1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/RegisterClassInfo.h" 27 #include "llvm/CodeGen/ScheduleDFS.h" 28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/GraphWriter.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include <queue> 36 37 using namespace llvm; 38 39 namespace llvm { 40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 41 cl::desc("Force top-down list scheduling")); 42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 43 cl::desc("Force bottom-up list scheduling")); 44 } 45 46 #ifndef NDEBUG 47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 48 cl::desc("Pop up a window to show MISched dags after they are processed")); 49 50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 52 #else 53 static bool ViewMISchedDAGs = false; 54 #endif // NDEBUG 55 56 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 57 cl::desc("Enable register pressure scheduling."), cl::init(true)); 58 59 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 60 cl::desc("Enable cyclic critical path analysis."), cl::init(false)); 61 62 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 63 cl::desc("Enable load clustering."), cl::init(true)); 64 65 // Experimental heuristics 66 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 67 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 68 69 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 70 cl::desc("Verify machine instrs before and after machine scheduling")); 71 72 // DAG subtrees must have at least this many nodes. 73 static const unsigned MinSubtreeSize = 8; 74 75 //===----------------------------------------------------------------------===// 76 // Machine Instruction Scheduling Pass and Registry 77 //===----------------------------------------------------------------------===// 78 79 MachineSchedContext::MachineSchedContext(): 80 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 81 RegClassInfo = new RegisterClassInfo(); 82 } 83 84 MachineSchedContext::~MachineSchedContext() { 85 delete RegClassInfo; 86 } 87 88 namespace { 89 /// MachineScheduler runs after coalescing and before register allocation. 90 class MachineScheduler : public MachineSchedContext, 91 public MachineFunctionPass { 92 public: 93 MachineScheduler(); 94 95 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 96 97 virtual void releaseMemory() {} 98 99 virtual bool runOnMachineFunction(MachineFunction&); 100 101 virtual void print(raw_ostream &O, const Module* = 0) const; 102 103 static char ID; // Class identification, replacement for typeinfo 104 }; 105 } // namespace 106 107 char MachineScheduler::ID = 0; 108 109 char &llvm::MachineSchedulerID = MachineScheduler::ID; 110 111 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 112 "Machine Instruction Scheduler", false, false) 113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 114 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 115 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 116 INITIALIZE_PASS_END(MachineScheduler, "misched", 117 "Machine Instruction Scheduler", false, false) 118 119 MachineScheduler::MachineScheduler() 120 : MachineFunctionPass(ID) { 121 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 122 } 123 124 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 125 AU.setPreservesCFG(); 126 AU.addRequiredID(MachineDominatorsID); 127 AU.addRequired<MachineLoopInfo>(); 128 AU.addRequired<AliasAnalysis>(); 129 AU.addRequired<TargetPassConfig>(); 130 AU.addRequired<SlotIndexes>(); 131 AU.addPreserved<SlotIndexes>(); 132 AU.addRequired<LiveIntervals>(); 133 AU.addPreserved<LiveIntervals>(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 137 MachinePassRegistry MachineSchedRegistry::Registry; 138 139 /// A dummy default scheduler factory indicates whether the scheduler 140 /// is overridden on the command line. 141 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 142 return 0; 143 } 144 145 /// MachineSchedOpt allows command line selection of the scheduler. 146 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 147 RegisterPassParser<MachineSchedRegistry> > 148 MachineSchedOpt("misched", 149 cl::init(&useDefaultMachineSched), cl::Hidden, 150 cl::desc("Machine instruction scheduler to use")); 151 152 static MachineSchedRegistry 153 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 154 useDefaultMachineSched); 155 156 /// Forward declare the standard machine scheduler. This will be used as the 157 /// default scheduler if the target does not set a default. 158 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 159 160 161 /// Decrement this iterator until reaching the top or a non-debug instr. 162 static MachineBasicBlock::const_iterator 163 priorNonDebug(MachineBasicBlock::const_iterator I, 164 MachineBasicBlock::const_iterator Beg) { 165 assert(I != Beg && "reached the top of the region, cannot decrement"); 166 while (--I != Beg) { 167 if (!I->isDebugValue()) 168 break; 169 } 170 return I; 171 } 172 173 /// Non-const version. 174 static MachineBasicBlock::iterator 175 priorNonDebug(MachineBasicBlock::iterator I, 176 MachineBasicBlock::const_iterator Beg) { 177 return const_cast<MachineInstr*>( 178 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 179 } 180 181 /// If this iterator is a debug value, increment until reaching the End or a 182 /// non-debug instruction. 183 static MachineBasicBlock::const_iterator 184 nextIfDebug(MachineBasicBlock::const_iterator I, 185 MachineBasicBlock::const_iterator End) { 186 for(; I != End; ++I) { 187 if (!I->isDebugValue()) 188 break; 189 } 190 return I; 191 } 192 193 /// Non-const version. 194 static MachineBasicBlock::iterator 195 nextIfDebug(MachineBasicBlock::iterator I, 196 MachineBasicBlock::const_iterator End) { 197 // Cast the return value to nonconst MachineInstr, then cast to an 198 // instr_iterator, which does not check for null, finally return a 199 // bundle_iterator. 200 return MachineBasicBlock::instr_iterator( 201 const_cast<MachineInstr*>( 202 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 203 } 204 205 /// Top-level MachineScheduler pass driver. 206 /// 207 /// Visit blocks in function order. Divide each block into scheduling regions 208 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 209 /// consistent with the DAG builder, which traverses the interior of the 210 /// scheduling regions bottom-up. 211 /// 212 /// This design avoids exposing scheduling boundaries to the DAG builder, 213 /// simplifying the DAG builder's support for "special" target instructions. 214 /// At the same time the design allows target schedulers to operate across 215 /// scheduling boundaries, for example to bundle the boudary instructions 216 /// without reordering them. This creates complexity, because the target 217 /// scheduler must update the RegionBegin and RegionEnd positions cached by 218 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 219 /// design would be to split blocks at scheduling boundaries, but LLVM has a 220 /// general bias against block splitting purely for implementation simplicity. 221 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 222 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 223 224 // Initialize the context of the pass. 225 MF = &mf; 226 MLI = &getAnalysis<MachineLoopInfo>(); 227 MDT = &getAnalysis<MachineDominatorTree>(); 228 PassConfig = &getAnalysis<TargetPassConfig>(); 229 AA = &getAnalysis<AliasAnalysis>(); 230 231 LIS = &getAnalysis<LiveIntervals>(); 232 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 233 234 if (VerifyScheduling) { 235 DEBUG(LIS->dump()); 236 MF->verify(this, "Before machine scheduling."); 237 } 238 RegClassInfo->runOnMachineFunction(*MF); 239 240 // Select the scheduler, or set the default. 241 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 242 if (Ctor == useDefaultMachineSched) { 243 // Get the default scheduler set by the target. 244 Ctor = MachineSchedRegistry::getDefault(); 245 if (!Ctor) { 246 Ctor = createConvergingSched; 247 MachineSchedRegistry::setDefault(Ctor); 248 } 249 } 250 // Instantiate the selected scheduler. 251 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 252 253 // Visit all machine basic blocks. 254 // 255 // TODO: Visit blocks in global postorder or postorder within the bottom-up 256 // loop tree. Then we can optionally compute global RegPressure. 257 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 258 MBB != MBBEnd; ++MBB) { 259 260 Scheduler->startBlock(MBB); 261 262 // Break the block into scheduling regions [I, RegionEnd), and schedule each 263 // region as soon as it is discovered. RegionEnd points the scheduling 264 // boundary at the bottom of the region. The DAG does not include RegionEnd, 265 // but the region does (i.e. the next RegionEnd is above the previous 266 // RegionBegin). If the current block has no terminator then RegionEnd == 267 // MBB->end() for the bottom region. 268 // 269 // The Scheduler may insert instructions during either schedule() or 270 // exitRegion(), even for empty regions. So the local iterators 'I' and 271 // 'RegionEnd' are invalid across these calls. 272 unsigned RemainingInstrs = MBB->size(); 273 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 274 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 275 276 // Avoid decrementing RegionEnd for blocks with no terminator. 277 if (RegionEnd != MBB->end() 278 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 279 --RegionEnd; 280 // Count the boundary instruction. 281 --RemainingInstrs; 282 } 283 284 // The next region starts above the previous region. Look backward in the 285 // instruction stream until we find the nearest boundary. 286 unsigned NumRegionInstrs = 0; 287 MachineBasicBlock::iterator I = RegionEnd; 288 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 289 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 290 break; 291 } 292 // Notify the scheduler of the region, even if we may skip scheduling 293 // it. Perhaps it still needs to be bundled. 294 Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 295 296 // Skip empty scheduling regions (0 or 1 schedulable instructions). 297 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 298 // Close the current region. Bundle the terminator if needed. 299 // This invalidates 'RegionEnd' and 'I'. 300 Scheduler->exitRegion(); 301 continue; 302 } 303 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 304 DEBUG(dbgs() << MF->getName() 305 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 306 << "\n From: " << *I << " To: "; 307 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 308 else dbgs() << "End"; 309 dbgs() << " RegionInstrs: " << NumRegionInstrs 310 << " Remaining: " << RemainingInstrs << "\n"); 311 312 // Schedule a region: possibly reorder instructions. 313 // This invalidates 'RegionEnd' and 'I'. 314 Scheduler->schedule(); 315 316 // Close the current region. 317 Scheduler->exitRegion(); 318 319 // Scheduling has invalidated the current iterator 'I'. Ask the 320 // scheduler for the top of it's scheduled region. 321 RegionEnd = Scheduler->begin(); 322 } 323 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 324 Scheduler->finishBlock(); 325 } 326 Scheduler->finalizeSchedule(); 327 DEBUG(LIS->dump()); 328 if (VerifyScheduling) 329 MF->verify(this, "After machine scheduling."); 330 return true; 331 } 332 333 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 334 // unimplemented 335 } 336 337 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 338 void ReadyQueue::dump() { 339 dbgs() << Name << ": "; 340 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 341 dbgs() << Queue[i]->NodeNum << " "; 342 dbgs() << "\n"; 343 } 344 #endif 345 346 //===----------------------------------------------------------------------===// 347 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 348 // preservation. 349 //===----------------------------------------------------------------------===// 350 351 ScheduleDAGMI::~ScheduleDAGMI() { 352 delete DFSResult; 353 DeleteContainerPointers(Mutations); 354 delete SchedImpl; 355 } 356 357 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 358 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 359 } 360 361 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 362 if (SuccSU != &ExitSU) { 363 // Do not use WillCreateCycle, it assumes SD scheduling. 364 // If Pred is reachable from Succ, then the edge creates a cycle. 365 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 366 return false; 367 Topo.AddPred(SuccSU, PredDep.getSUnit()); 368 } 369 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 370 // Return true regardless of whether a new edge needed to be inserted. 371 return true; 372 } 373 374 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 375 /// NumPredsLeft reaches zero, release the successor node. 376 /// 377 /// FIXME: Adjust SuccSU height based on MinLatency. 378 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 379 SUnit *SuccSU = SuccEdge->getSUnit(); 380 381 if (SuccEdge->isWeak()) { 382 --SuccSU->WeakPredsLeft; 383 if (SuccEdge->isCluster()) 384 NextClusterSucc = SuccSU; 385 return; 386 } 387 #ifndef NDEBUG 388 if (SuccSU->NumPredsLeft == 0) { 389 dbgs() << "*** Scheduling failed! ***\n"; 390 SuccSU->dump(this); 391 dbgs() << " has been released too many times!\n"; 392 llvm_unreachable(0); 393 } 394 #endif 395 --SuccSU->NumPredsLeft; 396 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 397 SchedImpl->releaseTopNode(SuccSU); 398 } 399 400 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 401 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 402 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 403 I != E; ++I) { 404 releaseSucc(SU, &*I); 405 } 406 } 407 408 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 409 /// NumSuccsLeft reaches zero, release the predecessor node. 410 /// 411 /// FIXME: Adjust PredSU height based on MinLatency. 412 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 413 SUnit *PredSU = PredEdge->getSUnit(); 414 415 if (PredEdge->isWeak()) { 416 --PredSU->WeakSuccsLeft; 417 if (PredEdge->isCluster()) 418 NextClusterPred = PredSU; 419 return; 420 } 421 #ifndef NDEBUG 422 if (PredSU->NumSuccsLeft == 0) { 423 dbgs() << "*** Scheduling failed! ***\n"; 424 PredSU->dump(this); 425 dbgs() << " has been released too many times!\n"; 426 llvm_unreachable(0); 427 } 428 #endif 429 --PredSU->NumSuccsLeft; 430 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 431 SchedImpl->releaseBottomNode(PredSU); 432 } 433 434 /// releasePredecessors - Call releasePred on each of SU's predecessors. 435 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 436 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 437 I != E; ++I) { 438 releasePred(SU, &*I); 439 } 440 } 441 442 /// This is normally called from the main scheduler loop but may also be invoked 443 /// by the scheduling strategy to perform additional code motion. 444 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 445 MachineBasicBlock::iterator InsertPos) { 446 // Advance RegionBegin if the first instruction moves down. 447 if (&*RegionBegin == MI) 448 ++RegionBegin; 449 450 // Update the instruction stream. 451 BB->splice(InsertPos, BB, MI); 452 453 // Update LiveIntervals 454 LIS->handleMove(MI, /*UpdateFlags=*/true); 455 456 // Recede RegionBegin if an instruction moves above the first. 457 if (RegionBegin == InsertPos) 458 RegionBegin = MI; 459 } 460 461 bool ScheduleDAGMI::checkSchedLimit() { 462 #ifndef NDEBUG 463 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 464 CurrentTop = CurrentBottom; 465 return false; 466 } 467 ++NumInstrsScheduled; 468 #endif 469 return true; 470 } 471 472 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 473 /// crossing a scheduling boundary. [begin, end) includes all instructions in 474 /// the region, including the boundary itself and single-instruction regions 475 /// that don't get scheduled. 476 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 477 MachineBasicBlock::iterator begin, 478 MachineBasicBlock::iterator end, 479 unsigned regioninstrs) 480 { 481 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 482 483 ShouldTrackPressure = EnableRegPressure; 484 485 // For convenience remember the end of the liveness region. 486 LiveRegionEnd = 487 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 488 } 489 490 // Setup the register pressure trackers for the top scheduled top and bottom 491 // scheduled regions. 492 void ScheduleDAGMI::initRegPressure() { 493 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 494 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 495 496 // Close the RPTracker to finalize live ins. 497 RPTracker.closeRegion(); 498 499 DEBUG(RPTracker.dump()); 500 501 // Initialize the live ins and live outs. 502 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 503 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 504 505 // Close one end of the tracker so we can call 506 // getMaxUpward/DownwardPressureDelta before advancing across any 507 // instructions. This converts currently live regs into live ins/outs. 508 TopRPTracker.closeTop(); 509 BotRPTracker.closeBottom(); 510 511 BotRPTracker.initLiveThru(RPTracker); 512 if (!BotRPTracker.getLiveThru().empty()) { 513 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 514 DEBUG(dbgs() << "Live Thru: "; 515 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 516 }; 517 518 // For each live out vreg reduce the pressure change associated with other 519 // uses of the same vreg below the live-out reaching def. 520 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 521 522 // Account for liveness generated by the region boundary. 523 if (LiveRegionEnd != RegionEnd) { 524 SmallVector<unsigned, 8> LiveUses; 525 BotRPTracker.recede(&LiveUses); 526 updatePressureDiffs(LiveUses); 527 } 528 529 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 530 531 // Cache the list of excess pressure sets in this region. This will also track 532 // the max pressure in the scheduled code for these sets. 533 RegionCriticalPSets.clear(); 534 const std::vector<unsigned> &RegionPressure = 535 RPTracker.getPressure().MaxSetPressure; 536 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 537 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 538 if (RegionPressure[i] > Limit) { 539 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 540 << " Limit " << Limit 541 << " Actual " << RegionPressure[i] << "\n"); 542 RegionCriticalPSets.push_back(PressureChange(i)); 543 } 544 } 545 DEBUG(dbgs() << "Excess PSets: "; 546 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 547 dbgs() << TRI->getRegPressureSetName( 548 RegionCriticalPSets[i].getPSet()) << " "; 549 dbgs() << "\n"); 550 } 551 552 // FIXME: When the pressure tracker deals in pressure differences then we won't 553 // iterate over all RegionCriticalPSets[i]. 554 void ScheduleDAGMI:: 555 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 556 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 557 unsigned ID = RegionCriticalPSets[i].getPSet(); 558 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[i].getUnitInc() 559 && NewMaxPressure[ID] <= INT16_MAX) 560 RegionCriticalPSets[i].setUnitInc(NewMaxPressure[ID]); 561 } 562 DEBUG( 563 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { 564 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 565 if (NewMaxPressure[i] > Limit ) { 566 dbgs() << " " << TRI->getRegPressureSetName(i) << ": " 567 << NewMaxPressure[i] << " > " << Limit << "\n"; 568 } 569 }); 570 } 571 572 /// Update the PressureDiff array for liveness after scheduling this 573 /// instruction. 574 void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 575 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 576 /// FIXME: Currently assuming single-use physregs. 577 unsigned Reg = LiveUses[LUIdx]; 578 if (!TRI->isVirtualRegister(Reg)) 579 continue; 580 // This may be called before CurrentBottom has been initialized. However, 581 // BotRPTracker must have a valid position. We want the value live into the 582 // instruction or live out of the block, so ask for the previous 583 // instruction's live-out. 584 const LiveInterval &LI = LIS->getInterval(Reg); 585 VNInfo *VNI; 586 MachineBasicBlock::const_iterator I = 587 nextIfDebug(BotRPTracker.getPos(), BB->end()); 588 if (I == BB->end()) 589 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 590 else { 591 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(I)); 592 VNI = LRQ.valueIn(); 593 } 594 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 595 assert(VNI && "No live value at use."); 596 for (VReg2UseMap::iterator 597 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 598 SUnit *SU = UI->SU; 599 // If this use comes before the reaching def, it cannot be a last use, so 600 // descrease its pressure change. 601 if (!SU->isScheduled && SU != &ExitSU) { 602 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(SU->getInstr())); 603 if (LRQ.valueIn() == VNI) 604 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 605 } 606 } 607 } 608 } 609 610 /// schedule - Called back from MachineScheduler::runOnMachineFunction 611 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 612 /// only includes instructions that have DAG nodes, not scheduling boundaries. 613 /// 614 /// This is a skeletal driver, with all the functionality pushed into helpers, 615 /// so that it can be easilly extended by experimental schedulers. Generally, 616 /// implementing MachineSchedStrategy should be sufficient to implement a new 617 /// scheduling algorithm. However, if a scheduler further subclasses 618 /// ScheduleDAGMI then it will want to override this virtual method in order to 619 /// update any specialized state. 620 void ScheduleDAGMI::schedule() { 621 buildDAGWithRegPressure(); 622 623 Topo.InitDAGTopologicalSorting(); 624 625 postprocessDAG(); 626 627 SmallVector<SUnit*, 8> TopRoots, BotRoots; 628 findRootsAndBiasEdges(TopRoots, BotRoots); 629 630 // Initialize the strategy before modifying the DAG. 631 // This may initialize a DFSResult to be used for queue priority. 632 SchedImpl->initialize(this); 633 634 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 635 SUnits[su].dumpAll(this)); 636 if (ViewMISchedDAGs) viewGraph(); 637 638 // Initialize ready queues now that the DAG and priority data are finalized. 639 initQueues(TopRoots, BotRoots); 640 641 bool IsTopNode = false; 642 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 643 assert(!SU->isScheduled && "Node already scheduled"); 644 if (!checkSchedLimit()) 645 break; 646 647 scheduleMI(SU, IsTopNode); 648 649 updateQueues(SU, IsTopNode); 650 } 651 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 652 653 placeDebugValues(); 654 655 DEBUG({ 656 unsigned BBNum = begin()->getParent()->getNumber(); 657 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 658 dumpSchedule(); 659 dbgs() << '\n'; 660 }); 661 } 662 663 /// Build the DAG and setup three register pressure trackers. 664 void ScheduleDAGMI::buildDAGWithRegPressure() { 665 if (!ShouldTrackPressure) { 666 RPTracker.reset(); 667 RegionCriticalPSets.clear(); 668 buildSchedGraph(AA); 669 return; 670 } 671 672 // Initialize the register pressure tracker used by buildSchedGraph. 673 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 674 /*TrackUntiedDefs=*/true); 675 676 // Account for liveness generate by the region boundary. 677 if (LiveRegionEnd != RegionEnd) 678 RPTracker.recede(); 679 680 // Build the DAG, and compute current register pressure. 681 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 682 683 // Initialize top/bottom trackers after computing region pressure. 684 initRegPressure(); 685 } 686 687 /// Apply each ScheduleDAGMutation step in order. 688 void ScheduleDAGMI::postprocessDAG() { 689 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 690 Mutations[i]->apply(this); 691 } 692 } 693 694 void ScheduleDAGMI::computeDFSResult() { 695 if (!DFSResult) 696 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 697 DFSResult->clear(); 698 ScheduledTrees.clear(); 699 DFSResult->resize(SUnits.size()); 700 DFSResult->compute(SUnits); 701 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 702 } 703 704 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 705 SmallVectorImpl<SUnit*> &BotRoots) { 706 for (std::vector<SUnit>::iterator 707 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 708 SUnit *SU = &(*I); 709 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 710 711 // Order predecessors so DFSResult follows the critical path. 712 SU->biasCriticalPath(); 713 714 // A SUnit is ready to top schedule if it has no predecessors. 715 if (!I->NumPredsLeft) 716 TopRoots.push_back(SU); 717 // A SUnit is ready to bottom schedule if it has no successors. 718 if (!I->NumSuccsLeft) 719 BotRoots.push_back(SU); 720 } 721 ExitSU.biasCriticalPath(); 722 } 723 724 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 725 /// only provides the critical path for single block loops. To handle loops that 726 /// span blocks, we could use the vreg path latencies provided by 727 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 728 /// available for use in the scheduler. 729 /// 730 /// The cyclic path estimation identifies a def-use pair that crosses the back 731 /// edge and considers the depth and height of the nodes. For example, consider 732 /// the following instruction sequence where each instruction has unit latency 733 /// and defines an epomymous virtual register: 734 /// 735 /// a->b(a,c)->c(b)->d(c)->exit 736 /// 737 /// The cyclic critical path is a two cycles: b->c->b 738 /// The acyclic critical path is four cycles: a->b->c->d->exit 739 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 740 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 741 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 742 /// LiveInDepth = depth(b) = len(a->b) = 1 743 /// 744 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 745 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 746 /// CyclicCriticalPath = min(2, 2) = 2 747 unsigned ScheduleDAGMI::computeCyclicCriticalPath() { 748 // This only applies to single block loop. 749 if (!BB->isSuccessor(BB)) 750 return 0; 751 752 unsigned MaxCyclicLatency = 0; 753 // Visit each live out vreg def to find def/use pairs that cross iterations. 754 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 755 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 756 RI != RE; ++RI) { 757 unsigned Reg = *RI; 758 if (!TRI->isVirtualRegister(Reg)) 759 continue; 760 const LiveInterval &LI = LIS->getInterval(Reg); 761 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 762 if (!DefVNI) 763 continue; 764 765 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 766 const SUnit *DefSU = getSUnit(DefMI); 767 if (!DefSU) 768 continue; 769 770 unsigned LiveOutHeight = DefSU->getHeight(); 771 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 772 // Visit all local users of the vreg def. 773 for (VReg2UseMap::iterator 774 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 775 if (UI->SU == &ExitSU) 776 continue; 777 778 // Only consider uses of the phi. 779 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr())); 780 if (!LRQ.valueIn()->isPHIDef()) 781 continue; 782 783 // Assume that a path spanning two iterations is a cycle, which could 784 // overestimate in strange cases. This allows cyclic latency to be 785 // estimated as the minimum slack of the vreg's depth or height. 786 unsigned CyclicLatency = 0; 787 if (LiveOutDepth > UI->SU->getDepth()) 788 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 789 790 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 791 if (LiveInHeight > LiveOutHeight) { 792 if (LiveInHeight - LiveOutHeight < CyclicLatency) 793 CyclicLatency = LiveInHeight - LiveOutHeight; 794 } 795 else 796 CyclicLatency = 0; 797 798 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 799 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 800 if (CyclicLatency > MaxCyclicLatency) 801 MaxCyclicLatency = CyclicLatency; 802 } 803 } 804 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 805 return MaxCyclicLatency; 806 } 807 808 /// Identify DAG roots and setup scheduler queues. 809 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 810 ArrayRef<SUnit*> BotRoots) { 811 NextClusterSucc = NULL; 812 NextClusterPred = NULL; 813 814 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 815 // 816 // Nodes with unreleased weak edges can still be roots. 817 // Release top roots in forward order. 818 for (SmallVectorImpl<SUnit*>::const_iterator 819 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 820 SchedImpl->releaseTopNode(*I); 821 } 822 // Release bottom roots in reverse order so the higher priority nodes appear 823 // first. This is more natural and slightly more efficient. 824 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 825 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 826 SchedImpl->releaseBottomNode(*I); 827 } 828 829 releaseSuccessors(&EntrySU); 830 releasePredecessors(&ExitSU); 831 832 SchedImpl->registerRoots(); 833 834 // Advance past initial DebugValues. 835 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 836 CurrentBottom = RegionEnd; 837 838 if (ShouldTrackPressure) { 839 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 840 TopRPTracker.setPos(CurrentTop); 841 } 842 } 843 844 /// Move an instruction and update register pressure. 845 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 846 // Move the instruction to its new location in the instruction stream. 847 MachineInstr *MI = SU->getInstr(); 848 849 if (IsTopNode) { 850 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 851 if (&*CurrentTop == MI) 852 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 853 else { 854 moveInstruction(MI, CurrentTop); 855 TopRPTracker.setPos(MI); 856 } 857 858 if (ShouldTrackPressure) { 859 // Update top scheduled pressure. 860 TopRPTracker.advance(); 861 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 862 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 863 } 864 } 865 else { 866 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 867 MachineBasicBlock::iterator priorII = 868 priorNonDebug(CurrentBottom, CurrentTop); 869 if (&*priorII == MI) 870 CurrentBottom = priorII; 871 else { 872 if (&*CurrentTop == MI) { 873 CurrentTop = nextIfDebug(++CurrentTop, priorII); 874 TopRPTracker.setPos(CurrentTop); 875 } 876 moveInstruction(MI, CurrentBottom); 877 CurrentBottom = MI; 878 } 879 if (ShouldTrackPressure) { 880 // Update bottom scheduled pressure. 881 SmallVector<unsigned, 8> LiveUses; 882 BotRPTracker.recede(&LiveUses); 883 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 884 updatePressureDiffs(LiveUses); 885 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 886 } 887 } 888 } 889 890 /// Update scheduler queues after scheduling an instruction. 891 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 892 // Release dependent instructions for scheduling. 893 if (IsTopNode) 894 releaseSuccessors(SU); 895 else 896 releasePredecessors(SU); 897 898 SU->isScheduled = true; 899 900 if (DFSResult) { 901 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 902 if (!ScheduledTrees.test(SubtreeID)) { 903 ScheduledTrees.set(SubtreeID); 904 DFSResult->scheduleTree(SubtreeID); 905 SchedImpl->scheduleTree(SubtreeID); 906 } 907 } 908 909 // Notify the scheduling strategy after updating the DAG. 910 SchedImpl->schedNode(SU, IsTopNode); 911 } 912 913 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 914 void ScheduleDAGMI::placeDebugValues() { 915 // If first instruction was a DBG_VALUE then put it back. 916 if (FirstDbgValue) { 917 BB->splice(RegionBegin, BB, FirstDbgValue); 918 RegionBegin = FirstDbgValue; 919 } 920 921 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 922 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 923 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 924 MachineInstr *DbgValue = P.first; 925 MachineBasicBlock::iterator OrigPrevMI = P.second; 926 if (&*RegionBegin == DbgValue) 927 ++RegionBegin; 928 BB->splice(++OrigPrevMI, BB, DbgValue); 929 if (OrigPrevMI == llvm::prior(RegionEnd)) 930 RegionEnd = DbgValue; 931 } 932 DbgValues.clear(); 933 FirstDbgValue = NULL; 934 } 935 936 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 937 void ScheduleDAGMI::dumpSchedule() const { 938 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 939 if (SUnit *SU = getSUnit(&(*MI))) 940 SU->dump(this); 941 else 942 dbgs() << "Missing SUnit\n"; 943 } 944 } 945 #endif 946 947 //===----------------------------------------------------------------------===// 948 // LoadClusterMutation - DAG post-processing to cluster loads. 949 //===----------------------------------------------------------------------===// 950 951 namespace { 952 /// \brief Post-process the DAG to create cluster edges between neighboring 953 /// loads. 954 class LoadClusterMutation : public ScheduleDAGMutation { 955 struct LoadInfo { 956 SUnit *SU; 957 unsigned BaseReg; 958 unsigned Offset; 959 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 960 : SU(su), BaseReg(reg), Offset(ofs) {} 961 }; 962 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 963 const LoadClusterMutation::LoadInfo &RHS); 964 965 const TargetInstrInfo *TII; 966 const TargetRegisterInfo *TRI; 967 public: 968 LoadClusterMutation(const TargetInstrInfo *tii, 969 const TargetRegisterInfo *tri) 970 : TII(tii), TRI(tri) {} 971 972 virtual void apply(ScheduleDAGMI *DAG); 973 protected: 974 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 975 }; 976 } // anonymous 977 978 bool LoadClusterMutation::LoadInfoLess( 979 const LoadClusterMutation::LoadInfo &LHS, 980 const LoadClusterMutation::LoadInfo &RHS) { 981 if (LHS.BaseReg != RHS.BaseReg) 982 return LHS.BaseReg < RHS.BaseReg; 983 return LHS.Offset < RHS.Offset; 984 } 985 986 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 987 ScheduleDAGMI *DAG) { 988 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 989 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 990 SUnit *SU = Loads[Idx]; 991 unsigned BaseReg; 992 unsigned Offset; 993 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 994 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 995 } 996 if (LoadRecords.size() < 2) 997 return; 998 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 999 unsigned ClusterLength = 1; 1000 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1001 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1002 ClusterLength = 1; 1003 continue; 1004 } 1005 1006 SUnit *SUa = LoadRecords[Idx].SU; 1007 SUnit *SUb = LoadRecords[Idx+1].SU; 1008 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1009 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1010 1011 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1012 << SUb->NodeNum << ")\n"); 1013 // Copy successor edges from SUa to SUb. Interleaving computation 1014 // dependent on SUa can prevent load combining due to register reuse. 1015 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1016 // loads should have effectively the same inputs. 1017 for (SUnit::const_succ_iterator 1018 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1019 if (SI->getSUnit() == SUb) 1020 continue; 1021 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1022 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1023 } 1024 ++ClusterLength; 1025 } 1026 else 1027 ClusterLength = 1; 1028 } 1029 } 1030 1031 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1032 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1033 // Map DAG NodeNum to store chain ID. 1034 DenseMap<unsigned, unsigned> StoreChainIDs; 1035 // Map each store chain to a set of dependent loads. 1036 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1037 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1038 SUnit *SU = &DAG->SUnits[Idx]; 1039 if (!SU->getInstr()->mayLoad()) 1040 continue; 1041 unsigned ChainPredID = DAG->SUnits.size(); 1042 for (SUnit::const_pred_iterator 1043 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1044 if (PI->isCtrl()) { 1045 ChainPredID = PI->getSUnit()->NodeNum; 1046 break; 1047 } 1048 } 1049 // Check if this chain-like pred has been seen 1050 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1051 unsigned NumChains = StoreChainDependents.size(); 1052 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1053 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1054 if (Result.second) 1055 StoreChainDependents.resize(NumChains + 1); 1056 StoreChainDependents[Result.first->second].push_back(SU); 1057 } 1058 // Iterate over the store chains. 1059 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1060 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1061 } 1062 1063 //===----------------------------------------------------------------------===// 1064 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1065 //===----------------------------------------------------------------------===// 1066 1067 namespace { 1068 /// \brief Post-process the DAG to create cluster edges between instructions 1069 /// that may be fused by the processor into a single operation. 1070 class MacroFusion : public ScheduleDAGMutation { 1071 const TargetInstrInfo *TII; 1072 public: 1073 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 1074 1075 virtual void apply(ScheduleDAGMI *DAG); 1076 }; 1077 } // anonymous 1078 1079 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1080 /// fused operations. 1081 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1082 // For now, assume targets can only fuse with the branch. 1083 MachineInstr *Branch = DAG->ExitSU.getInstr(); 1084 if (!Branch) 1085 return; 1086 1087 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1088 SUnit *SU = &DAG->SUnits[--Idx]; 1089 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1090 continue; 1091 1092 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1093 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1094 // need to copy predecessor edges from ExitSU to SU, since top-down 1095 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1096 // of SU, we could create an artificial edge from the deepest root, but it 1097 // hasn't been needed yet. 1098 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1099 (void)Success; 1100 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1101 1102 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1103 break; 1104 } 1105 } 1106 1107 //===----------------------------------------------------------------------===// 1108 // CopyConstrain - DAG post-processing to encourage copy elimination. 1109 //===----------------------------------------------------------------------===// 1110 1111 namespace { 1112 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1113 /// the one use that defines the copy's source vreg, most likely an induction 1114 /// variable increment. 1115 class CopyConstrain : public ScheduleDAGMutation { 1116 // Transient state. 1117 SlotIndex RegionBeginIdx; 1118 // RegionEndIdx is the slot index of the last non-debug instruction in the 1119 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1120 SlotIndex RegionEndIdx; 1121 public: 1122 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1123 1124 virtual void apply(ScheduleDAGMI *DAG); 1125 1126 protected: 1127 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); 1128 }; 1129 } // anonymous 1130 1131 /// constrainLocalCopy handles two possibilities: 1132 /// 1) Local src: 1133 /// I0: = dst 1134 /// I1: src = ... 1135 /// I2: = dst 1136 /// I3: dst = src (copy) 1137 /// (create pred->succ edges I0->I1, I2->I1) 1138 /// 1139 /// 2) Local copy: 1140 /// I0: dst = src (copy) 1141 /// I1: = dst 1142 /// I2: src = ... 1143 /// I3: = dst 1144 /// (create pred->succ edges I1->I2, I3->I2) 1145 /// 1146 /// Although the MachineScheduler is currently constrained to single blocks, 1147 /// this algorithm should handle extended blocks. An EBB is a set of 1148 /// contiguously numbered blocks such that the previous block in the EBB is 1149 /// always the single predecessor. 1150 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { 1151 LiveIntervals *LIS = DAG->getLIS(); 1152 MachineInstr *Copy = CopySU->getInstr(); 1153 1154 // Check for pure vreg copies. 1155 unsigned SrcReg = Copy->getOperand(1).getReg(); 1156 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1157 return; 1158 1159 unsigned DstReg = Copy->getOperand(0).getReg(); 1160 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1161 return; 1162 1163 // Check if either the dest or source is local. If it's live across a back 1164 // edge, it's not local. Note that if both vregs are live across the back 1165 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1166 unsigned LocalReg = DstReg; 1167 unsigned GlobalReg = SrcReg; 1168 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1169 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1170 LocalReg = SrcReg; 1171 GlobalReg = DstReg; 1172 LocalLI = &LIS->getInterval(LocalReg); 1173 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1174 return; 1175 } 1176 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1177 1178 // Find the global segment after the start of the local LI. 1179 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1180 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1181 // local live range. We could create edges from other global uses to the local 1182 // start, but the coalescer should have already eliminated these cases, so 1183 // don't bother dealing with it. 1184 if (GlobalSegment == GlobalLI->end()) 1185 return; 1186 1187 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1188 // returned the next global segment. But if GlobalSegment overlaps with 1189 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1190 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1191 if (GlobalSegment->contains(LocalLI->beginIndex())) 1192 ++GlobalSegment; 1193 1194 if (GlobalSegment == GlobalLI->end()) 1195 return; 1196 1197 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1198 if (GlobalSegment != GlobalLI->begin()) { 1199 // Two address defs have no hole. 1200 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, 1201 GlobalSegment->start)) { 1202 return; 1203 } 1204 // If the prior global segment may be defined by the same two-address 1205 // instruction that also defines LocalLI, then can't make a hole here. 1206 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, 1207 LocalLI->beginIndex())) { 1208 return; 1209 } 1210 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1211 // it would be a disconnected component in the live range. 1212 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && 1213 "Disconnected LRG within the scheduling region."); 1214 } 1215 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1216 if (!GlobalDef) 1217 return; 1218 1219 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1220 if (!GlobalSU) 1221 return; 1222 1223 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1224 // constraining the uses of the last local def to precede GlobalDef. 1225 SmallVector<SUnit*,8> LocalUses; 1226 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1227 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1228 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1229 for (SUnit::const_succ_iterator 1230 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1231 I != E; ++I) { 1232 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1233 continue; 1234 if (I->getSUnit() == GlobalSU) 1235 continue; 1236 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1237 return; 1238 LocalUses.push_back(I->getSUnit()); 1239 } 1240 // Open the top of the GlobalLI hole by constraining any earlier global uses 1241 // to precede the start of LocalLI. 1242 SmallVector<SUnit*,8> GlobalUses; 1243 MachineInstr *FirstLocalDef = 1244 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1245 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1246 for (SUnit::const_pred_iterator 1247 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1248 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1249 continue; 1250 if (I->getSUnit() == FirstLocalSU) 1251 continue; 1252 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1253 return; 1254 GlobalUses.push_back(I->getSUnit()); 1255 } 1256 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1257 // Add the weak edges. 1258 for (SmallVectorImpl<SUnit*>::const_iterator 1259 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1260 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1261 << GlobalSU->NodeNum << ")\n"); 1262 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1263 } 1264 for (SmallVectorImpl<SUnit*>::const_iterator 1265 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1266 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1267 << FirstLocalSU->NodeNum << ")\n"); 1268 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1269 } 1270 } 1271 1272 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1273 /// copy elimination. 1274 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1275 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1276 if (FirstPos == DAG->end()) 1277 return; 1278 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1279 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1280 &*priorNonDebug(DAG->end(), DAG->begin())); 1281 1282 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1283 SUnit *SU = &DAG->SUnits[Idx]; 1284 if (!SU->getInstr()->isCopy()) 1285 continue; 1286 1287 constrainLocalCopy(SU, DAG); 1288 } 1289 } 1290 1291 //===----------------------------------------------------------------------===// 1292 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy. 1293 //===----------------------------------------------------------------------===// 1294 1295 namespace { 1296 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 1297 /// the schedule. 1298 class ConvergingScheduler : public MachineSchedStrategy { 1299 public: 1300 /// Represent the type of SchedCandidate found within a single queue. 1301 /// pickNodeBidirectional depends on these listed by decreasing priority. 1302 enum CandReason { 1303 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, 1304 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 1305 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 1306 1307 #ifndef NDEBUG 1308 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 1309 #endif 1310 1311 /// Policy for scheduling the next instruction in the candidate's zone. 1312 struct CandPolicy { 1313 bool ReduceLatency; 1314 unsigned ReduceResIdx; 1315 unsigned DemandResIdx; 1316 1317 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 1318 }; 1319 1320 /// Status of an instruction's critical resource consumption. 1321 struct SchedResourceDelta { 1322 // Count critical resources in the scheduled region required by SU. 1323 unsigned CritResources; 1324 1325 // Count critical resources from another region consumed by SU. 1326 unsigned DemandedResources; 1327 1328 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 1329 1330 bool operator==(const SchedResourceDelta &RHS) const { 1331 return CritResources == RHS.CritResources 1332 && DemandedResources == RHS.DemandedResources; 1333 } 1334 bool operator!=(const SchedResourceDelta &RHS) const { 1335 return !operator==(RHS); 1336 } 1337 }; 1338 1339 /// Store the state used by ConvergingScheduler heuristics, required for the 1340 /// lifetime of one invocation of pickNode(). 1341 struct SchedCandidate { 1342 CandPolicy Policy; 1343 1344 // The best SUnit candidate. 1345 SUnit *SU; 1346 1347 // The reason for this candidate. 1348 CandReason Reason; 1349 1350 // Set of reasons that apply to multiple candidates. 1351 uint32_t RepeatReasonSet; 1352 1353 // Register pressure values for the best candidate. 1354 RegPressureDelta RPDelta; 1355 1356 // Critical resource consumption of the best candidate. 1357 SchedResourceDelta ResDelta; 1358 1359 SchedCandidate(const CandPolicy &policy) 1360 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} 1361 1362 bool isValid() const { return SU; } 1363 1364 // Copy the status of another candidate without changing policy. 1365 void setBest(SchedCandidate &Best) { 1366 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 1367 SU = Best.SU; 1368 Reason = Best.Reason; 1369 RPDelta = Best.RPDelta; 1370 ResDelta = Best.ResDelta; 1371 } 1372 1373 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 1374 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 1375 1376 void initResourceDelta(const ScheduleDAGMI *DAG, 1377 const TargetSchedModel *SchedModel); 1378 }; 1379 1380 /// Summarize the unscheduled region. 1381 struct SchedRemainder { 1382 // Critical path through the DAG in expected latency. 1383 unsigned CriticalPath; 1384 unsigned CyclicCritPath; 1385 1386 // Scaled count of micro-ops left to schedule. 1387 unsigned RemIssueCount; 1388 1389 bool IsAcyclicLatencyLimited; 1390 1391 // Unscheduled resources 1392 SmallVector<unsigned, 16> RemainingCounts; 1393 1394 void reset() { 1395 CriticalPath = 0; 1396 CyclicCritPath = 0; 1397 RemIssueCount = 0; 1398 IsAcyclicLatencyLimited = false; 1399 RemainingCounts.clear(); 1400 } 1401 1402 SchedRemainder() { reset(); } 1403 1404 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1405 }; 1406 1407 /// Each Scheduling boundary is associated with ready queues. It tracks the 1408 /// current cycle in the direction of movement, and maintains the state 1409 /// of "hazards" and other interlocks at the current cycle. 1410 struct SchedBoundary { 1411 ScheduleDAGMI *DAG; 1412 const TargetSchedModel *SchedModel; 1413 SchedRemainder *Rem; 1414 1415 ReadyQueue Available; 1416 ReadyQueue Pending; 1417 bool CheckPending; 1418 1419 // For heuristics, keep a list of the nodes that immediately depend on the 1420 // most recently scheduled node. 1421 SmallPtrSet<const SUnit*, 8> NextSUs; 1422 1423 ScheduleHazardRecognizer *HazardRec; 1424 1425 /// Number of cycles it takes to issue the instructions scheduled in this 1426 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. 1427 /// See getStalls(). 1428 unsigned CurrCycle; 1429 1430 /// Micro-ops issued in the current cycle 1431 unsigned CurrMOps; 1432 1433 /// MinReadyCycle - Cycle of the soonest available instruction. 1434 unsigned MinReadyCycle; 1435 1436 // The expected latency of the critical path in this scheduled zone. 1437 unsigned ExpectedLatency; 1438 1439 // The latency of dependence chains leading into this zone. 1440 // For each node scheduled bottom-up: DLat = max DLat, N.Depth. 1441 // For each cycle scheduled: DLat -= 1. 1442 unsigned DependentLatency; 1443 1444 /// Count the scheduled (issued) micro-ops that can be retired by 1445 /// time=CurrCycle assuming the first scheduled instr is retired at time=0. 1446 unsigned RetiredMOps; 1447 1448 // Count scheduled resources that have been executed. Resources are 1449 // considered executed if they become ready in the time that it takes to 1450 // saturate any resource including the one in question. Counts are scaled 1451 // for direct comparison with other resources. Counts can be compared with 1452 // MOps * getMicroOpFactor and Latency * getLatencyFactor. 1453 SmallVector<unsigned, 16> ExecutedResCounts; 1454 1455 /// Cache the max count for a single resource. 1456 unsigned MaxExecutedResCount; 1457 1458 // Cache the critical resources ID in this scheduled zone. 1459 unsigned ZoneCritResIdx; 1460 1461 // Is the scheduled region resource limited vs. latency limited. 1462 bool IsResourceLimited; 1463 1464 #ifndef NDEBUG 1465 // Remember the greatest operand latency as an upper bound on the number of 1466 // times we should retry the pending queue because of a hazard. 1467 unsigned MaxObservedLatency; 1468 #endif 1469 1470 void reset() { 1471 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1472 // Detroying and reconstructing it is very expensive though. So keep 1473 // invalid, placeholder HazardRecs. 1474 if (HazardRec && HazardRec->isEnabled()) { 1475 delete HazardRec; 1476 HazardRec = 0; 1477 } 1478 Available.clear(); 1479 Pending.clear(); 1480 CheckPending = false; 1481 NextSUs.clear(); 1482 CurrCycle = 0; 1483 CurrMOps = 0; 1484 MinReadyCycle = UINT_MAX; 1485 ExpectedLatency = 0; 1486 DependentLatency = 0; 1487 RetiredMOps = 0; 1488 MaxExecutedResCount = 0; 1489 ZoneCritResIdx = 0; 1490 IsResourceLimited = false; 1491 #ifndef NDEBUG 1492 MaxObservedLatency = 0; 1493 #endif 1494 // Reserve a zero-count for invalid CritResIdx. 1495 ExecutedResCounts.resize(1); 1496 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1497 } 1498 1499 /// Pending queues extend the ready queues with the same ID and the 1500 /// PendingFlag set. 1501 SchedBoundary(unsigned ID, const Twine &Name): 1502 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1503 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1504 HazardRec(0) { 1505 reset(); 1506 } 1507 1508 ~SchedBoundary() { delete HazardRec; } 1509 1510 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1511 SchedRemainder *rem); 1512 1513 bool isTop() const { 1514 return Available.getID() == ConvergingScheduler::TopQID; 1515 } 1516 1517 #ifndef NDEBUG 1518 const char *getResourceName(unsigned PIdx) { 1519 if (!PIdx) 1520 return "MOps"; 1521 return SchedModel->getProcResource(PIdx)->Name; 1522 } 1523 #endif 1524 1525 /// Get the number of latency cycles "covered" by the scheduled 1526 /// instructions. This is the larger of the critical path within the zone 1527 /// and the number of cycles required to issue the instructions. 1528 unsigned getScheduledLatency() const { 1529 return std::max(ExpectedLatency, CurrCycle); 1530 } 1531 1532 unsigned getUnscheduledLatency(SUnit *SU) const { 1533 return isTop() ? SU->getHeight() : SU->getDepth(); 1534 } 1535 1536 unsigned getResourceCount(unsigned ResIdx) const { 1537 return ExecutedResCounts[ResIdx]; 1538 } 1539 1540 /// Get the scaled count of scheduled micro-ops and resources, including 1541 /// executed resources. 1542 unsigned getCriticalCount() const { 1543 if (!ZoneCritResIdx) 1544 return RetiredMOps * SchedModel->getMicroOpFactor(); 1545 return getResourceCount(ZoneCritResIdx); 1546 } 1547 1548 /// Get a scaled count for the minimum execution time of the scheduled 1549 /// micro-ops that are ready to execute by getExecutedCount. Notice the 1550 /// feedback loop. 1551 unsigned getExecutedCount() const { 1552 return std::max(CurrCycle * SchedModel->getLatencyFactor(), 1553 MaxExecutedResCount); 1554 } 1555 1556 bool checkHazard(SUnit *SU); 1557 1558 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); 1559 1560 unsigned getOtherResourceCount(unsigned &OtherCritIdx); 1561 1562 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); 1563 1564 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1565 1566 void bumpCycle(unsigned NextCycle); 1567 1568 void incExecutedResources(unsigned PIdx, unsigned Count); 1569 1570 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); 1571 1572 void bumpNode(SUnit *SU); 1573 1574 void releasePending(); 1575 1576 void removeReady(SUnit *SU); 1577 1578 SUnit *pickOnlyChoice(); 1579 1580 #ifndef NDEBUG 1581 void dumpScheduledState(); 1582 #endif 1583 }; 1584 1585 private: 1586 ScheduleDAGMI *DAG; 1587 const TargetSchedModel *SchedModel; 1588 const TargetRegisterInfo *TRI; 1589 1590 // State of the top and bottom scheduled instruction boundaries. 1591 SchedRemainder Rem; 1592 SchedBoundary Top; 1593 SchedBoundary Bot; 1594 1595 public: 1596 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1597 enum { 1598 TopQID = 1, 1599 BotQID = 2, 1600 LogMaxQID = 2 1601 }; 1602 1603 ConvergingScheduler(): 1604 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1605 1606 virtual void initialize(ScheduleDAGMI *dag); 1607 1608 virtual SUnit *pickNode(bool &IsTopNode); 1609 1610 virtual void schedNode(SUnit *SU, bool IsTopNode); 1611 1612 virtual void releaseTopNode(SUnit *SU); 1613 1614 virtual void releaseBottomNode(SUnit *SU); 1615 1616 virtual void registerRoots(); 1617 1618 protected: 1619 void checkAcyclicLatency(); 1620 1621 void tryCandidate(SchedCandidate &Cand, 1622 SchedCandidate &TryCand, 1623 SchedBoundary &Zone, 1624 const RegPressureTracker &RPTracker, 1625 RegPressureTracker &TempTracker); 1626 1627 SUnit *pickNodeBidirectional(bool &IsTopNode); 1628 1629 void pickNodeFromQueue(SchedBoundary &Zone, 1630 const RegPressureTracker &RPTracker, 1631 SchedCandidate &Candidate); 1632 1633 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 1634 1635 #ifndef NDEBUG 1636 void traceCandidate(const SchedCandidate &Cand); 1637 #endif 1638 }; 1639 } // namespace 1640 1641 void ConvergingScheduler::SchedRemainder:: 1642 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1643 reset(); 1644 if (!SchedModel->hasInstrSchedModel()) 1645 return; 1646 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1647 for (std::vector<SUnit>::iterator 1648 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1649 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1650 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1651 * SchedModel->getMicroOpFactor(); 1652 for (TargetSchedModel::ProcResIter 1653 PI = SchedModel->getWriteProcResBegin(SC), 1654 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1655 unsigned PIdx = PI->ProcResourceIdx; 1656 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1657 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1658 } 1659 } 1660 } 1661 1662 void ConvergingScheduler::SchedBoundary:: 1663 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1664 reset(); 1665 DAG = dag; 1666 SchedModel = smodel; 1667 Rem = rem; 1668 if (SchedModel->hasInstrSchedModel()) 1669 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1670 } 1671 1672 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1673 DAG = dag; 1674 SchedModel = DAG->getSchedModel(); 1675 TRI = DAG->TRI; 1676 1677 Rem.init(DAG, SchedModel); 1678 Top.init(DAG, SchedModel, &Rem); 1679 Bot.init(DAG, SchedModel, &Rem); 1680 1681 // Initialize resource counts. 1682 1683 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1684 // are disabled, then these HazardRecs will be disabled. 1685 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1686 const TargetMachine &TM = DAG->MF.getTarget(); 1687 if (!Top.HazardRec) { 1688 Top.HazardRec = 1689 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1690 } 1691 if (!Bot.HazardRec) { 1692 Bot.HazardRec = 1693 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1694 } 1695 assert((!ForceTopDown || !ForceBottomUp) && 1696 "-misched-topdown incompatible with -misched-bottomup"); 1697 } 1698 1699 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1700 if (SU->isScheduled) 1701 return; 1702 1703 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1704 I != E; ++I) { 1705 if (I->isWeak()) 1706 continue; 1707 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1708 unsigned Latency = I->getLatency(); 1709 #ifndef NDEBUG 1710 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); 1711 #endif 1712 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1713 SU->TopReadyCycle = PredReadyCycle + Latency; 1714 } 1715 Top.releaseNode(SU, SU->TopReadyCycle); 1716 } 1717 1718 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1719 if (SU->isScheduled) 1720 return; 1721 1722 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1723 1724 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1725 I != E; ++I) { 1726 if (I->isWeak()) 1727 continue; 1728 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1729 unsigned Latency = I->getLatency(); 1730 #ifndef NDEBUG 1731 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); 1732 #endif 1733 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1734 SU->BotReadyCycle = SuccReadyCycle + Latency; 1735 } 1736 Bot.releaseNode(SU, SU->BotReadyCycle); 1737 } 1738 1739 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 1740 /// critical path by more cycles than it takes to drain the instruction buffer. 1741 /// We estimate an upper bounds on in-flight instructions as: 1742 /// 1743 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 1744 /// InFlightIterations = AcyclicPath / CyclesPerIteration 1745 /// InFlightResources = InFlightIterations * LoopResources 1746 /// 1747 /// TODO: Check execution resources in addition to IssueCount. 1748 void ConvergingScheduler::checkAcyclicLatency() { 1749 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 1750 return; 1751 1752 // Scaled number of cycles per loop iteration. 1753 unsigned IterCount = 1754 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 1755 Rem.RemIssueCount); 1756 // Scaled acyclic critical path. 1757 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 1758 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 1759 unsigned InFlightCount = 1760 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 1761 unsigned BufferLimit = 1762 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 1763 1764 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 1765 1766 DEBUG(dbgs() << "IssueCycles=" 1767 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 1768 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 1769 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 1770 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 1771 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 1772 if (Rem.IsAcyclicLatencyLimited) 1773 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 1774 } 1775 1776 void ConvergingScheduler::registerRoots() { 1777 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1778 1779 // Some roots may not feed into ExitSU. Check all of them in case. 1780 for (std::vector<SUnit*>::const_iterator 1781 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1782 if ((*I)->getDepth() > Rem.CriticalPath) 1783 Rem.CriticalPath = (*I)->getDepth(); 1784 } 1785 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1786 1787 if (EnableCyclicPath) { 1788 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 1789 checkAcyclicLatency(); 1790 } 1791 } 1792 1793 /// Does this SU have a hazard within the current instruction group. 1794 /// 1795 /// The scheduler supports two modes of hazard recognition. The first is the 1796 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1797 /// supports highly complicated in-order reservation tables 1798 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1799 /// 1800 /// The second is a streamlined mechanism that checks for hazards based on 1801 /// simple counters that the scheduler itself maintains. It explicitly checks 1802 /// for instruction dispatch limitations, including the number of micro-ops that 1803 /// can dispatch per cycle. 1804 /// 1805 /// TODO: Also check whether the SU must start a new group. 1806 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1807 if (HazardRec->isEnabled()) 1808 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1809 1810 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1811 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1812 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1813 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1814 return true; 1815 } 1816 return false; 1817 } 1818 1819 // Find the unscheduled node in ReadySUs with the highest latency. 1820 unsigned ConvergingScheduler::SchedBoundary:: 1821 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1822 SUnit *LateSU = 0; 1823 unsigned RemLatency = 0; 1824 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1825 I != E; ++I) { 1826 unsigned L = getUnscheduledLatency(*I); 1827 if (L > RemLatency) { 1828 RemLatency = L; 1829 LateSU = *I; 1830 } 1831 } 1832 if (LateSU) { 1833 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1834 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1835 } 1836 return RemLatency; 1837 } 1838 1839 // Count resources in this zone and the remaining unscheduled 1840 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1841 // resource index, or zero if the zone is issue limited. 1842 unsigned ConvergingScheduler::SchedBoundary:: 1843 getOtherResourceCount(unsigned &OtherCritIdx) { 1844 OtherCritIdx = 0; 1845 if (!SchedModel->hasInstrSchedModel()) 1846 return 0; 1847 1848 unsigned OtherCritCount = Rem->RemIssueCount 1849 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1850 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1851 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1852 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1853 PIdx != PEnd; ++PIdx) { 1854 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1855 if (OtherCount > OtherCritCount) { 1856 OtherCritCount = OtherCount; 1857 OtherCritIdx = PIdx; 1858 } 1859 } 1860 if (OtherCritIdx) { 1861 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1862 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1863 << " " << getResourceName(OtherCritIdx) << "\n"); 1864 } 1865 return OtherCritCount; 1866 } 1867 1868 /// Set the CandPolicy for this zone given the current resources and latencies 1869 /// inside and outside the zone. 1870 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, 1871 SchedBoundary &OtherZone) { 1872 // Now that potential stalls have been considered, apply preemptive heuristics 1873 // based on the the total latency and resources inside and outside this 1874 // zone. 1875 1876 // Compute remaining latency. We need this both to determine whether the 1877 // overall schedule has become latency-limited and whether the instructions 1878 // outside this zone are resource or latency limited. 1879 // 1880 // The "dependent" latency is updated incrementally during scheduling as the 1881 // max height/depth of scheduled nodes minus the cycles since it was 1882 // scheduled: 1883 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 1884 // 1885 // The "independent" latency is the max ready queue depth: 1886 // ILat = max N.depth for N in Available|Pending 1887 // 1888 // RemainingLatency is the greater of independent and dependent latency. 1889 unsigned RemLatency = DependentLatency; 1890 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); 1891 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); 1892 1893 // Compute the critical resource outside the zone. 1894 unsigned OtherCritIdx; 1895 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); 1896 1897 bool OtherResLimited = false; 1898 if (SchedModel->hasInstrSchedModel()) { 1899 unsigned LFactor = SchedModel->getLatencyFactor(); 1900 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 1901 } 1902 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { 1903 Policy.ReduceLatency |= true; 1904 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " 1905 << RemLatency << " + " << CurrCycle << "c > CritPath " 1906 << Rem->CriticalPath << "\n"); 1907 } 1908 // If the same resource is limiting inside and outside the zone, do nothing. 1909 if (ZoneCritResIdx == OtherCritIdx) 1910 return; 1911 1912 DEBUG( 1913 if (IsResourceLimited) { 1914 dbgs() << " " << Available.getName() << " ResourceLimited: " 1915 << getResourceName(ZoneCritResIdx) << "\n"; 1916 } 1917 if (OtherResLimited) 1918 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; 1919 if (!IsResourceLimited && !OtherResLimited) 1920 dbgs() << " Latency limited both directions.\n"); 1921 1922 if (IsResourceLimited && !Policy.ReduceResIdx) 1923 Policy.ReduceResIdx = ZoneCritResIdx; 1924 1925 if (OtherResLimited) 1926 Policy.DemandResIdx = OtherCritIdx; 1927 } 1928 1929 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1930 unsigned ReadyCycle) { 1931 if (ReadyCycle < MinReadyCycle) 1932 MinReadyCycle = ReadyCycle; 1933 1934 // Check for interlocks first. For the purpose of other heuristics, an 1935 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1936 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1937 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1938 Pending.push(SU); 1939 else 1940 Available.push(SU); 1941 1942 // Record this node as an immediate dependent of the scheduled node. 1943 NextSUs.insert(SU); 1944 } 1945 1946 /// Move the boundary of scheduled code by one cycle. 1947 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { 1948 if (SchedModel->getMicroOpBufferSize() == 0) { 1949 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1950 if (MinReadyCycle > NextCycle) 1951 NextCycle = MinReadyCycle; 1952 } 1953 // Update the current micro-ops, which will issue in the next cycle. 1954 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1955 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1956 1957 // Decrement DependentLatency based on the next cycle. 1958 if ((NextCycle - CurrCycle) > DependentLatency) 1959 DependentLatency = 0; 1960 else 1961 DependentLatency -= (NextCycle - CurrCycle); 1962 1963 if (!HazardRec->isEnabled()) { 1964 // Bypass HazardRec virtual calls. 1965 CurrCycle = NextCycle; 1966 } 1967 else { 1968 // Bypass getHazardType calls in case of long latency. 1969 for (; CurrCycle != NextCycle; ++CurrCycle) { 1970 if (isTop()) 1971 HazardRec->AdvanceCycle(); 1972 else 1973 HazardRec->RecedeCycle(); 1974 } 1975 } 1976 CheckPending = true; 1977 unsigned LFactor = SchedModel->getLatencyFactor(); 1978 IsResourceLimited = 1979 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1980 > (int)LFactor; 1981 1982 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1983 } 1984 1985 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, 1986 unsigned Count) { 1987 ExecutedResCounts[PIdx] += Count; 1988 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1989 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1990 } 1991 1992 /// Add the given processor resource to this scheduled zone. 1993 /// 1994 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1995 /// during which this resource is consumed. 1996 /// 1997 /// \return the next cycle at which the instruction may execute without 1998 /// oversubscribing resources. 1999 unsigned ConvergingScheduler::SchedBoundary:: 2000 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { 2001 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2002 unsigned Count = Factor * Cycles; 2003 DEBUG(dbgs() << " " << getResourceName(PIdx) 2004 << " +" << Cycles << "x" << Factor << "u\n"); 2005 2006 // Update Executed resources counts. 2007 incExecutedResources(PIdx, Count); 2008 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2009 Rem->RemainingCounts[PIdx] -= Count; 2010 2011 // Check if this resource exceeds the current critical resource. If so, it 2012 // becomes the critical resource. 2013 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2014 ZoneCritResIdx = PIdx; 2015 DEBUG(dbgs() << " *** Critical resource " 2016 << getResourceName(PIdx) << ": " 2017 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2018 } 2019 // TODO: We don't yet model reserved resources. It's not hard though. 2020 return CurrCycle; 2021 } 2022 2023 /// Move the boundary of scheduled code by one SUnit. 2024 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 2025 // Update the reservation table. 2026 if (HazardRec->isEnabled()) { 2027 if (!isTop() && SU->isCall) { 2028 // Calls are scheduled with their preceding instructions. For bottom-up 2029 // scheduling, clear the pipeline state before emitting. 2030 HazardRec->Reset(); 2031 } 2032 HazardRec->EmitInstruction(SU); 2033 } 2034 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2035 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2036 CurrMOps += IncMOps; 2037 // checkHazard prevents scheduling multiple instructions per cycle that exceed 2038 // issue width. However, we commonly reach the maximum. In this case 2039 // opportunistically bump the cycle to avoid uselessly checking everything in 2040 // the readyQ. Furthermore, a single instruction may produce more than one 2041 // cycle's worth of micro-ops. 2042 // 2043 // TODO: Also check if this SU must end a dispatch group. 2044 unsigned NextCycle = CurrCycle; 2045 if (CurrMOps >= SchedModel->getIssueWidth()) { 2046 ++NextCycle; 2047 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2048 << " at cycle " << CurrCycle << '\n'); 2049 } 2050 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2051 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2052 2053 switch (SchedModel->getMicroOpBufferSize()) { 2054 case 0: 2055 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2056 break; 2057 case 1: 2058 if (ReadyCycle > NextCycle) { 2059 NextCycle = ReadyCycle; 2060 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2061 } 2062 break; 2063 default: 2064 // We don't currently model the OOO reorder buffer, so consider all 2065 // scheduled MOps to be "retired". 2066 break; 2067 } 2068 RetiredMOps += IncMOps; 2069 2070 // Update resource counts and critical resource. 2071 if (SchedModel->hasInstrSchedModel()) { 2072 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2073 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2074 Rem->RemIssueCount -= DecRemIssue; 2075 if (ZoneCritResIdx) { 2076 // Scale scheduled micro-ops for comparing with the critical resource. 2077 unsigned ScaledMOps = 2078 RetiredMOps * SchedModel->getMicroOpFactor(); 2079 2080 // If scaled micro-ops are now more than the previous critical resource by 2081 // a full cycle, then micro-ops issue becomes critical. 2082 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2083 >= (int)SchedModel->getLatencyFactor()) { 2084 ZoneCritResIdx = 0; 2085 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2086 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2087 } 2088 } 2089 for (TargetSchedModel::ProcResIter 2090 PI = SchedModel->getWriteProcResBegin(SC), 2091 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2092 unsigned RCycle = 2093 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); 2094 if (RCycle > NextCycle) 2095 NextCycle = RCycle; 2096 } 2097 } 2098 // Update ExpectedLatency and DependentLatency. 2099 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2100 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2101 if (SU->getDepth() > TopLatency) { 2102 TopLatency = SU->getDepth(); 2103 DEBUG(dbgs() << " " << Available.getName() 2104 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2105 } 2106 if (SU->getHeight() > BotLatency) { 2107 BotLatency = SU->getHeight(); 2108 DEBUG(dbgs() << " " << Available.getName() 2109 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2110 } 2111 // If we stall for any reason, bump the cycle. 2112 if (NextCycle > CurrCycle) { 2113 bumpCycle(NextCycle); 2114 } 2115 else { 2116 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2117 // resource limited. If a stall occured, bumpCycle does this. 2118 unsigned LFactor = SchedModel->getLatencyFactor(); 2119 IsResourceLimited = 2120 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2121 > (int)LFactor; 2122 } 2123 DEBUG(dumpScheduledState()); 2124 } 2125 2126 /// Release pending ready nodes in to the available queue. This makes them 2127 /// visible to heuristics. 2128 void ConvergingScheduler::SchedBoundary::releasePending() { 2129 // If the available queue is empty, it is safe to reset MinReadyCycle. 2130 if (Available.empty()) 2131 MinReadyCycle = UINT_MAX; 2132 2133 // Check to see if any of the pending instructions are ready to issue. If 2134 // so, add them to the available queue. 2135 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2136 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2137 SUnit *SU = *(Pending.begin()+i); 2138 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2139 2140 if (ReadyCycle < MinReadyCycle) 2141 MinReadyCycle = ReadyCycle; 2142 2143 if (!IsBuffered && ReadyCycle > CurrCycle) 2144 continue; 2145 2146 if (checkHazard(SU)) 2147 continue; 2148 2149 Available.push(SU); 2150 Pending.remove(Pending.begin()+i); 2151 --i; --e; 2152 } 2153 DEBUG(if (!Pending.empty()) Pending.dump()); 2154 CheckPending = false; 2155 } 2156 2157 /// Remove SU from the ready set for this boundary. 2158 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 2159 if (Available.isInQueue(SU)) 2160 Available.remove(Available.find(SU)); 2161 else { 2162 assert(Pending.isInQueue(SU) && "bad ready count"); 2163 Pending.remove(Pending.find(SU)); 2164 } 2165 } 2166 2167 /// If this queue only has one ready candidate, return it. As a side effect, 2168 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2169 /// one node is ready. If multiple instructions are ready, return NULL. 2170 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 2171 if (CheckPending) 2172 releasePending(); 2173 2174 if (CurrMOps > 0) { 2175 // Defer any ready instrs that now have a hazard. 2176 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2177 if (checkHazard(*I)) { 2178 Pending.push(*I); 2179 I = Available.remove(I); 2180 continue; 2181 } 2182 ++I; 2183 } 2184 } 2185 for (unsigned i = 0; Available.empty(); ++i) { 2186 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 2187 "permanent hazard"); (void)i; 2188 bumpCycle(CurrCycle + 1); 2189 releasePending(); 2190 } 2191 if (Available.size() == 1) 2192 return *Available.begin(); 2193 return NULL; 2194 } 2195 2196 #ifndef NDEBUG 2197 // This is useful information to dump after bumpNode. 2198 // Note that the Queue contents are more useful before pickNodeFromQueue. 2199 void ConvergingScheduler::SchedBoundary::dumpScheduledState() { 2200 unsigned ResFactor; 2201 unsigned ResCount; 2202 if (ZoneCritResIdx) { 2203 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2204 ResCount = getResourceCount(ZoneCritResIdx); 2205 } 2206 else { 2207 ResFactor = SchedModel->getMicroOpFactor(); 2208 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2209 } 2210 unsigned LFactor = SchedModel->getLatencyFactor(); 2211 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2212 << " Retired: " << RetiredMOps; 2213 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2214 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2215 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) 2216 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2217 << (IsResourceLimited ? " - Resource" : " - Latency") 2218 << " limited.\n"; 2219 } 2220 #endif 2221 2222 void ConvergingScheduler::SchedCandidate:: 2223 initResourceDelta(const ScheduleDAGMI *DAG, 2224 const TargetSchedModel *SchedModel) { 2225 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2226 return; 2227 2228 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2229 for (TargetSchedModel::ProcResIter 2230 PI = SchedModel->getWriteProcResBegin(SC), 2231 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2232 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2233 ResDelta.CritResources += PI->Cycles; 2234 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2235 ResDelta.DemandedResources += PI->Cycles; 2236 } 2237 } 2238 2239 2240 /// Return true if this heuristic determines order. 2241 static bool tryLess(int TryVal, int CandVal, 2242 ConvergingScheduler::SchedCandidate &TryCand, 2243 ConvergingScheduler::SchedCandidate &Cand, 2244 ConvergingScheduler::CandReason Reason) { 2245 if (TryVal < CandVal) { 2246 TryCand.Reason = Reason; 2247 return true; 2248 } 2249 if (TryVal > CandVal) { 2250 if (Cand.Reason > Reason) 2251 Cand.Reason = Reason; 2252 return true; 2253 } 2254 Cand.setRepeat(Reason); 2255 return false; 2256 } 2257 2258 static bool tryGreater(int TryVal, int CandVal, 2259 ConvergingScheduler::SchedCandidate &TryCand, 2260 ConvergingScheduler::SchedCandidate &Cand, 2261 ConvergingScheduler::CandReason Reason) { 2262 if (TryVal > CandVal) { 2263 TryCand.Reason = Reason; 2264 return true; 2265 } 2266 if (TryVal < CandVal) { 2267 if (Cand.Reason > Reason) 2268 Cand.Reason = Reason; 2269 return true; 2270 } 2271 Cand.setRepeat(Reason); 2272 return false; 2273 } 2274 2275 static bool tryPressure(const PressureChange &TryP, 2276 const PressureChange &CandP, 2277 ConvergingScheduler::SchedCandidate &TryCand, 2278 ConvergingScheduler::SchedCandidate &Cand, 2279 ConvergingScheduler::CandReason Reason) { 2280 int TryRank = TryP.getPSetOrMax(); 2281 int CandRank = CandP.getPSetOrMax(); 2282 // If both candidates affect the same set, go with the smallest increase. 2283 if (TryRank == CandRank) { 2284 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2285 Reason); 2286 } 2287 // If one candidate decreases and the other increases, go with it. 2288 // Invalid candidates have UnitInc==0. 2289 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2290 Reason)) { 2291 return true; 2292 } 2293 // If the candidates are decreasing pressure, reverse priority. 2294 if (TryP.getUnitInc() < 0) 2295 std::swap(TryRank, CandRank); 2296 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2297 } 2298 2299 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2300 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2301 } 2302 2303 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2304 /// their physreg def/use. 2305 /// 2306 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2307 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2308 /// with the operation that produces or consumes the physreg. We'll do this when 2309 /// regalloc has support for parallel copies. 2310 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2311 const MachineInstr *MI = SU->getInstr(); 2312 if (!MI->isCopy()) 2313 return 0; 2314 2315 unsigned ScheduledOper = isTop ? 1 : 0; 2316 unsigned UnscheduledOper = isTop ? 0 : 1; 2317 // If we have already scheduled the physreg produce/consumer, immediately 2318 // schedule the copy. 2319 if (TargetRegisterInfo::isPhysicalRegister( 2320 MI->getOperand(ScheduledOper).getReg())) 2321 return 1; 2322 // If the physreg is at the boundary, defer it. Otherwise schedule it 2323 // immediately to free the dependent. We can hoist the copy later. 2324 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2325 if (TargetRegisterInfo::isPhysicalRegister( 2326 MI->getOperand(UnscheduledOper).getReg())) 2327 return AtBoundary ? -1 : 1; 2328 return 0; 2329 } 2330 2331 static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand, 2332 ConvergingScheduler::SchedCandidate &Cand, 2333 ConvergingScheduler::SchedBoundary &Zone) { 2334 if (Zone.isTop()) { 2335 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2336 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2337 TryCand, Cand, ConvergingScheduler::TopDepthReduce)) 2338 return true; 2339 } 2340 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2341 TryCand, Cand, ConvergingScheduler::TopPathReduce)) 2342 return true; 2343 } 2344 else { 2345 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2346 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2347 TryCand, Cand, ConvergingScheduler::BotHeightReduce)) 2348 return true; 2349 } 2350 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2351 TryCand, Cand, ConvergingScheduler::BotPathReduce)) 2352 return true; 2353 } 2354 return false; 2355 } 2356 2357 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2358 /// hierarchical. This may be more efficient than a graduated cost model because 2359 /// we don't need to evaluate all aspects of the model for each node in the 2360 /// queue. But it's really done to make the heuristics easier to debug and 2361 /// statistically analyze. 2362 /// 2363 /// \param Cand provides the policy and current best candidate. 2364 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2365 /// \param Zone describes the scheduled zone that we are extending. 2366 /// \param RPTracker describes reg pressure within the scheduled zone. 2367 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2368 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 2369 SchedCandidate &TryCand, 2370 SchedBoundary &Zone, 2371 const RegPressureTracker &RPTracker, 2372 RegPressureTracker &TempTracker) { 2373 2374 if (DAG->shouldTrackPressure()) { 2375 // Always initialize TryCand's RPDelta. 2376 if (Zone.isTop()) { 2377 TempTracker.getMaxDownwardPressureDelta( 2378 TryCand.SU->getInstr(), 2379 TryCand.RPDelta, 2380 DAG->getRegionCriticalPSets(), 2381 DAG->getRegPressure().MaxSetPressure); 2382 } 2383 else { 2384 if (VerifyScheduling) { 2385 TempTracker.getMaxUpwardPressureDelta( 2386 TryCand.SU->getInstr(), 2387 &DAG->getPressureDiff(TryCand.SU), 2388 TryCand.RPDelta, 2389 DAG->getRegionCriticalPSets(), 2390 DAG->getRegPressure().MaxSetPressure); 2391 } 2392 else { 2393 RPTracker.getUpwardPressureDelta( 2394 TryCand.SU->getInstr(), 2395 DAG->getPressureDiff(TryCand.SU), 2396 TryCand.RPDelta, 2397 DAG->getRegionCriticalPSets(), 2398 DAG->getRegPressure().MaxSetPressure); 2399 } 2400 } 2401 } 2402 2403 // Initialize the candidate if needed. 2404 if (!Cand.isValid()) { 2405 TryCand.Reason = NodeOrder; 2406 return; 2407 } 2408 2409 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2410 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2411 TryCand, Cand, PhysRegCopy)) 2412 return; 2413 2414 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2415 // invalid; convert it to INT_MAX to give it lowest priority. 2416 if (DAG->shouldTrackPressure() && tryPressure(TryCand.RPDelta.Excess, 2417 Cand.RPDelta.Excess, 2418 TryCand, Cand, RegExcess)) 2419 return; 2420 2421 // For loops that are acyclic path limited, aggressively schedule for latency. 2422 if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) 2423 return; 2424 2425 // Avoid increasing the max critical pressure in the scheduled region. 2426 if (DAG->shouldTrackPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2427 Cand.RPDelta.CriticalMax, 2428 TryCand, Cand, RegCritical)) 2429 return; 2430 2431 // Keep clustered nodes together to encourage downstream peephole 2432 // optimizations which may reduce resource requirements. 2433 // 2434 // This is a best effort to set things up for a post-RA pass. Optimizations 2435 // like generating loads of multiple registers should ideally be done within 2436 // the scheduler pass by combining the loads during DAG postprocessing. 2437 const SUnit *NextClusterSU = 2438 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2439 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2440 TryCand, Cand, Cluster)) 2441 return; 2442 2443 // Weak edges are for clustering and other constraints. 2444 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2445 getWeakLeft(Cand.SU, Zone.isTop()), 2446 TryCand, Cand, Weak)) { 2447 return; 2448 } 2449 // Avoid increasing the max pressure of the entire region. 2450 if (DAG->shouldTrackPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2451 Cand.RPDelta.CurrentMax, 2452 TryCand, Cand, RegMax)) 2453 return; 2454 2455 // Avoid critical resource consumption and balance the schedule. 2456 TryCand.initResourceDelta(DAG, SchedModel); 2457 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2458 TryCand, Cand, ResourceReduce)) 2459 return; 2460 if (tryGreater(TryCand.ResDelta.DemandedResources, 2461 Cand.ResDelta.DemandedResources, 2462 TryCand, Cand, ResourceDemand)) 2463 return; 2464 2465 // Avoid serializing long latency dependence chains. 2466 // For acyclic path limited loops, latency was already checked above. 2467 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2468 && tryLatency(TryCand, Cand, Zone)) { 2469 return; 2470 } 2471 2472 // Prefer immediate defs/users of the last scheduled instruction. This is a 2473 // local pressure avoidance strategy that also makes the machine code 2474 // readable. 2475 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 2476 TryCand, Cand, NextDefUse)) 2477 return; 2478 2479 // Fall through to original instruction order. 2480 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2481 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2482 TryCand.Reason = NodeOrder; 2483 } 2484 } 2485 2486 #ifndef NDEBUG 2487 const char *ConvergingScheduler::getReasonStr( 2488 ConvergingScheduler::CandReason Reason) { 2489 switch (Reason) { 2490 case NoCand: return "NOCAND "; 2491 case PhysRegCopy: return "PREG-COPY"; 2492 case RegExcess: return "REG-EXCESS"; 2493 case RegCritical: return "REG-CRIT "; 2494 case Cluster: return "CLUSTER "; 2495 case Weak: return "WEAK "; 2496 case RegMax: return "REG-MAX "; 2497 case ResourceReduce: return "RES-REDUCE"; 2498 case ResourceDemand: return "RES-DEMAND"; 2499 case TopDepthReduce: return "TOP-DEPTH "; 2500 case TopPathReduce: return "TOP-PATH "; 2501 case BotHeightReduce:return "BOT-HEIGHT"; 2502 case BotPathReduce: return "BOT-PATH "; 2503 case NextDefUse: return "DEF-USE "; 2504 case NodeOrder: return "ORDER "; 2505 }; 2506 llvm_unreachable("Unknown reason!"); 2507 } 2508 2509 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { 2510 PressureChange P; 2511 unsigned ResIdx = 0; 2512 unsigned Latency = 0; 2513 switch (Cand.Reason) { 2514 default: 2515 break; 2516 case RegExcess: 2517 P = Cand.RPDelta.Excess; 2518 break; 2519 case RegCritical: 2520 P = Cand.RPDelta.CriticalMax; 2521 break; 2522 case RegMax: 2523 P = Cand.RPDelta.CurrentMax; 2524 break; 2525 case ResourceReduce: 2526 ResIdx = Cand.Policy.ReduceResIdx; 2527 break; 2528 case ResourceDemand: 2529 ResIdx = Cand.Policy.DemandResIdx; 2530 break; 2531 case TopDepthReduce: 2532 Latency = Cand.SU->getDepth(); 2533 break; 2534 case TopPathReduce: 2535 Latency = Cand.SU->getHeight(); 2536 break; 2537 case BotHeightReduce: 2538 Latency = Cand.SU->getHeight(); 2539 break; 2540 case BotPathReduce: 2541 Latency = Cand.SU->getDepth(); 2542 break; 2543 } 2544 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2545 if (P.isValid()) 2546 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2547 << ":" << P.getUnitInc() << " "; 2548 else 2549 dbgs() << " "; 2550 if (ResIdx) 2551 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2552 else 2553 dbgs() << " "; 2554 if (Latency) 2555 dbgs() << " " << Latency << " cycles "; 2556 else 2557 dbgs() << " "; 2558 dbgs() << '\n'; 2559 } 2560 #endif 2561 2562 /// Pick the best candidate from the top queue. 2563 /// 2564 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2565 /// DAG building. To adjust for the current scheduling location we need to 2566 /// maintain the number of vreg uses remaining to be top-scheduled. 2567 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2568 const RegPressureTracker &RPTracker, 2569 SchedCandidate &Cand) { 2570 ReadyQueue &Q = Zone.Available; 2571 2572 DEBUG(Q.dump()); 2573 2574 // getMaxPressureDelta temporarily modifies the tracker. 2575 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2576 2577 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2578 2579 SchedCandidate TryCand(Cand.Policy); 2580 TryCand.SU = *I; 2581 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2582 if (TryCand.Reason != NoCand) { 2583 // Initialize resource delta if needed in case future heuristics query it. 2584 if (TryCand.ResDelta == SchedResourceDelta()) 2585 TryCand.initResourceDelta(DAG, SchedModel); 2586 Cand.setBest(TryCand); 2587 DEBUG(traceCandidate(Cand)); 2588 } 2589 } 2590 } 2591 2592 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 2593 bool IsTop) { 2594 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2595 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 2596 } 2597 2598 /// Pick the best candidate node from either the top or bottom queue. 2599 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 2600 // Schedule as far as possible in the direction of no choice. This is most 2601 // efficient, but also provides the best heuristics for CriticalPSets. 2602 if (SUnit *SU = Bot.pickOnlyChoice()) { 2603 IsTopNode = false; 2604 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2605 return SU; 2606 } 2607 if (SUnit *SU = Top.pickOnlyChoice()) { 2608 IsTopNode = true; 2609 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2610 return SU; 2611 } 2612 CandPolicy NoPolicy; 2613 SchedCandidate BotCand(NoPolicy); 2614 SchedCandidate TopCand(NoPolicy); 2615 Bot.setPolicy(BotCand.Policy, Top); 2616 Top.setPolicy(TopCand.Policy, Bot); 2617 2618 // Prefer bottom scheduling when heuristics are silent. 2619 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2620 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2621 2622 // If either Q has a single candidate that provides the least increase in 2623 // Excess pressure, we can immediately schedule from that Q. 2624 // 2625 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2626 // affects picking from either Q. If scheduling in one direction must 2627 // increase pressure for one of the excess PSets, then schedule in that 2628 // direction first to provide more freedom in the other direction. 2629 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2630 || (BotCand.Reason == RegCritical 2631 && !BotCand.isRepeat(RegCritical))) 2632 { 2633 IsTopNode = false; 2634 tracePick(BotCand, IsTopNode); 2635 return BotCand.SU; 2636 } 2637 // Check if the top Q has a better candidate. 2638 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2639 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2640 2641 // Choose the queue with the most important (lowest enum) reason. 2642 if (TopCand.Reason < BotCand.Reason) { 2643 IsTopNode = true; 2644 tracePick(TopCand, IsTopNode); 2645 return TopCand.SU; 2646 } 2647 // Otherwise prefer the bottom candidate, in node order if all else failed. 2648 IsTopNode = false; 2649 tracePick(BotCand, IsTopNode); 2650 return BotCand.SU; 2651 } 2652 2653 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2654 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2655 if (DAG->top() == DAG->bottom()) { 2656 assert(Top.Available.empty() && Top.Pending.empty() && 2657 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2658 return NULL; 2659 } 2660 SUnit *SU; 2661 do { 2662 if (ForceTopDown) { 2663 SU = Top.pickOnlyChoice(); 2664 if (!SU) { 2665 CandPolicy NoPolicy; 2666 SchedCandidate TopCand(NoPolicy); 2667 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2668 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2669 SU = TopCand.SU; 2670 } 2671 IsTopNode = true; 2672 } 2673 else if (ForceBottomUp) { 2674 SU = Bot.pickOnlyChoice(); 2675 if (!SU) { 2676 CandPolicy NoPolicy; 2677 SchedCandidate BotCand(NoPolicy); 2678 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2679 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2680 SU = BotCand.SU; 2681 } 2682 IsTopNode = false; 2683 } 2684 else { 2685 SU = pickNodeBidirectional(IsTopNode); 2686 } 2687 } while (SU->isScheduled); 2688 2689 if (SU->isTopReady()) 2690 Top.removeReady(SU); 2691 if (SU->isBottomReady()) 2692 Bot.removeReady(SU); 2693 2694 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2695 return SU; 2696 } 2697 2698 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2699 2700 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2701 if (!isTop) 2702 ++InsertPos; 2703 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2704 2705 // Find already scheduled copies with a single physreg dependence and move 2706 // them just above the scheduled instruction. 2707 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2708 I != E; ++I) { 2709 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2710 continue; 2711 SUnit *DepSU = I->getSUnit(); 2712 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2713 continue; 2714 MachineInstr *Copy = DepSU->getInstr(); 2715 if (!Copy->isCopy()) 2716 continue; 2717 DEBUG(dbgs() << " Rescheduling physreg copy "; 2718 I->getSUnit()->dump(DAG)); 2719 DAG->moveInstruction(Copy, InsertPos); 2720 } 2721 } 2722 2723 /// Update the scheduler's state after scheduling a node. This is the same node 2724 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2725 /// it's state based on the current cycle before MachineSchedStrategy does. 2726 /// 2727 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2728 /// them here. See comments in biasPhysRegCopy. 2729 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2730 if (IsTopNode) { 2731 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); 2732 Top.bumpNode(SU); 2733 if (SU->hasPhysRegUses) 2734 reschedulePhysRegCopies(SU, true); 2735 } 2736 else { 2737 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); 2738 Bot.bumpNode(SU); 2739 if (SU->hasPhysRegDefs) 2740 reschedulePhysRegCopies(SU, false); 2741 } 2742 } 2743 2744 /// Create the standard converging machine scheduler. This will be used as the 2745 /// default scheduler if the target does not set a default. 2746 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2747 assert((!ForceTopDown || !ForceBottomUp) && 2748 "-misched-topdown incompatible with -misched-bottomup"); 2749 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2750 // Register DAG post-processors. 2751 // 2752 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2753 // data and pass it to later mutations. Have a single mutation that gathers 2754 // the interesting nodes in one pass. 2755 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 2756 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 2757 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2758 if (EnableMacroFusion) 2759 DAG->addMutation(new MacroFusion(DAG->TII)); 2760 return DAG; 2761 } 2762 static MachineSchedRegistry 2763 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2764 createConvergingSched); 2765 2766 //===----------------------------------------------------------------------===// 2767 // ILP Scheduler. Currently for experimental analysis of heuristics. 2768 //===----------------------------------------------------------------------===// 2769 2770 namespace { 2771 /// \brief Order nodes by the ILP metric. 2772 struct ILPOrder { 2773 const SchedDFSResult *DFSResult; 2774 const BitVector *ScheduledTrees; 2775 bool MaximizeILP; 2776 2777 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2778 2779 /// \brief Apply a less-than relation on node priority. 2780 /// 2781 /// (Return true if A comes after B in the Q.) 2782 bool operator()(const SUnit *A, const SUnit *B) const { 2783 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2784 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2785 if (SchedTreeA != SchedTreeB) { 2786 // Unscheduled trees have lower priority. 2787 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2788 return ScheduledTrees->test(SchedTreeB); 2789 2790 // Trees with shallower connections have have lower priority. 2791 if (DFSResult->getSubtreeLevel(SchedTreeA) 2792 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2793 return DFSResult->getSubtreeLevel(SchedTreeA) 2794 < DFSResult->getSubtreeLevel(SchedTreeB); 2795 } 2796 } 2797 if (MaximizeILP) 2798 return DFSResult->getILP(A) < DFSResult->getILP(B); 2799 else 2800 return DFSResult->getILP(A) > DFSResult->getILP(B); 2801 } 2802 }; 2803 2804 /// \brief Schedule based on the ILP metric. 2805 class ILPScheduler : public MachineSchedStrategy { 2806 /// In case all subtrees are eventually connected to a common root through 2807 /// data dependence (e.g. reduction), place an upper limit on their size. 2808 /// 2809 /// FIXME: A subtree limit is generally good, but in the situation commented 2810 /// above, where multiple similar subtrees feed a common root, we should 2811 /// only split at a point where the resulting subtrees will be balanced. 2812 /// (a motivating test case must be found). 2813 static const unsigned SubtreeLimit = 16; 2814 2815 ScheduleDAGMI *DAG; 2816 ILPOrder Cmp; 2817 2818 std::vector<SUnit*> ReadyQ; 2819 public: 2820 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2821 2822 virtual void initialize(ScheduleDAGMI *dag) { 2823 DAG = dag; 2824 DAG->computeDFSResult(); 2825 Cmp.DFSResult = DAG->getDFSResult(); 2826 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2827 ReadyQ.clear(); 2828 } 2829 2830 virtual void registerRoots() { 2831 // Restore the heap in ReadyQ with the updated DFS results. 2832 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2833 } 2834 2835 /// Implement MachineSchedStrategy interface. 2836 /// ----------------------------------------- 2837 2838 /// Callback to select the highest priority node from the ready Q. 2839 virtual SUnit *pickNode(bool &IsTopNode) { 2840 if (ReadyQ.empty()) return NULL; 2841 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2842 SUnit *SU = ReadyQ.back(); 2843 ReadyQ.pop_back(); 2844 IsTopNode = false; 2845 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 2846 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2847 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2848 << DAG->getDFSResult()->getSubtreeLevel( 2849 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 2850 << "Scheduling " << *SU->getInstr()); 2851 return SU; 2852 } 2853 2854 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2855 virtual void scheduleTree(unsigned SubtreeID) { 2856 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2857 } 2858 2859 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2860 /// DFSResults, and resort the priority Q. 2861 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2862 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2863 } 2864 2865 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2866 2867 virtual void releaseBottomNode(SUnit *SU) { 2868 ReadyQ.push_back(SU); 2869 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2870 } 2871 }; 2872 } // namespace 2873 2874 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2875 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2876 } 2877 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2878 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2879 } 2880 static MachineSchedRegistry ILPMaxRegistry( 2881 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2882 static MachineSchedRegistry ILPMinRegistry( 2883 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2884 2885 //===----------------------------------------------------------------------===// 2886 // Machine Instruction Shuffler for Correctness Testing 2887 //===----------------------------------------------------------------------===// 2888 2889 #ifndef NDEBUG 2890 namespace { 2891 /// Apply a less-than relation on the node order, which corresponds to the 2892 /// instruction order prior to scheduling. IsReverse implements greater-than. 2893 template<bool IsReverse> 2894 struct SUnitOrder { 2895 bool operator()(SUnit *A, SUnit *B) const { 2896 if (IsReverse) 2897 return A->NodeNum > B->NodeNum; 2898 else 2899 return A->NodeNum < B->NodeNum; 2900 } 2901 }; 2902 2903 /// Reorder instructions as much as possible. 2904 class InstructionShuffler : public MachineSchedStrategy { 2905 bool IsAlternating; 2906 bool IsTopDown; 2907 2908 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2909 // gives nodes with a higher number higher priority causing the latest 2910 // instructions to be scheduled first. 2911 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2912 TopQ; 2913 // When scheduling bottom-up, use greater-than as the queue priority. 2914 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2915 BottomQ; 2916 public: 2917 InstructionShuffler(bool alternate, bool topdown) 2918 : IsAlternating(alternate), IsTopDown(topdown) {} 2919 2920 virtual void initialize(ScheduleDAGMI *) { 2921 TopQ.clear(); 2922 BottomQ.clear(); 2923 } 2924 2925 /// Implement MachineSchedStrategy interface. 2926 /// ----------------------------------------- 2927 2928 virtual SUnit *pickNode(bool &IsTopNode) { 2929 SUnit *SU; 2930 if (IsTopDown) { 2931 do { 2932 if (TopQ.empty()) return NULL; 2933 SU = TopQ.top(); 2934 TopQ.pop(); 2935 } while (SU->isScheduled); 2936 IsTopNode = true; 2937 } 2938 else { 2939 do { 2940 if (BottomQ.empty()) return NULL; 2941 SU = BottomQ.top(); 2942 BottomQ.pop(); 2943 } while (SU->isScheduled); 2944 IsTopNode = false; 2945 } 2946 if (IsAlternating) 2947 IsTopDown = !IsTopDown; 2948 return SU; 2949 } 2950 2951 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2952 2953 virtual void releaseTopNode(SUnit *SU) { 2954 TopQ.push(SU); 2955 } 2956 virtual void releaseBottomNode(SUnit *SU) { 2957 BottomQ.push(SU); 2958 } 2959 }; 2960 } // namespace 2961 2962 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2963 bool Alternate = !ForceTopDown && !ForceBottomUp; 2964 bool TopDown = !ForceBottomUp; 2965 assert((TopDown || !ForceTopDown) && 2966 "-misched-topdown incompatible with -misched-bottomup"); 2967 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2968 } 2969 static MachineSchedRegistry ShufflerRegistry( 2970 "shuffle", "Shuffle machine instructions alternating directions", 2971 createInstructionShuffler); 2972 #endif // !NDEBUG 2973 2974 //===----------------------------------------------------------------------===// 2975 // GraphWriter support for ScheduleDAGMI. 2976 //===----------------------------------------------------------------------===// 2977 2978 #ifndef NDEBUG 2979 namespace llvm { 2980 2981 template<> struct GraphTraits< 2982 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2983 2984 template<> 2985 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2986 2987 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2988 2989 static std::string getGraphName(const ScheduleDAG *G) { 2990 return G->MF.getName(); 2991 } 2992 2993 static bool renderGraphFromBottomUp() { 2994 return true; 2995 } 2996 2997 static bool isNodeHidden(const SUnit *Node) { 2998 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2999 } 3000 3001 static bool hasNodeAddressLabel(const SUnit *Node, 3002 const ScheduleDAG *Graph) { 3003 return false; 3004 } 3005 3006 /// If you want to override the dot attributes printed for a particular 3007 /// edge, override this method. 3008 static std::string getEdgeAttributes(const SUnit *Node, 3009 SUnitIterator EI, 3010 const ScheduleDAG *Graph) { 3011 if (EI.isArtificialDep()) 3012 return "color=cyan,style=dashed"; 3013 if (EI.isCtrlDep()) 3014 return "color=blue,style=dashed"; 3015 return ""; 3016 } 3017 3018 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3019 std::string Str; 3020 raw_string_ostream SS(Str); 3021 SS << "SU(" << SU->NodeNum << ')'; 3022 return SS.str(); 3023 } 3024 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3025 return G->getGraphNodeLabel(SU); 3026 } 3027 3028 static std::string getNodeAttributes(const SUnit *N, 3029 const ScheduleDAG *Graph) { 3030 std::string Str("shape=Mrecord"); 3031 const SchedDFSResult *DFS = 3032 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 3033 if (DFS) { 3034 Str += ",style=filled,fillcolor=\"#"; 3035 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3036 Str += '"'; 3037 } 3038 return Str; 3039 } 3040 }; 3041 } // namespace llvm 3042 #endif // NDEBUG 3043 3044 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3045 /// rendered using 'dot'. 3046 /// 3047 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3048 #ifndef NDEBUG 3049 ViewGraph(this, Name, false, Title); 3050 #else 3051 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3052 << "systems with Graphviz or gv!\n"; 3053 #endif // NDEBUG 3054 } 3055 3056 /// Out-of-line implementation with no arguments is handy for gdb. 3057 void ScheduleDAGMI::viewGraph() { 3058 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3059 } 3060