1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 228 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequiredID(MachineDominatorsID); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<TargetPassConfig>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 MachinePassRegistry MachineSchedRegistry::Registry; 240 241 /// A dummy default scheduler factory indicates whether the scheduler 242 /// is overridden on the command line. 243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 244 return nullptr; 245 } 246 247 /// MachineSchedOpt allows command line selection of the scheduler. 248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 249 RegisterPassParser<MachineSchedRegistry>> 250 MachineSchedOpt("misched", 251 cl::init(&useDefaultMachineSched), cl::Hidden, 252 cl::desc("Machine instruction scheduler to use")); 253 254 static MachineSchedRegistry 255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 256 useDefaultMachineSched); 257 258 static cl::opt<bool> EnableMachineSched( 259 "enable-misched", 260 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 261 cl::Hidden); 262 263 static cl::opt<bool> EnablePostRAMachineSched( 264 "enable-post-misched", 265 cl::desc("Enable the post-ra machine instruction scheduling pass."), 266 cl::init(true), cl::Hidden); 267 268 /// Decrement this iterator until reaching the top or a non-debug instr. 269 static MachineBasicBlock::const_iterator 270 priorNonDebug(MachineBasicBlock::const_iterator I, 271 MachineBasicBlock::const_iterator Beg) { 272 assert(I != Beg && "reached the top of the region, cannot decrement"); 273 while (--I != Beg) { 274 if (!I->isDebugValue()) 275 break; 276 } 277 return I; 278 } 279 280 /// Non-const version. 281 static MachineBasicBlock::iterator 282 priorNonDebug(MachineBasicBlock::iterator I, 283 MachineBasicBlock::const_iterator Beg) { 284 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 285 .getNonConstIterator(); 286 } 287 288 /// If this iterator is a debug value, increment until reaching the End or a 289 /// non-debug instruction. 290 static MachineBasicBlock::const_iterator 291 nextIfDebug(MachineBasicBlock::const_iterator I, 292 MachineBasicBlock::const_iterator End) { 293 for(; I != End; ++I) { 294 if (!I->isDebugValue()) 295 break; 296 } 297 return I; 298 } 299 300 /// Non-const version. 301 static MachineBasicBlock::iterator 302 nextIfDebug(MachineBasicBlock::iterator I, 303 MachineBasicBlock::const_iterator End) { 304 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 305 .getNonConstIterator(); 306 } 307 308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 310 // Select the scheduler, or set the default. 311 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 312 if (Ctor != useDefaultMachineSched) 313 return Ctor(this); 314 315 // Get the default scheduler set by the target for this function. 316 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 317 if (Scheduler) 318 return Scheduler; 319 320 // Default to GenericScheduler. 321 return createGenericSchedLive(this); 322 } 323 324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 325 /// the caller. We don't have a command line option to override the postRA 326 /// scheduler. The Target must configure it. 327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 328 // Get the postRA scheduler set by the target for this function. 329 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 330 if (Scheduler) 331 return Scheduler; 332 333 // Default to GenericScheduler. 334 return createGenericSchedPostRA(this); 335 } 336 337 /// Top-level MachineScheduler pass driver. 338 /// 339 /// Visit blocks in function order. Divide each block into scheduling regions 340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 341 /// consistent with the DAG builder, which traverses the interior of the 342 /// scheduling regions bottom-up. 343 /// 344 /// This design avoids exposing scheduling boundaries to the DAG builder, 345 /// simplifying the DAG builder's support for "special" target instructions. 346 /// At the same time the design allows target schedulers to operate across 347 /// scheduling boundaries, for example to bundle the boudary instructions 348 /// without reordering them. This creates complexity, because the target 349 /// scheduler must update the RegionBegin and RegionEnd positions cached by 350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 351 /// design would be to split blocks at scheduling boundaries, but LLVM has a 352 /// general bias against block splitting purely for implementation simplicity. 353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 354 if (skipFunction(*mf.getFunction())) 355 return false; 356 357 if (EnableMachineSched.getNumOccurrences()) { 358 if (!EnableMachineSched) 359 return false; 360 } else if (!mf.getSubtarget().enableMachineScheduler()) 361 return false; 362 363 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 MDT = &getAnalysis<MachineDominatorTree>(); 369 PassConfig = &getAnalysis<TargetPassConfig>(); 370 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 371 372 LIS = &getAnalysis<LiveIntervals>(); 373 374 if (VerifyScheduling) { 375 DEBUG(LIS->dump()); 376 MF->verify(this, "Before machine scheduling."); 377 } 378 RegClassInfo->runOnMachineFunction(*MF); 379 380 // Instantiate the selected scheduler for this target, function, and 381 // optimization level. 382 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 383 scheduleRegions(*Scheduler, false); 384 385 DEBUG(LIS->dump()); 386 if (VerifyScheduling) 387 MF->verify(this, "After machine scheduling."); 388 return true; 389 } 390 391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 392 if (skipFunction(*mf.getFunction())) 393 return false; 394 395 if (EnablePostRAMachineSched.getNumOccurrences()) { 396 if (!EnablePostRAMachineSched) 397 return false; 398 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 399 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 400 return false; 401 } 402 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 403 404 // Initialize the context of the pass. 405 MF = &mf; 406 MLI = &getAnalysis<MachineLoopInfo>(); 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// A region of an MBB for scheduling. 440 namespace { 441 struct SchedRegion { 442 /// RegionBegin is the first instruction in the scheduling region, and 443 /// RegionEnd is either MBB->end() or the scheduling boundary after the 444 /// last instruction in the scheduling region. These iterators cannot refer 445 /// to instructions outside of the identified scheduling region because 446 /// those may be reordered before scheduling this region. 447 MachineBasicBlock::iterator RegionBegin; 448 MachineBasicBlock::iterator RegionEnd; 449 unsigned NumRegionInstrs; 450 451 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 452 unsigned N) : 453 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 454 }; 455 } // end anonymous namespace 456 457 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 458 459 static void 460 getSchedRegions(MachineBasicBlock *MBB, 461 MBBRegionsVector &Regions, 462 bool RegionsTopDown) { 463 MachineFunction *MF = MBB->getParent(); 464 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 465 466 MachineBasicBlock::iterator I = nullptr; 467 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 468 RegionEnd != MBB->begin(); RegionEnd = I) { 469 470 // Avoid decrementing RegionEnd for blocks with no terminator. 471 if (RegionEnd != MBB->end() || 472 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 473 --RegionEnd; 474 } 475 476 // The next region starts above the previous region. Look backward in the 477 // instruction stream until we find the nearest boundary. 478 unsigned NumRegionInstrs = 0; 479 I = RegionEnd; 480 for (;I != MBB->begin(); --I) { 481 MachineInstr &MI = *std::prev(I); 482 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 483 break; 484 if (!MI.isDebugValue()) 485 // MBB::size() uses instr_iterator to count. Here we need a bundle to 486 // count as a single instruction. 487 ++NumRegionInstrs; 488 } 489 490 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 491 } 492 493 if (RegionsTopDown) 494 std::reverse(Regions.begin(), Regions.end()); 495 } 496 497 /// Main driver for both MachineScheduler and PostMachineScheduler. 498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 499 bool FixKillFlags) { 500 // Visit all machine basic blocks. 501 // 502 // TODO: Visit blocks in global postorder or postorder within the bottom-up 503 // loop tree. Then we can optionally compute global RegPressure. 504 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 505 MBB != MBBEnd; ++MBB) { 506 507 Scheduler.startBlock(&*MBB); 508 509 #ifndef NDEBUG 510 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 511 continue; 512 if (SchedOnlyBlock.getNumOccurrences() 513 && (int)SchedOnlyBlock != MBB->getNumber()) 514 continue; 515 #endif 516 517 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 518 // points to the scheduling boundary at the bottom of the region. The DAG 519 // does not include RegionEnd, but the region does (i.e. the next 520 // RegionEnd is above the previous RegionBegin). If the current block has 521 // no terminator then RegionEnd == MBB->end() for the bottom region. 522 // 523 // All the regions of MBB are first found and stored in MBBRegions, which 524 // will be processed (MBB) top-down if initialized with true. 525 // 526 // The Scheduler may insert instructions during either schedule() or 527 // exitRegion(), even for empty regions. So the local iterators 'I' and 528 // 'RegionEnd' are invalid across these calls. Instructions must not be 529 // added to other regions than the current one without updating MBBRegions. 530 531 MBBRegionsVector MBBRegions; 532 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 533 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 534 R != MBBRegions.end(); ++R) { 535 MachineBasicBlock::iterator I = R->RegionBegin; 536 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 537 unsigned NumRegionInstrs = R->NumRegionInstrs; 538 539 // Notify the scheduler of the region, even if we may skip scheduling 540 // it. Perhaps it still needs to be bundled. 541 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (I == RegionEnd || I == std::prev(RegionEnd)) { 545 // Close the current region. Bundle the terminator if needed. 546 // This invalidates 'RegionEnd' and 'I'. 547 Scheduler.exitRegion(); 548 continue; 549 } 550 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 551 DEBUG(dbgs() << MF->getName() 552 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 553 << "\n From: " << *I << " To: "; 554 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 555 else dbgs() << "End"; 556 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 557 if (DumpCriticalPathLength) { 558 errs() << MF->getName(); 559 errs() << ":BB# " << MBB->getNumber(); 560 errs() << " " << MBB->getName() << " \n"; 561 } 562 563 // Schedule a region: possibly reorder instructions. 564 // This invalidates the original region iterators. 565 Scheduler.schedule(); 566 567 // Close the current region. 568 Scheduler.exitRegion(); 569 } 570 Scheduler.finishBlock(); 571 // FIXME: Ideally, no further passes should rely on kill flags. However, 572 // thumb2 size reduction is currently an exception, so the PostMIScheduler 573 // needs to do this. 574 if (FixKillFlags) 575 Scheduler.fixupKills(*MBB); 576 } 577 Scheduler.finalizeSchedule(); 578 } 579 580 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 581 // unimplemented 582 } 583 584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 585 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 586 dbgs() << "Queue " << Name << ": "; 587 for (const SUnit *SU : Queue) 588 dbgs() << SU->NodeNum << " "; 589 dbgs() << "\n"; 590 } 591 #endif 592 593 //===----------------------------------------------------------------------===// 594 // ScheduleDAGMI - Basic machine instruction scheduling. This is 595 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 596 // virtual registers. 597 // ===----------------------------------------------------------------------===/ 598 599 // Provide a vtable anchor. 600 ScheduleDAGMI::~ScheduleDAGMI() = default; 601 602 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 603 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 604 } 605 606 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 607 if (SuccSU != &ExitSU) { 608 // Do not use WillCreateCycle, it assumes SD scheduling. 609 // If Pred is reachable from Succ, then the edge creates a cycle. 610 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 611 return false; 612 Topo.AddPred(SuccSU, PredDep.getSUnit()); 613 } 614 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 615 // Return true regardless of whether a new edge needed to be inserted. 616 return true; 617 } 618 619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 620 /// NumPredsLeft reaches zero, release the successor node. 621 /// 622 /// FIXME: Adjust SuccSU height based on MinLatency. 623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 624 SUnit *SuccSU = SuccEdge->getSUnit(); 625 626 if (SuccEdge->isWeak()) { 627 --SuccSU->WeakPredsLeft; 628 if (SuccEdge->isCluster()) 629 NextClusterSucc = SuccSU; 630 return; 631 } 632 #ifndef NDEBUG 633 if (SuccSU->NumPredsLeft == 0) { 634 dbgs() << "*** Scheduling failed! ***\n"; 635 SuccSU->dump(this); 636 dbgs() << " has been released too many times!\n"; 637 llvm_unreachable(nullptr); 638 } 639 #endif 640 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 641 // CurrCycle may have advanced since then. 642 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 643 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 644 645 --SuccSU->NumPredsLeft; 646 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 647 SchedImpl->releaseTopNode(SuccSU); 648 } 649 650 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 652 for (SDep &Succ : SU->Succs) 653 releaseSucc(SU, &Succ); 654 } 655 656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 657 /// NumSuccsLeft reaches zero, release the predecessor node. 658 /// 659 /// FIXME: Adjust PredSU height based on MinLatency. 660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 661 SUnit *PredSU = PredEdge->getSUnit(); 662 663 if (PredEdge->isWeak()) { 664 --PredSU->WeakSuccsLeft; 665 if (PredEdge->isCluster()) 666 NextClusterPred = PredSU; 667 return; 668 } 669 #ifndef NDEBUG 670 if (PredSU->NumSuccsLeft == 0) { 671 dbgs() << "*** Scheduling failed! ***\n"; 672 PredSU->dump(this); 673 dbgs() << " has been released too many times!\n"; 674 llvm_unreachable(nullptr); 675 } 676 #endif 677 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 678 // CurrCycle may have advanced since then. 679 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 680 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 681 682 --PredSU->NumSuccsLeft; 683 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 684 SchedImpl->releaseBottomNode(PredSU); 685 } 686 687 /// releasePredecessors - Call releasePred on each of SU's predecessors. 688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 689 for (SDep &Pred : SU->Preds) 690 releasePred(SU, &Pred); 691 } 692 693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 694 ScheduleDAGInstrs::startBlock(bb); 695 SchedImpl->enterMBB(bb); 696 } 697 698 void ScheduleDAGMI::finishBlock() { 699 SchedImpl->leaveMBB(); 700 ScheduleDAGInstrs::finishBlock(); 701 } 702 703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 704 /// crossing a scheduling boundary. [begin, end) includes all instructions in 705 /// the region, including the boundary itself and single-instruction regions 706 /// that don't get scheduled. 707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 708 MachineBasicBlock::iterator begin, 709 MachineBasicBlock::iterator end, 710 unsigned regioninstrs) 711 { 712 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 713 714 SchedImpl->initPolicy(begin, end, regioninstrs); 715 } 716 717 /// This is normally called from the main scheduler loop but may also be invoked 718 /// by the scheduling strategy to perform additional code motion. 719 void ScheduleDAGMI::moveInstruction( 720 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 721 // Advance RegionBegin if the first instruction moves down. 722 if (&*RegionBegin == MI) 723 ++RegionBegin; 724 725 // Update the instruction stream. 726 BB->splice(InsertPos, BB, MI); 727 728 // Update LiveIntervals 729 if (LIS) 730 LIS->handleMove(*MI, /*UpdateFlags=*/true); 731 732 // Recede RegionBegin if an instruction moves above the first. 733 if (RegionBegin == InsertPos) 734 RegionBegin = MI; 735 } 736 737 bool ScheduleDAGMI::checkSchedLimit() { 738 #ifndef NDEBUG 739 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 740 CurrentTop = CurrentBottom; 741 return false; 742 } 743 ++NumInstrsScheduled; 744 #endif 745 return true; 746 } 747 748 /// Per-region scheduling driver, called back from 749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 750 /// does not consider liveness or register pressure. It is useful for PostRA 751 /// scheduling and potentially other custom schedulers. 752 void ScheduleDAGMI::schedule() { 753 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 754 DEBUG(SchedImpl->dumpPolicy()); 755 756 // Build the DAG. 757 buildSchedGraph(AA); 758 759 Topo.InitDAGTopologicalSorting(); 760 761 postprocessDAG(); 762 763 SmallVector<SUnit*, 8> TopRoots, BotRoots; 764 findRootsAndBiasEdges(TopRoots, BotRoots); 765 766 // Initialize the strategy before modifying the DAG. 767 // This may initialize a DFSResult to be used for queue priority. 768 SchedImpl->initialize(this); 769 770 DEBUG( 771 if (EntrySU.getInstr() != nullptr) 772 EntrySU.dumpAll(this); 773 for (const SUnit &SU : SUnits) 774 SU.dumpAll(this); 775 if (ExitSU.getInstr() != nullptr) 776 ExitSU.dumpAll(this); 777 ); 778 if (ViewMISchedDAGs) viewGraph(); 779 780 // Initialize ready queues now that the DAG and priority data are finalized. 781 initQueues(TopRoots, BotRoots); 782 783 bool IsTopNode = false; 784 while (true) { 785 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 786 SUnit *SU = SchedImpl->pickNode(IsTopNode); 787 if (!SU) break; 788 789 assert(!SU->isScheduled && "Node already scheduled"); 790 if (!checkSchedLimit()) 791 break; 792 793 MachineInstr *MI = SU->getInstr(); 794 if (IsTopNode) { 795 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 798 else 799 moveInstruction(MI, CurrentTop); 800 } else { 801 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 802 MachineBasicBlock::iterator priorII = 803 priorNonDebug(CurrentBottom, CurrentTop); 804 if (&*priorII == MI) 805 CurrentBottom = priorII; 806 else { 807 if (&*CurrentTop == MI) 808 CurrentTop = nextIfDebug(++CurrentTop, priorII); 809 moveInstruction(MI, CurrentBottom); 810 CurrentBottom = MI; 811 } 812 } 813 // Notify the scheduling strategy before updating the DAG. 814 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 815 // runs, it can then use the accurate ReadyCycle time to determine whether 816 // newly released nodes can move to the readyQ. 817 SchedImpl->schedNode(SU, IsTopNode); 818 819 updateQueues(SU, IsTopNode); 820 } 821 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 822 823 placeDebugValues(); 824 825 DEBUG({ 826 unsigned BBNum = begin()->getParent()->getNumber(); 827 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 828 dumpSchedule(); 829 dbgs() << '\n'; 830 }); 831 } 832 833 /// Apply each ScheduleDAGMutation step in order. 834 void ScheduleDAGMI::postprocessDAG() { 835 for (auto &m : Mutations) 836 m->apply(this); 837 } 838 839 void ScheduleDAGMI:: 840 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 841 SmallVectorImpl<SUnit*> &BotRoots) { 842 for (SUnit &SU : SUnits) { 843 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 844 845 // Order predecessors so DFSResult follows the critical path. 846 SU.biasCriticalPath(); 847 848 // A SUnit is ready to top schedule if it has no predecessors. 849 if (!SU.NumPredsLeft) 850 TopRoots.push_back(&SU); 851 // A SUnit is ready to bottom schedule if it has no successors. 852 if (!SU.NumSuccsLeft) 853 BotRoots.push_back(&SU); 854 } 855 ExitSU.biasCriticalPath(); 856 } 857 858 /// Identify DAG roots and setup scheduler queues. 859 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 860 ArrayRef<SUnit*> BotRoots) { 861 NextClusterSucc = nullptr; 862 NextClusterPred = nullptr; 863 864 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 865 // 866 // Nodes with unreleased weak edges can still be roots. 867 // Release top roots in forward order. 868 for (SUnit *SU : TopRoots) 869 SchedImpl->releaseTopNode(SU); 870 871 // Release bottom roots in reverse order so the higher priority nodes appear 872 // first. This is more natural and slightly more efficient. 873 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 874 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 875 SchedImpl->releaseBottomNode(*I); 876 } 877 878 releaseSuccessors(&EntrySU); 879 releasePredecessors(&ExitSU); 880 881 SchedImpl->registerRoots(); 882 883 // Advance past initial DebugValues. 884 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 885 CurrentBottom = RegionEnd; 886 } 887 888 /// Update scheduler queues after scheduling an instruction. 889 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 890 // Release dependent instructions for scheduling. 891 if (IsTopNode) 892 releaseSuccessors(SU); 893 else 894 releasePredecessors(SU); 895 896 SU->isScheduled = true; 897 } 898 899 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 900 void ScheduleDAGMI::placeDebugValues() { 901 // If first instruction was a DBG_VALUE then put it back. 902 if (FirstDbgValue) { 903 BB->splice(RegionBegin, BB, FirstDbgValue); 904 RegionBegin = FirstDbgValue; 905 } 906 907 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 908 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 909 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 910 MachineInstr *DbgValue = P.first; 911 MachineBasicBlock::iterator OrigPrevMI = P.second; 912 if (&*RegionBegin == DbgValue) 913 ++RegionBegin; 914 BB->splice(++OrigPrevMI, BB, DbgValue); 915 if (OrigPrevMI == std::prev(RegionEnd)) 916 RegionEnd = DbgValue; 917 } 918 DbgValues.clear(); 919 FirstDbgValue = nullptr; 920 } 921 922 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 923 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 924 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 925 if (SUnit *SU = getSUnit(&(*MI))) 926 SU->dump(this); 927 else 928 dbgs() << "Missing SUnit\n"; 929 } 930 } 931 #endif 932 933 //===----------------------------------------------------------------------===// 934 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 935 // preservation. 936 //===----------------------------------------------------------------------===// 937 938 ScheduleDAGMILive::~ScheduleDAGMILive() { 939 delete DFSResult; 940 } 941 942 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 943 const MachineInstr &MI = *SU.getInstr(); 944 for (const MachineOperand &MO : MI.operands()) { 945 if (!MO.isReg()) 946 continue; 947 if (!MO.readsReg()) 948 continue; 949 if (TrackLaneMasks && !MO.isUse()) 950 continue; 951 952 unsigned Reg = MO.getReg(); 953 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 954 continue; 955 956 // Ignore re-defs. 957 if (TrackLaneMasks) { 958 bool FoundDef = false; 959 for (const MachineOperand &MO2 : MI.operands()) { 960 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 961 FoundDef = true; 962 break; 963 } 964 } 965 if (FoundDef) 966 continue; 967 } 968 969 // Record this local VReg use. 970 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 971 for (; UI != VRegUses.end(); ++UI) { 972 if (UI->SU == &SU) 973 break; 974 } 975 if (UI == VRegUses.end()) 976 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 977 } 978 } 979 980 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 981 /// crossing a scheduling boundary. [begin, end) includes all instructions in 982 /// the region, including the boundary itself and single-instruction regions 983 /// that don't get scheduled. 984 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 985 MachineBasicBlock::iterator begin, 986 MachineBasicBlock::iterator end, 987 unsigned regioninstrs) 988 { 989 // ScheduleDAGMI initializes SchedImpl's per-region policy. 990 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 991 992 // For convenience remember the end of the liveness region. 993 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 994 995 SUPressureDiffs.clear(); 996 997 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 998 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 999 1000 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1001 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1002 } 1003 1004 // Setup the register pressure trackers for the top scheduled top and bottom 1005 // scheduled regions. 1006 void ScheduleDAGMILive::initRegPressure() { 1007 VRegUses.clear(); 1008 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1009 for (SUnit &SU : SUnits) 1010 collectVRegUses(SU); 1011 1012 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1013 ShouldTrackLaneMasks, false); 1014 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1015 ShouldTrackLaneMasks, false); 1016 1017 // Close the RPTracker to finalize live ins. 1018 RPTracker.closeRegion(); 1019 1020 DEBUG(RPTracker.dump()); 1021 1022 // Initialize the live ins and live outs. 1023 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1024 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1025 1026 // Close one end of the tracker so we can call 1027 // getMaxUpward/DownwardPressureDelta before advancing across any 1028 // instructions. This converts currently live regs into live ins/outs. 1029 TopRPTracker.closeTop(); 1030 BotRPTracker.closeBottom(); 1031 1032 BotRPTracker.initLiveThru(RPTracker); 1033 if (!BotRPTracker.getLiveThru().empty()) { 1034 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1035 DEBUG(dbgs() << "Live Thru: "; 1036 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1037 }; 1038 1039 // For each live out vreg reduce the pressure change associated with other 1040 // uses of the same vreg below the live-out reaching def. 1041 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1042 1043 // Account for liveness generated by the region boundary. 1044 if (LiveRegionEnd != RegionEnd) { 1045 SmallVector<RegisterMaskPair, 8> LiveUses; 1046 BotRPTracker.recede(&LiveUses); 1047 updatePressureDiffs(LiveUses); 1048 } 1049 1050 DEBUG( 1051 dbgs() << "Top Pressure:\n"; 1052 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1053 dbgs() << "Bottom Pressure:\n"; 1054 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1055 ); 1056 1057 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 1058 1059 // Cache the list of excess pressure sets in this region. This will also track 1060 // the max pressure in the scheduled code for these sets. 1061 RegionCriticalPSets.clear(); 1062 const std::vector<unsigned> &RegionPressure = 1063 RPTracker.getPressure().MaxSetPressure; 1064 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1065 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1066 if (RegionPressure[i] > Limit) { 1067 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1068 << " Limit " << Limit 1069 << " Actual " << RegionPressure[i] << "\n"); 1070 RegionCriticalPSets.push_back(PressureChange(i)); 1071 } 1072 } 1073 DEBUG(dbgs() << "Excess PSets: "; 1074 for (const PressureChange &RCPS : RegionCriticalPSets) 1075 dbgs() << TRI->getRegPressureSetName( 1076 RCPS.getPSet()) << " "; 1077 dbgs() << "\n"); 1078 } 1079 1080 void ScheduleDAGMILive:: 1081 updateScheduledPressure(const SUnit *SU, 1082 const std::vector<unsigned> &NewMaxPressure) { 1083 const PressureDiff &PDiff = getPressureDiff(SU); 1084 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1085 for (const PressureChange &PC : PDiff) { 1086 if (!PC.isValid()) 1087 break; 1088 unsigned ID = PC.getPSet(); 1089 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1090 ++CritIdx; 1091 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1092 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1093 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1094 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1095 } 1096 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1097 if (NewMaxPressure[ID] >= Limit - 2) { 1098 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1099 << NewMaxPressure[ID] 1100 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1101 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1102 } 1103 } 1104 } 1105 1106 /// Update the PressureDiff array for liveness after scheduling this 1107 /// instruction. 1108 void ScheduleDAGMILive::updatePressureDiffs( 1109 ArrayRef<RegisterMaskPair> LiveUses) { 1110 for (const RegisterMaskPair &P : LiveUses) { 1111 unsigned Reg = P.RegUnit; 1112 /// FIXME: Currently assuming single-use physregs. 1113 if (!TRI->isVirtualRegister(Reg)) 1114 continue; 1115 1116 if (ShouldTrackLaneMasks) { 1117 // If the register has just become live then other uses won't change 1118 // this fact anymore => decrement pressure. 1119 // If the register has just become dead then other uses make it come 1120 // back to life => increment pressure. 1121 bool Decrement = P.LaneMask.any(); 1122 1123 for (const VReg2SUnit &V2SU 1124 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1125 SUnit &SU = *V2SU.SU; 1126 if (SU.isScheduled || &SU == &ExitSU) 1127 continue; 1128 1129 PressureDiff &PDiff = getPressureDiff(&SU); 1130 PDiff.addPressureChange(Reg, Decrement, &MRI); 1131 DEBUG( 1132 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1133 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1134 << ' ' << *SU.getInstr(); 1135 dbgs() << " to "; 1136 PDiff.dump(*TRI); 1137 ); 1138 } 1139 } else { 1140 assert(P.LaneMask.any()); 1141 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1142 // This may be called before CurrentBottom has been initialized. However, 1143 // BotRPTracker must have a valid position. We want the value live into the 1144 // instruction or live out of the block, so ask for the previous 1145 // instruction's live-out. 1146 const LiveInterval &LI = LIS->getInterval(Reg); 1147 VNInfo *VNI; 1148 MachineBasicBlock::const_iterator I = 1149 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1150 if (I == BB->end()) 1151 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1152 else { 1153 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1154 VNI = LRQ.valueIn(); 1155 } 1156 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1157 assert(VNI && "No live value at use."); 1158 for (const VReg2SUnit &V2SU 1159 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1160 SUnit *SU = V2SU.SU; 1161 // If this use comes before the reaching def, it cannot be a last use, 1162 // so decrease its pressure change. 1163 if (!SU->isScheduled && SU != &ExitSU) { 1164 LiveQueryResult LRQ = 1165 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1166 if (LRQ.valueIn() == VNI) { 1167 PressureDiff &PDiff = getPressureDiff(SU); 1168 PDiff.addPressureChange(Reg, true, &MRI); 1169 DEBUG( 1170 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1171 << *SU->getInstr(); 1172 dbgs() << " to "; 1173 PDiff.dump(*TRI); 1174 ); 1175 } 1176 } 1177 } 1178 } 1179 } 1180 } 1181 1182 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1183 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1184 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1185 /// 1186 /// This is a skeletal driver, with all the functionality pushed into helpers, 1187 /// so that it can be easily extended by experimental schedulers. Generally, 1188 /// implementing MachineSchedStrategy should be sufficient to implement a new 1189 /// scheduling algorithm. However, if a scheduler further subclasses 1190 /// ScheduleDAGMILive then it will want to override this virtual method in order 1191 /// to update any specialized state. 1192 void ScheduleDAGMILive::schedule() { 1193 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1194 DEBUG(SchedImpl->dumpPolicy()); 1195 buildDAGWithRegPressure(); 1196 1197 Topo.InitDAGTopologicalSorting(); 1198 1199 postprocessDAG(); 1200 1201 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1202 findRootsAndBiasEdges(TopRoots, BotRoots); 1203 1204 // Initialize the strategy before modifying the DAG. 1205 // This may initialize a DFSResult to be used for queue priority. 1206 SchedImpl->initialize(this); 1207 1208 DEBUG( 1209 if (EntrySU.getInstr() != nullptr) 1210 EntrySU.dumpAll(this); 1211 for (const SUnit &SU : SUnits) { 1212 SU.dumpAll(this); 1213 if (ShouldTrackPressure) { 1214 dbgs() << " Pressure Diff : "; 1215 getPressureDiff(&SU).dump(*TRI); 1216 } 1217 dbgs() << " Single Issue : "; 1218 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1219 SchedModel.mustEndGroup(SU.getInstr())) 1220 dbgs() << "true;"; 1221 else 1222 dbgs() << "false;"; 1223 dbgs() << '\n'; 1224 } 1225 if (ExitSU.getInstr() != nullptr) 1226 ExitSU.dumpAll(this); 1227 ); 1228 if (ViewMISchedDAGs) viewGraph(); 1229 1230 // Initialize ready queues now that the DAG and priority data are finalized. 1231 initQueues(TopRoots, BotRoots); 1232 1233 bool IsTopNode = false; 1234 while (true) { 1235 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1236 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1237 if (!SU) break; 1238 1239 assert(!SU->isScheduled && "Node already scheduled"); 1240 if (!checkSchedLimit()) 1241 break; 1242 1243 scheduleMI(SU, IsTopNode); 1244 1245 if (DFSResult) { 1246 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1247 if (!ScheduledTrees.test(SubtreeID)) { 1248 ScheduledTrees.set(SubtreeID); 1249 DFSResult->scheduleTree(SubtreeID); 1250 SchedImpl->scheduleTree(SubtreeID); 1251 } 1252 } 1253 1254 // Notify the scheduling strategy after updating the DAG. 1255 SchedImpl->schedNode(SU, IsTopNode); 1256 1257 updateQueues(SU, IsTopNode); 1258 } 1259 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1260 1261 placeDebugValues(); 1262 1263 DEBUG({ 1264 unsigned BBNum = begin()->getParent()->getNumber(); 1265 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1266 dumpSchedule(); 1267 dbgs() << '\n'; 1268 }); 1269 } 1270 1271 /// Build the DAG and setup three register pressure trackers. 1272 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1273 if (!ShouldTrackPressure) { 1274 RPTracker.reset(); 1275 RegionCriticalPSets.clear(); 1276 buildSchedGraph(AA); 1277 return; 1278 } 1279 1280 // Initialize the register pressure tracker used by buildSchedGraph. 1281 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1282 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1283 1284 // Account for liveness generate by the region boundary. 1285 if (LiveRegionEnd != RegionEnd) 1286 RPTracker.recede(); 1287 1288 // Build the DAG, and compute current register pressure. 1289 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1290 1291 // Initialize top/bottom trackers after computing region pressure. 1292 initRegPressure(); 1293 } 1294 1295 void ScheduleDAGMILive::computeDFSResult() { 1296 if (!DFSResult) 1297 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1298 DFSResult->clear(); 1299 ScheduledTrees.clear(); 1300 DFSResult->resize(SUnits.size()); 1301 DFSResult->compute(SUnits); 1302 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1303 } 1304 1305 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1306 /// only provides the critical path for single block loops. To handle loops that 1307 /// span blocks, we could use the vreg path latencies provided by 1308 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1309 /// available for use in the scheduler. 1310 /// 1311 /// The cyclic path estimation identifies a def-use pair that crosses the back 1312 /// edge and considers the depth and height of the nodes. For example, consider 1313 /// the following instruction sequence where each instruction has unit latency 1314 /// and defines an epomymous virtual register: 1315 /// 1316 /// a->b(a,c)->c(b)->d(c)->exit 1317 /// 1318 /// The cyclic critical path is a two cycles: b->c->b 1319 /// The acyclic critical path is four cycles: a->b->c->d->exit 1320 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1321 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1322 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1323 /// LiveInDepth = depth(b) = len(a->b) = 1 1324 /// 1325 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1326 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1327 /// CyclicCriticalPath = min(2, 2) = 2 1328 /// 1329 /// This could be relevant to PostRA scheduling, but is currently implemented 1330 /// assuming LiveIntervals. 1331 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1332 // This only applies to single block loop. 1333 if (!BB->isSuccessor(BB)) 1334 return 0; 1335 1336 unsigned MaxCyclicLatency = 0; 1337 // Visit each live out vreg def to find def/use pairs that cross iterations. 1338 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1339 unsigned Reg = P.RegUnit; 1340 if (!TRI->isVirtualRegister(Reg)) 1341 continue; 1342 const LiveInterval &LI = LIS->getInterval(Reg); 1343 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1344 if (!DefVNI) 1345 continue; 1346 1347 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1348 const SUnit *DefSU = getSUnit(DefMI); 1349 if (!DefSU) 1350 continue; 1351 1352 unsigned LiveOutHeight = DefSU->getHeight(); 1353 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1354 // Visit all local users of the vreg def. 1355 for (const VReg2SUnit &V2SU 1356 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1357 SUnit *SU = V2SU.SU; 1358 if (SU == &ExitSU) 1359 continue; 1360 1361 // Only consider uses of the phi. 1362 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1363 if (!LRQ.valueIn()->isPHIDef()) 1364 continue; 1365 1366 // Assume that a path spanning two iterations is a cycle, which could 1367 // overestimate in strange cases. This allows cyclic latency to be 1368 // estimated as the minimum slack of the vreg's depth or height. 1369 unsigned CyclicLatency = 0; 1370 if (LiveOutDepth > SU->getDepth()) 1371 CyclicLatency = LiveOutDepth - SU->getDepth(); 1372 1373 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1374 if (LiveInHeight > LiveOutHeight) { 1375 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1376 CyclicLatency = LiveInHeight - LiveOutHeight; 1377 } else 1378 CyclicLatency = 0; 1379 1380 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1381 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1382 if (CyclicLatency > MaxCyclicLatency) 1383 MaxCyclicLatency = CyclicLatency; 1384 } 1385 } 1386 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1387 return MaxCyclicLatency; 1388 } 1389 1390 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1391 /// the Top RP tracker in case the region beginning has changed. 1392 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1393 ArrayRef<SUnit*> BotRoots) { 1394 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1395 if (ShouldTrackPressure) { 1396 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1397 TopRPTracker.setPos(CurrentTop); 1398 } 1399 } 1400 1401 /// Move an instruction and update register pressure. 1402 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1403 // Move the instruction to its new location in the instruction stream. 1404 MachineInstr *MI = SU->getInstr(); 1405 1406 if (IsTopNode) { 1407 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1408 if (&*CurrentTop == MI) 1409 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1410 else { 1411 moveInstruction(MI, CurrentTop); 1412 TopRPTracker.setPos(MI); 1413 } 1414 1415 if (ShouldTrackPressure) { 1416 // Update top scheduled pressure. 1417 RegisterOperands RegOpers; 1418 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1419 if (ShouldTrackLaneMasks) { 1420 // Adjust liveness and add missing dead+read-undef flags. 1421 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1422 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1423 } else { 1424 // Adjust for missing dead-def flags. 1425 RegOpers.detectDeadDefs(*MI, *LIS); 1426 } 1427 1428 TopRPTracker.advance(RegOpers); 1429 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1430 DEBUG( 1431 dbgs() << "Top Pressure:\n"; 1432 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1433 ); 1434 1435 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1436 } 1437 } else { 1438 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1439 MachineBasicBlock::iterator priorII = 1440 priorNonDebug(CurrentBottom, CurrentTop); 1441 if (&*priorII == MI) 1442 CurrentBottom = priorII; 1443 else { 1444 if (&*CurrentTop == MI) { 1445 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1446 TopRPTracker.setPos(CurrentTop); 1447 } 1448 moveInstruction(MI, CurrentBottom); 1449 CurrentBottom = MI; 1450 } 1451 if (ShouldTrackPressure) { 1452 RegisterOperands RegOpers; 1453 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1454 if (ShouldTrackLaneMasks) { 1455 // Adjust liveness and add missing dead+read-undef flags. 1456 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1457 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1458 } else { 1459 // Adjust for missing dead-def flags. 1460 RegOpers.detectDeadDefs(*MI, *LIS); 1461 } 1462 1463 BotRPTracker.recedeSkipDebugValues(); 1464 SmallVector<RegisterMaskPair, 8> LiveUses; 1465 BotRPTracker.recede(RegOpers, &LiveUses); 1466 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1467 DEBUG( 1468 dbgs() << "Bottom Pressure:\n"; 1469 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1470 ); 1471 1472 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1473 updatePressureDiffs(LiveUses); 1474 } 1475 } 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1480 //===----------------------------------------------------------------------===// 1481 1482 namespace { 1483 1484 /// \brief Post-process the DAG to create cluster edges between neighboring 1485 /// loads or between neighboring stores. 1486 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1487 struct MemOpInfo { 1488 SUnit *SU; 1489 unsigned BaseReg; 1490 int64_t Offset; 1491 1492 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1493 : SU(su), BaseReg(reg), Offset(ofs) {} 1494 1495 bool operator<(const MemOpInfo&RHS) const { 1496 return std::tie(BaseReg, Offset, SU->NodeNum) < 1497 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1498 } 1499 }; 1500 1501 const TargetInstrInfo *TII; 1502 const TargetRegisterInfo *TRI; 1503 bool IsLoad; 1504 1505 public: 1506 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1507 const TargetRegisterInfo *tri, bool IsLoad) 1508 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1509 1510 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1511 1512 protected: 1513 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1514 }; 1515 1516 class StoreClusterMutation : public BaseMemOpClusterMutation { 1517 public: 1518 StoreClusterMutation(const TargetInstrInfo *tii, 1519 const TargetRegisterInfo *tri) 1520 : BaseMemOpClusterMutation(tii, tri, false) {} 1521 }; 1522 1523 class LoadClusterMutation : public BaseMemOpClusterMutation { 1524 public: 1525 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1526 : BaseMemOpClusterMutation(tii, tri, true) {} 1527 }; 1528 1529 } // end anonymous namespace 1530 1531 namespace llvm { 1532 1533 std::unique_ptr<ScheduleDAGMutation> 1534 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1535 const TargetRegisterInfo *TRI) { 1536 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1537 : nullptr; 1538 } 1539 1540 std::unique_ptr<ScheduleDAGMutation> 1541 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1542 const TargetRegisterInfo *TRI) { 1543 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1544 : nullptr; 1545 } 1546 1547 } // end namespace llvm 1548 1549 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1550 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1551 SmallVector<MemOpInfo, 32> MemOpRecords; 1552 for (SUnit *SU : MemOps) { 1553 unsigned BaseReg; 1554 int64_t Offset; 1555 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1556 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1557 } 1558 if (MemOpRecords.size() < 2) 1559 return; 1560 1561 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1562 unsigned ClusterLength = 1; 1563 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1564 SUnit *SUa = MemOpRecords[Idx].SU; 1565 SUnit *SUb = MemOpRecords[Idx+1].SU; 1566 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1567 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1568 ClusterLength) && 1569 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1570 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1571 << SUb->NodeNum << ")\n"); 1572 // Copy successor edges from SUa to SUb. Interleaving computation 1573 // dependent on SUa can prevent load combining due to register reuse. 1574 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1575 // loads should have effectively the same inputs. 1576 for (const SDep &Succ : SUa->Succs) { 1577 if (Succ.getSUnit() == SUb) 1578 continue; 1579 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1580 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1581 } 1582 ++ClusterLength; 1583 } else 1584 ClusterLength = 1; 1585 } 1586 } 1587 1588 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1589 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1590 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1591 1592 // Map DAG NodeNum to store chain ID. 1593 DenseMap<unsigned, unsigned> StoreChainIDs; 1594 // Map each store chain to a set of dependent MemOps. 1595 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1596 for (SUnit &SU : DAG->SUnits) { 1597 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1598 (!IsLoad && !SU.getInstr()->mayStore())) 1599 continue; 1600 1601 unsigned ChainPredID = DAG->SUnits.size(); 1602 for (const SDep &Pred : SU.Preds) { 1603 if (Pred.isCtrl()) { 1604 ChainPredID = Pred.getSUnit()->NodeNum; 1605 break; 1606 } 1607 } 1608 // Check if this chain-like pred has been seen 1609 // before. ChainPredID==MaxNodeID at the top of the schedule. 1610 unsigned NumChains = StoreChainDependents.size(); 1611 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1612 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1613 if (Result.second) 1614 StoreChainDependents.resize(NumChains + 1); 1615 StoreChainDependents[Result.first->second].push_back(&SU); 1616 } 1617 1618 // Iterate over the store chains. 1619 for (auto &SCD : StoreChainDependents) 1620 clusterNeighboringMemOps(SCD, DAG); 1621 } 1622 1623 //===----------------------------------------------------------------------===// 1624 // CopyConstrain - DAG post-processing to encourage copy elimination. 1625 //===----------------------------------------------------------------------===// 1626 1627 namespace { 1628 1629 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1630 /// the one use that defines the copy's source vreg, most likely an induction 1631 /// variable increment. 1632 class CopyConstrain : public ScheduleDAGMutation { 1633 // Transient state. 1634 SlotIndex RegionBeginIdx; 1635 1636 // RegionEndIdx is the slot index of the last non-debug instruction in the 1637 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1638 SlotIndex RegionEndIdx; 1639 1640 public: 1641 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1642 1643 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1644 1645 protected: 1646 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1647 }; 1648 1649 } // end anonymous namespace 1650 1651 namespace llvm { 1652 1653 std::unique_ptr<ScheduleDAGMutation> 1654 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1655 const TargetRegisterInfo *TRI) { 1656 return llvm::make_unique<CopyConstrain>(TII, TRI); 1657 } 1658 1659 } // end namespace llvm 1660 1661 /// constrainLocalCopy handles two possibilities: 1662 /// 1) Local src: 1663 /// I0: = dst 1664 /// I1: src = ... 1665 /// I2: = dst 1666 /// I3: dst = src (copy) 1667 /// (create pred->succ edges I0->I1, I2->I1) 1668 /// 1669 /// 2) Local copy: 1670 /// I0: dst = src (copy) 1671 /// I1: = dst 1672 /// I2: src = ... 1673 /// I3: = dst 1674 /// (create pred->succ edges I1->I2, I3->I2) 1675 /// 1676 /// Although the MachineScheduler is currently constrained to single blocks, 1677 /// this algorithm should handle extended blocks. An EBB is a set of 1678 /// contiguously numbered blocks such that the previous block in the EBB is 1679 /// always the single predecessor. 1680 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1681 LiveIntervals *LIS = DAG->getLIS(); 1682 MachineInstr *Copy = CopySU->getInstr(); 1683 1684 // Check for pure vreg copies. 1685 const MachineOperand &SrcOp = Copy->getOperand(1); 1686 unsigned SrcReg = SrcOp.getReg(); 1687 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1688 return; 1689 1690 const MachineOperand &DstOp = Copy->getOperand(0); 1691 unsigned DstReg = DstOp.getReg(); 1692 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1693 return; 1694 1695 // Check if either the dest or source is local. If it's live across a back 1696 // edge, it's not local. Note that if both vregs are live across the back 1697 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1698 // If both the copy's source and dest are local live intervals, then we 1699 // should treat the dest as the global for the purpose of adding 1700 // constraints. This adds edges from source's other uses to the copy. 1701 unsigned LocalReg = SrcReg; 1702 unsigned GlobalReg = DstReg; 1703 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1704 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1705 LocalReg = DstReg; 1706 GlobalReg = SrcReg; 1707 LocalLI = &LIS->getInterval(LocalReg); 1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1709 return; 1710 } 1711 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1712 1713 // Find the global segment after the start of the local LI. 1714 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1715 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1716 // local live range. We could create edges from other global uses to the local 1717 // start, but the coalescer should have already eliminated these cases, so 1718 // don't bother dealing with it. 1719 if (GlobalSegment == GlobalLI->end()) 1720 return; 1721 1722 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1723 // returned the next global segment. But if GlobalSegment overlaps with 1724 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1725 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1726 if (GlobalSegment->contains(LocalLI->beginIndex())) 1727 ++GlobalSegment; 1728 1729 if (GlobalSegment == GlobalLI->end()) 1730 return; 1731 1732 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1733 if (GlobalSegment != GlobalLI->begin()) { 1734 // Two address defs have no hole. 1735 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1736 GlobalSegment->start)) { 1737 return; 1738 } 1739 // If the prior global segment may be defined by the same two-address 1740 // instruction that also defines LocalLI, then can't make a hole here. 1741 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1742 LocalLI->beginIndex())) { 1743 return; 1744 } 1745 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1746 // it would be a disconnected component in the live range. 1747 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1748 "Disconnected LRG within the scheduling region."); 1749 } 1750 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1751 if (!GlobalDef) 1752 return; 1753 1754 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1755 if (!GlobalSU) 1756 return; 1757 1758 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1759 // constraining the uses of the last local def to precede GlobalDef. 1760 SmallVector<SUnit*,8> LocalUses; 1761 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1762 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1763 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1764 for (const SDep &Succ : LastLocalSU->Succs) { 1765 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1766 continue; 1767 if (Succ.getSUnit() == GlobalSU) 1768 continue; 1769 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1770 return; 1771 LocalUses.push_back(Succ.getSUnit()); 1772 } 1773 // Open the top of the GlobalLI hole by constraining any earlier global uses 1774 // to precede the start of LocalLI. 1775 SmallVector<SUnit*,8> GlobalUses; 1776 MachineInstr *FirstLocalDef = 1777 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1778 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1779 for (const SDep &Pred : GlobalSU->Preds) { 1780 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1781 continue; 1782 if (Pred.getSUnit() == FirstLocalSU) 1783 continue; 1784 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1785 return; 1786 GlobalUses.push_back(Pred.getSUnit()); 1787 } 1788 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1789 // Add the weak edges. 1790 for (SmallVectorImpl<SUnit*>::const_iterator 1791 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1792 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1793 << GlobalSU->NodeNum << ")\n"); 1794 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1795 } 1796 for (SmallVectorImpl<SUnit*>::const_iterator 1797 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1798 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1799 << FirstLocalSU->NodeNum << ")\n"); 1800 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1801 } 1802 } 1803 1804 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1805 /// copy elimination. 1806 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1807 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1808 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1809 1810 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1811 if (FirstPos == DAG->end()) 1812 return; 1813 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1814 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1815 *priorNonDebug(DAG->end(), DAG->begin())); 1816 1817 for (SUnit &SU : DAG->SUnits) { 1818 if (!SU.getInstr()->isCopy()) 1819 continue; 1820 1821 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1822 } 1823 } 1824 1825 //===----------------------------------------------------------------------===// 1826 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1827 // and possibly other custom schedulers. 1828 //===----------------------------------------------------------------------===// 1829 1830 static const unsigned InvalidCycle = ~0U; 1831 1832 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1833 1834 /// Given a Count of resource usage and a Latency value, return true if a 1835 /// SchedBoundary becomes resource limited. 1836 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1837 unsigned Latency) { 1838 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1839 } 1840 1841 void SchedBoundary::reset() { 1842 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1843 // Destroying and reconstructing it is very expensive though. So keep 1844 // invalid, placeholder HazardRecs. 1845 if (HazardRec && HazardRec->isEnabled()) { 1846 delete HazardRec; 1847 HazardRec = nullptr; 1848 } 1849 Available.clear(); 1850 Pending.clear(); 1851 CheckPending = false; 1852 CurrCycle = 0; 1853 CurrMOps = 0; 1854 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1855 ExpectedLatency = 0; 1856 DependentLatency = 0; 1857 RetiredMOps = 0; 1858 MaxExecutedResCount = 0; 1859 ZoneCritResIdx = 0; 1860 IsResourceLimited = false; 1861 ReservedCycles.clear(); 1862 #ifndef NDEBUG 1863 // Track the maximum number of stall cycles that could arise either from the 1864 // latency of a DAG edge or the number of cycles that a processor resource is 1865 // reserved (SchedBoundary::ReservedCycles). 1866 MaxObservedStall = 0; 1867 #endif 1868 // Reserve a zero-count for invalid CritResIdx. 1869 ExecutedResCounts.resize(1); 1870 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1871 } 1872 1873 void SchedRemainder:: 1874 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1875 reset(); 1876 if (!SchedModel->hasInstrSchedModel()) 1877 return; 1878 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1879 for (SUnit &SU : DAG->SUnits) { 1880 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1881 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1882 * SchedModel->getMicroOpFactor(); 1883 for (TargetSchedModel::ProcResIter 1884 PI = SchedModel->getWriteProcResBegin(SC), 1885 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1886 unsigned PIdx = PI->ProcResourceIdx; 1887 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1888 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1889 } 1890 } 1891 } 1892 1893 void SchedBoundary:: 1894 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1895 reset(); 1896 DAG = dag; 1897 SchedModel = smodel; 1898 Rem = rem; 1899 if (SchedModel->hasInstrSchedModel()) { 1900 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1901 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1902 } 1903 } 1904 1905 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1906 /// these "soft stalls" differently than the hard stall cycles based on CPU 1907 /// resources and computed by checkHazard(). A fully in-order model 1908 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1909 /// available for scheduling until they are ready. However, a weaker in-order 1910 /// model may use this for heuristics. For example, if a processor has in-order 1911 /// behavior when reading certain resources, this may come into play. 1912 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1913 if (!SU->isUnbuffered) 1914 return 0; 1915 1916 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1917 if (ReadyCycle > CurrCycle) 1918 return ReadyCycle - CurrCycle; 1919 return 0; 1920 } 1921 1922 /// Compute the next cycle at which the given processor resource can be 1923 /// scheduled. 1924 unsigned SchedBoundary:: 1925 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1926 unsigned NextUnreserved = ReservedCycles[PIdx]; 1927 // If this resource has never been used, always return cycle zero. 1928 if (NextUnreserved == InvalidCycle) 1929 return 0; 1930 // For bottom-up scheduling add the cycles needed for the current operation. 1931 if (!isTop()) 1932 NextUnreserved += Cycles; 1933 return NextUnreserved; 1934 } 1935 1936 /// Does this SU have a hazard within the current instruction group. 1937 /// 1938 /// The scheduler supports two modes of hazard recognition. The first is the 1939 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1940 /// supports highly complicated in-order reservation tables 1941 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1942 /// 1943 /// The second is a streamlined mechanism that checks for hazards based on 1944 /// simple counters that the scheduler itself maintains. It explicitly checks 1945 /// for instruction dispatch limitations, including the number of micro-ops that 1946 /// can dispatch per cycle. 1947 /// 1948 /// TODO: Also check whether the SU must start a new group. 1949 bool SchedBoundary::checkHazard(SUnit *SU) { 1950 if (HazardRec->isEnabled() 1951 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1952 return true; 1953 } 1954 1955 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1956 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1957 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1958 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1959 return true; 1960 } 1961 1962 if (CurrMOps > 0 && 1963 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1964 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1965 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1966 << (isTop()? "begin" : "end") << " group\n"); 1967 return true; 1968 } 1969 1970 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1971 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1972 for (const MCWriteProcResEntry &PE : 1973 make_range(SchedModel->getWriteProcResBegin(SC), 1974 SchedModel->getWriteProcResEnd(SC))) { 1975 unsigned ResIdx = PE.ProcResourceIdx; 1976 unsigned Cycles = PE.Cycles; 1977 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1978 if (NRCycle > CurrCycle) { 1979 #ifndef NDEBUG 1980 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1981 #endif 1982 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1983 << SchedModel->getResourceName(ResIdx) 1984 << "=" << NRCycle << "c\n"); 1985 return true; 1986 } 1987 } 1988 } 1989 return false; 1990 } 1991 1992 // Find the unscheduled node in ReadySUs with the highest latency. 1993 unsigned SchedBoundary:: 1994 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1995 SUnit *LateSU = nullptr; 1996 unsigned RemLatency = 0; 1997 for (SUnit *SU : ReadySUs) { 1998 unsigned L = getUnscheduledLatency(SU); 1999 if (L > RemLatency) { 2000 RemLatency = L; 2001 LateSU = SU; 2002 } 2003 } 2004 if (LateSU) { 2005 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2006 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2007 } 2008 return RemLatency; 2009 } 2010 2011 // Count resources in this zone and the remaining unscheduled 2012 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2013 // resource index, or zero if the zone is issue limited. 2014 unsigned SchedBoundary:: 2015 getOtherResourceCount(unsigned &OtherCritIdx) { 2016 OtherCritIdx = 0; 2017 if (!SchedModel->hasInstrSchedModel()) 2018 return 0; 2019 2020 unsigned OtherCritCount = Rem->RemIssueCount 2021 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2022 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2023 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2024 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2025 PIdx != PEnd; ++PIdx) { 2026 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2027 if (OtherCount > OtherCritCount) { 2028 OtherCritCount = OtherCount; 2029 OtherCritIdx = PIdx; 2030 } 2031 } 2032 if (OtherCritIdx) { 2033 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2034 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2035 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2036 } 2037 return OtherCritCount; 2038 } 2039 2040 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2041 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2042 2043 #ifndef NDEBUG 2044 // ReadyCycle was been bumped up to the CurrCycle when this node was 2045 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2046 // scheduling, so may now be greater than ReadyCycle. 2047 if (ReadyCycle > CurrCycle) 2048 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2049 #endif 2050 2051 if (ReadyCycle < MinReadyCycle) 2052 MinReadyCycle = ReadyCycle; 2053 2054 // Check for interlocks first. For the purpose of other heuristics, an 2055 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2056 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2057 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2058 Available.size() >= ReadyListLimit) 2059 Pending.push(SU); 2060 else 2061 Available.push(SU); 2062 } 2063 2064 /// Move the boundary of scheduled code by one cycle. 2065 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2066 if (SchedModel->getMicroOpBufferSize() == 0) { 2067 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2068 "MinReadyCycle uninitialized"); 2069 if (MinReadyCycle > NextCycle) 2070 NextCycle = MinReadyCycle; 2071 } 2072 // Update the current micro-ops, which will issue in the next cycle. 2073 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2074 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2075 2076 // Decrement DependentLatency based on the next cycle. 2077 if ((NextCycle - CurrCycle) > DependentLatency) 2078 DependentLatency = 0; 2079 else 2080 DependentLatency -= (NextCycle - CurrCycle); 2081 2082 if (!HazardRec->isEnabled()) { 2083 // Bypass HazardRec virtual calls. 2084 CurrCycle = NextCycle; 2085 } else { 2086 // Bypass getHazardType calls in case of long latency. 2087 for (; CurrCycle != NextCycle; ++CurrCycle) { 2088 if (isTop()) 2089 HazardRec->AdvanceCycle(); 2090 else 2091 HazardRec->RecedeCycle(); 2092 } 2093 } 2094 CheckPending = true; 2095 IsResourceLimited = 2096 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2097 getScheduledLatency()); 2098 2099 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2100 } 2101 2102 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2103 ExecutedResCounts[PIdx] += Count; 2104 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2105 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2106 } 2107 2108 /// Add the given processor resource to this scheduled zone. 2109 /// 2110 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2111 /// during which this resource is consumed. 2112 /// 2113 /// \return the next cycle at which the instruction may execute without 2114 /// oversubscribing resources. 2115 unsigned SchedBoundary:: 2116 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2117 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2118 unsigned Count = Factor * Cycles; 2119 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2120 << " +" << Cycles << "x" << Factor << "u\n"); 2121 2122 // Update Executed resources counts. 2123 incExecutedResources(PIdx, Count); 2124 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2125 Rem->RemainingCounts[PIdx] -= Count; 2126 2127 // Check if this resource exceeds the current critical resource. If so, it 2128 // becomes the critical resource. 2129 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2130 ZoneCritResIdx = PIdx; 2131 DEBUG(dbgs() << " *** Critical resource " 2132 << SchedModel->getResourceName(PIdx) << ": " 2133 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2134 } 2135 // For reserved resources, record the highest cycle using the resource. 2136 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2137 if (NextAvailable > CurrCycle) { 2138 DEBUG(dbgs() << " Resource conflict: " 2139 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2140 << NextAvailable << "\n"); 2141 } 2142 return NextAvailable; 2143 } 2144 2145 /// Move the boundary of scheduled code by one SUnit. 2146 void SchedBoundary::bumpNode(SUnit *SU) { 2147 // Update the reservation table. 2148 if (HazardRec->isEnabled()) { 2149 if (!isTop() && SU->isCall) { 2150 // Calls are scheduled with their preceding instructions. For bottom-up 2151 // scheduling, clear the pipeline state before emitting. 2152 HazardRec->Reset(); 2153 } 2154 HazardRec->EmitInstruction(SU); 2155 } 2156 // checkHazard should prevent scheduling multiple instructions per cycle that 2157 // exceed the issue width. 2158 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2159 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2160 assert( 2161 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2162 "Cannot schedule this instruction's MicroOps in the current cycle."); 2163 2164 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2165 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2166 2167 unsigned NextCycle = CurrCycle; 2168 switch (SchedModel->getMicroOpBufferSize()) { 2169 case 0: 2170 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2171 break; 2172 case 1: 2173 if (ReadyCycle > NextCycle) { 2174 NextCycle = ReadyCycle; 2175 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2176 } 2177 break; 2178 default: 2179 // We don't currently model the OOO reorder buffer, so consider all 2180 // scheduled MOps to be "retired". We do loosely model in-order resource 2181 // latency. If this instruction uses an in-order resource, account for any 2182 // likely stall cycles. 2183 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2184 NextCycle = ReadyCycle; 2185 break; 2186 } 2187 RetiredMOps += IncMOps; 2188 2189 // Update resource counts and critical resource. 2190 if (SchedModel->hasInstrSchedModel()) { 2191 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2192 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2193 Rem->RemIssueCount -= DecRemIssue; 2194 if (ZoneCritResIdx) { 2195 // Scale scheduled micro-ops for comparing with the critical resource. 2196 unsigned ScaledMOps = 2197 RetiredMOps * SchedModel->getMicroOpFactor(); 2198 2199 // If scaled micro-ops are now more than the previous critical resource by 2200 // a full cycle, then micro-ops issue becomes critical. 2201 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2202 >= (int)SchedModel->getLatencyFactor()) { 2203 ZoneCritResIdx = 0; 2204 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2205 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2206 } 2207 } 2208 for (TargetSchedModel::ProcResIter 2209 PI = SchedModel->getWriteProcResBegin(SC), 2210 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2211 unsigned RCycle = 2212 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2213 if (RCycle > NextCycle) 2214 NextCycle = RCycle; 2215 } 2216 if (SU->hasReservedResource) { 2217 // For reserved resources, record the highest cycle using the resource. 2218 // For top-down scheduling, this is the cycle in which we schedule this 2219 // instruction plus the number of cycles the operations reserves the 2220 // resource. For bottom-up is it simply the instruction's cycle. 2221 for (TargetSchedModel::ProcResIter 2222 PI = SchedModel->getWriteProcResBegin(SC), 2223 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2224 unsigned PIdx = PI->ProcResourceIdx; 2225 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2226 if (isTop()) { 2227 ReservedCycles[PIdx] = 2228 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2229 } 2230 else 2231 ReservedCycles[PIdx] = NextCycle; 2232 } 2233 } 2234 } 2235 } 2236 // Update ExpectedLatency and DependentLatency. 2237 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2238 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2239 if (SU->getDepth() > TopLatency) { 2240 TopLatency = SU->getDepth(); 2241 DEBUG(dbgs() << " " << Available.getName() 2242 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2243 } 2244 if (SU->getHeight() > BotLatency) { 2245 BotLatency = SU->getHeight(); 2246 DEBUG(dbgs() << " " << Available.getName() 2247 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2248 } 2249 // If we stall for any reason, bump the cycle. 2250 if (NextCycle > CurrCycle) 2251 bumpCycle(NextCycle); 2252 else 2253 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2254 // resource limited. If a stall occurred, bumpCycle does this. 2255 IsResourceLimited = 2256 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2257 getScheduledLatency()); 2258 2259 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2260 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2261 // one cycle. Since we commonly reach the max MOps here, opportunistically 2262 // bump the cycle to avoid uselessly checking everything in the readyQ. 2263 CurrMOps += IncMOps; 2264 2265 // Bump the cycle count for issue group constraints. 2266 // This must be done after NextCycle has been adjust for all other stalls. 2267 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2268 // currCycle to X. 2269 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2270 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2271 DEBUG(dbgs() << " Bump cycle to " 2272 << (isTop() ? "end" : "begin") << " group\n"); 2273 bumpCycle(++NextCycle); 2274 } 2275 2276 while (CurrMOps >= SchedModel->getIssueWidth()) { 2277 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2278 << " at cycle " << CurrCycle << '\n'); 2279 bumpCycle(++NextCycle); 2280 } 2281 DEBUG(dumpScheduledState()); 2282 } 2283 2284 /// Release pending ready nodes in to the available queue. This makes them 2285 /// visible to heuristics. 2286 void SchedBoundary::releasePending() { 2287 // If the available queue is empty, it is safe to reset MinReadyCycle. 2288 if (Available.empty()) 2289 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2290 2291 // Check to see if any of the pending instructions are ready to issue. If 2292 // so, add them to the available queue. 2293 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2294 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2295 SUnit *SU = *(Pending.begin()+i); 2296 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2297 2298 if (ReadyCycle < MinReadyCycle) 2299 MinReadyCycle = ReadyCycle; 2300 2301 if (!IsBuffered && ReadyCycle > CurrCycle) 2302 continue; 2303 2304 if (checkHazard(SU)) 2305 continue; 2306 2307 if (Available.size() >= ReadyListLimit) 2308 break; 2309 2310 Available.push(SU); 2311 Pending.remove(Pending.begin()+i); 2312 --i; --e; 2313 } 2314 CheckPending = false; 2315 } 2316 2317 /// Remove SU from the ready set for this boundary. 2318 void SchedBoundary::removeReady(SUnit *SU) { 2319 if (Available.isInQueue(SU)) 2320 Available.remove(Available.find(SU)); 2321 else { 2322 assert(Pending.isInQueue(SU) && "bad ready count"); 2323 Pending.remove(Pending.find(SU)); 2324 } 2325 } 2326 2327 /// If this queue only has one ready candidate, return it. As a side effect, 2328 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2329 /// one node is ready. If multiple instructions are ready, return NULL. 2330 SUnit *SchedBoundary::pickOnlyChoice() { 2331 if (CheckPending) 2332 releasePending(); 2333 2334 if (CurrMOps > 0) { 2335 // Defer any ready instrs that now have a hazard. 2336 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2337 if (checkHazard(*I)) { 2338 Pending.push(*I); 2339 I = Available.remove(I); 2340 continue; 2341 } 2342 ++I; 2343 } 2344 } 2345 for (unsigned i = 0; Available.empty(); ++i) { 2346 // FIXME: Re-enable assert once PR20057 is resolved. 2347 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2348 // "permanent hazard"); 2349 (void)i; 2350 bumpCycle(CurrCycle + 1); 2351 releasePending(); 2352 } 2353 2354 DEBUG(Pending.dump()); 2355 DEBUG(Available.dump()); 2356 2357 if (Available.size() == 1) 2358 return *Available.begin(); 2359 return nullptr; 2360 } 2361 2362 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2363 // This is useful information to dump after bumpNode. 2364 // Note that the Queue contents are more useful before pickNodeFromQueue. 2365 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2366 unsigned ResFactor; 2367 unsigned ResCount; 2368 if (ZoneCritResIdx) { 2369 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2370 ResCount = getResourceCount(ZoneCritResIdx); 2371 } else { 2372 ResFactor = SchedModel->getMicroOpFactor(); 2373 ResCount = RetiredMOps * ResFactor; 2374 } 2375 unsigned LFactor = SchedModel->getLatencyFactor(); 2376 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2377 << " Retired: " << RetiredMOps; 2378 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2379 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2380 << ResCount / ResFactor << " " 2381 << SchedModel->getResourceName(ZoneCritResIdx) 2382 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2383 << (IsResourceLimited ? " - Resource" : " - Latency") 2384 << " limited.\n"; 2385 } 2386 #endif 2387 2388 //===----------------------------------------------------------------------===// 2389 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2390 //===----------------------------------------------------------------------===// 2391 2392 void GenericSchedulerBase::SchedCandidate:: 2393 initResourceDelta(const ScheduleDAGMI *DAG, 2394 const TargetSchedModel *SchedModel) { 2395 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2396 return; 2397 2398 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2399 for (TargetSchedModel::ProcResIter 2400 PI = SchedModel->getWriteProcResBegin(SC), 2401 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2402 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2403 ResDelta.CritResources += PI->Cycles; 2404 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2405 ResDelta.DemandedResources += PI->Cycles; 2406 } 2407 } 2408 2409 /// Set the CandPolicy given a scheduling zone given the current resources and 2410 /// latencies inside and outside the zone. 2411 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2412 SchedBoundary &CurrZone, 2413 SchedBoundary *OtherZone) { 2414 // Apply preemptive heuristics based on the total latency and resources 2415 // inside and outside this zone. Potential stalls should be considered before 2416 // following this policy. 2417 2418 // Compute remaining latency. We need this both to determine whether the 2419 // overall schedule has become latency-limited and whether the instructions 2420 // outside this zone are resource or latency limited. 2421 // 2422 // The "dependent" latency is updated incrementally during scheduling as the 2423 // max height/depth of scheduled nodes minus the cycles since it was 2424 // scheduled: 2425 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2426 // 2427 // The "independent" latency is the max ready queue depth: 2428 // ILat = max N.depth for N in Available|Pending 2429 // 2430 // RemainingLatency is the greater of independent and dependent latency. 2431 unsigned RemLatency = CurrZone.getDependentLatency(); 2432 RemLatency = std::max(RemLatency, 2433 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2434 RemLatency = std::max(RemLatency, 2435 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2436 2437 // Compute the critical resource outside the zone. 2438 unsigned OtherCritIdx = 0; 2439 unsigned OtherCount = 2440 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2441 2442 bool OtherResLimited = false; 2443 if (SchedModel->hasInstrSchedModel()) 2444 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2445 OtherCount, RemLatency); 2446 2447 // Schedule aggressively for latency in PostRA mode. We don't check for 2448 // acyclic latency during PostRA, and highly out-of-order processors will 2449 // skip PostRA scheduling. 2450 if (!OtherResLimited) { 2451 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2452 Policy.ReduceLatency |= true; 2453 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2454 << " RemainingLatency " << RemLatency << " + " 2455 << CurrZone.getCurrCycle() << "c > CritPath " 2456 << Rem.CriticalPath << "\n"); 2457 } 2458 } 2459 // If the same resource is limiting inside and outside the zone, do nothing. 2460 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2461 return; 2462 2463 DEBUG( 2464 if (CurrZone.isResourceLimited()) { 2465 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2466 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2467 << "\n"; 2468 } 2469 if (OtherResLimited) 2470 dbgs() << " RemainingLimit: " 2471 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2472 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2473 dbgs() << " Latency limited both directions.\n"); 2474 2475 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2476 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2477 2478 if (OtherResLimited) 2479 Policy.DemandResIdx = OtherCritIdx; 2480 } 2481 2482 #ifndef NDEBUG 2483 const char *GenericSchedulerBase::getReasonStr( 2484 GenericSchedulerBase::CandReason Reason) { 2485 switch (Reason) { 2486 case NoCand: return "NOCAND "; 2487 case Only1: return "ONLY1 "; 2488 case PhysRegCopy: return "PREG-COPY "; 2489 case RegExcess: return "REG-EXCESS"; 2490 case RegCritical: return "REG-CRIT "; 2491 case Stall: return "STALL "; 2492 case Cluster: return "CLUSTER "; 2493 case Weak: return "WEAK "; 2494 case RegMax: return "REG-MAX "; 2495 case ResourceReduce: return "RES-REDUCE"; 2496 case ResourceDemand: return "RES-DEMAND"; 2497 case TopDepthReduce: return "TOP-DEPTH "; 2498 case TopPathReduce: return "TOP-PATH "; 2499 case BotHeightReduce:return "BOT-HEIGHT"; 2500 case BotPathReduce: return "BOT-PATH "; 2501 case NextDefUse: return "DEF-USE "; 2502 case NodeOrder: return "ORDER "; 2503 }; 2504 llvm_unreachable("Unknown reason!"); 2505 } 2506 2507 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2508 PressureChange P; 2509 unsigned ResIdx = 0; 2510 unsigned Latency = 0; 2511 switch (Cand.Reason) { 2512 default: 2513 break; 2514 case RegExcess: 2515 P = Cand.RPDelta.Excess; 2516 break; 2517 case RegCritical: 2518 P = Cand.RPDelta.CriticalMax; 2519 break; 2520 case RegMax: 2521 P = Cand.RPDelta.CurrentMax; 2522 break; 2523 case ResourceReduce: 2524 ResIdx = Cand.Policy.ReduceResIdx; 2525 break; 2526 case ResourceDemand: 2527 ResIdx = Cand.Policy.DemandResIdx; 2528 break; 2529 case TopDepthReduce: 2530 Latency = Cand.SU->getDepth(); 2531 break; 2532 case TopPathReduce: 2533 Latency = Cand.SU->getHeight(); 2534 break; 2535 case BotHeightReduce: 2536 Latency = Cand.SU->getHeight(); 2537 break; 2538 case BotPathReduce: 2539 Latency = Cand.SU->getDepth(); 2540 break; 2541 } 2542 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2543 if (P.isValid()) 2544 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2545 << ":" << P.getUnitInc() << " "; 2546 else 2547 dbgs() << " "; 2548 if (ResIdx) 2549 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2550 else 2551 dbgs() << " "; 2552 if (Latency) 2553 dbgs() << " " << Latency << " cycles "; 2554 else 2555 dbgs() << " "; 2556 dbgs() << '\n'; 2557 } 2558 #endif 2559 2560 /// Return true if this heuristic determines order. 2561 static bool tryLess(int TryVal, int CandVal, 2562 GenericSchedulerBase::SchedCandidate &TryCand, 2563 GenericSchedulerBase::SchedCandidate &Cand, 2564 GenericSchedulerBase::CandReason Reason) { 2565 if (TryVal < CandVal) { 2566 TryCand.Reason = Reason; 2567 return true; 2568 } 2569 if (TryVal > CandVal) { 2570 if (Cand.Reason > Reason) 2571 Cand.Reason = Reason; 2572 return true; 2573 } 2574 return false; 2575 } 2576 2577 static bool tryGreater(int TryVal, int CandVal, 2578 GenericSchedulerBase::SchedCandidate &TryCand, 2579 GenericSchedulerBase::SchedCandidate &Cand, 2580 GenericSchedulerBase::CandReason Reason) { 2581 if (TryVal > CandVal) { 2582 TryCand.Reason = Reason; 2583 return true; 2584 } 2585 if (TryVal < CandVal) { 2586 if (Cand.Reason > Reason) 2587 Cand.Reason = Reason; 2588 return true; 2589 } 2590 return false; 2591 } 2592 2593 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2594 GenericSchedulerBase::SchedCandidate &Cand, 2595 SchedBoundary &Zone) { 2596 if (Zone.isTop()) { 2597 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2598 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2599 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2600 return true; 2601 } 2602 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2603 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2604 return true; 2605 } else { 2606 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2607 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2608 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2609 return true; 2610 } 2611 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2612 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2613 return true; 2614 } 2615 return false; 2616 } 2617 2618 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2619 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2620 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2621 } 2622 2623 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2624 tracePick(Cand.Reason, Cand.AtTop); 2625 } 2626 2627 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2628 assert(dag->hasVRegLiveness() && 2629 "(PreRA)GenericScheduler needs vreg liveness"); 2630 DAG = static_cast<ScheduleDAGMILive*>(dag); 2631 SchedModel = DAG->getSchedModel(); 2632 TRI = DAG->TRI; 2633 2634 Rem.init(DAG, SchedModel); 2635 Top.init(DAG, SchedModel, &Rem); 2636 Bot.init(DAG, SchedModel, &Rem); 2637 2638 // Initialize resource counts. 2639 2640 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2641 // are disabled, then these HazardRecs will be disabled. 2642 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2643 if (!Top.HazardRec) { 2644 Top.HazardRec = 2645 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2646 Itin, DAG); 2647 } 2648 if (!Bot.HazardRec) { 2649 Bot.HazardRec = 2650 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2651 Itin, DAG); 2652 } 2653 TopCand.SU = nullptr; 2654 BotCand.SU = nullptr; 2655 } 2656 2657 /// Initialize the per-region scheduling policy. 2658 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2659 MachineBasicBlock::iterator End, 2660 unsigned NumRegionInstrs) { 2661 const MachineFunction &MF = *Begin->getMF(); 2662 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2663 2664 // Avoid setting up the register pressure tracker for small regions to save 2665 // compile time. As a rough heuristic, only track pressure when the number of 2666 // schedulable instructions exceeds half the integer register file. 2667 RegionPolicy.ShouldTrackPressure = true; 2668 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2669 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2670 if (TLI->isTypeLegal(LegalIntVT)) { 2671 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2672 TLI->getRegClassFor(LegalIntVT)); 2673 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2674 } 2675 } 2676 2677 // For generic targets, we default to bottom-up, because it's simpler and more 2678 // compile-time optimizations have been implemented in that direction. 2679 RegionPolicy.OnlyBottomUp = true; 2680 2681 // Allow the subtarget to override default policy. 2682 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2683 2684 // After subtarget overrides, apply command line options. 2685 if (!EnableRegPressure) 2686 RegionPolicy.ShouldTrackPressure = false; 2687 2688 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2689 // e.g. -misched-bottomup=false allows scheduling in both directions. 2690 assert((!ForceTopDown || !ForceBottomUp) && 2691 "-misched-topdown incompatible with -misched-bottomup"); 2692 if (ForceBottomUp.getNumOccurrences() > 0) { 2693 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2694 if (RegionPolicy.OnlyBottomUp) 2695 RegionPolicy.OnlyTopDown = false; 2696 } 2697 if (ForceTopDown.getNumOccurrences() > 0) { 2698 RegionPolicy.OnlyTopDown = ForceTopDown; 2699 if (RegionPolicy.OnlyTopDown) 2700 RegionPolicy.OnlyBottomUp = false; 2701 } 2702 } 2703 2704 void GenericScheduler::dumpPolicy() const { 2705 // Cannot completely remove virtual function even in release mode. 2706 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2707 dbgs() << "GenericScheduler RegionPolicy: " 2708 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2709 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2710 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2711 << "\n"; 2712 #endif 2713 } 2714 2715 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2716 /// critical path by more cycles than it takes to drain the instruction buffer. 2717 /// We estimate an upper bounds on in-flight instructions as: 2718 /// 2719 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2720 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2721 /// InFlightResources = InFlightIterations * LoopResources 2722 /// 2723 /// TODO: Check execution resources in addition to IssueCount. 2724 void GenericScheduler::checkAcyclicLatency() { 2725 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2726 return; 2727 2728 // Scaled number of cycles per loop iteration. 2729 unsigned IterCount = 2730 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2731 Rem.RemIssueCount); 2732 // Scaled acyclic critical path. 2733 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2734 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2735 unsigned InFlightCount = 2736 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2737 unsigned BufferLimit = 2738 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2739 2740 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2741 2742 DEBUG(dbgs() << "IssueCycles=" 2743 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2744 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2745 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2746 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2747 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2748 if (Rem.IsAcyclicLatencyLimited) 2749 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2750 } 2751 2752 void GenericScheduler::registerRoots() { 2753 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2754 2755 // Some roots may not feed into ExitSU. Check all of them in case. 2756 for (const SUnit *SU : Bot.Available) { 2757 if (SU->getDepth() > Rem.CriticalPath) 2758 Rem.CriticalPath = SU->getDepth(); 2759 } 2760 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2761 if (DumpCriticalPathLength) { 2762 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2763 } 2764 2765 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2766 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2767 checkAcyclicLatency(); 2768 } 2769 } 2770 2771 static bool tryPressure(const PressureChange &TryP, 2772 const PressureChange &CandP, 2773 GenericSchedulerBase::SchedCandidate &TryCand, 2774 GenericSchedulerBase::SchedCandidate &Cand, 2775 GenericSchedulerBase::CandReason Reason, 2776 const TargetRegisterInfo *TRI, 2777 const MachineFunction &MF) { 2778 // If one candidate decreases and the other increases, go with it. 2779 // Invalid candidates have UnitInc==0. 2780 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2781 Reason)) { 2782 return true; 2783 } 2784 // Do not compare the magnitude of pressure changes between top and bottom 2785 // boundary. 2786 if (Cand.AtTop != TryCand.AtTop) 2787 return false; 2788 2789 // If both candidates affect the same set in the same boundary, go with the 2790 // smallest increase. 2791 unsigned TryPSet = TryP.getPSetOrMax(); 2792 unsigned CandPSet = CandP.getPSetOrMax(); 2793 if (TryPSet == CandPSet) { 2794 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2795 Reason); 2796 } 2797 2798 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2799 std::numeric_limits<int>::max(); 2800 2801 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2802 std::numeric_limits<int>::max(); 2803 2804 // If the candidates are decreasing pressure, reverse priority. 2805 if (TryP.getUnitInc() < 0) 2806 std::swap(TryRank, CandRank); 2807 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2808 } 2809 2810 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2811 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2812 } 2813 2814 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2815 /// their physreg def/use. 2816 /// 2817 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2818 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2819 /// with the operation that produces or consumes the physreg. We'll do this when 2820 /// regalloc has support for parallel copies. 2821 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2822 const MachineInstr *MI = SU->getInstr(); 2823 if (!MI->isCopy()) 2824 return 0; 2825 2826 unsigned ScheduledOper = isTop ? 1 : 0; 2827 unsigned UnscheduledOper = isTop ? 0 : 1; 2828 // If we have already scheduled the physreg produce/consumer, immediately 2829 // schedule the copy. 2830 if (TargetRegisterInfo::isPhysicalRegister( 2831 MI->getOperand(ScheduledOper).getReg())) 2832 return 1; 2833 // If the physreg is at the boundary, defer it. Otherwise schedule it 2834 // immediately to free the dependent. We can hoist the copy later. 2835 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2836 if (TargetRegisterInfo::isPhysicalRegister( 2837 MI->getOperand(UnscheduledOper).getReg())) 2838 return AtBoundary ? -1 : 1; 2839 return 0; 2840 } 2841 2842 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2843 bool AtTop, 2844 const RegPressureTracker &RPTracker, 2845 RegPressureTracker &TempTracker) { 2846 Cand.SU = SU; 2847 Cand.AtTop = AtTop; 2848 if (DAG->isTrackingPressure()) { 2849 if (AtTop) { 2850 TempTracker.getMaxDownwardPressureDelta( 2851 Cand.SU->getInstr(), 2852 Cand.RPDelta, 2853 DAG->getRegionCriticalPSets(), 2854 DAG->getRegPressure().MaxSetPressure); 2855 } else { 2856 if (VerifyScheduling) { 2857 TempTracker.getMaxUpwardPressureDelta( 2858 Cand.SU->getInstr(), 2859 &DAG->getPressureDiff(Cand.SU), 2860 Cand.RPDelta, 2861 DAG->getRegionCriticalPSets(), 2862 DAG->getRegPressure().MaxSetPressure); 2863 } else { 2864 RPTracker.getUpwardPressureDelta( 2865 Cand.SU->getInstr(), 2866 DAG->getPressureDiff(Cand.SU), 2867 Cand.RPDelta, 2868 DAG->getRegionCriticalPSets(), 2869 DAG->getRegPressure().MaxSetPressure); 2870 } 2871 } 2872 } 2873 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2874 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2875 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2876 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2877 } 2878 2879 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2880 /// hierarchical. This may be more efficient than a graduated cost model because 2881 /// we don't need to evaluate all aspects of the model for each node in the 2882 /// queue. But it's really done to make the heuristics easier to debug and 2883 /// statistically analyze. 2884 /// 2885 /// \param Cand provides the policy and current best candidate. 2886 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2887 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2888 // if Cand is from a different zone than TryCand. 2889 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2890 SchedCandidate &TryCand, 2891 SchedBoundary *Zone) { 2892 // Initialize the candidate if needed. 2893 if (!Cand.isValid()) { 2894 TryCand.Reason = NodeOrder; 2895 return; 2896 } 2897 2898 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2899 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2900 TryCand, Cand, PhysRegCopy)) 2901 return; 2902 2903 // Avoid exceeding the target's limit. 2904 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2905 Cand.RPDelta.Excess, 2906 TryCand, Cand, RegExcess, TRI, 2907 DAG->MF)) 2908 return; 2909 2910 // Avoid increasing the max critical pressure in the scheduled region. 2911 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2912 Cand.RPDelta.CriticalMax, 2913 TryCand, Cand, RegCritical, TRI, 2914 DAG->MF)) 2915 return; 2916 2917 // We only compare a subset of features when comparing nodes between 2918 // Top and Bottom boundary. Some properties are simply incomparable, in many 2919 // other instances we should only override the other boundary if something 2920 // is a clear good pick on one boundary. Skip heuristics that are more 2921 // "tie-breaking" in nature. 2922 bool SameBoundary = Zone != nullptr; 2923 if (SameBoundary) { 2924 // For loops that are acyclic path limited, aggressively schedule for 2925 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2926 // heuristics to take precedence. 2927 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2928 tryLatency(TryCand, Cand, *Zone)) 2929 return; 2930 2931 // Prioritize instructions that read unbuffered resources by stall cycles. 2932 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2933 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2934 return; 2935 } 2936 2937 // Keep clustered nodes together to encourage downstream peephole 2938 // optimizations which may reduce resource requirements. 2939 // 2940 // This is a best effort to set things up for a post-RA pass. Optimizations 2941 // like generating loads of multiple registers should ideally be done within 2942 // the scheduler pass by combining the loads during DAG postprocessing. 2943 const SUnit *CandNextClusterSU = 2944 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2945 const SUnit *TryCandNextClusterSU = 2946 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2947 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2948 Cand.SU == CandNextClusterSU, 2949 TryCand, Cand, Cluster)) 2950 return; 2951 2952 if (SameBoundary) { 2953 // Weak edges are for clustering and other constraints. 2954 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2955 getWeakLeft(Cand.SU, Cand.AtTop), 2956 TryCand, Cand, Weak)) 2957 return; 2958 } 2959 2960 // Avoid increasing the max pressure of the entire region. 2961 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2962 Cand.RPDelta.CurrentMax, 2963 TryCand, Cand, RegMax, TRI, 2964 DAG->MF)) 2965 return; 2966 2967 if (SameBoundary) { 2968 // Avoid critical resource consumption and balance the schedule. 2969 TryCand.initResourceDelta(DAG, SchedModel); 2970 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2971 TryCand, Cand, ResourceReduce)) 2972 return; 2973 if (tryGreater(TryCand.ResDelta.DemandedResources, 2974 Cand.ResDelta.DemandedResources, 2975 TryCand, Cand, ResourceDemand)) 2976 return; 2977 2978 // Avoid serializing long latency dependence chains. 2979 // For acyclic path limited loops, latency was already checked above. 2980 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2981 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2982 return; 2983 2984 // Fall through to original instruction order. 2985 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2986 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2987 TryCand.Reason = NodeOrder; 2988 } 2989 } 2990 } 2991 2992 /// Pick the best candidate from the queue. 2993 /// 2994 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2995 /// DAG building. To adjust for the current scheduling location we need to 2996 /// maintain the number of vreg uses remaining to be top-scheduled. 2997 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2998 const CandPolicy &ZonePolicy, 2999 const RegPressureTracker &RPTracker, 3000 SchedCandidate &Cand) { 3001 // getMaxPressureDelta temporarily modifies the tracker. 3002 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3003 3004 ReadyQueue &Q = Zone.Available; 3005 for (SUnit *SU : Q) { 3006 3007 SchedCandidate TryCand(ZonePolicy); 3008 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3009 // Pass SchedBoundary only when comparing nodes from the same boundary. 3010 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3011 tryCandidate(Cand, TryCand, ZoneArg); 3012 if (TryCand.Reason != NoCand) { 3013 // Initialize resource delta if needed in case future heuristics query it. 3014 if (TryCand.ResDelta == SchedResourceDelta()) 3015 TryCand.initResourceDelta(DAG, SchedModel); 3016 Cand.setBest(TryCand); 3017 DEBUG(traceCandidate(Cand)); 3018 } 3019 } 3020 } 3021 3022 /// Pick the best candidate node from either the top or bottom queue. 3023 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3024 // Schedule as far as possible in the direction of no choice. This is most 3025 // efficient, but also provides the best heuristics for CriticalPSets. 3026 if (SUnit *SU = Bot.pickOnlyChoice()) { 3027 IsTopNode = false; 3028 tracePick(Only1, false); 3029 return SU; 3030 } 3031 if (SUnit *SU = Top.pickOnlyChoice()) { 3032 IsTopNode = true; 3033 tracePick(Only1, true); 3034 return SU; 3035 } 3036 // Set the bottom-up policy based on the state of the current bottom zone and 3037 // the instructions outside the zone, including the top zone. 3038 CandPolicy BotPolicy; 3039 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3040 // Set the top-down policy based on the state of the current top zone and 3041 // the instructions outside the zone, including the bottom zone. 3042 CandPolicy TopPolicy; 3043 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3044 3045 // See if BotCand is still valid (because we previously scheduled from Top). 3046 DEBUG(dbgs() << "Picking from Bot:\n"); 3047 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3048 BotCand.Policy != BotPolicy) { 3049 BotCand.reset(CandPolicy()); 3050 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3051 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3052 } else { 3053 DEBUG(traceCandidate(BotCand)); 3054 #ifndef NDEBUG 3055 if (VerifyScheduling) { 3056 SchedCandidate TCand; 3057 TCand.reset(CandPolicy()); 3058 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3059 assert(TCand.SU == BotCand.SU && 3060 "Last pick result should correspond to re-picking right now"); 3061 } 3062 #endif 3063 } 3064 3065 // Check if the top Q has a better candidate. 3066 DEBUG(dbgs() << "Picking from Top:\n"); 3067 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3068 TopCand.Policy != TopPolicy) { 3069 TopCand.reset(CandPolicy()); 3070 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3071 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3072 } else { 3073 DEBUG(traceCandidate(TopCand)); 3074 #ifndef NDEBUG 3075 if (VerifyScheduling) { 3076 SchedCandidate TCand; 3077 TCand.reset(CandPolicy()); 3078 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3079 assert(TCand.SU == TopCand.SU && 3080 "Last pick result should correspond to re-picking right now"); 3081 } 3082 #endif 3083 } 3084 3085 // Pick best from BotCand and TopCand. 3086 assert(BotCand.isValid()); 3087 assert(TopCand.isValid()); 3088 SchedCandidate Cand = BotCand; 3089 TopCand.Reason = NoCand; 3090 tryCandidate(Cand, TopCand, nullptr); 3091 if (TopCand.Reason != NoCand) { 3092 Cand.setBest(TopCand); 3093 DEBUG(traceCandidate(Cand)); 3094 } 3095 3096 IsTopNode = Cand.AtTop; 3097 tracePick(Cand); 3098 return Cand.SU; 3099 } 3100 3101 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3102 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3103 if (DAG->top() == DAG->bottom()) { 3104 assert(Top.Available.empty() && Top.Pending.empty() && 3105 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3106 return nullptr; 3107 } 3108 SUnit *SU; 3109 do { 3110 if (RegionPolicy.OnlyTopDown) { 3111 SU = Top.pickOnlyChoice(); 3112 if (!SU) { 3113 CandPolicy NoPolicy; 3114 TopCand.reset(NoPolicy); 3115 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3116 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3117 tracePick(TopCand); 3118 SU = TopCand.SU; 3119 } 3120 IsTopNode = true; 3121 } else if (RegionPolicy.OnlyBottomUp) { 3122 SU = Bot.pickOnlyChoice(); 3123 if (!SU) { 3124 CandPolicy NoPolicy; 3125 BotCand.reset(NoPolicy); 3126 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3127 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3128 tracePick(BotCand); 3129 SU = BotCand.SU; 3130 } 3131 IsTopNode = false; 3132 } else { 3133 SU = pickNodeBidirectional(IsTopNode); 3134 } 3135 } while (SU->isScheduled); 3136 3137 if (SU->isTopReady()) 3138 Top.removeReady(SU); 3139 if (SU->isBottomReady()) 3140 Bot.removeReady(SU); 3141 3142 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3143 return SU; 3144 } 3145 3146 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3147 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3148 if (!isTop) 3149 ++InsertPos; 3150 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3151 3152 // Find already scheduled copies with a single physreg dependence and move 3153 // them just above the scheduled instruction. 3154 for (SDep &Dep : Deps) { 3155 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3156 continue; 3157 SUnit *DepSU = Dep.getSUnit(); 3158 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3159 continue; 3160 MachineInstr *Copy = DepSU->getInstr(); 3161 if (!Copy->isCopy()) 3162 continue; 3163 DEBUG(dbgs() << " Rescheduling physreg copy "; 3164 Dep.getSUnit()->dump(DAG)); 3165 DAG->moveInstruction(Copy, InsertPos); 3166 } 3167 } 3168 3169 /// Update the scheduler's state after scheduling a node. This is the same node 3170 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3171 /// update it's state based on the current cycle before MachineSchedStrategy 3172 /// does. 3173 /// 3174 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3175 /// them here. See comments in biasPhysRegCopy. 3176 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3177 if (IsTopNode) { 3178 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3179 Top.bumpNode(SU); 3180 if (SU->hasPhysRegUses) 3181 reschedulePhysRegCopies(SU, true); 3182 } else { 3183 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3184 Bot.bumpNode(SU); 3185 if (SU->hasPhysRegDefs) 3186 reschedulePhysRegCopies(SU, false); 3187 } 3188 } 3189 3190 /// Create the standard converging machine scheduler. This will be used as the 3191 /// default scheduler if the target does not set a default. 3192 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3193 ScheduleDAGMILive *DAG = 3194 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3195 // Register DAG post-processors. 3196 // 3197 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3198 // data and pass it to later mutations. Have a single mutation that gathers 3199 // the interesting nodes in one pass. 3200 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3201 return DAG; 3202 } 3203 3204 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3205 return createGenericSchedLive(C); 3206 } 3207 3208 static MachineSchedRegistry 3209 GenericSchedRegistry("converge", "Standard converging scheduler.", 3210 createConveringSched); 3211 3212 //===----------------------------------------------------------------------===// 3213 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3214 //===----------------------------------------------------------------------===// 3215 3216 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3217 DAG = Dag; 3218 SchedModel = DAG->getSchedModel(); 3219 TRI = DAG->TRI; 3220 3221 Rem.init(DAG, SchedModel); 3222 Top.init(DAG, SchedModel, &Rem); 3223 BotRoots.clear(); 3224 3225 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3226 // or are disabled, then these HazardRecs will be disabled. 3227 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3228 if (!Top.HazardRec) { 3229 Top.HazardRec = 3230 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3231 Itin, DAG); 3232 } 3233 } 3234 3235 void PostGenericScheduler::registerRoots() { 3236 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3237 3238 // Some roots may not feed into ExitSU. Check all of them in case. 3239 for (const SUnit *SU : BotRoots) { 3240 if (SU->getDepth() > Rem.CriticalPath) 3241 Rem.CriticalPath = SU->getDepth(); 3242 } 3243 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3244 if (DumpCriticalPathLength) { 3245 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3246 } 3247 } 3248 3249 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3250 /// 3251 /// \param Cand provides the policy and current best candidate. 3252 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3253 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3254 SchedCandidate &TryCand) { 3255 // Initialize the candidate if needed. 3256 if (!Cand.isValid()) { 3257 TryCand.Reason = NodeOrder; 3258 return; 3259 } 3260 3261 // Prioritize instructions that read unbuffered resources by stall cycles. 3262 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3263 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3264 return; 3265 3266 // Keep clustered nodes together. 3267 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3268 Cand.SU == DAG->getNextClusterSucc(), 3269 TryCand, Cand, Cluster)) 3270 return; 3271 3272 // Avoid critical resource consumption and balance the schedule. 3273 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3274 TryCand, Cand, ResourceReduce)) 3275 return; 3276 if (tryGreater(TryCand.ResDelta.DemandedResources, 3277 Cand.ResDelta.DemandedResources, 3278 TryCand, Cand, ResourceDemand)) 3279 return; 3280 3281 // Avoid serializing long latency dependence chains. 3282 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3283 return; 3284 } 3285 3286 // Fall through to original instruction order. 3287 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3288 TryCand.Reason = NodeOrder; 3289 } 3290 3291 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3292 ReadyQueue &Q = Top.Available; 3293 for (SUnit *SU : Q) { 3294 SchedCandidate TryCand(Cand.Policy); 3295 TryCand.SU = SU; 3296 TryCand.AtTop = true; 3297 TryCand.initResourceDelta(DAG, SchedModel); 3298 tryCandidate(Cand, TryCand); 3299 if (TryCand.Reason != NoCand) { 3300 Cand.setBest(TryCand); 3301 DEBUG(traceCandidate(Cand)); 3302 } 3303 } 3304 } 3305 3306 /// Pick the next node to schedule. 3307 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3308 if (DAG->top() == DAG->bottom()) { 3309 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3310 return nullptr; 3311 } 3312 SUnit *SU; 3313 do { 3314 SU = Top.pickOnlyChoice(); 3315 if (SU) { 3316 tracePick(Only1, true); 3317 } else { 3318 CandPolicy NoPolicy; 3319 SchedCandidate TopCand(NoPolicy); 3320 // Set the top-down policy based on the state of the current top zone and 3321 // the instructions outside the zone, including the bottom zone. 3322 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3323 pickNodeFromQueue(TopCand); 3324 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3325 tracePick(TopCand); 3326 SU = TopCand.SU; 3327 } 3328 } while (SU->isScheduled); 3329 3330 IsTopNode = true; 3331 Top.removeReady(SU); 3332 3333 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3334 return SU; 3335 } 3336 3337 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3338 /// scheduled/remaining flags in the DAG nodes. 3339 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3340 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3341 Top.bumpNode(SU); 3342 } 3343 3344 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3345 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3346 /*RemoveKillFlags=*/true); 3347 } 3348 3349 //===----------------------------------------------------------------------===// 3350 // ILP Scheduler. Currently for experimental analysis of heuristics. 3351 //===----------------------------------------------------------------------===// 3352 3353 namespace { 3354 3355 /// \brief Order nodes by the ILP metric. 3356 struct ILPOrder { 3357 const SchedDFSResult *DFSResult = nullptr; 3358 const BitVector *ScheduledTrees = nullptr; 3359 bool MaximizeILP; 3360 3361 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3362 3363 /// \brief Apply a less-than relation on node priority. 3364 /// 3365 /// (Return true if A comes after B in the Q.) 3366 bool operator()(const SUnit *A, const SUnit *B) const { 3367 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3368 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3369 if (SchedTreeA != SchedTreeB) { 3370 // Unscheduled trees have lower priority. 3371 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3372 return ScheduledTrees->test(SchedTreeB); 3373 3374 // Trees with shallower connections have have lower priority. 3375 if (DFSResult->getSubtreeLevel(SchedTreeA) 3376 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3377 return DFSResult->getSubtreeLevel(SchedTreeA) 3378 < DFSResult->getSubtreeLevel(SchedTreeB); 3379 } 3380 } 3381 if (MaximizeILP) 3382 return DFSResult->getILP(A) < DFSResult->getILP(B); 3383 else 3384 return DFSResult->getILP(A) > DFSResult->getILP(B); 3385 } 3386 }; 3387 3388 /// \brief Schedule based on the ILP metric. 3389 class ILPScheduler : public MachineSchedStrategy { 3390 ScheduleDAGMILive *DAG = nullptr; 3391 ILPOrder Cmp; 3392 3393 std::vector<SUnit*> ReadyQ; 3394 3395 public: 3396 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3397 3398 void initialize(ScheduleDAGMI *dag) override { 3399 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3400 DAG = static_cast<ScheduleDAGMILive*>(dag); 3401 DAG->computeDFSResult(); 3402 Cmp.DFSResult = DAG->getDFSResult(); 3403 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3404 ReadyQ.clear(); 3405 } 3406 3407 void registerRoots() override { 3408 // Restore the heap in ReadyQ with the updated DFS results. 3409 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3410 } 3411 3412 /// Implement MachineSchedStrategy interface. 3413 /// ----------------------------------------- 3414 3415 /// Callback to select the highest priority node from the ready Q. 3416 SUnit *pickNode(bool &IsTopNode) override { 3417 if (ReadyQ.empty()) return nullptr; 3418 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3419 SUnit *SU = ReadyQ.back(); 3420 ReadyQ.pop_back(); 3421 IsTopNode = false; 3422 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3423 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3424 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3425 << DAG->getDFSResult()->getSubtreeLevel( 3426 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3427 << "Scheduling " << *SU->getInstr()); 3428 return SU; 3429 } 3430 3431 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3432 void scheduleTree(unsigned SubtreeID) override { 3433 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3434 } 3435 3436 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3437 /// DFSResults, and resort the priority Q. 3438 void schedNode(SUnit *SU, bool IsTopNode) override { 3439 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3440 } 3441 3442 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3443 3444 void releaseBottomNode(SUnit *SU) override { 3445 ReadyQ.push_back(SU); 3446 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3447 } 3448 }; 3449 3450 } // end anonymous namespace 3451 3452 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3453 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3454 } 3455 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3456 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3457 } 3458 3459 static MachineSchedRegistry ILPMaxRegistry( 3460 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3461 static MachineSchedRegistry ILPMinRegistry( 3462 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3463 3464 //===----------------------------------------------------------------------===// 3465 // Machine Instruction Shuffler for Correctness Testing 3466 //===----------------------------------------------------------------------===// 3467 3468 #ifndef NDEBUG 3469 namespace { 3470 3471 /// Apply a less-than relation on the node order, which corresponds to the 3472 /// instruction order prior to scheduling. IsReverse implements greater-than. 3473 template<bool IsReverse> 3474 struct SUnitOrder { 3475 bool operator()(SUnit *A, SUnit *B) const { 3476 if (IsReverse) 3477 return A->NodeNum > B->NodeNum; 3478 else 3479 return A->NodeNum < B->NodeNum; 3480 } 3481 }; 3482 3483 /// Reorder instructions as much as possible. 3484 class InstructionShuffler : public MachineSchedStrategy { 3485 bool IsAlternating; 3486 bool IsTopDown; 3487 3488 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3489 // gives nodes with a higher number higher priority causing the latest 3490 // instructions to be scheduled first. 3491 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3492 TopQ; 3493 3494 // When scheduling bottom-up, use greater-than as the queue priority. 3495 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3496 BottomQ; 3497 3498 public: 3499 InstructionShuffler(bool alternate, bool topdown) 3500 : IsAlternating(alternate), IsTopDown(topdown) {} 3501 3502 void initialize(ScheduleDAGMI*) override { 3503 TopQ.clear(); 3504 BottomQ.clear(); 3505 } 3506 3507 /// Implement MachineSchedStrategy interface. 3508 /// ----------------------------------------- 3509 3510 SUnit *pickNode(bool &IsTopNode) override { 3511 SUnit *SU; 3512 if (IsTopDown) { 3513 do { 3514 if (TopQ.empty()) return nullptr; 3515 SU = TopQ.top(); 3516 TopQ.pop(); 3517 } while (SU->isScheduled); 3518 IsTopNode = true; 3519 } else { 3520 do { 3521 if (BottomQ.empty()) return nullptr; 3522 SU = BottomQ.top(); 3523 BottomQ.pop(); 3524 } while (SU->isScheduled); 3525 IsTopNode = false; 3526 } 3527 if (IsAlternating) 3528 IsTopDown = !IsTopDown; 3529 return SU; 3530 } 3531 3532 void schedNode(SUnit *SU, bool IsTopNode) override {} 3533 3534 void releaseTopNode(SUnit *SU) override { 3535 TopQ.push(SU); 3536 } 3537 void releaseBottomNode(SUnit *SU) override { 3538 BottomQ.push(SU); 3539 } 3540 }; 3541 3542 } // end anonymous namespace 3543 3544 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3545 bool Alternate = !ForceTopDown && !ForceBottomUp; 3546 bool TopDown = !ForceBottomUp; 3547 assert((TopDown || !ForceTopDown) && 3548 "-misched-topdown incompatible with -misched-bottomup"); 3549 return new ScheduleDAGMILive( 3550 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3551 } 3552 3553 static MachineSchedRegistry ShufflerRegistry( 3554 "shuffle", "Shuffle machine instructions alternating directions", 3555 createInstructionShuffler); 3556 #endif // !NDEBUG 3557 3558 //===----------------------------------------------------------------------===// 3559 // GraphWriter support for ScheduleDAGMILive. 3560 //===----------------------------------------------------------------------===// 3561 3562 #ifndef NDEBUG 3563 namespace llvm { 3564 3565 template<> struct GraphTraits< 3566 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3567 3568 template<> 3569 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3570 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3571 3572 static std::string getGraphName(const ScheduleDAG *G) { 3573 return G->MF.getName(); 3574 } 3575 3576 static bool renderGraphFromBottomUp() { 3577 return true; 3578 } 3579 3580 static bool isNodeHidden(const SUnit *Node) { 3581 if (ViewMISchedCutoff == 0) 3582 return false; 3583 return (Node->Preds.size() > ViewMISchedCutoff 3584 || Node->Succs.size() > ViewMISchedCutoff); 3585 } 3586 3587 /// If you want to override the dot attributes printed for a particular 3588 /// edge, override this method. 3589 static std::string getEdgeAttributes(const SUnit *Node, 3590 SUnitIterator EI, 3591 const ScheduleDAG *Graph) { 3592 if (EI.isArtificialDep()) 3593 return "color=cyan,style=dashed"; 3594 if (EI.isCtrlDep()) 3595 return "color=blue,style=dashed"; 3596 return ""; 3597 } 3598 3599 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3600 std::string Str; 3601 raw_string_ostream SS(Str); 3602 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3603 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3604 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3605 SS << "SU:" << SU->NodeNum; 3606 if (DFS) 3607 SS << " I:" << DFS->getNumInstrs(SU); 3608 return SS.str(); 3609 } 3610 3611 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3612 return G->getGraphNodeLabel(SU); 3613 } 3614 3615 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3616 std::string Str("shape=Mrecord"); 3617 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3618 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3619 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3620 if (DFS) { 3621 Str += ",style=filled,fillcolor=\"#"; 3622 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3623 Str += '"'; 3624 } 3625 return Str; 3626 } 3627 }; 3628 3629 } // end namespace llvm 3630 #endif // NDEBUG 3631 3632 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3633 /// rendered using 'dot'. 3634 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3635 #ifndef NDEBUG 3636 ViewGraph(this, Name, false, Title); 3637 #else 3638 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3639 << "systems with Graphviz or gv!\n"; 3640 #endif // NDEBUG 3641 } 3642 3643 /// Out-of-line implementation with no arguments is handy for gdb. 3644 void ScheduleDAGMI::viewGraph() { 3645 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3646 } 3647