
3353     SchedCandidate TryCand(Cand.Policy);
3354     TryCand.SU = SU;
3355     TryCand.AtTop = true;
3356     TryCand.initResourceDelta(DAG, SchedModel);
3357     tryCandidate(Cand, TryCand);
3358     if (TryCand.Reason != NoCand) {
3359       Cand.setBest(TryCand);
3360       LLVM_DEBUG(traceCandidate(Cand));
3361     }
3362   }
3363 }
3364 
3365 /// Pick the next node to schedule.
3366 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3367   if (DAG->top() == DAG->bottom()) {
3368     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3369     return nullptr;
3370   }
3371   SUnit *SU;
3372   do {
3373     SU = Top.pickOnlyChoice();
3374     if (SU) {
3375       tracePick(Only1, true);
3376     } else {
3377       CandPolicy NoPolicy;
3378       SchedCandidate TopCand(NoPolicy);
3379       // Set the top-down policy based on the state of the current top zone and
3380       // the instructions outside the zone, including the bottom zone.
3381       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3382       pickNodeFromQueue(TopCand);
3383       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3384       tracePick(TopCand);
3385       SU = TopCand.SU;
3386     }
3387   } while (SU->isScheduled);
3388 
3389   IsTopNode = true;
3390   Top.removeReady(SU);
3391 
3392   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3393                     << *SU->getInstr());
3394   return SU;
3395 }
3396 
3397 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3398 /// scheduled/remaining flags in the DAG nodes.
3399 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3400   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3401   Top.bumpNode(SU);
3402 }
3403 
3404 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3405   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3406                            /*RemoveKillFlags=*/true);
3407 }
3408 
3409 //===----------------------------------------------------------------------===//
3410 // ILP Scheduler. Currently for experimental analysis of heuristics.
3411 //===----------------------------------------------------------------------===//
3412 
3413 namespace {
3414 
3415 /// Order nodes by the ILP metric.
3416 struct ILPOrder {
3417   const SchedDFSResult *DFSResult = nullptr;
3418   const BitVector *ScheduledTrees = nullptr;
3419   bool MaximizeILP;
3420 
3421   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3422 
3423   /// Apply a less-than relation on node priority.
3424   ///
3425   /// (Return true if A comes after B in the Q.)
3426   bool operator()(const SUnit *A, const SUnit *B) const {
3427     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3428     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3429     if (SchedTreeA != SchedTreeB) {
3430       // Unscheduled trees have lower priority.
3431       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3432         return ScheduledTrees->test(SchedTreeB);
3433 
3434       // Trees with shallower connections have have lower priority.
3435       if (DFSResult->getSubtreeLevel(SchedTreeA)
3436           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3437         return DFSResult->getSubtreeLevel(SchedTreeA)
3438           < DFSResult->getSubtreeLevel(SchedTreeB);
3439       }
3440     }
3441     if (MaximizeILP)
3442       return DFSResult->getILP(A) < DFSResult->getILP(B);
3443     else
3444       return DFSResult->getILP(A) > DFSResult->getILP(B);
3445   }
3446 };
3447 
3448 /// Schedule based on the ILP metric.
3449 class ILPScheduler : public MachineSchedStrategy {
3450   ScheduleDAGMILive *DAG = nullptr;
3451   ILPOrder Cmp;
3452 
3453   std::vector<SUnit*> ReadyQ;
3454 
3455 public:
3456   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3457 
3458   void initialize(ScheduleDAGMI *dag) override {
3459     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3460     DAG = static_cast<ScheduleDAGMILive*>(dag);
3461     DAG->computeDFSResult();
3462     Cmp.DFSResult = DAG->getDFSResult();
3463     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3464     ReadyQ.clear();
3465   }
3466 
3467   void registerRoots() override {
3468     // Restore the heap in ReadyQ with the updated DFS results.
3469     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3470   }
3471 
3472   /// Implement MachineSchedStrategy interface.
3473   /// -----------------------------------------
3474 
3475   /// Callback to select the highest priority node from the ready Q.
3476   SUnit *pickNode(bool &IsTopNode) override {
3477     if (ReadyQ.empty()) return nullptr;
3478     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3479     SUnit *SU = ReadyQ.back();
3480     ReadyQ.pop_back();
3481     IsTopNode = false;
3482     LLVM_DEBUG(dbgs() << "Pick node "
3483                       << "SU(" << SU->NodeNum << ") "
3484                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3485                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3486                       << " @"
3487                       << DAG->getDFSResult()->getSubtreeLevel(
3488                              DAG->getDFSResult()->getSubtreeID(SU))
3489                       << '\n'
3490                       << "Scheduling " << *SU->getInstr());
3491     return SU;
3492   }
3493 
3494   /// Scheduler callback to notify that a new subtree is scheduled.
3495   void scheduleTree(unsigned SubtreeID) override {
3496     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3497   }
3498 
3499   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3500   /// DFSResults, and resort the priority Q.
3501   void schedNode(SUnit *SU, bool IsTopNode) override {
3502     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3503   }
3504 
3505   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3506 
3507   void releaseBottomNode(SUnit *SU) override {
3508     ReadyQ.push_back(SU);
3509     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3510   }
3511 };
3512 
3513 } // end anonymous namespace
3514 
3515 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3516   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3517 }
3518 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3519   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3520 }
3521 
3522 static MachineSchedRegistry ILPMaxRegistry(
3523   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3524 static MachineSchedRegistry ILPMinRegistry(
3525   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3526 
3527 //===----------------------------------------------------------------------===//
3528 // Machine Instruction Shuffler for Correctness Testing
3529 //===----------------------------------------------------------------------===//
3530 
3531 #ifndef NDEBUG
3532 namespace {
3533 
3534 /// Apply a less-than relation on the node order, which corresponds to the
3535 /// instruction order prior to scheduling. IsReverse implements greater-than.
3536 template<bool IsReverse>
3537 struct SUnitOrder {
3538   bool operator()(SUnit *A, SUnit *B) const {
3539     if (IsReverse)
3540       return A->NodeNum > B->NodeNum;
3541     else
3542       return A->NodeNum < B->NodeNum;
3543   }
3544 };
3545 
3546 /// Reorder instructions as much as possible.
3547 class InstructionShuffler : public MachineSchedStrategy {
3548   bool IsAlternating;
3549   bool IsTopDown;
3550 
3551   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3552   // gives nodes with a higher number higher priority causing the latest
3553   // instructions to be scheduled first.
3554   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3555     TopQ;
3556 
3557   // When scheduling bottom-up, use greater-than as the queue priority.
3558   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3559     BottomQ;
3560 
3561 public:
3562   InstructionShuffler(bool alternate, bool topdown)
3563     : IsAlternating(alternate), IsTopDown(topdown) {}
3564 
3565   void initialize(ScheduleDAGMI*) override {
3566     TopQ.clear();
3567     BottomQ.clear();
3568   }
3569 
3570   /// Implement MachineSchedStrategy interface.
3571   /// -----------------------------------------
3572 
3573   SUnit *pickNode(bool &IsTopNode) override {
3574     SUnit *SU;
3575     if (IsTopDown) {
3576       do {
3577         if (TopQ.empty()) return nullptr;
3578         SU = TopQ.top();
3579         TopQ.pop();
3580       } while (SU->isScheduled);
3581       IsTopNode = true;
3582     } else {
3583       do {
3584         if (BottomQ.empty()) return nullptr;
3585         SU = BottomQ.top();
3586         BottomQ.pop();
3587       } while (SU->isScheduled);
3588       IsTopNode = false;
3589     }
3590     if (IsAlternating)
3591       IsTopDown = !IsTopDown;
3592     return SU;
3593   }
3594 
3595   void schedNode(SUnit *SU, bool IsTopNode) override {}
3596 
3597   void releaseTopNode(SUnit *SU) override {
3598     TopQ.push(SU);
3599   }
3600   void releaseBottomNode(SUnit *SU) override {
3601     BottomQ.push(SU);
3602   }
3603 };
3604 
3605 } // end anonymous namespace
3606 
3607 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3608   bool Alternate = !ForceTopDown && !ForceBottomUp;
3609   bool TopDown = !ForceBottomUp;
3610   assert((TopDown || !ForceTopDown) &&
3611          "-misched-topdown incompatible with -misched-bottomup");
3612   return new ScheduleDAGMILive(
3613       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3614 }
3615 
3616 static MachineSchedRegistry ShufflerRegistry(
3617   "shuffle", "Shuffle machine instructions alternating directions",
3618   createInstructionShuffler);
3619 #endif // !NDEBUG
3620 
3621 //===----------------------------------------------------------------------===//
3622 // GraphWriter support for ScheduleDAGMILive.
3623 //===----------------------------------------------------------------------===//
3624 
3625 #ifndef NDEBUG
3626 namespace llvm {
3627 
3628 template<> struct GraphTraits<
3629   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3630 
3631 template<>
3632 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3633   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3634 
3635   static std::string getGraphName(const ScheduleDAG *G) {
3636     return G->MF.getName();
3637   }
3638 
3639   static bool renderGraphFromBottomUp() {
3640     return true;
3641   }
3642 
3643   static bool isNodeHidden(const SUnit *Node) {
3644     if (ViewMISchedCutoff == 0)
3645       return false;
3646     return (Node->Preds.size() > ViewMISchedCutoff
3647          || Node->Succs.size() > ViewMISchedCutoff);
3648   }
3649 
3650   /// If you want to override the dot attributes printed for a particular
3651   /// edge, override this method.
3652   static std::string getEdgeAttributes(const SUnit *Node,
3653                                        SUnitIterator EI,
3654                                        const ScheduleDAG *Graph) {
3655     if (EI.isArtificialDep())
3656       return "color=cyan,style=dashed";
3657     if (EI.isCtrlDep())
3658       return "color=blue,style=dashed";
3659     return "";
3660   }
3661 
3662   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3663     std::string Str;
3664     raw_string_ostream SS(Str);
3665     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3666     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3667       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3668     SS << "SU:" << SU->NodeNum;
3669     if (DFS)
3670       SS << " I:" << DFS->getNumInstrs(SU);
3671     return SS.str();
3672   }
3673 
3674   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3675     return G->getGraphNodeLabel(SU);
3676   }
3677 
3678   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3679     std::string Str("shape=Mrecord");
3680     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3681     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3682       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3683     if (DFS) {
3684       Str += ",style=filled,fillcolor=\"#";
3685       Str += DOT::getColorString(DFS->getSubtreeID(N));
3686       Str += '"';
3687     }
3688     return Str;
3689   }
3690 };
3691 
3692 } // end namespace llvm
3693 #endif // NDEBUG
3694 
3695 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3696 /// rendered using 'dot'.
3697 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3698 #ifndef NDEBUG
3699   ViewGraph(this, Name, false, Title);
3700 #else
3701   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3702          << "systems with Graphviz or gv!\n";
3703 #endif  // NDEBUG
3704 }
3705 
3706 /// Out-of-line implementation with no arguments is handy for gdb.
3707 void ScheduleDAGMI::viewGraph() {
3708   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3709 }
3710