1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervals.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachinePassRegistry.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 } // end namespace llvm 86 87 #ifndef NDEBUG 88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 89 cl::desc("Pop up a window to show MISched dags after they are processed")); 90 91 /// In some situations a few uninteresting nodes depend on nearly all other 92 /// nodes in the graph, provide a cutoff to hide them. 93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 94 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 95 96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 98 99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 100 cl::desc("Only schedule this function")); 101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 102 cl::desc("Only schedule this MBB#")); 103 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 104 cl::desc("Print schedule DAGs")); 105 #else 106 static const bool ViewMISchedDAGs = false; 107 static const bool PrintDAGs = false; 108 #endif // NDEBUG 109 110 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 111 /// size of the ready lists. 112 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 113 cl::desc("Limit ready list to N instructions"), cl::init(256)); 114 115 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 116 cl::desc("Enable register pressure scheduling."), cl::init(true)); 117 118 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 119 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 120 121 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 122 cl::desc("Enable memop clustering."), 123 cl::init(true)); 124 125 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 126 cl::desc("Verify machine instrs before and after machine scheduling")); 127 128 // DAG subtrees must have at least this many nodes. 129 static const unsigned MinSubtreeSize = 8; 130 131 // Pin the vtables to this file. 132 void MachineSchedStrategy::anchor() {} 133 134 void ScheduleDAGMutation::anchor() {} 135 136 //===----------------------------------------------------------------------===// 137 // Machine Instruction Scheduling Pass and Registry 138 //===----------------------------------------------------------------------===// 139 140 MachineSchedContext::MachineSchedContext() { 141 RegClassInfo = new RegisterClassInfo(); 142 } 143 144 MachineSchedContext::~MachineSchedContext() { 145 delete RegClassInfo; 146 } 147 148 namespace { 149 150 /// Base class for a machine scheduler class that can run at any point. 151 class MachineSchedulerBase : public MachineSchedContext, 152 public MachineFunctionPass { 153 public: 154 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 155 156 void print(raw_ostream &O, const Module* = nullptr) const override; 157 158 protected: 159 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 160 }; 161 162 /// MachineScheduler runs after coalescing and before register allocation. 163 class MachineScheduler : public MachineSchedulerBase { 164 public: 165 MachineScheduler(); 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override; 168 169 bool runOnMachineFunction(MachineFunction&) override; 170 171 static char ID; // Class identification, replacement for typeinfo 172 173 protected: 174 ScheduleDAGInstrs *createMachineScheduler(); 175 }; 176 177 /// PostMachineScheduler runs after shortly before code emission. 178 class PostMachineScheduler : public MachineSchedulerBase { 179 public: 180 PostMachineScheduler(); 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override; 183 184 bool runOnMachineFunction(MachineFunction&) override; 185 186 static char ID; // Class identification, replacement for typeinfo 187 188 protected: 189 ScheduleDAGInstrs *createPostMachineScheduler(); 190 }; 191 192 } // end anonymous namespace 193 194 char MachineScheduler::ID = 0; 195 196 char &llvm::MachineSchedulerID = MachineScheduler::ID; 197 198 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 199 "Machine Instruction Scheduler", false, false) 200 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 201 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 202 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 203 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 204 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 205 "Machine Instruction Scheduler", false, false) 206 207 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 208 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 209 } 210 211 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 212 AU.setPreservesCFG(); 213 AU.addRequiredID(MachineDominatorsID); 214 AU.addRequired<MachineLoopInfo>(); 215 AU.addRequired<AAResultsWrapperPass>(); 216 AU.addRequired<TargetPassConfig>(); 217 AU.addRequired<SlotIndexes>(); 218 AU.addPreserved<SlotIndexes>(); 219 AU.addRequired<LiveIntervals>(); 220 AU.addPreserved<LiveIntervals>(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 } 223 224 char PostMachineScheduler::ID = 0; 225 226 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 227 228 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 229 "PostRA Machine Instruction Scheduler", false, false) 230 231 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 232 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 233 } 234 235 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 236 AU.setPreservesCFG(); 237 AU.addRequiredID(MachineDominatorsID); 238 AU.addRequired<MachineLoopInfo>(); 239 AU.addRequired<TargetPassConfig>(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 } 242 243 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 244 MachineSchedRegistry::Registry; 245 246 /// A dummy default scheduler factory indicates whether the scheduler 247 /// is overridden on the command line. 248 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 249 return nullptr; 250 } 251 252 /// MachineSchedOpt allows command line selection of the scheduler. 253 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 254 RegisterPassParser<MachineSchedRegistry>> 255 MachineSchedOpt("misched", 256 cl::init(&useDefaultMachineSched), cl::Hidden, 257 cl::desc("Machine instruction scheduler to use")); 258 259 static MachineSchedRegistry 260 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 261 useDefaultMachineSched); 262 263 static cl::opt<bool> EnableMachineSched( 264 "enable-misched", 265 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 266 cl::Hidden); 267 268 static cl::opt<bool> EnablePostRAMachineSched( 269 "enable-post-misched", 270 cl::desc("Enable the post-ra machine instruction scheduling pass."), 271 cl::init(true), cl::Hidden); 272 273 /// Decrement this iterator until reaching the top or a non-debug instr. 274 static MachineBasicBlock::const_iterator 275 priorNonDebug(MachineBasicBlock::const_iterator I, 276 MachineBasicBlock::const_iterator Beg) { 277 assert(I != Beg && "reached the top of the region, cannot decrement"); 278 while (--I != Beg) { 279 if (!I->isDebugInstr()) 280 break; 281 } 282 return I; 283 } 284 285 /// Non-const version. 286 static MachineBasicBlock::iterator 287 priorNonDebug(MachineBasicBlock::iterator I, 288 MachineBasicBlock::const_iterator Beg) { 289 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 290 .getNonConstIterator(); 291 } 292 293 /// If this iterator is a debug value, increment until reaching the End or a 294 /// non-debug instruction. 295 static MachineBasicBlock::const_iterator 296 nextIfDebug(MachineBasicBlock::const_iterator I, 297 MachineBasicBlock::const_iterator End) { 298 for(; I != End; ++I) { 299 if (!I->isDebugInstr()) 300 break; 301 } 302 return I; 303 } 304 305 /// Non-const version. 306 static MachineBasicBlock::iterator 307 nextIfDebug(MachineBasicBlock::iterator I, 308 MachineBasicBlock::const_iterator End) { 309 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 310 .getNonConstIterator(); 311 } 312 313 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 314 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 315 // Select the scheduler, or set the default. 316 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 317 if (Ctor != useDefaultMachineSched) 318 return Ctor(this); 319 320 // Get the default scheduler set by the target for this function. 321 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 322 if (Scheduler) 323 return Scheduler; 324 325 // Default to GenericScheduler. 326 return createGenericSchedLive(this); 327 } 328 329 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 330 /// the caller. We don't have a command line option to override the postRA 331 /// scheduler. The Target must configure it. 332 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 333 // Get the postRA scheduler set by the target for this function. 334 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 335 if (Scheduler) 336 return Scheduler; 337 338 // Default to GenericScheduler. 339 return createGenericSchedPostRA(this); 340 } 341 342 /// Top-level MachineScheduler pass driver. 343 /// 344 /// Visit blocks in function order. Divide each block into scheduling regions 345 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 346 /// consistent with the DAG builder, which traverses the interior of the 347 /// scheduling regions bottom-up. 348 /// 349 /// This design avoids exposing scheduling boundaries to the DAG builder, 350 /// simplifying the DAG builder's support for "special" target instructions. 351 /// At the same time the design allows target schedulers to operate across 352 /// scheduling boundaries, for example to bundle the boundary instructions 353 /// without reordering them. This creates complexity, because the target 354 /// scheduler must update the RegionBegin and RegionEnd positions cached by 355 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 356 /// design would be to split blocks at scheduling boundaries, but LLVM has a 357 /// general bias against block splitting purely for implementation simplicity. 358 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 359 if (skipFunction(mf.getFunction())) 360 return false; 361 362 if (EnableMachineSched.getNumOccurrences()) { 363 if (!EnableMachineSched) 364 return false; 365 } else if (!mf.getSubtarget().enableMachineScheduler()) 366 return false; 367 368 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 369 370 // Initialize the context of the pass. 371 MF = &mf; 372 MLI = &getAnalysis<MachineLoopInfo>(); 373 MDT = &getAnalysis<MachineDominatorTree>(); 374 PassConfig = &getAnalysis<TargetPassConfig>(); 375 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 376 377 LIS = &getAnalysis<LiveIntervals>(); 378 379 if (VerifyScheduling) { 380 LLVM_DEBUG(LIS->dump()); 381 MF->verify(this, "Before machine scheduling."); 382 } 383 RegClassInfo->runOnMachineFunction(*MF); 384 385 // Instantiate the selected scheduler for this target, function, and 386 // optimization level. 387 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 388 scheduleRegions(*Scheduler, false); 389 390 LLVM_DEBUG(LIS->dump()); 391 if (VerifyScheduling) 392 MF->verify(this, "After machine scheduling."); 393 return true; 394 } 395 396 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 397 if (skipFunction(mf.getFunction())) 398 return false; 399 400 if (EnablePostRAMachineSched.getNumOccurrences()) { 401 if (!EnablePostRAMachineSched) 402 return false; 403 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 404 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 405 return false; 406 } 407 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 408 409 // Initialize the context of the pass. 410 MF = &mf; 411 MLI = &getAnalysis<MachineLoopInfo>(); 412 PassConfig = &getAnalysis<TargetPassConfig>(); 413 414 if (VerifyScheduling) 415 MF->verify(this, "Before post machine scheduling."); 416 417 // Instantiate the selected scheduler for this target, function, and 418 // optimization level. 419 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 420 scheduleRegions(*Scheduler, true); 421 422 if (VerifyScheduling) 423 MF->verify(this, "After post machine scheduling."); 424 return true; 425 } 426 427 /// Return true of the given instruction should not be included in a scheduling 428 /// region. 429 /// 430 /// MachineScheduler does not currently support scheduling across calls. To 431 /// handle calls, the DAG builder needs to be modified to create register 432 /// anti/output dependencies on the registers clobbered by the call's regmask 433 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 434 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 435 /// the boundary, but there would be no benefit to postRA scheduling across 436 /// calls this late anyway. 437 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 438 MachineBasicBlock *MBB, 439 MachineFunction *MF, 440 const TargetInstrInfo *TII) { 441 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 442 } 443 444 /// A region of an MBB for scheduling. 445 namespace { 446 struct SchedRegion { 447 /// RegionBegin is the first instruction in the scheduling region, and 448 /// RegionEnd is either MBB->end() or the scheduling boundary after the 449 /// last instruction in the scheduling region. These iterators cannot refer 450 /// to instructions outside of the identified scheduling region because 451 /// those may be reordered before scheduling this region. 452 MachineBasicBlock::iterator RegionBegin; 453 MachineBasicBlock::iterator RegionEnd; 454 unsigned NumRegionInstrs; 455 456 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 457 unsigned N) : 458 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 459 }; 460 } // end anonymous namespace 461 462 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 463 464 static void 465 getSchedRegions(MachineBasicBlock *MBB, 466 MBBRegionsVector &Regions, 467 bool RegionsTopDown) { 468 MachineFunction *MF = MBB->getParent(); 469 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 470 471 MachineBasicBlock::iterator I = nullptr; 472 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 473 RegionEnd != MBB->begin(); RegionEnd = I) { 474 475 // Avoid decrementing RegionEnd for blocks with no terminator. 476 if (RegionEnd != MBB->end() || 477 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 478 --RegionEnd; 479 } 480 481 // The next region starts above the previous region. Look backward in the 482 // instruction stream until we find the nearest boundary. 483 unsigned NumRegionInstrs = 0; 484 I = RegionEnd; 485 for (;I != MBB->begin(); --I) { 486 MachineInstr &MI = *std::prev(I); 487 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 488 break; 489 if (!MI.isDebugInstr()) { 490 // MBB::size() uses instr_iterator to count. Here we need a bundle to 491 // count as a single instruction. 492 ++NumRegionInstrs; 493 } 494 } 495 496 // It's possible we found a scheduling region that only has debug 497 // instructions. Don't bother scheduling these. 498 if (NumRegionInstrs != 0) 499 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 500 } 501 502 if (RegionsTopDown) 503 std::reverse(Regions.begin(), Regions.end()); 504 } 505 506 /// Main driver for both MachineScheduler and PostMachineScheduler. 507 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 508 bool FixKillFlags) { 509 // Visit all machine basic blocks. 510 // 511 // TODO: Visit blocks in global postorder or postorder within the bottom-up 512 // loop tree. Then we can optionally compute global RegPressure. 513 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 514 MBB != MBBEnd; ++MBB) { 515 516 Scheduler.startBlock(&*MBB); 517 518 #ifndef NDEBUG 519 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 520 continue; 521 if (SchedOnlyBlock.getNumOccurrences() 522 && (int)SchedOnlyBlock != MBB->getNumber()) 523 continue; 524 #endif 525 526 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 527 // points to the scheduling boundary at the bottom of the region. The DAG 528 // does not include RegionEnd, but the region does (i.e. the next 529 // RegionEnd is above the previous RegionBegin). If the current block has 530 // no terminator then RegionEnd == MBB->end() for the bottom region. 531 // 532 // All the regions of MBB are first found and stored in MBBRegions, which 533 // will be processed (MBB) top-down if initialized with true. 534 // 535 // The Scheduler may insert instructions during either schedule() or 536 // exitRegion(), even for empty regions. So the local iterators 'I' and 537 // 'RegionEnd' are invalid across these calls. Instructions must not be 538 // added to other regions than the current one without updating MBBRegions. 539 540 MBBRegionsVector MBBRegions; 541 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 542 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 543 R != MBBRegions.end(); ++R) { 544 MachineBasicBlock::iterator I = R->RegionBegin; 545 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 546 unsigned NumRegionInstrs = R->NumRegionInstrs; 547 548 // Notify the scheduler of the region, even if we may skip scheduling 549 // it. Perhaps it still needs to be bundled. 550 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 551 552 // Skip empty scheduling regions (0 or 1 schedulable instructions). 553 if (I == RegionEnd || I == std::prev(RegionEnd)) { 554 // Close the current region. Bundle the terminator if needed. 555 // This invalidates 'RegionEnd' and 'I'. 556 Scheduler.exitRegion(); 557 continue; 558 } 559 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 560 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 561 << " " << MBB->getName() << "\n From: " << *I 562 << " To: "; 563 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 564 else dbgs() << "End"; 565 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 566 if (DumpCriticalPathLength) { 567 errs() << MF->getName(); 568 errs() << ":%bb. " << MBB->getNumber(); 569 errs() << " " << MBB->getName() << " \n"; 570 } 571 572 // Schedule a region: possibly reorder instructions. 573 // This invalidates the original region iterators. 574 Scheduler.schedule(); 575 576 // Close the current region. 577 Scheduler.exitRegion(); 578 } 579 Scheduler.finishBlock(); 580 // FIXME: Ideally, no further passes should rely on kill flags. However, 581 // thumb2 size reduction is currently an exception, so the PostMIScheduler 582 // needs to do this. 583 if (FixKillFlags) 584 Scheduler.fixupKills(*MBB); 585 } 586 Scheduler.finalizeSchedule(); 587 } 588 589 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 590 // unimplemented 591 } 592 593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 594 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 595 dbgs() << "Queue " << Name << ": "; 596 for (const SUnit *SU : Queue) 597 dbgs() << SU->NodeNum << " "; 598 dbgs() << "\n"; 599 } 600 #endif 601 602 //===----------------------------------------------------------------------===// 603 // ScheduleDAGMI - Basic machine instruction scheduling. This is 604 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 605 // virtual registers. 606 // ===----------------------------------------------------------------------===/ 607 608 // Provide a vtable anchor. 609 ScheduleDAGMI::~ScheduleDAGMI() = default; 610 611 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 612 /// NumPredsLeft reaches zero, release the successor node. 613 /// 614 /// FIXME: Adjust SuccSU height based on MinLatency. 615 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 616 SUnit *SuccSU = SuccEdge->getSUnit(); 617 618 if (SuccEdge->isWeak()) { 619 --SuccSU->WeakPredsLeft; 620 if (SuccEdge->isCluster()) 621 NextClusterSucc = SuccSU; 622 return; 623 } 624 #ifndef NDEBUG 625 if (SuccSU->NumPredsLeft == 0) { 626 dbgs() << "*** Scheduling failed! ***\n"; 627 dumpNode(*SuccSU); 628 dbgs() << " has been released too many times!\n"; 629 llvm_unreachable(nullptr); 630 } 631 #endif 632 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 633 // CurrCycle may have advanced since then. 634 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 635 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 636 637 --SuccSU->NumPredsLeft; 638 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 639 SchedImpl->releaseTopNode(SuccSU); 640 } 641 642 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 643 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 644 for (SDep &Succ : SU->Succs) 645 releaseSucc(SU, &Succ); 646 } 647 648 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 649 /// NumSuccsLeft reaches zero, release the predecessor node. 650 /// 651 /// FIXME: Adjust PredSU height based on MinLatency. 652 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 653 SUnit *PredSU = PredEdge->getSUnit(); 654 655 if (PredEdge->isWeak()) { 656 --PredSU->WeakSuccsLeft; 657 if (PredEdge->isCluster()) 658 NextClusterPred = PredSU; 659 return; 660 } 661 #ifndef NDEBUG 662 if (PredSU->NumSuccsLeft == 0) { 663 dbgs() << "*** Scheduling failed! ***\n"; 664 dumpNode(*PredSU); 665 dbgs() << " has been released too many times!\n"; 666 llvm_unreachable(nullptr); 667 } 668 #endif 669 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 670 // CurrCycle may have advanced since then. 671 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 672 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 673 674 --PredSU->NumSuccsLeft; 675 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 676 SchedImpl->releaseBottomNode(PredSU); 677 } 678 679 /// releasePredecessors - Call releasePred on each of SU's predecessors. 680 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 681 for (SDep &Pred : SU->Preds) 682 releasePred(SU, &Pred); 683 } 684 685 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 686 ScheduleDAGInstrs::startBlock(bb); 687 SchedImpl->enterMBB(bb); 688 } 689 690 void ScheduleDAGMI::finishBlock() { 691 SchedImpl->leaveMBB(); 692 ScheduleDAGInstrs::finishBlock(); 693 } 694 695 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 696 /// crossing a scheduling boundary. [begin, end) includes all instructions in 697 /// the region, including the boundary itself and single-instruction regions 698 /// that don't get scheduled. 699 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 700 MachineBasicBlock::iterator begin, 701 MachineBasicBlock::iterator end, 702 unsigned regioninstrs) 703 { 704 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 705 706 SchedImpl->initPolicy(begin, end, regioninstrs); 707 } 708 709 /// This is normally called from the main scheduler loop but may also be invoked 710 /// by the scheduling strategy to perform additional code motion. 711 void ScheduleDAGMI::moveInstruction( 712 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 713 // Advance RegionBegin if the first instruction moves down. 714 if (&*RegionBegin == MI) 715 ++RegionBegin; 716 717 // Update the instruction stream. 718 BB->splice(InsertPos, BB, MI); 719 720 // Update LiveIntervals 721 if (LIS) 722 LIS->handleMove(*MI, /*UpdateFlags=*/true); 723 724 // Recede RegionBegin if an instruction moves above the first. 725 if (RegionBegin == InsertPos) 726 RegionBegin = MI; 727 } 728 729 bool ScheduleDAGMI::checkSchedLimit() { 730 #ifndef NDEBUG 731 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 732 CurrentTop = CurrentBottom; 733 return false; 734 } 735 ++NumInstrsScheduled; 736 #endif 737 return true; 738 } 739 740 /// Per-region scheduling driver, called back from 741 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 742 /// does not consider liveness or register pressure. It is useful for PostRA 743 /// scheduling and potentially other custom schedulers. 744 void ScheduleDAGMI::schedule() { 745 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 746 LLVM_DEBUG(SchedImpl->dumpPolicy()); 747 748 // Build the DAG. 749 buildSchedGraph(AA); 750 751 postprocessDAG(); 752 753 SmallVector<SUnit*, 8> TopRoots, BotRoots; 754 findRootsAndBiasEdges(TopRoots, BotRoots); 755 756 LLVM_DEBUG(dump()); 757 if (PrintDAGs) dump(); 758 if (ViewMISchedDAGs) viewGraph(); 759 760 // Initialize the strategy before modifying the DAG. 761 // This may initialize a DFSResult to be used for queue priority. 762 SchedImpl->initialize(this); 763 764 // Initialize ready queues now that the DAG and priority data are finalized. 765 initQueues(TopRoots, BotRoots); 766 767 bool IsTopNode = false; 768 while (true) { 769 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 770 SUnit *SU = SchedImpl->pickNode(IsTopNode); 771 if (!SU) break; 772 773 assert(!SU->isScheduled && "Node already scheduled"); 774 if (!checkSchedLimit()) 775 break; 776 777 MachineInstr *MI = SU->getInstr(); 778 if (IsTopNode) { 779 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 780 if (&*CurrentTop == MI) 781 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 782 else 783 moveInstruction(MI, CurrentTop); 784 } else { 785 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 786 MachineBasicBlock::iterator priorII = 787 priorNonDebug(CurrentBottom, CurrentTop); 788 if (&*priorII == MI) 789 CurrentBottom = priorII; 790 else { 791 if (&*CurrentTop == MI) 792 CurrentTop = nextIfDebug(++CurrentTop, priorII); 793 moveInstruction(MI, CurrentBottom); 794 CurrentBottom = MI; 795 } 796 } 797 // Notify the scheduling strategy before updating the DAG. 798 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 799 // runs, it can then use the accurate ReadyCycle time to determine whether 800 // newly released nodes can move to the readyQ. 801 SchedImpl->schedNode(SU, IsTopNode); 802 803 updateQueues(SU, IsTopNode); 804 } 805 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 806 807 placeDebugValues(); 808 809 LLVM_DEBUG({ 810 dbgs() << "*** Final schedule for " 811 << printMBBReference(*begin()->getParent()) << " ***\n"; 812 dumpSchedule(); 813 dbgs() << '\n'; 814 }); 815 } 816 817 /// Apply each ScheduleDAGMutation step in order. 818 void ScheduleDAGMI::postprocessDAG() { 819 for (auto &m : Mutations) 820 m->apply(this); 821 } 822 823 void ScheduleDAGMI:: 824 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 825 SmallVectorImpl<SUnit*> &BotRoots) { 826 for (SUnit &SU : SUnits) { 827 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 828 829 // Order predecessors so DFSResult follows the critical path. 830 SU.biasCriticalPath(); 831 832 // A SUnit is ready to top schedule if it has no predecessors. 833 if (!SU.NumPredsLeft) 834 TopRoots.push_back(&SU); 835 // A SUnit is ready to bottom schedule if it has no successors. 836 if (!SU.NumSuccsLeft) 837 BotRoots.push_back(&SU); 838 } 839 ExitSU.biasCriticalPath(); 840 } 841 842 /// Identify DAG roots and setup scheduler queues. 843 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 844 ArrayRef<SUnit*> BotRoots) { 845 NextClusterSucc = nullptr; 846 NextClusterPred = nullptr; 847 848 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 849 // 850 // Nodes with unreleased weak edges can still be roots. 851 // Release top roots in forward order. 852 for (SUnit *SU : TopRoots) 853 SchedImpl->releaseTopNode(SU); 854 855 // Release bottom roots in reverse order so the higher priority nodes appear 856 // first. This is more natural and slightly more efficient. 857 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 858 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 859 SchedImpl->releaseBottomNode(*I); 860 } 861 862 releaseSuccessors(&EntrySU); 863 releasePredecessors(&ExitSU); 864 865 SchedImpl->registerRoots(); 866 867 // Advance past initial DebugValues. 868 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 869 CurrentBottom = RegionEnd; 870 } 871 872 /// Update scheduler queues after scheduling an instruction. 873 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 874 // Release dependent instructions for scheduling. 875 if (IsTopNode) 876 releaseSuccessors(SU); 877 else 878 releasePredecessors(SU); 879 880 SU->isScheduled = true; 881 } 882 883 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 884 void ScheduleDAGMI::placeDebugValues() { 885 // If first instruction was a DBG_VALUE then put it back. 886 if (FirstDbgValue) { 887 BB->splice(RegionBegin, BB, FirstDbgValue); 888 RegionBegin = FirstDbgValue; 889 } 890 891 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 892 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 893 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 894 MachineInstr *DbgValue = P.first; 895 MachineBasicBlock::iterator OrigPrevMI = P.second; 896 if (&*RegionBegin == DbgValue) 897 ++RegionBegin; 898 BB->splice(++OrigPrevMI, BB, DbgValue); 899 if (OrigPrevMI == std::prev(RegionEnd)) 900 RegionEnd = DbgValue; 901 } 902 DbgValues.clear(); 903 FirstDbgValue = nullptr; 904 } 905 906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 907 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 908 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 909 if (SUnit *SU = getSUnit(&(*MI))) 910 dumpNode(*SU); 911 else 912 dbgs() << "Missing SUnit\n"; 913 } 914 } 915 #endif 916 917 //===----------------------------------------------------------------------===// 918 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 919 // preservation. 920 //===----------------------------------------------------------------------===// 921 922 ScheduleDAGMILive::~ScheduleDAGMILive() { 923 delete DFSResult; 924 } 925 926 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 927 const MachineInstr &MI = *SU.getInstr(); 928 for (const MachineOperand &MO : MI.operands()) { 929 if (!MO.isReg()) 930 continue; 931 if (!MO.readsReg()) 932 continue; 933 if (TrackLaneMasks && !MO.isUse()) 934 continue; 935 936 unsigned Reg = MO.getReg(); 937 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 938 continue; 939 940 // Ignore re-defs. 941 if (TrackLaneMasks) { 942 bool FoundDef = false; 943 for (const MachineOperand &MO2 : MI.operands()) { 944 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 945 FoundDef = true; 946 break; 947 } 948 } 949 if (FoundDef) 950 continue; 951 } 952 953 // Record this local VReg use. 954 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 955 for (; UI != VRegUses.end(); ++UI) { 956 if (UI->SU == &SU) 957 break; 958 } 959 if (UI == VRegUses.end()) 960 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 961 } 962 } 963 964 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 965 /// crossing a scheduling boundary. [begin, end) includes all instructions in 966 /// the region, including the boundary itself and single-instruction regions 967 /// that don't get scheduled. 968 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 969 MachineBasicBlock::iterator begin, 970 MachineBasicBlock::iterator end, 971 unsigned regioninstrs) 972 { 973 // ScheduleDAGMI initializes SchedImpl's per-region policy. 974 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 975 976 // For convenience remember the end of the liveness region. 977 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 978 979 SUPressureDiffs.clear(); 980 981 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 982 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 983 984 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 985 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 986 } 987 988 // Setup the register pressure trackers for the top scheduled top and bottom 989 // scheduled regions. 990 void ScheduleDAGMILive::initRegPressure() { 991 VRegUses.clear(); 992 VRegUses.setUniverse(MRI.getNumVirtRegs()); 993 for (SUnit &SU : SUnits) 994 collectVRegUses(SU); 995 996 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 997 ShouldTrackLaneMasks, false); 998 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 999 ShouldTrackLaneMasks, false); 1000 1001 // Close the RPTracker to finalize live ins. 1002 RPTracker.closeRegion(); 1003 1004 LLVM_DEBUG(RPTracker.dump()); 1005 1006 // Initialize the live ins and live outs. 1007 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1008 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1009 1010 // Close one end of the tracker so we can call 1011 // getMaxUpward/DownwardPressureDelta before advancing across any 1012 // instructions. This converts currently live regs into live ins/outs. 1013 TopRPTracker.closeTop(); 1014 BotRPTracker.closeBottom(); 1015 1016 BotRPTracker.initLiveThru(RPTracker); 1017 if (!BotRPTracker.getLiveThru().empty()) { 1018 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1019 LLVM_DEBUG(dbgs() << "Live Thru: "; 1020 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1021 }; 1022 1023 // For each live out vreg reduce the pressure change associated with other 1024 // uses of the same vreg below the live-out reaching def. 1025 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1026 1027 // Account for liveness generated by the region boundary. 1028 if (LiveRegionEnd != RegionEnd) { 1029 SmallVector<RegisterMaskPair, 8> LiveUses; 1030 BotRPTracker.recede(&LiveUses); 1031 updatePressureDiffs(LiveUses); 1032 } 1033 1034 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1035 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1036 dbgs() << "Bottom Pressure:\n"; 1037 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1038 1039 assert((BotRPTracker.getPos() == RegionEnd || 1040 (RegionEnd->isDebugInstr() && 1041 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1042 "Can't find the region bottom"); 1043 1044 // Cache the list of excess pressure sets in this region. This will also track 1045 // the max pressure in the scheduled code for these sets. 1046 RegionCriticalPSets.clear(); 1047 const std::vector<unsigned> &RegionPressure = 1048 RPTracker.getPressure().MaxSetPressure; 1049 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1050 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1051 if (RegionPressure[i] > Limit) { 1052 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1053 << " Actual " << RegionPressure[i] << "\n"); 1054 RegionCriticalPSets.push_back(PressureChange(i)); 1055 } 1056 } 1057 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1058 for (const PressureChange &RCPS 1059 : RegionCriticalPSets) dbgs() 1060 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1061 dbgs() << "\n"); 1062 } 1063 1064 void ScheduleDAGMILive:: 1065 updateScheduledPressure(const SUnit *SU, 1066 const std::vector<unsigned> &NewMaxPressure) { 1067 const PressureDiff &PDiff = getPressureDiff(SU); 1068 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1069 for (const PressureChange &PC : PDiff) { 1070 if (!PC.isValid()) 1071 break; 1072 unsigned ID = PC.getPSet(); 1073 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1074 ++CritIdx; 1075 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1076 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1077 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1078 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1079 } 1080 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1081 if (NewMaxPressure[ID] >= Limit - 2) { 1082 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1083 << NewMaxPressure[ID] 1084 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1085 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1086 << " livethru)\n"); 1087 } 1088 } 1089 } 1090 1091 /// Update the PressureDiff array for liveness after scheduling this 1092 /// instruction. 1093 void ScheduleDAGMILive::updatePressureDiffs( 1094 ArrayRef<RegisterMaskPair> LiveUses) { 1095 for (const RegisterMaskPair &P : LiveUses) { 1096 unsigned Reg = P.RegUnit; 1097 /// FIXME: Currently assuming single-use physregs. 1098 if (!TRI->isVirtualRegister(Reg)) 1099 continue; 1100 1101 if (ShouldTrackLaneMasks) { 1102 // If the register has just become live then other uses won't change 1103 // this fact anymore => decrement pressure. 1104 // If the register has just become dead then other uses make it come 1105 // back to life => increment pressure. 1106 bool Decrement = P.LaneMask.any(); 1107 1108 for (const VReg2SUnit &V2SU 1109 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1110 SUnit &SU = *V2SU.SU; 1111 if (SU.isScheduled || &SU == &ExitSU) 1112 continue; 1113 1114 PressureDiff &PDiff = getPressureDiff(&SU); 1115 PDiff.addPressureChange(Reg, Decrement, &MRI); 1116 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1117 << printReg(Reg, TRI) << ':' 1118 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1119 dbgs() << " to "; PDiff.dump(*TRI);); 1120 } 1121 } else { 1122 assert(P.LaneMask.any()); 1123 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1124 // This may be called before CurrentBottom has been initialized. However, 1125 // BotRPTracker must have a valid position. We want the value live into the 1126 // instruction or live out of the block, so ask for the previous 1127 // instruction's live-out. 1128 const LiveInterval &LI = LIS->getInterval(Reg); 1129 VNInfo *VNI; 1130 MachineBasicBlock::const_iterator I = 1131 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1132 if (I == BB->end()) 1133 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1134 else { 1135 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1136 VNI = LRQ.valueIn(); 1137 } 1138 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1139 assert(VNI && "No live value at use."); 1140 for (const VReg2SUnit &V2SU 1141 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1142 SUnit *SU = V2SU.SU; 1143 // If this use comes before the reaching def, it cannot be a last use, 1144 // so decrease its pressure change. 1145 if (!SU->isScheduled && SU != &ExitSU) { 1146 LiveQueryResult LRQ = 1147 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1148 if (LRQ.valueIn() == VNI) { 1149 PressureDiff &PDiff = getPressureDiff(SU); 1150 PDiff.addPressureChange(Reg, true, &MRI); 1151 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1152 << *SU->getInstr(); 1153 dbgs() << " to "; PDiff.dump(*TRI);); 1154 } 1155 } 1156 } 1157 } 1158 } 1159 } 1160 1161 void ScheduleDAGMILive::dump() const { 1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1163 if (EntrySU.getInstr() != nullptr) 1164 dumpNodeAll(EntrySU); 1165 for (const SUnit &SU : SUnits) { 1166 dumpNodeAll(SU); 1167 if (ShouldTrackPressure) { 1168 dbgs() << " Pressure Diff : "; 1169 getPressureDiff(&SU).dump(*TRI); 1170 } 1171 dbgs() << " Single Issue : "; 1172 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1173 SchedModel.mustEndGroup(SU.getInstr())) 1174 dbgs() << "true;"; 1175 else 1176 dbgs() << "false;"; 1177 dbgs() << '\n'; 1178 } 1179 if (ExitSU.getInstr() != nullptr) 1180 dumpNodeAll(ExitSU); 1181 #endif 1182 } 1183 1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1186 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1187 /// 1188 /// This is a skeletal driver, with all the functionality pushed into helpers, 1189 /// so that it can be easily extended by experimental schedulers. Generally, 1190 /// implementing MachineSchedStrategy should be sufficient to implement a new 1191 /// scheduling algorithm. However, if a scheduler further subclasses 1192 /// ScheduleDAGMILive then it will want to override this virtual method in order 1193 /// to update any specialized state. 1194 void ScheduleDAGMILive::schedule() { 1195 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1196 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1197 buildDAGWithRegPressure(); 1198 1199 postprocessDAG(); 1200 1201 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1202 findRootsAndBiasEdges(TopRoots, BotRoots); 1203 1204 // Initialize the strategy before modifying the DAG. 1205 // This may initialize a DFSResult to be used for queue priority. 1206 SchedImpl->initialize(this); 1207 1208 LLVM_DEBUG(dump()); 1209 if (PrintDAGs) dump(); 1210 if (ViewMISchedDAGs) viewGraph(); 1211 1212 // Initialize ready queues now that the DAG and priority data are finalized. 1213 initQueues(TopRoots, BotRoots); 1214 1215 bool IsTopNode = false; 1216 while (true) { 1217 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1218 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1219 if (!SU) break; 1220 1221 assert(!SU->isScheduled && "Node already scheduled"); 1222 if (!checkSchedLimit()) 1223 break; 1224 1225 scheduleMI(SU, IsTopNode); 1226 1227 if (DFSResult) { 1228 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1229 if (!ScheduledTrees.test(SubtreeID)) { 1230 ScheduledTrees.set(SubtreeID); 1231 DFSResult->scheduleTree(SubtreeID); 1232 SchedImpl->scheduleTree(SubtreeID); 1233 } 1234 } 1235 1236 // Notify the scheduling strategy after updating the DAG. 1237 SchedImpl->schedNode(SU, IsTopNode); 1238 1239 updateQueues(SU, IsTopNode); 1240 } 1241 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1242 1243 placeDebugValues(); 1244 1245 LLVM_DEBUG({ 1246 dbgs() << "*** Final schedule for " 1247 << printMBBReference(*begin()->getParent()) << " ***\n"; 1248 dumpSchedule(); 1249 dbgs() << '\n'; 1250 }); 1251 } 1252 1253 /// Build the DAG and setup three register pressure trackers. 1254 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1255 if (!ShouldTrackPressure) { 1256 RPTracker.reset(); 1257 RegionCriticalPSets.clear(); 1258 buildSchedGraph(AA); 1259 return; 1260 } 1261 1262 // Initialize the register pressure tracker used by buildSchedGraph. 1263 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1264 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1265 1266 // Account for liveness generate by the region boundary. 1267 if (LiveRegionEnd != RegionEnd) 1268 RPTracker.recede(); 1269 1270 // Build the DAG, and compute current register pressure. 1271 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1272 1273 // Initialize top/bottom trackers after computing region pressure. 1274 initRegPressure(); 1275 } 1276 1277 void ScheduleDAGMILive::computeDFSResult() { 1278 if (!DFSResult) 1279 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1280 DFSResult->clear(); 1281 ScheduledTrees.clear(); 1282 DFSResult->resize(SUnits.size()); 1283 DFSResult->compute(SUnits); 1284 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1285 } 1286 1287 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1288 /// only provides the critical path for single block loops. To handle loops that 1289 /// span blocks, we could use the vreg path latencies provided by 1290 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1291 /// available for use in the scheduler. 1292 /// 1293 /// The cyclic path estimation identifies a def-use pair that crosses the back 1294 /// edge and considers the depth and height of the nodes. For example, consider 1295 /// the following instruction sequence where each instruction has unit latency 1296 /// and defines an epomymous virtual register: 1297 /// 1298 /// a->b(a,c)->c(b)->d(c)->exit 1299 /// 1300 /// The cyclic critical path is a two cycles: b->c->b 1301 /// The acyclic critical path is four cycles: a->b->c->d->exit 1302 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1303 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1304 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1305 /// LiveInDepth = depth(b) = len(a->b) = 1 1306 /// 1307 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1308 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1309 /// CyclicCriticalPath = min(2, 2) = 2 1310 /// 1311 /// This could be relevant to PostRA scheduling, but is currently implemented 1312 /// assuming LiveIntervals. 1313 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1314 // This only applies to single block loop. 1315 if (!BB->isSuccessor(BB)) 1316 return 0; 1317 1318 unsigned MaxCyclicLatency = 0; 1319 // Visit each live out vreg def to find def/use pairs that cross iterations. 1320 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1321 unsigned Reg = P.RegUnit; 1322 if (!TRI->isVirtualRegister(Reg)) 1323 continue; 1324 const LiveInterval &LI = LIS->getInterval(Reg); 1325 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1326 if (!DefVNI) 1327 continue; 1328 1329 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1330 const SUnit *DefSU = getSUnit(DefMI); 1331 if (!DefSU) 1332 continue; 1333 1334 unsigned LiveOutHeight = DefSU->getHeight(); 1335 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1336 // Visit all local users of the vreg def. 1337 for (const VReg2SUnit &V2SU 1338 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1339 SUnit *SU = V2SU.SU; 1340 if (SU == &ExitSU) 1341 continue; 1342 1343 // Only consider uses of the phi. 1344 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1345 if (!LRQ.valueIn()->isPHIDef()) 1346 continue; 1347 1348 // Assume that a path spanning two iterations is a cycle, which could 1349 // overestimate in strange cases. This allows cyclic latency to be 1350 // estimated as the minimum slack of the vreg's depth or height. 1351 unsigned CyclicLatency = 0; 1352 if (LiveOutDepth > SU->getDepth()) 1353 CyclicLatency = LiveOutDepth - SU->getDepth(); 1354 1355 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1356 if (LiveInHeight > LiveOutHeight) { 1357 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1358 CyclicLatency = LiveInHeight - LiveOutHeight; 1359 } else 1360 CyclicLatency = 0; 1361 1362 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1363 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1364 if (CyclicLatency > MaxCyclicLatency) 1365 MaxCyclicLatency = CyclicLatency; 1366 } 1367 } 1368 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1369 return MaxCyclicLatency; 1370 } 1371 1372 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1373 /// the Top RP tracker in case the region beginning has changed. 1374 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1375 ArrayRef<SUnit*> BotRoots) { 1376 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1377 if (ShouldTrackPressure) { 1378 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1379 TopRPTracker.setPos(CurrentTop); 1380 } 1381 } 1382 1383 /// Move an instruction and update register pressure. 1384 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1385 // Move the instruction to its new location in the instruction stream. 1386 MachineInstr *MI = SU->getInstr(); 1387 1388 if (IsTopNode) { 1389 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1390 if (&*CurrentTop == MI) 1391 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1392 else { 1393 moveInstruction(MI, CurrentTop); 1394 TopRPTracker.setPos(MI); 1395 } 1396 1397 if (ShouldTrackPressure) { 1398 // Update top scheduled pressure. 1399 RegisterOperands RegOpers; 1400 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1401 if (ShouldTrackLaneMasks) { 1402 // Adjust liveness and add missing dead+read-undef flags. 1403 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1404 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1405 } else { 1406 // Adjust for missing dead-def flags. 1407 RegOpers.detectDeadDefs(*MI, *LIS); 1408 } 1409 1410 TopRPTracker.advance(RegOpers); 1411 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1412 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1413 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1414 1415 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1416 } 1417 } else { 1418 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1419 MachineBasicBlock::iterator priorII = 1420 priorNonDebug(CurrentBottom, CurrentTop); 1421 if (&*priorII == MI) 1422 CurrentBottom = priorII; 1423 else { 1424 if (&*CurrentTop == MI) { 1425 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1426 TopRPTracker.setPos(CurrentTop); 1427 } 1428 moveInstruction(MI, CurrentBottom); 1429 CurrentBottom = MI; 1430 BotRPTracker.setPos(CurrentBottom); 1431 } 1432 if (ShouldTrackPressure) { 1433 RegisterOperands RegOpers; 1434 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1435 if (ShouldTrackLaneMasks) { 1436 // Adjust liveness and add missing dead+read-undef flags. 1437 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1438 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1439 } else { 1440 // Adjust for missing dead-def flags. 1441 RegOpers.detectDeadDefs(*MI, *LIS); 1442 } 1443 1444 if (BotRPTracker.getPos() != CurrentBottom) 1445 BotRPTracker.recedeSkipDebugValues(); 1446 SmallVector<RegisterMaskPair, 8> LiveUses; 1447 BotRPTracker.recede(RegOpers, &LiveUses); 1448 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1449 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1450 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1451 1452 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1453 updatePressureDiffs(LiveUses); 1454 } 1455 } 1456 } 1457 1458 //===----------------------------------------------------------------------===// 1459 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1460 //===----------------------------------------------------------------------===// 1461 1462 namespace { 1463 1464 /// Post-process the DAG to create cluster edges between neighboring 1465 /// loads or between neighboring stores. 1466 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1467 struct MemOpInfo { 1468 SUnit *SU; 1469 MachineOperand *BaseOp; 1470 int64_t Offset; 1471 1472 MemOpInfo(SUnit *su, MachineOperand *Op, int64_t ofs) 1473 : SU(su), BaseOp(Op), Offset(ofs) {} 1474 1475 bool operator<(const MemOpInfo &RHS) const { 1476 if (BaseOp->getType() != RHS.BaseOp->getType()) 1477 return BaseOp->getType() < RHS.BaseOp->getType(); 1478 1479 if (BaseOp->isReg()) 1480 return std::make_tuple(BaseOp->getReg(), Offset, SU->NodeNum) < 1481 std::make_tuple(RHS.BaseOp->getReg(), RHS.Offset, 1482 RHS.SU->NodeNum); 1483 if (BaseOp->isFI()) { 1484 const MachineFunction &MF = 1485 *BaseOp->getParent()->getParent()->getParent(); 1486 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1487 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1488 TargetFrameLowering::StackGrowsDown; 1489 // Can't use tuple comparison here since we might need to use a 1490 // different order when the stack grows down. 1491 if (BaseOp->getIndex() != RHS.BaseOp->getIndex()) 1492 return StackGrowsDown ? BaseOp->getIndex() > RHS.BaseOp->getIndex() 1493 : BaseOp->getIndex() < RHS.BaseOp->getIndex(); 1494 1495 if (Offset != RHS.Offset) 1496 return StackGrowsDown ? Offset > RHS.Offset : Offset < RHS.Offset; 1497 1498 return SU->NodeNum < RHS.SU->NodeNum; 1499 } 1500 1501 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1502 "index bases."); 1503 } 1504 }; 1505 1506 const TargetInstrInfo *TII; 1507 const TargetRegisterInfo *TRI; 1508 bool IsLoad; 1509 1510 public: 1511 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1512 const TargetRegisterInfo *tri, bool IsLoad) 1513 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1514 1515 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1516 1517 protected: 1518 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG); 1519 }; 1520 1521 class StoreClusterMutation : public BaseMemOpClusterMutation { 1522 public: 1523 StoreClusterMutation(const TargetInstrInfo *tii, 1524 const TargetRegisterInfo *tri) 1525 : BaseMemOpClusterMutation(tii, tri, false) {} 1526 }; 1527 1528 class LoadClusterMutation : public BaseMemOpClusterMutation { 1529 public: 1530 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1531 : BaseMemOpClusterMutation(tii, tri, true) {} 1532 }; 1533 1534 } // end anonymous namespace 1535 1536 namespace llvm { 1537 1538 std::unique_ptr<ScheduleDAGMutation> 1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1540 const TargetRegisterInfo *TRI) { 1541 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1542 : nullptr; 1543 } 1544 1545 std::unique_ptr<ScheduleDAGMutation> 1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1547 const TargetRegisterInfo *TRI) { 1548 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1549 : nullptr; 1550 } 1551 1552 } // end namespace llvm 1553 1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1555 ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) { 1556 SmallVector<MemOpInfo, 32> MemOpRecords; 1557 for (SUnit *SU : MemOps) { 1558 MachineOperand *BaseOp; 1559 int64_t Offset; 1560 if (TII->getMemOperandWithOffset(*SU->getInstr(), BaseOp, Offset, TRI)) 1561 MemOpRecords.push_back(MemOpInfo(SU, BaseOp, Offset)); 1562 } 1563 if (MemOpRecords.size() < 2) 1564 return; 1565 1566 llvm::sort(MemOpRecords); 1567 unsigned ClusterLength = 1; 1568 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1569 SUnit *SUa = MemOpRecords[Idx].SU; 1570 SUnit *SUb = MemOpRecords[Idx+1].SU; 1571 if (TII->shouldClusterMemOps(*MemOpRecords[Idx].BaseOp, 1572 *MemOpRecords[Idx + 1].BaseOp, 1573 ClusterLength) && 1574 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1575 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1576 << SUb->NodeNum << ")\n"); 1577 // Copy successor edges from SUa to SUb. Interleaving computation 1578 // dependent on SUa can prevent load combining due to register reuse. 1579 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1580 // loads should have effectively the same inputs. 1581 for (const SDep &Succ : SUa->Succs) { 1582 if (Succ.getSUnit() == SUb) 1583 continue; 1584 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1585 << ")\n"); 1586 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1587 } 1588 ++ClusterLength; 1589 } else 1590 ClusterLength = 1; 1591 } 1592 } 1593 1594 /// Callback from DAG postProcessing to create cluster edges for loads. 1595 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1596 // Map DAG NodeNum to store chain ID. 1597 DenseMap<unsigned, unsigned> StoreChainIDs; 1598 // Map each store chain to a set of dependent MemOps. 1599 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1600 for (SUnit &SU : DAG->SUnits) { 1601 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1602 (!IsLoad && !SU.getInstr()->mayStore())) 1603 continue; 1604 1605 unsigned ChainPredID = DAG->SUnits.size(); 1606 for (const SDep &Pred : SU.Preds) { 1607 if (Pred.isCtrl()) { 1608 ChainPredID = Pred.getSUnit()->NodeNum; 1609 break; 1610 } 1611 } 1612 // Check if this chain-like pred has been seen 1613 // before. ChainPredID==MaxNodeID at the top of the schedule. 1614 unsigned NumChains = StoreChainDependents.size(); 1615 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1616 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1617 if (Result.second) 1618 StoreChainDependents.resize(NumChains + 1); 1619 StoreChainDependents[Result.first->second].push_back(&SU); 1620 } 1621 1622 // Iterate over the store chains. 1623 for (auto &SCD : StoreChainDependents) 1624 clusterNeighboringMemOps(SCD, DAG); 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 // CopyConstrain - DAG post-processing to encourage copy elimination. 1629 //===----------------------------------------------------------------------===// 1630 1631 namespace { 1632 1633 /// Post-process the DAG to create weak edges from all uses of a copy to 1634 /// the one use that defines the copy's source vreg, most likely an induction 1635 /// variable increment. 1636 class CopyConstrain : public ScheduleDAGMutation { 1637 // Transient state. 1638 SlotIndex RegionBeginIdx; 1639 1640 // RegionEndIdx is the slot index of the last non-debug instruction in the 1641 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1642 SlotIndex RegionEndIdx; 1643 1644 public: 1645 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1646 1647 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1648 1649 protected: 1650 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1651 }; 1652 1653 } // end anonymous namespace 1654 1655 namespace llvm { 1656 1657 std::unique_ptr<ScheduleDAGMutation> 1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1659 const TargetRegisterInfo *TRI) { 1660 return llvm::make_unique<CopyConstrain>(TII, TRI); 1661 } 1662 1663 } // end namespace llvm 1664 1665 /// constrainLocalCopy handles two possibilities: 1666 /// 1) Local src: 1667 /// I0: = dst 1668 /// I1: src = ... 1669 /// I2: = dst 1670 /// I3: dst = src (copy) 1671 /// (create pred->succ edges I0->I1, I2->I1) 1672 /// 1673 /// 2) Local copy: 1674 /// I0: dst = src (copy) 1675 /// I1: = dst 1676 /// I2: src = ... 1677 /// I3: = dst 1678 /// (create pred->succ edges I1->I2, I3->I2) 1679 /// 1680 /// Although the MachineScheduler is currently constrained to single blocks, 1681 /// this algorithm should handle extended blocks. An EBB is a set of 1682 /// contiguously numbered blocks such that the previous block in the EBB is 1683 /// always the single predecessor. 1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1685 LiveIntervals *LIS = DAG->getLIS(); 1686 MachineInstr *Copy = CopySU->getInstr(); 1687 1688 // Check for pure vreg copies. 1689 const MachineOperand &SrcOp = Copy->getOperand(1); 1690 unsigned SrcReg = SrcOp.getReg(); 1691 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1692 return; 1693 1694 const MachineOperand &DstOp = Copy->getOperand(0); 1695 unsigned DstReg = DstOp.getReg(); 1696 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1697 return; 1698 1699 // Check if either the dest or source is local. If it's live across a back 1700 // edge, it's not local. Note that if both vregs are live across the back 1701 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1702 // If both the copy's source and dest are local live intervals, then we 1703 // should treat the dest as the global for the purpose of adding 1704 // constraints. This adds edges from source's other uses to the copy. 1705 unsigned LocalReg = SrcReg; 1706 unsigned GlobalReg = DstReg; 1707 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1709 LocalReg = DstReg; 1710 GlobalReg = SrcReg; 1711 LocalLI = &LIS->getInterval(LocalReg); 1712 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1713 return; 1714 } 1715 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1716 1717 // Find the global segment after the start of the local LI. 1718 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1719 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1720 // local live range. We could create edges from other global uses to the local 1721 // start, but the coalescer should have already eliminated these cases, so 1722 // don't bother dealing with it. 1723 if (GlobalSegment == GlobalLI->end()) 1724 return; 1725 1726 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1727 // returned the next global segment. But if GlobalSegment overlaps with 1728 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1729 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1730 if (GlobalSegment->contains(LocalLI->beginIndex())) 1731 ++GlobalSegment; 1732 1733 if (GlobalSegment == GlobalLI->end()) 1734 return; 1735 1736 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1737 if (GlobalSegment != GlobalLI->begin()) { 1738 // Two address defs have no hole. 1739 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1740 GlobalSegment->start)) { 1741 return; 1742 } 1743 // If the prior global segment may be defined by the same two-address 1744 // instruction that also defines LocalLI, then can't make a hole here. 1745 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1746 LocalLI->beginIndex())) { 1747 return; 1748 } 1749 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1750 // it would be a disconnected component in the live range. 1751 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1752 "Disconnected LRG within the scheduling region."); 1753 } 1754 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1755 if (!GlobalDef) 1756 return; 1757 1758 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1759 if (!GlobalSU) 1760 return; 1761 1762 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1763 // constraining the uses of the last local def to precede GlobalDef. 1764 SmallVector<SUnit*,8> LocalUses; 1765 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1766 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1767 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1768 for (const SDep &Succ : LastLocalSU->Succs) { 1769 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1770 continue; 1771 if (Succ.getSUnit() == GlobalSU) 1772 continue; 1773 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1774 return; 1775 LocalUses.push_back(Succ.getSUnit()); 1776 } 1777 // Open the top of the GlobalLI hole by constraining any earlier global uses 1778 // to precede the start of LocalLI. 1779 SmallVector<SUnit*,8> GlobalUses; 1780 MachineInstr *FirstLocalDef = 1781 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1782 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1783 for (const SDep &Pred : GlobalSU->Preds) { 1784 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1785 continue; 1786 if (Pred.getSUnit() == FirstLocalSU) 1787 continue; 1788 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1789 return; 1790 GlobalUses.push_back(Pred.getSUnit()); 1791 } 1792 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1793 // Add the weak edges. 1794 for (SmallVectorImpl<SUnit*>::const_iterator 1795 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1796 LLVM_DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1797 << GlobalSU->NodeNum << ")\n"); 1798 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1799 } 1800 for (SmallVectorImpl<SUnit*>::const_iterator 1801 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1802 LLVM_DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1803 << FirstLocalSU->NodeNum << ")\n"); 1804 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1805 } 1806 } 1807 1808 /// Callback from DAG postProcessing to create weak edges to encourage 1809 /// copy elimination. 1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1811 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1812 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1813 1814 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1815 if (FirstPos == DAG->end()) 1816 return; 1817 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1818 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1819 *priorNonDebug(DAG->end(), DAG->begin())); 1820 1821 for (SUnit &SU : DAG->SUnits) { 1822 if (!SU.getInstr()->isCopy()) 1823 continue; 1824 1825 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1826 } 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1831 // and possibly other custom schedulers. 1832 //===----------------------------------------------------------------------===// 1833 1834 static const unsigned InvalidCycle = ~0U; 1835 1836 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1837 1838 /// Given a Count of resource usage and a Latency value, return true if a 1839 /// SchedBoundary becomes resource limited. 1840 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1841 unsigned Latency) { 1842 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1843 } 1844 1845 void SchedBoundary::reset() { 1846 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1847 // Destroying and reconstructing it is very expensive though. So keep 1848 // invalid, placeholder HazardRecs. 1849 if (HazardRec && HazardRec->isEnabled()) { 1850 delete HazardRec; 1851 HazardRec = nullptr; 1852 } 1853 Available.clear(); 1854 Pending.clear(); 1855 CheckPending = false; 1856 CurrCycle = 0; 1857 CurrMOps = 0; 1858 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1859 ExpectedLatency = 0; 1860 DependentLatency = 0; 1861 RetiredMOps = 0; 1862 MaxExecutedResCount = 0; 1863 ZoneCritResIdx = 0; 1864 IsResourceLimited = false; 1865 ReservedCycles.clear(); 1866 #ifndef NDEBUG 1867 // Track the maximum number of stall cycles that could arise either from the 1868 // latency of a DAG edge or the number of cycles that a processor resource is 1869 // reserved (SchedBoundary::ReservedCycles). 1870 MaxObservedStall = 0; 1871 #endif 1872 // Reserve a zero-count for invalid CritResIdx. 1873 ExecutedResCounts.resize(1); 1874 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1875 } 1876 1877 void SchedRemainder:: 1878 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1879 reset(); 1880 if (!SchedModel->hasInstrSchedModel()) 1881 return; 1882 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1883 for (SUnit &SU : DAG->SUnits) { 1884 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1885 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1886 * SchedModel->getMicroOpFactor(); 1887 for (TargetSchedModel::ProcResIter 1888 PI = SchedModel->getWriteProcResBegin(SC), 1889 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1890 unsigned PIdx = PI->ProcResourceIdx; 1891 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1892 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1893 } 1894 } 1895 } 1896 1897 void SchedBoundary:: 1898 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1899 reset(); 1900 DAG = dag; 1901 SchedModel = smodel; 1902 Rem = rem; 1903 if (SchedModel->hasInstrSchedModel()) { 1904 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1905 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1906 } 1907 } 1908 1909 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1910 /// these "soft stalls" differently than the hard stall cycles based on CPU 1911 /// resources and computed by checkHazard(). A fully in-order model 1912 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1913 /// available for scheduling until they are ready. However, a weaker in-order 1914 /// model may use this for heuristics. For example, if a processor has in-order 1915 /// behavior when reading certain resources, this may come into play. 1916 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1917 if (!SU->isUnbuffered) 1918 return 0; 1919 1920 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1921 if (ReadyCycle > CurrCycle) 1922 return ReadyCycle - CurrCycle; 1923 return 0; 1924 } 1925 1926 /// Compute the next cycle at which the given processor resource can be 1927 /// scheduled. 1928 unsigned SchedBoundary:: 1929 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1930 unsigned NextUnreserved = ReservedCycles[PIdx]; 1931 // If this resource has never been used, always return cycle zero. 1932 if (NextUnreserved == InvalidCycle) 1933 return 0; 1934 // For bottom-up scheduling add the cycles needed for the current operation. 1935 if (!isTop()) 1936 NextUnreserved += Cycles; 1937 return NextUnreserved; 1938 } 1939 1940 /// Does this SU have a hazard within the current instruction group. 1941 /// 1942 /// The scheduler supports two modes of hazard recognition. The first is the 1943 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1944 /// supports highly complicated in-order reservation tables 1945 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 1946 /// 1947 /// The second is a streamlined mechanism that checks for hazards based on 1948 /// simple counters that the scheduler itself maintains. It explicitly checks 1949 /// for instruction dispatch limitations, including the number of micro-ops that 1950 /// can dispatch per cycle. 1951 /// 1952 /// TODO: Also check whether the SU must start a new group. 1953 bool SchedBoundary::checkHazard(SUnit *SU) { 1954 if (HazardRec->isEnabled() 1955 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1956 return true; 1957 } 1958 1959 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1960 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1961 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1962 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1963 return true; 1964 } 1965 1966 if (CurrMOps > 0 && 1967 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1968 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1969 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1970 << (isTop() ? "begin" : "end") << " group\n"); 1971 return true; 1972 } 1973 1974 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1975 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1976 for (const MCWriteProcResEntry &PE : 1977 make_range(SchedModel->getWriteProcResBegin(SC), 1978 SchedModel->getWriteProcResEnd(SC))) { 1979 unsigned ResIdx = PE.ProcResourceIdx; 1980 unsigned Cycles = PE.Cycles; 1981 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1982 if (NRCycle > CurrCycle) { 1983 #ifndef NDEBUG 1984 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1985 #endif 1986 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1987 << SchedModel->getResourceName(ResIdx) << "=" 1988 << NRCycle << "c\n"); 1989 return true; 1990 } 1991 } 1992 } 1993 return false; 1994 } 1995 1996 // Find the unscheduled node in ReadySUs with the highest latency. 1997 unsigned SchedBoundary:: 1998 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1999 SUnit *LateSU = nullptr; 2000 unsigned RemLatency = 0; 2001 for (SUnit *SU : ReadySUs) { 2002 unsigned L = getUnscheduledLatency(SU); 2003 if (L > RemLatency) { 2004 RemLatency = L; 2005 LateSU = SU; 2006 } 2007 } 2008 if (LateSU) { 2009 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2010 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2011 } 2012 return RemLatency; 2013 } 2014 2015 // Count resources in this zone and the remaining unscheduled 2016 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2017 // resource index, or zero if the zone is issue limited. 2018 unsigned SchedBoundary:: 2019 getOtherResourceCount(unsigned &OtherCritIdx) { 2020 OtherCritIdx = 0; 2021 if (!SchedModel->hasInstrSchedModel()) 2022 return 0; 2023 2024 unsigned OtherCritCount = Rem->RemIssueCount 2025 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2026 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2027 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2028 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2029 PIdx != PEnd; ++PIdx) { 2030 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2031 if (OtherCount > OtherCritCount) { 2032 OtherCritCount = OtherCount; 2033 OtherCritIdx = PIdx; 2034 } 2035 } 2036 if (OtherCritIdx) { 2037 LLVM_DEBUG( 2038 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2039 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2040 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2041 } 2042 return OtherCritCount; 2043 } 2044 2045 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2046 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2047 2048 #ifndef NDEBUG 2049 // ReadyCycle was been bumped up to the CurrCycle when this node was 2050 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2051 // scheduling, so may now be greater than ReadyCycle. 2052 if (ReadyCycle > CurrCycle) 2053 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2054 #endif 2055 2056 if (ReadyCycle < MinReadyCycle) 2057 MinReadyCycle = ReadyCycle; 2058 2059 // Check for interlocks first. For the purpose of other heuristics, an 2060 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2061 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2062 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2063 Available.size() >= ReadyListLimit) 2064 Pending.push(SU); 2065 else 2066 Available.push(SU); 2067 } 2068 2069 /// Move the boundary of scheduled code by one cycle. 2070 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2071 if (SchedModel->getMicroOpBufferSize() == 0) { 2072 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2073 "MinReadyCycle uninitialized"); 2074 if (MinReadyCycle > NextCycle) 2075 NextCycle = MinReadyCycle; 2076 } 2077 // Update the current micro-ops, which will issue in the next cycle. 2078 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2079 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2080 2081 // Decrement DependentLatency based on the next cycle. 2082 if ((NextCycle - CurrCycle) > DependentLatency) 2083 DependentLatency = 0; 2084 else 2085 DependentLatency -= (NextCycle - CurrCycle); 2086 2087 if (!HazardRec->isEnabled()) { 2088 // Bypass HazardRec virtual calls. 2089 CurrCycle = NextCycle; 2090 } else { 2091 // Bypass getHazardType calls in case of long latency. 2092 for (; CurrCycle != NextCycle; ++CurrCycle) { 2093 if (isTop()) 2094 HazardRec->AdvanceCycle(); 2095 else 2096 HazardRec->RecedeCycle(); 2097 } 2098 } 2099 CheckPending = true; 2100 IsResourceLimited = 2101 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2102 getScheduledLatency()); 2103 2104 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2105 << '\n'); 2106 } 2107 2108 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2109 ExecutedResCounts[PIdx] += Count; 2110 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2111 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2112 } 2113 2114 /// Add the given processor resource to this scheduled zone. 2115 /// 2116 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2117 /// during which this resource is consumed. 2118 /// 2119 /// \return the next cycle at which the instruction may execute without 2120 /// oversubscribing resources. 2121 unsigned SchedBoundary:: 2122 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2123 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2124 unsigned Count = Factor * Cycles; 2125 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2126 << Cycles << "x" << Factor << "u\n"); 2127 2128 // Update Executed resources counts. 2129 incExecutedResources(PIdx, Count); 2130 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2131 Rem->RemainingCounts[PIdx] -= Count; 2132 2133 // Check if this resource exceeds the current critical resource. If so, it 2134 // becomes the critical resource. 2135 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2136 ZoneCritResIdx = PIdx; 2137 LLVM_DEBUG(dbgs() << " *** Critical resource " 2138 << SchedModel->getResourceName(PIdx) << ": " 2139 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2140 << "c\n"); 2141 } 2142 // For reserved resources, record the highest cycle using the resource. 2143 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2144 if (NextAvailable > CurrCycle) { 2145 LLVM_DEBUG(dbgs() << " Resource conflict: " 2146 << SchedModel->getProcResource(PIdx)->Name 2147 << " reserved until @" << NextAvailable << "\n"); 2148 } 2149 return NextAvailable; 2150 } 2151 2152 /// Move the boundary of scheduled code by one SUnit. 2153 void SchedBoundary::bumpNode(SUnit *SU) { 2154 // Update the reservation table. 2155 if (HazardRec->isEnabled()) { 2156 if (!isTop() && SU->isCall) { 2157 // Calls are scheduled with their preceding instructions. For bottom-up 2158 // scheduling, clear the pipeline state before emitting. 2159 HazardRec->Reset(); 2160 } 2161 HazardRec->EmitInstruction(SU); 2162 } 2163 // checkHazard should prevent scheduling multiple instructions per cycle that 2164 // exceed the issue width. 2165 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2166 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2167 assert( 2168 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2169 "Cannot schedule this instruction's MicroOps in the current cycle."); 2170 2171 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2172 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2173 2174 unsigned NextCycle = CurrCycle; 2175 switch (SchedModel->getMicroOpBufferSize()) { 2176 case 0: 2177 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2178 break; 2179 case 1: 2180 if (ReadyCycle > NextCycle) { 2181 NextCycle = ReadyCycle; 2182 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2183 } 2184 break; 2185 default: 2186 // We don't currently model the OOO reorder buffer, so consider all 2187 // scheduled MOps to be "retired". We do loosely model in-order resource 2188 // latency. If this instruction uses an in-order resource, account for any 2189 // likely stall cycles. 2190 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2191 NextCycle = ReadyCycle; 2192 break; 2193 } 2194 RetiredMOps += IncMOps; 2195 2196 // Update resource counts and critical resource. 2197 if (SchedModel->hasInstrSchedModel()) { 2198 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2199 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2200 Rem->RemIssueCount -= DecRemIssue; 2201 if (ZoneCritResIdx) { 2202 // Scale scheduled micro-ops for comparing with the critical resource. 2203 unsigned ScaledMOps = 2204 RetiredMOps * SchedModel->getMicroOpFactor(); 2205 2206 // If scaled micro-ops are now more than the previous critical resource by 2207 // a full cycle, then micro-ops issue becomes critical. 2208 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2209 >= (int)SchedModel->getLatencyFactor()) { 2210 ZoneCritResIdx = 0; 2211 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2212 << ScaledMOps / SchedModel->getLatencyFactor() 2213 << "c\n"); 2214 } 2215 } 2216 for (TargetSchedModel::ProcResIter 2217 PI = SchedModel->getWriteProcResBegin(SC), 2218 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2219 unsigned RCycle = 2220 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2221 if (RCycle > NextCycle) 2222 NextCycle = RCycle; 2223 } 2224 if (SU->hasReservedResource) { 2225 // For reserved resources, record the highest cycle using the resource. 2226 // For top-down scheduling, this is the cycle in which we schedule this 2227 // instruction plus the number of cycles the operations reserves the 2228 // resource. For bottom-up is it simply the instruction's cycle. 2229 for (TargetSchedModel::ProcResIter 2230 PI = SchedModel->getWriteProcResBegin(SC), 2231 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2232 unsigned PIdx = PI->ProcResourceIdx; 2233 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2234 if (isTop()) { 2235 ReservedCycles[PIdx] = 2236 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2237 } 2238 else 2239 ReservedCycles[PIdx] = NextCycle; 2240 } 2241 } 2242 } 2243 } 2244 // Update ExpectedLatency and DependentLatency. 2245 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2246 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2247 if (SU->getDepth() > TopLatency) { 2248 TopLatency = SU->getDepth(); 2249 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2250 << SU->NodeNum << ") " << TopLatency << "c\n"); 2251 } 2252 if (SU->getHeight() > BotLatency) { 2253 BotLatency = SU->getHeight(); 2254 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2255 << SU->NodeNum << ") " << BotLatency << "c\n"); 2256 } 2257 // If we stall for any reason, bump the cycle. 2258 if (NextCycle > CurrCycle) 2259 bumpCycle(NextCycle); 2260 else 2261 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2262 // resource limited. If a stall occurred, bumpCycle does this. 2263 IsResourceLimited = 2264 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2265 getScheduledLatency()); 2266 2267 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2268 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2269 // one cycle. Since we commonly reach the max MOps here, opportunistically 2270 // bump the cycle to avoid uselessly checking everything in the readyQ. 2271 CurrMOps += IncMOps; 2272 2273 // Bump the cycle count for issue group constraints. 2274 // This must be done after NextCycle has been adjust for all other stalls. 2275 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2276 // currCycle to X. 2277 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2278 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2279 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2280 << " group\n"); 2281 bumpCycle(++NextCycle); 2282 } 2283 2284 while (CurrMOps >= SchedModel->getIssueWidth()) { 2285 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2286 << CurrCycle << '\n'); 2287 bumpCycle(++NextCycle); 2288 } 2289 LLVM_DEBUG(dumpScheduledState()); 2290 } 2291 2292 /// Release pending ready nodes in to the available queue. This makes them 2293 /// visible to heuristics. 2294 void SchedBoundary::releasePending() { 2295 // If the available queue is empty, it is safe to reset MinReadyCycle. 2296 if (Available.empty()) 2297 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2298 2299 // Check to see if any of the pending instructions are ready to issue. If 2300 // so, add them to the available queue. 2301 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2302 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2303 SUnit *SU = *(Pending.begin()+i); 2304 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2305 2306 if (ReadyCycle < MinReadyCycle) 2307 MinReadyCycle = ReadyCycle; 2308 2309 if (!IsBuffered && ReadyCycle > CurrCycle) 2310 continue; 2311 2312 if (checkHazard(SU)) 2313 continue; 2314 2315 if (Available.size() >= ReadyListLimit) 2316 break; 2317 2318 Available.push(SU); 2319 Pending.remove(Pending.begin()+i); 2320 --i; --e; 2321 } 2322 CheckPending = false; 2323 } 2324 2325 /// Remove SU from the ready set for this boundary. 2326 void SchedBoundary::removeReady(SUnit *SU) { 2327 if (Available.isInQueue(SU)) 2328 Available.remove(Available.find(SU)); 2329 else { 2330 assert(Pending.isInQueue(SU) && "bad ready count"); 2331 Pending.remove(Pending.find(SU)); 2332 } 2333 } 2334 2335 /// If this queue only has one ready candidate, return it. As a side effect, 2336 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2337 /// one node is ready. If multiple instructions are ready, return NULL. 2338 SUnit *SchedBoundary::pickOnlyChoice() { 2339 if (CheckPending) 2340 releasePending(); 2341 2342 if (CurrMOps > 0) { 2343 // Defer any ready instrs that now have a hazard. 2344 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2345 if (checkHazard(*I)) { 2346 Pending.push(*I); 2347 I = Available.remove(I); 2348 continue; 2349 } 2350 ++I; 2351 } 2352 } 2353 for (unsigned i = 0; Available.empty(); ++i) { 2354 // FIXME: Re-enable assert once PR20057 is resolved. 2355 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2356 // "permanent hazard"); 2357 (void)i; 2358 bumpCycle(CurrCycle + 1); 2359 releasePending(); 2360 } 2361 2362 LLVM_DEBUG(Pending.dump()); 2363 LLVM_DEBUG(Available.dump()); 2364 2365 if (Available.size() == 1) 2366 return *Available.begin(); 2367 return nullptr; 2368 } 2369 2370 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2371 // This is useful information to dump after bumpNode. 2372 // Note that the Queue contents are more useful before pickNodeFromQueue. 2373 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2374 unsigned ResFactor; 2375 unsigned ResCount; 2376 if (ZoneCritResIdx) { 2377 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2378 ResCount = getResourceCount(ZoneCritResIdx); 2379 } else { 2380 ResFactor = SchedModel->getMicroOpFactor(); 2381 ResCount = RetiredMOps * ResFactor; 2382 } 2383 unsigned LFactor = SchedModel->getLatencyFactor(); 2384 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2385 << " Retired: " << RetiredMOps; 2386 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2387 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2388 << ResCount / ResFactor << " " 2389 << SchedModel->getResourceName(ZoneCritResIdx) 2390 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2391 << (IsResourceLimited ? " - Resource" : " - Latency") 2392 << " limited.\n"; 2393 } 2394 #endif 2395 2396 //===----------------------------------------------------------------------===// 2397 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2398 //===----------------------------------------------------------------------===// 2399 2400 void GenericSchedulerBase::SchedCandidate:: 2401 initResourceDelta(const ScheduleDAGMI *DAG, 2402 const TargetSchedModel *SchedModel) { 2403 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2404 return; 2405 2406 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2407 for (TargetSchedModel::ProcResIter 2408 PI = SchedModel->getWriteProcResBegin(SC), 2409 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2410 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2411 ResDelta.CritResources += PI->Cycles; 2412 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2413 ResDelta.DemandedResources += PI->Cycles; 2414 } 2415 } 2416 2417 /// Compute remaining latency. We need this both to determine whether the 2418 /// overall schedule has become latency-limited and whether the instructions 2419 /// outside this zone are resource or latency limited. 2420 /// 2421 /// The "dependent" latency is updated incrementally during scheduling as the 2422 /// max height/depth of scheduled nodes minus the cycles since it was 2423 /// scheduled: 2424 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2425 /// 2426 /// The "independent" latency is the max ready queue depth: 2427 /// ILat = max N.depth for N in Available|Pending 2428 /// 2429 /// RemainingLatency is the greater of independent and dependent latency. 2430 /// 2431 /// These computations are expensive, especially in DAGs with many edges, so 2432 /// only do them if necessary. 2433 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2434 unsigned RemLatency = CurrZone.getDependentLatency(); 2435 RemLatency = std::max(RemLatency, 2436 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2437 RemLatency = std::max(RemLatency, 2438 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2439 return RemLatency; 2440 } 2441 2442 /// Returns true if the current cycle plus remaning latency is greater than 2443 /// the critical path in the scheduling region. 2444 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2445 SchedBoundary &CurrZone, 2446 bool ComputeRemLatency, 2447 unsigned &RemLatency) const { 2448 // The current cycle is already greater than the critical path, so we are 2449 // already latency limited and don't need to compute the remaining latency. 2450 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2451 return true; 2452 2453 // If we haven't scheduled anything yet, then we aren't latency limited. 2454 if (CurrZone.getCurrCycle() == 0) 2455 return false; 2456 2457 if (ComputeRemLatency) 2458 RemLatency = computeRemLatency(CurrZone); 2459 2460 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2461 } 2462 2463 /// Set the CandPolicy given a scheduling zone given the current resources and 2464 /// latencies inside and outside the zone. 2465 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2466 SchedBoundary &CurrZone, 2467 SchedBoundary *OtherZone) { 2468 // Apply preemptive heuristics based on the total latency and resources 2469 // inside and outside this zone. Potential stalls should be considered before 2470 // following this policy. 2471 2472 // Compute the critical resource outside the zone. 2473 unsigned OtherCritIdx = 0; 2474 unsigned OtherCount = 2475 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2476 2477 bool OtherResLimited = false; 2478 unsigned RemLatency = 0; 2479 bool RemLatencyComputed = false; 2480 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2481 RemLatency = computeRemLatency(CurrZone); 2482 RemLatencyComputed = true; 2483 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2484 OtherCount, RemLatency); 2485 } 2486 2487 // Schedule aggressively for latency in PostRA mode. We don't check for 2488 // acyclic latency during PostRA, and highly out-of-order processors will 2489 // skip PostRA scheduling. 2490 if (!OtherResLimited && 2491 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2492 RemLatency))) { 2493 Policy.ReduceLatency |= true; 2494 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2495 << " RemainingLatency " << RemLatency << " + " 2496 << CurrZone.getCurrCycle() << "c > CritPath " 2497 << Rem.CriticalPath << "\n"); 2498 } 2499 // If the same resource is limiting inside and outside the zone, do nothing. 2500 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2501 return; 2502 2503 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2504 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2505 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2506 } if (OtherResLimited) dbgs() 2507 << " RemainingLimit: " 2508 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2509 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2510 << " Latency limited both directions.\n"); 2511 2512 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2513 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2514 2515 if (OtherResLimited) 2516 Policy.DemandResIdx = OtherCritIdx; 2517 } 2518 2519 #ifndef NDEBUG 2520 const char *GenericSchedulerBase::getReasonStr( 2521 GenericSchedulerBase::CandReason Reason) { 2522 switch (Reason) { 2523 case NoCand: return "NOCAND "; 2524 case Only1: return "ONLY1 "; 2525 case PhysReg: return "PHYS-REG "; 2526 case RegExcess: return "REG-EXCESS"; 2527 case RegCritical: return "REG-CRIT "; 2528 case Stall: return "STALL "; 2529 case Cluster: return "CLUSTER "; 2530 case Weak: return "WEAK "; 2531 case RegMax: return "REG-MAX "; 2532 case ResourceReduce: return "RES-REDUCE"; 2533 case ResourceDemand: return "RES-DEMAND"; 2534 case TopDepthReduce: return "TOP-DEPTH "; 2535 case TopPathReduce: return "TOP-PATH "; 2536 case BotHeightReduce:return "BOT-HEIGHT"; 2537 case BotPathReduce: return "BOT-PATH "; 2538 case NextDefUse: return "DEF-USE "; 2539 case NodeOrder: return "ORDER "; 2540 }; 2541 llvm_unreachable("Unknown reason!"); 2542 } 2543 2544 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2545 PressureChange P; 2546 unsigned ResIdx = 0; 2547 unsigned Latency = 0; 2548 switch (Cand.Reason) { 2549 default: 2550 break; 2551 case RegExcess: 2552 P = Cand.RPDelta.Excess; 2553 break; 2554 case RegCritical: 2555 P = Cand.RPDelta.CriticalMax; 2556 break; 2557 case RegMax: 2558 P = Cand.RPDelta.CurrentMax; 2559 break; 2560 case ResourceReduce: 2561 ResIdx = Cand.Policy.ReduceResIdx; 2562 break; 2563 case ResourceDemand: 2564 ResIdx = Cand.Policy.DemandResIdx; 2565 break; 2566 case TopDepthReduce: 2567 Latency = Cand.SU->getDepth(); 2568 break; 2569 case TopPathReduce: 2570 Latency = Cand.SU->getHeight(); 2571 break; 2572 case BotHeightReduce: 2573 Latency = Cand.SU->getHeight(); 2574 break; 2575 case BotPathReduce: 2576 Latency = Cand.SU->getDepth(); 2577 break; 2578 } 2579 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2580 if (P.isValid()) 2581 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2582 << ":" << P.getUnitInc() << " "; 2583 else 2584 dbgs() << " "; 2585 if (ResIdx) 2586 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2587 else 2588 dbgs() << " "; 2589 if (Latency) 2590 dbgs() << " " << Latency << " cycles "; 2591 else 2592 dbgs() << " "; 2593 dbgs() << '\n'; 2594 } 2595 #endif 2596 2597 namespace llvm { 2598 /// Return true if this heuristic determines order. 2599 bool tryLess(int TryVal, int CandVal, 2600 GenericSchedulerBase::SchedCandidate &TryCand, 2601 GenericSchedulerBase::SchedCandidate &Cand, 2602 GenericSchedulerBase::CandReason Reason) { 2603 if (TryVal < CandVal) { 2604 TryCand.Reason = Reason; 2605 return true; 2606 } 2607 if (TryVal > CandVal) { 2608 if (Cand.Reason > Reason) 2609 Cand.Reason = Reason; 2610 return true; 2611 } 2612 return false; 2613 } 2614 2615 bool tryGreater(int TryVal, int CandVal, 2616 GenericSchedulerBase::SchedCandidate &TryCand, 2617 GenericSchedulerBase::SchedCandidate &Cand, 2618 GenericSchedulerBase::CandReason Reason) { 2619 if (TryVal > CandVal) { 2620 TryCand.Reason = Reason; 2621 return true; 2622 } 2623 if (TryVal < CandVal) { 2624 if (Cand.Reason > Reason) 2625 Cand.Reason = Reason; 2626 return true; 2627 } 2628 return false; 2629 } 2630 2631 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2632 GenericSchedulerBase::SchedCandidate &Cand, 2633 SchedBoundary &Zone) { 2634 if (Zone.isTop()) { 2635 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2636 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2637 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2638 return true; 2639 } 2640 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2641 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2642 return true; 2643 } else { 2644 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2645 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2646 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2647 return true; 2648 } 2649 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2650 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2651 return true; 2652 } 2653 return false; 2654 } 2655 } // end namespace llvm 2656 2657 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2658 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2659 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2660 } 2661 2662 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2663 tracePick(Cand.Reason, Cand.AtTop); 2664 } 2665 2666 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2667 assert(dag->hasVRegLiveness() && 2668 "(PreRA)GenericScheduler needs vreg liveness"); 2669 DAG = static_cast<ScheduleDAGMILive*>(dag); 2670 SchedModel = DAG->getSchedModel(); 2671 TRI = DAG->TRI; 2672 2673 Rem.init(DAG, SchedModel); 2674 Top.init(DAG, SchedModel, &Rem); 2675 Bot.init(DAG, SchedModel, &Rem); 2676 2677 // Initialize resource counts. 2678 2679 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2680 // are disabled, then these HazardRecs will be disabled. 2681 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2682 if (!Top.HazardRec) { 2683 Top.HazardRec = 2684 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2685 Itin, DAG); 2686 } 2687 if (!Bot.HazardRec) { 2688 Bot.HazardRec = 2689 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2690 Itin, DAG); 2691 } 2692 TopCand.SU = nullptr; 2693 BotCand.SU = nullptr; 2694 } 2695 2696 /// Initialize the per-region scheduling policy. 2697 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2698 MachineBasicBlock::iterator End, 2699 unsigned NumRegionInstrs) { 2700 const MachineFunction &MF = *Begin->getMF(); 2701 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2702 2703 // Avoid setting up the register pressure tracker for small regions to save 2704 // compile time. As a rough heuristic, only track pressure when the number of 2705 // schedulable instructions exceeds half the integer register file. 2706 RegionPolicy.ShouldTrackPressure = true; 2707 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2708 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2709 if (TLI->isTypeLegal(LegalIntVT)) { 2710 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2711 TLI->getRegClassFor(LegalIntVT)); 2712 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2713 } 2714 } 2715 2716 // For generic targets, we default to bottom-up, because it's simpler and more 2717 // compile-time optimizations have been implemented in that direction. 2718 RegionPolicy.OnlyBottomUp = true; 2719 2720 // Allow the subtarget to override default policy. 2721 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2722 2723 // After subtarget overrides, apply command line options. 2724 if (!EnableRegPressure) 2725 RegionPolicy.ShouldTrackPressure = false; 2726 2727 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2728 // e.g. -misched-bottomup=false allows scheduling in both directions. 2729 assert((!ForceTopDown || !ForceBottomUp) && 2730 "-misched-topdown incompatible with -misched-bottomup"); 2731 if (ForceBottomUp.getNumOccurrences() > 0) { 2732 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2733 if (RegionPolicy.OnlyBottomUp) 2734 RegionPolicy.OnlyTopDown = false; 2735 } 2736 if (ForceTopDown.getNumOccurrences() > 0) { 2737 RegionPolicy.OnlyTopDown = ForceTopDown; 2738 if (RegionPolicy.OnlyTopDown) 2739 RegionPolicy.OnlyBottomUp = false; 2740 } 2741 } 2742 2743 void GenericScheduler::dumpPolicy() const { 2744 // Cannot completely remove virtual function even in release mode. 2745 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2746 dbgs() << "GenericScheduler RegionPolicy: " 2747 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2748 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2749 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2750 << "\n"; 2751 #endif 2752 } 2753 2754 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2755 /// critical path by more cycles than it takes to drain the instruction buffer. 2756 /// We estimate an upper bounds on in-flight instructions as: 2757 /// 2758 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2759 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2760 /// InFlightResources = InFlightIterations * LoopResources 2761 /// 2762 /// TODO: Check execution resources in addition to IssueCount. 2763 void GenericScheduler::checkAcyclicLatency() { 2764 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2765 return; 2766 2767 // Scaled number of cycles per loop iteration. 2768 unsigned IterCount = 2769 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2770 Rem.RemIssueCount); 2771 // Scaled acyclic critical path. 2772 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2773 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2774 unsigned InFlightCount = 2775 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2776 unsigned BufferLimit = 2777 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2778 2779 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2780 2781 LLVM_DEBUG( 2782 dbgs() << "IssueCycles=" 2783 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2784 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2785 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 2786 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2787 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2788 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2789 } 2790 2791 void GenericScheduler::registerRoots() { 2792 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2793 2794 // Some roots may not feed into ExitSU. Check all of them in case. 2795 for (const SUnit *SU : Bot.Available) { 2796 if (SU->getDepth() > Rem.CriticalPath) 2797 Rem.CriticalPath = SU->getDepth(); 2798 } 2799 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2800 if (DumpCriticalPathLength) { 2801 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2802 } 2803 2804 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2805 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2806 checkAcyclicLatency(); 2807 } 2808 } 2809 2810 namespace llvm { 2811 bool tryPressure(const PressureChange &TryP, 2812 const PressureChange &CandP, 2813 GenericSchedulerBase::SchedCandidate &TryCand, 2814 GenericSchedulerBase::SchedCandidate &Cand, 2815 GenericSchedulerBase::CandReason Reason, 2816 const TargetRegisterInfo *TRI, 2817 const MachineFunction &MF) { 2818 // If one candidate decreases and the other increases, go with it. 2819 // Invalid candidates have UnitInc==0. 2820 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2821 Reason)) { 2822 return true; 2823 } 2824 // Do not compare the magnitude of pressure changes between top and bottom 2825 // boundary. 2826 if (Cand.AtTop != TryCand.AtTop) 2827 return false; 2828 2829 // If both candidates affect the same set in the same boundary, go with the 2830 // smallest increase. 2831 unsigned TryPSet = TryP.getPSetOrMax(); 2832 unsigned CandPSet = CandP.getPSetOrMax(); 2833 if (TryPSet == CandPSet) { 2834 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2835 Reason); 2836 } 2837 2838 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2839 std::numeric_limits<int>::max(); 2840 2841 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2842 std::numeric_limits<int>::max(); 2843 2844 // If the candidates are decreasing pressure, reverse priority. 2845 if (TryP.getUnitInc() < 0) 2846 std::swap(TryRank, CandRank); 2847 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2848 } 2849 2850 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2851 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2852 } 2853 2854 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2855 /// their physreg def/use. 2856 /// 2857 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2858 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2859 /// with the operation that produces or consumes the physreg. We'll do this when 2860 /// regalloc has support for parallel copies. 2861 int biasPhysReg(const SUnit *SU, bool isTop) { 2862 const MachineInstr *MI = SU->getInstr(); 2863 2864 if (MI->isCopy()) { 2865 unsigned ScheduledOper = isTop ? 1 : 0; 2866 unsigned UnscheduledOper = isTop ? 0 : 1; 2867 // If we have already scheduled the physreg produce/consumer, immediately 2868 // schedule the copy. 2869 if (TargetRegisterInfo::isPhysicalRegister( 2870 MI->getOperand(ScheduledOper).getReg())) 2871 return 1; 2872 // If the physreg is at the boundary, defer it. Otherwise schedule it 2873 // immediately to free the dependent. We can hoist the copy later. 2874 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2875 if (TargetRegisterInfo::isPhysicalRegister( 2876 MI->getOperand(UnscheduledOper).getReg())) 2877 return AtBoundary ? -1 : 1; 2878 } 2879 2880 if (MI->isMoveImmediate()) { 2881 // If we have a move immediate and all successors have been assigned, bias 2882 // towards scheduling this later. Make sure all register defs are to 2883 // physical registers. 2884 bool DoBias = true; 2885 for (const MachineOperand &Op : MI->defs()) { 2886 if (Op.isReg() && !TargetRegisterInfo::isPhysicalRegister(Op.getReg())) { 2887 DoBias = false; 2888 break; 2889 } 2890 } 2891 2892 if (DoBias) 2893 return isTop ? -1 : 1; 2894 } 2895 2896 return 0; 2897 } 2898 } // end namespace llvm 2899 2900 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2901 bool AtTop, 2902 const RegPressureTracker &RPTracker, 2903 RegPressureTracker &TempTracker) { 2904 Cand.SU = SU; 2905 Cand.AtTop = AtTop; 2906 if (DAG->isTrackingPressure()) { 2907 if (AtTop) { 2908 TempTracker.getMaxDownwardPressureDelta( 2909 Cand.SU->getInstr(), 2910 Cand.RPDelta, 2911 DAG->getRegionCriticalPSets(), 2912 DAG->getRegPressure().MaxSetPressure); 2913 } else { 2914 if (VerifyScheduling) { 2915 TempTracker.getMaxUpwardPressureDelta( 2916 Cand.SU->getInstr(), 2917 &DAG->getPressureDiff(Cand.SU), 2918 Cand.RPDelta, 2919 DAG->getRegionCriticalPSets(), 2920 DAG->getRegPressure().MaxSetPressure); 2921 } else { 2922 RPTracker.getUpwardPressureDelta( 2923 Cand.SU->getInstr(), 2924 DAG->getPressureDiff(Cand.SU), 2925 Cand.RPDelta, 2926 DAG->getRegionCriticalPSets(), 2927 DAG->getRegPressure().MaxSetPressure); 2928 } 2929 } 2930 } 2931 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 2932 << " Try SU(" << Cand.SU->NodeNum << ") " 2933 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 2934 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2935 } 2936 2937 /// Apply a set of heuristics to a new candidate. Heuristics are currently 2938 /// hierarchical. This may be more efficient than a graduated cost model because 2939 /// we don't need to evaluate all aspects of the model for each node in the 2940 /// queue. But it's really done to make the heuristics easier to debug and 2941 /// statistically analyze. 2942 /// 2943 /// \param Cand provides the policy and current best candidate. 2944 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2945 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2946 // if Cand is from a different zone than TryCand. 2947 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2948 SchedCandidate &TryCand, 2949 SchedBoundary *Zone) const { 2950 // Initialize the candidate if needed. 2951 if (!Cand.isValid()) { 2952 TryCand.Reason = NodeOrder; 2953 return; 2954 } 2955 2956 // Bias PhysReg Defs and copies to their uses and defined respectively. 2957 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 2958 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 2959 return; 2960 2961 // Avoid exceeding the target's limit. 2962 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2963 Cand.RPDelta.Excess, 2964 TryCand, Cand, RegExcess, TRI, 2965 DAG->MF)) 2966 return; 2967 2968 // Avoid increasing the max critical pressure in the scheduled region. 2969 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2970 Cand.RPDelta.CriticalMax, 2971 TryCand, Cand, RegCritical, TRI, 2972 DAG->MF)) 2973 return; 2974 2975 // We only compare a subset of features when comparing nodes between 2976 // Top and Bottom boundary. Some properties are simply incomparable, in many 2977 // other instances we should only override the other boundary if something 2978 // is a clear good pick on one boundary. Skip heuristics that are more 2979 // "tie-breaking" in nature. 2980 bool SameBoundary = Zone != nullptr; 2981 if (SameBoundary) { 2982 // For loops that are acyclic path limited, aggressively schedule for 2983 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2984 // heuristics to take precedence. 2985 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2986 tryLatency(TryCand, Cand, *Zone)) 2987 return; 2988 2989 // Prioritize instructions that read unbuffered resources by stall cycles. 2990 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2991 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2992 return; 2993 } 2994 2995 // Keep clustered nodes together to encourage downstream peephole 2996 // optimizations which may reduce resource requirements. 2997 // 2998 // This is a best effort to set things up for a post-RA pass. Optimizations 2999 // like generating loads of multiple registers should ideally be done within 3000 // the scheduler pass by combining the loads during DAG postprocessing. 3001 const SUnit *CandNextClusterSU = 3002 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3003 const SUnit *TryCandNextClusterSU = 3004 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3005 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3006 Cand.SU == CandNextClusterSU, 3007 TryCand, Cand, Cluster)) 3008 return; 3009 3010 if (SameBoundary) { 3011 // Weak edges are for clustering and other constraints. 3012 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3013 getWeakLeft(Cand.SU, Cand.AtTop), 3014 TryCand, Cand, Weak)) 3015 return; 3016 } 3017 3018 // Avoid increasing the max pressure of the entire region. 3019 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3020 Cand.RPDelta.CurrentMax, 3021 TryCand, Cand, RegMax, TRI, 3022 DAG->MF)) 3023 return; 3024 3025 if (SameBoundary) { 3026 // Avoid critical resource consumption and balance the schedule. 3027 TryCand.initResourceDelta(DAG, SchedModel); 3028 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3029 TryCand, Cand, ResourceReduce)) 3030 return; 3031 if (tryGreater(TryCand.ResDelta.DemandedResources, 3032 Cand.ResDelta.DemandedResources, 3033 TryCand, Cand, ResourceDemand)) 3034 return; 3035 3036 // Avoid serializing long latency dependence chains. 3037 // For acyclic path limited loops, latency was already checked above. 3038 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3039 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3040 return; 3041 3042 // Fall through to original instruction order. 3043 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3044 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3045 TryCand.Reason = NodeOrder; 3046 } 3047 } 3048 } 3049 3050 /// Pick the best candidate from the queue. 3051 /// 3052 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3053 /// DAG building. To adjust for the current scheduling location we need to 3054 /// maintain the number of vreg uses remaining to be top-scheduled. 3055 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3056 const CandPolicy &ZonePolicy, 3057 const RegPressureTracker &RPTracker, 3058 SchedCandidate &Cand) { 3059 // getMaxPressureDelta temporarily modifies the tracker. 3060 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3061 3062 ReadyQueue &Q = Zone.Available; 3063 for (SUnit *SU : Q) { 3064 3065 SchedCandidate TryCand(ZonePolicy); 3066 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3067 // Pass SchedBoundary only when comparing nodes from the same boundary. 3068 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3069 tryCandidate(Cand, TryCand, ZoneArg); 3070 if (TryCand.Reason != NoCand) { 3071 // Initialize resource delta if needed in case future heuristics query it. 3072 if (TryCand.ResDelta == SchedResourceDelta()) 3073 TryCand.initResourceDelta(DAG, SchedModel); 3074 Cand.setBest(TryCand); 3075 LLVM_DEBUG(traceCandidate(Cand)); 3076 } 3077 } 3078 } 3079 3080 /// Pick the best candidate node from either the top or bottom queue. 3081 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3082 // Schedule as far as possible in the direction of no choice. This is most 3083 // efficient, but also provides the best heuristics for CriticalPSets. 3084 if (SUnit *SU = Bot.pickOnlyChoice()) { 3085 IsTopNode = false; 3086 tracePick(Only1, false); 3087 return SU; 3088 } 3089 if (SUnit *SU = Top.pickOnlyChoice()) { 3090 IsTopNode = true; 3091 tracePick(Only1, true); 3092 return SU; 3093 } 3094 // Set the bottom-up policy based on the state of the current bottom zone and 3095 // the instructions outside the zone, including the top zone. 3096 CandPolicy BotPolicy; 3097 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3098 // Set the top-down policy based on the state of the current top zone and 3099 // the instructions outside the zone, including the bottom zone. 3100 CandPolicy TopPolicy; 3101 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3102 3103 // See if BotCand is still valid (because we previously scheduled from Top). 3104 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3105 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3106 BotCand.Policy != BotPolicy) { 3107 BotCand.reset(CandPolicy()); 3108 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3109 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3110 } else { 3111 LLVM_DEBUG(traceCandidate(BotCand)); 3112 #ifndef NDEBUG 3113 if (VerifyScheduling) { 3114 SchedCandidate TCand; 3115 TCand.reset(CandPolicy()); 3116 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3117 assert(TCand.SU == BotCand.SU && 3118 "Last pick result should correspond to re-picking right now"); 3119 } 3120 #endif 3121 } 3122 3123 // Check if the top Q has a better candidate. 3124 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3125 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3126 TopCand.Policy != TopPolicy) { 3127 TopCand.reset(CandPolicy()); 3128 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3129 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3130 } else { 3131 LLVM_DEBUG(traceCandidate(TopCand)); 3132 #ifndef NDEBUG 3133 if (VerifyScheduling) { 3134 SchedCandidate TCand; 3135 TCand.reset(CandPolicy()); 3136 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3137 assert(TCand.SU == TopCand.SU && 3138 "Last pick result should correspond to re-picking right now"); 3139 } 3140 #endif 3141 } 3142 3143 // Pick best from BotCand and TopCand. 3144 assert(BotCand.isValid()); 3145 assert(TopCand.isValid()); 3146 SchedCandidate Cand = BotCand; 3147 TopCand.Reason = NoCand; 3148 tryCandidate(Cand, TopCand, nullptr); 3149 if (TopCand.Reason != NoCand) { 3150 Cand.setBest(TopCand); 3151 LLVM_DEBUG(traceCandidate(Cand)); 3152 } 3153 3154 IsTopNode = Cand.AtTop; 3155 tracePick(Cand); 3156 return Cand.SU; 3157 } 3158 3159 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3160 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3161 if (DAG->top() == DAG->bottom()) { 3162 assert(Top.Available.empty() && Top.Pending.empty() && 3163 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3164 return nullptr; 3165 } 3166 SUnit *SU; 3167 do { 3168 if (RegionPolicy.OnlyTopDown) { 3169 SU = Top.pickOnlyChoice(); 3170 if (!SU) { 3171 CandPolicy NoPolicy; 3172 TopCand.reset(NoPolicy); 3173 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3174 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3175 tracePick(TopCand); 3176 SU = TopCand.SU; 3177 } 3178 IsTopNode = true; 3179 } else if (RegionPolicy.OnlyBottomUp) { 3180 SU = Bot.pickOnlyChoice(); 3181 if (!SU) { 3182 CandPolicy NoPolicy; 3183 BotCand.reset(NoPolicy); 3184 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3185 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3186 tracePick(BotCand); 3187 SU = BotCand.SU; 3188 } 3189 IsTopNode = false; 3190 } else { 3191 SU = pickNodeBidirectional(IsTopNode); 3192 } 3193 } while (SU->isScheduled); 3194 3195 if (SU->isTopReady()) 3196 Top.removeReady(SU); 3197 if (SU->isBottomReady()) 3198 Bot.removeReady(SU); 3199 3200 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3201 << *SU->getInstr()); 3202 return SU; 3203 } 3204 3205 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3206 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3207 if (!isTop) 3208 ++InsertPos; 3209 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3210 3211 // Find already scheduled copies with a single physreg dependence and move 3212 // them just above the scheduled instruction. 3213 for (SDep &Dep : Deps) { 3214 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3215 continue; 3216 SUnit *DepSU = Dep.getSUnit(); 3217 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3218 continue; 3219 MachineInstr *Copy = DepSU->getInstr(); 3220 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3221 continue; 3222 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3223 DAG->dumpNode(*Dep.getSUnit())); 3224 DAG->moveInstruction(Copy, InsertPos); 3225 } 3226 } 3227 3228 /// Update the scheduler's state after scheduling a node. This is the same node 3229 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3230 /// update it's state based on the current cycle before MachineSchedStrategy 3231 /// does. 3232 /// 3233 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3234 /// them here. See comments in biasPhysReg. 3235 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3236 if (IsTopNode) { 3237 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3238 Top.bumpNode(SU); 3239 if (SU->hasPhysRegUses) 3240 reschedulePhysReg(SU, true); 3241 } else { 3242 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3243 Bot.bumpNode(SU); 3244 if (SU->hasPhysRegDefs) 3245 reschedulePhysReg(SU, false); 3246 } 3247 } 3248 3249 /// Create the standard converging machine scheduler. This will be used as the 3250 /// default scheduler if the target does not set a default. 3251 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3252 ScheduleDAGMILive *DAG = 3253 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3254 // Register DAG post-processors. 3255 // 3256 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3257 // data and pass it to later mutations. Have a single mutation that gathers 3258 // the interesting nodes in one pass. 3259 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3260 return DAG; 3261 } 3262 3263 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3264 return createGenericSchedLive(C); 3265 } 3266 3267 static MachineSchedRegistry 3268 GenericSchedRegistry("converge", "Standard converging scheduler.", 3269 createConveringSched); 3270 3271 //===----------------------------------------------------------------------===// 3272 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3273 //===----------------------------------------------------------------------===// 3274 3275 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3276 DAG = Dag; 3277 SchedModel = DAG->getSchedModel(); 3278 TRI = DAG->TRI; 3279 3280 Rem.init(DAG, SchedModel); 3281 Top.init(DAG, SchedModel, &Rem); 3282 BotRoots.clear(); 3283 3284 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3285 // or are disabled, then these HazardRecs will be disabled. 3286 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3287 if (!Top.HazardRec) { 3288 Top.HazardRec = 3289 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3290 Itin, DAG); 3291 } 3292 } 3293 3294 void PostGenericScheduler::registerRoots() { 3295 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3296 3297 // Some roots may not feed into ExitSU. Check all of them in case. 3298 for (const SUnit *SU : BotRoots) { 3299 if (SU->getDepth() > Rem.CriticalPath) 3300 Rem.CriticalPath = SU->getDepth(); 3301 } 3302 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3303 if (DumpCriticalPathLength) { 3304 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3305 } 3306 } 3307 3308 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3309 /// 3310 /// \param Cand provides the policy and current best candidate. 3311 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3312 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3313 SchedCandidate &TryCand) { 3314 // Initialize the candidate if needed. 3315 if (!Cand.isValid()) { 3316 TryCand.Reason = NodeOrder; 3317 return; 3318 } 3319 3320 // Prioritize instructions that read unbuffered resources by stall cycles. 3321 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3322 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3323 return; 3324 3325 // Keep clustered nodes together. 3326 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3327 Cand.SU == DAG->getNextClusterSucc(), 3328 TryCand, Cand, Cluster)) 3329 return; 3330 3331 // Avoid critical resource consumption and balance the schedule. 3332 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3333 TryCand, Cand, ResourceReduce)) 3334 return; 3335 if (tryGreater(TryCand.ResDelta.DemandedResources, 3336 Cand.ResDelta.DemandedResources, 3337 TryCand, Cand, ResourceDemand)) 3338 return; 3339 3340 // Avoid serializing long latency dependence chains. 3341 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3342 return; 3343 } 3344 3345 // Fall through to original instruction order. 3346 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3347 TryCand.Reason = NodeOrder; 3348 } 3349 3350 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3351 ReadyQueue &Q = Top.Available; 3352 for (SUnit *SU : Q) { 3353 SchedCandidate TryCand(Cand.Policy); 3354 TryCand.SU = SU; 3355 TryCand.AtTop = true; 3356 TryCand.initResourceDelta(DAG, SchedModel); 3357 tryCandidate(Cand, TryCand); 3358 if (TryCand.Reason != NoCand) { 3359 Cand.setBest(TryCand); 3360 LLVM_DEBUG(traceCandidate(Cand)); 3361 } 3362 } 3363 } 3364 3365 /// Pick the next node to schedule. 3366 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3367 if (DAG->top() == DAG->bottom()) { 3368 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3369 return nullptr; 3370 } 3371 SUnit *SU; 3372 do { 3373 SU = Top.pickOnlyChoice(); 3374 if (SU) { 3375 tracePick(Only1, true); 3376 } else { 3377 CandPolicy NoPolicy; 3378 SchedCandidate TopCand(NoPolicy); 3379 // Set the top-down policy based on the state of the current top zone and 3380 // the instructions outside the zone, including the bottom zone. 3381 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3382 pickNodeFromQueue(TopCand); 3383 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3384 tracePick(TopCand); 3385 SU = TopCand.SU; 3386 } 3387 } while (SU->isScheduled); 3388 3389 IsTopNode = true; 3390 Top.removeReady(SU); 3391 3392 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3393 << *SU->getInstr()); 3394 return SU; 3395 } 3396 3397 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3398 /// scheduled/remaining flags in the DAG nodes. 3399 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3400 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3401 Top.bumpNode(SU); 3402 } 3403 3404 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3405 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3406 /*RemoveKillFlags=*/true); 3407 } 3408 3409 //===----------------------------------------------------------------------===// 3410 // ILP Scheduler. Currently for experimental analysis of heuristics. 3411 //===----------------------------------------------------------------------===// 3412 3413 namespace { 3414 3415 /// Order nodes by the ILP metric. 3416 struct ILPOrder { 3417 const SchedDFSResult *DFSResult = nullptr; 3418 const BitVector *ScheduledTrees = nullptr; 3419 bool MaximizeILP; 3420 3421 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3422 3423 /// Apply a less-than relation on node priority. 3424 /// 3425 /// (Return true if A comes after B in the Q.) 3426 bool operator()(const SUnit *A, const SUnit *B) const { 3427 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3428 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3429 if (SchedTreeA != SchedTreeB) { 3430 // Unscheduled trees have lower priority. 3431 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3432 return ScheduledTrees->test(SchedTreeB); 3433 3434 // Trees with shallower connections have have lower priority. 3435 if (DFSResult->getSubtreeLevel(SchedTreeA) 3436 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3437 return DFSResult->getSubtreeLevel(SchedTreeA) 3438 < DFSResult->getSubtreeLevel(SchedTreeB); 3439 } 3440 } 3441 if (MaximizeILP) 3442 return DFSResult->getILP(A) < DFSResult->getILP(B); 3443 else 3444 return DFSResult->getILP(A) > DFSResult->getILP(B); 3445 } 3446 }; 3447 3448 /// Schedule based on the ILP metric. 3449 class ILPScheduler : public MachineSchedStrategy { 3450 ScheduleDAGMILive *DAG = nullptr; 3451 ILPOrder Cmp; 3452 3453 std::vector<SUnit*> ReadyQ; 3454 3455 public: 3456 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3457 3458 void initialize(ScheduleDAGMI *dag) override { 3459 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3460 DAG = static_cast<ScheduleDAGMILive*>(dag); 3461 DAG->computeDFSResult(); 3462 Cmp.DFSResult = DAG->getDFSResult(); 3463 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3464 ReadyQ.clear(); 3465 } 3466 3467 void registerRoots() override { 3468 // Restore the heap in ReadyQ with the updated DFS results. 3469 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3470 } 3471 3472 /// Implement MachineSchedStrategy interface. 3473 /// ----------------------------------------- 3474 3475 /// Callback to select the highest priority node from the ready Q. 3476 SUnit *pickNode(bool &IsTopNode) override { 3477 if (ReadyQ.empty()) return nullptr; 3478 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3479 SUnit *SU = ReadyQ.back(); 3480 ReadyQ.pop_back(); 3481 IsTopNode = false; 3482 LLVM_DEBUG(dbgs() << "Pick node " 3483 << "SU(" << SU->NodeNum << ") " 3484 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3485 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3486 << " @" 3487 << DAG->getDFSResult()->getSubtreeLevel( 3488 DAG->getDFSResult()->getSubtreeID(SU)) 3489 << '\n' 3490 << "Scheduling " << *SU->getInstr()); 3491 return SU; 3492 } 3493 3494 /// Scheduler callback to notify that a new subtree is scheduled. 3495 void scheduleTree(unsigned SubtreeID) override { 3496 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3497 } 3498 3499 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3500 /// DFSResults, and resort the priority Q. 3501 void schedNode(SUnit *SU, bool IsTopNode) override { 3502 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3503 } 3504 3505 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3506 3507 void releaseBottomNode(SUnit *SU) override { 3508 ReadyQ.push_back(SU); 3509 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3510 } 3511 }; 3512 3513 } // end anonymous namespace 3514 3515 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3516 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3517 } 3518 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3519 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3520 } 3521 3522 static MachineSchedRegistry ILPMaxRegistry( 3523 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3524 static MachineSchedRegistry ILPMinRegistry( 3525 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3526 3527 //===----------------------------------------------------------------------===// 3528 // Machine Instruction Shuffler for Correctness Testing 3529 //===----------------------------------------------------------------------===// 3530 3531 #ifndef NDEBUG 3532 namespace { 3533 3534 /// Apply a less-than relation on the node order, which corresponds to the 3535 /// instruction order prior to scheduling. IsReverse implements greater-than. 3536 template<bool IsReverse> 3537 struct SUnitOrder { 3538 bool operator()(SUnit *A, SUnit *B) const { 3539 if (IsReverse) 3540 return A->NodeNum > B->NodeNum; 3541 else 3542 return A->NodeNum < B->NodeNum; 3543 } 3544 }; 3545 3546 /// Reorder instructions as much as possible. 3547 class InstructionShuffler : public MachineSchedStrategy { 3548 bool IsAlternating; 3549 bool IsTopDown; 3550 3551 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3552 // gives nodes with a higher number higher priority causing the latest 3553 // instructions to be scheduled first. 3554 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3555 TopQ; 3556 3557 // When scheduling bottom-up, use greater-than as the queue priority. 3558 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3559 BottomQ; 3560 3561 public: 3562 InstructionShuffler(bool alternate, bool topdown) 3563 : IsAlternating(alternate), IsTopDown(topdown) {} 3564 3565 void initialize(ScheduleDAGMI*) override { 3566 TopQ.clear(); 3567 BottomQ.clear(); 3568 } 3569 3570 /// Implement MachineSchedStrategy interface. 3571 /// ----------------------------------------- 3572 3573 SUnit *pickNode(bool &IsTopNode) override { 3574 SUnit *SU; 3575 if (IsTopDown) { 3576 do { 3577 if (TopQ.empty()) return nullptr; 3578 SU = TopQ.top(); 3579 TopQ.pop(); 3580 } while (SU->isScheduled); 3581 IsTopNode = true; 3582 } else { 3583 do { 3584 if (BottomQ.empty()) return nullptr; 3585 SU = BottomQ.top(); 3586 BottomQ.pop(); 3587 } while (SU->isScheduled); 3588 IsTopNode = false; 3589 } 3590 if (IsAlternating) 3591 IsTopDown = !IsTopDown; 3592 return SU; 3593 } 3594 3595 void schedNode(SUnit *SU, bool IsTopNode) override {} 3596 3597 void releaseTopNode(SUnit *SU) override { 3598 TopQ.push(SU); 3599 } 3600 void releaseBottomNode(SUnit *SU) override { 3601 BottomQ.push(SU); 3602 } 3603 }; 3604 3605 } // end anonymous namespace 3606 3607 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3608 bool Alternate = !ForceTopDown && !ForceBottomUp; 3609 bool TopDown = !ForceBottomUp; 3610 assert((TopDown || !ForceTopDown) && 3611 "-misched-topdown incompatible with -misched-bottomup"); 3612 return new ScheduleDAGMILive( 3613 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3614 } 3615 3616 static MachineSchedRegistry ShufflerRegistry( 3617 "shuffle", "Shuffle machine instructions alternating directions", 3618 createInstructionShuffler); 3619 #endif // !NDEBUG 3620 3621 //===----------------------------------------------------------------------===// 3622 // GraphWriter support for ScheduleDAGMILive. 3623 //===----------------------------------------------------------------------===// 3624 3625 #ifndef NDEBUG 3626 namespace llvm { 3627 3628 template<> struct GraphTraits< 3629 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3630 3631 template<> 3632 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3633 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3634 3635 static std::string getGraphName(const ScheduleDAG *G) { 3636 return G->MF.getName(); 3637 } 3638 3639 static bool renderGraphFromBottomUp() { 3640 return true; 3641 } 3642 3643 static bool isNodeHidden(const SUnit *Node) { 3644 if (ViewMISchedCutoff == 0) 3645 return false; 3646 return (Node->Preds.size() > ViewMISchedCutoff 3647 || Node->Succs.size() > ViewMISchedCutoff); 3648 } 3649 3650 /// If you want to override the dot attributes printed for a particular 3651 /// edge, override this method. 3652 static std::string getEdgeAttributes(const SUnit *Node, 3653 SUnitIterator EI, 3654 const ScheduleDAG *Graph) { 3655 if (EI.isArtificialDep()) 3656 return "color=cyan,style=dashed"; 3657 if (EI.isCtrlDep()) 3658 return "color=blue,style=dashed"; 3659 return ""; 3660 } 3661 3662 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3663 std::string Str; 3664 raw_string_ostream SS(Str); 3665 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3666 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3667 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3668 SS << "SU:" << SU->NodeNum; 3669 if (DFS) 3670 SS << " I:" << DFS->getNumInstrs(SU); 3671 return SS.str(); 3672 } 3673 3674 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3675 return G->getGraphNodeLabel(SU); 3676 } 3677 3678 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3679 std::string Str("shape=Mrecord"); 3680 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3681 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3682 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3683 if (DFS) { 3684 Str += ",style=filled,fillcolor=\"#"; 3685 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3686 Str += '"'; 3687 } 3688 return Str; 3689 } 3690 }; 3691 3692 } // end namespace llvm 3693 #endif // NDEBUG 3694 3695 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3696 /// rendered using 'dot'. 3697 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3698 #ifndef NDEBUG 3699 ViewGraph(this, Name, false, Title); 3700 #else 3701 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3702 << "systems with Graphviz or gv!\n"; 3703 #endif // NDEBUG 3704 } 3705 3706 /// Out-of-line implementation with no arguments is handy for gdb. 3707 void ScheduleDAGMI::viewGraph() { 3708 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3709 } 3710