1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDFS.h" 28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/GraphWriter.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include <queue> 36 37 using namespace llvm; 38 39 namespace llvm { 40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 41 cl::desc("Force top-down list scheduling")); 42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 43 cl::desc("Force bottom-up list scheduling")); 44 } 45 46 #ifndef NDEBUG 47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 48 cl::desc("Pop up a window to show MISched dags after they are processed")); 49 50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 52 #else 53 static bool ViewMISchedDAGs = false; 54 #endif // NDEBUG 55 56 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 57 cl::desc("Enable cyclic critical path analysis."), cl::init(false)); 58 59 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 60 cl::desc("Enable load clustering."), cl::init(true)); 61 62 // Experimental heuristics 63 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 64 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 65 66 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 67 cl::desc("Verify machine instrs before and after machine scheduling")); 68 69 // DAG subtrees must have at least this many nodes. 70 static const unsigned MinSubtreeSize = 8; 71 72 //===----------------------------------------------------------------------===// 73 // Machine Instruction Scheduling Pass and Registry 74 //===----------------------------------------------------------------------===// 75 76 MachineSchedContext::MachineSchedContext(): 77 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 78 RegClassInfo = new RegisterClassInfo(); 79 } 80 81 MachineSchedContext::~MachineSchedContext() { 82 delete RegClassInfo; 83 } 84 85 namespace { 86 /// MachineScheduler runs after coalescing and before register allocation. 87 class MachineScheduler : public MachineSchedContext, 88 public MachineFunctionPass { 89 public: 90 MachineScheduler(); 91 92 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 93 94 virtual void releaseMemory() {} 95 96 virtual bool runOnMachineFunction(MachineFunction&); 97 98 virtual void print(raw_ostream &O, const Module* = 0) const; 99 100 static char ID; // Class identification, replacement for typeinfo 101 }; 102 } // namespace 103 104 char MachineScheduler::ID = 0; 105 106 char &llvm::MachineSchedulerID = MachineScheduler::ID; 107 108 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 109 "Machine Instruction Scheduler", false, false) 110 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 111 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 112 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 113 INITIALIZE_PASS_END(MachineScheduler, "misched", 114 "Machine Instruction Scheduler", false, false) 115 116 MachineScheduler::MachineScheduler() 117 : MachineFunctionPass(ID) { 118 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 119 } 120 121 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 122 AU.setPreservesCFG(); 123 AU.addRequiredID(MachineDominatorsID); 124 AU.addRequired<MachineLoopInfo>(); 125 AU.addRequired<AliasAnalysis>(); 126 AU.addRequired<TargetPassConfig>(); 127 AU.addRequired<SlotIndexes>(); 128 AU.addPreserved<SlotIndexes>(); 129 AU.addRequired<LiveIntervals>(); 130 AU.addPreserved<LiveIntervals>(); 131 MachineFunctionPass::getAnalysisUsage(AU); 132 } 133 134 MachinePassRegistry MachineSchedRegistry::Registry; 135 136 /// A dummy default scheduler factory indicates whether the scheduler 137 /// is overridden on the command line. 138 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 139 return 0; 140 } 141 142 /// MachineSchedOpt allows command line selection of the scheduler. 143 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 144 RegisterPassParser<MachineSchedRegistry> > 145 MachineSchedOpt("misched", 146 cl::init(&useDefaultMachineSched), cl::Hidden, 147 cl::desc("Machine instruction scheduler to use")); 148 149 static MachineSchedRegistry 150 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 151 useDefaultMachineSched); 152 153 /// Forward declare the standard machine scheduler. This will be used as the 154 /// default scheduler if the target does not set a default. 155 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 156 157 158 /// Decrement this iterator until reaching the top or a non-debug instr. 159 static MachineBasicBlock::iterator 160 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 161 assert(I != Beg && "reached the top of the region, cannot decrement"); 162 while (--I != Beg) { 163 if (!I->isDebugValue()) 164 break; 165 } 166 return I; 167 } 168 169 /// If this iterator is a debug value, increment until reaching the End or a 170 /// non-debug instruction. 171 static MachineBasicBlock::iterator 172 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 173 for(; I != End; ++I) { 174 if (!I->isDebugValue()) 175 break; 176 } 177 return I; 178 } 179 180 /// Top-level MachineScheduler pass driver. 181 /// 182 /// Visit blocks in function order. Divide each block into scheduling regions 183 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 184 /// consistent with the DAG builder, which traverses the interior of the 185 /// scheduling regions bottom-up. 186 /// 187 /// This design avoids exposing scheduling boundaries to the DAG builder, 188 /// simplifying the DAG builder's support for "special" target instructions. 189 /// At the same time the design allows target schedulers to operate across 190 /// scheduling boundaries, for example to bundle the boudary instructions 191 /// without reordering them. This creates complexity, because the target 192 /// scheduler must update the RegionBegin and RegionEnd positions cached by 193 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 194 /// design would be to split blocks at scheduling boundaries, but LLVM has a 195 /// general bias against block splitting purely for implementation simplicity. 196 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 197 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 198 199 // Initialize the context of the pass. 200 MF = &mf; 201 MLI = &getAnalysis<MachineLoopInfo>(); 202 MDT = &getAnalysis<MachineDominatorTree>(); 203 PassConfig = &getAnalysis<TargetPassConfig>(); 204 AA = &getAnalysis<AliasAnalysis>(); 205 206 LIS = &getAnalysis<LiveIntervals>(); 207 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 208 209 if (VerifyScheduling) { 210 DEBUG(LIS->dump()); 211 MF->verify(this, "Before machine scheduling."); 212 } 213 RegClassInfo->runOnMachineFunction(*MF); 214 215 // Select the scheduler, or set the default. 216 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 217 if (Ctor == useDefaultMachineSched) { 218 // Get the default scheduler set by the target. 219 Ctor = MachineSchedRegistry::getDefault(); 220 if (!Ctor) { 221 Ctor = createConvergingSched; 222 MachineSchedRegistry::setDefault(Ctor); 223 } 224 } 225 // Instantiate the selected scheduler. 226 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 227 228 // Visit all machine basic blocks. 229 // 230 // TODO: Visit blocks in global postorder or postorder within the bottom-up 231 // loop tree. Then we can optionally compute global RegPressure. 232 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 233 MBB != MBBEnd; ++MBB) { 234 235 Scheduler->startBlock(MBB); 236 237 // Break the block into scheduling regions [I, RegionEnd), and schedule each 238 // region as soon as it is discovered. RegionEnd points the scheduling 239 // boundary at the bottom of the region. The DAG does not include RegionEnd, 240 // but the region does (i.e. the next RegionEnd is above the previous 241 // RegionBegin). If the current block has no terminator then RegionEnd == 242 // MBB->end() for the bottom region. 243 // 244 // The Scheduler may insert instructions during either schedule() or 245 // exitRegion(), even for empty regions. So the local iterators 'I' and 246 // 'RegionEnd' are invalid across these calls. 247 unsigned RemainingInstrs = MBB->size(); 248 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 249 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 250 251 // Avoid decrementing RegionEnd for blocks with no terminator. 252 if (RegionEnd != MBB->end() 253 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 254 --RegionEnd; 255 // Count the boundary instruction. 256 --RemainingInstrs; 257 } 258 259 // The next region starts above the previous region. Look backward in the 260 // instruction stream until we find the nearest boundary. 261 unsigned NumRegionInstrs = 0; 262 MachineBasicBlock::iterator I = RegionEnd; 263 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 264 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 265 break; 266 } 267 // Notify the scheduler of the region, even if we may skip scheduling 268 // it. Perhaps it still needs to be bundled. 269 Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 270 271 // Skip empty scheduling regions (0 or 1 schedulable instructions). 272 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 273 // Close the current region. Bundle the terminator if needed. 274 // This invalidates 'RegionEnd' and 'I'. 275 Scheduler->exitRegion(); 276 continue; 277 } 278 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 279 DEBUG(dbgs() << MF->getName() 280 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 281 << "\n From: " << *I << " To: "; 282 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 283 else dbgs() << "End"; 284 dbgs() << " RegionInstrs: " << NumRegionInstrs 285 << " Remaining: " << RemainingInstrs << "\n"); 286 287 // Schedule a region: possibly reorder instructions. 288 // This invalidates 'RegionEnd' and 'I'. 289 Scheduler->schedule(); 290 291 // Close the current region. 292 Scheduler->exitRegion(); 293 294 // Scheduling has invalidated the current iterator 'I'. Ask the 295 // scheduler for the top of it's scheduled region. 296 RegionEnd = Scheduler->begin(); 297 } 298 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 299 Scheduler->finishBlock(); 300 } 301 Scheduler->finalizeSchedule(); 302 DEBUG(LIS->dump()); 303 if (VerifyScheduling) 304 MF->verify(this, "After machine scheduling."); 305 return true; 306 } 307 308 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 309 // unimplemented 310 } 311 312 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 313 void ReadyQueue::dump() { 314 dbgs() << Name << ": "; 315 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 316 dbgs() << Queue[i]->NodeNum << " "; 317 dbgs() << "\n"; 318 } 319 #endif 320 321 //===----------------------------------------------------------------------===// 322 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 323 // preservation. 324 //===----------------------------------------------------------------------===// 325 326 ScheduleDAGMI::~ScheduleDAGMI() { 327 delete DFSResult; 328 DeleteContainerPointers(Mutations); 329 delete SchedImpl; 330 } 331 332 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 333 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 334 } 335 336 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 337 if (SuccSU != &ExitSU) { 338 // Do not use WillCreateCycle, it assumes SD scheduling. 339 // If Pred is reachable from Succ, then the edge creates a cycle. 340 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 341 return false; 342 Topo.AddPred(SuccSU, PredDep.getSUnit()); 343 } 344 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 345 // Return true regardless of whether a new edge needed to be inserted. 346 return true; 347 } 348 349 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 350 /// NumPredsLeft reaches zero, release the successor node. 351 /// 352 /// FIXME: Adjust SuccSU height based on MinLatency. 353 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 354 SUnit *SuccSU = SuccEdge->getSUnit(); 355 356 if (SuccEdge->isWeak()) { 357 --SuccSU->WeakPredsLeft; 358 if (SuccEdge->isCluster()) 359 NextClusterSucc = SuccSU; 360 return; 361 } 362 #ifndef NDEBUG 363 if (SuccSU->NumPredsLeft == 0) { 364 dbgs() << "*** Scheduling failed! ***\n"; 365 SuccSU->dump(this); 366 dbgs() << " has been released too many times!\n"; 367 llvm_unreachable(0); 368 } 369 #endif 370 --SuccSU->NumPredsLeft; 371 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 372 SchedImpl->releaseTopNode(SuccSU); 373 } 374 375 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 376 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 377 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 378 I != E; ++I) { 379 releaseSucc(SU, &*I); 380 } 381 } 382 383 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 384 /// NumSuccsLeft reaches zero, release the predecessor node. 385 /// 386 /// FIXME: Adjust PredSU height based on MinLatency. 387 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 388 SUnit *PredSU = PredEdge->getSUnit(); 389 390 if (PredEdge->isWeak()) { 391 --PredSU->WeakSuccsLeft; 392 if (PredEdge->isCluster()) 393 NextClusterPred = PredSU; 394 return; 395 } 396 #ifndef NDEBUG 397 if (PredSU->NumSuccsLeft == 0) { 398 dbgs() << "*** Scheduling failed! ***\n"; 399 PredSU->dump(this); 400 dbgs() << " has been released too many times!\n"; 401 llvm_unreachable(0); 402 } 403 #endif 404 --PredSU->NumSuccsLeft; 405 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 406 SchedImpl->releaseBottomNode(PredSU); 407 } 408 409 /// releasePredecessors - Call releasePred on each of SU's predecessors. 410 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 411 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 412 I != E; ++I) { 413 releasePred(SU, &*I); 414 } 415 } 416 417 /// This is normally called from the main scheduler loop but may also be invoked 418 /// by the scheduling strategy to perform additional code motion. 419 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 420 MachineBasicBlock::iterator InsertPos) { 421 // Advance RegionBegin if the first instruction moves down. 422 if (&*RegionBegin == MI) 423 ++RegionBegin; 424 425 // Update the instruction stream. 426 BB->splice(InsertPos, BB, MI); 427 428 // Update LiveIntervals 429 LIS->handleMove(MI, /*UpdateFlags=*/true); 430 431 // Recede RegionBegin if an instruction moves above the first. 432 if (RegionBegin == InsertPos) 433 RegionBegin = MI; 434 } 435 436 bool ScheduleDAGMI::checkSchedLimit() { 437 #ifndef NDEBUG 438 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 439 CurrentTop = CurrentBottom; 440 return false; 441 } 442 ++NumInstrsScheduled; 443 #endif 444 return true; 445 } 446 447 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 448 /// crossing a scheduling boundary. [begin, end) includes all instructions in 449 /// the region, including the boundary itself and single-instruction regions 450 /// that don't get scheduled. 451 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 452 MachineBasicBlock::iterator begin, 453 MachineBasicBlock::iterator end, 454 unsigned regioninstrs) 455 { 456 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 457 458 // For convenience remember the end of the liveness region. 459 LiveRegionEnd = 460 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 461 } 462 463 // Setup the register pressure trackers for the top scheduled top and bottom 464 // scheduled regions. 465 void ScheduleDAGMI::initRegPressure() { 466 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 467 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 468 469 // Close the RPTracker to finalize live ins. 470 RPTracker.closeRegion(); 471 472 DEBUG(RPTracker.dump()); 473 474 // Initialize the live ins and live outs. 475 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 476 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 477 478 // Close one end of the tracker so we can call 479 // getMaxUpward/DownwardPressureDelta before advancing across any 480 // instructions. This converts currently live regs into live ins/outs. 481 TopRPTracker.closeTop(); 482 BotRPTracker.closeBottom(); 483 484 BotRPTracker.initLiveThru(RPTracker); 485 if (!BotRPTracker.getLiveThru().empty()) { 486 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 487 DEBUG(dbgs() << "Live Thru: "; 488 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 489 }; 490 491 // Account for liveness generated by the region boundary. 492 if (LiveRegionEnd != RegionEnd) 493 BotRPTracker.recede(); 494 495 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 496 497 // Cache the list of excess pressure sets in this region. This will also track 498 // the max pressure in the scheduled code for these sets. 499 RegionCriticalPSets.clear(); 500 const std::vector<unsigned> &RegionPressure = 501 RPTracker.getPressure().MaxSetPressure; 502 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 503 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 504 if (RegionPressure[i] > Limit) { 505 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 506 << " Limit " << Limit 507 << " Actual " << RegionPressure[i] << "\n"); 508 RegionCriticalPSets.push_back(PressureChange(i)); 509 } 510 } 511 DEBUG(dbgs() << "Excess PSets: "; 512 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 513 dbgs() << TRI->getRegPressureSetName( 514 RegionCriticalPSets[i].getPSet()) << " "; 515 dbgs() << "\n"); 516 } 517 518 // FIXME: When the pressure tracker deals in pressure differences then we won't 519 // iterate over all RegionCriticalPSets[i]. 520 void ScheduleDAGMI:: 521 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 522 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 523 unsigned ID = RegionCriticalPSets[i].getPSet(); 524 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[i].getUnitInc() 525 && NewMaxPressure[ID] <= INT16_MAX) 526 RegionCriticalPSets[i].setUnitInc(NewMaxPressure[ID]); 527 } 528 DEBUG( 529 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { 530 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 531 if (NewMaxPressure[i] > Limit ) { 532 dbgs() << " " << TRI->getRegPressureSetName(i) << ": " 533 << NewMaxPressure[i] << " > " << Limit << "\n"; 534 } 535 }); 536 } 537 538 /// schedule - Called back from MachineScheduler::runOnMachineFunction 539 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 540 /// only includes instructions that have DAG nodes, not scheduling boundaries. 541 /// 542 /// This is a skeletal driver, with all the functionality pushed into helpers, 543 /// so that it can be easilly extended by experimental schedulers. Generally, 544 /// implementing MachineSchedStrategy should be sufficient to implement a new 545 /// scheduling algorithm. However, if a scheduler further subclasses 546 /// ScheduleDAGMI then it will want to override this virtual method in order to 547 /// update any specialized state. 548 void ScheduleDAGMI::schedule() { 549 buildDAGWithRegPressure(); 550 551 Topo.InitDAGTopologicalSorting(); 552 553 postprocessDAG(); 554 555 SmallVector<SUnit*, 8> TopRoots, BotRoots; 556 findRootsAndBiasEdges(TopRoots, BotRoots); 557 558 // Initialize the strategy before modifying the DAG. 559 // This may initialize a DFSResult to be used for queue priority. 560 SchedImpl->initialize(this); 561 562 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 563 SUnits[su].dumpAll(this)); 564 if (ViewMISchedDAGs) viewGraph(); 565 566 // Initialize ready queues now that the DAG and priority data are finalized. 567 initQueues(TopRoots, BotRoots); 568 569 bool IsTopNode = false; 570 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 571 assert(!SU->isScheduled && "Node already scheduled"); 572 if (!checkSchedLimit()) 573 break; 574 575 scheduleMI(SU, IsTopNode); 576 577 updateQueues(SU, IsTopNode); 578 } 579 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 580 581 placeDebugValues(); 582 583 DEBUG({ 584 unsigned BBNum = begin()->getParent()->getNumber(); 585 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 586 dumpSchedule(); 587 dbgs() << '\n'; 588 }); 589 } 590 591 /// Build the DAG and setup three register pressure trackers. 592 void ScheduleDAGMI::buildDAGWithRegPressure() { 593 // Initialize the register pressure tracker used by buildSchedGraph. 594 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 595 /*TrackUntiedDefs=*/true); 596 597 // Account for liveness generate by the region boundary. 598 if (LiveRegionEnd != RegionEnd) 599 RPTracker.recede(); 600 601 // Build the DAG, and compute current register pressure. 602 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 603 604 // Initialize top/bottom trackers after computing region pressure. 605 initRegPressure(); 606 } 607 608 /// Apply each ScheduleDAGMutation step in order. 609 void ScheduleDAGMI::postprocessDAG() { 610 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 611 Mutations[i]->apply(this); 612 } 613 } 614 615 void ScheduleDAGMI::computeDFSResult() { 616 if (!DFSResult) 617 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 618 DFSResult->clear(); 619 ScheduledTrees.clear(); 620 DFSResult->resize(SUnits.size()); 621 DFSResult->compute(SUnits); 622 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 623 } 624 625 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 626 SmallVectorImpl<SUnit*> &BotRoots) { 627 for (std::vector<SUnit>::iterator 628 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 629 SUnit *SU = &(*I); 630 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 631 632 // Order predecessors so DFSResult follows the critical path. 633 SU->biasCriticalPath(); 634 635 // A SUnit is ready to top schedule if it has no predecessors. 636 if (!I->NumPredsLeft) 637 TopRoots.push_back(SU); 638 // A SUnit is ready to bottom schedule if it has no successors. 639 if (!I->NumSuccsLeft) 640 BotRoots.push_back(SU); 641 } 642 ExitSU.biasCriticalPath(); 643 } 644 645 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 646 /// only provides the critical path for single block loops. To handle loops that 647 /// span blocks, we could use the vreg path latencies provided by 648 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 649 /// available for use in the scheduler. 650 /// 651 /// The cyclic path estimation identifies a def-use pair that crosses the back 652 /// edge and considers the depth and height of the nodes. For example, consider 653 /// the following instruction sequence where each instruction has unit latency 654 /// and defines an epomymous virtual register: 655 /// 656 /// a->b(a,c)->c(b)->d(c)->exit 657 /// 658 /// The cyclic critical path is a two cycles: b->c->b 659 /// The acyclic critical path is four cycles: a->b->c->d->exit 660 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 661 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 662 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 663 /// LiveInDepth = depth(b) = len(a->b) = 1 664 /// 665 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 666 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 667 /// CyclicCriticalPath = min(2, 2) = 2 668 unsigned ScheduleDAGMI::computeCyclicCriticalPath() { 669 // This only applies to single block loop. 670 if (!BB->isSuccessor(BB)) 671 return 0; 672 673 unsigned MaxCyclicLatency = 0; 674 // Visit each live out vreg def to find def/use pairs that cross iterations. 675 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 676 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 677 RI != RE; ++RI) { 678 unsigned Reg = *RI; 679 if (!TRI->isVirtualRegister(Reg)) 680 continue; 681 const LiveInterval &LI = LIS->getInterval(Reg); 682 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 683 if (!DefVNI) 684 continue; 685 686 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 687 const SUnit *DefSU = getSUnit(DefMI); 688 if (!DefSU) 689 continue; 690 691 unsigned LiveOutHeight = DefSU->getHeight(); 692 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 693 // Visit all local users of the vreg def. 694 for (VReg2UseMap::iterator 695 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 696 if (UI->SU == &ExitSU) 697 continue; 698 699 // Only consider uses of the phi. 700 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr())); 701 if (!LRQ.valueIn()->isPHIDef()) 702 continue; 703 704 // Assume that a path spanning two iterations is a cycle, which could 705 // overestimate in strange cases. This allows cyclic latency to be 706 // estimated as the minimum slack of the vreg's depth or height. 707 unsigned CyclicLatency = 0; 708 if (LiveOutDepth > UI->SU->getDepth()) 709 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 710 711 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 712 if (LiveInHeight > LiveOutHeight) { 713 if (LiveInHeight - LiveOutHeight < CyclicLatency) 714 CyclicLatency = LiveInHeight - LiveOutHeight; 715 } 716 else 717 CyclicLatency = 0; 718 719 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 720 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 721 if (CyclicLatency > MaxCyclicLatency) 722 MaxCyclicLatency = CyclicLatency; 723 } 724 } 725 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 726 return MaxCyclicLatency; 727 } 728 729 /// Identify DAG roots and setup scheduler queues. 730 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 731 ArrayRef<SUnit*> BotRoots) { 732 NextClusterSucc = NULL; 733 NextClusterPred = NULL; 734 735 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 736 // 737 // Nodes with unreleased weak edges can still be roots. 738 // Release top roots in forward order. 739 for (SmallVectorImpl<SUnit*>::const_iterator 740 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 741 SchedImpl->releaseTopNode(*I); 742 } 743 // Release bottom roots in reverse order so the higher priority nodes appear 744 // first. This is more natural and slightly more efficient. 745 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 746 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 747 SchedImpl->releaseBottomNode(*I); 748 } 749 750 releaseSuccessors(&EntrySU); 751 releasePredecessors(&ExitSU); 752 753 SchedImpl->registerRoots(); 754 755 // Advance past initial DebugValues. 756 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 757 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 758 TopRPTracker.setPos(CurrentTop); 759 760 CurrentBottom = RegionEnd; 761 } 762 763 /// Move an instruction and update register pressure. 764 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 765 // Move the instruction to its new location in the instruction stream. 766 MachineInstr *MI = SU->getInstr(); 767 768 if (IsTopNode) { 769 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 770 if (&*CurrentTop == MI) 771 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 772 else { 773 moveInstruction(MI, CurrentTop); 774 TopRPTracker.setPos(MI); 775 } 776 777 // Update top scheduled pressure. 778 TopRPTracker.advance(); 779 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 780 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 781 } 782 else { 783 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 784 MachineBasicBlock::iterator priorII = 785 priorNonDebug(CurrentBottom, CurrentTop); 786 if (&*priorII == MI) 787 CurrentBottom = priorII; 788 else { 789 if (&*CurrentTop == MI) { 790 CurrentTop = nextIfDebug(++CurrentTop, priorII); 791 TopRPTracker.setPos(CurrentTop); 792 } 793 moveInstruction(MI, CurrentBottom); 794 CurrentBottom = MI; 795 } 796 // Update bottom scheduled pressure. 797 BotRPTracker.recede(); 798 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 799 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 800 } 801 } 802 803 /// Update scheduler queues after scheduling an instruction. 804 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 805 // Release dependent instructions for scheduling. 806 if (IsTopNode) 807 releaseSuccessors(SU); 808 else 809 releasePredecessors(SU); 810 811 SU->isScheduled = true; 812 813 if (DFSResult) { 814 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 815 if (!ScheduledTrees.test(SubtreeID)) { 816 ScheduledTrees.set(SubtreeID); 817 DFSResult->scheduleTree(SubtreeID); 818 SchedImpl->scheduleTree(SubtreeID); 819 } 820 } 821 822 // Notify the scheduling strategy after updating the DAG. 823 SchedImpl->schedNode(SU, IsTopNode); 824 } 825 826 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 827 void ScheduleDAGMI::placeDebugValues() { 828 // If first instruction was a DBG_VALUE then put it back. 829 if (FirstDbgValue) { 830 BB->splice(RegionBegin, BB, FirstDbgValue); 831 RegionBegin = FirstDbgValue; 832 } 833 834 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 835 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 836 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 837 MachineInstr *DbgValue = P.first; 838 MachineBasicBlock::iterator OrigPrevMI = P.second; 839 if (&*RegionBegin == DbgValue) 840 ++RegionBegin; 841 BB->splice(++OrigPrevMI, BB, DbgValue); 842 if (OrigPrevMI == llvm::prior(RegionEnd)) 843 RegionEnd = DbgValue; 844 } 845 DbgValues.clear(); 846 FirstDbgValue = NULL; 847 } 848 849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 850 void ScheduleDAGMI::dumpSchedule() const { 851 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 852 if (SUnit *SU = getSUnit(&(*MI))) 853 SU->dump(this); 854 else 855 dbgs() << "Missing SUnit\n"; 856 } 857 } 858 #endif 859 860 //===----------------------------------------------------------------------===// 861 // LoadClusterMutation - DAG post-processing to cluster loads. 862 //===----------------------------------------------------------------------===// 863 864 namespace { 865 /// \brief Post-process the DAG to create cluster edges between neighboring 866 /// loads. 867 class LoadClusterMutation : public ScheduleDAGMutation { 868 struct LoadInfo { 869 SUnit *SU; 870 unsigned BaseReg; 871 unsigned Offset; 872 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 873 : SU(su), BaseReg(reg), Offset(ofs) {} 874 }; 875 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 876 const LoadClusterMutation::LoadInfo &RHS); 877 878 const TargetInstrInfo *TII; 879 const TargetRegisterInfo *TRI; 880 public: 881 LoadClusterMutation(const TargetInstrInfo *tii, 882 const TargetRegisterInfo *tri) 883 : TII(tii), TRI(tri) {} 884 885 virtual void apply(ScheduleDAGMI *DAG); 886 protected: 887 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 888 }; 889 } // anonymous 890 891 bool LoadClusterMutation::LoadInfoLess( 892 const LoadClusterMutation::LoadInfo &LHS, 893 const LoadClusterMutation::LoadInfo &RHS) { 894 if (LHS.BaseReg != RHS.BaseReg) 895 return LHS.BaseReg < RHS.BaseReg; 896 return LHS.Offset < RHS.Offset; 897 } 898 899 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 900 ScheduleDAGMI *DAG) { 901 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 902 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 903 SUnit *SU = Loads[Idx]; 904 unsigned BaseReg; 905 unsigned Offset; 906 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 907 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 908 } 909 if (LoadRecords.size() < 2) 910 return; 911 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 912 unsigned ClusterLength = 1; 913 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 914 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 915 ClusterLength = 1; 916 continue; 917 } 918 919 SUnit *SUa = LoadRecords[Idx].SU; 920 SUnit *SUb = LoadRecords[Idx+1].SU; 921 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 922 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 923 924 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 925 << SUb->NodeNum << ")\n"); 926 // Copy successor edges from SUa to SUb. Interleaving computation 927 // dependent on SUa can prevent load combining due to register reuse. 928 // Predecessor edges do not need to be copied from SUb to SUa since nearby 929 // loads should have effectively the same inputs. 930 for (SUnit::const_succ_iterator 931 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 932 if (SI->getSUnit() == SUb) 933 continue; 934 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 935 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 936 } 937 ++ClusterLength; 938 } 939 else 940 ClusterLength = 1; 941 } 942 } 943 944 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 945 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 946 // Map DAG NodeNum to store chain ID. 947 DenseMap<unsigned, unsigned> StoreChainIDs; 948 // Map each store chain to a set of dependent loads. 949 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 950 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 951 SUnit *SU = &DAG->SUnits[Idx]; 952 if (!SU->getInstr()->mayLoad()) 953 continue; 954 unsigned ChainPredID = DAG->SUnits.size(); 955 for (SUnit::const_pred_iterator 956 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 957 if (PI->isCtrl()) { 958 ChainPredID = PI->getSUnit()->NodeNum; 959 break; 960 } 961 } 962 // Check if this chain-like pred has been seen 963 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 964 unsigned NumChains = StoreChainDependents.size(); 965 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 966 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 967 if (Result.second) 968 StoreChainDependents.resize(NumChains + 1); 969 StoreChainDependents[Result.first->second].push_back(SU); 970 } 971 // Iterate over the store chains. 972 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 973 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 974 } 975 976 //===----------------------------------------------------------------------===// 977 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 978 //===----------------------------------------------------------------------===// 979 980 namespace { 981 /// \brief Post-process the DAG to create cluster edges between instructions 982 /// that may be fused by the processor into a single operation. 983 class MacroFusion : public ScheduleDAGMutation { 984 const TargetInstrInfo *TII; 985 public: 986 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 987 988 virtual void apply(ScheduleDAGMI *DAG); 989 }; 990 } // anonymous 991 992 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 993 /// fused operations. 994 void MacroFusion::apply(ScheduleDAGMI *DAG) { 995 // For now, assume targets can only fuse with the branch. 996 MachineInstr *Branch = DAG->ExitSU.getInstr(); 997 if (!Branch) 998 return; 999 1000 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1001 SUnit *SU = &DAG->SUnits[--Idx]; 1002 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1003 continue; 1004 1005 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1006 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1007 // need to copy predecessor edges from ExitSU to SU, since top-down 1008 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1009 // of SU, we could create an artificial edge from the deepest root, but it 1010 // hasn't been needed yet. 1011 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1012 (void)Success; 1013 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1014 1015 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1016 break; 1017 } 1018 } 1019 1020 //===----------------------------------------------------------------------===// 1021 // CopyConstrain - DAG post-processing to encourage copy elimination. 1022 //===----------------------------------------------------------------------===// 1023 1024 namespace { 1025 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1026 /// the one use that defines the copy's source vreg, most likely an induction 1027 /// variable increment. 1028 class CopyConstrain : public ScheduleDAGMutation { 1029 // Transient state. 1030 SlotIndex RegionBeginIdx; 1031 // RegionEndIdx is the slot index of the last non-debug instruction in the 1032 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1033 SlotIndex RegionEndIdx; 1034 public: 1035 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1036 1037 virtual void apply(ScheduleDAGMI *DAG); 1038 1039 protected: 1040 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); 1041 }; 1042 } // anonymous 1043 1044 /// constrainLocalCopy handles two possibilities: 1045 /// 1) Local src: 1046 /// I0: = dst 1047 /// I1: src = ... 1048 /// I2: = dst 1049 /// I3: dst = src (copy) 1050 /// (create pred->succ edges I0->I1, I2->I1) 1051 /// 1052 /// 2) Local copy: 1053 /// I0: dst = src (copy) 1054 /// I1: = dst 1055 /// I2: src = ... 1056 /// I3: = dst 1057 /// (create pred->succ edges I1->I2, I3->I2) 1058 /// 1059 /// Although the MachineScheduler is currently constrained to single blocks, 1060 /// this algorithm should handle extended blocks. An EBB is a set of 1061 /// contiguously numbered blocks such that the previous block in the EBB is 1062 /// always the single predecessor. 1063 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { 1064 LiveIntervals *LIS = DAG->getLIS(); 1065 MachineInstr *Copy = CopySU->getInstr(); 1066 1067 // Check for pure vreg copies. 1068 unsigned SrcReg = Copy->getOperand(1).getReg(); 1069 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1070 return; 1071 1072 unsigned DstReg = Copy->getOperand(0).getReg(); 1073 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1074 return; 1075 1076 // Check if either the dest or source is local. If it's live across a back 1077 // edge, it's not local. Note that if both vregs are live across the back 1078 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1079 unsigned LocalReg = DstReg; 1080 unsigned GlobalReg = SrcReg; 1081 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1082 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1083 LocalReg = SrcReg; 1084 GlobalReg = DstReg; 1085 LocalLI = &LIS->getInterval(LocalReg); 1086 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1087 return; 1088 } 1089 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1090 1091 // Find the global segment after the start of the local LI. 1092 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1093 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1094 // local live range. We could create edges from other global uses to the local 1095 // start, but the coalescer should have already eliminated these cases, so 1096 // don't bother dealing with it. 1097 if (GlobalSegment == GlobalLI->end()) 1098 return; 1099 1100 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1101 // returned the next global segment. But if GlobalSegment overlaps with 1102 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1103 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1104 if (GlobalSegment->contains(LocalLI->beginIndex())) 1105 ++GlobalSegment; 1106 1107 if (GlobalSegment == GlobalLI->end()) 1108 return; 1109 1110 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1111 if (GlobalSegment != GlobalLI->begin()) { 1112 // Two address defs have no hole. 1113 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, 1114 GlobalSegment->start)) { 1115 return; 1116 } 1117 // If the prior global segment may be defined by the same two-address 1118 // instruction that also defines LocalLI, then can't make a hole here. 1119 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, 1120 LocalLI->beginIndex())) { 1121 return; 1122 } 1123 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1124 // it would be a disconnected component in the live range. 1125 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && 1126 "Disconnected LRG within the scheduling region."); 1127 } 1128 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1129 if (!GlobalDef) 1130 return; 1131 1132 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1133 if (!GlobalSU) 1134 return; 1135 1136 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1137 // constraining the uses of the last local def to precede GlobalDef. 1138 SmallVector<SUnit*,8> LocalUses; 1139 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1140 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1141 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1142 for (SUnit::const_succ_iterator 1143 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1144 I != E; ++I) { 1145 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1146 continue; 1147 if (I->getSUnit() == GlobalSU) 1148 continue; 1149 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1150 return; 1151 LocalUses.push_back(I->getSUnit()); 1152 } 1153 // Open the top of the GlobalLI hole by constraining any earlier global uses 1154 // to precede the start of LocalLI. 1155 SmallVector<SUnit*,8> GlobalUses; 1156 MachineInstr *FirstLocalDef = 1157 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1158 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1159 for (SUnit::const_pred_iterator 1160 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1161 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1162 continue; 1163 if (I->getSUnit() == FirstLocalSU) 1164 continue; 1165 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1166 return; 1167 GlobalUses.push_back(I->getSUnit()); 1168 } 1169 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1170 // Add the weak edges. 1171 for (SmallVectorImpl<SUnit*>::const_iterator 1172 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1173 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1174 << GlobalSU->NodeNum << ")\n"); 1175 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1176 } 1177 for (SmallVectorImpl<SUnit*>::const_iterator 1178 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1179 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1180 << FirstLocalSU->NodeNum << ")\n"); 1181 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1182 } 1183 } 1184 1185 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1186 /// copy elimination. 1187 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1188 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1189 if (FirstPos == DAG->end()) 1190 return; 1191 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1192 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1193 &*priorNonDebug(DAG->end(), DAG->begin())); 1194 1195 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1196 SUnit *SU = &DAG->SUnits[Idx]; 1197 if (!SU->getInstr()->isCopy()) 1198 continue; 1199 1200 constrainLocalCopy(SU, DAG); 1201 } 1202 } 1203 1204 //===----------------------------------------------------------------------===// 1205 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy. 1206 //===----------------------------------------------------------------------===// 1207 1208 namespace { 1209 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 1210 /// the schedule. 1211 class ConvergingScheduler : public MachineSchedStrategy { 1212 public: 1213 /// Represent the type of SchedCandidate found within a single queue. 1214 /// pickNodeBidirectional depends on these listed by decreasing priority. 1215 enum CandReason { 1216 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, 1217 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 1218 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 1219 1220 #ifndef NDEBUG 1221 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 1222 #endif 1223 1224 /// Policy for scheduling the next instruction in the candidate's zone. 1225 struct CandPolicy { 1226 bool ReduceLatency; 1227 unsigned ReduceResIdx; 1228 unsigned DemandResIdx; 1229 1230 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 1231 }; 1232 1233 /// Status of an instruction's critical resource consumption. 1234 struct SchedResourceDelta { 1235 // Count critical resources in the scheduled region required by SU. 1236 unsigned CritResources; 1237 1238 // Count critical resources from another region consumed by SU. 1239 unsigned DemandedResources; 1240 1241 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 1242 1243 bool operator==(const SchedResourceDelta &RHS) const { 1244 return CritResources == RHS.CritResources 1245 && DemandedResources == RHS.DemandedResources; 1246 } 1247 bool operator!=(const SchedResourceDelta &RHS) const { 1248 return !operator==(RHS); 1249 } 1250 }; 1251 1252 /// Store the state used by ConvergingScheduler heuristics, required for the 1253 /// lifetime of one invocation of pickNode(). 1254 struct SchedCandidate { 1255 CandPolicy Policy; 1256 1257 // The best SUnit candidate. 1258 SUnit *SU; 1259 1260 // The reason for this candidate. 1261 CandReason Reason; 1262 1263 // Set of reasons that apply to multiple candidates. 1264 uint32_t RepeatReasonSet; 1265 1266 // Register pressure values for the best candidate. 1267 RegPressureDelta RPDelta; 1268 1269 // Critical resource consumption of the best candidate. 1270 SchedResourceDelta ResDelta; 1271 1272 SchedCandidate(const CandPolicy &policy) 1273 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} 1274 1275 bool isValid() const { return SU; } 1276 1277 // Copy the status of another candidate without changing policy. 1278 void setBest(SchedCandidate &Best) { 1279 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 1280 SU = Best.SU; 1281 Reason = Best.Reason; 1282 RPDelta = Best.RPDelta; 1283 ResDelta = Best.ResDelta; 1284 } 1285 1286 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 1287 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 1288 1289 void initResourceDelta(const ScheduleDAGMI *DAG, 1290 const TargetSchedModel *SchedModel); 1291 }; 1292 1293 /// Summarize the unscheduled region. 1294 struct SchedRemainder { 1295 // Critical path through the DAG in expected latency. 1296 unsigned CriticalPath; 1297 unsigned CyclicCritPath; 1298 1299 // Scaled count of micro-ops left to schedule. 1300 unsigned RemIssueCount; 1301 1302 bool IsAcyclicLatencyLimited; 1303 1304 // Unscheduled resources 1305 SmallVector<unsigned, 16> RemainingCounts; 1306 1307 void reset() { 1308 CriticalPath = 0; 1309 CyclicCritPath = 0; 1310 RemIssueCount = 0; 1311 IsAcyclicLatencyLimited = false; 1312 RemainingCounts.clear(); 1313 } 1314 1315 SchedRemainder() { reset(); } 1316 1317 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1318 }; 1319 1320 /// Each Scheduling boundary is associated with ready queues. It tracks the 1321 /// current cycle in the direction of movement, and maintains the state 1322 /// of "hazards" and other interlocks at the current cycle. 1323 struct SchedBoundary { 1324 ScheduleDAGMI *DAG; 1325 const TargetSchedModel *SchedModel; 1326 SchedRemainder *Rem; 1327 1328 ReadyQueue Available; 1329 ReadyQueue Pending; 1330 bool CheckPending; 1331 1332 // For heuristics, keep a list of the nodes that immediately depend on the 1333 // most recently scheduled node. 1334 SmallPtrSet<const SUnit*, 8> NextSUs; 1335 1336 ScheduleHazardRecognizer *HazardRec; 1337 1338 /// Number of cycles it takes to issue the instructions scheduled in this 1339 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. 1340 /// See getStalls(). 1341 unsigned CurrCycle; 1342 1343 /// Micro-ops issued in the current cycle 1344 unsigned CurrMOps; 1345 1346 /// MinReadyCycle - Cycle of the soonest available instruction. 1347 unsigned MinReadyCycle; 1348 1349 // The expected latency of the critical path in this scheduled zone. 1350 unsigned ExpectedLatency; 1351 1352 // The latency of dependence chains leading into this zone. 1353 // For each node scheduled bottom-up: DLat = max DLat, N.Depth. 1354 // For each cycle scheduled: DLat -= 1. 1355 unsigned DependentLatency; 1356 1357 /// Count the scheduled (issued) micro-ops that can be retired by 1358 /// time=CurrCycle assuming the first scheduled instr is retired at time=0. 1359 unsigned RetiredMOps; 1360 1361 // Count scheduled resources that have been executed. Resources are 1362 // considered executed if they become ready in the time that it takes to 1363 // saturate any resource including the one in question. Counts are scaled 1364 // for direct comparison with other resources. Counts can be compared with 1365 // MOps * getMicroOpFactor and Latency * getLatencyFactor. 1366 SmallVector<unsigned, 16> ExecutedResCounts; 1367 1368 /// Cache the max count for a single resource. 1369 unsigned MaxExecutedResCount; 1370 1371 // Cache the critical resources ID in this scheduled zone. 1372 unsigned ZoneCritResIdx; 1373 1374 // Is the scheduled region resource limited vs. latency limited. 1375 bool IsResourceLimited; 1376 1377 #ifndef NDEBUG 1378 // Remember the greatest operand latency as an upper bound on the number of 1379 // times we should retry the pending queue because of a hazard. 1380 unsigned MaxObservedLatency; 1381 #endif 1382 1383 void reset() { 1384 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1385 delete HazardRec; 1386 1387 Available.clear(); 1388 Pending.clear(); 1389 CheckPending = false; 1390 NextSUs.clear(); 1391 HazardRec = 0; 1392 CurrCycle = 0; 1393 CurrMOps = 0; 1394 MinReadyCycle = UINT_MAX; 1395 ExpectedLatency = 0; 1396 DependentLatency = 0; 1397 RetiredMOps = 0; 1398 MaxExecutedResCount = 0; 1399 ZoneCritResIdx = 0; 1400 IsResourceLimited = false; 1401 #ifndef NDEBUG 1402 MaxObservedLatency = 0; 1403 #endif 1404 // Reserve a zero-count for invalid CritResIdx. 1405 ExecutedResCounts.resize(1); 1406 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1407 } 1408 1409 /// Pending queues extend the ready queues with the same ID and the 1410 /// PendingFlag set. 1411 SchedBoundary(unsigned ID, const Twine &Name): 1412 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1413 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1414 HazardRec(0) { 1415 reset(); 1416 } 1417 1418 ~SchedBoundary() { delete HazardRec; } 1419 1420 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1421 SchedRemainder *rem); 1422 1423 bool isTop() const { 1424 return Available.getID() == ConvergingScheduler::TopQID; 1425 } 1426 1427 #ifndef NDEBUG 1428 const char *getResourceName(unsigned PIdx) { 1429 if (!PIdx) 1430 return "MOps"; 1431 return SchedModel->getProcResource(PIdx)->Name; 1432 } 1433 #endif 1434 1435 /// Get the number of latency cycles "covered" by the scheduled 1436 /// instructions. This is the larger of the critical path within the zone 1437 /// and the number of cycles required to issue the instructions. 1438 unsigned getScheduledLatency() const { 1439 return std::max(ExpectedLatency, CurrCycle); 1440 } 1441 1442 unsigned getUnscheduledLatency(SUnit *SU) const { 1443 return isTop() ? SU->getHeight() : SU->getDepth(); 1444 } 1445 1446 unsigned getResourceCount(unsigned ResIdx) const { 1447 return ExecutedResCounts[ResIdx]; 1448 } 1449 1450 /// Get the scaled count of scheduled micro-ops and resources, including 1451 /// executed resources. 1452 unsigned getCriticalCount() const { 1453 if (!ZoneCritResIdx) 1454 return RetiredMOps * SchedModel->getMicroOpFactor(); 1455 return getResourceCount(ZoneCritResIdx); 1456 } 1457 1458 /// Get a scaled count for the minimum execution time of the scheduled 1459 /// micro-ops that are ready to execute by getExecutedCount. Notice the 1460 /// feedback loop. 1461 unsigned getExecutedCount() const { 1462 return std::max(CurrCycle * SchedModel->getLatencyFactor(), 1463 MaxExecutedResCount); 1464 } 1465 1466 bool checkHazard(SUnit *SU); 1467 1468 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); 1469 1470 unsigned getOtherResourceCount(unsigned &OtherCritIdx); 1471 1472 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); 1473 1474 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1475 1476 void bumpCycle(unsigned NextCycle); 1477 1478 void incExecutedResources(unsigned PIdx, unsigned Count); 1479 1480 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); 1481 1482 void bumpNode(SUnit *SU); 1483 1484 void releasePending(); 1485 1486 void removeReady(SUnit *SU); 1487 1488 SUnit *pickOnlyChoice(); 1489 1490 #ifndef NDEBUG 1491 void dumpScheduledState(); 1492 #endif 1493 }; 1494 1495 private: 1496 ScheduleDAGMI *DAG; 1497 const TargetSchedModel *SchedModel; 1498 const TargetRegisterInfo *TRI; 1499 1500 // State of the top and bottom scheduled instruction boundaries. 1501 SchedRemainder Rem; 1502 SchedBoundary Top; 1503 SchedBoundary Bot; 1504 1505 public: 1506 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1507 enum { 1508 TopQID = 1, 1509 BotQID = 2, 1510 LogMaxQID = 2 1511 }; 1512 1513 ConvergingScheduler(): 1514 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1515 1516 virtual void initialize(ScheduleDAGMI *dag); 1517 1518 virtual SUnit *pickNode(bool &IsTopNode); 1519 1520 virtual void schedNode(SUnit *SU, bool IsTopNode); 1521 1522 virtual void releaseTopNode(SUnit *SU); 1523 1524 virtual void releaseBottomNode(SUnit *SU); 1525 1526 virtual void registerRoots(); 1527 1528 protected: 1529 void checkAcyclicLatency(); 1530 1531 void tryCandidate(SchedCandidate &Cand, 1532 SchedCandidate &TryCand, 1533 SchedBoundary &Zone, 1534 const RegPressureTracker &RPTracker, 1535 RegPressureTracker &TempTracker); 1536 1537 SUnit *pickNodeBidirectional(bool &IsTopNode); 1538 1539 void pickNodeFromQueue(SchedBoundary &Zone, 1540 const RegPressureTracker &RPTracker, 1541 SchedCandidate &Candidate); 1542 1543 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 1544 1545 #ifndef NDEBUG 1546 void traceCandidate(const SchedCandidate &Cand); 1547 #endif 1548 }; 1549 } // namespace 1550 1551 void ConvergingScheduler::SchedRemainder:: 1552 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1553 reset(); 1554 if (!SchedModel->hasInstrSchedModel()) 1555 return; 1556 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1557 for (std::vector<SUnit>::iterator 1558 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1559 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1560 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1561 * SchedModel->getMicroOpFactor(); 1562 for (TargetSchedModel::ProcResIter 1563 PI = SchedModel->getWriteProcResBegin(SC), 1564 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1565 unsigned PIdx = PI->ProcResourceIdx; 1566 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1567 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1568 } 1569 } 1570 } 1571 1572 void ConvergingScheduler::SchedBoundary:: 1573 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1574 reset(); 1575 DAG = dag; 1576 SchedModel = smodel; 1577 Rem = rem; 1578 if (SchedModel->hasInstrSchedModel()) 1579 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1580 } 1581 1582 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1583 DAG = dag; 1584 SchedModel = DAG->getSchedModel(); 1585 TRI = DAG->TRI; 1586 1587 Rem.init(DAG, SchedModel); 1588 Top.init(DAG, SchedModel, &Rem); 1589 Bot.init(DAG, SchedModel, &Rem); 1590 1591 // Initialize resource counts. 1592 1593 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1594 // are disabled, then these HazardRecs will be disabled. 1595 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1596 const TargetMachine &TM = DAG->MF.getTarget(); 1597 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1598 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1599 1600 assert((!ForceTopDown || !ForceBottomUp) && 1601 "-misched-topdown incompatible with -misched-bottomup"); 1602 } 1603 1604 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1605 if (SU->isScheduled) 1606 return; 1607 1608 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1609 I != E; ++I) { 1610 if (I->isWeak()) 1611 continue; 1612 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1613 unsigned Latency = I->getLatency(); 1614 #ifndef NDEBUG 1615 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); 1616 #endif 1617 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1618 SU->TopReadyCycle = PredReadyCycle + Latency; 1619 } 1620 Top.releaseNode(SU, SU->TopReadyCycle); 1621 } 1622 1623 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1624 if (SU->isScheduled) 1625 return; 1626 1627 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1628 1629 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1630 I != E; ++I) { 1631 if (I->isWeak()) 1632 continue; 1633 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1634 unsigned Latency = I->getLatency(); 1635 #ifndef NDEBUG 1636 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); 1637 #endif 1638 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1639 SU->BotReadyCycle = SuccReadyCycle + Latency; 1640 } 1641 Bot.releaseNode(SU, SU->BotReadyCycle); 1642 } 1643 1644 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 1645 /// critical path by more cycles than it takes to drain the instruction buffer. 1646 /// We estimate an upper bounds on in-flight instructions as: 1647 /// 1648 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 1649 /// InFlightIterations = AcyclicPath / CyclesPerIteration 1650 /// InFlightResources = InFlightIterations * LoopResources 1651 /// 1652 /// TODO: Check execution resources in addition to IssueCount. 1653 void ConvergingScheduler::checkAcyclicLatency() { 1654 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 1655 return; 1656 1657 // Scaled number of cycles per loop iteration. 1658 unsigned IterCount = 1659 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 1660 Rem.RemIssueCount); 1661 // Scaled acyclic critical path. 1662 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 1663 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 1664 unsigned InFlightCount = 1665 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 1666 unsigned BufferLimit = 1667 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 1668 1669 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 1670 1671 DEBUG(dbgs() << "IssueCycles=" 1672 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 1673 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 1674 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 1675 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 1676 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 1677 if (Rem.IsAcyclicLatencyLimited) 1678 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 1679 } 1680 1681 void ConvergingScheduler::registerRoots() { 1682 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1683 1684 // Some roots may not feed into ExitSU. Check all of them in case. 1685 for (std::vector<SUnit*>::const_iterator 1686 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1687 if ((*I)->getDepth() > Rem.CriticalPath) 1688 Rem.CriticalPath = (*I)->getDepth(); 1689 } 1690 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1691 1692 if (EnableCyclicPath) { 1693 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 1694 checkAcyclicLatency(); 1695 } 1696 } 1697 1698 /// Does this SU have a hazard within the current instruction group. 1699 /// 1700 /// The scheduler supports two modes of hazard recognition. The first is the 1701 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1702 /// supports highly complicated in-order reservation tables 1703 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1704 /// 1705 /// The second is a streamlined mechanism that checks for hazards based on 1706 /// simple counters that the scheduler itself maintains. It explicitly checks 1707 /// for instruction dispatch limitations, including the number of micro-ops that 1708 /// can dispatch per cycle. 1709 /// 1710 /// TODO: Also check whether the SU must start a new group. 1711 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1712 if (HazardRec->isEnabled()) 1713 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1714 1715 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1716 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1717 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1718 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1719 return true; 1720 } 1721 return false; 1722 } 1723 1724 // Find the unscheduled node in ReadySUs with the highest latency. 1725 unsigned ConvergingScheduler::SchedBoundary:: 1726 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1727 SUnit *LateSU = 0; 1728 unsigned RemLatency = 0; 1729 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1730 I != E; ++I) { 1731 unsigned L = getUnscheduledLatency(*I); 1732 if (L > RemLatency) { 1733 RemLatency = L; 1734 LateSU = *I; 1735 } 1736 } 1737 if (LateSU) { 1738 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1739 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1740 } 1741 return RemLatency; 1742 } 1743 1744 // Count resources in this zone and the remaining unscheduled 1745 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1746 // resource index, or zero if the zone is issue limited. 1747 unsigned ConvergingScheduler::SchedBoundary:: 1748 getOtherResourceCount(unsigned &OtherCritIdx) { 1749 OtherCritIdx = 0; 1750 if (!SchedModel->hasInstrSchedModel()) 1751 return 0; 1752 1753 unsigned OtherCritCount = Rem->RemIssueCount 1754 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1755 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1756 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1757 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1758 PIdx != PEnd; ++PIdx) { 1759 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1760 if (OtherCount > OtherCritCount) { 1761 OtherCritCount = OtherCount; 1762 OtherCritIdx = PIdx; 1763 } 1764 } 1765 if (OtherCritIdx) { 1766 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1767 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1768 << " " << getResourceName(OtherCritIdx) << "\n"); 1769 } 1770 return OtherCritCount; 1771 } 1772 1773 /// Set the CandPolicy for this zone given the current resources and latencies 1774 /// inside and outside the zone. 1775 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, 1776 SchedBoundary &OtherZone) { 1777 // Now that potential stalls have been considered, apply preemptive heuristics 1778 // based on the the total latency and resources inside and outside this 1779 // zone. 1780 1781 // Compute remaining latency. We need this both to determine whether the 1782 // overall schedule has become latency-limited and whether the instructions 1783 // outside this zone are resource or latency limited. 1784 // 1785 // The "dependent" latency is updated incrementally during scheduling as the 1786 // max height/depth of scheduled nodes minus the cycles since it was 1787 // scheduled: 1788 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 1789 // 1790 // The "independent" latency is the max ready queue depth: 1791 // ILat = max N.depth for N in Available|Pending 1792 // 1793 // RemainingLatency is the greater of independent and dependent latency. 1794 unsigned RemLatency = DependentLatency; 1795 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); 1796 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); 1797 1798 // Compute the critical resource outside the zone. 1799 unsigned OtherCritIdx; 1800 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); 1801 1802 bool OtherResLimited = false; 1803 if (SchedModel->hasInstrSchedModel()) { 1804 unsigned LFactor = SchedModel->getLatencyFactor(); 1805 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 1806 } 1807 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { 1808 Policy.ReduceLatency |= true; 1809 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " 1810 << RemLatency << " + " << CurrCycle << "c > CritPath " 1811 << Rem->CriticalPath << "\n"); 1812 } 1813 // If the same resource is limiting inside and outside the zone, do nothing. 1814 if (ZoneCritResIdx == OtherCritIdx) 1815 return; 1816 1817 DEBUG( 1818 if (IsResourceLimited) { 1819 dbgs() << " " << Available.getName() << " ResourceLimited: " 1820 << getResourceName(ZoneCritResIdx) << "\n"; 1821 } 1822 if (OtherResLimited) 1823 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; 1824 if (!IsResourceLimited && !OtherResLimited) 1825 dbgs() << " Latency limited both directions.\n"); 1826 1827 if (IsResourceLimited && !Policy.ReduceResIdx) 1828 Policy.ReduceResIdx = ZoneCritResIdx; 1829 1830 if (OtherResLimited) 1831 Policy.DemandResIdx = OtherCritIdx; 1832 } 1833 1834 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1835 unsigned ReadyCycle) { 1836 if (ReadyCycle < MinReadyCycle) 1837 MinReadyCycle = ReadyCycle; 1838 1839 // Check for interlocks first. For the purpose of other heuristics, an 1840 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1841 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1842 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1843 Pending.push(SU); 1844 else 1845 Available.push(SU); 1846 1847 // Record this node as an immediate dependent of the scheduled node. 1848 NextSUs.insert(SU); 1849 } 1850 1851 /// Move the boundary of scheduled code by one cycle. 1852 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { 1853 if (SchedModel->getMicroOpBufferSize() == 0) { 1854 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1855 if (MinReadyCycle > NextCycle) 1856 NextCycle = MinReadyCycle; 1857 } 1858 // Update the current micro-ops, which will issue in the next cycle. 1859 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1860 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1861 1862 // Decrement DependentLatency based on the next cycle. 1863 if ((NextCycle - CurrCycle) > DependentLatency) 1864 DependentLatency = 0; 1865 else 1866 DependentLatency -= (NextCycle - CurrCycle); 1867 1868 if (!HazardRec->isEnabled()) { 1869 // Bypass HazardRec virtual calls. 1870 CurrCycle = NextCycle; 1871 } 1872 else { 1873 // Bypass getHazardType calls in case of long latency. 1874 for (; CurrCycle != NextCycle; ++CurrCycle) { 1875 if (isTop()) 1876 HazardRec->AdvanceCycle(); 1877 else 1878 HazardRec->RecedeCycle(); 1879 } 1880 } 1881 CheckPending = true; 1882 unsigned LFactor = SchedModel->getLatencyFactor(); 1883 IsResourceLimited = 1884 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1885 > (int)LFactor; 1886 1887 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1888 } 1889 1890 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, 1891 unsigned Count) { 1892 ExecutedResCounts[PIdx] += Count; 1893 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1894 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1895 } 1896 1897 /// Add the given processor resource to this scheduled zone. 1898 /// 1899 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1900 /// during which this resource is consumed. 1901 /// 1902 /// \return the next cycle at which the instruction may execute without 1903 /// oversubscribing resources. 1904 unsigned ConvergingScheduler::SchedBoundary:: 1905 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { 1906 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1907 unsigned Count = Factor * Cycles; 1908 DEBUG(dbgs() << " " << getResourceName(PIdx) 1909 << " +" << Cycles << "x" << Factor << "u\n"); 1910 1911 // Update Executed resources counts. 1912 incExecutedResources(PIdx, Count); 1913 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1914 Rem->RemainingCounts[PIdx] -= Count; 1915 1916 // Check if this resource exceeds the current critical resource. If so, it 1917 // becomes the critical resource. 1918 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1919 ZoneCritResIdx = PIdx; 1920 DEBUG(dbgs() << " *** Critical resource " 1921 << getResourceName(PIdx) << ": " 1922 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1923 } 1924 // TODO: We don't yet model reserved resources. It's not hard though. 1925 return CurrCycle; 1926 } 1927 1928 /// Move the boundary of scheduled code by one SUnit. 1929 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1930 // Update the reservation table. 1931 if (HazardRec->isEnabled()) { 1932 if (!isTop() && SU->isCall) { 1933 // Calls are scheduled with their preceding instructions. For bottom-up 1934 // scheduling, clear the pipeline state before emitting. 1935 HazardRec->Reset(); 1936 } 1937 HazardRec->EmitInstruction(SU); 1938 } 1939 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1940 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1941 CurrMOps += IncMOps; 1942 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1943 // issue width. However, we commonly reach the maximum. In this case 1944 // opportunistically bump the cycle to avoid uselessly checking everything in 1945 // the readyQ. Furthermore, a single instruction may produce more than one 1946 // cycle's worth of micro-ops. 1947 // 1948 // TODO: Also check if this SU must end a dispatch group. 1949 unsigned NextCycle = CurrCycle; 1950 if (CurrMOps >= SchedModel->getIssueWidth()) { 1951 ++NextCycle; 1952 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 1953 << " at cycle " << CurrCycle << '\n'); 1954 } 1955 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1956 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1957 1958 switch (SchedModel->getMicroOpBufferSize()) { 1959 case 0: 1960 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1961 break; 1962 case 1: 1963 if (ReadyCycle > NextCycle) { 1964 NextCycle = ReadyCycle; 1965 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1966 } 1967 break; 1968 default: 1969 // We don't currently model the OOO reorder buffer, so consider all 1970 // scheduled MOps to be "retired". 1971 break; 1972 } 1973 RetiredMOps += IncMOps; 1974 1975 // Update resource counts and critical resource. 1976 if (SchedModel->hasInstrSchedModel()) { 1977 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1978 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1979 Rem->RemIssueCount -= DecRemIssue; 1980 if (ZoneCritResIdx) { 1981 // Scale scheduled micro-ops for comparing with the critical resource. 1982 unsigned ScaledMOps = 1983 RetiredMOps * SchedModel->getMicroOpFactor(); 1984 1985 // If scaled micro-ops are now more than the previous critical resource by 1986 // a full cycle, then micro-ops issue becomes critical. 1987 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1988 >= (int)SchedModel->getLatencyFactor()) { 1989 ZoneCritResIdx = 0; 1990 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1991 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1992 } 1993 } 1994 for (TargetSchedModel::ProcResIter 1995 PI = SchedModel->getWriteProcResBegin(SC), 1996 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1997 unsigned RCycle = 1998 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); 1999 if (RCycle > NextCycle) 2000 NextCycle = RCycle; 2001 } 2002 } 2003 // Update ExpectedLatency and DependentLatency. 2004 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2005 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2006 if (SU->getDepth() > TopLatency) { 2007 TopLatency = SU->getDepth(); 2008 DEBUG(dbgs() << " " << Available.getName() 2009 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2010 } 2011 if (SU->getHeight() > BotLatency) { 2012 BotLatency = SU->getHeight(); 2013 DEBUG(dbgs() << " " << Available.getName() 2014 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2015 } 2016 // If we stall for any reason, bump the cycle. 2017 if (NextCycle > CurrCycle) { 2018 bumpCycle(NextCycle); 2019 } 2020 else { 2021 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2022 // resource limited. If a stall occured, bumpCycle does this. 2023 unsigned LFactor = SchedModel->getLatencyFactor(); 2024 IsResourceLimited = 2025 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2026 > (int)LFactor; 2027 } 2028 DEBUG(dumpScheduledState()); 2029 } 2030 2031 /// Release pending ready nodes in to the available queue. This makes them 2032 /// visible to heuristics. 2033 void ConvergingScheduler::SchedBoundary::releasePending() { 2034 // If the available queue is empty, it is safe to reset MinReadyCycle. 2035 if (Available.empty()) 2036 MinReadyCycle = UINT_MAX; 2037 2038 // Check to see if any of the pending instructions are ready to issue. If 2039 // so, add them to the available queue. 2040 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2041 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2042 SUnit *SU = *(Pending.begin()+i); 2043 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2044 2045 if (ReadyCycle < MinReadyCycle) 2046 MinReadyCycle = ReadyCycle; 2047 2048 if (!IsBuffered && ReadyCycle > CurrCycle) 2049 continue; 2050 2051 if (checkHazard(SU)) 2052 continue; 2053 2054 Available.push(SU); 2055 Pending.remove(Pending.begin()+i); 2056 --i; --e; 2057 } 2058 DEBUG(if (!Pending.empty()) Pending.dump()); 2059 CheckPending = false; 2060 } 2061 2062 /// Remove SU from the ready set for this boundary. 2063 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 2064 if (Available.isInQueue(SU)) 2065 Available.remove(Available.find(SU)); 2066 else { 2067 assert(Pending.isInQueue(SU) && "bad ready count"); 2068 Pending.remove(Pending.find(SU)); 2069 } 2070 } 2071 2072 /// If this queue only has one ready candidate, return it. As a side effect, 2073 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2074 /// one node is ready. If multiple instructions are ready, return NULL. 2075 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 2076 if (CheckPending) 2077 releasePending(); 2078 2079 if (CurrMOps > 0) { 2080 // Defer any ready instrs that now have a hazard. 2081 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2082 if (checkHazard(*I)) { 2083 Pending.push(*I); 2084 I = Available.remove(I); 2085 continue; 2086 } 2087 ++I; 2088 } 2089 } 2090 for (unsigned i = 0; Available.empty(); ++i) { 2091 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 2092 "permanent hazard"); (void)i; 2093 bumpCycle(CurrCycle + 1); 2094 releasePending(); 2095 } 2096 if (Available.size() == 1) 2097 return *Available.begin(); 2098 return NULL; 2099 } 2100 2101 #ifndef NDEBUG 2102 // This is useful information to dump after bumpNode. 2103 // Note that the Queue contents are more useful before pickNodeFromQueue. 2104 void ConvergingScheduler::SchedBoundary::dumpScheduledState() { 2105 unsigned ResFactor; 2106 unsigned ResCount; 2107 if (ZoneCritResIdx) { 2108 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2109 ResCount = getResourceCount(ZoneCritResIdx); 2110 } 2111 else { 2112 ResFactor = SchedModel->getMicroOpFactor(); 2113 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2114 } 2115 unsigned LFactor = SchedModel->getLatencyFactor(); 2116 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2117 << " Retired: " << RetiredMOps; 2118 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2119 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2120 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) 2121 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2122 << (IsResourceLimited ? " - Resource" : " - Latency") 2123 << " limited.\n"; 2124 } 2125 #endif 2126 2127 void ConvergingScheduler::SchedCandidate:: 2128 initResourceDelta(const ScheduleDAGMI *DAG, 2129 const TargetSchedModel *SchedModel) { 2130 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2131 return; 2132 2133 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2134 for (TargetSchedModel::ProcResIter 2135 PI = SchedModel->getWriteProcResBegin(SC), 2136 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2137 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2138 ResDelta.CritResources += PI->Cycles; 2139 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2140 ResDelta.DemandedResources += PI->Cycles; 2141 } 2142 } 2143 2144 2145 /// Return true if this heuristic determines order. 2146 static bool tryLess(int TryVal, int CandVal, 2147 ConvergingScheduler::SchedCandidate &TryCand, 2148 ConvergingScheduler::SchedCandidate &Cand, 2149 ConvergingScheduler::CandReason Reason) { 2150 if (TryVal < CandVal) { 2151 TryCand.Reason = Reason; 2152 return true; 2153 } 2154 if (TryVal > CandVal) { 2155 if (Cand.Reason > Reason) 2156 Cand.Reason = Reason; 2157 return true; 2158 } 2159 Cand.setRepeat(Reason); 2160 return false; 2161 } 2162 2163 static bool tryGreater(int TryVal, int CandVal, 2164 ConvergingScheduler::SchedCandidate &TryCand, 2165 ConvergingScheduler::SchedCandidate &Cand, 2166 ConvergingScheduler::CandReason Reason) { 2167 if (TryVal > CandVal) { 2168 TryCand.Reason = Reason; 2169 return true; 2170 } 2171 if (TryVal < CandVal) { 2172 if (Cand.Reason > Reason) 2173 Cand.Reason = Reason; 2174 return true; 2175 } 2176 Cand.setRepeat(Reason); 2177 return false; 2178 } 2179 2180 static bool tryPressure(const PressureChange &TryP, 2181 const PressureChange &CandP, 2182 ConvergingScheduler::SchedCandidate &TryCand, 2183 ConvergingScheduler::SchedCandidate &Cand, 2184 ConvergingScheduler::CandReason Reason) { 2185 int TryRank = TryP.getPSetOrMax(); 2186 int CandRank = CandP.getPSetOrMax(); 2187 // If both candidates affect the same set, go with the smallest increase. 2188 if (TryRank == CandRank) { 2189 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2190 Reason); 2191 } 2192 // If one candidate decreases and the other increases, go with it. 2193 // Invalid candidates have UnitInc==0. 2194 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2195 Reason)) { 2196 return true; 2197 } 2198 // If the candidates are decreasing pressure, reverse priority. 2199 if (TryP.getUnitInc() < 0) 2200 std::swap(TryRank, CandRank); 2201 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2202 } 2203 2204 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2205 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2206 } 2207 2208 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2209 /// their physreg def/use. 2210 /// 2211 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2212 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2213 /// with the operation that produces or consumes the physreg. We'll do this when 2214 /// regalloc has support for parallel copies. 2215 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2216 const MachineInstr *MI = SU->getInstr(); 2217 if (!MI->isCopy()) 2218 return 0; 2219 2220 unsigned ScheduledOper = isTop ? 1 : 0; 2221 unsigned UnscheduledOper = isTop ? 0 : 1; 2222 // If we have already scheduled the physreg produce/consumer, immediately 2223 // schedule the copy. 2224 if (TargetRegisterInfo::isPhysicalRegister( 2225 MI->getOperand(ScheduledOper).getReg())) 2226 return 1; 2227 // If the physreg is at the boundary, defer it. Otherwise schedule it 2228 // immediately to free the dependent. We can hoist the copy later. 2229 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2230 if (TargetRegisterInfo::isPhysicalRegister( 2231 MI->getOperand(UnscheduledOper).getReg())) 2232 return AtBoundary ? -1 : 1; 2233 return 0; 2234 } 2235 2236 static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand, 2237 ConvergingScheduler::SchedCandidate &Cand, 2238 ConvergingScheduler::SchedBoundary &Zone) { 2239 if (Zone.isTop()) { 2240 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2241 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2242 TryCand, Cand, ConvergingScheduler::TopDepthReduce)) 2243 return true; 2244 } 2245 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2246 TryCand, Cand, ConvergingScheduler::TopPathReduce)) 2247 return true; 2248 } 2249 else { 2250 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2251 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2252 TryCand, Cand, ConvergingScheduler::BotHeightReduce)) 2253 return true; 2254 } 2255 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2256 TryCand, Cand, ConvergingScheduler::BotPathReduce)) 2257 return true; 2258 } 2259 return false; 2260 } 2261 2262 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2263 /// hierarchical. This may be more efficient than a graduated cost model because 2264 /// we don't need to evaluate all aspects of the model for each node in the 2265 /// queue. But it's really done to make the heuristics easier to debug and 2266 /// statistically analyze. 2267 /// 2268 /// \param Cand provides the policy and current best candidate. 2269 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2270 /// \param Zone describes the scheduled zone that we are extending. 2271 /// \param RPTracker describes reg pressure within the scheduled zone. 2272 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2273 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 2274 SchedCandidate &TryCand, 2275 SchedBoundary &Zone, 2276 const RegPressureTracker &RPTracker, 2277 RegPressureTracker &TempTracker) { 2278 2279 // Always initialize TryCand's RPDelta. 2280 if (Zone.isTop()) { 2281 TempTracker.getMaxDownwardPressureDelta( 2282 TryCand.SU->getInstr(), 2283 TryCand.RPDelta, 2284 DAG->getRegionCriticalPSets(), 2285 DAG->getRegPressure().MaxSetPressure); 2286 } 2287 else { 2288 if (VerifyScheduling) { 2289 TempTracker.getMaxUpwardPressureDelta( 2290 TryCand.SU->getInstr(), 2291 &DAG->getPressureDiff(TryCand.SU), 2292 TryCand.RPDelta, 2293 DAG->getRegionCriticalPSets(), 2294 DAG->getRegPressure().MaxSetPressure); 2295 } 2296 else { 2297 RPTracker.getUpwardPressureDelta( 2298 TryCand.SU->getInstr(), 2299 DAG->getPressureDiff(TryCand.SU), 2300 TryCand.RPDelta, 2301 DAG->getRegionCriticalPSets(), 2302 DAG->getRegPressure().MaxSetPressure); 2303 } 2304 } 2305 2306 // Initialize the candidate if needed. 2307 if (!Cand.isValid()) { 2308 TryCand.Reason = NodeOrder; 2309 return; 2310 } 2311 2312 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2313 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2314 TryCand, Cand, PhysRegCopy)) 2315 return; 2316 2317 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2318 // invalid; convert it to INT_MAX to give it lowest priority. 2319 if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand, 2320 RegExcess)) 2321 return; 2322 2323 // For loops that are acyclic path limited, aggressively schedule for latency. 2324 if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) 2325 return; 2326 2327 // Avoid increasing the max critical pressure in the scheduled region. 2328 if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax, 2329 TryCand, Cand, RegCritical)) 2330 return; 2331 2332 // Keep clustered nodes together to encourage downstream peephole 2333 // optimizations which may reduce resource requirements. 2334 // 2335 // This is a best effort to set things up for a post-RA pass. Optimizations 2336 // like generating loads of multiple registers should ideally be done within 2337 // the scheduler pass by combining the loads during DAG postprocessing. 2338 const SUnit *NextClusterSU = 2339 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2340 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2341 TryCand, Cand, Cluster)) 2342 return; 2343 2344 // Weak edges are for clustering and other constraints. 2345 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2346 getWeakLeft(Cand.SU, Zone.isTop()), 2347 TryCand, Cand, Weak)) { 2348 return; 2349 } 2350 // Avoid increasing the max pressure of the entire region. 2351 if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, 2352 TryCand, Cand, RegMax)) 2353 return; 2354 2355 // Avoid critical resource consumption and balance the schedule. 2356 TryCand.initResourceDelta(DAG, SchedModel); 2357 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2358 TryCand, Cand, ResourceReduce)) 2359 return; 2360 if (tryGreater(TryCand.ResDelta.DemandedResources, 2361 Cand.ResDelta.DemandedResources, 2362 TryCand, Cand, ResourceDemand)) 2363 return; 2364 2365 // Avoid serializing long latency dependence chains. 2366 // For acyclic path limited loops, latency was already checked above. 2367 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2368 && tryLatency(TryCand, Cand, Zone)) { 2369 return; 2370 } 2371 2372 // Prefer immediate defs/users of the last scheduled instruction. This is a 2373 // local pressure avoidance strategy that also makes the machine code 2374 // readable. 2375 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 2376 TryCand, Cand, NextDefUse)) 2377 return; 2378 2379 // Fall through to original instruction order. 2380 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2381 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2382 TryCand.Reason = NodeOrder; 2383 } 2384 } 2385 2386 #ifndef NDEBUG 2387 const char *ConvergingScheduler::getReasonStr( 2388 ConvergingScheduler::CandReason Reason) { 2389 switch (Reason) { 2390 case NoCand: return "NOCAND "; 2391 case PhysRegCopy: return "PREG-COPY"; 2392 case RegExcess: return "REG-EXCESS"; 2393 case RegCritical: return "REG-CRIT "; 2394 case Cluster: return "CLUSTER "; 2395 case Weak: return "WEAK "; 2396 case RegMax: return "REG-MAX "; 2397 case ResourceReduce: return "RES-REDUCE"; 2398 case ResourceDemand: return "RES-DEMAND"; 2399 case TopDepthReduce: return "TOP-DEPTH "; 2400 case TopPathReduce: return "TOP-PATH "; 2401 case BotHeightReduce:return "BOT-HEIGHT"; 2402 case BotPathReduce: return "BOT-PATH "; 2403 case NextDefUse: return "DEF-USE "; 2404 case NodeOrder: return "ORDER "; 2405 }; 2406 llvm_unreachable("Unknown reason!"); 2407 } 2408 2409 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { 2410 PressureChange P; 2411 unsigned ResIdx = 0; 2412 unsigned Latency = 0; 2413 switch (Cand.Reason) { 2414 default: 2415 break; 2416 case RegExcess: 2417 P = Cand.RPDelta.Excess; 2418 break; 2419 case RegCritical: 2420 P = Cand.RPDelta.CriticalMax; 2421 break; 2422 case RegMax: 2423 P = Cand.RPDelta.CurrentMax; 2424 break; 2425 case ResourceReduce: 2426 ResIdx = Cand.Policy.ReduceResIdx; 2427 break; 2428 case ResourceDemand: 2429 ResIdx = Cand.Policy.DemandResIdx; 2430 break; 2431 case TopDepthReduce: 2432 Latency = Cand.SU->getDepth(); 2433 break; 2434 case TopPathReduce: 2435 Latency = Cand.SU->getHeight(); 2436 break; 2437 case BotHeightReduce: 2438 Latency = Cand.SU->getHeight(); 2439 break; 2440 case BotPathReduce: 2441 Latency = Cand.SU->getDepth(); 2442 break; 2443 } 2444 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2445 if (P.isValid()) 2446 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2447 << ":" << P.getUnitInc() << " "; 2448 else 2449 dbgs() << " "; 2450 if (ResIdx) 2451 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2452 else 2453 dbgs() << " "; 2454 if (Latency) 2455 dbgs() << " " << Latency << " cycles "; 2456 else 2457 dbgs() << " "; 2458 dbgs() << '\n'; 2459 } 2460 #endif 2461 2462 /// Pick the best candidate from the top queue. 2463 /// 2464 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2465 /// DAG building. To adjust for the current scheduling location we need to 2466 /// maintain the number of vreg uses remaining to be top-scheduled. 2467 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2468 const RegPressureTracker &RPTracker, 2469 SchedCandidate &Cand) { 2470 ReadyQueue &Q = Zone.Available; 2471 2472 DEBUG(Q.dump()); 2473 2474 // getMaxPressureDelta temporarily modifies the tracker. 2475 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2476 2477 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2478 2479 SchedCandidate TryCand(Cand.Policy); 2480 TryCand.SU = *I; 2481 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2482 if (TryCand.Reason != NoCand) { 2483 // Initialize resource delta if needed in case future heuristics query it. 2484 if (TryCand.ResDelta == SchedResourceDelta()) 2485 TryCand.initResourceDelta(DAG, SchedModel); 2486 Cand.setBest(TryCand); 2487 DEBUG(traceCandidate(Cand)); 2488 } 2489 } 2490 } 2491 2492 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 2493 bool IsTop) { 2494 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2495 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 2496 } 2497 2498 /// Pick the best candidate node from either the top or bottom queue. 2499 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 2500 // Schedule as far as possible in the direction of no choice. This is most 2501 // efficient, but also provides the best heuristics for CriticalPSets. 2502 if (SUnit *SU = Bot.pickOnlyChoice()) { 2503 IsTopNode = false; 2504 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2505 return SU; 2506 } 2507 if (SUnit *SU = Top.pickOnlyChoice()) { 2508 IsTopNode = true; 2509 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2510 return SU; 2511 } 2512 CandPolicy NoPolicy; 2513 SchedCandidate BotCand(NoPolicy); 2514 SchedCandidate TopCand(NoPolicy); 2515 Bot.setPolicy(BotCand.Policy, Top); 2516 Top.setPolicy(TopCand.Policy, Bot); 2517 2518 // Prefer bottom scheduling when heuristics are silent. 2519 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2520 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2521 2522 // If either Q has a single candidate that provides the least increase in 2523 // Excess pressure, we can immediately schedule from that Q. 2524 // 2525 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2526 // affects picking from either Q. If scheduling in one direction must 2527 // increase pressure for one of the excess PSets, then schedule in that 2528 // direction first to provide more freedom in the other direction. 2529 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2530 || (BotCand.Reason == RegCritical 2531 && !BotCand.isRepeat(RegCritical))) 2532 { 2533 IsTopNode = false; 2534 tracePick(BotCand, IsTopNode); 2535 return BotCand.SU; 2536 } 2537 // Check if the top Q has a better candidate. 2538 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2539 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2540 2541 // Choose the queue with the most important (lowest enum) reason. 2542 if (TopCand.Reason < BotCand.Reason) { 2543 IsTopNode = true; 2544 tracePick(TopCand, IsTopNode); 2545 return TopCand.SU; 2546 } 2547 // Otherwise prefer the bottom candidate, in node order if all else failed. 2548 IsTopNode = false; 2549 tracePick(BotCand, IsTopNode); 2550 return BotCand.SU; 2551 } 2552 2553 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2554 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2555 if (DAG->top() == DAG->bottom()) { 2556 assert(Top.Available.empty() && Top.Pending.empty() && 2557 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2558 return NULL; 2559 } 2560 SUnit *SU; 2561 do { 2562 if (ForceTopDown) { 2563 SU = Top.pickOnlyChoice(); 2564 if (!SU) { 2565 CandPolicy NoPolicy; 2566 SchedCandidate TopCand(NoPolicy); 2567 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2568 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2569 SU = TopCand.SU; 2570 } 2571 IsTopNode = true; 2572 } 2573 else if (ForceBottomUp) { 2574 SU = Bot.pickOnlyChoice(); 2575 if (!SU) { 2576 CandPolicy NoPolicy; 2577 SchedCandidate BotCand(NoPolicy); 2578 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2579 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2580 SU = BotCand.SU; 2581 } 2582 IsTopNode = false; 2583 } 2584 else { 2585 SU = pickNodeBidirectional(IsTopNode); 2586 } 2587 } while (SU->isScheduled); 2588 2589 if (SU->isTopReady()) 2590 Top.removeReady(SU); 2591 if (SU->isBottomReady()) 2592 Bot.removeReady(SU); 2593 2594 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2595 return SU; 2596 } 2597 2598 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2599 2600 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2601 if (!isTop) 2602 ++InsertPos; 2603 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2604 2605 // Find already scheduled copies with a single physreg dependence and move 2606 // them just above the scheduled instruction. 2607 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2608 I != E; ++I) { 2609 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2610 continue; 2611 SUnit *DepSU = I->getSUnit(); 2612 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2613 continue; 2614 MachineInstr *Copy = DepSU->getInstr(); 2615 if (!Copy->isCopy()) 2616 continue; 2617 DEBUG(dbgs() << " Rescheduling physreg copy "; 2618 I->getSUnit()->dump(DAG)); 2619 DAG->moveInstruction(Copy, InsertPos); 2620 } 2621 } 2622 2623 /// Update the scheduler's state after scheduling a node. This is the same node 2624 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2625 /// it's state based on the current cycle before MachineSchedStrategy does. 2626 /// 2627 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2628 /// them here. See comments in biasPhysRegCopy. 2629 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2630 if (IsTopNode) { 2631 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); 2632 Top.bumpNode(SU); 2633 if (SU->hasPhysRegUses) 2634 reschedulePhysRegCopies(SU, true); 2635 } 2636 else { 2637 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); 2638 Bot.bumpNode(SU); 2639 if (SU->hasPhysRegDefs) 2640 reschedulePhysRegCopies(SU, false); 2641 } 2642 } 2643 2644 /// Create the standard converging machine scheduler. This will be used as the 2645 /// default scheduler if the target does not set a default. 2646 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2647 assert((!ForceTopDown || !ForceBottomUp) && 2648 "-misched-topdown incompatible with -misched-bottomup"); 2649 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2650 // Register DAG post-processors. 2651 // 2652 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2653 // data and pass it to later mutations. Have a single mutation that gathers 2654 // the interesting nodes in one pass. 2655 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 2656 if (EnableLoadCluster) 2657 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2658 if (EnableMacroFusion) 2659 DAG->addMutation(new MacroFusion(DAG->TII)); 2660 return DAG; 2661 } 2662 static MachineSchedRegistry 2663 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2664 createConvergingSched); 2665 2666 //===----------------------------------------------------------------------===// 2667 // ILP Scheduler. Currently for experimental analysis of heuristics. 2668 //===----------------------------------------------------------------------===// 2669 2670 namespace { 2671 /// \brief Order nodes by the ILP metric. 2672 struct ILPOrder { 2673 const SchedDFSResult *DFSResult; 2674 const BitVector *ScheduledTrees; 2675 bool MaximizeILP; 2676 2677 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2678 2679 /// \brief Apply a less-than relation on node priority. 2680 /// 2681 /// (Return true if A comes after B in the Q.) 2682 bool operator()(const SUnit *A, const SUnit *B) const { 2683 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2684 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2685 if (SchedTreeA != SchedTreeB) { 2686 // Unscheduled trees have lower priority. 2687 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2688 return ScheduledTrees->test(SchedTreeB); 2689 2690 // Trees with shallower connections have have lower priority. 2691 if (DFSResult->getSubtreeLevel(SchedTreeA) 2692 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2693 return DFSResult->getSubtreeLevel(SchedTreeA) 2694 < DFSResult->getSubtreeLevel(SchedTreeB); 2695 } 2696 } 2697 if (MaximizeILP) 2698 return DFSResult->getILP(A) < DFSResult->getILP(B); 2699 else 2700 return DFSResult->getILP(A) > DFSResult->getILP(B); 2701 } 2702 }; 2703 2704 /// \brief Schedule based on the ILP metric. 2705 class ILPScheduler : public MachineSchedStrategy { 2706 /// In case all subtrees are eventually connected to a common root through 2707 /// data dependence (e.g. reduction), place an upper limit on their size. 2708 /// 2709 /// FIXME: A subtree limit is generally good, but in the situation commented 2710 /// above, where multiple similar subtrees feed a common root, we should 2711 /// only split at a point where the resulting subtrees will be balanced. 2712 /// (a motivating test case must be found). 2713 static const unsigned SubtreeLimit = 16; 2714 2715 ScheduleDAGMI *DAG; 2716 ILPOrder Cmp; 2717 2718 std::vector<SUnit*> ReadyQ; 2719 public: 2720 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2721 2722 virtual void initialize(ScheduleDAGMI *dag) { 2723 DAG = dag; 2724 DAG->computeDFSResult(); 2725 Cmp.DFSResult = DAG->getDFSResult(); 2726 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2727 ReadyQ.clear(); 2728 } 2729 2730 virtual void registerRoots() { 2731 // Restore the heap in ReadyQ with the updated DFS results. 2732 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2733 } 2734 2735 /// Implement MachineSchedStrategy interface. 2736 /// ----------------------------------------- 2737 2738 /// Callback to select the highest priority node from the ready Q. 2739 virtual SUnit *pickNode(bool &IsTopNode) { 2740 if (ReadyQ.empty()) return NULL; 2741 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2742 SUnit *SU = ReadyQ.back(); 2743 ReadyQ.pop_back(); 2744 IsTopNode = false; 2745 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 2746 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2747 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2748 << DAG->getDFSResult()->getSubtreeLevel( 2749 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 2750 << "Scheduling " << *SU->getInstr()); 2751 return SU; 2752 } 2753 2754 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2755 virtual void scheduleTree(unsigned SubtreeID) { 2756 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2757 } 2758 2759 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2760 /// DFSResults, and resort the priority Q. 2761 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2762 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2763 } 2764 2765 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2766 2767 virtual void releaseBottomNode(SUnit *SU) { 2768 ReadyQ.push_back(SU); 2769 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2770 } 2771 }; 2772 } // namespace 2773 2774 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2775 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2776 } 2777 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2778 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2779 } 2780 static MachineSchedRegistry ILPMaxRegistry( 2781 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2782 static MachineSchedRegistry ILPMinRegistry( 2783 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2784 2785 //===----------------------------------------------------------------------===// 2786 // Machine Instruction Shuffler for Correctness Testing 2787 //===----------------------------------------------------------------------===// 2788 2789 #ifndef NDEBUG 2790 namespace { 2791 /// Apply a less-than relation on the node order, which corresponds to the 2792 /// instruction order prior to scheduling. IsReverse implements greater-than. 2793 template<bool IsReverse> 2794 struct SUnitOrder { 2795 bool operator()(SUnit *A, SUnit *B) const { 2796 if (IsReverse) 2797 return A->NodeNum > B->NodeNum; 2798 else 2799 return A->NodeNum < B->NodeNum; 2800 } 2801 }; 2802 2803 /// Reorder instructions as much as possible. 2804 class InstructionShuffler : public MachineSchedStrategy { 2805 bool IsAlternating; 2806 bool IsTopDown; 2807 2808 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2809 // gives nodes with a higher number higher priority causing the latest 2810 // instructions to be scheduled first. 2811 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2812 TopQ; 2813 // When scheduling bottom-up, use greater-than as the queue priority. 2814 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2815 BottomQ; 2816 public: 2817 InstructionShuffler(bool alternate, bool topdown) 2818 : IsAlternating(alternate), IsTopDown(topdown) {} 2819 2820 virtual void initialize(ScheduleDAGMI *) { 2821 TopQ.clear(); 2822 BottomQ.clear(); 2823 } 2824 2825 /// Implement MachineSchedStrategy interface. 2826 /// ----------------------------------------- 2827 2828 virtual SUnit *pickNode(bool &IsTopNode) { 2829 SUnit *SU; 2830 if (IsTopDown) { 2831 do { 2832 if (TopQ.empty()) return NULL; 2833 SU = TopQ.top(); 2834 TopQ.pop(); 2835 } while (SU->isScheduled); 2836 IsTopNode = true; 2837 } 2838 else { 2839 do { 2840 if (BottomQ.empty()) return NULL; 2841 SU = BottomQ.top(); 2842 BottomQ.pop(); 2843 } while (SU->isScheduled); 2844 IsTopNode = false; 2845 } 2846 if (IsAlternating) 2847 IsTopDown = !IsTopDown; 2848 return SU; 2849 } 2850 2851 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2852 2853 virtual void releaseTopNode(SUnit *SU) { 2854 TopQ.push(SU); 2855 } 2856 virtual void releaseBottomNode(SUnit *SU) { 2857 BottomQ.push(SU); 2858 } 2859 }; 2860 } // namespace 2861 2862 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2863 bool Alternate = !ForceTopDown && !ForceBottomUp; 2864 bool TopDown = !ForceBottomUp; 2865 assert((TopDown || !ForceTopDown) && 2866 "-misched-topdown incompatible with -misched-bottomup"); 2867 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2868 } 2869 static MachineSchedRegistry ShufflerRegistry( 2870 "shuffle", "Shuffle machine instructions alternating directions", 2871 createInstructionShuffler); 2872 #endif // !NDEBUG 2873 2874 //===----------------------------------------------------------------------===// 2875 // GraphWriter support for ScheduleDAGMI. 2876 //===----------------------------------------------------------------------===// 2877 2878 #ifndef NDEBUG 2879 namespace llvm { 2880 2881 template<> struct GraphTraits< 2882 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2883 2884 template<> 2885 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2886 2887 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2888 2889 static std::string getGraphName(const ScheduleDAG *G) { 2890 return G->MF.getName(); 2891 } 2892 2893 static bool renderGraphFromBottomUp() { 2894 return true; 2895 } 2896 2897 static bool isNodeHidden(const SUnit *Node) { 2898 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2899 } 2900 2901 static bool hasNodeAddressLabel(const SUnit *Node, 2902 const ScheduleDAG *Graph) { 2903 return false; 2904 } 2905 2906 /// If you want to override the dot attributes printed for a particular 2907 /// edge, override this method. 2908 static std::string getEdgeAttributes(const SUnit *Node, 2909 SUnitIterator EI, 2910 const ScheduleDAG *Graph) { 2911 if (EI.isArtificialDep()) 2912 return "color=cyan,style=dashed"; 2913 if (EI.isCtrlDep()) 2914 return "color=blue,style=dashed"; 2915 return ""; 2916 } 2917 2918 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 2919 std::string Str; 2920 raw_string_ostream SS(Str); 2921 SS << "SU(" << SU->NodeNum << ')'; 2922 return SS.str(); 2923 } 2924 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 2925 return G->getGraphNodeLabel(SU); 2926 } 2927 2928 static std::string getNodeAttributes(const SUnit *N, 2929 const ScheduleDAG *Graph) { 2930 std::string Str("shape=Mrecord"); 2931 const SchedDFSResult *DFS = 2932 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 2933 if (DFS) { 2934 Str += ",style=filled,fillcolor=\"#"; 2935 Str += DOT::getColorString(DFS->getSubtreeID(N)); 2936 Str += '"'; 2937 } 2938 return Str; 2939 } 2940 }; 2941 } // namespace llvm 2942 #endif // NDEBUG 2943 2944 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 2945 /// rendered using 'dot'. 2946 /// 2947 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 2948 #ifndef NDEBUG 2949 ViewGraph(this, Name, false, Title); 2950 #else 2951 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 2952 << "systems with Graphviz or gv!\n"; 2953 #endif // NDEBUG 2954 } 2955 2956 /// Out-of-line implementation with no arguments is handy for gdb. 2957 void ScheduleDAGMI::viewGraph() { 2958 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 2959 } 2960