1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/MC/LaneBitmask.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/GraphWriter.h" 59 #include "llvm/Support/MachineValueType.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 77 78 namespace llvm { 79 80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 81 cl::desc("Force top-down list scheduling")); 82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 83 cl::desc("Force bottom-up list scheduling")); 84 cl::opt<bool> 85 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 86 cl::desc("Print critical path length to stdout")); 87 88 cl::opt<bool> VerifyScheduling( 89 "verify-misched", cl::Hidden, 90 cl::desc("Verify machine instrs before and after machine scheduling")); 91 92 #ifndef NDEBUG 93 cl::opt<bool> ViewMISchedDAGs( 94 "view-misched-dags", cl::Hidden, 95 cl::desc("Pop up a window to show MISched dags after they are processed")); 96 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 97 cl::desc("Print schedule DAGs")); 98 cl::opt<bool> MISchedDumpReservedCycles( 99 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), 100 cl::desc("Dump resource usage at schedule boundary.")); 101 #else 102 const bool ViewMISchedDAGs = false; 103 const bool PrintDAGs = false; 104 #endif // NDEBUG 105 106 } // end namespace llvm 107 108 #ifndef NDEBUG 109 /// In some situations a few uninteresting nodes depend on nearly all other 110 /// nodes in the graph, provide a cutoff to hide them. 111 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 112 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 113 114 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 115 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 116 117 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 118 cl::desc("Only schedule this function")); 119 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 120 cl::desc("Only schedule this MBB#")); 121 #endif // NDEBUG 122 123 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 124 /// size of the ready lists. 125 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 126 cl::desc("Limit ready list to N instructions"), cl::init(256)); 127 128 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 129 cl::desc("Enable register pressure scheduling."), cl::init(true)); 130 131 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 132 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 133 134 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 135 cl::desc("Enable memop clustering."), 136 cl::init(true)); 137 static cl::opt<bool> 138 ForceFastCluster("force-fast-cluster", cl::Hidden, 139 cl::desc("Switch to fast cluster algorithm with the lost " 140 "of some fusion opportunities"), 141 cl::init(false)); 142 static cl::opt<unsigned> 143 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 144 cl::desc("The threshold for fast cluster"), 145 cl::init(1000)); 146 147 // DAG subtrees must have at least this many nodes. 148 static const unsigned MinSubtreeSize = 8; 149 150 // Pin the vtables to this file. 151 void MachineSchedStrategy::anchor() {} 152 153 void ScheduleDAGMutation::anchor() {} 154 155 //===----------------------------------------------------------------------===// 156 // Machine Instruction Scheduling Pass and Registry 157 //===----------------------------------------------------------------------===// 158 159 MachineSchedContext::MachineSchedContext() { 160 RegClassInfo = new RegisterClassInfo(); 161 } 162 163 MachineSchedContext::~MachineSchedContext() { 164 delete RegClassInfo; 165 } 166 167 namespace { 168 169 /// Base class for a machine scheduler class that can run at any point. 170 class MachineSchedulerBase : public MachineSchedContext, 171 public MachineFunctionPass { 172 public: 173 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 174 175 void print(raw_ostream &O, const Module* = nullptr) const override; 176 177 protected: 178 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 179 }; 180 181 /// MachineScheduler runs after coalescing and before register allocation. 182 class MachineScheduler : public MachineSchedulerBase { 183 public: 184 MachineScheduler(); 185 186 void getAnalysisUsage(AnalysisUsage &AU) const override; 187 188 bool runOnMachineFunction(MachineFunction&) override; 189 190 static char ID; // Class identification, replacement for typeinfo 191 192 protected: 193 ScheduleDAGInstrs *createMachineScheduler(); 194 }; 195 196 /// PostMachineScheduler runs after shortly before code emission. 197 class PostMachineScheduler : public MachineSchedulerBase { 198 public: 199 PostMachineScheduler(); 200 201 void getAnalysisUsage(AnalysisUsage &AU) const override; 202 203 bool runOnMachineFunction(MachineFunction&) override; 204 205 static char ID; // Class identification, replacement for typeinfo 206 207 protected: 208 ScheduleDAGInstrs *createPostMachineScheduler(); 209 }; 210 211 } // end anonymous namespace 212 213 char MachineScheduler::ID = 0; 214 215 char &llvm::MachineSchedulerID = MachineScheduler::ID; 216 217 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 218 "Machine Instruction Scheduler", false, false) 219 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 220 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 221 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 222 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 223 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 224 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 225 "Machine Instruction Scheduler", false, false) 226 227 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 228 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequired<MachineDominatorTree>(); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<AAResultsWrapperPass>(); 236 AU.addRequired<TargetPassConfig>(); 237 AU.addRequired<SlotIndexes>(); 238 AU.addPreserved<SlotIndexes>(); 239 AU.addRequired<LiveIntervals>(); 240 AU.addPreserved<LiveIntervals>(); 241 MachineFunctionPass::getAnalysisUsage(AU); 242 } 243 244 char PostMachineScheduler::ID = 0; 245 246 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 247 248 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 249 "PostRA Machine Instruction Scheduler", false, false) 250 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 251 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 252 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 253 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 254 "PostRA Machine Instruction Scheduler", false, false) 255 256 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 257 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 258 } 259 260 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 261 AU.setPreservesCFG(); 262 AU.addRequired<MachineDominatorTree>(); 263 AU.addRequired<MachineLoopInfo>(); 264 AU.addRequired<AAResultsWrapperPass>(); 265 AU.addRequired<TargetPassConfig>(); 266 MachineFunctionPass::getAnalysisUsage(AU); 267 } 268 269 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 270 MachineSchedRegistry::Registry; 271 272 /// A dummy default scheduler factory indicates whether the scheduler 273 /// is overridden on the command line. 274 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 275 return nullptr; 276 } 277 278 /// MachineSchedOpt allows command line selection of the scheduler. 279 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 280 RegisterPassParser<MachineSchedRegistry>> 281 MachineSchedOpt("misched", 282 cl::init(&useDefaultMachineSched), cl::Hidden, 283 cl::desc("Machine instruction scheduler to use")); 284 285 static MachineSchedRegistry 286 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 287 useDefaultMachineSched); 288 289 static cl::opt<bool> EnableMachineSched( 290 "enable-misched", 291 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 292 cl::Hidden); 293 294 static cl::opt<bool> EnablePostRAMachineSched( 295 "enable-post-misched", 296 cl::desc("Enable the post-ra machine instruction scheduling pass."), 297 cl::init(true), cl::Hidden); 298 299 /// Decrement this iterator until reaching the top or a non-debug instr. 300 static MachineBasicBlock::const_iterator 301 priorNonDebug(MachineBasicBlock::const_iterator I, 302 MachineBasicBlock::const_iterator Beg) { 303 assert(I != Beg && "reached the top of the region, cannot decrement"); 304 while (--I != Beg) { 305 if (!I->isDebugOrPseudoInstr()) 306 break; 307 } 308 return I; 309 } 310 311 /// Non-const version. 312 static MachineBasicBlock::iterator 313 priorNonDebug(MachineBasicBlock::iterator I, 314 MachineBasicBlock::const_iterator Beg) { 315 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 316 .getNonConstIterator(); 317 } 318 319 /// If this iterator is a debug value, increment until reaching the End or a 320 /// non-debug instruction. 321 static MachineBasicBlock::const_iterator 322 nextIfDebug(MachineBasicBlock::const_iterator I, 323 MachineBasicBlock::const_iterator End) { 324 for(; I != End; ++I) { 325 if (!I->isDebugOrPseudoInstr()) 326 break; 327 } 328 return I; 329 } 330 331 /// Non-const version. 332 static MachineBasicBlock::iterator 333 nextIfDebug(MachineBasicBlock::iterator I, 334 MachineBasicBlock::const_iterator End) { 335 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 336 .getNonConstIterator(); 337 } 338 339 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 340 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 341 // Select the scheduler, or set the default. 342 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 343 if (Ctor != useDefaultMachineSched) 344 return Ctor(this); 345 346 // Get the default scheduler set by the target for this function. 347 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 348 if (Scheduler) 349 return Scheduler; 350 351 // Default to GenericScheduler. 352 return createGenericSchedLive(this); 353 } 354 355 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 356 /// the caller. We don't have a command line option to override the postRA 357 /// scheduler. The Target must configure it. 358 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 359 // Get the postRA scheduler set by the target for this function. 360 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 361 if (Scheduler) 362 return Scheduler; 363 364 // Default to GenericScheduler. 365 return createGenericSchedPostRA(this); 366 } 367 368 /// Top-level MachineScheduler pass driver. 369 /// 370 /// Visit blocks in function order. Divide each block into scheduling regions 371 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 372 /// consistent with the DAG builder, which traverses the interior of the 373 /// scheduling regions bottom-up. 374 /// 375 /// This design avoids exposing scheduling boundaries to the DAG builder, 376 /// simplifying the DAG builder's support for "special" target instructions. 377 /// At the same time the design allows target schedulers to operate across 378 /// scheduling boundaries, for example to bundle the boundary instructions 379 /// without reordering them. This creates complexity, because the target 380 /// scheduler must update the RegionBegin and RegionEnd positions cached by 381 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 382 /// design would be to split blocks at scheduling boundaries, but LLVM has a 383 /// general bias against block splitting purely for implementation simplicity. 384 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 385 if (skipFunction(mf.getFunction())) 386 return false; 387 388 if (EnableMachineSched.getNumOccurrences()) { 389 if (!EnableMachineSched) 390 return false; 391 } else if (!mf.getSubtarget().enableMachineScheduler()) 392 return false; 393 394 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 395 396 // Initialize the context of the pass. 397 MF = &mf; 398 MLI = &getAnalysis<MachineLoopInfo>(); 399 MDT = &getAnalysis<MachineDominatorTree>(); 400 PassConfig = &getAnalysis<TargetPassConfig>(); 401 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 402 403 LIS = &getAnalysis<LiveIntervals>(); 404 405 if (VerifyScheduling) { 406 LLVM_DEBUG(LIS->dump()); 407 MF->verify(this, "Before machine scheduling."); 408 } 409 RegClassInfo->runOnMachineFunction(*MF); 410 411 // Instantiate the selected scheduler for this target, function, and 412 // optimization level. 413 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 414 scheduleRegions(*Scheduler, false); 415 416 LLVM_DEBUG(LIS->dump()); 417 if (VerifyScheduling) 418 MF->verify(this, "After machine scheduling."); 419 return true; 420 } 421 422 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 423 if (skipFunction(mf.getFunction())) 424 return false; 425 426 if (EnablePostRAMachineSched.getNumOccurrences()) { 427 if (!EnablePostRAMachineSched) 428 return false; 429 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 430 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 431 return false; 432 } 433 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 434 435 // Initialize the context of the pass. 436 MF = &mf; 437 MLI = &getAnalysis<MachineLoopInfo>(); 438 PassConfig = &getAnalysis<TargetPassConfig>(); 439 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 440 441 if (VerifyScheduling) 442 MF->verify(this, "Before post machine scheduling."); 443 444 // Instantiate the selected scheduler for this target, function, and 445 // optimization level. 446 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 447 scheduleRegions(*Scheduler, true); 448 449 if (VerifyScheduling) 450 MF->verify(this, "After post machine scheduling."); 451 return true; 452 } 453 454 /// Return true of the given instruction should not be included in a scheduling 455 /// region. 456 /// 457 /// MachineScheduler does not currently support scheduling across calls. To 458 /// handle calls, the DAG builder needs to be modified to create register 459 /// anti/output dependencies on the registers clobbered by the call's regmask 460 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 461 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 462 /// the boundary, but there would be no benefit to postRA scheduling across 463 /// calls this late anyway. 464 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 465 MachineBasicBlock *MBB, 466 MachineFunction *MF, 467 const TargetInstrInfo *TII) { 468 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 469 } 470 471 /// A region of an MBB for scheduling. 472 namespace { 473 struct SchedRegion { 474 /// RegionBegin is the first instruction in the scheduling region, and 475 /// RegionEnd is either MBB->end() or the scheduling boundary after the 476 /// last instruction in the scheduling region. These iterators cannot refer 477 /// to instructions outside of the identified scheduling region because 478 /// those may be reordered before scheduling this region. 479 MachineBasicBlock::iterator RegionBegin; 480 MachineBasicBlock::iterator RegionEnd; 481 unsigned NumRegionInstrs; 482 483 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 484 unsigned N) : 485 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 486 }; 487 } // end anonymous namespace 488 489 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 490 491 static void 492 getSchedRegions(MachineBasicBlock *MBB, 493 MBBRegionsVector &Regions, 494 bool RegionsTopDown) { 495 MachineFunction *MF = MBB->getParent(); 496 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 497 498 MachineBasicBlock::iterator I = nullptr; 499 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 500 RegionEnd != MBB->begin(); RegionEnd = I) { 501 502 // Avoid decrementing RegionEnd for blocks with no terminator. 503 if (RegionEnd != MBB->end() || 504 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 505 --RegionEnd; 506 } 507 508 // The next region starts above the previous region. Look backward in the 509 // instruction stream until we find the nearest boundary. 510 unsigned NumRegionInstrs = 0; 511 I = RegionEnd; 512 for (;I != MBB->begin(); --I) { 513 MachineInstr &MI = *std::prev(I); 514 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 515 break; 516 if (!MI.isDebugOrPseudoInstr()) { 517 // MBB::size() uses instr_iterator to count. Here we need a bundle to 518 // count as a single instruction. 519 ++NumRegionInstrs; 520 } 521 } 522 523 // It's possible we found a scheduling region that only has debug 524 // instructions. Don't bother scheduling these. 525 if (NumRegionInstrs != 0) 526 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 527 } 528 529 if (RegionsTopDown) 530 std::reverse(Regions.begin(), Regions.end()); 531 } 532 533 /// Main driver for both MachineScheduler and PostMachineScheduler. 534 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 535 bool FixKillFlags) { 536 // Visit all machine basic blocks. 537 // 538 // TODO: Visit blocks in global postorder or postorder within the bottom-up 539 // loop tree. Then we can optionally compute global RegPressure. 540 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 541 MBB != MBBEnd; ++MBB) { 542 543 Scheduler.startBlock(&*MBB); 544 545 #ifndef NDEBUG 546 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 547 continue; 548 if (SchedOnlyBlock.getNumOccurrences() 549 && (int)SchedOnlyBlock != MBB->getNumber()) 550 continue; 551 #endif 552 553 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 554 // points to the scheduling boundary at the bottom of the region. The DAG 555 // does not include RegionEnd, but the region does (i.e. the next 556 // RegionEnd is above the previous RegionBegin). If the current block has 557 // no terminator then RegionEnd == MBB->end() for the bottom region. 558 // 559 // All the regions of MBB are first found and stored in MBBRegions, which 560 // will be processed (MBB) top-down if initialized with true. 561 // 562 // The Scheduler may insert instructions during either schedule() or 563 // exitRegion(), even for empty regions. So the local iterators 'I' and 564 // 'RegionEnd' are invalid across these calls. Instructions must not be 565 // added to other regions than the current one without updating MBBRegions. 566 567 MBBRegionsVector MBBRegions; 568 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 569 for (const SchedRegion &R : MBBRegions) { 570 MachineBasicBlock::iterator I = R.RegionBegin; 571 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 572 unsigned NumRegionInstrs = R.NumRegionInstrs; 573 574 // Notify the scheduler of the region, even if we may skip scheduling 575 // it. Perhaps it still needs to be bundled. 576 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 577 578 // Skip empty scheduling regions (0 or 1 schedulable instructions). 579 if (I == RegionEnd || I == std::prev(RegionEnd)) { 580 // Close the current region. Bundle the terminator if needed. 581 // This invalidates 'RegionEnd' and 'I'. 582 Scheduler.exitRegion(); 583 continue; 584 } 585 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 586 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 587 << " " << MBB->getName() << "\n From: " << *I 588 << " To: "; 589 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 590 else dbgs() << "End\n"; 591 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 592 if (DumpCriticalPathLength) { 593 errs() << MF->getName(); 594 errs() << ":%bb. " << MBB->getNumber(); 595 errs() << " " << MBB->getName() << " \n"; 596 } 597 598 // Schedule a region: possibly reorder instructions. 599 // This invalidates the original region iterators. 600 Scheduler.schedule(); 601 602 // Close the current region. 603 Scheduler.exitRegion(); 604 } 605 Scheduler.finishBlock(); 606 // FIXME: Ideally, no further passes should rely on kill flags. However, 607 // thumb2 size reduction is currently an exception, so the PostMIScheduler 608 // needs to do this. 609 if (FixKillFlags) 610 Scheduler.fixupKills(*MBB); 611 } 612 Scheduler.finalizeSchedule(); 613 } 614 615 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 616 // unimplemented 617 } 618 619 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 620 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 621 dbgs() << "Queue " << Name << ": "; 622 for (const SUnit *SU : Queue) 623 dbgs() << SU->NodeNum << " "; 624 dbgs() << "\n"; 625 } 626 #endif 627 628 //===----------------------------------------------------------------------===// 629 // ScheduleDAGMI - Basic machine instruction scheduling. This is 630 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 631 // virtual registers. 632 // ===----------------------------------------------------------------------===/ 633 634 // Provide a vtable anchor. 635 ScheduleDAGMI::~ScheduleDAGMI() = default; 636 637 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 638 /// NumPredsLeft reaches zero, release the successor node. 639 /// 640 /// FIXME: Adjust SuccSU height based on MinLatency. 641 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 642 SUnit *SuccSU = SuccEdge->getSUnit(); 643 644 if (SuccEdge->isWeak()) { 645 --SuccSU->WeakPredsLeft; 646 if (SuccEdge->isCluster()) 647 NextClusterSucc = SuccSU; 648 return; 649 } 650 #ifndef NDEBUG 651 if (SuccSU->NumPredsLeft == 0) { 652 dbgs() << "*** Scheduling failed! ***\n"; 653 dumpNode(*SuccSU); 654 dbgs() << " has been released too many times!\n"; 655 llvm_unreachable(nullptr); 656 } 657 #endif 658 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 659 // CurrCycle may have advanced since then. 660 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 661 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 662 663 --SuccSU->NumPredsLeft; 664 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 665 SchedImpl->releaseTopNode(SuccSU); 666 } 667 668 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 669 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 670 for (SDep &Succ : SU->Succs) 671 releaseSucc(SU, &Succ); 672 } 673 674 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 675 /// NumSuccsLeft reaches zero, release the predecessor node. 676 /// 677 /// FIXME: Adjust PredSU height based on MinLatency. 678 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 679 SUnit *PredSU = PredEdge->getSUnit(); 680 681 if (PredEdge->isWeak()) { 682 --PredSU->WeakSuccsLeft; 683 if (PredEdge->isCluster()) 684 NextClusterPred = PredSU; 685 return; 686 } 687 #ifndef NDEBUG 688 if (PredSU->NumSuccsLeft == 0) { 689 dbgs() << "*** Scheduling failed! ***\n"; 690 dumpNode(*PredSU); 691 dbgs() << " has been released too many times!\n"; 692 llvm_unreachable(nullptr); 693 } 694 #endif 695 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 696 // CurrCycle may have advanced since then. 697 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 698 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 699 700 --PredSU->NumSuccsLeft; 701 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 702 SchedImpl->releaseBottomNode(PredSU); 703 } 704 705 /// releasePredecessors - Call releasePred on each of SU's predecessors. 706 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 707 for (SDep &Pred : SU->Preds) 708 releasePred(SU, &Pred); 709 } 710 711 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 712 ScheduleDAGInstrs::startBlock(bb); 713 SchedImpl->enterMBB(bb); 714 } 715 716 void ScheduleDAGMI::finishBlock() { 717 SchedImpl->leaveMBB(); 718 ScheduleDAGInstrs::finishBlock(); 719 } 720 721 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 722 /// crossing a scheduling boundary. [begin, end) includes all instructions in 723 /// the region, including the boundary itself and single-instruction regions 724 /// that don't get scheduled. 725 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 726 MachineBasicBlock::iterator begin, 727 MachineBasicBlock::iterator end, 728 unsigned regioninstrs) 729 { 730 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 731 732 SchedImpl->initPolicy(begin, end, regioninstrs); 733 } 734 735 /// This is normally called from the main scheduler loop but may also be invoked 736 /// by the scheduling strategy to perform additional code motion. 737 void ScheduleDAGMI::moveInstruction( 738 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 739 // Advance RegionBegin if the first instruction moves down. 740 if (&*RegionBegin == MI) 741 ++RegionBegin; 742 743 // Update the instruction stream. 744 BB->splice(InsertPos, BB, MI); 745 746 // Update LiveIntervals 747 if (LIS) 748 LIS->handleMove(*MI, /*UpdateFlags=*/true); 749 750 // Recede RegionBegin if an instruction moves above the first. 751 if (RegionBegin == InsertPos) 752 RegionBegin = MI; 753 } 754 755 bool ScheduleDAGMI::checkSchedLimit() { 756 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) 757 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 758 CurrentTop = CurrentBottom; 759 return false; 760 } 761 ++NumInstrsScheduled; 762 #endif 763 return true; 764 } 765 766 /// Per-region scheduling driver, called back from 767 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 768 /// does not consider liveness or register pressure. It is useful for PostRA 769 /// scheduling and potentially other custom schedulers. 770 void ScheduleDAGMI::schedule() { 771 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 772 LLVM_DEBUG(SchedImpl->dumpPolicy()); 773 774 // Build the DAG. 775 buildSchedGraph(AA); 776 777 postprocessDAG(); 778 779 SmallVector<SUnit*, 8> TopRoots, BotRoots; 780 findRootsAndBiasEdges(TopRoots, BotRoots); 781 782 LLVM_DEBUG(dump()); 783 if (PrintDAGs) dump(); 784 if (ViewMISchedDAGs) viewGraph(); 785 786 // Initialize the strategy before modifying the DAG. 787 // This may initialize a DFSResult to be used for queue priority. 788 SchedImpl->initialize(this); 789 790 // Initialize ready queues now that the DAG and priority data are finalized. 791 initQueues(TopRoots, BotRoots); 792 793 bool IsTopNode = false; 794 while (true) { 795 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 796 SUnit *SU = SchedImpl->pickNode(IsTopNode); 797 if (!SU) break; 798 799 assert(!SU->isScheduled && "Node already scheduled"); 800 if (!checkSchedLimit()) 801 break; 802 803 MachineInstr *MI = SU->getInstr(); 804 if (IsTopNode) { 805 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 806 if (&*CurrentTop == MI) 807 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 808 else 809 moveInstruction(MI, CurrentTop); 810 } else { 811 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 812 MachineBasicBlock::iterator priorII = 813 priorNonDebug(CurrentBottom, CurrentTop); 814 if (&*priorII == MI) 815 CurrentBottom = priorII; 816 else { 817 if (&*CurrentTop == MI) 818 CurrentTop = nextIfDebug(++CurrentTop, priorII); 819 moveInstruction(MI, CurrentBottom); 820 CurrentBottom = MI; 821 } 822 } 823 // Notify the scheduling strategy before updating the DAG. 824 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 825 // runs, it can then use the accurate ReadyCycle time to determine whether 826 // newly released nodes can move to the readyQ. 827 SchedImpl->schedNode(SU, IsTopNode); 828 829 updateQueues(SU, IsTopNode); 830 } 831 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 832 833 placeDebugValues(); 834 835 LLVM_DEBUG({ 836 dbgs() << "*** Final schedule for " 837 << printMBBReference(*begin()->getParent()) << " ***\n"; 838 dumpSchedule(); 839 dbgs() << '\n'; 840 }); 841 } 842 843 /// Apply each ScheduleDAGMutation step in order. 844 void ScheduleDAGMI::postprocessDAG() { 845 for (auto &m : Mutations) 846 m->apply(this); 847 } 848 849 void ScheduleDAGMI:: 850 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 851 SmallVectorImpl<SUnit*> &BotRoots) { 852 for (SUnit &SU : SUnits) { 853 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 854 855 // Order predecessors so DFSResult follows the critical path. 856 SU.biasCriticalPath(); 857 858 // A SUnit is ready to top schedule if it has no predecessors. 859 if (!SU.NumPredsLeft) 860 TopRoots.push_back(&SU); 861 // A SUnit is ready to bottom schedule if it has no successors. 862 if (!SU.NumSuccsLeft) 863 BotRoots.push_back(&SU); 864 } 865 ExitSU.biasCriticalPath(); 866 } 867 868 /// Identify DAG roots and setup scheduler queues. 869 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 870 ArrayRef<SUnit*> BotRoots) { 871 NextClusterSucc = nullptr; 872 NextClusterPred = nullptr; 873 874 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 875 // 876 // Nodes with unreleased weak edges can still be roots. 877 // Release top roots in forward order. 878 for (SUnit *SU : TopRoots) 879 SchedImpl->releaseTopNode(SU); 880 881 // Release bottom roots in reverse order so the higher priority nodes appear 882 // first. This is more natural and slightly more efficient. 883 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 884 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 885 SchedImpl->releaseBottomNode(*I); 886 } 887 888 releaseSuccessors(&EntrySU); 889 releasePredecessors(&ExitSU); 890 891 SchedImpl->registerRoots(); 892 893 // Advance past initial DebugValues. 894 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 895 CurrentBottom = RegionEnd; 896 } 897 898 /// Update scheduler queues after scheduling an instruction. 899 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 900 // Release dependent instructions for scheduling. 901 if (IsTopNode) 902 releaseSuccessors(SU); 903 else 904 releasePredecessors(SU); 905 906 SU->isScheduled = true; 907 } 908 909 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 910 void ScheduleDAGMI::placeDebugValues() { 911 // If first instruction was a DBG_VALUE then put it back. 912 if (FirstDbgValue) { 913 BB->splice(RegionBegin, BB, FirstDbgValue); 914 RegionBegin = FirstDbgValue; 915 } 916 917 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 918 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 919 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 920 MachineInstr *DbgValue = P.first; 921 MachineBasicBlock::iterator OrigPrevMI = P.second; 922 if (&*RegionBegin == DbgValue) 923 ++RegionBegin; 924 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 925 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 926 RegionEnd = DbgValue; 927 } 928 } 929 930 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 931 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 932 for (MachineInstr &MI : *this) { 933 if (SUnit *SU = getSUnit(&MI)) 934 dumpNode(*SU); 935 else 936 dbgs() << "Missing SUnit\n"; 937 } 938 } 939 #endif 940 941 //===----------------------------------------------------------------------===// 942 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 943 // preservation. 944 //===----------------------------------------------------------------------===// 945 946 ScheduleDAGMILive::~ScheduleDAGMILive() { 947 delete DFSResult; 948 } 949 950 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 951 const MachineInstr &MI = *SU.getInstr(); 952 for (const MachineOperand &MO : MI.operands()) { 953 if (!MO.isReg()) 954 continue; 955 if (!MO.readsReg()) 956 continue; 957 if (TrackLaneMasks && !MO.isUse()) 958 continue; 959 960 Register Reg = MO.getReg(); 961 if (!Register::isVirtualRegister(Reg)) 962 continue; 963 964 // Ignore re-defs. 965 if (TrackLaneMasks) { 966 bool FoundDef = false; 967 for (const MachineOperand &MO2 : MI.operands()) { 968 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 969 FoundDef = true; 970 break; 971 } 972 } 973 if (FoundDef) 974 continue; 975 } 976 977 // Record this local VReg use. 978 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 979 for (; UI != VRegUses.end(); ++UI) { 980 if (UI->SU == &SU) 981 break; 982 } 983 if (UI == VRegUses.end()) 984 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 985 } 986 } 987 988 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 989 /// crossing a scheduling boundary. [begin, end) includes all instructions in 990 /// the region, including the boundary itself and single-instruction regions 991 /// that don't get scheduled. 992 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 993 MachineBasicBlock::iterator begin, 994 MachineBasicBlock::iterator end, 995 unsigned regioninstrs) 996 { 997 // ScheduleDAGMI initializes SchedImpl's per-region policy. 998 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 999 1000 // For convenience remember the end of the liveness region. 1001 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1002 1003 SUPressureDiffs.clear(); 1004 1005 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1006 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1007 1008 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1009 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1010 } 1011 1012 // Setup the register pressure trackers for the top scheduled and bottom 1013 // scheduled regions. 1014 void ScheduleDAGMILive::initRegPressure() { 1015 VRegUses.clear(); 1016 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1017 for (SUnit &SU : SUnits) 1018 collectVRegUses(SU); 1019 1020 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1021 ShouldTrackLaneMasks, false); 1022 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1023 ShouldTrackLaneMasks, false); 1024 1025 // Close the RPTracker to finalize live ins. 1026 RPTracker.closeRegion(); 1027 1028 LLVM_DEBUG(RPTracker.dump()); 1029 1030 // Initialize the live ins and live outs. 1031 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1032 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1033 1034 // Close one end of the tracker so we can call 1035 // getMaxUpward/DownwardPressureDelta before advancing across any 1036 // instructions. This converts currently live regs into live ins/outs. 1037 TopRPTracker.closeTop(); 1038 BotRPTracker.closeBottom(); 1039 1040 BotRPTracker.initLiveThru(RPTracker); 1041 if (!BotRPTracker.getLiveThru().empty()) { 1042 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1043 LLVM_DEBUG(dbgs() << "Live Thru: "; 1044 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1045 }; 1046 1047 // For each live out vreg reduce the pressure change associated with other 1048 // uses of the same vreg below the live-out reaching def. 1049 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1050 1051 // Account for liveness generated by the region boundary. 1052 if (LiveRegionEnd != RegionEnd) { 1053 SmallVector<RegisterMaskPair, 8> LiveUses; 1054 BotRPTracker.recede(&LiveUses); 1055 updatePressureDiffs(LiveUses); 1056 } 1057 1058 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1059 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1060 dbgs() << "Bottom Pressure:\n"; 1061 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1062 1063 assert((BotRPTracker.getPos() == RegionEnd || 1064 (RegionEnd->isDebugInstr() && 1065 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1066 "Can't find the region bottom"); 1067 1068 // Cache the list of excess pressure sets in this region. This will also track 1069 // the max pressure in the scheduled code for these sets. 1070 RegionCriticalPSets.clear(); 1071 const std::vector<unsigned> &RegionPressure = 1072 RPTracker.getPressure().MaxSetPressure; 1073 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1074 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1075 if (RegionPressure[i] > Limit) { 1076 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1077 << " Actual " << RegionPressure[i] << "\n"); 1078 RegionCriticalPSets.push_back(PressureChange(i)); 1079 } 1080 } 1081 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1082 for (const PressureChange &RCPS 1083 : RegionCriticalPSets) dbgs() 1084 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1085 dbgs() << "\n"); 1086 } 1087 1088 void ScheduleDAGMILive:: 1089 updateScheduledPressure(const SUnit *SU, 1090 const std::vector<unsigned> &NewMaxPressure) { 1091 const PressureDiff &PDiff = getPressureDiff(SU); 1092 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1093 for (const PressureChange &PC : PDiff) { 1094 if (!PC.isValid()) 1095 break; 1096 unsigned ID = PC.getPSet(); 1097 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1098 ++CritIdx; 1099 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1100 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1101 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1102 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1103 } 1104 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1105 if (NewMaxPressure[ID] >= Limit - 2) { 1106 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1107 << NewMaxPressure[ID] 1108 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1109 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1110 << " livethru)\n"); 1111 } 1112 } 1113 } 1114 1115 /// Update the PressureDiff array for liveness after scheduling this 1116 /// instruction. 1117 void ScheduleDAGMILive::updatePressureDiffs( 1118 ArrayRef<RegisterMaskPair> LiveUses) { 1119 for (const RegisterMaskPair &P : LiveUses) { 1120 Register Reg = P.RegUnit; 1121 /// FIXME: Currently assuming single-use physregs. 1122 if (!Register::isVirtualRegister(Reg)) 1123 continue; 1124 1125 if (ShouldTrackLaneMasks) { 1126 // If the register has just become live then other uses won't change 1127 // this fact anymore => decrement pressure. 1128 // If the register has just become dead then other uses make it come 1129 // back to life => increment pressure. 1130 bool Decrement = P.LaneMask.any(); 1131 1132 for (const VReg2SUnit &V2SU 1133 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1134 SUnit &SU = *V2SU.SU; 1135 if (SU.isScheduled || &SU == &ExitSU) 1136 continue; 1137 1138 PressureDiff &PDiff = getPressureDiff(&SU); 1139 PDiff.addPressureChange(Reg, Decrement, &MRI); 1140 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1141 << printReg(Reg, TRI) << ':' 1142 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1143 dbgs() << " to "; PDiff.dump(*TRI);); 1144 } 1145 } else { 1146 assert(P.LaneMask.any()); 1147 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1148 // This may be called before CurrentBottom has been initialized. However, 1149 // BotRPTracker must have a valid position. We want the value live into the 1150 // instruction or live out of the block, so ask for the previous 1151 // instruction's live-out. 1152 const LiveInterval &LI = LIS->getInterval(Reg); 1153 VNInfo *VNI; 1154 MachineBasicBlock::const_iterator I = 1155 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1156 if (I == BB->end()) 1157 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1158 else { 1159 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1160 VNI = LRQ.valueIn(); 1161 } 1162 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1163 assert(VNI && "No live value at use."); 1164 for (const VReg2SUnit &V2SU 1165 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1166 SUnit *SU = V2SU.SU; 1167 // If this use comes before the reaching def, it cannot be a last use, 1168 // so decrease its pressure change. 1169 if (!SU->isScheduled && SU != &ExitSU) { 1170 LiveQueryResult LRQ = 1171 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1172 if (LRQ.valueIn() == VNI) { 1173 PressureDiff &PDiff = getPressureDiff(SU); 1174 PDiff.addPressureChange(Reg, true, &MRI); 1175 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1176 << *SU->getInstr(); 1177 dbgs() << " to "; PDiff.dump(*TRI);); 1178 } 1179 } 1180 } 1181 } 1182 } 1183 } 1184 1185 void ScheduleDAGMILive::dump() const { 1186 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1187 if (EntrySU.getInstr() != nullptr) 1188 dumpNodeAll(EntrySU); 1189 for (const SUnit &SU : SUnits) { 1190 dumpNodeAll(SU); 1191 if (ShouldTrackPressure) { 1192 dbgs() << " Pressure Diff : "; 1193 getPressureDiff(&SU).dump(*TRI); 1194 } 1195 dbgs() << " Single Issue : "; 1196 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1197 SchedModel.mustEndGroup(SU.getInstr())) 1198 dbgs() << "true;"; 1199 else 1200 dbgs() << "false;"; 1201 dbgs() << '\n'; 1202 } 1203 if (ExitSU.getInstr() != nullptr) 1204 dumpNodeAll(ExitSU); 1205 #endif 1206 } 1207 1208 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1209 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1210 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1211 /// 1212 /// This is a skeletal driver, with all the functionality pushed into helpers, 1213 /// so that it can be easily extended by experimental schedulers. Generally, 1214 /// implementing MachineSchedStrategy should be sufficient to implement a new 1215 /// scheduling algorithm. However, if a scheduler further subclasses 1216 /// ScheduleDAGMILive then it will want to override this virtual method in order 1217 /// to update any specialized state. 1218 void ScheduleDAGMILive::schedule() { 1219 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1220 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1221 buildDAGWithRegPressure(); 1222 1223 postprocessDAG(); 1224 1225 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1226 findRootsAndBiasEdges(TopRoots, BotRoots); 1227 1228 // Initialize the strategy before modifying the DAG. 1229 // This may initialize a DFSResult to be used for queue priority. 1230 SchedImpl->initialize(this); 1231 1232 LLVM_DEBUG(dump()); 1233 if (PrintDAGs) dump(); 1234 if (ViewMISchedDAGs) viewGraph(); 1235 1236 // Initialize ready queues now that the DAG and priority data are finalized. 1237 initQueues(TopRoots, BotRoots); 1238 1239 bool IsTopNode = false; 1240 while (true) { 1241 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1242 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1243 if (!SU) break; 1244 1245 assert(!SU->isScheduled && "Node already scheduled"); 1246 if (!checkSchedLimit()) 1247 break; 1248 1249 scheduleMI(SU, IsTopNode); 1250 1251 if (DFSResult) { 1252 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1253 if (!ScheduledTrees.test(SubtreeID)) { 1254 ScheduledTrees.set(SubtreeID); 1255 DFSResult->scheduleTree(SubtreeID); 1256 SchedImpl->scheduleTree(SubtreeID); 1257 } 1258 } 1259 1260 // Notify the scheduling strategy after updating the DAG. 1261 SchedImpl->schedNode(SU, IsTopNode); 1262 1263 updateQueues(SU, IsTopNode); 1264 } 1265 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1266 1267 placeDebugValues(); 1268 1269 LLVM_DEBUG({ 1270 dbgs() << "*** Final schedule for " 1271 << printMBBReference(*begin()->getParent()) << " ***\n"; 1272 dumpSchedule(); 1273 dbgs() << '\n'; 1274 }); 1275 } 1276 1277 /// Build the DAG and setup three register pressure trackers. 1278 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1279 if (!ShouldTrackPressure) { 1280 RPTracker.reset(); 1281 RegionCriticalPSets.clear(); 1282 buildSchedGraph(AA); 1283 return; 1284 } 1285 1286 // Initialize the register pressure tracker used by buildSchedGraph. 1287 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1288 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1289 1290 // Account for liveness generate by the region boundary. 1291 if (LiveRegionEnd != RegionEnd) 1292 RPTracker.recede(); 1293 1294 // Build the DAG, and compute current register pressure. 1295 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1296 1297 // Initialize top/bottom trackers after computing region pressure. 1298 initRegPressure(); 1299 } 1300 1301 void ScheduleDAGMILive::computeDFSResult() { 1302 if (!DFSResult) 1303 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1304 DFSResult->clear(); 1305 ScheduledTrees.clear(); 1306 DFSResult->resize(SUnits.size()); 1307 DFSResult->compute(SUnits); 1308 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1309 } 1310 1311 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1312 /// only provides the critical path for single block loops. To handle loops that 1313 /// span blocks, we could use the vreg path latencies provided by 1314 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1315 /// available for use in the scheduler. 1316 /// 1317 /// The cyclic path estimation identifies a def-use pair that crosses the back 1318 /// edge and considers the depth and height of the nodes. For example, consider 1319 /// the following instruction sequence where each instruction has unit latency 1320 /// and defines an eponymous virtual register: 1321 /// 1322 /// a->b(a,c)->c(b)->d(c)->exit 1323 /// 1324 /// The cyclic critical path is a two cycles: b->c->b 1325 /// The acyclic critical path is four cycles: a->b->c->d->exit 1326 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1327 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1328 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1329 /// LiveInDepth = depth(b) = len(a->b) = 1 1330 /// 1331 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1332 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1333 /// CyclicCriticalPath = min(2, 2) = 2 1334 /// 1335 /// This could be relevant to PostRA scheduling, but is currently implemented 1336 /// assuming LiveIntervals. 1337 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1338 // This only applies to single block loop. 1339 if (!BB->isSuccessor(BB)) 1340 return 0; 1341 1342 unsigned MaxCyclicLatency = 0; 1343 // Visit each live out vreg def to find def/use pairs that cross iterations. 1344 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1345 Register Reg = P.RegUnit; 1346 if (!Register::isVirtualRegister(Reg)) 1347 continue; 1348 const LiveInterval &LI = LIS->getInterval(Reg); 1349 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1350 if (!DefVNI) 1351 continue; 1352 1353 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1354 const SUnit *DefSU = getSUnit(DefMI); 1355 if (!DefSU) 1356 continue; 1357 1358 unsigned LiveOutHeight = DefSU->getHeight(); 1359 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1360 // Visit all local users of the vreg def. 1361 for (const VReg2SUnit &V2SU 1362 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1363 SUnit *SU = V2SU.SU; 1364 if (SU == &ExitSU) 1365 continue; 1366 1367 // Only consider uses of the phi. 1368 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1369 if (!LRQ.valueIn()->isPHIDef()) 1370 continue; 1371 1372 // Assume that a path spanning two iterations is a cycle, which could 1373 // overestimate in strange cases. This allows cyclic latency to be 1374 // estimated as the minimum slack of the vreg's depth or height. 1375 unsigned CyclicLatency = 0; 1376 if (LiveOutDepth > SU->getDepth()) 1377 CyclicLatency = LiveOutDepth - SU->getDepth(); 1378 1379 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1380 if (LiveInHeight > LiveOutHeight) { 1381 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1382 CyclicLatency = LiveInHeight - LiveOutHeight; 1383 } else 1384 CyclicLatency = 0; 1385 1386 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1387 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1388 if (CyclicLatency > MaxCyclicLatency) 1389 MaxCyclicLatency = CyclicLatency; 1390 } 1391 } 1392 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1393 return MaxCyclicLatency; 1394 } 1395 1396 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1397 /// the Top RP tracker in case the region beginning has changed. 1398 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1399 ArrayRef<SUnit*> BotRoots) { 1400 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1401 if (ShouldTrackPressure) { 1402 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1403 TopRPTracker.setPos(CurrentTop); 1404 } 1405 } 1406 1407 /// Move an instruction and update register pressure. 1408 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1409 // Move the instruction to its new location in the instruction stream. 1410 MachineInstr *MI = SU->getInstr(); 1411 1412 if (IsTopNode) { 1413 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1414 if (&*CurrentTop == MI) 1415 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1416 else { 1417 moveInstruction(MI, CurrentTop); 1418 TopRPTracker.setPos(MI); 1419 } 1420 1421 if (ShouldTrackPressure) { 1422 // Update top scheduled pressure. 1423 RegisterOperands RegOpers; 1424 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1425 if (ShouldTrackLaneMasks) { 1426 // Adjust liveness and add missing dead+read-undef flags. 1427 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1428 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1429 } else { 1430 // Adjust for missing dead-def flags. 1431 RegOpers.detectDeadDefs(*MI, *LIS); 1432 } 1433 1434 TopRPTracker.advance(RegOpers); 1435 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1436 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1437 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1438 1439 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1440 } 1441 } else { 1442 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1443 MachineBasicBlock::iterator priorII = 1444 priorNonDebug(CurrentBottom, CurrentTop); 1445 if (&*priorII == MI) 1446 CurrentBottom = priorII; 1447 else { 1448 if (&*CurrentTop == MI) { 1449 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1450 TopRPTracker.setPos(CurrentTop); 1451 } 1452 moveInstruction(MI, CurrentBottom); 1453 CurrentBottom = MI; 1454 BotRPTracker.setPos(CurrentBottom); 1455 } 1456 if (ShouldTrackPressure) { 1457 RegisterOperands RegOpers; 1458 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1459 if (ShouldTrackLaneMasks) { 1460 // Adjust liveness and add missing dead+read-undef flags. 1461 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1462 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1463 } else { 1464 // Adjust for missing dead-def flags. 1465 RegOpers.detectDeadDefs(*MI, *LIS); 1466 } 1467 1468 if (BotRPTracker.getPos() != CurrentBottom) 1469 BotRPTracker.recedeSkipDebugValues(); 1470 SmallVector<RegisterMaskPair, 8> LiveUses; 1471 BotRPTracker.recede(RegOpers, &LiveUses); 1472 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1473 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1474 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1475 1476 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1477 updatePressureDiffs(LiveUses); 1478 } 1479 } 1480 } 1481 1482 //===----------------------------------------------------------------------===// 1483 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1484 //===----------------------------------------------------------------------===// 1485 1486 namespace { 1487 1488 /// Post-process the DAG to create cluster edges between neighboring 1489 /// loads or between neighboring stores. 1490 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1491 struct MemOpInfo { 1492 SUnit *SU; 1493 SmallVector<const MachineOperand *, 4> BaseOps; 1494 int64_t Offset; 1495 unsigned Width; 1496 1497 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1498 int64_t Offset, unsigned Width) 1499 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1500 Width(Width) {} 1501 1502 static bool Compare(const MachineOperand *const &A, 1503 const MachineOperand *const &B) { 1504 if (A->getType() != B->getType()) 1505 return A->getType() < B->getType(); 1506 if (A->isReg()) 1507 return A->getReg() < B->getReg(); 1508 if (A->isFI()) { 1509 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1510 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1511 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1512 TargetFrameLowering::StackGrowsDown; 1513 return StackGrowsDown ? A->getIndex() > B->getIndex() 1514 : A->getIndex() < B->getIndex(); 1515 } 1516 1517 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1518 "index bases."); 1519 } 1520 1521 bool operator<(const MemOpInfo &RHS) const { 1522 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1523 // comparison instead when it's available. 1524 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1525 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1526 Compare)) 1527 return true; 1528 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1529 BaseOps.begin(), BaseOps.end(), Compare)) 1530 return false; 1531 if (Offset != RHS.Offset) 1532 return Offset < RHS.Offset; 1533 return SU->NodeNum < RHS.SU->NodeNum; 1534 } 1535 }; 1536 1537 const TargetInstrInfo *TII; 1538 const TargetRegisterInfo *TRI; 1539 bool IsLoad; 1540 1541 public: 1542 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1543 const TargetRegisterInfo *tri, bool IsLoad) 1544 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1545 1546 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1547 1548 protected: 1549 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1550 ScheduleDAGInstrs *DAG); 1551 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1552 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1553 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1554 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1555 }; 1556 1557 class StoreClusterMutation : public BaseMemOpClusterMutation { 1558 public: 1559 StoreClusterMutation(const TargetInstrInfo *tii, 1560 const TargetRegisterInfo *tri) 1561 : BaseMemOpClusterMutation(tii, tri, false) {} 1562 }; 1563 1564 class LoadClusterMutation : public BaseMemOpClusterMutation { 1565 public: 1566 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1567 : BaseMemOpClusterMutation(tii, tri, true) {} 1568 }; 1569 1570 } // end anonymous namespace 1571 1572 namespace llvm { 1573 1574 std::unique_ptr<ScheduleDAGMutation> 1575 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1576 const TargetRegisterInfo *TRI) { 1577 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1578 : nullptr; 1579 } 1580 1581 std::unique_ptr<ScheduleDAGMutation> 1582 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1583 const TargetRegisterInfo *TRI) { 1584 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1585 : nullptr; 1586 } 1587 1588 } // end namespace llvm 1589 1590 // Sorting all the loads/stores first, then for each load/store, checking the 1591 // following load/store one by one, until reach the first non-dependent one and 1592 // call target hook to see if they can cluster. 1593 // If FastCluster is enabled, we assume that, all the loads/stores have been 1594 // preprocessed and now, they didn't have dependencies on each other. 1595 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1596 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1597 ScheduleDAGInstrs *DAG) { 1598 // Keep track of the current cluster length and bytes for each SUnit. 1599 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1600 1601 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1602 // cluster mem ops collected within `MemOpRecords` array. 1603 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1604 // Decision to cluster mem ops is taken based on target dependent logic 1605 auto MemOpa = MemOpRecords[Idx]; 1606 1607 // Seek for the next load/store to do the cluster. 1608 unsigned NextIdx = Idx + 1; 1609 for (; NextIdx < End; ++NextIdx) 1610 // Skip if MemOpb has been clustered already or has dependency with 1611 // MemOpa. 1612 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1613 (FastCluster || 1614 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1615 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1616 break; 1617 if (NextIdx == End) 1618 continue; 1619 1620 auto MemOpb = MemOpRecords[NextIdx]; 1621 unsigned ClusterLength = 2; 1622 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; 1623 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1624 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1625 CurrentClusterBytes = 1626 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; 1627 } 1628 1629 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1630 CurrentClusterBytes)) 1631 continue; 1632 1633 SUnit *SUa = MemOpa.SU; 1634 SUnit *SUb = MemOpb.SU; 1635 if (SUa->NodeNum > SUb->NodeNum) 1636 std::swap(SUa, SUb); 1637 1638 // FIXME: Is this check really required? 1639 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1640 continue; 1641 1642 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1643 << SUb->NodeNum << ")\n"); 1644 ++NumClustered; 1645 1646 if (IsLoad) { 1647 // Copy successor edges from SUa to SUb. Interleaving computation 1648 // dependent on SUa can prevent load combining due to register reuse. 1649 // Predecessor edges do not need to be copied from SUb to SUa since 1650 // nearby loads should have effectively the same inputs. 1651 for (const SDep &Succ : SUa->Succs) { 1652 if (Succ.getSUnit() == SUb) 1653 continue; 1654 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1655 << ")\n"); 1656 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1657 } 1658 } else { 1659 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1660 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1661 // do not need to be copied from SUa to SUb since no one will depend 1662 // on stores. 1663 // Notice that, we don't need to care about the memory dependency as 1664 // we won't try to cluster them if they have any memory dependency. 1665 for (const SDep &Pred : SUb->Preds) { 1666 if (Pred.getSUnit() == SUa) 1667 continue; 1668 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1669 << ")\n"); 1670 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1671 } 1672 } 1673 1674 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1675 CurrentClusterBytes}; 1676 1677 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1678 << ", Curr cluster bytes: " << CurrentClusterBytes 1679 << "\n"); 1680 } 1681 } 1682 1683 void BaseMemOpClusterMutation::collectMemOpRecords( 1684 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1685 for (auto &SU : SUnits) { 1686 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1687 (!IsLoad && !SU.getInstr()->mayStore())) 1688 continue; 1689 1690 const MachineInstr &MI = *SU.getInstr(); 1691 SmallVector<const MachineOperand *, 4> BaseOps; 1692 int64_t Offset; 1693 bool OffsetIsScalable; 1694 unsigned Width; 1695 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1696 OffsetIsScalable, Width, TRI)) { 1697 MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); 1698 1699 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1700 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1701 << ", Width: " << Width << "\n"); 1702 } 1703 #ifndef NDEBUG 1704 for (const auto *Op : BaseOps) 1705 assert(Op); 1706 #endif 1707 } 1708 } 1709 1710 bool BaseMemOpClusterMutation::groupMemOps( 1711 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1712 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1713 bool FastCluster = 1714 ForceFastCluster || 1715 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1716 1717 for (const auto &MemOp : MemOps) { 1718 unsigned ChainPredID = DAG->SUnits.size(); 1719 if (FastCluster) { 1720 for (const SDep &Pred : MemOp.SU->Preds) { 1721 // We only want to cluster the mem ops that have the same ctrl(non-data) 1722 // pred so that they didn't have ctrl dependency for each other. But for 1723 // store instrs, we can still cluster them if the pred is load instr. 1724 if ((Pred.isCtrl() && 1725 (IsLoad || 1726 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1727 !Pred.isArtificial()) { 1728 ChainPredID = Pred.getSUnit()->NodeNum; 1729 break; 1730 } 1731 } 1732 } else 1733 ChainPredID = 0; 1734 1735 Groups[ChainPredID].push_back(MemOp); 1736 } 1737 return FastCluster; 1738 } 1739 1740 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1741 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1742 // Collect all the clusterable loads/stores 1743 SmallVector<MemOpInfo, 32> MemOpRecords; 1744 collectMemOpRecords(DAG->SUnits, MemOpRecords); 1745 1746 if (MemOpRecords.size() < 2) 1747 return; 1748 1749 // Put the loads/stores without dependency into the same group with some 1750 // heuristic if the DAG is too complex to avoid compiling time blow up. 1751 // Notice that, some fusion pair could be lost with this. 1752 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 1753 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 1754 1755 for (auto &Group : Groups) { 1756 // Sorting the loads/stores, so that, we can stop the cluster as early as 1757 // possible. 1758 llvm::sort(Group.second); 1759 1760 // Trying to cluster all the neighboring loads/stores. 1761 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 1762 } 1763 } 1764 1765 //===----------------------------------------------------------------------===// 1766 // CopyConstrain - DAG post-processing to encourage copy elimination. 1767 //===----------------------------------------------------------------------===// 1768 1769 namespace { 1770 1771 /// Post-process the DAG to create weak edges from all uses of a copy to 1772 /// the one use that defines the copy's source vreg, most likely an induction 1773 /// variable increment. 1774 class CopyConstrain : public ScheduleDAGMutation { 1775 // Transient state. 1776 SlotIndex RegionBeginIdx; 1777 1778 // RegionEndIdx is the slot index of the last non-debug instruction in the 1779 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1780 SlotIndex RegionEndIdx; 1781 1782 public: 1783 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1784 1785 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1786 1787 protected: 1788 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1789 }; 1790 1791 } // end anonymous namespace 1792 1793 namespace llvm { 1794 1795 std::unique_ptr<ScheduleDAGMutation> 1796 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1797 const TargetRegisterInfo *TRI) { 1798 return std::make_unique<CopyConstrain>(TII, TRI); 1799 } 1800 1801 } // end namespace llvm 1802 1803 /// constrainLocalCopy handles two possibilities: 1804 /// 1) Local src: 1805 /// I0: = dst 1806 /// I1: src = ... 1807 /// I2: = dst 1808 /// I3: dst = src (copy) 1809 /// (create pred->succ edges I0->I1, I2->I1) 1810 /// 1811 /// 2) Local copy: 1812 /// I0: dst = src (copy) 1813 /// I1: = dst 1814 /// I2: src = ... 1815 /// I3: = dst 1816 /// (create pred->succ edges I1->I2, I3->I2) 1817 /// 1818 /// Although the MachineScheduler is currently constrained to single blocks, 1819 /// this algorithm should handle extended blocks. An EBB is a set of 1820 /// contiguously numbered blocks such that the previous block in the EBB is 1821 /// always the single predecessor. 1822 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1823 LiveIntervals *LIS = DAG->getLIS(); 1824 MachineInstr *Copy = CopySU->getInstr(); 1825 1826 // Check for pure vreg copies. 1827 const MachineOperand &SrcOp = Copy->getOperand(1); 1828 Register SrcReg = SrcOp.getReg(); 1829 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1830 return; 1831 1832 const MachineOperand &DstOp = Copy->getOperand(0); 1833 Register DstReg = DstOp.getReg(); 1834 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1835 return; 1836 1837 // Check if either the dest or source is local. If it's live across a back 1838 // edge, it's not local. Note that if both vregs are live across the back 1839 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1840 // If both the copy's source and dest are local live intervals, then we 1841 // should treat the dest as the global for the purpose of adding 1842 // constraints. This adds edges from source's other uses to the copy. 1843 unsigned LocalReg = SrcReg; 1844 unsigned GlobalReg = DstReg; 1845 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1846 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1847 LocalReg = DstReg; 1848 GlobalReg = SrcReg; 1849 LocalLI = &LIS->getInterval(LocalReg); 1850 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1851 return; 1852 } 1853 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1854 1855 // Find the global segment after the start of the local LI. 1856 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1857 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1858 // local live range. We could create edges from other global uses to the local 1859 // start, but the coalescer should have already eliminated these cases, so 1860 // don't bother dealing with it. 1861 if (GlobalSegment == GlobalLI->end()) 1862 return; 1863 1864 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1865 // returned the next global segment. But if GlobalSegment overlaps with 1866 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1867 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1868 if (GlobalSegment->contains(LocalLI->beginIndex())) 1869 ++GlobalSegment; 1870 1871 if (GlobalSegment == GlobalLI->end()) 1872 return; 1873 1874 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1875 if (GlobalSegment != GlobalLI->begin()) { 1876 // Two address defs have no hole. 1877 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1878 GlobalSegment->start)) { 1879 return; 1880 } 1881 // If the prior global segment may be defined by the same two-address 1882 // instruction that also defines LocalLI, then can't make a hole here. 1883 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1884 LocalLI->beginIndex())) { 1885 return; 1886 } 1887 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1888 // it would be a disconnected component in the live range. 1889 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1890 "Disconnected LRG within the scheduling region."); 1891 } 1892 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1893 if (!GlobalDef) 1894 return; 1895 1896 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1897 if (!GlobalSU) 1898 return; 1899 1900 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1901 // constraining the uses of the last local def to precede GlobalDef. 1902 SmallVector<SUnit*,8> LocalUses; 1903 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1904 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1905 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1906 for (const SDep &Succ : LastLocalSU->Succs) { 1907 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1908 continue; 1909 if (Succ.getSUnit() == GlobalSU) 1910 continue; 1911 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1912 return; 1913 LocalUses.push_back(Succ.getSUnit()); 1914 } 1915 // Open the top of the GlobalLI hole by constraining any earlier global uses 1916 // to precede the start of LocalLI. 1917 SmallVector<SUnit*,8> GlobalUses; 1918 MachineInstr *FirstLocalDef = 1919 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1920 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1921 for (const SDep &Pred : GlobalSU->Preds) { 1922 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1923 continue; 1924 if (Pred.getSUnit() == FirstLocalSU) 1925 continue; 1926 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1927 return; 1928 GlobalUses.push_back(Pred.getSUnit()); 1929 } 1930 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1931 // Add the weak edges. 1932 for (SUnit *LU : LocalUses) { 1933 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 1934 << GlobalSU->NodeNum << ")\n"); 1935 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 1936 } 1937 for (SUnit *GU : GlobalUses) { 1938 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 1939 << FirstLocalSU->NodeNum << ")\n"); 1940 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 1941 } 1942 } 1943 1944 /// Callback from DAG postProcessing to create weak edges to encourage 1945 /// copy elimination. 1946 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1947 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1948 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1949 1950 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1951 if (FirstPos == DAG->end()) 1952 return; 1953 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1954 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1955 *priorNonDebug(DAG->end(), DAG->begin())); 1956 1957 for (SUnit &SU : DAG->SUnits) { 1958 if (!SU.getInstr()->isCopy()) 1959 continue; 1960 1961 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1962 } 1963 } 1964 1965 //===----------------------------------------------------------------------===// 1966 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1967 // and possibly other custom schedulers. 1968 //===----------------------------------------------------------------------===// 1969 1970 static const unsigned InvalidCycle = ~0U; 1971 1972 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1973 1974 /// Given a Count of resource usage and a Latency value, return true if a 1975 /// SchedBoundary becomes resource limited. 1976 /// If we are checking after scheduling a node, we should return true when 1977 /// we just reach the resource limit. 1978 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1979 unsigned Latency, bool AfterSchedNode) { 1980 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1981 if (AfterSchedNode) 1982 return ResCntFactor >= (int)LFactor; 1983 else 1984 return ResCntFactor > (int)LFactor; 1985 } 1986 1987 void SchedBoundary::reset() { 1988 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1989 // Destroying and reconstructing it is very expensive though. So keep 1990 // invalid, placeholder HazardRecs. 1991 if (HazardRec && HazardRec->isEnabled()) { 1992 delete HazardRec; 1993 HazardRec = nullptr; 1994 } 1995 Available.clear(); 1996 Pending.clear(); 1997 CheckPending = false; 1998 CurrCycle = 0; 1999 CurrMOps = 0; 2000 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2001 ExpectedLatency = 0; 2002 DependentLatency = 0; 2003 RetiredMOps = 0; 2004 MaxExecutedResCount = 0; 2005 ZoneCritResIdx = 0; 2006 IsResourceLimited = false; 2007 ReservedCycles.clear(); 2008 ReservedCyclesIndex.clear(); 2009 ResourceGroupSubUnitMasks.clear(); 2010 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2011 // Track the maximum number of stall cycles that could arise either from the 2012 // latency of a DAG edge or the number of cycles that a processor resource is 2013 // reserved (SchedBoundary::ReservedCycles). 2014 MaxObservedStall = 0; 2015 #endif 2016 // Reserve a zero-count for invalid CritResIdx. 2017 ExecutedResCounts.resize(1); 2018 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2019 } 2020 2021 void SchedRemainder:: 2022 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2023 reset(); 2024 if (!SchedModel->hasInstrSchedModel()) 2025 return; 2026 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2027 for (SUnit &SU : DAG->SUnits) { 2028 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2029 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2030 * SchedModel->getMicroOpFactor(); 2031 for (TargetSchedModel::ProcResIter 2032 PI = SchedModel->getWriteProcResBegin(SC), 2033 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2034 unsigned PIdx = PI->ProcResourceIdx; 2035 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2036 RemainingCounts[PIdx] += (Factor * PI->Cycles); 2037 } 2038 } 2039 } 2040 2041 void SchedBoundary:: 2042 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2043 reset(); 2044 DAG = dag; 2045 SchedModel = smodel; 2046 Rem = rem; 2047 if (SchedModel->hasInstrSchedModel()) { 2048 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2049 ReservedCyclesIndex.resize(ResourceCount); 2050 ExecutedResCounts.resize(ResourceCount); 2051 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2052 unsigned NumUnits = 0; 2053 2054 for (unsigned i = 0; i < ResourceCount; ++i) { 2055 ReservedCyclesIndex[i] = NumUnits; 2056 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2057 if (isUnbufferedGroup(i)) { 2058 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2059 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2060 U != UE; ++U) 2061 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2062 } 2063 } 2064 2065 ReservedCycles.resize(NumUnits, InvalidCycle); 2066 } 2067 } 2068 2069 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2070 /// these "soft stalls" differently than the hard stall cycles based on CPU 2071 /// resources and computed by checkHazard(). A fully in-order model 2072 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2073 /// available for scheduling until they are ready. However, a weaker in-order 2074 /// model may use this for heuristics. For example, if a processor has in-order 2075 /// behavior when reading certain resources, this may come into play. 2076 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2077 if (!SU->isUnbuffered) 2078 return 0; 2079 2080 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2081 if (ReadyCycle > CurrCycle) 2082 return ReadyCycle - CurrCycle; 2083 return 0; 2084 } 2085 2086 /// Compute the next cycle at which the given processor resource unit 2087 /// can be scheduled. 2088 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2089 unsigned Cycles) { 2090 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2091 // If this resource has never been used, always return cycle zero. 2092 if (NextUnreserved == InvalidCycle) 2093 return 0; 2094 // For bottom-up scheduling add the cycles needed for the current operation. 2095 if (!isTop()) 2096 NextUnreserved += Cycles; 2097 return NextUnreserved; 2098 } 2099 2100 /// Compute the next cycle at which the given processor resource can be 2101 /// scheduled. Returns the next cycle and the index of the processor resource 2102 /// instance in the reserved cycles vector. 2103 std::pair<unsigned, unsigned> 2104 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2105 unsigned Cycles) { 2106 2107 unsigned MinNextUnreserved = InvalidCycle; 2108 unsigned InstanceIdx = 0; 2109 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2110 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2111 assert(NumberOfInstances > 0 && 2112 "Cannot have zero instances of a ProcResource"); 2113 2114 if (isUnbufferedGroup(PIdx)) { 2115 // If any subunits are used by the instruction, report that the resource 2116 // group is available at 0, effectively removing the group record from 2117 // hazarding and basing the hazarding decisions on the subunit records. 2118 // Otherwise, choose the first available instance from among the subunits. 2119 // Specifications which assign cycles to both the subunits and the group or 2120 // which use an unbuffered group with buffered subunits will appear to 2121 // schedule strangely. In the first case, the additional cycles for the 2122 // group will be ignored. In the second, the group will be ignored 2123 // entirely. 2124 for (const MCWriteProcResEntry &PE : 2125 make_range(SchedModel->getWriteProcResBegin(SC), 2126 SchedModel->getWriteProcResEnd(SC))) 2127 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2128 return std::make_pair(0u, StartIndex); 2129 2130 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2131 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2132 unsigned NextUnreserved, NextInstanceIdx; 2133 std::tie(NextUnreserved, NextInstanceIdx) = 2134 getNextResourceCycle(SC, SubUnits[I], Cycles); 2135 if (MinNextUnreserved > NextUnreserved) { 2136 InstanceIdx = NextInstanceIdx; 2137 MinNextUnreserved = NextUnreserved; 2138 } 2139 } 2140 return std::make_pair(MinNextUnreserved, InstanceIdx); 2141 } 2142 2143 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2144 ++I) { 2145 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 2146 if (MinNextUnreserved > NextUnreserved) { 2147 InstanceIdx = I; 2148 MinNextUnreserved = NextUnreserved; 2149 } 2150 } 2151 return std::make_pair(MinNextUnreserved, InstanceIdx); 2152 } 2153 2154 /// Does this SU have a hazard within the current instruction group. 2155 /// 2156 /// The scheduler supports two modes of hazard recognition. The first is the 2157 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2158 /// supports highly complicated in-order reservation tables 2159 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2160 /// 2161 /// The second is a streamlined mechanism that checks for hazards based on 2162 /// simple counters that the scheduler itself maintains. It explicitly checks 2163 /// for instruction dispatch limitations, including the number of micro-ops that 2164 /// can dispatch per cycle. 2165 /// 2166 /// TODO: Also check whether the SU must start a new group. 2167 bool SchedBoundary::checkHazard(SUnit *SU) { 2168 if (HazardRec->isEnabled() 2169 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2170 return true; 2171 } 2172 2173 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2174 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2175 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2176 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2177 return true; 2178 } 2179 2180 if (CurrMOps > 0 && 2181 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2182 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2183 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2184 << (isTop() ? "begin" : "end") << " group\n"); 2185 return true; 2186 } 2187 2188 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2189 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2190 for (const MCWriteProcResEntry &PE : 2191 make_range(SchedModel->getWriteProcResBegin(SC), 2192 SchedModel->getWriteProcResEnd(SC))) { 2193 unsigned ResIdx = PE.ProcResourceIdx; 2194 unsigned Cycles = PE.Cycles; 2195 unsigned NRCycle, InstanceIdx; 2196 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles); 2197 if (NRCycle > CurrCycle) { 2198 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2199 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2200 #endif 2201 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2202 << SchedModel->getResourceName(ResIdx) 2203 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2204 << "=" << NRCycle << "c\n"); 2205 return true; 2206 } 2207 } 2208 } 2209 return false; 2210 } 2211 2212 // Find the unscheduled node in ReadySUs with the highest latency. 2213 unsigned SchedBoundary:: 2214 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2215 SUnit *LateSU = nullptr; 2216 unsigned RemLatency = 0; 2217 for (SUnit *SU : ReadySUs) { 2218 unsigned L = getUnscheduledLatency(SU); 2219 if (L > RemLatency) { 2220 RemLatency = L; 2221 LateSU = SU; 2222 } 2223 } 2224 if (LateSU) { 2225 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2226 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2227 } 2228 return RemLatency; 2229 } 2230 2231 // Count resources in this zone and the remaining unscheduled 2232 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2233 // resource index, or zero if the zone is issue limited. 2234 unsigned SchedBoundary:: 2235 getOtherResourceCount(unsigned &OtherCritIdx) { 2236 OtherCritIdx = 0; 2237 if (!SchedModel->hasInstrSchedModel()) 2238 return 0; 2239 2240 unsigned OtherCritCount = Rem->RemIssueCount 2241 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2242 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2243 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2244 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2245 PIdx != PEnd; ++PIdx) { 2246 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2247 if (OtherCount > OtherCritCount) { 2248 OtherCritCount = OtherCount; 2249 OtherCritIdx = PIdx; 2250 } 2251 } 2252 if (OtherCritIdx) { 2253 LLVM_DEBUG( 2254 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2255 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2256 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2257 } 2258 return OtherCritCount; 2259 } 2260 2261 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2262 unsigned Idx) { 2263 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2264 2265 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2266 // ReadyCycle was been bumped up to the CurrCycle when this node was 2267 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2268 // scheduling, so may now be greater than ReadyCycle. 2269 if (ReadyCycle > CurrCycle) 2270 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2271 #endif 2272 2273 if (ReadyCycle < MinReadyCycle) 2274 MinReadyCycle = ReadyCycle; 2275 2276 // Check for interlocks first. For the purpose of other heuristics, an 2277 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2278 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2279 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2280 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2281 2282 if (!HazardDetected) { 2283 Available.push(SU); 2284 2285 if (InPQueue) 2286 Pending.remove(Pending.begin() + Idx); 2287 return; 2288 } 2289 2290 if (!InPQueue) 2291 Pending.push(SU); 2292 } 2293 2294 /// Move the boundary of scheduled code by one cycle. 2295 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2296 if (SchedModel->getMicroOpBufferSize() == 0) { 2297 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2298 "MinReadyCycle uninitialized"); 2299 if (MinReadyCycle > NextCycle) 2300 NextCycle = MinReadyCycle; 2301 } 2302 // Update the current micro-ops, which will issue in the next cycle. 2303 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2304 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2305 2306 // Decrement DependentLatency based on the next cycle. 2307 if ((NextCycle - CurrCycle) > DependentLatency) 2308 DependentLatency = 0; 2309 else 2310 DependentLatency -= (NextCycle - CurrCycle); 2311 2312 if (!HazardRec->isEnabled()) { 2313 // Bypass HazardRec virtual calls. 2314 CurrCycle = NextCycle; 2315 } else { 2316 // Bypass getHazardType calls in case of long latency. 2317 for (; CurrCycle != NextCycle; ++CurrCycle) { 2318 if (isTop()) 2319 HazardRec->AdvanceCycle(); 2320 else 2321 HazardRec->RecedeCycle(); 2322 } 2323 } 2324 CheckPending = true; 2325 IsResourceLimited = 2326 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2327 getScheduledLatency(), true); 2328 2329 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2330 << '\n'); 2331 } 2332 2333 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2334 ExecutedResCounts[PIdx] += Count; 2335 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2336 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2337 } 2338 2339 /// Add the given processor resource to this scheduled zone. 2340 /// 2341 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2342 /// during which this resource is consumed. 2343 /// 2344 /// \return the next cycle at which the instruction may execute without 2345 /// oversubscribing resources. 2346 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2347 unsigned Cycles, unsigned NextCycle) { 2348 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2349 unsigned Count = Factor * Cycles; 2350 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2351 << Cycles << "x" << Factor << "u\n"); 2352 2353 // Update Executed resources counts. 2354 incExecutedResources(PIdx, Count); 2355 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2356 Rem->RemainingCounts[PIdx] -= Count; 2357 2358 // Check if this resource exceeds the current critical resource. If so, it 2359 // becomes the critical resource. 2360 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2361 ZoneCritResIdx = PIdx; 2362 LLVM_DEBUG(dbgs() << " *** Critical resource " 2363 << SchedModel->getResourceName(PIdx) << ": " 2364 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2365 << "c\n"); 2366 } 2367 // For reserved resources, record the highest cycle using the resource. 2368 unsigned NextAvailable, InstanceIdx; 2369 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles); 2370 if (NextAvailable > CurrCycle) { 2371 LLVM_DEBUG(dbgs() << " Resource conflict: " 2372 << SchedModel->getResourceName(PIdx) 2373 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2374 << " reserved until @" << NextAvailable << "\n"); 2375 } 2376 return NextAvailable; 2377 } 2378 2379 /// Move the boundary of scheduled code by one SUnit. 2380 void SchedBoundary::bumpNode(SUnit *SU) { 2381 // Update the reservation table. 2382 if (HazardRec->isEnabled()) { 2383 if (!isTop() && SU->isCall) { 2384 // Calls are scheduled with their preceding instructions. For bottom-up 2385 // scheduling, clear the pipeline state before emitting. 2386 HazardRec->Reset(); 2387 } 2388 HazardRec->EmitInstruction(SU); 2389 // Scheduling an instruction may have made pending instructions available. 2390 CheckPending = true; 2391 } 2392 // checkHazard should prevent scheduling multiple instructions per cycle that 2393 // exceed the issue width. 2394 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2395 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2396 assert( 2397 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2398 "Cannot schedule this instruction's MicroOps in the current cycle."); 2399 2400 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2401 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2402 2403 unsigned NextCycle = CurrCycle; 2404 switch (SchedModel->getMicroOpBufferSize()) { 2405 case 0: 2406 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2407 break; 2408 case 1: 2409 if (ReadyCycle > NextCycle) { 2410 NextCycle = ReadyCycle; 2411 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2412 } 2413 break; 2414 default: 2415 // We don't currently model the OOO reorder buffer, so consider all 2416 // scheduled MOps to be "retired". We do loosely model in-order resource 2417 // latency. If this instruction uses an in-order resource, account for any 2418 // likely stall cycles. 2419 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2420 NextCycle = ReadyCycle; 2421 break; 2422 } 2423 RetiredMOps += IncMOps; 2424 2425 // Update resource counts and critical resource. 2426 if (SchedModel->hasInstrSchedModel()) { 2427 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2428 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2429 Rem->RemIssueCount -= DecRemIssue; 2430 if (ZoneCritResIdx) { 2431 // Scale scheduled micro-ops for comparing with the critical resource. 2432 unsigned ScaledMOps = 2433 RetiredMOps * SchedModel->getMicroOpFactor(); 2434 2435 // If scaled micro-ops are now more than the previous critical resource by 2436 // a full cycle, then micro-ops issue becomes critical. 2437 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2438 >= (int)SchedModel->getLatencyFactor()) { 2439 ZoneCritResIdx = 0; 2440 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2441 << ScaledMOps / SchedModel->getLatencyFactor() 2442 << "c\n"); 2443 } 2444 } 2445 for (TargetSchedModel::ProcResIter 2446 PI = SchedModel->getWriteProcResBegin(SC), 2447 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2448 unsigned RCycle = 2449 countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle); 2450 if (RCycle > NextCycle) 2451 NextCycle = RCycle; 2452 } 2453 if (SU->hasReservedResource) { 2454 // For reserved resources, record the highest cycle using the resource. 2455 // For top-down scheduling, this is the cycle in which we schedule this 2456 // instruction plus the number of cycles the operations reserves the 2457 // resource. For bottom-up is it simply the instruction's cycle. 2458 for (TargetSchedModel::ProcResIter 2459 PI = SchedModel->getWriteProcResBegin(SC), 2460 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2461 unsigned PIdx = PI->ProcResourceIdx; 2462 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2463 unsigned ReservedUntil, InstanceIdx; 2464 std::tie(ReservedUntil, InstanceIdx) = 2465 getNextResourceCycle(SC, PIdx, 0); 2466 if (isTop()) { 2467 ReservedCycles[InstanceIdx] = 2468 std::max(ReservedUntil, NextCycle + PI->Cycles); 2469 } else 2470 ReservedCycles[InstanceIdx] = NextCycle; 2471 } 2472 } 2473 } 2474 } 2475 // Update ExpectedLatency and DependentLatency. 2476 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2477 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2478 if (SU->getDepth() > TopLatency) { 2479 TopLatency = SU->getDepth(); 2480 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2481 << SU->NodeNum << ") " << TopLatency << "c\n"); 2482 } 2483 if (SU->getHeight() > BotLatency) { 2484 BotLatency = SU->getHeight(); 2485 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2486 << SU->NodeNum << ") " << BotLatency << "c\n"); 2487 } 2488 // If we stall for any reason, bump the cycle. 2489 if (NextCycle > CurrCycle) 2490 bumpCycle(NextCycle); 2491 else 2492 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2493 // resource limited. If a stall occurred, bumpCycle does this. 2494 IsResourceLimited = 2495 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2496 getScheduledLatency(), true); 2497 2498 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2499 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2500 // one cycle. Since we commonly reach the max MOps here, opportunistically 2501 // bump the cycle to avoid uselessly checking everything in the readyQ. 2502 CurrMOps += IncMOps; 2503 2504 // Bump the cycle count for issue group constraints. 2505 // This must be done after NextCycle has been adjust for all other stalls. 2506 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2507 // currCycle to X. 2508 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2509 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2510 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2511 << " group\n"); 2512 bumpCycle(++NextCycle); 2513 } 2514 2515 while (CurrMOps >= SchedModel->getIssueWidth()) { 2516 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2517 << CurrCycle << '\n'); 2518 bumpCycle(++NextCycle); 2519 } 2520 LLVM_DEBUG(dumpScheduledState()); 2521 } 2522 2523 /// Release pending ready nodes in to the available queue. This makes them 2524 /// visible to heuristics. 2525 void SchedBoundary::releasePending() { 2526 // If the available queue is empty, it is safe to reset MinReadyCycle. 2527 if (Available.empty()) 2528 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2529 2530 // Check to see if any of the pending instructions are ready to issue. If 2531 // so, add them to the available queue. 2532 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2533 SUnit *SU = *(Pending.begin() + I); 2534 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2535 2536 if (ReadyCycle < MinReadyCycle) 2537 MinReadyCycle = ReadyCycle; 2538 2539 if (Available.size() >= ReadyListLimit) 2540 break; 2541 2542 releaseNode(SU, ReadyCycle, true, I); 2543 if (E != Pending.size()) { 2544 --I; 2545 --E; 2546 } 2547 } 2548 CheckPending = false; 2549 } 2550 2551 /// Remove SU from the ready set for this boundary. 2552 void SchedBoundary::removeReady(SUnit *SU) { 2553 if (Available.isInQueue(SU)) 2554 Available.remove(Available.find(SU)); 2555 else { 2556 assert(Pending.isInQueue(SU) && "bad ready count"); 2557 Pending.remove(Pending.find(SU)); 2558 } 2559 } 2560 2561 /// If this queue only has one ready candidate, return it. As a side effect, 2562 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2563 /// one node is ready. If multiple instructions are ready, return NULL. 2564 SUnit *SchedBoundary::pickOnlyChoice() { 2565 if (CheckPending) 2566 releasePending(); 2567 2568 // Defer any ready instrs that now have a hazard. 2569 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2570 if (checkHazard(*I)) { 2571 Pending.push(*I); 2572 I = Available.remove(I); 2573 continue; 2574 } 2575 ++I; 2576 } 2577 for (unsigned i = 0; Available.empty(); ++i) { 2578 // FIXME: Re-enable assert once PR20057 is resolved. 2579 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2580 // "permanent hazard"); 2581 (void)i; 2582 bumpCycle(CurrCycle + 1); 2583 releasePending(); 2584 } 2585 2586 LLVM_DEBUG(Pending.dump()); 2587 LLVM_DEBUG(Available.dump()); 2588 2589 if (Available.size() == 1) 2590 return *Available.begin(); 2591 return nullptr; 2592 } 2593 2594 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2595 2596 /// Dump the content of the \ref ReservedCycles vector for the 2597 /// resources that are used in the basic block. 2598 /// 2599 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { 2600 if (!SchedModel->hasInstrSchedModel()) 2601 return; 2602 2603 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2604 unsigned StartIdx = 0; 2605 2606 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { 2607 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; 2608 std::string ResName = SchedModel->getResourceName(ResIdx); 2609 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { 2610 dbgs() << ResName << "(" << UnitIdx 2611 << ") = " << ReservedCycles[StartIdx + UnitIdx] << "\n"; 2612 } 2613 StartIdx += NumUnits; 2614 } 2615 } 2616 2617 // This is useful information to dump after bumpNode. 2618 // Note that the Queue contents are more useful before pickNodeFromQueue. 2619 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2620 unsigned ResFactor; 2621 unsigned ResCount; 2622 if (ZoneCritResIdx) { 2623 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2624 ResCount = getResourceCount(ZoneCritResIdx); 2625 } else { 2626 ResFactor = SchedModel->getMicroOpFactor(); 2627 ResCount = RetiredMOps * ResFactor; 2628 } 2629 unsigned LFactor = SchedModel->getLatencyFactor(); 2630 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2631 << " Retired: " << RetiredMOps; 2632 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2633 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2634 << ResCount / ResFactor << " " 2635 << SchedModel->getResourceName(ZoneCritResIdx) 2636 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2637 << (IsResourceLimited ? " - Resource" : " - Latency") 2638 << " limited.\n"; 2639 if (MISchedDumpReservedCycles) 2640 dumpReservedCycles(); 2641 } 2642 #endif 2643 2644 //===----------------------------------------------------------------------===// 2645 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2646 //===----------------------------------------------------------------------===// 2647 2648 void GenericSchedulerBase::SchedCandidate:: 2649 initResourceDelta(const ScheduleDAGMI *DAG, 2650 const TargetSchedModel *SchedModel) { 2651 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2652 return; 2653 2654 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2655 for (TargetSchedModel::ProcResIter 2656 PI = SchedModel->getWriteProcResBegin(SC), 2657 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2658 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2659 ResDelta.CritResources += PI->Cycles; 2660 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2661 ResDelta.DemandedResources += PI->Cycles; 2662 } 2663 } 2664 2665 /// Compute remaining latency. We need this both to determine whether the 2666 /// overall schedule has become latency-limited and whether the instructions 2667 /// outside this zone are resource or latency limited. 2668 /// 2669 /// The "dependent" latency is updated incrementally during scheduling as the 2670 /// max height/depth of scheduled nodes minus the cycles since it was 2671 /// scheduled: 2672 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2673 /// 2674 /// The "independent" latency is the max ready queue depth: 2675 /// ILat = max N.depth for N in Available|Pending 2676 /// 2677 /// RemainingLatency is the greater of independent and dependent latency. 2678 /// 2679 /// These computations are expensive, especially in DAGs with many edges, so 2680 /// only do them if necessary. 2681 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2682 unsigned RemLatency = CurrZone.getDependentLatency(); 2683 RemLatency = std::max(RemLatency, 2684 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2685 RemLatency = std::max(RemLatency, 2686 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2687 return RemLatency; 2688 } 2689 2690 /// Returns true if the current cycle plus remaning latency is greater than 2691 /// the critical path in the scheduling region. 2692 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2693 SchedBoundary &CurrZone, 2694 bool ComputeRemLatency, 2695 unsigned &RemLatency) const { 2696 // The current cycle is already greater than the critical path, so we are 2697 // already latency limited and don't need to compute the remaining latency. 2698 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2699 return true; 2700 2701 // If we haven't scheduled anything yet, then we aren't latency limited. 2702 if (CurrZone.getCurrCycle() == 0) 2703 return false; 2704 2705 if (ComputeRemLatency) 2706 RemLatency = computeRemLatency(CurrZone); 2707 2708 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2709 } 2710 2711 /// Set the CandPolicy given a scheduling zone given the current resources and 2712 /// latencies inside and outside the zone. 2713 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2714 SchedBoundary &CurrZone, 2715 SchedBoundary *OtherZone) { 2716 // Apply preemptive heuristics based on the total latency and resources 2717 // inside and outside this zone. Potential stalls should be considered before 2718 // following this policy. 2719 2720 // Compute the critical resource outside the zone. 2721 unsigned OtherCritIdx = 0; 2722 unsigned OtherCount = 2723 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2724 2725 bool OtherResLimited = false; 2726 unsigned RemLatency = 0; 2727 bool RemLatencyComputed = false; 2728 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2729 RemLatency = computeRemLatency(CurrZone); 2730 RemLatencyComputed = true; 2731 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2732 OtherCount, RemLatency, false); 2733 } 2734 2735 // Schedule aggressively for latency in PostRA mode. We don't check for 2736 // acyclic latency during PostRA, and highly out-of-order processors will 2737 // skip PostRA scheduling. 2738 if (!OtherResLimited && 2739 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2740 RemLatency))) { 2741 Policy.ReduceLatency |= true; 2742 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2743 << " RemainingLatency " << RemLatency << " + " 2744 << CurrZone.getCurrCycle() << "c > CritPath " 2745 << Rem.CriticalPath << "\n"); 2746 } 2747 // If the same resource is limiting inside and outside the zone, do nothing. 2748 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2749 return; 2750 2751 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2752 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2753 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2754 } if (OtherResLimited) dbgs() 2755 << " RemainingLimit: " 2756 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2757 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2758 << " Latency limited both directions.\n"); 2759 2760 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2761 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2762 2763 if (OtherResLimited) 2764 Policy.DemandResIdx = OtherCritIdx; 2765 } 2766 2767 #ifndef NDEBUG 2768 const char *GenericSchedulerBase::getReasonStr( 2769 GenericSchedulerBase::CandReason Reason) { 2770 switch (Reason) { 2771 case NoCand: return "NOCAND "; 2772 case Only1: return "ONLY1 "; 2773 case PhysReg: return "PHYS-REG "; 2774 case RegExcess: return "REG-EXCESS"; 2775 case RegCritical: return "REG-CRIT "; 2776 case Stall: return "STALL "; 2777 case Cluster: return "CLUSTER "; 2778 case Weak: return "WEAK "; 2779 case RegMax: return "REG-MAX "; 2780 case ResourceReduce: return "RES-REDUCE"; 2781 case ResourceDemand: return "RES-DEMAND"; 2782 case TopDepthReduce: return "TOP-DEPTH "; 2783 case TopPathReduce: return "TOP-PATH "; 2784 case BotHeightReduce:return "BOT-HEIGHT"; 2785 case BotPathReduce: return "BOT-PATH "; 2786 case NextDefUse: return "DEF-USE "; 2787 case NodeOrder: return "ORDER "; 2788 }; 2789 llvm_unreachable("Unknown reason!"); 2790 } 2791 2792 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2793 PressureChange P; 2794 unsigned ResIdx = 0; 2795 unsigned Latency = 0; 2796 switch (Cand.Reason) { 2797 default: 2798 break; 2799 case RegExcess: 2800 P = Cand.RPDelta.Excess; 2801 break; 2802 case RegCritical: 2803 P = Cand.RPDelta.CriticalMax; 2804 break; 2805 case RegMax: 2806 P = Cand.RPDelta.CurrentMax; 2807 break; 2808 case ResourceReduce: 2809 ResIdx = Cand.Policy.ReduceResIdx; 2810 break; 2811 case ResourceDemand: 2812 ResIdx = Cand.Policy.DemandResIdx; 2813 break; 2814 case TopDepthReduce: 2815 Latency = Cand.SU->getDepth(); 2816 break; 2817 case TopPathReduce: 2818 Latency = Cand.SU->getHeight(); 2819 break; 2820 case BotHeightReduce: 2821 Latency = Cand.SU->getHeight(); 2822 break; 2823 case BotPathReduce: 2824 Latency = Cand.SU->getDepth(); 2825 break; 2826 } 2827 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2828 if (P.isValid()) 2829 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2830 << ":" << P.getUnitInc() << " "; 2831 else 2832 dbgs() << " "; 2833 if (ResIdx) 2834 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2835 else 2836 dbgs() << " "; 2837 if (Latency) 2838 dbgs() << " " << Latency << " cycles "; 2839 else 2840 dbgs() << " "; 2841 dbgs() << '\n'; 2842 } 2843 #endif 2844 2845 namespace llvm { 2846 /// Return true if this heuristic determines order. 2847 /// TODO: Consider refactor return type of these functions as integer or enum, 2848 /// as we may need to differentiate whether TryCand is better than Cand. 2849 bool tryLess(int TryVal, int CandVal, 2850 GenericSchedulerBase::SchedCandidate &TryCand, 2851 GenericSchedulerBase::SchedCandidate &Cand, 2852 GenericSchedulerBase::CandReason Reason) { 2853 if (TryVal < CandVal) { 2854 TryCand.Reason = Reason; 2855 return true; 2856 } 2857 if (TryVal > CandVal) { 2858 if (Cand.Reason > Reason) 2859 Cand.Reason = Reason; 2860 return true; 2861 } 2862 return false; 2863 } 2864 2865 bool tryGreater(int TryVal, int CandVal, 2866 GenericSchedulerBase::SchedCandidate &TryCand, 2867 GenericSchedulerBase::SchedCandidate &Cand, 2868 GenericSchedulerBase::CandReason Reason) { 2869 if (TryVal > CandVal) { 2870 TryCand.Reason = Reason; 2871 return true; 2872 } 2873 if (TryVal < CandVal) { 2874 if (Cand.Reason > Reason) 2875 Cand.Reason = Reason; 2876 return true; 2877 } 2878 return false; 2879 } 2880 2881 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2882 GenericSchedulerBase::SchedCandidate &Cand, 2883 SchedBoundary &Zone) { 2884 if (Zone.isTop()) { 2885 // Prefer the candidate with the lesser depth, but only if one of them has 2886 // depth greater than the total latency scheduled so far, otherwise either 2887 // of them could be scheduled now with no stall. 2888 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 2889 Zone.getScheduledLatency()) { 2890 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2891 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2892 return true; 2893 } 2894 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2895 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2896 return true; 2897 } else { 2898 // Prefer the candidate with the lesser height, but only if one of them has 2899 // height greater than the total latency scheduled so far, otherwise either 2900 // of them could be scheduled now with no stall. 2901 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 2902 Zone.getScheduledLatency()) { 2903 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2904 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2905 return true; 2906 } 2907 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2908 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2909 return true; 2910 } 2911 return false; 2912 } 2913 } // end namespace llvm 2914 2915 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2916 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2917 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2918 } 2919 2920 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2921 tracePick(Cand.Reason, Cand.AtTop); 2922 } 2923 2924 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2925 assert(dag->hasVRegLiveness() && 2926 "(PreRA)GenericScheduler needs vreg liveness"); 2927 DAG = static_cast<ScheduleDAGMILive*>(dag); 2928 SchedModel = DAG->getSchedModel(); 2929 TRI = DAG->TRI; 2930 2931 if (RegionPolicy.ComputeDFSResult) 2932 DAG->computeDFSResult(); 2933 2934 Rem.init(DAG, SchedModel); 2935 Top.init(DAG, SchedModel, &Rem); 2936 Bot.init(DAG, SchedModel, &Rem); 2937 2938 // Initialize resource counts. 2939 2940 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2941 // are disabled, then these HazardRecs will be disabled. 2942 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2943 if (!Top.HazardRec) { 2944 Top.HazardRec = 2945 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2946 Itin, DAG); 2947 } 2948 if (!Bot.HazardRec) { 2949 Bot.HazardRec = 2950 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2951 Itin, DAG); 2952 } 2953 TopCand.SU = nullptr; 2954 BotCand.SU = nullptr; 2955 } 2956 2957 /// Initialize the per-region scheduling policy. 2958 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2959 MachineBasicBlock::iterator End, 2960 unsigned NumRegionInstrs) { 2961 const MachineFunction &MF = *Begin->getMF(); 2962 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2963 2964 // Avoid setting up the register pressure tracker for small regions to save 2965 // compile time. As a rough heuristic, only track pressure when the number of 2966 // schedulable instructions exceeds half the integer register file. 2967 RegionPolicy.ShouldTrackPressure = true; 2968 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2969 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2970 if (TLI->isTypeLegal(LegalIntVT)) { 2971 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2972 TLI->getRegClassFor(LegalIntVT)); 2973 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2974 } 2975 } 2976 2977 // For generic targets, we default to bottom-up, because it's simpler and more 2978 // compile-time optimizations have been implemented in that direction. 2979 RegionPolicy.OnlyBottomUp = true; 2980 2981 // Allow the subtarget to override default policy. 2982 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2983 2984 // After subtarget overrides, apply command line options. 2985 if (!EnableRegPressure) { 2986 RegionPolicy.ShouldTrackPressure = false; 2987 RegionPolicy.ShouldTrackLaneMasks = false; 2988 } 2989 2990 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2991 // e.g. -misched-bottomup=false allows scheduling in both directions. 2992 assert((!ForceTopDown || !ForceBottomUp) && 2993 "-misched-topdown incompatible with -misched-bottomup"); 2994 if (ForceBottomUp.getNumOccurrences() > 0) { 2995 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2996 if (RegionPolicy.OnlyBottomUp) 2997 RegionPolicy.OnlyTopDown = false; 2998 } 2999 if (ForceTopDown.getNumOccurrences() > 0) { 3000 RegionPolicy.OnlyTopDown = ForceTopDown; 3001 if (RegionPolicy.OnlyTopDown) 3002 RegionPolicy.OnlyBottomUp = false; 3003 } 3004 } 3005 3006 void GenericScheduler::dumpPolicy() const { 3007 // Cannot completely remove virtual function even in release mode. 3008 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3009 dbgs() << "GenericScheduler RegionPolicy: " 3010 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 3011 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 3012 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 3013 << "\n"; 3014 #endif 3015 } 3016 3017 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 3018 /// critical path by more cycles than it takes to drain the instruction buffer. 3019 /// We estimate an upper bounds on in-flight instructions as: 3020 /// 3021 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 3022 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3023 /// InFlightResources = InFlightIterations * LoopResources 3024 /// 3025 /// TODO: Check execution resources in addition to IssueCount. 3026 void GenericScheduler::checkAcyclicLatency() { 3027 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3028 return; 3029 3030 // Scaled number of cycles per loop iteration. 3031 unsigned IterCount = 3032 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3033 Rem.RemIssueCount); 3034 // Scaled acyclic critical path. 3035 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3036 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3037 unsigned InFlightCount = 3038 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3039 unsigned BufferLimit = 3040 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3041 3042 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3043 3044 LLVM_DEBUG( 3045 dbgs() << "IssueCycles=" 3046 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3047 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3048 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3049 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3050 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3051 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3052 } 3053 3054 void GenericScheduler::registerRoots() { 3055 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3056 3057 // Some roots may not feed into ExitSU. Check all of them in case. 3058 for (const SUnit *SU : Bot.Available) { 3059 if (SU->getDepth() > Rem.CriticalPath) 3060 Rem.CriticalPath = SU->getDepth(); 3061 } 3062 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3063 if (DumpCriticalPathLength) { 3064 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3065 } 3066 3067 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3068 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3069 checkAcyclicLatency(); 3070 } 3071 } 3072 3073 namespace llvm { 3074 bool tryPressure(const PressureChange &TryP, 3075 const PressureChange &CandP, 3076 GenericSchedulerBase::SchedCandidate &TryCand, 3077 GenericSchedulerBase::SchedCandidate &Cand, 3078 GenericSchedulerBase::CandReason Reason, 3079 const TargetRegisterInfo *TRI, 3080 const MachineFunction &MF) { 3081 // If one candidate decreases and the other increases, go with it. 3082 // Invalid candidates have UnitInc==0. 3083 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3084 Reason)) { 3085 return true; 3086 } 3087 // Do not compare the magnitude of pressure changes between top and bottom 3088 // boundary. 3089 if (Cand.AtTop != TryCand.AtTop) 3090 return false; 3091 3092 // If both candidates affect the same set in the same boundary, go with the 3093 // smallest increase. 3094 unsigned TryPSet = TryP.getPSetOrMax(); 3095 unsigned CandPSet = CandP.getPSetOrMax(); 3096 if (TryPSet == CandPSet) { 3097 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3098 Reason); 3099 } 3100 3101 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3102 std::numeric_limits<int>::max(); 3103 3104 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3105 std::numeric_limits<int>::max(); 3106 3107 // If the candidates are decreasing pressure, reverse priority. 3108 if (TryP.getUnitInc() < 0) 3109 std::swap(TryRank, CandRank); 3110 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3111 } 3112 3113 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3114 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3115 } 3116 3117 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3118 /// their physreg def/use. 3119 /// 3120 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3121 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3122 /// with the operation that produces or consumes the physreg. We'll do this when 3123 /// regalloc has support for parallel copies. 3124 int biasPhysReg(const SUnit *SU, bool isTop) { 3125 const MachineInstr *MI = SU->getInstr(); 3126 3127 if (MI->isCopy()) { 3128 unsigned ScheduledOper = isTop ? 1 : 0; 3129 unsigned UnscheduledOper = isTop ? 0 : 1; 3130 // If we have already scheduled the physreg produce/consumer, immediately 3131 // schedule the copy. 3132 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 3133 return 1; 3134 // If the physreg is at the boundary, defer it. Otherwise schedule it 3135 // immediately to free the dependent. We can hoist the copy later. 3136 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3137 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 3138 return AtBoundary ? -1 : 1; 3139 } 3140 3141 if (MI->isMoveImmediate()) { 3142 // If we have a move immediate and all successors have been assigned, bias 3143 // towards scheduling this later. Make sure all register defs are to 3144 // physical registers. 3145 bool DoBias = true; 3146 for (const MachineOperand &Op : MI->defs()) { 3147 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 3148 DoBias = false; 3149 break; 3150 } 3151 } 3152 3153 if (DoBias) 3154 return isTop ? -1 : 1; 3155 } 3156 3157 return 0; 3158 } 3159 } // end namespace llvm 3160 3161 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3162 bool AtTop, 3163 const RegPressureTracker &RPTracker, 3164 RegPressureTracker &TempTracker) { 3165 Cand.SU = SU; 3166 Cand.AtTop = AtTop; 3167 if (DAG->isTrackingPressure()) { 3168 if (AtTop) { 3169 TempTracker.getMaxDownwardPressureDelta( 3170 Cand.SU->getInstr(), 3171 Cand.RPDelta, 3172 DAG->getRegionCriticalPSets(), 3173 DAG->getRegPressure().MaxSetPressure); 3174 } else { 3175 if (VerifyScheduling) { 3176 TempTracker.getMaxUpwardPressureDelta( 3177 Cand.SU->getInstr(), 3178 &DAG->getPressureDiff(Cand.SU), 3179 Cand.RPDelta, 3180 DAG->getRegionCriticalPSets(), 3181 DAG->getRegPressure().MaxSetPressure); 3182 } else { 3183 RPTracker.getUpwardPressureDelta( 3184 Cand.SU->getInstr(), 3185 DAG->getPressureDiff(Cand.SU), 3186 Cand.RPDelta, 3187 DAG->getRegionCriticalPSets(), 3188 DAG->getRegPressure().MaxSetPressure); 3189 } 3190 } 3191 } 3192 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3193 << " Try SU(" << Cand.SU->NodeNum << ") " 3194 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3195 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3196 } 3197 3198 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3199 /// hierarchical. This may be more efficient than a graduated cost model because 3200 /// we don't need to evaluate all aspects of the model for each node in the 3201 /// queue. But it's really done to make the heuristics easier to debug and 3202 /// statistically analyze. 3203 /// 3204 /// \param Cand provides the policy and current best candidate. 3205 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3206 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3207 /// if Cand is from a different zone than TryCand. 3208 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3209 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3210 SchedCandidate &TryCand, 3211 SchedBoundary *Zone) const { 3212 // Initialize the candidate if needed. 3213 if (!Cand.isValid()) { 3214 TryCand.Reason = NodeOrder; 3215 return true; 3216 } 3217 3218 // Bias PhysReg Defs and copies to their uses and defined respectively. 3219 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3220 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3221 return TryCand.Reason != NoCand; 3222 3223 // Avoid exceeding the target's limit. 3224 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3225 Cand.RPDelta.Excess, 3226 TryCand, Cand, RegExcess, TRI, 3227 DAG->MF)) 3228 return TryCand.Reason != NoCand; 3229 3230 // Avoid increasing the max critical pressure in the scheduled region. 3231 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3232 Cand.RPDelta.CriticalMax, 3233 TryCand, Cand, RegCritical, TRI, 3234 DAG->MF)) 3235 return TryCand.Reason != NoCand; 3236 3237 // We only compare a subset of features when comparing nodes between 3238 // Top and Bottom boundary. Some properties are simply incomparable, in many 3239 // other instances we should only override the other boundary if something 3240 // is a clear good pick on one boundary. Skip heuristics that are more 3241 // "tie-breaking" in nature. 3242 bool SameBoundary = Zone != nullptr; 3243 if (SameBoundary) { 3244 // For loops that are acyclic path limited, aggressively schedule for 3245 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3246 // heuristics to take precedence. 3247 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3248 tryLatency(TryCand, Cand, *Zone)) 3249 return TryCand.Reason != NoCand; 3250 3251 // Prioritize instructions that read unbuffered resources by stall cycles. 3252 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3253 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3254 return TryCand.Reason != NoCand; 3255 } 3256 3257 // Keep clustered nodes together to encourage downstream peephole 3258 // optimizations which may reduce resource requirements. 3259 // 3260 // This is a best effort to set things up for a post-RA pass. Optimizations 3261 // like generating loads of multiple registers should ideally be done within 3262 // the scheduler pass by combining the loads during DAG postprocessing. 3263 const SUnit *CandNextClusterSU = 3264 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3265 const SUnit *TryCandNextClusterSU = 3266 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3267 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3268 Cand.SU == CandNextClusterSU, 3269 TryCand, Cand, Cluster)) 3270 return TryCand.Reason != NoCand; 3271 3272 if (SameBoundary) { 3273 // Weak edges are for clustering and other constraints. 3274 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3275 getWeakLeft(Cand.SU, Cand.AtTop), 3276 TryCand, Cand, Weak)) 3277 return TryCand.Reason != NoCand; 3278 } 3279 3280 // Avoid increasing the max pressure of the entire region. 3281 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3282 Cand.RPDelta.CurrentMax, 3283 TryCand, Cand, RegMax, TRI, 3284 DAG->MF)) 3285 return TryCand.Reason != NoCand; 3286 3287 if (SameBoundary) { 3288 // Avoid critical resource consumption and balance the schedule. 3289 TryCand.initResourceDelta(DAG, SchedModel); 3290 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3291 TryCand, Cand, ResourceReduce)) 3292 return TryCand.Reason != NoCand; 3293 if (tryGreater(TryCand.ResDelta.DemandedResources, 3294 Cand.ResDelta.DemandedResources, 3295 TryCand, Cand, ResourceDemand)) 3296 return TryCand.Reason != NoCand; 3297 3298 // Avoid serializing long latency dependence chains. 3299 // For acyclic path limited loops, latency was already checked above. 3300 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3301 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3302 return TryCand.Reason != NoCand; 3303 3304 // Fall through to original instruction order. 3305 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3306 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3307 TryCand.Reason = NodeOrder; 3308 return true; 3309 } 3310 } 3311 3312 return false; 3313 } 3314 3315 /// Pick the best candidate from the queue. 3316 /// 3317 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3318 /// DAG building. To adjust for the current scheduling location we need to 3319 /// maintain the number of vreg uses remaining to be top-scheduled. 3320 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3321 const CandPolicy &ZonePolicy, 3322 const RegPressureTracker &RPTracker, 3323 SchedCandidate &Cand) { 3324 // getMaxPressureDelta temporarily modifies the tracker. 3325 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3326 3327 ReadyQueue &Q = Zone.Available; 3328 for (SUnit *SU : Q) { 3329 3330 SchedCandidate TryCand(ZonePolicy); 3331 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3332 // Pass SchedBoundary only when comparing nodes from the same boundary. 3333 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3334 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3335 // Initialize resource delta if needed in case future heuristics query it. 3336 if (TryCand.ResDelta == SchedResourceDelta()) 3337 TryCand.initResourceDelta(DAG, SchedModel); 3338 Cand.setBest(TryCand); 3339 LLVM_DEBUG(traceCandidate(Cand)); 3340 } 3341 } 3342 } 3343 3344 /// Pick the best candidate node from either the top or bottom queue. 3345 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3346 // Schedule as far as possible in the direction of no choice. This is most 3347 // efficient, but also provides the best heuristics for CriticalPSets. 3348 if (SUnit *SU = Bot.pickOnlyChoice()) { 3349 IsTopNode = false; 3350 tracePick(Only1, false); 3351 return SU; 3352 } 3353 if (SUnit *SU = Top.pickOnlyChoice()) { 3354 IsTopNode = true; 3355 tracePick(Only1, true); 3356 return SU; 3357 } 3358 // Set the bottom-up policy based on the state of the current bottom zone and 3359 // the instructions outside the zone, including the top zone. 3360 CandPolicy BotPolicy; 3361 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3362 // Set the top-down policy based on the state of the current top zone and 3363 // the instructions outside the zone, including the bottom zone. 3364 CandPolicy TopPolicy; 3365 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3366 3367 // See if BotCand is still valid (because we previously scheduled from Top). 3368 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3369 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3370 BotCand.Policy != BotPolicy) { 3371 BotCand.reset(CandPolicy()); 3372 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3373 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3374 } else { 3375 LLVM_DEBUG(traceCandidate(BotCand)); 3376 #ifndef NDEBUG 3377 if (VerifyScheduling) { 3378 SchedCandidate TCand; 3379 TCand.reset(CandPolicy()); 3380 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3381 assert(TCand.SU == BotCand.SU && 3382 "Last pick result should correspond to re-picking right now"); 3383 } 3384 #endif 3385 } 3386 3387 // Check if the top Q has a better candidate. 3388 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3389 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3390 TopCand.Policy != TopPolicy) { 3391 TopCand.reset(CandPolicy()); 3392 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3393 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3394 } else { 3395 LLVM_DEBUG(traceCandidate(TopCand)); 3396 #ifndef NDEBUG 3397 if (VerifyScheduling) { 3398 SchedCandidate TCand; 3399 TCand.reset(CandPolicy()); 3400 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3401 assert(TCand.SU == TopCand.SU && 3402 "Last pick result should correspond to re-picking right now"); 3403 } 3404 #endif 3405 } 3406 3407 // Pick best from BotCand and TopCand. 3408 assert(BotCand.isValid()); 3409 assert(TopCand.isValid()); 3410 SchedCandidate Cand = BotCand; 3411 TopCand.Reason = NoCand; 3412 if (tryCandidate(Cand, TopCand, nullptr)) { 3413 Cand.setBest(TopCand); 3414 LLVM_DEBUG(traceCandidate(Cand)); 3415 } 3416 3417 IsTopNode = Cand.AtTop; 3418 tracePick(Cand); 3419 return Cand.SU; 3420 } 3421 3422 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3423 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3424 if (DAG->top() == DAG->bottom()) { 3425 assert(Top.Available.empty() && Top.Pending.empty() && 3426 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3427 return nullptr; 3428 } 3429 SUnit *SU; 3430 do { 3431 if (RegionPolicy.OnlyTopDown) { 3432 SU = Top.pickOnlyChoice(); 3433 if (!SU) { 3434 CandPolicy NoPolicy; 3435 TopCand.reset(NoPolicy); 3436 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3437 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3438 tracePick(TopCand); 3439 SU = TopCand.SU; 3440 } 3441 IsTopNode = true; 3442 } else if (RegionPolicy.OnlyBottomUp) { 3443 SU = Bot.pickOnlyChoice(); 3444 if (!SU) { 3445 CandPolicy NoPolicy; 3446 BotCand.reset(NoPolicy); 3447 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3448 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3449 tracePick(BotCand); 3450 SU = BotCand.SU; 3451 } 3452 IsTopNode = false; 3453 } else { 3454 SU = pickNodeBidirectional(IsTopNode); 3455 } 3456 } while (SU->isScheduled); 3457 3458 if (SU->isTopReady()) 3459 Top.removeReady(SU); 3460 if (SU->isBottomReady()) 3461 Bot.removeReady(SU); 3462 3463 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3464 << *SU->getInstr()); 3465 return SU; 3466 } 3467 3468 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3469 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3470 if (!isTop) 3471 ++InsertPos; 3472 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3473 3474 // Find already scheduled copies with a single physreg dependence and move 3475 // them just above the scheduled instruction. 3476 for (SDep &Dep : Deps) { 3477 if (Dep.getKind() != SDep::Data || 3478 !Register::isPhysicalRegister(Dep.getReg())) 3479 continue; 3480 SUnit *DepSU = Dep.getSUnit(); 3481 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3482 continue; 3483 MachineInstr *Copy = DepSU->getInstr(); 3484 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3485 continue; 3486 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3487 DAG->dumpNode(*Dep.getSUnit())); 3488 DAG->moveInstruction(Copy, InsertPos); 3489 } 3490 } 3491 3492 /// Update the scheduler's state after scheduling a node. This is the same node 3493 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3494 /// update it's state based on the current cycle before MachineSchedStrategy 3495 /// does. 3496 /// 3497 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3498 /// them here. See comments in biasPhysReg. 3499 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3500 if (IsTopNode) { 3501 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3502 Top.bumpNode(SU); 3503 if (SU->hasPhysRegUses) 3504 reschedulePhysReg(SU, true); 3505 } else { 3506 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3507 Bot.bumpNode(SU); 3508 if (SU->hasPhysRegDefs) 3509 reschedulePhysReg(SU, false); 3510 } 3511 } 3512 3513 /// Create the standard converging machine scheduler. This will be used as the 3514 /// default scheduler if the target does not set a default. 3515 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3516 ScheduleDAGMILive *DAG = 3517 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3518 // Register DAG post-processors. 3519 // 3520 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3521 // data and pass it to later mutations. Have a single mutation that gathers 3522 // the interesting nodes in one pass. 3523 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3524 return DAG; 3525 } 3526 3527 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3528 return createGenericSchedLive(C); 3529 } 3530 3531 static MachineSchedRegistry 3532 GenericSchedRegistry("converge", "Standard converging scheduler.", 3533 createConvergingSched); 3534 3535 //===----------------------------------------------------------------------===// 3536 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3537 //===----------------------------------------------------------------------===// 3538 3539 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3540 DAG = Dag; 3541 SchedModel = DAG->getSchedModel(); 3542 TRI = DAG->TRI; 3543 3544 Rem.init(DAG, SchedModel); 3545 Top.init(DAG, SchedModel, &Rem); 3546 BotRoots.clear(); 3547 3548 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3549 // or are disabled, then these HazardRecs will be disabled. 3550 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3551 if (!Top.HazardRec) { 3552 Top.HazardRec = 3553 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3554 Itin, DAG); 3555 } 3556 } 3557 3558 void PostGenericScheduler::registerRoots() { 3559 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3560 3561 // Some roots may not feed into ExitSU. Check all of them in case. 3562 for (const SUnit *SU : BotRoots) { 3563 if (SU->getDepth() > Rem.CriticalPath) 3564 Rem.CriticalPath = SU->getDepth(); 3565 } 3566 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3567 if (DumpCriticalPathLength) { 3568 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3569 } 3570 } 3571 3572 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3573 /// 3574 /// \param Cand provides the policy and current best candidate. 3575 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3576 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3577 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3578 SchedCandidate &TryCand) { 3579 // Initialize the candidate if needed. 3580 if (!Cand.isValid()) { 3581 TryCand.Reason = NodeOrder; 3582 return true; 3583 } 3584 3585 // Prioritize instructions that read unbuffered resources by stall cycles. 3586 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3587 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3588 return TryCand.Reason != NoCand; 3589 3590 // Keep clustered nodes together. 3591 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3592 Cand.SU == DAG->getNextClusterSucc(), 3593 TryCand, Cand, Cluster)) 3594 return TryCand.Reason != NoCand; 3595 3596 // Avoid critical resource consumption and balance the schedule. 3597 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3598 TryCand, Cand, ResourceReduce)) 3599 return TryCand.Reason != NoCand; 3600 if (tryGreater(TryCand.ResDelta.DemandedResources, 3601 Cand.ResDelta.DemandedResources, 3602 TryCand, Cand, ResourceDemand)) 3603 return TryCand.Reason != NoCand; 3604 3605 // Avoid serializing long latency dependence chains. 3606 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3607 return TryCand.Reason != NoCand; 3608 } 3609 3610 // Fall through to original instruction order. 3611 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3612 TryCand.Reason = NodeOrder; 3613 return true; 3614 } 3615 3616 return false; 3617 } 3618 3619 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3620 ReadyQueue &Q = Top.Available; 3621 for (SUnit *SU : Q) { 3622 SchedCandidate TryCand(Cand.Policy); 3623 TryCand.SU = SU; 3624 TryCand.AtTop = true; 3625 TryCand.initResourceDelta(DAG, SchedModel); 3626 if (tryCandidate(Cand, TryCand)) { 3627 Cand.setBest(TryCand); 3628 LLVM_DEBUG(traceCandidate(Cand)); 3629 } 3630 } 3631 } 3632 3633 /// Pick the next node to schedule. 3634 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3635 if (DAG->top() == DAG->bottom()) { 3636 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3637 return nullptr; 3638 } 3639 SUnit *SU; 3640 do { 3641 SU = Top.pickOnlyChoice(); 3642 if (SU) { 3643 tracePick(Only1, true); 3644 } else { 3645 CandPolicy NoPolicy; 3646 SchedCandidate TopCand(NoPolicy); 3647 // Set the top-down policy based on the state of the current top zone and 3648 // the instructions outside the zone, including the bottom zone. 3649 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3650 pickNodeFromQueue(TopCand); 3651 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3652 tracePick(TopCand); 3653 SU = TopCand.SU; 3654 } 3655 } while (SU->isScheduled); 3656 3657 IsTopNode = true; 3658 Top.removeReady(SU); 3659 3660 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3661 << *SU->getInstr()); 3662 return SU; 3663 } 3664 3665 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3666 /// scheduled/remaining flags in the DAG nodes. 3667 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3668 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3669 Top.bumpNode(SU); 3670 } 3671 3672 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3673 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3674 /*RemoveKillFlags=*/true); 3675 } 3676 3677 //===----------------------------------------------------------------------===// 3678 // ILP Scheduler. Currently for experimental analysis of heuristics. 3679 //===----------------------------------------------------------------------===// 3680 3681 namespace { 3682 3683 /// Order nodes by the ILP metric. 3684 struct ILPOrder { 3685 const SchedDFSResult *DFSResult = nullptr; 3686 const BitVector *ScheduledTrees = nullptr; 3687 bool MaximizeILP; 3688 3689 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3690 3691 /// Apply a less-than relation on node priority. 3692 /// 3693 /// (Return true if A comes after B in the Q.) 3694 bool operator()(const SUnit *A, const SUnit *B) const { 3695 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3696 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3697 if (SchedTreeA != SchedTreeB) { 3698 // Unscheduled trees have lower priority. 3699 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3700 return ScheduledTrees->test(SchedTreeB); 3701 3702 // Trees with shallower connections have have lower priority. 3703 if (DFSResult->getSubtreeLevel(SchedTreeA) 3704 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3705 return DFSResult->getSubtreeLevel(SchedTreeA) 3706 < DFSResult->getSubtreeLevel(SchedTreeB); 3707 } 3708 } 3709 if (MaximizeILP) 3710 return DFSResult->getILP(A) < DFSResult->getILP(B); 3711 else 3712 return DFSResult->getILP(A) > DFSResult->getILP(B); 3713 } 3714 }; 3715 3716 /// Schedule based on the ILP metric. 3717 class ILPScheduler : public MachineSchedStrategy { 3718 ScheduleDAGMILive *DAG = nullptr; 3719 ILPOrder Cmp; 3720 3721 std::vector<SUnit*> ReadyQ; 3722 3723 public: 3724 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3725 3726 void initialize(ScheduleDAGMI *dag) override { 3727 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3728 DAG = static_cast<ScheduleDAGMILive*>(dag); 3729 DAG->computeDFSResult(); 3730 Cmp.DFSResult = DAG->getDFSResult(); 3731 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3732 ReadyQ.clear(); 3733 } 3734 3735 void registerRoots() override { 3736 // Restore the heap in ReadyQ with the updated DFS results. 3737 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3738 } 3739 3740 /// Implement MachineSchedStrategy interface. 3741 /// ----------------------------------------- 3742 3743 /// Callback to select the highest priority node from the ready Q. 3744 SUnit *pickNode(bool &IsTopNode) override { 3745 if (ReadyQ.empty()) return nullptr; 3746 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3747 SUnit *SU = ReadyQ.back(); 3748 ReadyQ.pop_back(); 3749 IsTopNode = false; 3750 LLVM_DEBUG(dbgs() << "Pick node " 3751 << "SU(" << SU->NodeNum << ") " 3752 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3753 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3754 << " @" 3755 << DAG->getDFSResult()->getSubtreeLevel( 3756 DAG->getDFSResult()->getSubtreeID(SU)) 3757 << '\n' 3758 << "Scheduling " << *SU->getInstr()); 3759 return SU; 3760 } 3761 3762 /// Scheduler callback to notify that a new subtree is scheduled. 3763 void scheduleTree(unsigned SubtreeID) override { 3764 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3765 } 3766 3767 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3768 /// DFSResults, and resort the priority Q. 3769 void schedNode(SUnit *SU, bool IsTopNode) override { 3770 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3771 } 3772 3773 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3774 3775 void releaseBottomNode(SUnit *SU) override { 3776 ReadyQ.push_back(SU); 3777 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3778 } 3779 }; 3780 3781 } // end anonymous namespace 3782 3783 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3784 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3785 } 3786 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3787 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3788 } 3789 3790 static MachineSchedRegistry ILPMaxRegistry( 3791 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3792 static MachineSchedRegistry ILPMinRegistry( 3793 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3794 3795 //===----------------------------------------------------------------------===// 3796 // Machine Instruction Shuffler for Correctness Testing 3797 //===----------------------------------------------------------------------===// 3798 3799 #ifndef NDEBUG 3800 namespace { 3801 3802 /// Apply a less-than relation on the node order, which corresponds to the 3803 /// instruction order prior to scheduling. IsReverse implements greater-than. 3804 template<bool IsReverse> 3805 struct SUnitOrder { 3806 bool operator()(SUnit *A, SUnit *B) const { 3807 if (IsReverse) 3808 return A->NodeNum > B->NodeNum; 3809 else 3810 return A->NodeNum < B->NodeNum; 3811 } 3812 }; 3813 3814 /// Reorder instructions as much as possible. 3815 class InstructionShuffler : public MachineSchedStrategy { 3816 bool IsAlternating; 3817 bool IsTopDown; 3818 3819 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3820 // gives nodes with a higher number higher priority causing the latest 3821 // instructions to be scheduled first. 3822 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3823 TopQ; 3824 3825 // When scheduling bottom-up, use greater-than as the queue priority. 3826 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3827 BottomQ; 3828 3829 public: 3830 InstructionShuffler(bool alternate, bool topdown) 3831 : IsAlternating(alternate), IsTopDown(topdown) {} 3832 3833 void initialize(ScheduleDAGMI*) override { 3834 TopQ.clear(); 3835 BottomQ.clear(); 3836 } 3837 3838 /// Implement MachineSchedStrategy interface. 3839 /// ----------------------------------------- 3840 3841 SUnit *pickNode(bool &IsTopNode) override { 3842 SUnit *SU; 3843 if (IsTopDown) { 3844 do { 3845 if (TopQ.empty()) return nullptr; 3846 SU = TopQ.top(); 3847 TopQ.pop(); 3848 } while (SU->isScheduled); 3849 IsTopNode = true; 3850 } else { 3851 do { 3852 if (BottomQ.empty()) return nullptr; 3853 SU = BottomQ.top(); 3854 BottomQ.pop(); 3855 } while (SU->isScheduled); 3856 IsTopNode = false; 3857 } 3858 if (IsAlternating) 3859 IsTopDown = !IsTopDown; 3860 return SU; 3861 } 3862 3863 void schedNode(SUnit *SU, bool IsTopNode) override {} 3864 3865 void releaseTopNode(SUnit *SU) override { 3866 TopQ.push(SU); 3867 } 3868 void releaseBottomNode(SUnit *SU) override { 3869 BottomQ.push(SU); 3870 } 3871 }; 3872 3873 } // end anonymous namespace 3874 3875 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3876 bool Alternate = !ForceTopDown && !ForceBottomUp; 3877 bool TopDown = !ForceBottomUp; 3878 assert((TopDown || !ForceTopDown) && 3879 "-misched-topdown incompatible with -misched-bottomup"); 3880 return new ScheduleDAGMILive( 3881 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3882 } 3883 3884 static MachineSchedRegistry ShufflerRegistry( 3885 "shuffle", "Shuffle machine instructions alternating directions", 3886 createInstructionShuffler); 3887 #endif // !NDEBUG 3888 3889 //===----------------------------------------------------------------------===// 3890 // GraphWriter support for ScheduleDAGMILive. 3891 //===----------------------------------------------------------------------===// 3892 3893 #ifndef NDEBUG 3894 namespace llvm { 3895 3896 template<> struct GraphTraits< 3897 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3898 3899 template<> 3900 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3901 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3902 3903 static std::string getGraphName(const ScheduleDAG *G) { 3904 return std::string(G->MF.getName()); 3905 } 3906 3907 static bool renderGraphFromBottomUp() { 3908 return true; 3909 } 3910 3911 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 3912 if (ViewMISchedCutoff == 0) 3913 return false; 3914 return (Node->Preds.size() > ViewMISchedCutoff 3915 || Node->Succs.size() > ViewMISchedCutoff); 3916 } 3917 3918 /// If you want to override the dot attributes printed for a particular 3919 /// edge, override this method. 3920 static std::string getEdgeAttributes(const SUnit *Node, 3921 SUnitIterator EI, 3922 const ScheduleDAG *Graph) { 3923 if (EI.isArtificialDep()) 3924 return "color=cyan,style=dashed"; 3925 if (EI.isCtrlDep()) 3926 return "color=blue,style=dashed"; 3927 return ""; 3928 } 3929 3930 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3931 std::string Str; 3932 raw_string_ostream SS(Str); 3933 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3934 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3935 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3936 SS << "SU:" << SU->NodeNum; 3937 if (DFS) 3938 SS << " I:" << DFS->getNumInstrs(SU); 3939 return SS.str(); 3940 } 3941 3942 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3943 return G->getGraphNodeLabel(SU); 3944 } 3945 3946 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3947 std::string Str("shape=Mrecord"); 3948 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3949 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3950 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3951 if (DFS) { 3952 Str += ",style=filled,fillcolor=\"#"; 3953 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3954 Str += '"'; 3955 } 3956 return Str; 3957 } 3958 }; 3959 3960 } // end namespace llvm 3961 #endif // NDEBUG 3962 3963 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3964 /// rendered using 'dot'. 3965 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3966 #ifndef NDEBUG 3967 ViewGraph(this, Name, false, Title); 3968 #else 3969 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3970 << "systems with Graphviz or gv!\n"; 3971 #endif // NDEBUG 3972 } 3973 3974 /// Out-of-line implementation with no arguments is handy for gdb. 3975 void ScheduleDAGMI::viewGraph() { 3976 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3977 } 3978