1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetFrameLowering.h" 45 #include "llvm/CodeGen/TargetInstrInfo.h" 46 #include "llvm/CodeGen/TargetLowering.h" 47 #include "llvm/CodeGen/TargetPassConfig.h" 48 #include "llvm/CodeGen/TargetRegisterInfo.h" 49 #include "llvm/CodeGen/TargetSchedule.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/MachineValueType.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <limits> 67 #include <memory> 68 #include <string> 69 #include <tuple> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "machine-scheduler" 76 77 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 78 79 namespace llvm { 80 81 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 82 cl::desc("Force top-down list scheduling")); 83 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 84 cl::desc("Force bottom-up list scheduling")); 85 cl::opt<bool> 86 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 87 cl::desc("Print critical path length to stdout")); 88 89 cl::opt<bool> VerifyScheduling( 90 "verify-misched", cl::Hidden, 91 cl::desc("Verify machine instrs before and after machine scheduling")); 92 93 #ifndef NDEBUG 94 cl::opt<bool> ViewMISchedDAGs( 95 "view-misched-dags", cl::Hidden, 96 cl::desc("Pop up a window to show MISched dags after they are processed")); 97 #else 98 const bool ViewMISchedDAGs = false; 99 #endif // NDEBUG 100 101 } // end namespace llvm 102 103 #ifndef NDEBUG 104 /// In some situations a few uninteresting nodes depend on nearly all other 105 /// nodes in the graph, provide a cutoff to hide them. 106 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 107 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 108 109 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 110 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 111 112 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 113 cl::desc("Only schedule this function")); 114 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 115 cl::desc("Only schedule this MBB#")); 116 static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 117 cl::desc("Print schedule DAGs")); 118 #else 119 static const bool PrintDAGs = false; 120 #endif // NDEBUG 121 122 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 123 /// size of the ready lists. 124 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 125 cl::desc("Limit ready list to N instructions"), cl::init(256)); 126 127 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 128 cl::desc("Enable register pressure scheduling."), cl::init(true)); 129 130 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 131 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 132 133 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 134 cl::desc("Enable memop clustering."), 135 cl::init(true)); 136 static cl::opt<bool> 137 ForceFastCluster("force-fast-cluster", cl::Hidden, 138 cl::desc("Switch to fast cluster algorithm with the lost " 139 "of some fusion opportunities"), 140 cl::init(false)); 141 static cl::opt<unsigned> 142 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 143 cl::desc("The threshold for fast cluster"), 144 cl::init(1000)); 145 146 // DAG subtrees must have at least this many nodes. 147 static const unsigned MinSubtreeSize = 8; 148 149 // Pin the vtables to this file. 150 void MachineSchedStrategy::anchor() {} 151 152 void ScheduleDAGMutation::anchor() {} 153 154 //===----------------------------------------------------------------------===// 155 // Machine Instruction Scheduling Pass and Registry 156 //===----------------------------------------------------------------------===// 157 158 MachineSchedContext::MachineSchedContext() { 159 RegClassInfo = new RegisterClassInfo(); 160 } 161 162 MachineSchedContext::~MachineSchedContext() { 163 delete RegClassInfo; 164 } 165 166 namespace { 167 168 /// Base class for a machine scheduler class that can run at any point. 169 class MachineSchedulerBase : public MachineSchedContext, 170 public MachineFunctionPass { 171 public: 172 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 173 174 void print(raw_ostream &O, const Module* = nullptr) const override; 175 176 protected: 177 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 178 }; 179 180 /// MachineScheduler runs after coalescing and before register allocation. 181 class MachineScheduler : public MachineSchedulerBase { 182 public: 183 MachineScheduler(); 184 185 void getAnalysisUsage(AnalysisUsage &AU) const override; 186 187 bool runOnMachineFunction(MachineFunction&) override; 188 189 static char ID; // Class identification, replacement for typeinfo 190 191 protected: 192 ScheduleDAGInstrs *createMachineScheduler(); 193 }; 194 195 /// PostMachineScheduler runs after shortly before code emission. 196 class PostMachineScheduler : public MachineSchedulerBase { 197 public: 198 PostMachineScheduler(); 199 200 void getAnalysisUsage(AnalysisUsage &AU) const override; 201 202 bool runOnMachineFunction(MachineFunction&) override; 203 204 static char ID; // Class identification, replacement for typeinfo 205 206 protected: 207 ScheduleDAGInstrs *createPostMachineScheduler(); 208 }; 209 210 } // end anonymous namespace 211 212 char MachineScheduler::ID = 0; 213 214 char &llvm::MachineSchedulerID = MachineScheduler::ID; 215 216 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 217 "Machine Instruction Scheduler", false, false) 218 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 219 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 220 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 221 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 222 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 223 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 224 "Machine Instruction Scheduler", false, false) 225 226 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 227 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 228 } 229 230 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 231 AU.setPreservesCFG(); 232 AU.addRequired<MachineDominatorTree>(); 233 AU.addRequired<MachineLoopInfo>(); 234 AU.addRequired<AAResultsWrapperPass>(); 235 AU.addRequired<TargetPassConfig>(); 236 AU.addRequired<SlotIndexes>(); 237 AU.addPreserved<SlotIndexes>(); 238 AU.addRequired<LiveIntervals>(); 239 AU.addPreserved<LiveIntervals>(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 } 242 243 char PostMachineScheduler::ID = 0; 244 245 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 246 247 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 248 "PostRA Machine Instruction Scheduler", false, false) 249 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 251 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 252 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 253 "PostRA Machine Instruction Scheduler", false, false) 254 255 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 256 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 257 } 258 259 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesCFG(); 261 AU.addRequired<MachineDominatorTree>(); 262 AU.addRequired<MachineLoopInfo>(); 263 AU.addRequired<AAResultsWrapperPass>(); 264 AU.addRequired<TargetPassConfig>(); 265 MachineFunctionPass::getAnalysisUsage(AU); 266 } 267 268 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 269 MachineSchedRegistry::Registry; 270 271 /// A dummy default scheduler factory indicates whether the scheduler 272 /// is overridden on the command line. 273 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 274 return nullptr; 275 } 276 277 /// MachineSchedOpt allows command line selection of the scheduler. 278 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 279 RegisterPassParser<MachineSchedRegistry>> 280 MachineSchedOpt("misched", 281 cl::init(&useDefaultMachineSched), cl::Hidden, 282 cl::desc("Machine instruction scheduler to use")); 283 284 static MachineSchedRegistry 285 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 286 useDefaultMachineSched); 287 288 static cl::opt<bool> EnableMachineSched( 289 "enable-misched", 290 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 291 cl::Hidden); 292 293 static cl::opt<bool> EnablePostRAMachineSched( 294 "enable-post-misched", 295 cl::desc("Enable the post-ra machine instruction scheduling pass."), 296 cl::init(true), cl::Hidden); 297 298 /// Decrement this iterator until reaching the top or a non-debug instr. 299 static MachineBasicBlock::const_iterator 300 priorNonDebug(MachineBasicBlock::const_iterator I, 301 MachineBasicBlock::const_iterator Beg) { 302 assert(I != Beg && "reached the top of the region, cannot decrement"); 303 while (--I != Beg) { 304 if (!I->isDebugOrPseudoInstr()) 305 break; 306 } 307 return I; 308 } 309 310 /// Non-const version. 311 static MachineBasicBlock::iterator 312 priorNonDebug(MachineBasicBlock::iterator I, 313 MachineBasicBlock::const_iterator Beg) { 314 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 315 .getNonConstIterator(); 316 } 317 318 /// If this iterator is a debug value, increment until reaching the End or a 319 /// non-debug instruction. 320 static MachineBasicBlock::const_iterator 321 nextIfDebug(MachineBasicBlock::const_iterator I, 322 MachineBasicBlock::const_iterator End) { 323 for(; I != End; ++I) { 324 if (!I->isDebugOrPseudoInstr()) 325 break; 326 } 327 return I; 328 } 329 330 /// Non-const version. 331 static MachineBasicBlock::iterator 332 nextIfDebug(MachineBasicBlock::iterator I, 333 MachineBasicBlock::const_iterator End) { 334 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 335 .getNonConstIterator(); 336 } 337 338 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 339 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 340 // Select the scheduler, or set the default. 341 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 342 if (Ctor != useDefaultMachineSched) 343 return Ctor(this); 344 345 // Get the default scheduler set by the target for this function. 346 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 347 if (Scheduler) 348 return Scheduler; 349 350 // Default to GenericScheduler. 351 return createGenericSchedLive(this); 352 } 353 354 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 355 /// the caller. We don't have a command line option to override the postRA 356 /// scheduler. The Target must configure it. 357 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 358 // Get the postRA scheduler set by the target for this function. 359 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 360 if (Scheduler) 361 return Scheduler; 362 363 // Default to GenericScheduler. 364 return createGenericSchedPostRA(this); 365 } 366 367 /// Top-level MachineScheduler pass driver. 368 /// 369 /// Visit blocks in function order. Divide each block into scheduling regions 370 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 371 /// consistent with the DAG builder, which traverses the interior of the 372 /// scheduling regions bottom-up. 373 /// 374 /// This design avoids exposing scheduling boundaries to the DAG builder, 375 /// simplifying the DAG builder's support for "special" target instructions. 376 /// At the same time the design allows target schedulers to operate across 377 /// scheduling boundaries, for example to bundle the boundary instructions 378 /// without reordering them. This creates complexity, because the target 379 /// scheduler must update the RegionBegin and RegionEnd positions cached by 380 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 381 /// design would be to split blocks at scheduling boundaries, but LLVM has a 382 /// general bias against block splitting purely for implementation simplicity. 383 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 384 if (skipFunction(mf.getFunction())) 385 return false; 386 387 if (EnableMachineSched.getNumOccurrences()) { 388 if (!EnableMachineSched) 389 return false; 390 } else if (!mf.getSubtarget().enableMachineScheduler()) 391 return false; 392 393 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 394 395 // Initialize the context of the pass. 396 MF = &mf; 397 MLI = &getAnalysis<MachineLoopInfo>(); 398 MDT = &getAnalysis<MachineDominatorTree>(); 399 PassConfig = &getAnalysis<TargetPassConfig>(); 400 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 401 402 LIS = &getAnalysis<LiveIntervals>(); 403 404 if (VerifyScheduling) { 405 LLVM_DEBUG(LIS->dump()); 406 MF->verify(this, "Before machine scheduling."); 407 } 408 RegClassInfo->runOnMachineFunction(*MF); 409 410 // Instantiate the selected scheduler for this target, function, and 411 // optimization level. 412 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 413 scheduleRegions(*Scheduler, false); 414 415 LLVM_DEBUG(LIS->dump()); 416 if (VerifyScheduling) 417 MF->verify(this, "After machine scheduling."); 418 return true; 419 } 420 421 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 422 if (skipFunction(mf.getFunction())) 423 return false; 424 425 if (EnablePostRAMachineSched.getNumOccurrences()) { 426 if (!EnablePostRAMachineSched) 427 return false; 428 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 429 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 430 return false; 431 } 432 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 433 434 // Initialize the context of the pass. 435 MF = &mf; 436 MLI = &getAnalysis<MachineLoopInfo>(); 437 PassConfig = &getAnalysis<TargetPassConfig>(); 438 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 439 440 if (VerifyScheduling) 441 MF->verify(this, "Before post machine scheduling."); 442 443 // Instantiate the selected scheduler for this target, function, and 444 // optimization level. 445 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 446 scheduleRegions(*Scheduler, true); 447 448 if (VerifyScheduling) 449 MF->verify(this, "After post machine scheduling."); 450 return true; 451 } 452 453 /// Return true of the given instruction should not be included in a scheduling 454 /// region. 455 /// 456 /// MachineScheduler does not currently support scheduling across calls. To 457 /// handle calls, the DAG builder needs to be modified to create register 458 /// anti/output dependencies on the registers clobbered by the call's regmask 459 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 460 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 461 /// the boundary, but there would be no benefit to postRA scheduling across 462 /// calls this late anyway. 463 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 464 MachineBasicBlock *MBB, 465 MachineFunction *MF, 466 const TargetInstrInfo *TII) { 467 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 468 } 469 470 /// A region of an MBB for scheduling. 471 namespace { 472 struct SchedRegion { 473 /// RegionBegin is the first instruction in the scheduling region, and 474 /// RegionEnd is either MBB->end() or the scheduling boundary after the 475 /// last instruction in the scheduling region. These iterators cannot refer 476 /// to instructions outside of the identified scheduling region because 477 /// those may be reordered before scheduling this region. 478 MachineBasicBlock::iterator RegionBegin; 479 MachineBasicBlock::iterator RegionEnd; 480 unsigned NumRegionInstrs; 481 482 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 483 unsigned N) : 484 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 485 }; 486 } // end anonymous namespace 487 488 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 489 490 static void 491 getSchedRegions(MachineBasicBlock *MBB, 492 MBBRegionsVector &Regions, 493 bool RegionsTopDown) { 494 MachineFunction *MF = MBB->getParent(); 495 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 496 497 MachineBasicBlock::iterator I = nullptr; 498 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 499 RegionEnd != MBB->begin(); RegionEnd = I) { 500 501 // Avoid decrementing RegionEnd for blocks with no terminator. 502 if (RegionEnd != MBB->end() || 503 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 504 --RegionEnd; 505 } 506 507 // The next region starts above the previous region. Look backward in the 508 // instruction stream until we find the nearest boundary. 509 unsigned NumRegionInstrs = 0; 510 I = RegionEnd; 511 for (;I != MBB->begin(); --I) { 512 MachineInstr &MI = *std::prev(I); 513 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 514 break; 515 if (!MI.isDebugOrPseudoInstr()) { 516 // MBB::size() uses instr_iterator to count. Here we need a bundle to 517 // count as a single instruction. 518 ++NumRegionInstrs; 519 } 520 } 521 522 // It's possible we found a scheduling region that only has debug 523 // instructions. Don't bother scheduling these. 524 if (NumRegionInstrs != 0) 525 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 526 } 527 528 if (RegionsTopDown) 529 std::reverse(Regions.begin(), Regions.end()); 530 } 531 532 /// Main driver for both MachineScheduler and PostMachineScheduler. 533 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 534 bool FixKillFlags) { 535 // Visit all machine basic blocks. 536 // 537 // TODO: Visit blocks in global postorder or postorder within the bottom-up 538 // loop tree. Then we can optionally compute global RegPressure. 539 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 540 MBB != MBBEnd; ++MBB) { 541 542 Scheduler.startBlock(&*MBB); 543 544 #ifndef NDEBUG 545 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 546 continue; 547 if (SchedOnlyBlock.getNumOccurrences() 548 && (int)SchedOnlyBlock != MBB->getNumber()) 549 continue; 550 #endif 551 552 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 553 // points to the scheduling boundary at the bottom of the region. The DAG 554 // does not include RegionEnd, but the region does (i.e. the next 555 // RegionEnd is above the previous RegionBegin). If the current block has 556 // no terminator then RegionEnd == MBB->end() for the bottom region. 557 // 558 // All the regions of MBB are first found and stored in MBBRegions, which 559 // will be processed (MBB) top-down if initialized with true. 560 // 561 // The Scheduler may insert instructions during either schedule() or 562 // exitRegion(), even for empty regions. So the local iterators 'I' and 563 // 'RegionEnd' are invalid across these calls. Instructions must not be 564 // added to other regions than the current one without updating MBBRegions. 565 566 MBBRegionsVector MBBRegions; 567 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 568 for (const SchedRegion &R : MBBRegions) { 569 MachineBasicBlock::iterator I = R.RegionBegin; 570 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 571 unsigned NumRegionInstrs = R.NumRegionInstrs; 572 573 // Notify the scheduler of the region, even if we may skip scheduling 574 // it. Perhaps it still needs to be bundled. 575 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 576 577 // Skip empty scheduling regions (0 or 1 schedulable instructions). 578 if (I == RegionEnd || I == std::prev(RegionEnd)) { 579 // Close the current region. Bundle the terminator if needed. 580 // This invalidates 'RegionEnd' and 'I'. 581 Scheduler.exitRegion(); 582 continue; 583 } 584 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 585 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 586 << " " << MBB->getName() << "\n From: " << *I 587 << " To: "; 588 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 589 else dbgs() << "End\n"; 590 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 591 if (DumpCriticalPathLength) { 592 errs() << MF->getName(); 593 errs() << ":%bb. " << MBB->getNumber(); 594 errs() << " " << MBB->getName() << " \n"; 595 } 596 597 // Schedule a region: possibly reorder instructions. 598 // This invalidates the original region iterators. 599 Scheduler.schedule(); 600 601 // Close the current region. 602 Scheduler.exitRegion(); 603 } 604 Scheduler.finishBlock(); 605 // FIXME: Ideally, no further passes should rely on kill flags. However, 606 // thumb2 size reduction is currently an exception, so the PostMIScheduler 607 // needs to do this. 608 if (FixKillFlags) 609 Scheduler.fixupKills(*MBB); 610 } 611 Scheduler.finalizeSchedule(); 612 } 613 614 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 615 // unimplemented 616 } 617 618 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 619 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 620 dbgs() << "Queue " << Name << ": "; 621 for (const SUnit *SU : Queue) 622 dbgs() << SU->NodeNum << " "; 623 dbgs() << "\n"; 624 } 625 #endif 626 627 //===----------------------------------------------------------------------===// 628 // ScheduleDAGMI - Basic machine instruction scheduling. This is 629 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 630 // virtual registers. 631 // ===----------------------------------------------------------------------===/ 632 633 // Provide a vtable anchor. 634 ScheduleDAGMI::~ScheduleDAGMI() = default; 635 636 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 637 /// NumPredsLeft reaches zero, release the successor node. 638 /// 639 /// FIXME: Adjust SuccSU height based on MinLatency. 640 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 641 SUnit *SuccSU = SuccEdge->getSUnit(); 642 643 if (SuccEdge->isWeak()) { 644 --SuccSU->WeakPredsLeft; 645 if (SuccEdge->isCluster()) 646 NextClusterSucc = SuccSU; 647 return; 648 } 649 #ifndef NDEBUG 650 if (SuccSU->NumPredsLeft == 0) { 651 dbgs() << "*** Scheduling failed! ***\n"; 652 dumpNode(*SuccSU); 653 dbgs() << " has been released too many times!\n"; 654 llvm_unreachable(nullptr); 655 } 656 #endif 657 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 658 // CurrCycle may have advanced since then. 659 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 660 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 661 662 --SuccSU->NumPredsLeft; 663 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 664 SchedImpl->releaseTopNode(SuccSU); 665 } 666 667 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 668 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 669 for (SDep &Succ : SU->Succs) 670 releaseSucc(SU, &Succ); 671 } 672 673 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 674 /// NumSuccsLeft reaches zero, release the predecessor node. 675 /// 676 /// FIXME: Adjust PredSU height based on MinLatency. 677 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 678 SUnit *PredSU = PredEdge->getSUnit(); 679 680 if (PredEdge->isWeak()) { 681 --PredSU->WeakSuccsLeft; 682 if (PredEdge->isCluster()) 683 NextClusterPred = PredSU; 684 return; 685 } 686 #ifndef NDEBUG 687 if (PredSU->NumSuccsLeft == 0) { 688 dbgs() << "*** Scheduling failed! ***\n"; 689 dumpNode(*PredSU); 690 dbgs() << " has been released too many times!\n"; 691 llvm_unreachable(nullptr); 692 } 693 #endif 694 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 695 // CurrCycle may have advanced since then. 696 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 697 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 698 699 --PredSU->NumSuccsLeft; 700 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 701 SchedImpl->releaseBottomNode(PredSU); 702 } 703 704 /// releasePredecessors - Call releasePred on each of SU's predecessors. 705 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 706 for (SDep &Pred : SU->Preds) 707 releasePred(SU, &Pred); 708 } 709 710 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 711 ScheduleDAGInstrs::startBlock(bb); 712 SchedImpl->enterMBB(bb); 713 } 714 715 void ScheduleDAGMI::finishBlock() { 716 SchedImpl->leaveMBB(); 717 ScheduleDAGInstrs::finishBlock(); 718 } 719 720 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 721 /// crossing a scheduling boundary. [begin, end) includes all instructions in 722 /// the region, including the boundary itself and single-instruction regions 723 /// that don't get scheduled. 724 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 725 MachineBasicBlock::iterator begin, 726 MachineBasicBlock::iterator end, 727 unsigned regioninstrs) 728 { 729 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 730 731 SchedImpl->initPolicy(begin, end, regioninstrs); 732 } 733 734 /// This is normally called from the main scheduler loop but may also be invoked 735 /// by the scheduling strategy to perform additional code motion. 736 void ScheduleDAGMI::moveInstruction( 737 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 738 // Advance RegionBegin if the first instruction moves down. 739 if (&*RegionBegin == MI) 740 ++RegionBegin; 741 742 // Update the instruction stream. 743 BB->splice(InsertPos, BB, MI); 744 745 // Update LiveIntervals 746 if (LIS) 747 LIS->handleMove(*MI, /*UpdateFlags=*/true); 748 749 // Recede RegionBegin if an instruction moves above the first. 750 if (RegionBegin == InsertPos) 751 RegionBegin = MI; 752 } 753 754 bool ScheduleDAGMI::checkSchedLimit() { 755 #ifndef NDEBUG 756 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 757 CurrentTop = CurrentBottom; 758 return false; 759 } 760 ++NumInstrsScheduled; 761 #endif 762 return true; 763 } 764 765 /// Per-region scheduling driver, called back from 766 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 767 /// does not consider liveness or register pressure. It is useful for PostRA 768 /// scheduling and potentially other custom schedulers. 769 void ScheduleDAGMI::schedule() { 770 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 771 LLVM_DEBUG(SchedImpl->dumpPolicy()); 772 773 // Build the DAG. 774 buildSchedGraph(AA); 775 776 postprocessDAG(); 777 778 SmallVector<SUnit*, 8> TopRoots, BotRoots; 779 findRootsAndBiasEdges(TopRoots, BotRoots); 780 781 LLVM_DEBUG(dump()); 782 if (PrintDAGs) dump(); 783 if (ViewMISchedDAGs) viewGraph(); 784 785 // Initialize the strategy before modifying the DAG. 786 // This may initialize a DFSResult to be used for queue priority. 787 SchedImpl->initialize(this); 788 789 // Initialize ready queues now that the DAG and priority data are finalized. 790 initQueues(TopRoots, BotRoots); 791 792 bool IsTopNode = false; 793 while (true) { 794 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 795 SUnit *SU = SchedImpl->pickNode(IsTopNode); 796 if (!SU) break; 797 798 assert(!SU->isScheduled && "Node already scheduled"); 799 if (!checkSchedLimit()) 800 break; 801 802 MachineInstr *MI = SU->getInstr(); 803 if (IsTopNode) { 804 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 805 if (&*CurrentTop == MI) 806 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 807 else 808 moveInstruction(MI, CurrentTop); 809 } else { 810 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 811 MachineBasicBlock::iterator priorII = 812 priorNonDebug(CurrentBottom, CurrentTop); 813 if (&*priorII == MI) 814 CurrentBottom = priorII; 815 else { 816 if (&*CurrentTop == MI) 817 CurrentTop = nextIfDebug(++CurrentTop, priorII); 818 moveInstruction(MI, CurrentBottom); 819 CurrentBottom = MI; 820 } 821 } 822 // Notify the scheduling strategy before updating the DAG. 823 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 824 // runs, it can then use the accurate ReadyCycle time to determine whether 825 // newly released nodes can move to the readyQ. 826 SchedImpl->schedNode(SU, IsTopNode); 827 828 updateQueues(SU, IsTopNode); 829 } 830 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 831 832 placeDebugValues(); 833 834 LLVM_DEBUG({ 835 dbgs() << "*** Final schedule for " 836 << printMBBReference(*begin()->getParent()) << " ***\n"; 837 dumpSchedule(); 838 dbgs() << '\n'; 839 }); 840 } 841 842 /// Apply each ScheduleDAGMutation step in order. 843 void ScheduleDAGMI::postprocessDAG() { 844 for (auto &m : Mutations) 845 m->apply(this); 846 } 847 848 void ScheduleDAGMI:: 849 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 850 SmallVectorImpl<SUnit*> &BotRoots) { 851 for (SUnit &SU : SUnits) { 852 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 853 854 // Order predecessors so DFSResult follows the critical path. 855 SU.biasCriticalPath(); 856 857 // A SUnit is ready to top schedule if it has no predecessors. 858 if (!SU.NumPredsLeft) 859 TopRoots.push_back(&SU); 860 // A SUnit is ready to bottom schedule if it has no successors. 861 if (!SU.NumSuccsLeft) 862 BotRoots.push_back(&SU); 863 } 864 ExitSU.biasCriticalPath(); 865 } 866 867 /// Identify DAG roots and setup scheduler queues. 868 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 869 ArrayRef<SUnit*> BotRoots) { 870 NextClusterSucc = nullptr; 871 NextClusterPred = nullptr; 872 873 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 874 // 875 // Nodes with unreleased weak edges can still be roots. 876 // Release top roots in forward order. 877 for (SUnit *SU : TopRoots) 878 SchedImpl->releaseTopNode(SU); 879 880 // Release bottom roots in reverse order so the higher priority nodes appear 881 // first. This is more natural and slightly more efficient. 882 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 883 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 884 SchedImpl->releaseBottomNode(*I); 885 } 886 887 releaseSuccessors(&EntrySU); 888 releasePredecessors(&ExitSU); 889 890 SchedImpl->registerRoots(); 891 892 // Advance past initial DebugValues. 893 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 894 CurrentBottom = RegionEnd; 895 } 896 897 /// Update scheduler queues after scheduling an instruction. 898 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 899 // Release dependent instructions for scheduling. 900 if (IsTopNode) 901 releaseSuccessors(SU); 902 else 903 releasePredecessors(SU); 904 905 SU->isScheduled = true; 906 } 907 908 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 909 void ScheduleDAGMI::placeDebugValues() { 910 // If first instruction was a DBG_VALUE then put it back. 911 if (FirstDbgValue) { 912 BB->splice(RegionBegin, BB, FirstDbgValue); 913 RegionBegin = FirstDbgValue; 914 } 915 916 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 917 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 918 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 919 MachineInstr *DbgValue = P.first; 920 MachineBasicBlock::iterator OrigPrevMI = P.second; 921 if (&*RegionBegin == DbgValue) 922 ++RegionBegin; 923 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 924 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 925 RegionEnd = DbgValue; 926 } 927 } 928 929 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 930 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 931 for (MachineInstr &MI : *this) { 932 if (SUnit *SU = getSUnit(&MI)) 933 dumpNode(*SU); 934 else 935 dbgs() << "Missing SUnit\n"; 936 } 937 } 938 #endif 939 940 //===----------------------------------------------------------------------===// 941 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 942 // preservation. 943 //===----------------------------------------------------------------------===// 944 945 ScheduleDAGMILive::~ScheduleDAGMILive() { 946 delete DFSResult; 947 } 948 949 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 950 const MachineInstr &MI = *SU.getInstr(); 951 for (const MachineOperand &MO : MI.operands()) { 952 if (!MO.isReg()) 953 continue; 954 if (!MO.readsReg()) 955 continue; 956 if (TrackLaneMasks && !MO.isUse()) 957 continue; 958 959 Register Reg = MO.getReg(); 960 if (!Register::isVirtualRegister(Reg)) 961 continue; 962 963 // Ignore re-defs. 964 if (TrackLaneMasks) { 965 bool FoundDef = false; 966 for (const MachineOperand &MO2 : MI.operands()) { 967 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 968 FoundDef = true; 969 break; 970 } 971 } 972 if (FoundDef) 973 continue; 974 } 975 976 // Record this local VReg use. 977 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 978 for (; UI != VRegUses.end(); ++UI) { 979 if (UI->SU == &SU) 980 break; 981 } 982 if (UI == VRegUses.end()) 983 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 984 } 985 } 986 987 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 988 /// crossing a scheduling boundary. [begin, end) includes all instructions in 989 /// the region, including the boundary itself and single-instruction regions 990 /// that don't get scheduled. 991 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 992 MachineBasicBlock::iterator begin, 993 MachineBasicBlock::iterator end, 994 unsigned regioninstrs) 995 { 996 // ScheduleDAGMI initializes SchedImpl's per-region policy. 997 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 998 999 // For convenience remember the end of the liveness region. 1000 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1001 1002 SUPressureDiffs.clear(); 1003 1004 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1005 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1006 1007 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1008 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1009 } 1010 1011 // Setup the register pressure trackers for the top scheduled and bottom 1012 // scheduled regions. 1013 void ScheduleDAGMILive::initRegPressure() { 1014 VRegUses.clear(); 1015 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1016 for (SUnit &SU : SUnits) 1017 collectVRegUses(SU); 1018 1019 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1020 ShouldTrackLaneMasks, false); 1021 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1022 ShouldTrackLaneMasks, false); 1023 1024 // Close the RPTracker to finalize live ins. 1025 RPTracker.closeRegion(); 1026 1027 LLVM_DEBUG(RPTracker.dump()); 1028 1029 // Initialize the live ins and live outs. 1030 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1031 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1032 1033 // Close one end of the tracker so we can call 1034 // getMaxUpward/DownwardPressureDelta before advancing across any 1035 // instructions. This converts currently live regs into live ins/outs. 1036 TopRPTracker.closeTop(); 1037 BotRPTracker.closeBottom(); 1038 1039 BotRPTracker.initLiveThru(RPTracker); 1040 if (!BotRPTracker.getLiveThru().empty()) { 1041 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1042 LLVM_DEBUG(dbgs() << "Live Thru: "; 1043 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1044 }; 1045 1046 // For each live out vreg reduce the pressure change associated with other 1047 // uses of the same vreg below the live-out reaching def. 1048 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1049 1050 // Account for liveness generated by the region boundary. 1051 if (LiveRegionEnd != RegionEnd) { 1052 SmallVector<RegisterMaskPair, 8> LiveUses; 1053 BotRPTracker.recede(&LiveUses); 1054 updatePressureDiffs(LiveUses); 1055 } 1056 1057 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1058 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1059 dbgs() << "Bottom Pressure:\n"; 1060 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1061 1062 assert((BotRPTracker.getPos() == RegionEnd || 1063 (RegionEnd->isDebugInstr() && 1064 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1065 "Can't find the region bottom"); 1066 1067 // Cache the list of excess pressure sets in this region. This will also track 1068 // the max pressure in the scheduled code for these sets. 1069 RegionCriticalPSets.clear(); 1070 const std::vector<unsigned> &RegionPressure = 1071 RPTracker.getPressure().MaxSetPressure; 1072 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1073 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1074 if (RegionPressure[i] > Limit) { 1075 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1076 << " Actual " << RegionPressure[i] << "\n"); 1077 RegionCriticalPSets.push_back(PressureChange(i)); 1078 } 1079 } 1080 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1081 for (const PressureChange &RCPS 1082 : RegionCriticalPSets) dbgs() 1083 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1084 dbgs() << "\n"); 1085 } 1086 1087 void ScheduleDAGMILive:: 1088 updateScheduledPressure(const SUnit *SU, 1089 const std::vector<unsigned> &NewMaxPressure) { 1090 const PressureDiff &PDiff = getPressureDiff(SU); 1091 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1092 for (const PressureChange &PC : PDiff) { 1093 if (!PC.isValid()) 1094 break; 1095 unsigned ID = PC.getPSet(); 1096 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1097 ++CritIdx; 1098 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1099 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1100 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1101 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1102 } 1103 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1104 if (NewMaxPressure[ID] >= Limit - 2) { 1105 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1106 << NewMaxPressure[ID] 1107 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1108 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1109 << " livethru)\n"); 1110 } 1111 } 1112 } 1113 1114 /// Update the PressureDiff array for liveness after scheduling this 1115 /// instruction. 1116 void ScheduleDAGMILive::updatePressureDiffs( 1117 ArrayRef<RegisterMaskPair> LiveUses) { 1118 for (const RegisterMaskPair &P : LiveUses) { 1119 Register Reg = P.RegUnit; 1120 /// FIXME: Currently assuming single-use physregs. 1121 if (!Register::isVirtualRegister(Reg)) 1122 continue; 1123 1124 if (ShouldTrackLaneMasks) { 1125 // If the register has just become live then other uses won't change 1126 // this fact anymore => decrement pressure. 1127 // If the register has just become dead then other uses make it come 1128 // back to life => increment pressure. 1129 bool Decrement = P.LaneMask.any(); 1130 1131 for (const VReg2SUnit &V2SU 1132 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1133 SUnit &SU = *V2SU.SU; 1134 if (SU.isScheduled || &SU == &ExitSU) 1135 continue; 1136 1137 PressureDiff &PDiff = getPressureDiff(&SU); 1138 PDiff.addPressureChange(Reg, Decrement, &MRI); 1139 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1140 << printReg(Reg, TRI) << ':' 1141 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1142 dbgs() << " to "; PDiff.dump(*TRI);); 1143 } 1144 } else { 1145 assert(P.LaneMask.any()); 1146 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1147 // This may be called before CurrentBottom has been initialized. However, 1148 // BotRPTracker must have a valid position. We want the value live into the 1149 // instruction or live out of the block, so ask for the previous 1150 // instruction's live-out. 1151 const LiveInterval &LI = LIS->getInterval(Reg); 1152 VNInfo *VNI; 1153 MachineBasicBlock::const_iterator I = 1154 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1155 if (I == BB->end()) 1156 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1157 else { 1158 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1159 VNI = LRQ.valueIn(); 1160 } 1161 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1162 assert(VNI && "No live value at use."); 1163 for (const VReg2SUnit &V2SU 1164 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1165 SUnit *SU = V2SU.SU; 1166 // If this use comes before the reaching def, it cannot be a last use, 1167 // so decrease its pressure change. 1168 if (!SU->isScheduled && SU != &ExitSU) { 1169 LiveQueryResult LRQ = 1170 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1171 if (LRQ.valueIn() == VNI) { 1172 PressureDiff &PDiff = getPressureDiff(SU); 1173 PDiff.addPressureChange(Reg, true, &MRI); 1174 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1175 << *SU->getInstr(); 1176 dbgs() << " to "; PDiff.dump(*TRI);); 1177 } 1178 } 1179 } 1180 } 1181 } 1182 } 1183 1184 void ScheduleDAGMILive::dump() const { 1185 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1186 if (EntrySU.getInstr() != nullptr) 1187 dumpNodeAll(EntrySU); 1188 for (const SUnit &SU : SUnits) { 1189 dumpNodeAll(SU); 1190 if (ShouldTrackPressure) { 1191 dbgs() << " Pressure Diff : "; 1192 getPressureDiff(&SU).dump(*TRI); 1193 } 1194 dbgs() << " Single Issue : "; 1195 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1196 SchedModel.mustEndGroup(SU.getInstr())) 1197 dbgs() << "true;"; 1198 else 1199 dbgs() << "false;"; 1200 dbgs() << '\n'; 1201 } 1202 if (ExitSU.getInstr() != nullptr) 1203 dumpNodeAll(ExitSU); 1204 #endif 1205 } 1206 1207 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1208 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1209 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1210 /// 1211 /// This is a skeletal driver, with all the functionality pushed into helpers, 1212 /// so that it can be easily extended by experimental schedulers. Generally, 1213 /// implementing MachineSchedStrategy should be sufficient to implement a new 1214 /// scheduling algorithm. However, if a scheduler further subclasses 1215 /// ScheduleDAGMILive then it will want to override this virtual method in order 1216 /// to update any specialized state. 1217 void ScheduleDAGMILive::schedule() { 1218 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1219 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1220 buildDAGWithRegPressure(); 1221 1222 postprocessDAG(); 1223 1224 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1225 findRootsAndBiasEdges(TopRoots, BotRoots); 1226 1227 // Initialize the strategy before modifying the DAG. 1228 // This may initialize a DFSResult to be used for queue priority. 1229 SchedImpl->initialize(this); 1230 1231 LLVM_DEBUG(dump()); 1232 if (PrintDAGs) dump(); 1233 if (ViewMISchedDAGs) viewGraph(); 1234 1235 // Initialize ready queues now that the DAG and priority data are finalized. 1236 initQueues(TopRoots, BotRoots); 1237 1238 bool IsTopNode = false; 1239 while (true) { 1240 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1241 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1242 if (!SU) break; 1243 1244 assert(!SU->isScheduled && "Node already scheduled"); 1245 if (!checkSchedLimit()) 1246 break; 1247 1248 scheduleMI(SU, IsTopNode); 1249 1250 if (DFSResult) { 1251 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1252 if (!ScheduledTrees.test(SubtreeID)) { 1253 ScheduledTrees.set(SubtreeID); 1254 DFSResult->scheduleTree(SubtreeID); 1255 SchedImpl->scheduleTree(SubtreeID); 1256 } 1257 } 1258 1259 // Notify the scheduling strategy after updating the DAG. 1260 SchedImpl->schedNode(SU, IsTopNode); 1261 1262 updateQueues(SU, IsTopNode); 1263 } 1264 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1265 1266 placeDebugValues(); 1267 1268 LLVM_DEBUG({ 1269 dbgs() << "*** Final schedule for " 1270 << printMBBReference(*begin()->getParent()) << " ***\n"; 1271 dumpSchedule(); 1272 dbgs() << '\n'; 1273 }); 1274 } 1275 1276 /// Build the DAG and setup three register pressure trackers. 1277 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1278 if (!ShouldTrackPressure) { 1279 RPTracker.reset(); 1280 RegionCriticalPSets.clear(); 1281 buildSchedGraph(AA); 1282 return; 1283 } 1284 1285 // Initialize the register pressure tracker used by buildSchedGraph. 1286 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1287 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1288 1289 // Account for liveness generate by the region boundary. 1290 if (LiveRegionEnd != RegionEnd) 1291 RPTracker.recede(); 1292 1293 // Build the DAG, and compute current register pressure. 1294 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1295 1296 // Initialize top/bottom trackers after computing region pressure. 1297 initRegPressure(); 1298 } 1299 1300 void ScheduleDAGMILive::computeDFSResult() { 1301 if (!DFSResult) 1302 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1303 DFSResult->clear(); 1304 ScheduledTrees.clear(); 1305 DFSResult->resize(SUnits.size()); 1306 DFSResult->compute(SUnits); 1307 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1308 } 1309 1310 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1311 /// only provides the critical path for single block loops. To handle loops that 1312 /// span blocks, we could use the vreg path latencies provided by 1313 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1314 /// available for use in the scheduler. 1315 /// 1316 /// The cyclic path estimation identifies a def-use pair that crosses the back 1317 /// edge and considers the depth and height of the nodes. For example, consider 1318 /// the following instruction sequence where each instruction has unit latency 1319 /// and defines an eponymous virtual register: 1320 /// 1321 /// a->b(a,c)->c(b)->d(c)->exit 1322 /// 1323 /// The cyclic critical path is a two cycles: b->c->b 1324 /// The acyclic critical path is four cycles: a->b->c->d->exit 1325 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1326 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1327 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1328 /// LiveInDepth = depth(b) = len(a->b) = 1 1329 /// 1330 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1331 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1332 /// CyclicCriticalPath = min(2, 2) = 2 1333 /// 1334 /// This could be relevant to PostRA scheduling, but is currently implemented 1335 /// assuming LiveIntervals. 1336 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1337 // This only applies to single block loop. 1338 if (!BB->isSuccessor(BB)) 1339 return 0; 1340 1341 unsigned MaxCyclicLatency = 0; 1342 // Visit each live out vreg def to find def/use pairs that cross iterations. 1343 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1344 Register Reg = P.RegUnit; 1345 if (!Register::isVirtualRegister(Reg)) 1346 continue; 1347 const LiveInterval &LI = LIS->getInterval(Reg); 1348 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1349 if (!DefVNI) 1350 continue; 1351 1352 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1353 const SUnit *DefSU = getSUnit(DefMI); 1354 if (!DefSU) 1355 continue; 1356 1357 unsigned LiveOutHeight = DefSU->getHeight(); 1358 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1359 // Visit all local users of the vreg def. 1360 for (const VReg2SUnit &V2SU 1361 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1362 SUnit *SU = V2SU.SU; 1363 if (SU == &ExitSU) 1364 continue; 1365 1366 // Only consider uses of the phi. 1367 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1368 if (!LRQ.valueIn()->isPHIDef()) 1369 continue; 1370 1371 // Assume that a path spanning two iterations is a cycle, which could 1372 // overestimate in strange cases. This allows cyclic latency to be 1373 // estimated as the minimum slack of the vreg's depth or height. 1374 unsigned CyclicLatency = 0; 1375 if (LiveOutDepth > SU->getDepth()) 1376 CyclicLatency = LiveOutDepth - SU->getDepth(); 1377 1378 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1379 if (LiveInHeight > LiveOutHeight) { 1380 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1381 CyclicLatency = LiveInHeight - LiveOutHeight; 1382 } else 1383 CyclicLatency = 0; 1384 1385 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1386 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1387 if (CyclicLatency > MaxCyclicLatency) 1388 MaxCyclicLatency = CyclicLatency; 1389 } 1390 } 1391 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1392 return MaxCyclicLatency; 1393 } 1394 1395 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1396 /// the Top RP tracker in case the region beginning has changed. 1397 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1398 ArrayRef<SUnit*> BotRoots) { 1399 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1400 if (ShouldTrackPressure) { 1401 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1402 TopRPTracker.setPos(CurrentTop); 1403 } 1404 } 1405 1406 /// Move an instruction and update register pressure. 1407 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1408 // Move the instruction to its new location in the instruction stream. 1409 MachineInstr *MI = SU->getInstr(); 1410 1411 if (IsTopNode) { 1412 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1413 if (&*CurrentTop == MI) 1414 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1415 else { 1416 moveInstruction(MI, CurrentTop); 1417 TopRPTracker.setPos(MI); 1418 } 1419 1420 if (ShouldTrackPressure) { 1421 // Update top scheduled pressure. 1422 RegisterOperands RegOpers; 1423 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1424 if (ShouldTrackLaneMasks) { 1425 // Adjust liveness and add missing dead+read-undef flags. 1426 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1427 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1428 } else { 1429 // Adjust for missing dead-def flags. 1430 RegOpers.detectDeadDefs(*MI, *LIS); 1431 } 1432 1433 TopRPTracker.advance(RegOpers); 1434 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1435 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1436 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1437 1438 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1439 } 1440 } else { 1441 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1442 MachineBasicBlock::iterator priorII = 1443 priorNonDebug(CurrentBottom, CurrentTop); 1444 if (&*priorII == MI) 1445 CurrentBottom = priorII; 1446 else { 1447 if (&*CurrentTop == MI) { 1448 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1449 TopRPTracker.setPos(CurrentTop); 1450 } 1451 moveInstruction(MI, CurrentBottom); 1452 CurrentBottom = MI; 1453 BotRPTracker.setPos(CurrentBottom); 1454 } 1455 if (ShouldTrackPressure) { 1456 RegisterOperands RegOpers; 1457 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1458 if (ShouldTrackLaneMasks) { 1459 // Adjust liveness and add missing dead+read-undef flags. 1460 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1461 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1462 } else { 1463 // Adjust for missing dead-def flags. 1464 RegOpers.detectDeadDefs(*MI, *LIS); 1465 } 1466 1467 if (BotRPTracker.getPos() != CurrentBottom) 1468 BotRPTracker.recedeSkipDebugValues(); 1469 SmallVector<RegisterMaskPair, 8> LiveUses; 1470 BotRPTracker.recede(RegOpers, &LiveUses); 1471 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1472 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1473 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1474 1475 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1476 updatePressureDiffs(LiveUses); 1477 } 1478 } 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1483 //===----------------------------------------------------------------------===// 1484 1485 namespace { 1486 1487 /// Post-process the DAG to create cluster edges between neighboring 1488 /// loads or between neighboring stores. 1489 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1490 struct MemOpInfo { 1491 SUnit *SU; 1492 SmallVector<const MachineOperand *, 4> BaseOps; 1493 int64_t Offset; 1494 unsigned Width; 1495 1496 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1497 int64_t Offset, unsigned Width) 1498 : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), 1499 Width(Width) {} 1500 1501 static bool Compare(const MachineOperand *const &A, 1502 const MachineOperand *const &B) { 1503 if (A->getType() != B->getType()) 1504 return A->getType() < B->getType(); 1505 if (A->isReg()) 1506 return A->getReg() < B->getReg(); 1507 if (A->isFI()) { 1508 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1509 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1510 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1511 TargetFrameLowering::StackGrowsDown; 1512 return StackGrowsDown ? A->getIndex() > B->getIndex() 1513 : A->getIndex() < B->getIndex(); 1514 } 1515 1516 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1517 "index bases."); 1518 } 1519 1520 bool operator<(const MemOpInfo &RHS) const { 1521 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1522 // comparison instead when it's available. 1523 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1524 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1525 Compare)) 1526 return true; 1527 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1528 BaseOps.begin(), BaseOps.end(), Compare)) 1529 return false; 1530 if (Offset != RHS.Offset) 1531 return Offset < RHS.Offset; 1532 return SU->NodeNum < RHS.SU->NodeNum; 1533 } 1534 }; 1535 1536 const TargetInstrInfo *TII; 1537 const TargetRegisterInfo *TRI; 1538 bool IsLoad; 1539 1540 public: 1541 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1542 const TargetRegisterInfo *tri, bool IsLoad) 1543 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1544 1545 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1546 1547 protected: 1548 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1549 ScheduleDAGInstrs *DAG); 1550 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1551 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1552 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1553 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1554 }; 1555 1556 class StoreClusterMutation : public BaseMemOpClusterMutation { 1557 public: 1558 StoreClusterMutation(const TargetInstrInfo *tii, 1559 const TargetRegisterInfo *tri) 1560 : BaseMemOpClusterMutation(tii, tri, false) {} 1561 }; 1562 1563 class LoadClusterMutation : public BaseMemOpClusterMutation { 1564 public: 1565 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1566 : BaseMemOpClusterMutation(tii, tri, true) {} 1567 }; 1568 1569 } // end anonymous namespace 1570 1571 namespace llvm { 1572 1573 std::unique_ptr<ScheduleDAGMutation> 1574 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1575 const TargetRegisterInfo *TRI) { 1576 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) 1577 : nullptr; 1578 } 1579 1580 std::unique_ptr<ScheduleDAGMutation> 1581 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1582 const TargetRegisterInfo *TRI) { 1583 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) 1584 : nullptr; 1585 } 1586 1587 } // end namespace llvm 1588 1589 // Sorting all the loads/stores first, then for each load/store, checking the 1590 // following load/store one by one, until reach the first non-dependent one and 1591 // call target hook to see if they can cluster. 1592 // If FastCluster is enabled, we assume that, all the loads/stores have been 1593 // preprocessed and now, they didn't have dependencies on each other. 1594 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1595 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1596 ScheduleDAGInstrs *DAG) { 1597 // Keep track of the current cluster length and bytes for each SUnit. 1598 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1599 1600 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1601 // cluster mem ops collected within `MemOpRecords` array. 1602 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1603 // Decision to cluster mem ops is taken based on target dependent logic 1604 auto MemOpa = MemOpRecords[Idx]; 1605 1606 // Seek for the next load/store to do the cluster. 1607 unsigned NextIdx = Idx + 1; 1608 for (; NextIdx < End; ++NextIdx) 1609 // Skip if MemOpb has been clustered already or has dependency with 1610 // MemOpa. 1611 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1612 (FastCluster || 1613 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1614 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1615 break; 1616 if (NextIdx == End) 1617 continue; 1618 1619 auto MemOpb = MemOpRecords[NextIdx]; 1620 unsigned ClusterLength = 2; 1621 unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; 1622 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1623 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1624 CurrentClusterBytes = 1625 SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; 1626 } 1627 1628 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, 1629 CurrentClusterBytes)) 1630 continue; 1631 1632 SUnit *SUa = MemOpa.SU; 1633 SUnit *SUb = MemOpb.SU; 1634 if (SUa->NodeNum > SUb->NodeNum) 1635 std::swap(SUa, SUb); 1636 1637 // FIXME: Is this check really required? 1638 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1639 continue; 1640 1641 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1642 << SUb->NodeNum << ")\n"); 1643 ++NumClustered; 1644 1645 if (IsLoad) { 1646 // Copy successor edges from SUa to SUb. Interleaving computation 1647 // dependent on SUa can prevent load combining due to register reuse. 1648 // Predecessor edges do not need to be copied from SUb to SUa since 1649 // nearby loads should have effectively the same inputs. 1650 for (const SDep &Succ : SUa->Succs) { 1651 if (Succ.getSUnit() == SUb) 1652 continue; 1653 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1654 << ")\n"); 1655 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1656 } 1657 } else { 1658 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1659 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1660 // do not need to be copied from SUa to SUb since no one will depend 1661 // on stores. 1662 // Notice that, we don't need to care about the memory dependency as 1663 // we won't try to cluster them if they have any memory dependency. 1664 for (const SDep &Pred : SUb->Preds) { 1665 if (Pred.getSUnit() == SUa) 1666 continue; 1667 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1668 << ")\n"); 1669 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1670 } 1671 } 1672 1673 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1674 CurrentClusterBytes}; 1675 1676 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1677 << ", Curr cluster bytes: " << CurrentClusterBytes 1678 << "\n"); 1679 } 1680 } 1681 1682 void BaseMemOpClusterMutation::collectMemOpRecords( 1683 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1684 for (auto &SU : SUnits) { 1685 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1686 (!IsLoad && !SU.getInstr()->mayStore())) 1687 continue; 1688 1689 const MachineInstr &MI = *SU.getInstr(); 1690 SmallVector<const MachineOperand *, 4> BaseOps; 1691 int64_t Offset; 1692 bool OffsetIsScalable; 1693 unsigned Width; 1694 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1695 OffsetIsScalable, Width, TRI)) { 1696 MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); 1697 1698 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1699 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1700 << ", Width: " << Width << "\n"); 1701 } 1702 #ifndef NDEBUG 1703 for (auto *Op : BaseOps) 1704 assert(Op); 1705 #endif 1706 } 1707 } 1708 1709 bool BaseMemOpClusterMutation::groupMemOps( 1710 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1711 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1712 bool FastCluster = 1713 ForceFastCluster || 1714 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1715 1716 for (const auto &MemOp : MemOps) { 1717 unsigned ChainPredID = DAG->SUnits.size(); 1718 if (FastCluster) { 1719 for (const SDep &Pred : MemOp.SU->Preds) { 1720 // We only want to cluster the mem ops that have the same ctrl(non-data) 1721 // pred so that they didn't have ctrl dependency for each other. But for 1722 // store instrs, we can still cluster them if the pred is load instr. 1723 if ((Pred.isCtrl() && 1724 (IsLoad || 1725 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1726 !Pred.isArtificial()) { 1727 ChainPredID = Pred.getSUnit()->NodeNum; 1728 break; 1729 } 1730 } 1731 } else 1732 ChainPredID = 0; 1733 1734 Groups[ChainPredID].push_back(MemOp); 1735 } 1736 return FastCluster; 1737 } 1738 1739 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 1740 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 1741 // Collect all the clusterable loads/stores 1742 SmallVector<MemOpInfo, 32> MemOpRecords; 1743 collectMemOpRecords(DAG->SUnits, MemOpRecords); 1744 1745 if (MemOpRecords.size() < 2) 1746 return; 1747 1748 // Put the loads/stores without dependency into the same group with some 1749 // heuristic if the DAG is too complex to avoid compiling time blow up. 1750 // Notice that, some fusion pair could be lost with this. 1751 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 1752 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 1753 1754 for (auto &Group : Groups) { 1755 // Sorting the loads/stores, so that, we can stop the cluster as early as 1756 // possible. 1757 llvm::sort(Group.second); 1758 1759 // Trying to cluster all the neighboring loads/stores. 1760 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 1761 } 1762 } 1763 1764 //===----------------------------------------------------------------------===// 1765 // CopyConstrain - DAG post-processing to encourage copy elimination. 1766 //===----------------------------------------------------------------------===// 1767 1768 namespace { 1769 1770 /// Post-process the DAG to create weak edges from all uses of a copy to 1771 /// the one use that defines the copy's source vreg, most likely an induction 1772 /// variable increment. 1773 class CopyConstrain : public ScheduleDAGMutation { 1774 // Transient state. 1775 SlotIndex RegionBeginIdx; 1776 1777 // RegionEndIdx is the slot index of the last non-debug instruction in the 1778 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1779 SlotIndex RegionEndIdx; 1780 1781 public: 1782 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1783 1784 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1785 1786 protected: 1787 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1788 }; 1789 1790 } // end anonymous namespace 1791 1792 namespace llvm { 1793 1794 std::unique_ptr<ScheduleDAGMutation> 1795 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1796 const TargetRegisterInfo *TRI) { 1797 return std::make_unique<CopyConstrain>(TII, TRI); 1798 } 1799 1800 } // end namespace llvm 1801 1802 /// constrainLocalCopy handles two possibilities: 1803 /// 1) Local src: 1804 /// I0: = dst 1805 /// I1: src = ... 1806 /// I2: = dst 1807 /// I3: dst = src (copy) 1808 /// (create pred->succ edges I0->I1, I2->I1) 1809 /// 1810 /// 2) Local copy: 1811 /// I0: dst = src (copy) 1812 /// I1: = dst 1813 /// I2: src = ... 1814 /// I3: = dst 1815 /// (create pred->succ edges I1->I2, I3->I2) 1816 /// 1817 /// Although the MachineScheduler is currently constrained to single blocks, 1818 /// this algorithm should handle extended blocks. An EBB is a set of 1819 /// contiguously numbered blocks such that the previous block in the EBB is 1820 /// always the single predecessor. 1821 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1822 LiveIntervals *LIS = DAG->getLIS(); 1823 MachineInstr *Copy = CopySU->getInstr(); 1824 1825 // Check for pure vreg copies. 1826 const MachineOperand &SrcOp = Copy->getOperand(1); 1827 Register SrcReg = SrcOp.getReg(); 1828 if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1829 return; 1830 1831 const MachineOperand &DstOp = Copy->getOperand(0); 1832 Register DstReg = DstOp.getReg(); 1833 if (!Register::isVirtualRegister(DstReg) || DstOp.isDead()) 1834 return; 1835 1836 // Check if either the dest or source is local. If it's live across a back 1837 // edge, it's not local. Note that if both vregs are live across the back 1838 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1839 // If both the copy's source and dest are local live intervals, then we 1840 // should treat the dest as the global for the purpose of adding 1841 // constraints. This adds edges from source's other uses to the copy. 1842 unsigned LocalReg = SrcReg; 1843 unsigned GlobalReg = DstReg; 1844 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1845 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1846 LocalReg = DstReg; 1847 GlobalReg = SrcReg; 1848 LocalLI = &LIS->getInterval(LocalReg); 1849 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1850 return; 1851 } 1852 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1853 1854 // Find the global segment after the start of the local LI. 1855 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1856 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1857 // local live range. We could create edges from other global uses to the local 1858 // start, but the coalescer should have already eliminated these cases, so 1859 // don't bother dealing with it. 1860 if (GlobalSegment == GlobalLI->end()) 1861 return; 1862 1863 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1864 // returned the next global segment. But if GlobalSegment overlaps with 1865 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 1866 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1867 if (GlobalSegment->contains(LocalLI->beginIndex())) 1868 ++GlobalSegment; 1869 1870 if (GlobalSegment == GlobalLI->end()) 1871 return; 1872 1873 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1874 if (GlobalSegment != GlobalLI->begin()) { 1875 // Two address defs have no hole. 1876 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1877 GlobalSegment->start)) { 1878 return; 1879 } 1880 // If the prior global segment may be defined by the same two-address 1881 // instruction that also defines LocalLI, then can't make a hole here. 1882 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1883 LocalLI->beginIndex())) { 1884 return; 1885 } 1886 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1887 // it would be a disconnected component in the live range. 1888 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1889 "Disconnected LRG within the scheduling region."); 1890 } 1891 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1892 if (!GlobalDef) 1893 return; 1894 1895 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1896 if (!GlobalSU) 1897 return; 1898 1899 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1900 // constraining the uses of the last local def to precede GlobalDef. 1901 SmallVector<SUnit*,8> LocalUses; 1902 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1903 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1904 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1905 for (const SDep &Succ : LastLocalSU->Succs) { 1906 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1907 continue; 1908 if (Succ.getSUnit() == GlobalSU) 1909 continue; 1910 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1911 return; 1912 LocalUses.push_back(Succ.getSUnit()); 1913 } 1914 // Open the top of the GlobalLI hole by constraining any earlier global uses 1915 // to precede the start of LocalLI. 1916 SmallVector<SUnit*,8> GlobalUses; 1917 MachineInstr *FirstLocalDef = 1918 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1919 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1920 for (const SDep &Pred : GlobalSU->Preds) { 1921 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1922 continue; 1923 if (Pred.getSUnit() == FirstLocalSU) 1924 continue; 1925 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1926 return; 1927 GlobalUses.push_back(Pred.getSUnit()); 1928 } 1929 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1930 // Add the weak edges. 1931 for (SUnit *LU : LocalUses) { 1932 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 1933 << GlobalSU->NodeNum << ")\n"); 1934 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 1935 } 1936 for (SUnit *GU : GlobalUses) { 1937 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 1938 << FirstLocalSU->NodeNum << ")\n"); 1939 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 1940 } 1941 } 1942 1943 /// Callback from DAG postProcessing to create weak edges to encourage 1944 /// copy elimination. 1945 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1946 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1947 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1948 1949 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1950 if (FirstPos == DAG->end()) 1951 return; 1952 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1953 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1954 *priorNonDebug(DAG->end(), DAG->begin())); 1955 1956 for (SUnit &SU : DAG->SUnits) { 1957 if (!SU.getInstr()->isCopy()) 1958 continue; 1959 1960 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1961 } 1962 } 1963 1964 //===----------------------------------------------------------------------===// 1965 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1966 // and possibly other custom schedulers. 1967 //===----------------------------------------------------------------------===// 1968 1969 static const unsigned InvalidCycle = ~0U; 1970 1971 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1972 1973 /// Given a Count of resource usage and a Latency value, return true if a 1974 /// SchedBoundary becomes resource limited. 1975 /// If we are checking after scheduling a node, we should return true when 1976 /// we just reach the resource limit. 1977 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1978 unsigned Latency, bool AfterSchedNode) { 1979 int ResCntFactor = (int)(Count - (Latency * LFactor)); 1980 if (AfterSchedNode) 1981 return ResCntFactor >= (int)LFactor; 1982 else 1983 return ResCntFactor > (int)LFactor; 1984 } 1985 1986 void SchedBoundary::reset() { 1987 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1988 // Destroying and reconstructing it is very expensive though. So keep 1989 // invalid, placeholder HazardRecs. 1990 if (HazardRec && HazardRec->isEnabled()) { 1991 delete HazardRec; 1992 HazardRec = nullptr; 1993 } 1994 Available.clear(); 1995 Pending.clear(); 1996 CheckPending = false; 1997 CurrCycle = 0; 1998 CurrMOps = 0; 1999 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2000 ExpectedLatency = 0; 2001 DependentLatency = 0; 2002 RetiredMOps = 0; 2003 MaxExecutedResCount = 0; 2004 ZoneCritResIdx = 0; 2005 IsResourceLimited = false; 2006 ReservedCycles.clear(); 2007 ReservedCyclesIndex.clear(); 2008 ResourceGroupSubUnitMasks.clear(); 2009 #ifndef NDEBUG 2010 // Track the maximum number of stall cycles that could arise either from the 2011 // latency of a DAG edge or the number of cycles that a processor resource is 2012 // reserved (SchedBoundary::ReservedCycles). 2013 MaxObservedStall = 0; 2014 #endif 2015 // Reserve a zero-count for invalid CritResIdx. 2016 ExecutedResCounts.resize(1); 2017 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2018 } 2019 2020 void SchedRemainder:: 2021 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2022 reset(); 2023 if (!SchedModel->hasInstrSchedModel()) 2024 return; 2025 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2026 for (SUnit &SU : DAG->SUnits) { 2027 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2028 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2029 * SchedModel->getMicroOpFactor(); 2030 for (TargetSchedModel::ProcResIter 2031 PI = SchedModel->getWriteProcResBegin(SC), 2032 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2033 unsigned PIdx = PI->ProcResourceIdx; 2034 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2035 RemainingCounts[PIdx] += (Factor * PI->Cycles); 2036 } 2037 } 2038 } 2039 2040 void SchedBoundary:: 2041 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2042 reset(); 2043 DAG = dag; 2044 SchedModel = smodel; 2045 Rem = rem; 2046 if (SchedModel->hasInstrSchedModel()) { 2047 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2048 ReservedCyclesIndex.resize(ResourceCount); 2049 ExecutedResCounts.resize(ResourceCount); 2050 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2051 unsigned NumUnits = 0; 2052 2053 for (unsigned i = 0; i < ResourceCount; ++i) { 2054 ReservedCyclesIndex[i] = NumUnits; 2055 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2056 if (isUnbufferedGroup(i)) { 2057 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2058 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2059 U != UE; ++U) 2060 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2061 } 2062 } 2063 2064 ReservedCycles.resize(NumUnits, InvalidCycle); 2065 } 2066 } 2067 2068 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2069 /// these "soft stalls" differently than the hard stall cycles based on CPU 2070 /// resources and computed by checkHazard(). A fully in-order model 2071 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2072 /// available for scheduling until they are ready. However, a weaker in-order 2073 /// model may use this for heuristics. For example, if a processor has in-order 2074 /// behavior when reading certain resources, this may come into play. 2075 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2076 if (!SU->isUnbuffered) 2077 return 0; 2078 2079 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2080 if (ReadyCycle > CurrCycle) 2081 return ReadyCycle - CurrCycle; 2082 return 0; 2083 } 2084 2085 /// Compute the next cycle at which the given processor resource unit 2086 /// can be scheduled. 2087 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2088 unsigned Cycles) { 2089 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2090 // If this resource has never been used, always return cycle zero. 2091 if (NextUnreserved == InvalidCycle) 2092 return 0; 2093 // For bottom-up scheduling add the cycles needed for the current operation. 2094 if (!isTop()) 2095 NextUnreserved += Cycles; 2096 return NextUnreserved; 2097 } 2098 2099 /// Compute the next cycle at which the given processor resource can be 2100 /// scheduled. Returns the next cycle and the index of the processor resource 2101 /// instance in the reserved cycles vector. 2102 std::pair<unsigned, unsigned> 2103 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2104 unsigned Cycles) { 2105 2106 unsigned MinNextUnreserved = InvalidCycle; 2107 unsigned InstanceIdx = 0; 2108 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2109 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2110 assert(NumberOfInstances > 0 && 2111 "Cannot have zero instances of a ProcResource"); 2112 2113 if (isUnbufferedGroup(PIdx)) { 2114 // If any subunits are used by the instruction, report that the resource 2115 // group is available at 0, effectively removing the group record from 2116 // hazarding and basing the hazarding decisions on the subunit records. 2117 // Otherwise, choose the first available instance from among the subunits. 2118 // Specifications which assign cycles to both the subunits and the group or 2119 // which use an unbuffered group with buffered subunits will appear to 2120 // schedule strangely. In the first case, the additional cycles for the 2121 // group will be ignored. In the second, the group will be ignored 2122 // entirely. 2123 for (const MCWriteProcResEntry &PE : 2124 make_range(SchedModel->getWriteProcResBegin(SC), 2125 SchedModel->getWriteProcResEnd(SC))) 2126 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2127 return std::make_pair(0u, StartIndex); 2128 2129 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2130 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2131 unsigned NextUnreserved, NextInstanceIdx; 2132 std::tie(NextUnreserved, NextInstanceIdx) = 2133 getNextResourceCycle(SC, SubUnits[I], Cycles); 2134 if (MinNextUnreserved > NextUnreserved) { 2135 InstanceIdx = NextInstanceIdx; 2136 MinNextUnreserved = NextUnreserved; 2137 } 2138 } 2139 return std::make_pair(MinNextUnreserved, InstanceIdx); 2140 } 2141 2142 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2143 ++I) { 2144 unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); 2145 if (MinNextUnreserved > NextUnreserved) { 2146 InstanceIdx = I; 2147 MinNextUnreserved = NextUnreserved; 2148 } 2149 } 2150 return std::make_pair(MinNextUnreserved, InstanceIdx); 2151 } 2152 2153 /// Does this SU have a hazard within the current instruction group. 2154 /// 2155 /// The scheduler supports two modes of hazard recognition. The first is the 2156 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2157 /// supports highly complicated in-order reservation tables 2158 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2159 /// 2160 /// The second is a streamlined mechanism that checks for hazards based on 2161 /// simple counters that the scheduler itself maintains. It explicitly checks 2162 /// for instruction dispatch limitations, including the number of micro-ops that 2163 /// can dispatch per cycle. 2164 /// 2165 /// TODO: Also check whether the SU must start a new group. 2166 bool SchedBoundary::checkHazard(SUnit *SU) { 2167 if (HazardRec->isEnabled() 2168 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2169 return true; 2170 } 2171 2172 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2173 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2174 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2175 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2176 return true; 2177 } 2178 2179 if (CurrMOps > 0 && 2180 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2181 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2182 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2183 << (isTop() ? "begin" : "end") << " group\n"); 2184 return true; 2185 } 2186 2187 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2188 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2189 for (const MCWriteProcResEntry &PE : 2190 make_range(SchedModel->getWriteProcResBegin(SC), 2191 SchedModel->getWriteProcResEnd(SC))) { 2192 unsigned ResIdx = PE.ProcResourceIdx; 2193 unsigned Cycles = PE.Cycles; 2194 unsigned NRCycle, InstanceIdx; 2195 std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles); 2196 if (NRCycle > CurrCycle) { 2197 #ifndef NDEBUG 2198 MaxObservedStall = std::max(Cycles, MaxObservedStall); 2199 #endif 2200 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2201 << SchedModel->getResourceName(ResIdx) 2202 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2203 << "=" << NRCycle << "c\n"); 2204 return true; 2205 } 2206 } 2207 } 2208 return false; 2209 } 2210 2211 // Find the unscheduled node in ReadySUs with the highest latency. 2212 unsigned SchedBoundary:: 2213 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2214 SUnit *LateSU = nullptr; 2215 unsigned RemLatency = 0; 2216 for (SUnit *SU : ReadySUs) { 2217 unsigned L = getUnscheduledLatency(SU); 2218 if (L > RemLatency) { 2219 RemLatency = L; 2220 LateSU = SU; 2221 } 2222 } 2223 if (LateSU) { 2224 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2225 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2226 } 2227 return RemLatency; 2228 } 2229 2230 // Count resources in this zone and the remaining unscheduled 2231 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2232 // resource index, or zero if the zone is issue limited. 2233 unsigned SchedBoundary:: 2234 getOtherResourceCount(unsigned &OtherCritIdx) { 2235 OtherCritIdx = 0; 2236 if (!SchedModel->hasInstrSchedModel()) 2237 return 0; 2238 2239 unsigned OtherCritCount = Rem->RemIssueCount 2240 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2241 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2242 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2243 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2244 PIdx != PEnd; ++PIdx) { 2245 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2246 if (OtherCount > OtherCritCount) { 2247 OtherCritCount = OtherCount; 2248 OtherCritIdx = PIdx; 2249 } 2250 } 2251 if (OtherCritIdx) { 2252 LLVM_DEBUG( 2253 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2254 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2255 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2256 } 2257 return OtherCritCount; 2258 } 2259 2260 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2261 unsigned Idx) { 2262 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2263 2264 #ifndef NDEBUG 2265 // ReadyCycle was been bumped up to the CurrCycle when this node was 2266 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2267 // scheduling, so may now be greater than ReadyCycle. 2268 if (ReadyCycle > CurrCycle) 2269 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2270 #endif 2271 2272 if (ReadyCycle < MinReadyCycle) 2273 MinReadyCycle = ReadyCycle; 2274 2275 // Check for interlocks first. For the purpose of other heuristics, an 2276 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2277 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2278 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2279 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2280 2281 if (!HazardDetected) { 2282 Available.push(SU); 2283 2284 if (InPQueue) 2285 Pending.remove(Pending.begin() + Idx); 2286 return; 2287 } 2288 2289 if (!InPQueue) 2290 Pending.push(SU); 2291 } 2292 2293 /// Move the boundary of scheduled code by one cycle. 2294 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2295 if (SchedModel->getMicroOpBufferSize() == 0) { 2296 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2297 "MinReadyCycle uninitialized"); 2298 if (MinReadyCycle > NextCycle) 2299 NextCycle = MinReadyCycle; 2300 } 2301 // Update the current micro-ops, which will issue in the next cycle. 2302 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2303 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2304 2305 // Decrement DependentLatency based on the next cycle. 2306 if ((NextCycle - CurrCycle) > DependentLatency) 2307 DependentLatency = 0; 2308 else 2309 DependentLatency -= (NextCycle - CurrCycle); 2310 2311 if (!HazardRec->isEnabled()) { 2312 // Bypass HazardRec virtual calls. 2313 CurrCycle = NextCycle; 2314 } else { 2315 // Bypass getHazardType calls in case of long latency. 2316 for (; CurrCycle != NextCycle; ++CurrCycle) { 2317 if (isTop()) 2318 HazardRec->AdvanceCycle(); 2319 else 2320 HazardRec->RecedeCycle(); 2321 } 2322 } 2323 CheckPending = true; 2324 IsResourceLimited = 2325 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2326 getScheduledLatency(), true); 2327 2328 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2329 << '\n'); 2330 } 2331 2332 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2333 ExecutedResCounts[PIdx] += Count; 2334 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2335 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2336 } 2337 2338 /// Add the given processor resource to this scheduled zone. 2339 /// 2340 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2341 /// during which this resource is consumed. 2342 /// 2343 /// \return the next cycle at which the instruction may execute without 2344 /// oversubscribing resources. 2345 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2346 unsigned Cycles, unsigned NextCycle) { 2347 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2348 unsigned Count = Factor * Cycles; 2349 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2350 << Cycles << "x" << Factor << "u\n"); 2351 2352 // Update Executed resources counts. 2353 incExecutedResources(PIdx, Count); 2354 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2355 Rem->RemainingCounts[PIdx] -= Count; 2356 2357 // Check if this resource exceeds the current critical resource. If so, it 2358 // becomes the critical resource. 2359 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2360 ZoneCritResIdx = PIdx; 2361 LLVM_DEBUG(dbgs() << " *** Critical resource " 2362 << SchedModel->getResourceName(PIdx) << ": " 2363 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2364 << "c\n"); 2365 } 2366 // For reserved resources, record the highest cycle using the resource. 2367 unsigned NextAvailable, InstanceIdx; 2368 std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles); 2369 if (NextAvailable > CurrCycle) { 2370 LLVM_DEBUG(dbgs() << " Resource conflict: " 2371 << SchedModel->getResourceName(PIdx) 2372 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2373 << " reserved until @" << NextAvailable << "\n"); 2374 } 2375 return NextAvailable; 2376 } 2377 2378 /// Move the boundary of scheduled code by one SUnit. 2379 void SchedBoundary::bumpNode(SUnit *SU) { 2380 // Update the reservation table. 2381 if (HazardRec->isEnabled()) { 2382 if (!isTop() && SU->isCall) { 2383 // Calls are scheduled with their preceding instructions. For bottom-up 2384 // scheduling, clear the pipeline state before emitting. 2385 HazardRec->Reset(); 2386 } 2387 HazardRec->EmitInstruction(SU); 2388 // Scheduling an instruction may have made pending instructions available. 2389 CheckPending = true; 2390 } 2391 // checkHazard should prevent scheduling multiple instructions per cycle that 2392 // exceed the issue width. 2393 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2394 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2395 assert( 2396 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2397 "Cannot schedule this instruction's MicroOps in the current cycle."); 2398 2399 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2400 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2401 2402 unsigned NextCycle = CurrCycle; 2403 switch (SchedModel->getMicroOpBufferSize()) { 2404 case 0: 2405 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2406 break; 2407 case 1: 2408 if (ReadyCycle > NextCycle) { 2409 NextCycle = ReadyCycle; 2410 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2411 } 2412 break; 2413 default: 2414 // We don't currently model the OOO reorder buffer, so consider all 2415 // scheduled MOps to be "retired". We do loosely model in-order resource 2416 // latency. If this instruction uses an in-order resource, account for any 2417 // likely stall cycles. 2418 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2419 NextCycle = ReadyCycle; 2420 break; 2421 } 2422 RetiredMOps += IncMOps; 2423 2424 // Update resource counts and critical resource. 2425 if (SchedModel->hasInstrSchedModel()) { 2426 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2427 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2428 Rem->RemIssueCount -= DecRemIssue; 2429 if (ZoneCritResIdx) { 2430 // Scale scheduled micro-ops for comparing with the critical resource. 2431 unsigned ScaledMOps = 2432 RetiredMOps * SchedModel->getMicroOpFactor(); 2433 2434 // If scaled micro-ops are now more than the previous critical resource by 2435 // a full cycle, then micro-ops issue becomes critical. 2436 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2437 >= (int)SchedModel->getLatencyFactor()) { 2438 ZoneCritResIdx = 0; 2439 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2440 << ScaledMOps / SchedModel->getLatencyFactor() 2441 << "c\n"); 2442 } 2443 } 2444 for (TargetSchedModel::ProcResIter 2445 PI = SchedModel->getWriteProcResBegin(SC), 2446 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2447 unsigned RCycle = 2448 countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle); 2449 if (RCycle > NextCycle) 2450 NextCycle = RCycle; 2451 } 2452 if (SU->hasReservedResource) { 2453 // For reserved resources, record the highest cycle using the resource. 2454 // For top-down scheduling, this is the cycle in which we schedule this 2455 // instruction plus the number of cycles the operations reserves the 2456 // resource. For bottom-up is it simply the instruction's cycle. 2457 for (TargetSchedModel::ProcResIter 2458 PI = SchedModel->getWriteProcResBegin(SC), 2459 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2460 unsigned PIdx = PI->ProcResourceIdx; 2461 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2462 unsigned ReservedUntil, InstanceIdx; 2463 std::tie(ReservedUntil, InstanceIdx) = 2464 getNextResourceCycle(SC, PIdx, 0); 2465 if (isTop()) { 2466 ReservedCycles[InstanceIdx] = 2467 std::max(ReservedUntil, NextCycle + PI->Cycles); 2468 } else 2469 ReservedCycles[InstanceIdx] = NextCycle; 2470 } 2471 } 2472 } 2473 } 2474 // Update ExpectedLatency and DependentLatency. 2475 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2476 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2477 if (SU->getDepth() > TopLatency) { 2478 TopLatency = SU->getDepth(); 2479 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2480 << SU->NodeNum << ") " << TopLatency << "c\n"); 2481 } 2482 if (SU->getHeight() > BotLatency) { 2483 BotLatency = SU->getHeight(); 2484 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2485 << SU->NodeNum << ") " << BotLatency << "c\n"); 2486 } 2487 // If we stall for any reason, bump the cycle. 2488 if (NextCycle > CurrCycle) 2489 bumpCycle(NextCycle); 2490 else 2491 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2492 // resource limited. If a stall occurred, bumpCycle does this. 2493 IsResourceLimited = 2494 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2495 getScheduledLatency(), true); 2496 2497 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2498 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2499 // one cycle. Since we commonly reach the max MOps here, opportunistically 2500 // bump the cycle to avoid uselessly checking everything in the readyQ. 2501 CurrMOps += IncMOps; 2502 2503 // Bump the cycle count for issue group constraints. 2504 // This must be done after NextCycle has been adjust for all other stalls. 2505 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2506 // currCycle to X. 2507 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2508 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2509 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2510 << " group\n"); 2511 bumpCycle(++NextCycle); 2512 } 2513 2514 while (CurrMOps >= SchedModel->getIssueWidth()) { 2515 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2516 << CurrCycle << '\n'); 2517 bumpCycle(++NextCycle); 2518 } 2519 LLVM_DEBUG(dumpScheduledState()); 2520 } 2521 2522 /// Release pending ready nodes in to the available queue. This makes them 2523 /// visible to heuristics. 2524 void SchedBoundary::releasePending() { 2525 // If the available queue is empty, it is safe to reset MinReadyCycle. 2526 if (Available.empty()) 2527 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2528 2529 // Check to see if any of the pending instructions are ready to issue. If 2530 // so, add them to the available queue. 2531 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2532 SUnit *SU = *(Pending.begin() + I); 2533 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2534 2535 if (ReadyCycle < MinReadyCycle) 2536 MinReadyCycle = ReadyCycle; 2537 2538 if (Available.size() >= ReadyListLimit) 2539 break; 2540 2541 releaseNode(SU, ReadyCycle, true, I); 2542 if (E != Pending.size()) { 2543 --I; 2544 --E; 2545 } 2546 } 2547 CheckPending = false; 2548 } 2549 2550 /// Remove SU from the ready set for this boundary. 2551 void SchedBoundary::removeReady(SUnit *SU) { 2552 if (Available.isInQueue(SU)) 2553 Available.remove(Available.find(SU)); 2554 else { 2555 assert(Pending.isInQueue(SU) && "bad ready count"); 2556 Pending.remove(Pending.find(SU)); 2557 } 2558 } 2559 2560 /// If this queue only has one ready candidate, return it. As a side effect, 2561 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2562 /// one node is ready. If multiple instructions are ready, return NULL. 2563 SUnit *SchedBoundary::pickOnlyChoice() { 2564 if (CheckPending) 2565 releasePending(); 2566 2567 // Defer any ready instrs that now have a hazard. 2568 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2569 if (checkHazard(*I)) { 2570 Pending.push(*I); 2571 I = Available.remove(I); 2572 continue; 2573 } 2574 ++I; 2575 } 2576 for (unsigned i = 0; Available.empty(); ++i) { 2577 // FIXME: Re-enable assert once PR20057 is resolved. 2578 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2579 // "permanent hazard"); 2580 (void)i; 2581 bumpCycle(CurrCycle + 1); 2582 releasePending(); 2583 } 2584 2585 LLVM_DEBUG(Pending.dump()); 2586 LLVM_DEBUG(Available.dump()); 2587 2588 if (Available.size() == 1) 2589 return *Available.begin(); 2590 return nullptr; 2591 } 2592 2593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2594 // This is useful information to dump after bumpNode. 2595 // Note that the Queue contents are more useful before pickNodeFromQueue. 2596 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2597 unsigned ResFactor; 2598 unsigned ResCount; 2599 if (ZoneCritResIdx) { 2600 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2601 ResCount = getResourceCount(ZoneCritResIdx); 2602 } else { 2603 ResFactor = SchedModel->getMicroOpFactor(); 2604 ResCount = RetiredMOps * ResFactor; 2605 } 2606 unsigned LFactor = SchedModel->getLatencyFactor(); 2607 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2608 << " Retired: " << RetiredMOps; 2609 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2610 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2611 << ResCount / ResFactor << " " 2612 << SchedModel->getResourceName(ZoneCritResIdx) 2613 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2614 << (IsResourceLimited ? " - Resource" : " - Latency") 2615 << " limited.\n"; 2616 } 2617 #endif 2618 2619 //===----------------------------------------------------------------------===// 2620 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2621 //===----------------------------------------------------------------------===// 2622 2623 void GenericSchedulerBase::SchedCandidate:: 2624 initResourceDelta(const ScheduleDAGMI *DAG, 2625 const TargetSchedModel *SchedModel) { 2626 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2627 return; 2628 2629 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2630 for (TargetSchedModel::ProcResIter 2631 PI = SchedModel->getWriteProcResBegin(SC), 2632 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2633 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2634 ResDelta.CritResources += PI->Cycles; 2635 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2636 ResDelta.DemandedResources += PI->Cycles; 2637 } 2638 } 2639 2640 /// Compute remaining latency. We need this both to determine whether the 2641 /// overall schedule has become latency-limited and whether the instructions 2642 /// outside this zone are resource or latency limited. 2643 /// 2644 /// The "dependent" latency is updated incrementally during scheduling as the 2645 /// max height/depth of scheduled nodes minus the cycles since it was 2646 /// scheduled: 2647 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2648 /// 2649 /// The "independent" latency is the max ready queue depth: 2650 /// ILat = max N.depth for N in Available|Pending 2651 /// 2652 /// RemainingLatency is the greater of independent and dependent latency. 2653 /// 2654 /// These computations are expensive, especially in DAGs with many edges, so 2655 /// only do them if necessary. 2656 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 2657 unsigned RemLatency = CurrZone.getDependentLatency(); 2658 RemLatency = std::max(RemLatency, 2659 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2660 RemLatency = std::max(RemLatency, 2661 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2662 return RemLatency; 2663 } 2664 2665 /// Returns true if the current cycle plus remaning latency is greater than 2666 /// the critical path in the scheduling region. 2667 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 2668 SchedBoundary &CurrZone, 2669 bool ComputeRemLatency, 2670 unsigned &RemLatency) const { 2671 // The current cycle is already greater than the critical path, so we are 2672 // already latency limited and don't need to compute the remaining latency. 2673 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 2674 return true; 2675 2676 // If we haven't scheduled anything yet, then we aren't latency limited. 2677 if (CurrZone.getCurrCycle() == 0) 2678 return false; 2679 2680 if (ComputeRemLatency) 2681 RemLatency = computeRemLatency(CurrZone); 2682 2683 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 2684 } 2685 2686 /// Set the CandPolicy given a scheduling zone given the current resources and 2687 /// latencies inside and outside the zone. 2688 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2689 SchedBoundary &CurrZone, 2690 SchedBoundary *OtherZone) { 2691 // Apply preemptive heuristics based on the total latency and resources 2692 // inside and outside this zone. Potential stalls should be considered before 2693 // following this policy. 2694 2695 // Compute the critical resource outside the zone. 2696 unsigned OtherCritIdx = 0; 2697 unsigned OtherCount = 2698 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2699 2700 bool OtherResLimited = false; 2701 unsigned RemLatency = 0; 2702 bool RemLatencyComputed = false; 2703 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 2704 RemLatency = computeRemLatency(CurrZone); 2705 RemLatencyComputed = true; 2706 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2707 OtherCount, RemLatency, false); 2708 } 2709 2710 // Schedule aggressively for latency in PostRA mode. We don't check for 2711 // acyclic latency during PostRA, and highly out-of-order processors will 2712 // skip PostRA scheduling. 2713 if (!OtherResLimited && 2714 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 2715 RemLatency))) { 2716 Policy.ReduceLatency |= true; 2717 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 2718 << " RemainingLatency " << RemLatency << " + " 2719 << CurrZone.getCurrCycle() << "c > CritPath " 2720 << Rem.CriticalPath << "\n"); 2721 } 2722 // If the same resource is limiting inside and outside the zone, do nothing. 2723 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2724 return; 2725 2726 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 2727 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2728 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 2729 } if (OtherResLimited) dbgs() 2730 << " RemainingLimit: " 2731 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2732 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 2733 << " Latency limited both directions.\n"); 2734 2735 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2736 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2737 2738 if (OtherResLimited) 2739 Policy.DemandResIdx = OtherCritIdx; 2740 } 2741 2742 #ifndef NDEBUG 2743 const char *GenericSchedulerBase::getReasonStr( 2744 GenericSchedulerBase::CandReason Reason) { 2745 switch (Reason) { 2746 case NoCand: return "NOCAND "; 2747 case Only1: return "ONLY1 "; 2748 case PhysReg: return "PHYS-REG "; 2749 case RegExcess: return "REG-EXCESS"; 2750 case RegCritical: return "REG-CRIT "; 2751 case Stall: return "STALL "; 2752 case Cluster: return "CLUSTER "; 2753 case Weak: return "WEAK "; 2754 case RegMax: return "REG-MAX "; 2755 case ResourceReduce: return "RES-REDUCE"; 2756 case ResourceDemand: return "RES-DEMAND"; 2757 case TopDepthReduce: return "TOP-DEPTH "; 2758 case TopPathReduce: return "TOP-PATH "; 2759 case BotHeightReduce:return "BOT-HEIGHT"; 2760 case BotPathReduce: return "BOT-PATH "; 2761 case NextDefUse: return "DEF-USE "; 2762 case NodeOrder: return "ORDER "; 2763 }; 2764 llvm_unreachable("Unknown reason!"); 2765 } 2766 2767 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2768 PressureChange P; 2769 unsigned ResIdx = 0; 2770 unsigned Latency = 0; 2771 switch (Cand.Reason) { 2772 default: 2773 break; 2774 case RegExcess: 2775 P = Cand.RPDelta.Excess; 2776 break; 2777 case RegCritical: 2778 P = Cand.RPDelta.CriticalMax; 2779 break; 2780 case RegMax: 2781 P = Cand.RPDelta.CurrentMax; 2782 break; 2783 case ResourceReduce: 2784 ResIdx = Cand.Policy.ReduceResIdx; 2785 break; 2786 case ResourceDemand: 2787 ResIdx = Cand.Policy.DemandResIdx; 2788 break; 2789 case TopDepthReduce: 2790 Latency = Cand.SU->getDepth(); 2791 break; 2792 case TopPathReduce: 2793 Latency = Cand.SU->getHeight(); 2794 break; 2795 case BotHeightReduce: 2796 Latency = Cand.SU->getHeight(); 2797 break; 2798 case BotPathReduce: 2799 Latency = Cand.SU->getDepth(); 2800 break; 2801 } 2802 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2803 if (P.isValid()) 2804 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2805 << ":" << P.getUnitInc() << " "; 2806 else 2807 dbgs() << " "; 2808 if (ResIdx) 2809 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2810 else 2811 dbgs() << " "; 2812 if (Latency) 2813 dbgs() << " " << Latency << " cycles "; 2814 else 2815 dbgs() << " "; 2816 dbgs() << '\n'; 2817 } 2818 #endif 2819 2820 namespace llvm { 2821 /// Return true if this heuristic determines order. 2822 /// TODO: Consider refactor return type of these functions as integer or enum, 2823 /// as we may need to differentiate whether TryCand is better than Cand. 2824 bool tryLess(int TryVal, int CandVal, 2825 GenericSchedulerBase::SchedCandidate &TryCand, 2826 GenericSchedulerBase::SchedCandidate &Cand, 2827 GenericSchedulerBase::CandReason Reason) { 2828 if (TryVal < CandVal) { 2829 TryCand.Reason = Reason; 2830 return true; 2831 } 2832 if (TryVal > CandVal) { 2833 if (Cand.Reason > Reason) 2834 Cand.Reason = Reason; 2835 return true; 2836 } 2837 return false; 2838 } 2839 2840 bool tryGreater(int TryVal, int CandVal, 2841 GenericSchedulerBase::SchedCandidate &TryCand, 2842 GenericSchedulerBase::SchedCandidate &Cand, 2843 GenericSchedulerBase::CandReason Reason) { 2844 if (TryVal > CandVal) { 2845 TryCand.Reason = Reason; 2846 return true; 2847 } 2848 if (TryVal < CandVal) { 2849 if (Cand.Reason > Reason) 2850 Cand.Reason = Reason; 2851 return true; 2852 } 2853 return false; 2854 } 2855 2856 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2857 GenericSchedulerBase::SchedCandidate &Cand, 2858 SchedBoundary &Zone) { 2859 if (Zone.isTop()) { 2860 // Prefer the candidate with the lesser depth, but only if one of them has 2861 // depth greater than the total latency scheduled so far, otherwise either 2862 // of them could be scheduled now with no stall. 2863 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 2864 Zone.getScheduledLatency()) { 2865 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2866 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2867 return true; 2868 } 2869 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2870 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2871 return true; 2872 } else { 2873 // Prefer the candidate with the lesser height, but only if one of them has 2874 // height greater than the total latency scheduled so far, otherwise either 2875 // of them could be scheduled now with no stall. 2876 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 2877 Zone.getScheduledLatency()) { 2878 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2879 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2880 return true; 2881 } 2882 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2883 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2884 return true; 2885 } 2886 return false; 2887 } 2888 } // end namespace llvm 2889 2890 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2891 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2892 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2893 } 2894 2895 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2896 tracePick(Cand.Reason, Cand.AtTop); 2897 } 2898 2899 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2900 assert(dag->hasVRegLiveness() && 2901 "(PreRA)GenericScheduler needs vreg liveness"); 2902 DAG = static_cast<ScheduleDAGMILive*>(dag); 2903 SchedModel = DAG->getSchedModel(); 2904 TRI = DAG->TRI; 2905 2906 if (RegionPolicy.ComputeDFSResult) 2907 DAG->computeDFSResult(); 2908 2909 Rem.init(DAG, SchedModel); 2910 Top.init(DAG, SchedModel, &Rem); 2911 Bot.init(DAG, SchedModel, &Rem); 2912 2913 // Initialize resource counts. 2914 2915 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2916 // are disabled, then these HazardRecs will be disabled. 2917 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2918 if (!Top.HazardRec) { 2919 Top.HazardRec = 2920 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2921 Itin, DAG); 2922 } 2923 if (!Bot.HazardRec) { 2924 Bot.HazardRec = 2925 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2926 Itin, DAG); 2927 } 2928 TopCand.SU = nullptr; 2929 BotCand.SU = nullptr; 2930 } 2931 2932 /// Initialize the per-region scheduling policy. 2933 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2934 MachineBasicBlock::iterator End, 2935 unsigned NumRegionInstrs) { 2936 const MachineFunction &MF = *Begin->getMF(); 2937 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2938 2939 // Avoid setting up the register pressure tracker for small regions to save 2940 // compile time. As a rough heuristic, only track pressure when the number of 2941 // schedulable instructions exceeds half the integer register file. 2942 RegionPolicy.ShouldTrackPressure = true; 2943 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2944 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2945 if (TLI->isTypeLegal(LegalIntVT)) { 2946 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2947 TLI->getRegClassFor(LegalIntVT)); 2948 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2949 } 2950 } 2951 2952 // For generic targets, we default to bottom-up, because it's simpler and more 2953 // compile-time optimizations have been implemented in that direction. 2954 RegionPolicy.OnlyBottomUp = true; 2955 2956 // Allow the subtarget to override default policy. 2957 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2958 2959 // After subtarget overrides, apply command line options. 2960 if (!EnableRegPressure) { 2961 RegionPolicy.ShouldTrackPressure = false; 2962 RegionPolicy.ShouldTrackLaneMasks = false; 2963 } 2964 2965 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2966 // e.g. -misched-bottomup=false allows scheduling in both directions. 2967 assert((!ForceTopDown || !ForceBottomUp) && 2968 "-misched-topdown incompatible with -misched-bottomup"); 2969 if (ForceBottomUp.getNumOccurrences() > 0) { 2970 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2971 if (RegionPolicy.OnlyBottomUp) 2972 RegionPolicy.OnlyTopDown = false; 2973 } 2974 if (ForceTopDown.getNumOccurrences() > 0) { 2975 RegionPolicy.OnlyTopDown = ForceTopDown; 2976 if (RegionPolicy.OnlyTopDown) 2977 RegionPolicy.OnlyBottomUp = false; 2978 } 2979 } 2980 2981 void GenericScheduler::dumpPolicy() const { 2982 // Cannot completely remove virtual function even in release mode. 2983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2984 dbgs() << "GenericScheduler RegionPolicy: " 2985 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2986 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2987 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2988 << "\n"; 2989 #endif 2990 } 2991 2992 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2993 /// critical path by more cycles than it takes to drain the instruction buffer. 2994 /// We estimate an upper bounds on in-flight instructions as: 2995 /// 2996 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2997 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2998 /// InFlightResources = InFlightIterations * LoopResources 2999 /// 3000 /// TODO: Check execution resources in addition to IssueCount. 3001 void GenericScheduler::checkAcyclicLatency() { 3002 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3003 return; 3004 3005 // Scaled number of cycles per loop iteration. 3006 unsigned IterCount = 3007 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3008 Rem.RemIssueCount); 3009 // Scaled acyclic critical path. 3010 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3011 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3012 unsigned InFlightCount = 3013 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3014 unsigned BufferLimit = 3015 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3016 3017 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3018 3019 LLVM_DEBUG( 3020 dbgs() << "IssueCycles=" 3021 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3022 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3023 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3024 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3025 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3026 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3027 } 3028 3029 void GenericScheduler::registerRoots() { 3030 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3031 3032 // Some roots may not feed into ExitSU. Check all of them in case. 3033 for (const SUnit *SU : Bot.Available) { 3034 if (SU->getDepth() > Rem.CriticalPath) 3035 Rem.CriticalPath = SU->getDepth(); 3036 } 3037 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3038 if (DumpCriticalPathLength) { 3039 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3040 } 3041 3042 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3043 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3044 checkAcyclicLatency(); 3045 } 3046 } 3047 3048 namespace llvm { 3049 bool tryPressure(const PressureChange &TryP, 3050 const PressureChange &CandP, 3051 GenericSchedulerBase::SchedCandidate &TryCand, 3052 GenericSchedulerBase::SchedCandidate &Cand, 3053 GenericSchedulerBase::CandReason Reason, 3054 const TargetRegisterInfo *TRI, 3055 const MachineFunction &MF) { 3056 // If one candidate decreases and the other increases, go with it. 3057 // Invalid candidates have UnitInc==0. 3058 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3059 Reason)) { 3060 return true; 3061 } 3062 // Do not compare the magnitude of pressure changes between top and bottom 3063 // boundary. 3064 if (Cand.AtTop != TryCand.AtTop) 3065 return false; 3066 3067 // If both candidates affect the same set in the same boundary, go with the 3068 // smallest increase. 3069 unsigned TryPSet = TryP.getPSetOrMax(); 3070 unsigned CandPSet = CandP.getPSetOrMax(); 3071 if (TryPSet == CandPSet) { 3072 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3073 Reason); 3074 } 3075 3076 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3077 std::numeric_limits<int>::max(); 3078 3079 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3080 std::numeric_limits<int>::max(); 3081 3082 // If the candidates are decreasing pressure, reverse priority. 3083 if (TryP.getUnitInc() < 0) 3084 std::swap(TryRank, CandRank); 3085 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3086 } 3087 3088 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3089 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3090 } 3091 3092 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3093 /// their physreg def/use. 3094 /// 3095 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3096 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3097 /// with the operation that produces or consumes the physreg. We'll do this when 3098 /// regalloc has support for parallel copies. 3099 int biasPhysReg(const SUnit *SU, bool isTop) { 3100 const MachineInstr *MI = SU->getInstr(); 3101 3102 if (MI->isCopy()) { 3103 unsigned ScheduledOper = isTop ? 1 : 0; 3104 unsigned UnscheduledOper = isTop ? 0 : 1; 3105 // If we have already scheduled the physreg produce/consumer, immediately 3106 // schedule the copy. 3107 if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg())) 3108 return 1; 3109 // If the physreg is at the boundary, defer it. Otherwise schedule it 3110 // immediately to free the dependent. We can hoist the copy later. 3111 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3112 if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg())) 3113 return AtBoundary ? -1 : 1; 3114 } 3115 3116 if (MI->isMoveImmediate()) { 3117 // If we have a move immediate and all successors have been assigned, bias 3118 // towards scheduling this later. Make sure all register defs are to 3119 // physical registers. 3120 bool DoBias = true; 3121 for (const MachineOperand &Op : MI->defs()) { 3122 if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) { 3123 DoBias = false; 3124 break; 3125 } 3126 } 3127 3128 if (DoBias) 3129 return isTop ? -1 : 1; 3130 } 3131 3132 return 0; 3133 } 3134 } // end namespace llvm 3135 3136 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3137 bool AtTop, 3138 const RegPressureTracker &RPTracker, 3139 RegPressureTracker &TempTracker) { 3140 Cand.SU = SU; 3141 Cand.AtTop = AtTop; 3142 if (DAG->isTrackingPressure()) { 3143 if (AtTop) { 3144 TempTracker.getMaxDownwardPressureDelta( 3145 Cand.SU->getInstr(), 3146 Cand.RPDelta, 3147 DAG->getRegionCriticalPSets(), 3148 DAG->getRegPressure().MaxSetPressure); 3149 } else { 3150 if (VerifyScheduling) { 3151 TempTracker.getMaxUpwardPressureDelta( 3152 Cand.SU->getInstr(), 3153 &DAG->getPressureDiff(Cand.SU), 3154 Cand.RPDelta, 3155 DAG->getRegionCriticalPSets(), 3156 DAG->getRegPressure().MaxSetPressure); 3157 } else { 3158 RPTracker.getUpwardPressureDelta( 3159 Cand.SU->getInstr(), 3160 DAG->getPressureDiff(Cand.SU), 3161 Cand.RPDelta, 3162 DAG->getRegionCriticalPSets(), 3163 DAG->getRegPressure().MaxSetPressure); 3164 } 3165 } 3166 } 3167 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3168 << " Try SU(" << Cand.SU->NodeNum << ") " 3169 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3170 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3171 } 3172 3173 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3174 /// hierarchical. This may be more efficient than a graduated cost model because 3175 /// we don't need to evaluate all aspects of the model for each node in the 3176 /// queue. But it's really done to make the heuristics easier to debug and 3177 /// statistically analyze. 3178 /// 3179 /// \param Cand provides the policy and current best candidate. 3180 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3181 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3182 /// if Cand is from a different zone than TryCand. 3183 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3184 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3185 SchedCandidate &TryCand, 3186 SchedBoundary *Zone) const { 3187 // Initialize the candidate if needed. 3188 if (!Cand.isValid()) { 3189 TryCand.Reason = NodeOrder; 3190 return true; 3191 } 3192 3193 // Bias PhysReg Defs and copies to their uses and defined respectively. 3194 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3195 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3196 return TryCand.Reason != NoCand; 3197 3198 // Avoid exceeding the target's limit. 3199 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3200 Cand.RPDelta.Excess, 3201 TryCand, Cand, RegExcess, TRI, 3202 DAG->MF)) 3203 return TryCand.Reason != NoCand; 3204 3205 // Avoid increasing the max critical pressure in the scheduled region. 3206 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3207 Cand.RPDelta.CriticalMax, 3208 TryCand, Cand, RegCritical, TRI, 3209 DAG->MF)) 3210 return TryCand.Reason != NoCand; 3211 3212 // We only compare a subset of features when comparing nodes between 3213 // Top and Bottom boundary. Some properties are simply incomparable, in many 3214 // other instances we should only override the other boundary if something 3215 // is a clear good pick on one boundary. Skip heuristics that are more 3216 // "tie-breaking" in nature. 3217 bool SameBoundary = Zone != nullptr; 3218 if (SameBoundary) { 3219 // For loops that are acyclic path limited, aggressively schedule for 3220 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3221 // heuristics to take precedence. 3222 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3223 tryLatency(TryCand, Cand, *Zone)) 3224 return TryCand.Reason != NoCand; 3225 3226 // Prioritize instructions that read unbuffered resources by stall cycles. 3227 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3228 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3229 return TryCand.Reason != NoCand; 3230 } 3231 3232 // Keep clustered nodes together to encourage downstream peephole 3233 // optimizations which may reduce resource requirements. 3234 // 3235 // This is a best effort to set things up for a post-RA pass. Optimizations 3236 // like generating loads of multiple registers should ideally be done within 3237 // the scheduler pass by combining the loads during DAG postprocessing. 3238 const SUnit *CandNextClusterSU = 3239 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3240 const SUnit *TryCandNextClusterSU = 3241 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3242 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3243 Cand.SU == CandNextClusterSU, 3244 TryCand, Cand, Cluster)) 3245 return TryCand.Reason != NoCand; 3246 3247 if (SameBoundary) { 3248 // Weak edges are for clustering and other constraints. 3249 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3250 getWeakLeft(Cand.SU, Cand.AtTop), 3251 TryCand, Cand, Weak)) 3252 return TryCand.Reason != NoCand; 3253 } 3254 3255 // Avoid increasing the max pressure of the entire region. 3256 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3257 Cand.RPDelta.CurrentMax, 3258 TryCand, Cand, RegMax, TRI, 3259 DAG->MF)) 3260 return TryCand.Reason != NoCand; 3261 3262 if (SameBoundary) { 3263 // Avoid critical resource consumption and balance the schedule. 3264 TryCand.initResourceDelta(DAG, SchedModel); 3265 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3266 TryCand, Cand, ResourceReduce)) 3267 return TryCand.Reason != NoCand; 3268 if (tryGreater(TryCand.ResDelta.DemandedResources, 3269 Cand.ResDelta.DemandedResources, 3270 TryCand, Cand, ResourceDemand)) 3271 return TryCand.Reason != NoCand; 3272 3273 // Avoid serializing long latency dependence chains. 3274 // For acyclic path limited loops, latency was already checked above. 3275 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3276 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3277 return TryCand.Reason != NoCand; 3278 3279 // Fall through to original instruction order. 3280 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3281 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3282 TryCand.Reason = NodeOrder; 3283 return true; 3284 } 3285 } 3286 3287 return false; 3288 } 3289 3290 /// Pick the best candidate from the queue. 3291 /// 3292 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3293 /// DAG building. To adjust for the current scheduling location we need to 3294 /// maintain the number of vreg uses remaining to be top-scheduled. 3295 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3296 const CandPolicy &ZonePolicy, 3297 const RegPressureTracker &RPTracker, 3298 SchedCandidate &Cand) { 3299 // getMaxPressureDelta temporarily modifies the tracker. 3300 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3301 3302 ReadyQueue &Q = Zone.Available; 3303 for (SUnit *SU : Q) { 3304 3305 SchedCandidate TryCand(ZonePolicy); 3306 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3307 // Pass SchedBoundary only when comparing nodes from the same boundary. 3308 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3309 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3310 // Initialize resource delta if needed in case future heuristics query it. 3311 if (TryCand.ResDelta == SchedResourceDelta()) 3312 TryCand.initResourceDelta(DAG, SchedModel); 3313 Cand.setBest(TryCand); 3314 LLVM_DEBUG(traceCandidate(Cand)); 3315 } 3316 } 3317 } 3318 3319 /// Pick the best candidate node from either the top or bottom queue. 3320 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3321 // Schedule as far as possible in the direction of no choice. This is most 3322 // efficient, but also provides the best heuristics for CriticalPSets. 3323 if (SUnit *SU = Bot.pickOnlyChoice()) { 3324 IsTopNode = false; 3325 tracePick(Only1, false); 3326 return SU; 3327 } 3328 if (SUnit *SU = Top.pickOnlyChoice()) { 3329 IsTopNode = true; 3330 tracePick(Only1, true); 3331 return SU; 3332 } 3333 // Set the bottom-up policy based on the state of the current bottom zone and 3334 // the instructions outside the zone, including the top zone. 3335 CandPolicy BotPolicy; 3336 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3337 // Set the top-down policy based on the state of the current top zone and 3338 // the instructions outside the zone, including the bottom zone. 3339 CandPolicy TopPolicy; 3340 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3341 3342 // See if BotCand is still valid (because we previously scheduled from Top). 3343 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3344 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3345 BotCand.Policy != BotPolicy) { 3346 BotCand.reset(CandPolicy()); 3347 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3348 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3349 } else { 3350 LLVM_DEBUG(traceCandidate(BotCand)); 3351 #ifndef NDEBUG 3352 if (VerifyScheduling) { 3353 SchedCandidate TCand; 3354 TCand.reset(CandPolicy()); 3355 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3356 assert(TCand.SU == BotCand.SU && 3357 "Last pick result should correspond to re-picking right now"); 3358 } 3359 #endif 3360 } 3361 3362 // Check if the top Q has a better candidate. 3363 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3364 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3365 TopCand.Policy != TopPolicy) { 3366 TopCand.reset(CandPolicy()); 3367 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3368 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3369 } else { 3370 LLVM_DEBUG(traceCandidate(TopCand)); 3371 #ifndef NDEBUG 3372 if (VerifyScheduling) { 3373 SchedCandidate TCand; 3374 TCand.reset(CandPolicy()); 3375 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3376 assert(TCand.SU == TopCand.SU && 3377 "Last pick result should correspond to re-picking right now"); 3378 } 3379 #endif 3380 } 3381 3382 // Pick best from BotCand and TopCand. 3383 assert(BotCand.isValid()); 3384 assert(TopCand.isValid()); 3385 SchedCandidate Cand = BotCand; 3386 TopCand.Reason = NoCand; 3387 if (tryCandidate(Cand, TopCand, nullptr)) { 3388 Cand.setBest(TopCand); 3389 LLVM_DEBUG(traceCandidate(Cand)); 3390 } 3391 3392 IsTopNode = Cand.AtTop; 3393 tracePick(Cand); 3394 return Cand.SU; 3395 } 3396 3397 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3398 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3399 if (DAG->top() == DAG->bottom()) { 3400 assert(Top.Available.empty() && Top.Pending.empty() && 3401 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3402 return nullptr; 3403 } 3404 SUnit *SU; 3405 do { 3406 if (RegionPolicy.OnlyTopDown) { 3407 SU = Top.pickOnlyChoice(); 3408 if (!SU) { 3409 CandPolicy NoPolicy; 3410 TopCand.reset(NoPolicy); 3411 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3412 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3413 tracePick(TopCand); 3414 SU = TopCand.SU; 3415 } 3416 IsTopNode = true; 3417 } else if (RegionPolicy.OnlyBottomUp) { 3418 SU = Bot.pickOnlyChoice(); 3419 if (!SU) { 3420 CandPolicy NoPolicy; 3421 BotCand.reset(NoPolicy); 3422 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3423 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3424 tracePick(BotCand); 3425 SU = BotCand.SU; 3426 } 3427 IsTopNode = false; 3428 } else { 3429 SU = pickNodeBidirectional(IsTopNode); 3430 } 3431 } while (SU->isScheduled); 3432 3433 if (SU->isTopReady()) 3434 Top.removeReady(SU); 3435 if (SU->isBottomReady()) 3436 Bot.removeReady(SU); 3437 3438 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3439 << *SU->getInstr()); 3440 return SU; 3441 } 3442 3443 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3444 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3445 if (!isTop) 3446 ++InsertPos; 3447 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3448 3449 // Find already scheduled copies with a single physreg dependence and move 3450 // them just above the scheduled instruction. 3451 for (SDep &Dep : Deps) { 3452 if (Dep.getKind() != SDep::Data || 3453 !Register::isPhysicalRegister(Dep.getReg())) 3454 continue; 3455 SUnit *DepSU = Dep.getSUnit(); 3456 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3457 continue; 3458 MachineInstr *Copy = DepSU->getInstr(); 3459 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3460 continue; 3461 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3462 DAG->dumpNode(*Dep.getSUnit())); 3463 DAG->moveInstruction(Copy, InsertPos); 3464 } 3465 } 3466 3467 /// Update the scheduler's state after scheduling a node. This is the same node 3468 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3469 /// update it's state based on the current cycle before MachineSchedStrategy 3470 /// does. 3471 /// 3472 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3473 /// them here. See comments in biasPhysReg. 3474 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3475 if (IsTopNode) { 3476 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3477 Top.bumpNode(SU); 3478 if (SU->hasPhysRegUses) 3479 reschedulePhysReg(SU, true); 3480 } else { 3481 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3482 Bot.bumpNode(SU); 3483 if (SU->hasPhysRegDefs) 3484 reschedulePhysReg(SU, false); 3485 } 3486 } 3487 3488 /// Create the standard converging machine scheduler. This will be used as the 3489 /// default scheduler if the target does not set a default. 3490 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3491 ScheduleDAGMILive *DAG = 3492 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3493 // Register DAG post-processors. 3494 // 3495 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3496 // data and pass it to later mutations. Have a single mutation that gathers 3497 // the interesting nodes in one pass. 3498 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3499 return DAG; 3500 } 3501 3502 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3503 return createGenericSchedLive(C); 3504 } 3505 3506 static MachineSchedRegistry 3507 GenericSchedRegistry("converge", "Standard converging scheduler.", 3508 createConvergingSched); 3509 3510 //===----------------------------------------------------------------------===// 3511 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3512 //===----------------------------------------------------------------------===// 3513 3514 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3515 DAG = Dag; 3516 SchedModel = DAG->getSchedModel(); 3517 TRI = DAG->TRI; 3518 3519 Rem.init(DAG, SchedModel); 3520 Top.init(DAG, SchedModel, &Rem); 3521 BotRoots.clear(); 3522 3523 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3524 // or are disabled, then these HazardRecs will be disabled. 3525 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3526 if (!Top.HazardRec) { 3527 Top.HazardRec = 3528 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3529 Itin, DAG); 3530 } 3531 } 3532 3533 void PostGenericScheduler::registerRoots() { 3534 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3535 3536 // Some roots may not feed into ExitSU. Check all of them in case. 3537 for (const SUnit *SU : BotRoots) { 3538 if (SU->getDepth() > Rem.CriticalPath) 3539 Rem.CriticalPath = SU->getDepth(); 3540 } 3541 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3542 if (DumpCriticalPathLength) { 3543 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3544 } 3545 } 3546 3547 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3548 /// 3549 /// \param Cand provides the policy and current best candidate. 3550 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3551 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3552 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3553 SchedCandidate &TryCand) { 3554 // Initialize the candidate if needed. 3555 if (!Cand.isValid()) { 3556 TryCand.Reason = NodeOrder; 3557 return true; 3558 } 3559 3560 // Prioritize instructions that read unbuffered resources by stall cycles. 3561 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3562 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3563 return TryCand.Reason != NoCand; 3564 3565 // Keep clustered nodes together. 3566 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3567 Cand.SU == DAG->getNextClusterSucc(), 3568 TryCand, Cand, Cluster)) 3569 return TryCand.Reason != NoCand; 3570 3571 // Avoid critical resource consumption and balance the schedule. 3572 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3573 TryCand, Cand, ResourceReduce)) 3574 return TryCand.Reason != NoCand; 3575 if (tryGreater(TryCand.ResDelta.DemandedResources, 3576 Cand.ResDelta.DemandedResources, 3577 TryCand, Cand, ResourceDemand)) 3578 return TryCand.Reason != NoCand; 3579 3580 // Avoid serializing long latency dependence chains. 3581 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3582 return TryCand.Reason != NoCand; 3583 } 3584 3585 // Fall through to original instruction order. 3586 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3587 TryCand.Reason = NodeOrder; 3588 return true; 3589 } 3590 3591 return false; 3592 } 3593 3594 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3595 ReadyQueue &Q = Top.Available; 3596 for (SUnit *SU : Q) { 3597 SchedCandidate TryCand(Cand.Policy); 3598 TryCand.SU = SU; 3599 TryCand.AtTop = true; 3600 TryCand.initResourceDelta(DAG, SchedModel); 3601 if (tryCandidate(Cand, TryCand)) { 3602 Cand.setBest(TryCand); 3603 LLVM_DEBUG(traceCandidate(Cand)); 3604 } 3605 } 3606 } 3607 3608 /// Pick the next node to schedule. 3609 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3610 if (DAG->top() == DAG->bottom()) { 3611 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3612 return nullptr; 3613 } 3614 SUnit *SU; 3615 do { 3616 SU = Top.pickOnlyChoice(); 3617 if (SU) { 3618 tracePick(Only1, true); 3619 } else { 3620 CandPolicy NoPolicy; 3621 SchedCandidate TopCand(NoPolicy); 3622 // Set the top-down policy based on the state of the current top zone and 3623 // the instructions outside the zone, including the bottom zone. 3624 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3625 pickNodeFromQueue(TopCand); 3626 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3627 tracePick(TopCand); 3628 SU = TopCand.SU; 3629 } 3630 } while (SU->isScheduled); 3631 3632 IsTopNode = true; 3633 Top.removeReady(SU); 3634 3635 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3636 << *SU->getInstr()); 3637 return SU; 3638 } 3639 3640 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3641 /// scheduled/remaining flags in the DAG nodes. 3642 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3643 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3644 Top.bumpNode(SU); 3645 } 3646 3647 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3648 return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 3649 /*RemoveKillFlags=*/true); 3650 } 3651 3652 //===----------------------------------------------------------------------===// 3653 // ILP Scheduler. Currently for experimental analysis of heuristics. 3654 //===----------------------------------------------------------------------===// 3655 3656 namespace { 3657 3658 /// Order nodes by the ILP metric. 3659 struct ILPOrder { 3660 const SchedDFSResult *DFSResult = nullptr; 3661 const BitVector *ScheduledTrees = nullptr; 3662 bool MaximizeILP; 3663 3664 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3665 3666 /// Apply a less-than relation on node priority. 3667 /// 3668 /// (Return true if A comes after B in the Q.) 3669 bool operator()(const SUnit *A, const SUnit *B) const { 3670 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3671 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3672 if (SchedTreeA != SchedTreeB) { 3673 // Unscheduled trees have lower priority. 3674 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3675 return ScheduledTrees->test(SchedTreeB); 3676 3677 // Trees with shallower connections have have lower priority. 3678 if (DFSResult->getSubtreeLevel(SchedTreeA) 3679 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3680 return DFSResult->getSubtreeLevel(SchedTreeA) 3681 < DFSResult->getSubtreeLevel(SchedTreeB); 3682 } 3683 } 3684 if (MaximizeILP) 3685 return DFSResult->getILP(A) < DFSResult->getILP(B); 3686 else 3687 return DFSResult->getILP(A) > DFSResult->getILP(B); 3688 } 3689 }; 3690 3691 /// Schedule based on the ILP metric. 3692 class ILPScheduler : public MachineSchedStrategy { 3693 ScheduleDAGMILive *DAG = nullptr; 3694 ILPOrder Cmp; 3695 3696 std::vector<SUnit*> ReadyQ; 3697 3698 public: 3699 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3700 3701 void initialize(ScheduleDAGMI *dag) override { 3702 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3703 DAG = static_cast<ScheduleDAGMILive*>(dag); 3704 DAG->computeDFSResult(); 3705 Cmp.DFSResult = DAG->getDFSResult(); 3706 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3707 ReadyQ.clear(); 3708 } 3709 3710 void registerRoots() override { 3711 // Restore the heap in ReadyQ with the updated DFS results. 3712 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3713 } 3714 3715 /// Implement MachineSchedStrategy interface. 3716 /// ----------------------------------------- 3717 3718 /// Callback to select the highest priority node from the ready Q. 3719 SUnit *pickNode(bool &IsTopNode) override { 3720 if (ReadyQ.empty()) return nullptr; 3721 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3722 SUnit *SU = ReadyQ.back(); 3723 ReadyQ.pop_back(); 3724 IsTopNode = false; 3725 LLVM_DEBUG(dbgs() << "Pick node " 3726 << "SU(" << SU->NodeNum << ") " 3727 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3728 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 3729 << " @" 3730 << DAG->getDFSResult()->getSubtreeLevel( 3731 DAG->getDFSResult()->getSubtreeID(SU)) 3732 << '\n' 3733 << "Scheduling " << *SU->getInstr()); 3734 return SU; 3735 } 3736 3737 /// Scheduler callback to notify that a new subtree is scheduled. 3738 void scheduleTree(unsigned SubtreeID) override { 3739 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3740 } 3741 3742 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3743 /// DFSResults, and resort the priority Q. 3744 void schedNode(SUnit *SU, bool IsTopNode) override { 3745 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3746 } 3747 3748 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3749 3750 void releaseBottomNode(SUnit *SU) override { 3751 ReadyQ.push_back(SU); 3752 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3753 } 3754 }; 3755 3756 } // end anonymous namespace 3757 3758 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3759 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 3760 } 3761 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3762 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 3763 } 3764 3765 static MachineSchedRegistry ILPMaxRegistry( 3766 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3767 static MachineSchedRegistry ILPMinRegistry( 3768 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3769 3770 //===----------------------------------------------------------------------===// 3771 // Machine Instruction Shuffler for Correctness Testing 3772 //===----------------------------------------------------------------------===// 3773 3774 #ifndef NDEBUG 3775 namespace { 3776 3777 /// Apply a less-than relation on the node order, which corresponds to the 3778 /// instruction order prior to scheduling. IsReverse implements greater-than. 3779 template<bool IsReverse> 3780 struct SUnitOrder { 3781 bool operator()(SUnit *A, SUnit *B) const { 3782 if (IsReverse) 3783 return A->NodeNum > B->NodeNum; 3784 else 3785 return A->NodeNum < B->NodeNum; 3786 } 3787 }; 3788 3789 /// Reorder instructions as much as possible. 3790 class InstructionShuffler : public MachineSchedStrategy { 3791 bool IsAlternating; 3792 bool IsTopDown; 3793 3794 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3795 // gives nodes with a higher number higher priority causing the latest 3796 // instructions to be scheduled first. 3797 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3798 TopQ; 3799 3800 // When scheduling bottom-up, use greater-than as the queue priority. 3801 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3802 BottomQ; 3803 3804 public: 3805 InstructionShuffler(bool alternate, bool topdown) 3806 : IsAlternating(alternate), IsTopDown(topdown) {} 3807 3808 void initialize(ScheduleDAGMI*) override { 3809 TopQ.clear(); 3810 BottomQ.clear(); 3811 } 3812 3813 /// Implement MachineSchedStrategy interface. 3814 /// ----------------------------------------- 3815 3816 SUnit *pickNode(bool &IsTopNode) override { 3817 SUnit *SU; 3818 if (IsTopDown) { 3819 do { 3820 if (TopQ.empty()) return nullptr; 3821 SU = TopQ.top(); 3822 TopQ.pop(); 3823 } while (SU->isScheduled); 3824 IsTopNode = true; 3825 } else { 3826 do { 3827 if (BottomQ.empty()) return nullptr; 3828 SU = BottomQ.top(); 3829 BottomQ.pop(); 3830 } while (SU->isScheduled); 3831 IsTopNode = false; 3832 } 3833 if (IsAlternating) 3834 IsTopDown = !IsTopDown; 3835 return SU; 3836 } 3837 3838 void schedNode(SUnit *SU, bool IsTopNode) override {} 3839 3840 void releaseTopNode(SUnit *SU) override { 3841 TopQ.push(SU); 3842 } 3843 void releaseBottomNode(SUnit *SU) override { 3844 BottomQ.push(SU); 3845 } 3846 }; 3847 3848 } // end anonymous namespace 3849 3850 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3851 bool Alternate = !ForceTopDown && !ForceBottomUp; 3852 bool TopDown = !ForceBottomUp; 3853 assert((TopDown || !ForceTopDown) && 3854 "-misched-topdown incompatible with -misched-bottomup"); 3855 return new ScheduleDAGMILive( 3856 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 3857 } 3858 3859 static MachineSchedRegistry ShufflerRegistry( 3860 "shuffle", "Shuffle machine instructions alternating directions", 3861 createInstructionShuffler); 3862 #endif // !NDEBUG 3863 3864 //===----------------------------------------------------------------------===// 3865 // GraphWriter support for ScheduleDAGMILive. 3866 //===----------------------------------------------------------------------===// 3867 3868 #ifndef NDEBUG 3869 namespace llvm { 3870 3871 template<> struct GraphTraits< 3872 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3873 3874 template<> 3875 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3876 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3877 3878 static std::string getGraphName(const ScheduleDAG *G) { 3879 return std::string(G->MF.getName()); 3880 } 3881 3882 static bool renderGraphFromBottomUp() { 3883 return true; 3884 } 3885 3886 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 3887 if (ViewMISchedCutoff == 0) 3888 return false; 3889 return (Node->Preds.size() > ViewMISchedCutoff 3890 || Node->Succs.size() > ViewMISchedCutoff); 3891 } 3892 3893 /// If you want to override the dot attributes printed for a particular 3894 /// edge, override this method. 3895 static std::string getEdgeAttributes(const SUnit *Node, 3896 SUnitIterator EI, 3897 const ScheduleDAG *Graph) { 3898 if (EI.isArtificialDep()) 3899 return "color=cyan,style=dashed"; 3900 if (EI.isCtrlDep()) 3901 return "color=blue,style=dashed"; 3902 return ""; 3903 } 3904 3905 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3906 std::string Str; 3907 raw_string_ostream SS(Str); 3908 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3909 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3910 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3911 SS << "SU:" << SU->NodeNum; 3912 if (DFS) 3913 SS << " I:" << DFS->getNumInstrs(SU); 3914 return SS.str(); 3915 } 3916 3917 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3918 return G->getGraphNodeLabel(SU); 3919 } 3920 3921 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3922 std::string Str("shape=Mrecord"); 3923 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3924 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3925 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3926 if (DFS) { 3927 Str += ",style=filled,fillcolor=\"#"; 3928 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3929 Str += '"'; 3930 } 3931 return Str; 3932 } 3933 }; 3934 3935 } // end namespace llvm 3936 #endif // NDEBUG 3937 3938 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3939 /// rendered using 'dot'. 3940 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3941 #ifndef NDEBUG 3942 ViewGraph(this, Name, false, Title); 3943 #else 3944 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3945 << "systems with Graphviz or gv!\n"; 3946 #endif // NDEBUG 3947 } 3948 3949 /// Out-of-line implementation with no arguments is handy for gdb. 3950 void ScheduleDAGMI::viewGraph() { 3951 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3952 } 3953