1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "misched" 36 37 namespace llvm { 38 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 39 cl::desc("Force top-down list scheduling")); 40 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 41 cl::desc("Force bottom-up list scheduling")); 42 cl::opt<bool> 43 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 44 cl::desc("Print critical path length to stdout")); 45 } 46 47 #ifndef NDEBUG 48 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 49 cl::desc("Pop up a window to show MISched dags after they are processed")); 50 51 /// In some situations a few uninteresting nodes depend on nearly all other 52 /// nodes in the graph, provide a cutoff to hide them. 53 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 54 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 55 56 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 57 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 58 59 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 60 cl::desc("Only schedule this function")); 61 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 62 cl::desc("Only schedule this MBB#")); 63 #else 64 static bool ViewMISchedDAGs = false; 65 #endif // NDEBUG 66 67 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 68 /// size of the ready lists. 69 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 70 cl::desc("Limit ready list to N instructions"), cl::init(256)); 71 72 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 73 cl::desc("Enable register pressure scheduling."), cl::init(true)); 74 75 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 76 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 77 78 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 79 cl::desc("Enable memop clustering."), 80 cl::init(true)); 81 82 // Experimental heuristics 83 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 84 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 85 86 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 87 cl::desc("Verify machine instrs before and after machine scheduling")); 88 89 // DAG subtrees must have at least this many nodes. 90 static const unsigned MinSubtreeSize = 8; 91 92 // Pin the vtables to this file. 93 void MachineSchedStrategy::anchor() {} 94 void ScheduleDAGMutation::anchor() {} 95 96 //===----------------------------------------------------------------------===// 97 // Machine Instruction Scheduling Pass and Registry 98 //===----------------------------------------------------------------------===// 99 100 MachineSchedContext::MachineSchedContext(): 101 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 102 RegClassInfo = new RegisterClassInfo(); 103 } 104 105 MachineSchedContext::~MachineSchedContext() { 106 delete RegClassInfo; 107 } 108 109 namespace { 110 /// Base class for a machine scheduler class that can run at any point. 111 class MachineSchedulerBase : public MachineSchedContext, 112 public MachineFunctionPass { 113 public: 114 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 115 116 void print(raw_ostream &O, const Module* = nullptr) const override; 117 118 protected: 119 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 120 }; 121 122 /// MachineScheduler runs after coalescing and before register allocation. 123 class MachineScheduler : public MachineSchedulerBase { 124 public: 125 MachineScheduler(); 126 127 void getAnalysisUsage(AnalysisUsage &AU) const override; 128 129 bool runOnMachineFunction(MachineFunction&) override; 130 131 static char ID; // Class identification, replacement for typeinfo 132 133 protected: 134 ScheduleDAGInstrs *createMachineScheduler(); 135 }; 136 137 /// PostMachineScheduler runs after shortly before code emission. 138 class PostMachineScheduler : public MachineSchedulerBase { 139 public: 140 PostMachineScheduler(); 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override; 143 144 bool runOnMachineFunction(MachineFunction&) override; 145 146 static char ID; // Class identification, replacement for typeinfo 147 148 protected: 149 ScheduleDAGInstrs *createPostMachineScheduler(); 150 }; 151 } // namespace 152 153 char MachineScheduler::ID = 0; 154 155 char &llvm::MachineSchedulerID = MachineScheduler::ID; 156 157 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 160 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 161 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 162 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 163 "Machine Instruction Scheduler", false, false) 164 165 MachineScheduler::MachineScheduler() 166 : MachineSchedulerBase(ID) { 167 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 168 } 169 170 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 171 AU.setPreservesCFG(); 172 AU.addRequiredID(MachineDominatorsID); 173 AU.addRequired<MachineLoopInfo>(); 174 AU.addRequired<AAResultsWrapperPass>(); 175 AU.addRequired<TargetPassConfig>(); 176 AU.addRequired<SlotIndexes>(); 177 AU.addPreserved<SlotIndexes>(); 178 AU.addRequired<LiveIntervals>(); 179 AU.addPreserved<LiveIntervals>(); 180 MachineFunctionPass::getAnalysisUsage(AU); 181 } 182 183 char PostMachineScheduler::ID = 0; 184 185 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 186 187 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 188 "PostRA Machine Instruction Scheduler", false, false) 189 190 PostMachineScheduler::PostMachineScheduler() 191 : MachineSchedulerBase(ID) { 192 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 193 } 194 195 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 196 AU.setPreservesCFG(); 197 AU.addRequiredID(MachineDominatorsID); 198 AU.addRequired<MachineLoopInfo>(); 199 AU.addRequired<TargetPassConfig>(); 200 MachineFunctionPass::getAnalysisUsage(AU); 201 } 202 203 MachinePassRegistry MachineSchedRegistry::Registry; 204 205 /// A dummy default scheduler factory indicates whether the scheduler 206 /// is overridden on the command line. 207 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 208 return nullptr; 209 } 210 211 /// MachineSchedOpt allows command line selection of the scheduler. 212 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 213 RegisterPassParser<MachineSchedRegistry> > 214 MachineSchedOpt("misched", 215 cl::init(&useDefaultMachineSched), cl::Hidden, 216 cl::desc("Machine instruction scheduler to use")); 217 218 static MachineSchedRegistry 219 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 220 useDefaultMachineSched); 221 222 static cl::opt<bool> EnableMachineSched( 223 "enable-misched", 224 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 225 cl::Hidden); 226 227 static cl::opt<bool> EnablePostRAMachineSched( 228 "enable-post-misched", 229 cl::desc("Enable the post-ra machine instruction scheduling pass."), 230 cl::init(true), cl::Hidden); 231 232 /// Forward declare the standard machine scheduler. This will be used as the 233 /// default scheduler if the target does not set a default. 234 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 235 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 236 237 /// Decrement this iterator until reaching the top or a non-debug instr. 238 static MachineBasicBlock::const_iterator 239 priorNonDebug(MachineBasicBlock::const_iterator I, 240 MachineBasicBlock::const_iterator Beg) { 241 assert(I != Beg && "reached the top of the region, cannot decrement"); 242 while (--I != Beg) { 243 if (!I->isDebugValue()) 244 break; 245 } 246 return I; 247 } 248 249 /// Non-const version. 250 static MachineBasicBlock::iterator 251 priorNonDebug(MachineBasicBlock::iterator I, 252 MachineBasicBlock::const_iterator Beg) { 253 return const_cast<MachineInstr*>( 254 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 255 } 256 257 /// If this iterator is a debug value, increment until reaching the End or a 258 /// non-debug instruction. 259 static MachineBasicBlock::const_iterator 260 nextIfDebug(MachineBasicBlock::const_iterator I, 261 MachineBasicBlock::const_iterator End) { 262 for(; I != End; ++I) { 263 if (!I->isDebugValue()) 264 break; 265 } 266 return I; 267 } 268 269 /// Non-const version. 270 static MachineBasicBlock::iterator 271 nextIfDebug(MachineBasicBlock::iterator I, 272 MachineBasicBlock::const_iterator End) { 273 // Cast the return value to nonconst MachineInstr, then cast to an 274 // instr_iterator, which does not check for null, finally return a 275 // bundle_iterator. 276 return MachineBasicBlock::instr_iterator( 277 const_cast<MachineInstr*>( 278 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 279 } 280 281 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 282 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 283 // Select the scheduler, or set the default. 284 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 285 if (Ctor != useDefaultMachineSched) 286 return Ctor(this); 287 288 // Get the default scheduler set by the target for this function. 289 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 290 if (Scheduler) 291 return Scheduler; 292 293 // Default to GenericScheduler. 294 return createGenericSchedLive(this); 295 } 296 297 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 298 /// the caller. We don't have a command line option to override the postRA 299 /// scheduler. The Target must configure it. 300 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 301 // Get the postRA scheduler set by the target for this function. 302 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 303 if (Scheduler) 304 return Scheduler; 305 306 // Default to GenericScheduler. 307 return createGenericSchedPostRA(this); 308 } 309 310 /// Top-level MachineScheduler pass driver. 311 /// 312 /// Visit blocks in function order. Divide each block into scheduling regions 313 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 314 /// consistent with the DAG builder, which traverses the interior of the 315 /// scheduling regions bottom-up. 316 /// 317 /// This design avoids exposing scheduling boundaries to the DAG builder, 318 /// simplifying the DAG builder's support for "special" target instructions. 319 /// At the same time the design allows target schedulers to operate across 320 /// scheduling boundaries, for example to bundle the boudary instructions 321 /// without reordering them. This creates complexity, because the target 322 /// scheduler must update the RegionBegin and RegionEnd positions cached by 323 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 324 /// design would be to split blocks at scheduling boundaries, but LLVM has a 325 /// general bias against block splitting purely for implementation simplicity. 326 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 327 if (skipFunction(*mf.getFunction())) 328 return false; 329 330 if (EnableMachineSched.getNumOccurrences()) { 331 if (!EnableMachineSched) 332 return false; 333 } else if (!mf.getSubtarget().enableMachineScheduler()) 334 return false; 335 336 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 337 338 // Initialize the context of the pass. 339 MF = &mf; 340 MLI = &getAnalysis<MachineLoopInfo>(); 341 MDT = &getAnalysis<MachineDominatorTree>(); 342 PassConfig = &getAnalysis<TargetPassConfig>(); 343 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 344 345 LIS = &getAnalysis<LiveIntervals>(); 346 347 if (VerifyScheduling) { 348 DEBUG(LIS->dump()); 349 MF->verify(this, "Before machine scheduling."); 350 } 351 RegClassInfo->runOnMachineFunction(*MF); 352 353 // Instantiate the selected scheduler for this target, function, and 354 // optimization level. 355 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 356 scheduleRegions(*Scheduler, false); 357 358 DEBUG(LIS->dump()); 359 if (VerifyScheduling) 360 MF->verify(this, "After machine scheduling."); 361 return true; 362 } 363 364 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 365 if (skipFunction(*mf.getFunction())) 366 return false; 367 368 if (EnablePostRAMachineSched.getNumOccurrences()) { 369 if (!EnablePostRAMachineSched) 370 return false; 371 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 372 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 373 return false; 374 } 375 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 376 377 // Initialize the context of the pass. 378 MF = &mf; 379 PassConfig = &getAnalysis<TargetPassConfig>(); 380 381 if (VerifyScheduling) 382 MF->verify(this, "Before post machine scheduling."); 383 384 // Instantiate the selected scheduler for this target, function, and 385 // optimization level. 386 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 387 scheduleRegions(*Scheduler, true); 388 389 if (VerifyScheduling) 390 MF->verify(this, "After post machine scheduling."); 391 return true; 392 } 393 394 /// Return true of the given instruction should not be included in a scheduling 395 /// region. 396 /// 397 /// MachineScheduler does not currently support scheduling across calls. To 398 /// handle calls, the DAG builder needs to be modified to create register 399 /// anti/output dependencies on the registers clobbered by the call's regmask 400 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 401 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 402 /// the boundary, but there would be no benefit to postRA scheduling across 403 /// calls this late anyway. 404 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 405 MachineBasicBlock *MBB, 406 MachineFunction *MF, 407 const TargetInstrInfo *TII) { 408 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 409 } 410 411 /// Main driver for both MachineScheduler and PostMachineScheduler. 412 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 413 bool FixKillFlags) { 414 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 415 416 // Visit all machine basic blocks. 417 // 418 // TODO: Visit blocks in global postorder or postorder within the bottom-up 419 // loop tree. Then we can optionally compute global RegPressure. 420 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 421 MBB != MBBEnd; ++MBB) { 422 423 Scheduler.startBlock(&*MBB); 424 425 #ifndef NDEBUG 426 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 427 continue; 428 if (SchedOnlyBlock.getNumOccurrences() 429 && (int)SchedOnlyBlock != MBB->getNumber()) 430 continue; 431 #endif 432 433 // Break the block into scheduling regions [I, RegionEnd), and schedule each 434 // region as soon as it is discovered. RegionEnd points the scheduling 435 // boundary at the bottom of the region. The DAG does not include RegionEnd, 436 // but the region does (i.e. the next RegionEnd is above the previous 437 // RegionBegin). If the current block has no terminator then RegionEnd == 438 // MBB->end() for the bottom region. 439 // 440 // The Scheduler may insert instructions during either schedule() or 441 // exitRegion(), even for empty regions. So the local iterators 'I' and 442 // 'RegionEnd' are invalid across these calls. 443 // 444 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 445 // as a single instruction. 446 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 447 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 448 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 449 450 // Avoid decrementing RegionEnd for blocks with no terminator. 451 if (RegionEnd != MBB->end() || 452 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 453 --RegionEnd; 454 // Count the boundary instruction. 455 --RemainingInstrs; 456 } 457 458 // The next region starts above the previous region. Look backward in the 459 // instruction stream until we find the nearest boundary. 460 unsigned NumRegionInstrs = 0; 461 MachineBasicBlock::iterator I = RegionEnd; 462 for(;I != MBB->begin(); --I, --RemainingInstrs) { 463 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 464 break; 465 if (!I->isDebugValue()) 466 ++NumRegionInstrs; 467 } 468 // Notify the scheduler of the region, even if we may skip scheduling 469 // it. Perhaps it still needs to be bundled. 470 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 471 472 // Skip empty scheduling regions (0 or 1 schedulable instructions). 473 if (I == RegionEnd || I == std::prev(RegionEnd)) { 474 // Close the current region. Bundle the terminator if needed. 475 // This invalidates 'RegionEnd' and 'I'. 476 Scheduler.exitRegion(); 477 continue; 478 } 479 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 480 DEBUG(dbgs() << MF->getName() 481 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 482 << "\n From: " << *I << " To: "; 483 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 484 else dbgs() << "End"; 485 dbgs() << " RegionInstrs: " << NumRegionInstrs 486 << " Remaining: " << RemainingInstrs << "\n"); 487 if (DumpCriticalPathLength) { 488 errs() << MF->getName(); 489 errs() << ":BB# " << MBB->getNumber(); 490 errs() << " " << MBB->getName() << " \n"; 491 } 492 493 // Schedule a region: possibly reorder instructions. 494 // This invalidates 'RegionEnd' and 'I'. 495 Scheduler.schedule(); 496 497 // Close the current region. 498 Scheduler.exitRegion(); 499 500 // Scheduling has invalidated the current iterator 'I'. Ask the 501 // scheduler for the top of it's scheduled region. 502 RegionEnd = Scheduler.begin(); 503 } 504 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 505 Scheduler.finishBlock(); 506 // FIXME: Ideally, no further passes should rely on kill flags. However, 507 // thumb2 size reduction is currently an exception, so the PostMIScheduler 508 // needs to do this. 509 if (FixKillFlags) 510 Scheduler.fixupKills(&*MBB); 511 } 512 Scheduler.finalizeSchedule(); 513 } 514 515 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 516 // unimplemented 517 } 518 519 LLVM_DUMP_METHOD 520 void ReadyQueue::dump() { 521 dbgs() << "Queue " << Name << ": "; 522 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 523 dbgs() << Queue[i]->NodeNum << " "; 524 dbgs() << "\n"; 525 } 526 527 //===----------------------------------------------------------------------===// 528 // ScheduleDAGMI - Basic machine instruction scheduling. This is 529 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 530 // virtual registers. 531 // ===----------------------------------------------------------------------===/ 532 533 // Provide a vtable anchor. 534 ScheduleDAGMI::~ScheduleDAGMI() { 535 } 536 537 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 538 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 539 } 540 541 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 542 if (SuccSU != &ExitSU) { 543 // Do not use WillCreateCycle, it assumes SD scheduling. 544 // If Pred is reachable from Succ, then the edge creates a cycle. 545 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 546 return false; 547 Topo.AddPred(SuccSU, PredDep.getSUnit()); 548 } 549 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 550 // Return true regardless of whether a new edge needed to be inserted. 551 return true; 552 } 553 554 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 555 /// NumPredsLeft reaches zero, release the successor node. 556 /// 557 /// FIXME: Adjust SuccSU height based on MinLatency. 558 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 559 SUnit *SuccSU = SuccEdge->getSUnit(); 560 561 if (SuccEdge->isWeak()) { 562 --SuccSU->WeakPredsLeft; 563 if (SuccEdge->isCluster()) 564 NextClusterSucc = SuccSU; 565 return; 566 } 567 #ifndef NDEBUG 568 if (SuccSU->NumPredsLeft == 0) { 569 dbgs() << "*** Scheduling failed! ***\n"; 570 SuccSU->dump(this); 571 dbgs() << " has been released too many times!\n"; 572 llvm_unreachable(nullptr); 573 } 574 #endif 575 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 576 // CurrCycle may have advanced since then. 577 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 578 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 579 580 --SuccSU->NumPredsLeft; 581 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 582 SchedImpl->releaseTopNode(SuccSU); 583 } 584 585 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 586 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 587 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 588 I != E; ++I) { 589 releaseSucc(SU, &*I); 590 } 591 } 592 593 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 594 /// NumSuccsLeft reaches zero, release the predecessor node. 595 /// 596 /// FIXME: Adjust PredSU height based on MinLatency. 597 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 598 SUnit *PredSU = PredEdge->getSUnit(); 599 600 if (PredEdge->isWeak()) { 601 --PredSU->WeakSuccsLeft; 602 if (PredEdge->isCluster()) 603 NextClusterPred = PredSU; 604 return; 605 } 606 #ifndef NDEBUG 607 if (PredSU->NumSuccsLeft == 0) { 608 dbgs() << "*** Scheduling failed! ***\n"; 609 PredSU->dump(this); 610 dbgs() << " has been released too many times!\n"; 611 llvm_unreachable(nullptr); 612 } 613 #endif 614 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 615 // CurrCycle may have advanced since then. 616 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 617 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 618 619 --PredSU->NumSuccsLeft; 620 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 621 SchedImpl->releaseBottomNode(PredSU); 622 } 623 624 /// releasePredecessors - Call releasePred on each of SU's predecessors. 625 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 626 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 627 I != E; ++I) { 628 releasePred(SU, &*I); 629 } 630 } 631 632 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 633 /// crossing a scheduling boundary. [begin, end) includes all instructions in 634 /// the region, including the boundary itself and single-instruction regions 635 /// that don't get scheduled. 636 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 637 MachineBasicBlock::iterator begin, 638 MachineBasicBlock::iterator end, 639 unsigned regioninstrs) 640 { 641 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 642 643 SchedImpl->initPolicy(begin, end, regioninstrs); 644 } 645 646 /// This is normally called from the main scheduler loop but may also be invoked 647 /// by the scheduling strategy to perform additional code motion. 648 void ScheduleDAGMI::moveInstruction( 649 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 650 // Advance RegionBegin if the first instruction moves down. 651 if (&*RegionBegin == MI) 652 ++RegionBegin; 653 654 // Update the instruction stream. 655 BB->splice(InsertPos, BB, MI); 656 657 // Update LiveIntervals 658 if (LIS) 659 LIS->handleMove(*MI, /*UpdateFlags=*/true); 660 661 // Recede RegionBegin if an instruction moves above the first. 662 if (RegionBegin == InsertPos) 663 RegionBegin = MI; 664 } 665 666 bool ScheduleDAGMI::checkSchedLimit() { 667 #ifndef NDEBUG 668 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 669 CurrentTop = CurrentBottom; 670 return false; 671 } 672 ++NumInstrsScheduled; 673 #endif 674 return true; 675 } 676 677 /// Per-region scheduling driver, called back from 678 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 679 /// does not consider liveness or register pressure. It is useful for PostRA 680 /// scheduling and potentially other custom schedulers. 681 void ScheduleDAGMI::schedule() { 682 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 683 DEBUG(SchedImpl->dumpPolicy()); 684 685 // Build the DAG. 686 buildSchedGraph(AA); 687 688 Topo.InitDAGTopologicalSorting(); 689 690 postprocessDAG(); 691 692 SmallVector<SUnit*, 8> TopRoots, BotRoots; 693 findRootsAndBiasEdges(TopRoots, BotRoots); 694 695 // Initialize the strategy before modifying the DAG. 696 // This may initialize a DFSResult to be used for queue priority. 697 SchedImpl->initialize(this); 698 699 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 700 SUnits[su].dumpAll(this)); 701 if (ViewMISchedDAGs) viewGraph(); 702 703 // Initialize ready queues now that the DAG and priority data are finalized. 704 initQueues(TopRoots, BotRoots); 705 706 bool IsTopNode = false; 707 while (true) { 708 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 709 SUnit *SU = SchedImpl->pickNode(IsTopNode); 710 if (!SU) break; 711 712 assert(!SU->isScheduled && "Node already scheduled"); 713 if (!checkSchedLimit()) 714 break; 715 716 MachineInstr *MI = SU->getInstr(); 717 if (IsTopNode) { 718 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 719 if (&*CurrentTop == MI) 720 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 721 else 722 moveInstruction(MI, CurrentTop); 723 } else { 724 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 725 MachineBasicBlock::iterator priorII = 726 priorNonDebug(CurrentBottom, CurrentTop); 727 if (&*priorII == MI) 728 CurrentBottom = priorII; 729 else { 730 if (&*CurrentTop == MI) 731 CurrentTop = nextIfDebug(++CurrentTop, priorII); 732 moveInstruction(MI, CurrentBottom); 733 CurrentBottom = MI; 734 } 735 } 736 // Notify the scheduling strategy before updating the DAG. 737 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 738 // runs, it can then use the accurate ReadyCycle time to determine whether 739 // newly released nodes can move to the readyQ. 740 SchedImpl->schedNode(SU, IsTopNode); 741 742 updateQueues(SU, IsTopNode); 743 } 744 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 745 746 placeDebugValues(); 747 748 DEBUG({ 749 unsigned BBNum = begin()->getParent()->getNumber(); 750 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 751 dumpSchedule(); 752 dbgs() << '\n'; 753 }); 754 } 755 756 /// Apply each ScheduleDAGMutation step in order. 757 void ScheduleDAGMI::postprocessDAG() { 758 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 759 Mutations[i]->apply(this); 760 } 761 } 762 763 void ScheduleDAGMI:: 764 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 765 SmallVectorImpl<SUnit*> &BotRoots) { 766 for (std::vector<SUnit>::iterator 767 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 768 SUnit *SU = &(*I); 769 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 770 771 // Order predecessors so DFSResult follows the critical path. 772 SU->biasCriticalPath(); 773 774 // A SUnit is ready to top schedule if it has no predecessors. 775 if (!I->NumPredsLeft) 776 TopRoots.push_back(SU); 777 // A SUnit is ready to bottom schedule if it has no successors. 778 if (!I->NumSuccsLeft) 779 BotRoots.push_back(SU); 780 } 781 ExitSU.biasCriticalPath(); 782 } 783 784 /// Identify DAG roots and setup scheduler queues. 785 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 786 ArrayRef<SUnit*> BotRoots) { 787 NextClusterSucc = nullptr; 788 NextClusterPred = nullptr; 789 790 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 791 // 792 // Nodes with unreleased weak edges can still be roots. 793 // Release top roots in forward order. 794 for (SmallVectorImpl<SUnit*>::const_iterator 795 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 796 SchedImpl->releaseTopNode(*I); 797 } 798 // Release bottom roots in reverse order so the higher priority nodes appear 799 // first. This is more natural and slightly more efficient. 800 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 801 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 802 SchedImpl->releaseBottomNode(*I); 803 } 804 805 releaseSuccessors(&EntrySU); 806 releasePredecessors(&ExitSU); 807 808 SchedImpl->registerRoots(); 809 810 // Advance past initial DebugValues. 811 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 812 CurrentBottom = RegionEnd; 813 } 814 815 /// Update scheduler queues after scheduling an instruction. 816 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 817 // Release dependent instructions for scheduling. 818 if (IsTopNode) 819 releaseSuccessors(SU); 820 else 821 releasePredecessors(SU); 822 823 SU->isScheduled = true; 824 } 825 826 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 827 void ScheduleDAGMI::placeDebugValues() { 828 // If first instruction was a DBG_VALUE then put it back. 829 if (FirstDbgValue) { 830 BB->splice(RegionBegin, BB, FirstDbgValue); 831 RegionBegin = FirstDbgValue; 832 } 833 834 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 835 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 836 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 837 MachineInstr *DbgValue = P.first; 838 MachineBasicBlock::iterator OrigPrevMI = P.second; 839 if (&*RegionBegin == DbgValue) 840 ++RegionBegin; 841 BB->splice(++OrigPrevMI, BB, DbgValue); 842 if (OrigPrevMI == std::prev(RegionEnd)) 843 RegionEnd = DbgValue; 844 } 845 DbgValues.clear(); 846 FirstDbgValue = nullptr; 847 } 848 849 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 850 void ScheduleDAGMI::dumpSchedule() const { 851 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 852 if (SUnit *SU = getSUnit(&(*MI))) 853 SU->dump(this); 854 else 855 dbgs() << "Missing SUnit\n"; 856 } 857 } 858 #endif 859 860 //===----------------------------------------------------------------------===// 861 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 862 // preservation. 863 //===----------------------------------------------------------------------===// 864 865 ScheduleDAGMILive::~ScheduleDAGMILive() { 866 delete DFSResult; 867 } 868 869 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 870 /// crossing a scheduling boundary. [begin, end) includes all instructions in 871 /// the region, including the boundary itself and single-instruction regions 872 /// that don't get scheduled. 873 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 874 MachineBasicBlock::iterator begin, 875 MachineBasicBlock::iterator end, 876 unsigned regioninstrs) 877 { 878 // ScheduleDAGMI initializes SchedImpl's per-region policy. 879 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 880 881 // For convenience remember the end of the liveness region. 882 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 883 884 SUPressureDiffs.clear(); 885 886 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 887 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 888 889 if (ShouldTrackLaneMasks) { 890 if (!ShouldTrackPressure) 891 report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure"); 892 // Dead subregister defs have no users and therefore no dependencies, 893 // moving them around may cause liveintervals to degrade into multiple 894 // components. Change independent components to have their own vreg to avoid 895 // this. 896 if (!DisconnectedComponentsRenamed) 897 LIS->renameDisconnectedComponents(); 898 } 899 } 900 901 // Setup the register pressure trackers for the top scheduled top and bottom 902 // scheduled regions. 903 void ScheduleDAGMILive::initRegPressure() { 904 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 905 ShouldTrackLaneMasks, false); 906 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 907 ShouldTrackLaneMasks, false); 908 909 // Close the RPTracker to finalize live ins. 910 RPTracker.closeRegion(); 911 912 DEBUG(RPTracker.dump()); 913 914 // Initialize the live ins and live outs. 915 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 916 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 917 918 // Close one end of the tracker so we can call 919 // getMaxUpward/DownwardPressureDelta before advancing across any 920 // instructions. This converts currently live regs into live ins/outs. 921 TopRPTracker.closeTop(); 922 BotRPTracker.closeBottom(); 923 924 BotRPTracker.initLiveThru(RPTracker); 925 if (!BotRPTracker.getLiveThru().empty()) { 926 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 927 DEBUG(dbgs() << "Live Thru: "; 928 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 929 }; 930 931 // For each live out vreg reduce the pressure change associated with other 932 // uses of the same vreg below the live-out reaching def. 933 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 934 935 // Account for liveness generated by the region boundary. 936 if (LiveRegionEnd != RegionEnd) { 937 SmallVector<RegisterMaskPair, 8> LiveUses; 938 BotRPTracker.recede(&LiveUses); 939 updatePressureDiffs(LiveUses); 940 } 941 942 DEBUG( 943 dbgs() << "Top Pressure:\n"; 944 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 945 dbgs() << "Bottom Pressure:\n"; 946 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 947 ); 948 949 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 950 951 // Cache the list of excess pressure sets in this region. This will also track 952 // the max pressure in the scheduled code for these sets. 953 RegionCriticalPSets.clear(); 954 const std::vector<unsigned> &RegionPressure = 955 RPTracker.getPressure().MaxSetPressure; 956 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 957 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 958 if (RegionPressure[i] > Limit) { 959 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 960 << " Limit " << Limit 961 << " Actual " << RegionPressure[i] << "\n"); 962 RegionCriticalPSets.push_back(PressureChange(i)); 963 } 964 } 965 DEBUG(dbgs() << "Excess PSets: "; 966 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 967 dbgs() << TRI->getRegPressureSetName( 968 RegionCriticalPSets[i].getPSet()) << " "; 969 dbgs() << "\n"); 970 } 971 972 void ScheduleDAGMILive:: 973 updateScheduledPressure(const SUnit *SU, 974 const std::vector<unsigned> &NewMaxPressure) { 975 const PressureDiff &PDiff = getPressureDiff(SU); 976 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 977 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 978 I != E; ++I) { 979 if (!I->isValid()) 980 break; 981 unsigned ID = I->getPSet(); 982 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 983 ++CritIdx; 984 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 985 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 986 && NewMaxPressure[ID] <= INT16_MAX) 987 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 988 } 989 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 990 if (NewMaxPressure[ID] >= Limit - 2) { 991 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 992 << NewMaxPressure[ID] 993 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 994 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 995 } 996 } 997 } 998 999 /// Update the PressureDiff array for liveness after scheduling this 1000 /// instruction. 1001 void ScheduleDAGMILive::updatePressureDiffs( 1002 ArrayRef<RegisterMaskPair> LiveUses) { 1003 for (const RegisterMaskPair &P : LiveUses) { 1004 unsigned Reg = P.RegUnit; 1005 /// FIXME: Currently assuming single-use physregs. 1006 if (!TRI->isVirtualRegister(Reg)) 1007 continue; 1008 1009 if (ShouldTrackLaneMasks) { 1010 // If the register has just become live then other uses won't change 1011 // this fact anymore => decrement pressure. 1012 // If the register has just become dead then other uses make it come 1013 // back to life => increment pressure. 1014 bool Decrement = P.LaneMask != 0; 1015 1016 for (const VReg2SUnit &V2SU 1017 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1018 SUnit &SU = *V2SU.SU; 1019 if (SU.isScheduled || &SU == &ExitSU) 1020 continue; 1021 1022 PressureDiff &PDiff = getPressureDiff(&SU); 1023 PDiff.addPressureChange(Reg, Decrement, &MRI); 1024 DEBUG( 1025 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1026 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1027 << ' ' << *SU.getInstr(); 1028 dbgs() << " to "; 1029 PDiff.dump(*TRI); 1030 ); 1031 } 1032 } else { 1033 assert(P.LaneMask != 0); 1034 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1035 // This may be called before CurrentBottom has been initialized. However, 1036 // BotRPTracker must have a valid position. We want the value live into the 1037 // instruction or live out of the block, so ask for the previous 1038 // instruction's live-out. 1039 const LiveInterval &LI = LIS->getInterval(Reg); 1040 VNInfo *VNI; 1041 MachineBasicBlock::const_iterator I = 1042 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1043 if (I == BB->end()) 1044 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1045 else { 1046 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1047 VNI = LRQ.valueIn(); 1048 } 1049 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1050 assert(VNI && "No live value at use."); 1051 for (const VReg2SUnit &V2SU 1052 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1053 SUnit *SU = V2SU.SU; 1054 // If this use comes before the reaching def, it cannot be a last use, 1055 // so decrease its pressure change. 1056 if (!SU->isScheduled && SU != &ExitSU) { 1057 LiveQueryResult LRQ = 1058 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1059 if (LRQ.valueIn() == VNI) { 1060 PressureDiff &PDiff = getPressureDiff(SU); 1061 PDiff.addPressureChange(Reg, true, &MRI); 1062 DEBUG( 1063 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1064 << *SU->getInstr(); 1065 dbgs() << " to "; 1066 PDiff.dump(*TRI); 1067 ); 1068 } 1069 } 1070 } 1071 } 1072 } 1073 } 1074 1075 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1076 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1077 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1078 /// 1079 /// This is a skeletal driver, with all the functionality pushed into helpers, 1080 /// so that it can be easily extended by experimental schedulers. Generally, 1081 /// implementing MachineSchedStrategy should be sufficient to implement a new 1082 /// scheduling algorithm. However, if a scheduler further subclasses 1083 /// ScheduleDAGMILive then it will want to override this virtual method in order 1084 /// to update any specialized state. 1085 void ScheduleDAGMILive::schedule() { 1086 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1087 DEBUG(SchedImpl->dumpPolicy()); 1088 buildDAGWithRegPressure(); 1089 1090 Topo.InitDAGTopologicalSorting(); 1091 1092 postprocessDAG(); 1093 1094 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1095 findRootsAndBiasEdges(TopRoots, BotRoots); 1096 1097 // Initialize the strategy before modifying the DAG. 1098 // This may initialize a DFSResult to be used for queue priority. 1099 SchedImpl->initialize(this); 1100 1101 DEBUG( 1102 for (const SUnit &SU : SUnits) { 1103 SU.dumpAll(this); 1104 if (ShouldTrackPressure) { 1105 dbgs() << " Pressure Diff : "; 1106 getPressureDiff(&SU).dump(*TRI); 1107 } 1108 dbgs() << '\n'; 1109 } 1110 ); 1111 if (ViewMISchedDAGs) viewGraph(); 1112 1113 // Initialize ready queues now that the DAG and priority data are finalized. 1114 initQueues(TopRoots, BotRoots); 1115 1116 if (ShouldTrackPressure) { 1117 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1118 TopRPTracker.setPos(CurrentTop); 1119 } 1120 1121 bool IsTopNode = false; 1122 while (true) { 1123 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1124 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1125 if (!SU) break; 1126 1127 assert(!SU->isScheduled && "Node already scheduled"); 1128 if (!checkSchedLimit()) 1129 break; 1130 1131 scheduleMI(SU, IsTopNode); 1132 1133 if (DFSResult) { 1134 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1135 if (!ScheduledTrees.test(SubtreeID)) { 1136 ScheduledTrees.set(SubtreeID); 1137 DFSResult->scheduleTree(SubtreeID); 1138 SchedImpl->scheduleTree(SubtreeID); 1139 } 1140 } 1141 1142 // Notify the scheduling strategy after updating the DAG. 1143 SchedImpl->schedNode(SU, IsTopNode); 1144 1145 updateQueues(SU, IsTopNode); 1146 } 1147 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1148 1149 placeDebugValues(); 1150 1151 DEBUG({ 1152 unsigned BBNum = begin()->getParent()->getNumber(); 1153 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1154 dumpSchedule(); 1155 dbgs() << '\n'; 1156 }); 1157 } 1158 1159 /// Build the DAG and setup three register pressure trackers. 1160 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1161 if (!ShouldTrackPressure) { 1162 RPTracker.reset(); 1163 RegionCriticalPSets.clear(); 1164 buildSchedGraph(AA); 1165 return; 1166 } 1167 1168 // Initialize the register pressure tracker used by buildSchedGraph. 1169 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1170 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1171 1172 // Account for liveness generate by the region boundary. 1173 if (LiveRegionEnd != RegionEnd) 1174 RPTracker.recede(); 1175 1176 // Build the DAG, and compute current register pressure. 1177 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1178 1179 // Initialize top/bottom trackers after computing region pressure. 1180 initRegPressure(); 1181 } 1182 1183 void ScheduleDAGMILive::computeDFSResult() { 1184 if (!DFSResult) 1185 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1186 DFSResult->clear(); 1187 ScheduledTrees.clear(); 1188 DFSResult->resize(SUnits.size()); 1189 DFSResult->compute(SUnits); 1190 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1191 } 1192 1193 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1194 /// only provides the critical path for single block loops. To handle loops that 1195 /// span blocks, we could use the vreg path latencies provided by 1196 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1197 /// available for use in the scheduler. 1198 /// 1199 /// The cyclic path estimation identifies a def-use pair that crosses the back 1200 /// edge and considers the depth and height of the nodes. For example, consider 1201 /// the following instruction sequence where each instruction has unit latency 1202 /// and defines an epomymous virtual register: 1203 /// 1204 /// a->b(a,c)->c(b)->d(c)->exit 1205 /// 1206 /// The cyclic critical path is a two cycles: b->c->b 1207 /// The acyclic critical path is four cycles: a->b->c->d->exit 1208 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1209 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1210 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1211 /// LiveInDepth = depth(b) = len(a->b) = 1 1212 /// 1213 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1214 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1215 /// CyclicCriticalPath = min(2, 2) = 2 1216 /// 1217 /// This could be relevant to PostRA scheduling, but is currently implemented 1218 /// assuming LiveIntervals. 1219 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1220 // This only applies to single block loop. 1221 if (!BB->isSuccessor(BB)) 1222 return 0; 1223 1224 unsigned MaxCyclicLatency = 0; 1225 // Visit each live out vreg def to find def/use pairs that cross iterations. 1226 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1227 unsigned Reg = P.RegUnit; 1228 if (!TRI->isVirtualRegister(Reg)) 1229 continue; 1230 const LiveInterval &LI = LIS->getInterval(Reg); 1231 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1232 if (!DefVNI) 1233 continue; 1234 1235 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1236 const SUnit *DefSU = getSUnit(DefMI); 1237 if (!DefSU) 1238 continue; 1239 1240 unsigned LiveOutHeight = DefSU->getHeight(); 1241 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1242 // Visit all local users of the vreg def. 1243 for (const VReg2SUnit &V2SU 1244 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1245 SUnit *SU = V2SU.SU; 1246 if (SU == &ExitSU) 1247 continue; 1248 1249 // Only consider uses of the phi. 1250 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1251 if (!LRQ.valueIn()->isPHIDef()) 1252 continue; 1253 1254 // Assume that a path spanning two iterations is a cycle, which could 1255 // overestimate in strange cases. This allows cyclic latency to be 1256 // estimated as the minimum slack of the vreg's depth or height. 1257 unsigned CyclicLatency = 0; 1258 if (LiveOutDepth > SU->getDepth()) 1259 CyclicLatency = LiveOutDepth - SU->getDepth(); 1260 1261 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1262 if (LiveInHeight > LiveOutHeight) { 1263 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1264 CyclicLatency = LiveInHeight - LiveOutHeight; 1265 } else 1266 CyclicLatency = 0; 1267 1268 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1269 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1270 if (CyclicLatency > MaxCyclicLatency) 1271 MaxCyclicLatency = CyclicLatency; 1272 } 1273 } 1274 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1275 return MaxCyclicLatency; 1276 } 1277 1278 /// Move an instruction and update register pressure. 1279 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1280 // Move the instruction to its new location in the instruction stream. 1281 MachineInstr *MI = SU->getInstr(); 1282 1283 if (IsTopNode) { 1284 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1285 if (&*CurrentTop == MI) 1286 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1287 else { 1288 moveInstruction(MI, CurrentTop); 1289 TopRPTracker.setPos(MI); 1290 } 1291 1292 if (ShouldTrackPressure) { 1293 // Update top scheduled pressure. 1294 RegisterOperands RegOpers; 1295 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1296 if (ShouldTrackLaneMasks) { 1297 // Adjust liveness and add missing dead+read-undef flags. 1298 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1299 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1300 } else { 1301 // Adjust for missing dead-def flags. 1302 RegOpers.detectDeadDefs(*MI, *LIS); 1303 } 1304 1305 TopRPTracker.advance(RegOpers); 1306 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1307 DEBUG( 1308 dbgs() << "Top Pressure:\n"; 1309 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1310 ); 1311 1312 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1313 } 1314 } else { 1315 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1316 MachineBasicBlock::iterator priorII = 1317 priorNonDebug(CurrentBottom, CurrentTop); 1318 if (&*priorII == MI) 1319 CurrentBottom = priorII; 1320 else { 1321 if (&*CurrentTop == MI) { 1322 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1323 TopRPTracker.setPos(CurrentTop); 1324 } 1325 moveInstruction(MI, CurrentBottom); 1326 CurrentBottom = MI; 1327 } 1328 if (ShouldTrackPressure) { 1329 RegisterOperands RegOpers; 1330 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1331 if (ShouldTrackLaneMasks) { 1332 // Adjust liveness and add missing dead+read-undef flags. 1333 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1334 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1335 } else { 1336 // Adjust for missing dead-def flags. 1337 RegOpers.detectDeadDefs(*MI, *LIS); 1338 } 1339 1340 BotRPTracker.recedeSkipDebugValues(); 1341 SmallVector<RegisterMaskPair, 8> LiveUses; 1342 BotRPTracker.recede(RegOpers, &LiveUses); 1343 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1344 DEBUG( 1345 dbgs() << "Bottom Pressure:\n"; 1346 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1347 ); 1348 1349 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1350 updatePressureDiffs(LiveUses); 1351 } 1352 } 1353 } 1354 1355 //===----------------------------------------------------------------------===// 1356 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1357 //===----------------------------------------------------------------------===// 1358 1359 namespace { 1360 /// \brief Post-process the DAG to create cluster edges between neighboring 1361 /// loads or between neighboring stores. 1362 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1363 struct MemOpInfo { 1364 SUnit *SU; 1365 unsigned BaseReg; 1366 int64_t Offset; 1367 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1368 : SU(su), BaseReg(reg), Offset(ofs) {} 1369 1370 bool operator<(const MemOpInfo&RHS) const { 1371 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1372 } 1373 }; 1374 1375 const TargetInstrInfo *TII; 1376 const TargetRegisterInfo *TRI; 1377 bool IsLoad; 1378 1379 public: 1380 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1381 const TargetRegisterInfo *tri, bool IsLoad) 1382 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1383 1384 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1385 1386 protected: 1387 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1388 }; 1389 1390 class StoreClusterMutation : public BaseMemOpClusterMutation { 1391 public: 1392 StoreClusterMutation(const TargetInstrInfo *tii, 1393 const TargetRegisterInfo *tri) 1394 : BaseMemOpClusterMutation(tii, tri, false) {} 1395 }; 1396 1397 class LoadClusterMutation : public BaseMemOpClusterMutation { 1398 public: 1399 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1400 : BaseMemOpClusterMutation(tii, tri, true) {} 1401 }; 1402 } // anonymous 1403 1404 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1405 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1406 SmallVector<MemOpInfo, 32> MemOpRecords; 1407 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1408 SUnit *SU = MemOps[Idx]; 1409 unsigned BaseReg; 1410 int64_t Offset; 1411 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1412 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1413 } 1414 if (MemOpRecords.size() < 2) 1415 return; 1416 1417 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1418 unsigned ClusterLength = 1; 1419 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1420 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1421 ClusterLength = 1; 1422 continue; 1423 } 1424 1425 SUnit *SUa = MemOpRecords[Idx].SU; 1426 SUnit *SUb = MemOpRecords[Idx+1].SU; 1427 if (TII->shouldClusterMemOps(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1428 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1429 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1430 << SUb->NodeNum << ")\n"); 1431 // Copy successor edges from SUa to SUb. Interleaving computation 1432 // dependent on SUa can prevent load combining due to register reuse. 1433 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1434 // loads should have effectively the same inputs. 1435 for (SUnit::const_succ_iterator 1436 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1437 if (SI->getSUnit() == SUb) 1438 continue; 1439 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1440 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1441 } 1442 ++ClusterLength; 1443 } else 1444 ClusterLength = 1; 1445 } 1446 } 1447 1448 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1449 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1450 1451 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1452 1453 // Map DAG NodeNum to store chain ID. 1454 DenseMap<unsigned, unsigned> StoreChainIDs; 1455 // Map each store chain to a set of dependent MemOps. 1456 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1457 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1458 SUnit *SU = &DAG->SUnits[Idx]; 1459 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1460 (!IsLoad && !SU->getInstr()->mayStore())) 1461 continue; 1462 1463 unsigned ChainPredID = DAG->SUnits.size(); 1464 for (SUnit::const_pred_iterator 1465 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1466 if (PI->isCtrl()) { 1467 ChainPredID = PI->getSUnit()->NodeNum; 1468 break; 1469 } 1470 } 1471 // Check if this chain-like pred has been seen 1472 // before. ChainPredID==MaxNodeID at the top of the schedule. 1473 unsigned NumChains = StoreChainDependents.size(); 1474 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1475 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1476 if (Result.second) 1477 StoreChainDependents.resize(NumChains + 1); 1478 StoreChainDependents[Result.first->second].push_back(SU); 1479 } 1480 1481 // Iterate over the store chains. 1482 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1483 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1484 } 1485 1486 //===----------------------------------------------------------------------===// 1487 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1488 //===----------------------------------------------------------------------===// 1489 1490 namespace { 1491 /// \brief Post-process the DAG to create cluster edges between instructions 1492 /// that may be fused by the processor into a single operation. 1493 class MacroFusion : public ScheduleDAGMutation { 1494 const TargetInstrInfo &TII; 1495 const TargetRegisterInfo &TRI; 1496 public: 1497 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1498 : TII(TII), TRI(TRI) {} 1499 1500 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1501 }; 1502 } // anonymous 1503 1504 /// Returns true if \p MI reads a register written by \p Other. 1505 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1506 const MachineInstr &Other) { 1507 for (const MachineOperand &MO : MI.uses()) { 1508 if (!MO.isReg() || !MO.readsReg()) 1509 continue; 1510 1511 unsigned Reg = MO.getReg(); 1512 if (Other.modifiesRegister(Reg, &TRI)) 1513 return true; 1514 } 1515 return false; 1516 } 1517 1518 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1519 /// fused operations. 1520 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1521 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1522 1523 // For now, assume targets can only fuse with the branch. 1524 SUnit &ExitSU = DAG->ExitSU; 1525 MachineInstr *Branch = ExitSU.getInstr(); 1526 if (!Branch) 1527 return; 1528 1529 for (SUnit &SU : DAG->SUnits) { 1530 // SUnits with successors can't be schedule in front of the ExitSU. 1531 if (!SU.Succs.empty()) 1532 continue; 1533 // We only care if the node writes to a register that the branch reads. 1534 MachineInstr *Pred = SU.getInstr(); 1535 if (!HasDataDep(TRI, *Branch, *Pred)) 1536 continue; 1537 1538 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1539 continue; 1540 1541 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1542 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1543 // need to copy predecessor edges from ExitSU to SU, since top-down 1544 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1545 // of SU, we could create an artificial edge from the deepest root, but it 1546 // hasn't been needed yet. 1547 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1548 (void)Success; 1549 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1550 1551 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1552 break; 1553 } 1554 } 1555 1556 //===----------------------------------------------------------------------===// 1557 // CopyConstrain - DAG post-processing to encourage copy elimination. 1558 //===----------------------------------------------------------------------===// 1559 1560 namespace { 1561 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1562 /// the one use that defines the copy's source vreg, most likely an induction 1563 /// variable increment. 1564 class CopyConstrain : public ScheduleDAGMutation { 1565 // Transient state. 1566 SlotIndex RegionBeginIdx; 1567 // RegionEndIdx is the slot index of the last non-debug instruction in the 1568 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1569 SlotIndex RegionEndIdx; 1570 public: 1571 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1572 1573 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1574 1575 protected: 1576 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1577 }; 1578 } // anonymous 1579 1580 /// constrainLocalCopy handles two possibilities: 1581 /// 1) Local src: 1582 /// I0: = dst 1583 /// I1: src = ... 1584 /// I2: = dst 1585 /// I3: dst = src (copy) 1586 /// (create pred->succ edges I0->I1, I2->I1) 1587 /// 1588 /// 2) Local copy: 1589 /// I0: dst = src (copy) 1590 /// I1: = dst 1591 /// I2: src = ... 1592 /// I3: = dst 1593 /// (create pred->succ edges I1->I2, I3->I2) 1594 /// 1595 /// Although the MachineScheduler is currently constrained to single blocks, 1596 /// this algorithm should handle extended blocks. An EBB is a set of 1597 /// contiguously numbered blocks such that the previous block in the EBB is 1598 /// always the single predecessor. 1599 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1600 LiveIntervals *LIS = DAG->getLIS(); 1601 MachineInstr *Copy = CopySU->getInstr(); 1602 1603 // Check for pure vreg copies. 1604 const MachineOperand &SrcOp = Copy->getOperand(1); 1605 unsigned SrcReg = SrcOp.getReg(); 1606 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1607 return; 1608 1609 const MachineOperand &DstOp = Copy->getOperand(0); 1610 unsigned DstReg = DstOp.getReg(); 1611 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1612 return; 1613 1614 // Check if either the dest or source is local. If it's live across a back 1615 // edge, it's not local. Note that if both vregs are live across the back 1616 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1617 // If both the copy's source and dest are local live intervals, then we 1618 // should treat the dest as the global for the purpose of adding 1619 // constraints. This adds edges from source's other uses to the copy. 1620 unsigned LocalReg = SrcReg; 1621 unsigned GlobalReg = DstReg; 1622 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1623 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1624 LocalReg = DstReg; 1625 GlobalReg = SrcReg; 1626 LocalLI = &LIS->getInterval(LocalReg); 1627 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1628 return; 1629 } 1630 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1631 1632 // Find the global segment after the start of the local LI. 1633 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1634 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1635 // local live range. We could create edges from other global uses to the local 1636 // start, but the coalescer should have already eliminated these cases, so 1637 // don't bother dealing with it. 1638 if (GlobalSegment == GlobalLI->end()) 1639 return; 1640 1641 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1642 // returned the next global segment. But if GlobalSegment overlaps with 1643 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1644 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1645 if (GlobalSegment->contains(LocalLI->beginIndex())) 1646 ++GlobalSegment; 1647 1648 if (GlobalSegment == GlobalLI->end()) 1649 return; 1650 1651 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1652 if (GlobalSegment != GlobalLI->begin()) { 1653 // Two address defs have no hole. 1654 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1655 GlobalSegment->start)) { 1656 return; 1657 } 1658 // If the prior global segment may be defined by the same two-address 1659 // instruction that also defines LocalLI, then can't make a hole here. 1660 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1661 LocalLI->beginIndex())) { 1662 return; 1663 } 1664 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1665 // it would be a disconnected component in the live range. 1666 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1667 "Disconnected LRG within the scheduling region."); 1668 } 1669 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1670 if (!GlobalDef) 1671 return; 1672 1673 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1674 if (!GlobalSU) 1675 return; 1676 1677 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1678 // constraining the uses of the last local def to precede GlobalDef. 1679 SmallVector<SUnit*,8> LocalUses; 1680 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1681 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1682 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1683 for (SUnit::const_succ_iterator 1684 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1685 I != E; ++I) { 1686 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1687 continue; 1688 if (I->getSUnit() == GlobalSU) 1689 continue; 1690 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1691 return; 1692 LocalUses.push_back(I->getSUnit()); 1693 } 1694 // Open the top of the GlobalLI hole by constraining any earlier global uses 1695 // to precede the start of LocalLI. 1696 SmallVector<SUnit*,8> GlobalUses; 1697 MachineInstr *FirstLocalDef = 1698 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1699 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1700 for (SUnit::const_pred_iterator 1701 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1702 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1703 continue; 1704 if (I->getSUnit() == FirstLocalSU) 1705 continue; 1706 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1707 return; 1708 GlobalUses.push_back(I->getSUnit()); 1709 } 1710 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1711 // Add the weak edges. 1712 for (SmallVectorImpl<SUnit*>::const_iterator 1713 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1714 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1715 << GlobalSU->NodeNum << ")\n"); 1716 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1717 } 1718 for (SmallVectorImpl<SUnit*>::const_iterator 1719 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1720 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1721 << FirstLocalSU->NodeNum << ")\n"); 1722 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1723 } 1724 } 1725 1726 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1727 /// copy elimination. 1728 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1729 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1730 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1731 1732 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1733 if (FirstPos == DAG->end()) 1734 return; 1735 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1736 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1737 *priorNonDebug(DAG->end(), DAG->begin())); 1738 1739 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1740 SUnit *SU = &DAG->SUnits[Idx]; 1741 if (!SU->getInstr()->isCopy()) 1742 continue; 1743 1744 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1745 } 1746 } 1747 1748 //===----------------------------------------------------------------------===// 1749 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1750 // and possibly other custom schedulers. 1751 //===----------------------------------------------------------------------===// 1752 1753 static const unsigned InvalidCycle = ~0U; 1754 1755 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1756 1757 void SchedBoundary::reset() { 1758 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1759 // Destroying and reconstructing it is very expensive though. So keep 1760 // invalid, placeholder HazardRecs. 1761 if (HazardRec && HazardRec->isEnabled()) { 1762 delete HazardRec; 1763 HazardRec = nullptr; 1764 } 1765 Available.clear(); 1766 Pending.clear(); 1767 CheckPending = false; 1768 NextSUs.clear(); 1769 CurrCycle = 0; 1770 CurrMOps = 0; 1771 MinReadyCycle = UINT_MAX; 1772 ExpectedLatency = 0; 1773 DependentLatency = 0; 1774 RetiredMOps = 0; 1775 MaxExecutedResCount = 0; 1776 ZoneCritResIdx = 0; 1777 IsResourceLimited = false; 1778 ReservedCycles.clear(); 1779 #ifndef NDEBUG 1780 // Track the maximum number of stall cycles that could arise either from the 1781 // latency of a DAG edge or the number of cycles that a processor resource is 1782 // reserved (SchedBoundary::ReservedCycles). 1783 MaxObservedStall = 0; 1784 #endif 1785 // Reserve a zero-count for invalid CritResIdx. 1786 ExecutedResCounts.resize(1); 1787 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1788 } 1789 1790 void SchedRemainder:: 1791 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1792 reset(); 1793 if (!SchedModel->hasInstrSchedModel()) 1794 return; 1795 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1796 for (std::vector<SUnit>::iterator 1797 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1798 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1799 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1800 * SchedModel->getMicroOpFactor(); 1801 for (TargetSchedModel::ProcResIter 1802 PI = SchedModel->getWriteProcResBegin(SC), 1803 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1804 unsigned PIdx = PI->ProcResourceIdx; 1805 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1806 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1807 } 1808 } 1809 } 1810 1811 void SchedBoundary:: 1812 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1813 reset(); 1814 DAG = dag; 1815 SchedModel = smodel; 1816 Rem = rem; 1817 if (SchedModel->hasInstrSchedModel()) { 1818 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1819 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1820 } 1821 } 1822 1823 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1824 /// these "soft stalls" differently than the hard stall cycles based on CPU 1825 /// resources and computed by checkHazard(). A fully in-order model 1826 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1827 /// available for scheduling until they are ready. However, a weaker in-order 1828 /// model may use this for heuristics. For example, if a processor has in-order 1829 /// behavior when reading certain resources, this may come into play. 1830 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1831 if (!SU->isUnbuffered) 1832 return 0; 1833 1834 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1835 if (ReadyCycle > CurrCycle) 1836 return ReadyCycle - CurrCycle; 1837 return 0; 1838 } 1839 1840 /// Compute the next cycle at which the given processor resource can be 1841 /// scheduled. 1842 unsigned SchedBoundary:: 1843 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1844 unsigned NextUnreserved = ReservedCycles[PIdx]; 1845 // If this resource has never been used, always return cycle zero. 1846 if (NextUnreserved == InvalidCycle) 1847 return 0; 1848 // For bottom-up scheduling add the cycles needed for the current operation. 1849 if (!isTop()) 1850 NextUnreserved += Cycles; 1851 return NextUnreserved; 1852 } 1853 1854 /// Does this SU have a hazard within the current instruction group. 1855 /// 1856 /// The scheduler supports two modes of hazard recognition. The first is the 1857 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1858 /// supports highly complicated in-order reservation tables 1859 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1860 /// 1861 /// The second is a streamlined mechanism that checks for hazards based on 1862 /// simple counters that the scheduler itself maintains. It explicitly checks 1863 /// for instruction dispatch limitations, including the number of micro-ops that 1864 /// can dispatch per cycle. 1865 /// 1866 /// TODO: Also check whether the SU must start a new group. 1867 bool SchedBoundary::checkHazard(SUnit *SU) { 1868 if (HazardRec->isEnabled() 1869 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1870 return true; 1871 } 1872 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1873 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1874 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1875 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1876 return true; 1877 } 1878 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1879 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1880 for (TargetSchedModel::ProcResIter 1881 PI = SchedModel->getWriteProcResBegin(SC), 1882 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1883 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1884 if (NRCycle > CurrCycle) { 1885 #ifndef NDEBUG 1886 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1887 #endif 1888 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1889 << SchedModel->getResourceName(PI->ProcResourceIdx) 1890 << "=" << NRCycle << "c\n"); 1891 return true; 1892 } 1893 } 1894 } 1895 return false; 1896 } 1897 1898 // Find the unscheduled node in ReadySUs with the highest latency. 1899 unsigned SchedBoundary:: 1900 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1901 SUnit *LateSU = nullptr; 1902 unsigned RemLatency = 0; 1903 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1904 I != E; ++I) { 1905 unsigned L = getUnscheduledLatency(*I); 1906 if (L > RemLatency) { 1907 RemLatency = L; 1908 LateSU = *I; 1909 } 1910 } 1911 if (LateSU) { 1912 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1913 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1914 } 1915 return RemLatency; 1916 } 1917 1918 // Count resources in this zone and the remaining unscheduled 1919 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1920 // resource index, or zero if the zone is issue limited. 1921 unsigned SchedBoundary:: 1922 getOtherResourceCount(unsigned &OtherCritIdx) { 1923 OtherCritIdx = 0; 1924 if (!SchedModel->hasInstrSchedModel()) 1925 return 0; 1926 1927 unsigned OtherCritCount = Rem->RemIssueCount 1928 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1929 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1930 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1931 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1932 PIdx != PEnd; ++PIdx) { 1933 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1934 if (OtherCount > OtherCritCount) { 1935 OtherCritCount = OtherCount; 1936 OtherCritIdx = PIdx; 1937 } 1938 } 1939 if (OtherCritIdx) { 1940 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1941 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1942 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1943 } 1944 return OtherCritCount; 1945 } 1946 1947 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1948 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1949 1950 #ifndef NDEBUG 1951 // ReadyCycle was been bumped up to the CurrCycle when this node was 1952 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1953 // scheduling, so may now be greater than ReadyCycle. 1954 if (ReadyCycle > CurrCycle) 1955 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1956 #endif 1957 1958 if (ReadyCycle < MinReadyCycle) 1959 MinReadyCycle = ReadyCycle; 1960 1961 // Check for interlocks first. For the purpose of other heuristics, an 1962 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1963 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1964 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 1965 Available.size() >= ReadyListLimit) 1966 Pending.push(SU); 1967 else 1968 Available.push(SU); 1969 1970 // Record this node as an immediate dependent of the scheduled node. 1971 NextSUs.insert(SU); 1972 } 1973 1974 void SchedBoundary::releaseTopNode(SUnit *SU) { 1975 if (SU->isScheduled) 1976 return; 1977 1978 releaseNode(SU, SU->TopReadyCycle); 1979 } 1980 1981 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1982 if (SU->isScheduled) 1983 return; 1984 1985 releaseNode(SU, SU->BotReadyCycle); 1986 } 1987 1988 /// Move the boundary of scheduled code by one cycle. 1989 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1990 if (SchedModel->getMicroOpBufferSize() == 0) { 1991 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1992 if (MinReadyCycle > NextCycle) 1993 NextCycle = MinReadyCycle; 1994 } 1995 // Update the current micro-ops, which will issue in the next cycle. 1996 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1997 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1998 1999 // Decrement DependentLatency based on the next cycle. 2000 if ((NextCycle - CurrCycle) > DependentLatency) 2001 DependentLatency = 0; 2002 else 2003 DependentLatency -= (NextCycle - CurrCycle); 2004 2005 if (!HazardRec->isEnabled()) { 2006 // Bypass HazardRec virtual calls. 2007 CurrCycle = NextCycle; 2008 } else { 2009 // Bypass getHazardType calls in case of long latency. 2010 for (; CurrCycle != NextCycle; ++CurrCycle) { 2011 if (isTop()) 2012 HazardRec->AdvanceCycle(); 2013 else 2014 HazardRec->RecedeCycle(); 2015 } 2016 } 2017 CheckPending = true; 2018 unsigned LFactor = SchedModel->getLatencyFactor(); 2019 IsResourceLimited = 2020 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2021 > (int)LFactor; 2022 2023 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2024 } 2025 2026 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2027 ExecutedResCounts[PIdx] += Count; 2028 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2029 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2030 } 2031 2032 /// Add the given processor resource to this scheduled zone. 2033 /// 2034 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2035 /// during which this resource is consumed. 2036 /// 2037 /// \return the next cycle at which the instruction may execute without 2038 /// oversubscribing resources. 2039 unsigned SchedBoundary:: 2040 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2041 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2042 unsigned Count = Factor * Cycles; 2043 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2044 << " +" << Cycles << "x" << Factor << "u\n"); 2045 2046 // Update Executed resources counts. 2047 incExecutedResources(PIdx, Count); 2048 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2049 Rem->RemainingCounts[PIdx] -= Count; 2050 2051 // Check if this resource exceeds the current critical resource. If so, it 2052 // becomes the critical resource. 2053 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2054 ZoneCritResIdx = PIdx; 2055 DEBUG(dbgs() << " *** Critical resource " 2056 << SchedModel->getResourceName(PIdx) << ": " 2057 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2058 } 2059 // For reserved resources, record the highest cycle using the resource. 2060 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2061 if (NextAvailable > CurrCycle) { 2062 DEBUG(dbgs() << " Resource conflict: " 2063 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2064 << NextAvailable << "\n"); 2065 } 2066 return NextAvailable; 2067 } 2068 2069 /// Move the boundary of scheduled code by one SUnit. 2070 void SchedBoundary::bumpNode(SUnit *SU) { 2071 // Update the reservation table. 2072 if (HazardRec->isEnabled()) { 2073 if (!isTop() && SU->isCall) { 2074 // Calls are scheduled with their preceding instructions. For bottom-up 2075 // scheduling, clear the pipeline state before emitting. 2076 HazardRec->Reset(); 2077 } 2078 HazardRec->EmitInstruction(SU); 2079 } 2080 // checkHazard should prevent scheduling multiple instructions per cycle that 2081 // exceed the issue width. 2082 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2083 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2084 assert( 2085 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2086 "Cannot schedule this instruction's MicroOps in the current cycle."); 2087 2088 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2089 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2090 2091 unsigned NextCycle = CurrCycle; 2092 switch (SchedModel->getMicroOpBufferSize()) { 2093 case 0: 2094 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2095 break; 2096 case 1: 2097 if (ReadyCycle > NextCycle) { 2098 NextCycle = ReadyCycle; 2099 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2100 } 2101 break; 2102 default: 2103 // We don't currently model the OOO reorder buffer, so consider all 2104 // scheduled MOps to be "retired". We do loosely model in-order resource 2105 // latency. If this instruction uses an in-order resource, account for any 2106 // likely stall cycles. 2107 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2108 NextCycle = ReadyCycle; 2109 break; 2110 } 2111 RetiredMOps += IncMOps; 2112 2113 // Update resource counts and critical resource. 2114 if (SchedModel->hasInstrSchedModel()) { 2115 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2116 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2117 Rem->RemIssueCount -= DecRemIssue; 2118 if (ZoneCritResIdx) { 2119 // Scale scheduled micro-ops for comparing with the critical resource. 2120 unsigned ScaledMOps = 2121 RetiredMOps * SchedModel->getMicroOpFactor(); 2122 2123 // If scaled micro-ops are now more than the previous critical resource by 2124 // a full cycle, then micro-ops issue becomes critical. 2125 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2126 >= (int)SchedModel->getLatencyFactor()) { 2127 ZoneCritResIdx = 0; 2128 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2129 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2130 } 2131 } 2132 for (TargetSchedModel::ProcResIter 2133 PI = SchedModel->getWriteProcResBegin(SC), 2134 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2135 unsigned RCycle = 2136 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2137 if (RCycle > NextCycle) 2138 NextCycle = RCycle; 2139 } 2140 if (SU->hasReservedResource) { 2141 // For reserved resources, record the highest cycle using the resource. 2142 // For top-down scheduling, this is the cycle in which we schedule this 2143 // instruction plus the number of cycles the operations reserves the 2144 // resource. For bottom-up is it simply the instruction's cycle. 2145 for (TargetSchedModel::ProcResIter 2146 PI = SchedModel->getWriteProcResBegin(SC), 2147 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2148 unsigned PIdx = PI->ProcResourceIdx; 2149 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2150 if (isTop()) { 2151 ReservedCycles[PIdx] = 2152 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2153 } 2154 else 2155 ReservedCycles[PIdx] = NextCycle; 2156 } 2157 } 2158 } 2159 } 2160 // Update ExpectedLatency and DependentLatency. 2161 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2162 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2163 if (SU->getDepth() > TopLatency) { 2164 TopLatency = SU->getDepth(); 2165 DEBUG(dbgs() << " " << Available.getName() 2166 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2167 } 2168 if (SU->getHeight() > BotLatency) { 2169 BotLatency = SU->getHeight(); 2170 DEBUG(dbgs() << " " << Available.getName() 2171 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2172 } 2173 // If we stall for any reason, bump the cycle. 2174 if (NextCycle > CurrCycle) { 2175 bumpCycle(NextCycle); 2176 } else { 2177 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2178 // resource limited. If a stall occurred, bumpCycle does this. 2179 unsigned LFactor = SchedModel->getLatencyFactor(); 2180 IsResourceLimited = 2181 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2182 > (int)LFactor; 2183 } 2184 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2185 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2186 // one cycle. Since we commonly reach the max MOps here, opportunistically 2187 // bump the cycle to avoid uselessly checking everything in the readyQ. 2188 CurrMOps += IncMOps; 2189 while (CurrMOps >= SchedModel->getIssueWidth()) { 2190 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2191 << " at cycle " << CurrCycle << '\n'); 2192 bumpCycle(++NextCycle); 2193 } 2194 DEBUG(dumpScheduledState()); 2195 } 2196 2197 /// Release pending ready nodes in to the available queue. This makes them 2198 /// visible to heuristics. 2199 void SchedBoundary::releasePending() { 2200 // If the available queue is empty, it is safe to reset MinReadyCycle. 2201 if (Available.empty()) 2202 MinReadyCycle = UINT_MAX; 2203 2204 // Check to see if any of the pending instructions are ready to issue. If 2205 // so, add them to the available queue. 2206 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2207 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2208 SUnit *SU = *(Pending.begin()+i); 2209 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2210 2211 if (ReadyCycle < MinReadyCycle) 2212 MinReadyCycle = ReadyCycle; 2213 2214 if (!IsBuffered && ReadyCycle > CurrCycle) 2215 continue; 2216 2217 if (checkHazard(SU)) 2218 continue; 2219 2220 if (Available.size() >= ReadyListLimit) 2221 break; 2222 2223 Available.push(SU); 2224 Pending.remove(Pending.begin()+i); 2225 --i; --e; 2226 } 2227 DEBUG(if (!Pending.empty()) Pending.dump()); 2228 CheckPending = false; 2229 } 2230 2231 /// Remove SU from the ready set for this boundary. 2232 void SchedBoundary::removeReady(SUnit *SU) { 2233 if (Available.isInQueue(SU)) 2234 Available.remove(Available.find(SU)); 2235 else { 2236 assert(Pending.isInQueue(SU) && "bad ready count"); 2237 Pending.remove(Pending.find(SU)); 2238 } 2239 } 2240 2241 /// If this queue only has one ready candidate, return it. As a side effect, 2242 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2243 /// one node is ready. If multiple instructions are ready, return NULL. 2244 SUnit *SchedBoundary::pickOnlyChoice() { 2245 if (CheckPending) 2246 releasePending(); 2247 2248 if (CurrMOps > 0) { 2249 // Defer any ready instrs that now have a hazard. 2250 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2251 if (checkHazard(*I)) { 2252 Pending.push(*I); 2253 I = Available.remove(I); 2254 continue; 2255 } 2256 ++I; 2257 } 2258 } 2259 for (unsigned i = 0; Available.empty(); ++i) { 2260 // FIXME: Re-enable assert once PR20057 is resolved. 2261 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2262 // "permanent hazard"); 2263 (void)i; 2264 bumpCycle(CurrCycle + 1); 2265 releasePending(); 2266 } 2267 if (Available.size() == 1) 2268 return *Available.begin(); 2269 return nullptr; 2270 } 2271 2272 #ifndef NDEBUG 2273 // This is useful information to dump after bumpNode. 2274 // Note that the Queue contents are more useful before pickNodeFromQueue. 2275 void SchedBoundary::dumpScheduledState() { 2276 unsigned ResFactor; 2277 unsigned ResCount; 2278 if (ZoneCritResIdx) { 2279 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2280 ResCount = getResourceCount(ZoneCritResIdx); 2281 } else { 2282 ResFactor = SchedModel->getMicroOpFactor(); 2283 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2284 } 2285 unsigned LFactor = SchedModel->getLatencyFactor(); 2286 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2287 << " Retired: " << RetiredMOps; 2288 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2289 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2290 << ResCount / ResFactor << " " 2291 << SchedModel->getResourceName(ZoneCritResIdx) 2292 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2293 << (IsResourceLimited ? " - Resource" : " - Latency") 2294 << " limited.\n"; 2295 } 2296 #endif 2297 2298 //===----------------------------------------------------------------------===// 2299 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2300 //===----------------------------------------------------------------------===// 2301 2302 void GenericSchedulerBase::SchedCandidate:: 2303 initResourceDelta(const ScheduleDAGMI *DAG, 2304 const TargetSchedModel *SchedModel) { 2305 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2306 return; 2307 2308 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2309 for (TargetSchedModel::ProcResIter 2310 PI = SchedModel->getWriteProcResBegin(SC), 2311 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2312 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2313 ResDelta.CritResources += PI->Cycles; 2314 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2315 ResDelta.DemandedResources += PI->Cycles; 2316 } 2317 } 2318 2319 /// Set the CandPolicy given a scheduling zone given the current resources and 2320 /// latencies inside and outside the zone. 2321 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2322 SchedBoundary &CurrZone, 2323 SchedBoundary *OtherZone) { 2324 // Apply preemptive heuristics based on the total latency and resources 2325 // inside and outside this zone. Potential stalls should be considered before 2326 // following this policy. 2327 2328 // Compute remaining latency. We need this both to determine whether the 2329 // overall schedule has become latency-limited and whether the instructions 2330 // outside this zone are resource or latency limited. 2331 // 2332 // The "dependent" latency is updated incrementally during scheduling as the 2333 // max height/depth of scheduled nodes minus the cycles since it was 2334 // scheduled: 2335 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2336 // 2337 // The "independent" latency is the max ready queue depth: 2338 // ILat = max N.depth for N in Available|Pending 2339 // 2340 // RemainingLatency is the greater of independent and dependent latency. 2341 unsigned RemLatency = CurrZone.getDependentLatency(); 2342 RemLatency = std::max(RemLatency, 2343 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2344 RemLatency = std::max(RemLatency, 2345 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2346 2347 // Compute the critical resource outside the zone. 2348 unsigned OtherCritIdx = 0; 2349 unsigned OtherCount = 2350 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2351 2352 bool OtherResLimited = false; 2353 if (SchedModel->hasInstrSchedModel()) { 2354 unsigned LFactor = SchedModel->getLatencyFactor(); 2355 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2356 } 2357 // Schedule aggressively for latency in PostRA mode. We don't check for 2358 // acyclic latency during PostRA, and highly out-of-order processors will 2359 // skip PostRA scheduling. 2360 if (!OtherResLimited) { 2361 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2362 Policy.ReduceLatency |= true; 2363 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2364 << " RemainingLatency " << RemLatency << " + " 2365 << CurrZone.getCurrCycle() << "c > CritPath " 2366 << Rem.CriticalPath << "\n"); 2367 } 2368 } 2369 // If the same resource is limiting inside and outside the zone, do nothing. 2370 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2371 return; 2372 2373 DEBUG( 2374 if (CurrZone.isResourceLimited()) { 2375 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2376 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2377 << "\n"; 2378 } 2379 if (OtherResLimited) 2380 dbgs() << " RemainingLimit: " 2381 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2382 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2383 dbgs() << " Latency limited both directions.\n"); 2384 2385 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2386 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2387 2388 if (OtherResLimited) 2389 Policy.DemandResIdx = OtherCritIdx; 2390 } 2391 2392 #ifndef NDEBUG 2393 const char *GenericSchedulerBase::getReasonStr( 2394 GenericSchedulerBase::CandReason Reason) { 2395 switch (Reason) { 2396 case NoCand: return "NOCAND "; 2397 case PhysRegCopy: return "PREG-COPY"; 2398 case RegExcess: return "REG-EXCESS"; 2399 case RegCritical: return "REG-CRIT "; 2400 case Stall: return "STALL "; 2401 case Cluster: return "CLUSTER "; 2402 case Weak: return "WEAK "; 2403 case RegMax: return "REG-MAX "; 2404 case ResourceReduce: return "RES-REDUCE"; 2405 case ResourceDemand: return "RES-DEMAND"; 2406 case TopDepthReduce: return "TOP-DEPTH "; 2407 case TopPathReduce: return "TOP-PATH "; 2408 case BotHeightReduce:return "BOT-HEIGHT"; 2409 case BotPathReduce: return "BOT-PATH "; 2410 case NextDefUse: return "DEF-USE "; 2411 case NodeOrder: return "ORDER "; 2412 }; 2413 llvm_unreachable("Unknown reason!"); 2414 } 2415 2416 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2417 PressureChange P; 2418 unsigned ResIdx = 0; 2419 unsigned Latency = 0; 2420 switch (Cand.Reason) { 2421 default: 2422 break; 2423 case RegExcess: 2424 P = Cand.RPDelta.Excess; 2425 break; 2426 case RegCritical: 2427 P = Cand.RPDelta.CriticalMax; 2428 break; 2429 case RegMax: 2430 P = Cand.RPDelta.CurrentMax; 2431 break; 2432 case ResourceReduce: 2433 ResIdx = Cand.Policy.ReduceResIdx; 2434 break; 2435 case ResourceDemand: 2436 ResIdx = Cand.Policy.DemandResIdx; 2437 break; 2438 case TopDepthReduce: 2439 Latency = Cand.SU->getDepth(); 2440 break; 2441 case TopPathReduce: 2442 Latency = Cand.SU->getHeight(); 2443 break; 2444 case BotHeightReduce: 2445 Latency = Cand.SU->getHeight(); 2446 break; 2447 case BotPathReduce: 2448 Latency = Cand.SU->getDepth(); 2449 break; 2450 } 2451 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2452 if (P.isValid()) 2453 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2454 << ":" << P.getUnitInc() << " "; 2455 else 2456 dbgs() << " "; 2457 if (ResIdx) 2458 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2459 else 2460 dbgs() << " "; 2461 if (Latency) 2462 dbgs() << " " << Latency << " cycles "; 2463 else 2464 dbgs() << " "; 2465 dbgs() << '\n'; 2466 } 2467 #endif 2468 2469 /// Return true if this heuristic determines order. 2470 static bool tryLess(int TryVal, int CandVal, 2471 GenericSchedulerBase::SchedCandidate &TryCand, 2472 GenericSchedulerBase::SchedCandidate &Cand, 2473 GenericSchedulerBase::CandReason Reason) { 2474 if (TryVal < CandVal) { 2475 TryCand.Reason = Reason; 2476 return true; 2477 } 2478 if (TryVal > CandVal) { 2479 if (Cand.Reason > Reason) 2480 Cand.Reason = Reason; 2481 return true; 2482 } 2483 Cand.setRepeat(Reason); 2484 return false; 2485 } 2486 2487 static bool tryGreater(int TryVal, int CandVal, 2488 GenericSchedulerBase::SchedCandidate &TryCand, 2489 GenericSchedulerBase::SchedCandidate &Cand, 2490 GenericSchedulerBase::CandReason Reason) { 2491 if (TryVal > CandVal) { 2492 TryCand.Reason = Reason; 2493 return true; 2494 } 2495 if (TryVal < CandVal) { 2496 if (Cand.Reason > Reason) 2497 Cand.Reason = Reason; 2498 return true; 2499 } 2500 Cand.setRepeat(Reason); 2501 return false; 2502 } 2503 2504 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2505 GenericSchedulerBase::SchedCandidate &Cand, 2506 SchedBoundary &Zone) { 2507 if (Zone.isTop()) { 2508 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2509 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2510 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2511 return true; 2512 } 2513 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2514 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2515 return true; 2516 } else { 2517 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2518 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2519 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2520 return true; 2521 } 2522 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2523 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2524 return true; 2525 } 2526 return false; 2527 } 2528 2529 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2530 bool IsTop) { 2531 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2532 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2533 } 2534 2535 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2536 assert(dag->hasVRegLiveness() && 2537 "(PreRA)GenericScheduler needs vreg liveness"); 2538 DAG = static_cast<ScheduleDAGMILive*>(dag); 2539 SchedModel = DAG->getSchedModel(); 2540 TRI = DAG->TRI; 2541 2542 Rem.init(DAG, SchedModel); 2543 Top.init(DAG, SchedModel, &Rem); 2544 Bot.init(DAG, SchedModel, &Rem); 2545 2546 // Initialize resource counts. 2547 2548 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2549 // are disabled, then these HazardRecs will be disabled. 2550 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2551 if (!Top.HazardRec) { 2552 Top.HazardRec = 2553 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2554 Itin, DAG); 2555 } 2556 if (!Bot.HazardRec) { 2557 Bot.HazardRec = 2558 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2559 Itin, DAG); 2560 } 2561 } 2562 2563 /// Initialize the per-region scheduling policy. 2564 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2565 MachineBasicBlock::iterator End, 2566 unsigned NumRegionInstrs) { 2567 const MachineFunction &MF = *Begin->getParent()->getParent(); 2568 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2569 2570 // Avoid setting up the register pressure tracker for small regions to save 2571 // compile time. As a rough heuristic, only track pressure when the number of 2572 // schedulable instructions exceeds half the integer register file. 2573 RegionPolicy.ShouldTrackPressure = true; 2574 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2575 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2576 if (TLI->isTypeLegal(LegalIntVT)) { 2577 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2578 TLI->getRegClassFor(LegalIntVT)); 2579 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2580 } 2581 } 2582 2583 // For generic targets, we default to bottom-up, because it's simpler and more 2584 // compile-time optimizations have been implemented in that direction. 2585 RegionPolicy.OnlyBottomUp = true; 2586 2587 // Allow the subtarget to override default policy. 2588 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2589 NumRegionInstrs); 2590 2591 // After subtarget overrides, apply command line options. 2592 if (!EnableRegPressure) 2593 RegionPolicy.ShouldTrackPressure = false; 2594 2595 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2596 // e.g. -misched-bottomup=false allows scheduling in both directions. 2597 assert((!ForceTopDown || !ForceBottomUp) && 2598 "-misched-topdown incompatible with -misched-bottomup"); 2599 if (ForceBottomUp.getNumOccurrences() > 0) { 2600 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2601 if (RegionPolicy.OnlyBottomUp) 2602 RegionPolicy.OnlyTopDown = false; 2603 } 2604 if (ForceTopDown.getNumOccurrences() > 0) { 2605 RegionPolicy.OnlyTopDown = ForceTopDown; 2606 if (RegionPolicy.OnlyTopDown) 2607 RegionPolicy.OnlyBottomUp = false; 2608 } 2609 } 2610 2611 void GenericScheduler::dumpPolicy() { 2612 dbgs() << "GenericScheduler RegionPolicy: " 2613 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2614 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2615 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2616 << "\n"; 2617 } 2618 2619 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2620 /// critical path by more cycles than it takes to drain the instruction buffer. 2621 /// We estimate an upper bounds on in-flight instructions as: 2622 /// 2623 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2624 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2625 /// InFlightResources = InFlightIterations * LoopResources 2626 /// 2627 /// TODO: Check execution resources in addition to IssueCount. 2628 void GenericScheduler::checkAcyclicLatency() { 2629 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2630 return; 2631 2632 // Scaled number of cycles per loop iteration. 2633 unsigned IterCount = 2634 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2635 Rem.RemIssueCount); 2636 // Scaled acyclic critical path. 2637 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2638 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2639 unsigned InFlightCount = 2640 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2641 unsigned BufferLimit = 2642 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2643 2644 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2645 2646 DEBUG(dbgs() << "IssueCycles=" 2647 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2648 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2649 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2650 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2651 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2652 if (Rem.IsAcyclicLatencyLimited) 2653 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2654 } 2655 2656 void GenericScheduler::registerRoots() { 2657 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2658 2659 // Some roots may not feed into ExitSU. Check all of them in case. 2660 for (std::vector<SUnit*>::const_iterator 2661 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2662 if ((*I)->getDepth() > Rem.CriticalPath) 2663 Rem.CriticalPath = (*I)->getDepth(); 2664 } 2665 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2666 if (DumpCriticalPathLength) { 2667 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2668 } 2669 2670 if (EnableCyclicPath) { 2671 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2672 checkAcyclicLatency(); 2673 } 2674 } 2675 2676 static bool tryPressure(const PressureChange &TryP, 2677 const PressureChange &CandP, 2678 GenericSchedulerBase::SchedCandidate &TryCand, 2679 GenericSchedulerBase::SchedCandidate &Cand, 2680 GenericSchedulerBase::CandReason Reason, 2681 const TargetRegisterInfo *TRI, 2682 const MachineFunction &MF) { 2683 unsigned TryPSet = TryP.getPSetOrMax(); 2684 unsigned CandPSet = CandP.getPSetOrMax(); 2685 // If both candidates affect the same set, go with the smallest increase. 2686 if (TryPSet == CandPSet) { 2687 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2688 Reason); 2689 } 2690 // If one candidate decreases and the other increases, go with it. 2691 // Invalid candidates have UnitInc==0. 2692 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2693 Reason)) { 2694 return true; 2695 } 2696 2697 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2698 std::numeric_limits<int>::max(); 2699 2700 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2701 std::numeric_limits<int>::max(); 2702 2703 // If the candidates are decreasing pressure, reverse priority. 2704 if (TryP.getUnitInc() < 0) 2705 std::swap(TryRank, CandRank); 2706 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2707 } 2708 2709 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2710 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2711 } 2712 2713 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2714 /// their physreg def/use. 2715 /// 2716 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2717 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2718 /// with the operation that produces or consumes the physreg. We'll do this when 2719 /// regalloc has support for parallel copies. 2720 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2721 const MachineInstr *MI = SU->getInstr(); 2722 if (!MI->isCopy()) 2723 return 0; 2724 2725 unsigned ScheduledOper = isTop ? 1 : 0; 2726 unsigned UnscheduledOper = isTop ? 0 : 1; 2727 // If we have already scheduled the physreg produce/consumer, immediately 2728 // schedule the copy. 2729 if (TargetRegisterInfo::isPhysicalRegister( 2730 MI->getOperand(ScheduledOper).getReg())) 2731 return 1; 2732 // If the physreg is at the boundary, defer it. Otherwise schedule it 2733 // immediately to free the dependent. We can hoist the copy later. 2734 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2735 if (TargetRegisterInfo::isPhysicalRegister( 2736 MI->getOperand(UnscheduledOper).getReg())) 2737 return AtBoundary ? -1 : 1; 2738 return 0; 2739 } 2740 2741 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2742 bool AtTop, 2743 const RegPressureTracker &RPTracker, 2744 RegPressureTracker &TempTracker) { 2745 Cand.SU = SU; 2746 if (DAG->isTrackingPressure()) { 2747 if (AtTop) { 2748 TempTracker.getMaxDownwardPressureDelta( 2749 Cand.SU->getInstr(), 2750 Cand.RPDelta, 2751 DAG->getRegionCriticalPSets(), 2752 DAG->getRegPressure().MaxSetPressure); 2753 } else { 2754 if (VerifyScheduling) { 2755 TempTracker.getMaxUpwardPressureDelta( 2756 Cand.SU->getInstr(), 2757 &DAG->getPressureDiff(Cand.SU), 2758 Cand.RPDelta, 2759 DAG->getRegionCriticalPSets(), 2760 DAG->getRegPressure().MaxSetPressure); 2761 } else { 2762 RPTracker.getUpwardPressureDelta( 2763 Cand.SU->getInstr(), 2764 DAG->getPressureDiff(Cand.SU), 2765 Cand.RPDelta, 2766 DAG->getRegionCriticalPSets(), 2767 DAG->getRegPressure().MaxSetPressure); 2768 } 2769 } 2770 } 2771 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2772 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2773 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2774 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2775 } 2776 2777 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2778 /// hierarchical. This may be more efficient than a graduated cost model because 2779 /// we don't need to evaluate all aspects of the model for each node in the 2780 /// queue. But it's really done to make the heuristics easier to debug and 2781 /// statistically analyze. 2782 /// 2783 /// \param Cand provides the policy and current best candidate. 2784 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2785 /// \param Zone describes the scheduled zone that we are extending. 2786 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2787 SchedCandidate &TryCand, 2788 SchedBoundary &Zone) { 2789 // Initialize the candidate if needed. 2790 if (!Cand.isValid()) { 2791 TryCand.Reason = NodeOrder; 2792 return; 2793 } 2794 2795 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2796 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2797 TryCand, Cand, PhysRegCopy)) 2798 return; 2799 2800 // Avoid exceeding the target's limit. 2801 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2802 Cand.RPDelta.Excess, 2803 TryCand, Cand, RegExcess, TRI, 2804 DAG->MF)) 2805 return; 2806 2807 // Avoid increasing the max critical pressure in the scheduled region. 2808 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2809 Cand.RPDelta.CriticalMax, 2810 TryCand, Cand, RegCritical, TRI, 2811 DAG->MF)) 2812 return; 2813 2814 // For loops that are acyclic path limited, aggressively schedule for latency. 2815 // This can result in very long dependence chains scheduled in sequence, so 2816 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2817 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2818 && tryLatency(TryCand, Cand, Zone)) 2819 return; 2820 2821 // Prioritize instructions that read unbuffered resources by stall cycles. 2822 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2823 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2824 return; 2825 2826 // Keep clustered nodes together to encourage downstream peephole 2827 // optimizations which may reduce resource requirements. 2828 // 2829 // This is a best effort to set things up for a post-RA pass. Optimizations 2830 // like generating loads of multiple registers should ideally be done within 2831 // the scheduler pass by combining the loads during DAG postprocessing. 2832 const SUnit *NextClusterSU = 2833 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2834 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2835 TryCand, Cand, Cluster)) 2836 return; 2837 2838 // Weak edges are for clustering and other constraints. 2839 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2840 getWeakLeft(Cand.SU, Zone.isTop()), 2841 TryCand, Cand, Weak)) { 2842 return; 2843 } 2844 // Avoid increasing the max pressure of the entire region. 2845 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2846 Cand.RPDelta.CurrentMax, 2847 TryCand, Cand, RegMax, TRI, 2848 DAG->MF)) 2849 return; 2850 2851 // Avoid critical resource consumption and balance the schedule. 2852 TryCand.initResourceDelta(DAG, SchedModel); 2853 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2854 TryCand, Cand, ResourceReduce)) 2855 return; 2856 if (tryGreater(TryCand.ResDelta.DemandedResources, 2857 Cand.ResDelta.DemandedResources, 2858 TryCand, Cand, ResourceDemand)) 2859 return; 2860 2861 // Avoid serializing long latency dependence chains. 2862 // For acyclic path limited loops, latency was already checked above. 2863 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2864 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2865 return; 2866 } 2867 2868 // Prefer immediate defs/users of the last scheduled instruction. This is a 2869 // local pressure avoidance strategy that also makes the machine code 2870 // readable. 2871 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2872 TryCand, Cand, NextDefUse)) 2873 return; 2874 2875 // Fall through to original instruction order. 2876 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2877 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2878 TryCand.Reason = NodeOrder; 2879 } 2880 } 2881 2882 /// Pick the best candidate from the queue. 2883 /// 2884 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2885 /// DAG building. To adjust for the current scheduling location we need to 2886 /// maintain the number of vreg uses remaining to be top-scheduled. 2887 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2888 const RegPressureTracker &RPTracker, 2889 SchedCandidate &Cand) { 2890 ReadyQueue &Q = Zone.Available; 2891 2892 DEBUG(Q.dump()); 2893 2894 // getMaxPressureDelta temporarily modifies the tracker. 2895 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2896 2897 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2898 2899 SchedCandidate TryCand(Cand.Policy); 2900 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2901 tryCandidate(Cand, TryCand, Zone); 2902 if (TryCand.Reason != NoCand) { 2903 // Initialize resource delta if needed in case future heuristics query it. 2904 if (TryCand.ResDelta == SchedResourceDelta()) 2905 TryCand.initResourceDelta(DAG, SchedModel); 2906 Cand.setBest(TryCand); 2907 DEBUG(traceCandidate(Cand)); 2908 } 2909 } 2910 } 2911 2912 /// Pick the best candidate node from either the top or bottom queue. 2913 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2914 // Schedule as far as possible in the direction of no choice. This is most 2915 // efficient, but also provides the best heuristics for CriticalPSets. 2916 if (SUnit *SU = Bot.pickOnlyChoice()) { 2917 IsTopNode = false; 2918 DEBUG(dbgs() << "Pick Bot ONLY1\n"); 2919 return SU; 2920 } 2921 if (SUnit *SU = Top.pickOnlyChoice()) { 2922 IsTopNode = true; 2923 DEBUG(dbgs() << "Pick Top ONLY1\n"); 2924 return SU; 2925 } 2926 CandPolicy NoPolicy; 2927 SchedCandidate BotCand(NoPolicy); 2928 SchedCandidate TopCand(NoPolicy); 2929 // Set the bottom-up policy based on the state of the current bottom zone and 2930 // the instructions outside the zone, including the top zone. 2931 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2932 // Set the top-down policy based on the state of the current top zone and 2933 // the instructions outside the zone, including the bottom zone. 2934 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2935 2936 // Prefer bottom scheduling when heuristics are silent. 2937 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2938 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2939 2940 // If either Q has a single candidate that provides the least increase in 2941 // Excess pressure, we can immediately schedule from that Q. 2942 // 2943 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2944 // affects picking from either Q. If scheduling in one direction must 2945 // increase pressure for one of the excess PSets, then schedule in that 2946 // direction first to provide more freedom in the other direction. 2947 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2948 || (BotCand.Reason == RegCritical && !BotCand.isRepeat(RegCritical))) 2949 { 2950 IsTopNode = false; 2951 tracePick(BotCand, IsTopNode); 2952 return BotCand.SU; 2953 } 2954 // Check if the top Q has a better candidate. 2955 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2956 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2957 2958 // Choose the queue with the most important (lowest enum) reason. 2959 if (TopCand.Reason < BotCand.Reason) { 2960 IsTopNode = true; 2961 tracePick(TopCand, IsTopNode); 2962 return TopCand.SU; 2963 } 2964 // Otherwise prefer the bottom candidate, in node order if all else failed. 2965 IsTopNode = false; 2966 tracePick(BotCand, IsTopNode); 2967 return BotCand.SU; 2968 } 2969 2970 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2971 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2972 if (DAG->top() == DAG->bottom()) { 2973 assert(Top.Available.empty() && Top.Pending.empty() && 2974 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2975 return nullptr; 2976 } 2977 SUnit *SU; 2978 do { 2979 if (RegionPolicy.OnlyTopDown) { 2980 SU = Top.pickOnlyChoice(); 2981 if (!SU) { 2982 CandPolicy NoPolicy; 2983 SchedCandidate TopCand(NoPolicy); 2984 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2985 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2986 tracePick(TopCand, true); 2987 SU = TopCand.SU; 2988 } 2989 IsTopNode = true; 2990 } else if (RegionPolicy.OnlyBottomUp) { 2991 SU = Bot.pickOnlyChoice(); 2992 if (!SU) { 2993 CandPolicy NoPolicy; 2994 SchedCandidate BotCand(NoPolicy); 2995 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2996 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2997 tracePick(BotCand, false); 2998 SU = BotCand.SU; 2999 } 3000 IsTopNode = false; 3001 } else { 3002 SU = pickNodeBidirectional(IsTopNode); 3003 } 3004 } while (SU->isScheduled); 3005 3006 if (SU->isTopReady()) 3007 Top.removeReady(SU); 3008 if (SU->isBottomReady()) 3009 Bot.removeReady(SU); 3010 3011 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3012 return SU; 3013 } 3014 3015 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3016 3017 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3018 if (!isTop) 3019 ++InsertPos; 3020 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3021 3022 // Find already scheduled copies with a single physreg dependence and move 3023 // them just above the scheduled instruction. 3024 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3025 I != E; ++I) { 3026 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3027 continue; 3028 SUnit *DepSU = I->getSUnit(); 3029 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3030 continue; 3031 MachineInstr *Copy = DepSU->getInstr(); 3032 if (!Copy->isCopy()) 3033 continue; 3034 DEBUG(dbgs() << " Rescheduling physreg copy "; 3035 I->getSUnit()->dump(DAG)); 3036 DAG->moveInstruction(Copy, InsertPos); 3037 } 3038 } 3039 3040 /// Update the scheduler's state after scheduling a node. This is the same node 3041 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3042 /// update it's state based on the current cycle before MachineSchedStrategy 3043 /// does. 3044 /// 3045 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3046 /// them here. See comments in biasPhysRegCopy. 3047 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3048 if (IsTopNode) { 3049 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3050 Top.bumpNode(SU); 3051 if (SU->hasPhysRegUses) 3052 reschedulePhysRegCopies(SU, true); 3053 } else { 3054 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3055 Bot.bumpNode(SU); 3056 if (SU->hasPhysRegDefs) 3057 reschedulePhysRegCopies(SU, false); 3058 } 3059 } 3060 3061 /// Create the standard converging machine scheduler. This will be used as the 3062 /// default scheduler if the target does not set a default. 3063 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3064 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3065 // Register DAG post-processors. 3066 // 3067 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3068 // data and pass it to later mutations. Have a single mutation that gathers 3069 // the interesting nodes in one pass. 3070 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 3071 if (EnableMemOpCluster) { 3072 if (DAG->TII->enableClusterLoads()) 3073 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 3074 if (DAG->TII->enableClusterStores()) 3075 DAG->addMutation(make_unique<StoreClusterMutation>(DAG->TII, DAG->TRI)); 3076 } 3077 if (EnableMacroFusion) 3078 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 3079 return DAG; 3080 } 3081 3082 static MachineSchedRegistry 3083 GenericSchedRegistry("converge", "Standard converging scheduler.", 3084 createGenericSchedLive); 3085 3086 //===----------------------------------------------------------------------===// 3087 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3088 //===----------------------------------------------------------------------===// 3089 3090 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3091 DAG = Dag; 3092 SchedModel = DAG->getSchedModel(); 3093 TRI = DAG->TRI; 3094 3095 Rem.init(DAG, SchedModel); 3096 Top.init(DAG, SchedModel, &Rem); 3097 BotRoots.clear(); 3098 3099 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3100 // or are disabled, then these HazardRecs will be disabled. 3101 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3102 if (!Top.HazardRec) { 3103 Top.HazardRec = 3104 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3105 Itin, DAG); 3106 } 3107 } 3108 3109 3110 void PostGenericScheduler::registerRoots() { 3111 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3112 3113 // Some roots may not feed into ExitSU. Check all of them in case. 3114 for (SmallVectorImpl<SUnit*>::const_iterator 3115 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3116 if ((*I)->getDepth() > Rem.CriticalPath) 3117 Rem.CriticalPath = (*I)->getDepth(); 3118 } 3119 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3120 if (DumpCriticalPathLength) { 3121 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3122 } 3123 } 3124 3125 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3126 /// 3127 /// \param Cand provides the policy and current best candidate. 3128 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3129 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3130 SchedCandidate &TryCand) { 3131 3132 // Initialize the candidate if needed. 3133 if (!Cand.isValid()) { 3134 TryCand.Reason = NodeOrder; 3135 return; 3136 } 3137 3138 // Prioritize instructions that read unbuffered resources by stall cycles. 3139 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3140 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3141 return; 3142 3143 // Avoid critical resource consumption and balance the schedule. 3144 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3145 TryCand, Cand, ResourceReduce)) 3146 return; 3147 if (tryGreater(TryCand.ResDelta.DemandedResources, 3148 Cand.ResDelta.DemandedResources, 3149 TryCand, Cand, ResourceDemand)) 3150 return; 3151 3152 // Avoid serializing long latency dependence chains. 3153 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3154 return; 3155 } 3156 3157 // Fall through to original instruction order. 3158 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3159 TryCand.Reason = NodeOrder; 3160 } 3161 3162 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3163 ReadyQueue &Q = Top.Available; 3164 3165 DEBUG(Q.dump()); 3166 3167 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3168 SchedCandidate TryCand(Cand.Policy); 3169 TryCand.SU = *I; 3170 TryCand.initResourceDelta(DAG, SchedModel); 3171 tryCandidate(Cand, TryCand); 3172 if (TryCand.Reason != NoCand) { 3173 Cand.setBest(TryCand); 3174 DEBUG(traceCandidate(Cand)); 3175 } 3176 } 3177 } 3178 3179 /// Pick the next node to schedule. 3180 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3181 if (DAG->top() == DAG->bottom()) { 3182 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3183 return nullptr; 3184 } 3185 SUnit *SU; 3186 do { 3187 SU = Top.pickOnlyChoice(); 3188 if (!SU) { 3189 CandPolicy NoPolicy; 3190 SchedCandidate TopCand(NoPolicy); 3191 // Set the top-down policy based on the state of the current top zone and 3192 // the instructions outside the zone, including the bottom zone. 3193 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3194 pickNodeFromQueue(TopCand); 3195 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3196 tracePick(TopCand, true); 3197 SU = TopCand.SU; 3198 } 3199 } while (SU->isScheduled); 3200 3201 IsTopNode = true; 3202 Top.removeReady(SU); 3203 3204 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3205 return SU; 3206 } 3207 3208 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3209 /// scheduled/remaining flags in the DAG nodes. 3210 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3211 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3212 Top.bumpNode(SU); 3213 } 3214 3215 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3216 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3217 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3218 } 3219 3220 //===----------------------------------------------------------------------===// 3221 // ILP Scheduler. Currently for experimental analysis of heuristics. 3222 //===----------------------------------------------------------------------===// 3223 3224 namespace { 3225 /// \brief Order nodes by the ILP metric. 3226 struct ILPOrder { 3227 const SchedDFSResult *DFSResult; 3228 const BitVector *ScheduledTrees; 3229 bool MaximizeILP; 3230 3231 ILPOrder(bool MaxILP) 3232 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3233 3234 /// \brief Apply a less-than relation on node priority. 3235 /// 3236 /// (Return true if A comes after B in the Q.) 3237 bool operator()(const SUnit *A, const SUnit *B) const { 3238 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3239 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3240 if (SchedTreeA != SchedTreeB) { 3241 // Unscheduled trees have lower priority. 3242 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3243 return ScheduledTrees->test(SchedTreeB); 3244 3245 // Trees with shallower connections have have lower priority. 3246 if (DFSResult->getSubtreeLevel(SchedTreeA) 3247 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3248 return DFSResult->getSubtreeLevel(SchedTreeA) 3249 < DFSResult->getSubtreeLevel(SchedTreeB); 3250 } 3251 } 3252 if (MaximizeILP) 3253 return DFSResult->getILP(A) < DFSResult->getILP(B); 3254 else 3255 return DFSResult->getILP(A) > DFSResult->getILP(B); 3256 } 3257 }; 3258 3259 /// \brief Schedule based on the ILP metric. 3260 class ILPScheduler : public MachineSchedStrategy { 3261 ScheduleDAGMILive *DAG; 3262 ILPOrder Cmp; 3263 3264 std::vector<SUnit*> ReadyQ; 3265 public: 3266 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3267 3268 void initialize(ScheduleDAGMI *dag) override { 3269 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3270 DAG = static_cast<ScheduleDAGMILive*>(dag); 3271 DAG->computeDFSResult(); 3272 Cmp.DFSResult = DAG->getDFSResult(); 3273 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3274 ReadyQ.clear(); 3275 } 3276 3277 void registerRoots() override { 3278 // Restore the heap in ReadyQ with the updated DFS results. 3279 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3280 } 3281 3282 /// Implement MachineSchedStrategy interface. 3283 /// ----------------------------------------- 3284 3285 /// Callback to select the highest priority node from the ready Q. 3286 SUnit *pickNode(bool &IsTopNode) override { 3287 if (ReadyQ.empty()) return nullptr; 3288 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3289 SUnit *SU = ReadyQ.back(); 3290 ReadyQ.pop_back(); 3291 IsTopNode = false; 3292 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3293 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3294 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3295 << DAG->getDFSResult()->getSubtreeLevel( 3296 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3297 << "Scheduling " << *SU->getInstr()); 3298 return SU; 3299 } 3300 3301 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3302 void scheduleTree(unsigned SubtreeID) override { 3303 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3304 } 3305 3306 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3307 /// DFSResults, and resort the priority Q. 3308 void schedNode(SUnit *SU, bool IsTopNode) override { 3309 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3310 } 3311 3312 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3313 3314 void releaseBottomNode(SUnit *SU) override { 3315 ReadyQ.push_back(SU); 3316 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3317 } 3318 }; 3319 } // namespace 3320 3321 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3322 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3323 } 3324 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3325 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3326 } 3327 static MachineSchedRegistry ILPMaxRegistry( 3328 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3329 static MachineSchedRegistry ILPMinRegistry( 3330 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3331 3332 //===----------------------------------------------------------------------===// 3333 // Machine Instruction Shuffler for Correctness Testing 3334 //===----------------------------------------------------------------------===// 3335 3336 #ifndef NDEBUG 3337 namespace { 3338 /// Apply a less-than relation on the node order, which corresponds to the 3339 /// instruction order prior to scheduling. IsReverse implements greater-than. 3340 template<bool IsReverse> 3341 struct SUnitOrder { 3342 bool operator()(SUnit *A, SUnit *B) const { 3343 if (IsReverse) 3344 return A->NodeNum > B->NodeNum; 3345 else 3346 return A->NodeNum < B->NodeNum; 3347 } 3348 }; 3349 3350 /// Reorder instructions as much as possible. 3351 class InstructionShuffler : public MachineSchedStrategy { 3352 bool IsAlternating; 3353 bool IsTopDown; 3354 3355 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3356 // gives nodes with a higher number higher priority causing the latest 3357 // instructions to be scheduled first. 3358 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3359 TopQ; 3360 // When scheduling bottom-up, use greater-than as the queue priority. 3361 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3362 BottomQ; 3363 public: 3364 InstructionShuffler(bool alternate, bool topdown) 3365 : IsAlternating(alternate), IsTopDown(topdown) {} 3366 3367 void initialize(ScheduleDAGMI*) override { 3368 TopQ.clear(); 3369 BottomQ.clear(); 3370 } 3371 3372 /// Implement MachineSchedStrategy interface. 3373 /// ----------------------------------------- 3374 3375 SUnit *pickNode(bool &IsTopNode) override { 3376 SUnit *SU; 3377 if (IsTopDown) { 3378 do { 3379 if (TopQ.empty()) return nullptr; 3380 SU = TopQ.top(); 3381 TopQ.pop(); 3382 } while (SU->isScheduled); 3383 IsTopNode = true; 3384 } else { 3385 do { 3386 if (BottomQ.empty()) return nullptr; 3387 SU = BottomQ.top(); 3388 BottomQ.pop(); 3389 } while (SU->isScheduled); 3390 IsTopNode = false; 3391 } 3392 if (IsAlternating) 3393 IsTopDown = !IsTopDown; 3394 return SU; 3395 } 3396 3397 void schedNode(SUnit *SU, bool IsTopNode) override {} 3398 3399 void releaseTopNode(SUnit *SU) override { 3400 TopQ.push(SU); 3401 } 3402 void releaseBottomNode(SUnit *SU) override { 3403 BottomQ.push(SU); 3404 } 3405 }; 3406 } // namespace 3407 3408 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3409 bool Alternate = !ForceTopDown && !ForceBottomUp; 3410 bool TopDown = !ForceBottomUp; 3411 assert((TopDown || !ForceTopDown) && 3412 "-misched-topdown incompatible with -misched-bottomup"); 3413 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3414 } 3415 static MachineSchedRegistry ShufflerRegistry( 3416 "shuffle", "Shuffle machine instructions alternating directions", 3417 createInstructionShuffler); 3418 #endif // !NDEBUG 3419 3420 //===----------------------------------------------------------------------===// 3421 // GraphWriter support for ScheduleDAGMILive. 3422 //===----------------------------------------------------------------------===// 3423 3424 #ifndef NDEBUG 3425 namespace llvm { 3426 3427 template<> struct GraphTraits< 3428 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3429 3430 template<> 3431 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3432 3433 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3434 3435 static std::string getGraphName(const ScheduleDAG *G) { 3436 return G->MF.getName(); 3437 } 3438 3439 static bool renderGraphFromBottomUp() { 3440 return true; 3441 } 3442 3443 static bool isNodeHidden(const SUnit *Node) { 3444 if (ViewMISchedCutoff == 0) 3445 return false; 3446 return (Node->Preds.size() > ViewMISchedCutoff 3447 || Node->Succs.size() > ViewMISchedCutoff); 3448 } 3449 3450 /// If you want to override the dot attributes printed for a particular 3451 /// edge, override this method. 3452 static std::string getEdgeAttributes(const SUnit *Node, 3453 SUnitIterator EI, 3454 const ScheduleDAG *Graph) { 3455 if (EI.isArtificialDep()) 3456 return "color=cyan,style=dashed"; 3457 if (EI.isCtrlDep()) 3458 return "color=blue,style=dashed"; 3459 return ""; 3460 } 3461 3462 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3463 std::string Str; 3464 raw_string_ostream SS(Str); 3465 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3466 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3467 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3468 SS << "SU:" << SU->NodeNum; 3469 if (DFS) 3470 SS << " I:" << DFS->getNumInstrs(SU); 3471 return SS.str(); 3472 } 3473 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3474 return G->getGraphNodeLabel(SU); 3475 } 3476 3477 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3478 std::string Str("shape=Mrecord"); 3479 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3480 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3481 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3482 if (DFS) { 3483 Str += ",style=filled,fillcolor=\"#"; 3484 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3485 Str += '"'; 3486 } 3487 return Str; 3488 } 3489 }; 3490 } // namespace llvm 3491 #endif // NDEBUG 3492 3493 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3494 /// rendered using 'dot'. 3495 /// 3496 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3497 #ifndef NDEBUG 3498 ViewGraph(this, Name, false, Title); 3499 #else 3500 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3501 << "systems with Graphviz or gv!\n"; 3502 #endif // NDEBUG 3503 } 3504 3505 /// Out-of-line implementation with no arguments is handy for gdb. 3506 void ScheduleDAGMI::viewGraph() { 3507 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3508 } 3509