1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 84 cl::desc("Verify machine instrs before and after machine scheduling")); 85 86 // DAG subtrees must have at least this many nodes. 87 static const unsigned MinSubtreeSize = 8; 88 89 // Pin the vtables to this file. 90 void MachineSchedStrategy::anchor() {} 91 void ScheduleDAGMutation::anchor() {} 92 93 //===----------------------------------------------------------------------===// 94 // Machine Instruction Scheduling Pass and Registry 95 //===----------------------------------------------------------------------===// 96 97 MachineSchedContext::MachineSchedContext(): 98 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 99 RegClassInfo = new RegisterClassInfo(); 100 } 101 102 MachineSchedContext::~MachineSchedContext() { 103 delete RegClassInfo; 104 } 105 106 namespace { 107 /// Base class for a machine scheduler class that can run at any point. 108 class MachineSchedulerBase : public MachineSchedContext, 109 public MachineFunctionPass { 110 public: 111 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 112 113 void print(raw_ostream &O, const Module* = nullptr) const override; 114 115 protected: 116 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 117 }; 118 119 /// MachineScheduler runs after coalescing and before register allocation. 120 class MachineScheduler : public MachineSchedulerBase { 121 public: 122 MachineScheduler(); 123 124 void getAnalysisUsage(AnalysisUsage &AU) const override; 125 126 bool runOnMachineFunction(MachineFunction&) override; 127 128 static char ID; // Class identification, replacement for typeinfo 129 130 protected: 131 ScheduleDAGInstrs *createMachineScheduler(); 132 }; 133 134 /// PostMachineScheduler runs after shortly before code emission. 135 class PostMachineScheduler : public MachineSchedulerBase { 136 public: 137 PostMachineScheduler(); 138 139 void getAnalysisUsage(AnalysisUsage &AU) const override; 140 141 bool runOnMachineFunction(MachineFunction&) override; 142 143 static char ID; // Class identification, replacement for typeinfo 144 145 protected: 146 ScheduleDAGInstrs *createPostMachineScheduler(); 147 }; 148 } // namespace 149 150 char MachineScheduler::ID = 0; 151 152 char &llvm::MachineSchedulerID = MachineScheduler::ID; 153 154 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 155 "Machine Instruction Scheduler", false, false) 156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 157 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 158 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 159 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 160 "Machine Instruction Scheduler", false, false) 161 162 MachineScheduler::MachineScheduler() 163 : MachineSchedulerBase(ID) { 164 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 165 } 166 167 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 168 AU.setPreservesCFG(); 169 AU.addRequiredID(MachineDominatorsID); 170 AU.addRequired<MachineLoopInfo>(); 171 AU.addRequired<AAResultsWrapperPass>(); 172 AU.addRequired<TargetPassConfig>(); 173 AU.addRequired<SlotIndexes>(); 174 AU.addPreserved<SlotIndexes>(); 175 AU.addRequired<LiveIntervals>(); 176 AU.addPreserved<LiveIntervals>(); 177 MachineFunctionPass::getAnalysisUsage(AU); 178 } 179 180 char PostMachineScheduler::ID = 0; 181 182 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 183 184 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 185 "PostRA Machine Instruction Scheduler", false, false) 186 187 PostMachineScheduler::PostMachineScheduler() 188 : MachineSchedulerBase(ID) { 189 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 190 } 191 192 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 193 AU.setPreservesCFG(); 194 AU.addRequiredID(MachineDominatorsID); 195 AU.addRequired<MachineLoopInfo>(); 196 AU.addRequired<TargetPassConfig>(); 197 MachineFunctionPass::getAnalysisUsage(AU); 198 } 199 200 MachinePassRegistry MachineSchedRegistry::Registry; 201 202 /// A dummy default scheduler factory indicates whether the scheduler 203 /// is overridden on the command line. 204 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 205 return nullptr; 206 } 207 208 /// MachineSchedOpt allows command line selection of the scheduler. 209 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 210 RegisterPassParser<MachineSchedRegistry> > 211 MachineSchedOpt("misched", 212 cl::init(&useDefaultMachineSched), cl::Hidden, 213 cl::desc("Machine instruction scheduler to use")); 214 215 static MachineSchedRegistry 216 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 217 useDefaultMachineSched); 218 219 static cl::opt<bool> EnableMachineSched( 220 "enable-misched", 221 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 222 cl::Hidden); 223 224 static cl::opt<bool> EnablePostRAMachineSched( 225 "enable-post-misched", 226 cl::desc("Enable the post-ra machine instruction scheduling pass."), 227 cl::init(true), cl::Hidden); 228 229 /// Decrement this iterator until reaching the top or a non-debug instr. 230 static MachineBasicBlock::const_iterator 231 priorNonDebug(MachineBasicBlock::const_iterator I, 232 MachineBasicBlock::const_iterator Beg) { 233 assert(I != Beg && "reached the top of the region, cannot decrement"); 234 while (--I != Beg) { 235 if (!I->isDebugValue()) 236 break; 237 } 238 return I; 239 } 240 241 /// Non-const version. 242 static MachineBasicBlock::iterator 243 priorNonDebug(MachineBasicBlock::iterator I, 244 MachineBasicBlock::const_iterator Beg) { 245 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 246 .getNonConstIterator(); 247 } 248 249 /// If this iterator is a debug value, increment until reaching the End or a 250 /// non-debug instruction. 251 static MachineBasicBlock::const_iterator 252 nextIfDebug(MachineBasicBlock::const_iterator I, 253 MachineBasicBlock::const_iterator End) { 254 for(; I != End; ++I) { 255 if (!I->isDebugValue()) 256 break; 257 } 258 return I; 259 } 260 261 /// Non-const version. 262 static MachineBasicBlock::iterator 263 nextIfDebug(MachineBasicBlock::iterator I, 264 MachineBasicBlock::const_iterator End) { 265 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 266 .getNonConstIterator(); 267 } 268 269 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 270 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 271 // Select the scheduler, or set the default. 272 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 273 if (Ctor != useDefaultMachineSched) 274 return Ctor(this); 275 276 // Get the default scheduler set by the target for this function. 277 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 278 if (Scheduler) 279 return Scheduler; 280 281 // Default to GenericScheduler. 282 return createGenericSchedLive(this); 283 } 284 285 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 286 /// the caller. We don't have a command line option to override the postRA 287 /// scheduler. The Target must configure it. 288 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 289 // Get the postRA scheduler set by the target for this function. 290 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 291 if (Scheduler) 292 return Scheduler; 293 294 // Default to GenericScheduler. 295 return createGenericSchedPostRA(this); 296 } 297 298 /// Top-level MachineScheduler pass driver. 299 /// 300 /// Visit blocks in function order. Divide each block into scheduling regions 301 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 302 /// consistent with the DAG builder, which traverses the interior of the 303 /// scheduling regions bottom-up. 304 /// 305 /// This design avoids exposing scheduling boundaries to the DAG builder, 306 /// simplifying the DAG builder's support for "special" target instructions. 307 /// At the same time the design allows target schedulers to operate across 308 /// scheduling boundaries, for example to bundle the boudary instructions 309 /// without reordering them. This creates complexity, because the target 310 /// scheduler must update the RegionBegin and RegionEnd positions cached by 311 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 312 /// design would be to split blocks at scheduling boundaries, but LLVM has a 313 /// general bias against block splitting purely for implementation simplicity. 314 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 315 if (skipFunction(*mf.getFunction())) 316 return false; 317 318 if (EnableMachineSched.getNumOccurrences()) { 319 if (!EnableMachineSched) 320 return false; 321 } else if (!mf.getSubtarget().enableMachineScheduler()) 322 return false; 323 324 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 325 326 // Initialize the context of the pass. 327 MF = &mf; 328 MLI = &getAnalysis<MachineLoopInfo>(); 329 MDT = &getAnalysis<MachineDominatorTree>(); 330 PassConfig = &getAnalysis<TargetPassConfig>(); 331 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 332 333 LIS = &getAnalysis<LiveIntervals>(); 334 335 if (VerifyScheduling) { 336 DEBUG(LIS->dump()); 337 MF->verify(this, "Before machine scheduling."); 338 } 339 RegClassInfo->runOnMachineFunction(*MF); 340 341 // Instantiate the selected scheduler for this target, function, and 342 // optimization level. 343 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 344 scheduleRegions(*Scheduler, false); 345 346 DEBUG(LIS->dump()); 347 if (VerifyScheduling) 348 MF->verify(this, "After machine scheduling."); 349 return true; 350 } 351 352 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 353 if (skipFunction(*mf.getFunction())) 354 return false; 355 356 if (EnablePostRAMachineSched.getNumOccurrences()) { 357 if (!EnablePostRAMachineSched) 358 return false; 359 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 360 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 361 return false; 362 } 363 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 PassConfig = &getAnalysis<TargetPassConfig>(); 368 369 if (VerifyScheduling) 370 MF->verify(this, "Before post machine scheduling."); 371 372 // Instantiate the selected scheduler for this target, function, and 373 // optimization level. 374 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 375 scheduleRegions(*Scheduler, true); 376 377 if (VerifyScheduling) 378 MF->verify(this, "After post machine scheduling."); 379 return true; 380 } 381 382 /// Return true of the given instruction should not be included in a scheduling 383 /// region. 384 /// 385 /// MachineScheduler does not currently support scheduling across calls. To 386 /// handle calls, the DAG builder needs to be modified to create register 387 /// anti/output dependencies on the registers clobbered by the call's regmask 388 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 389 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 390 /// the boundary, but there would be no benefit to postRA scheduling across 391 /// calls this late anyway. 392 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 393 MachineBasicBlock *MBB, 394 MachineFunction *MF, 395 const TargetInstrInfo *TII) { 396 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 397 } 398 399 /// Main driver for both MachineScheduler and PostMachineScheduler. 400 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 401 bool FixKillFlags) { 402 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 403 404 // Visit all machine basic blocks. 405 // 406 // TODO: Visit blocks in global postorder or postorder within the bottom-up 407 // loop tree. Then we can optionally compute global RegPressure. 408 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 409 MBB != MBBEnd; ++MBB) { 410 411 Scheduler.startBlock(&*MBB); 412 413 #ifndef NDEBUG 414 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 415 continue; 416 if (SchedOnlyBlock.getNumOccurrences() 417 && (int)SchedOnlyBlock != MBB->getNumber()) 418 continue; 419 #endif 420 421 // Break the block into scheduling regions [I, RegionEnd), and schedule each 422 // region as soon as it is discovered. RegionEnd points the scheduling 423 // boundary at the bottom of the region. The DAG does not include RegionEnd, 424 // but the region does (i.e. the next RegionEnd is above the previous 425 // RegionBegin). If the current block has no terminator then RegionEnd == 426 // MBB->end() for the bottom region. 427 // 428 // The Scheduler may insert instructions during either schedule() or 429 // exitRegion(), even for empty regions. So the local iterators 'I' and 430 // 'RegionEnd' are invalid across these calls. 431 // 432 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 433 // as a single instruction. 434 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 435 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 436 437 // Avoid decrementing RegionEnd for blocks with no terminator. 438 if (RegionEnd != MBB->end() || 439 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 440 --RegionEnd; 441 } 442 443 // The next region starts above the previous region. Look backward in the 444 // instruction stream until we find the nearest boundary. 445 unsigned NumRegionInstrs = 0; 446 MachineBasicBlock::iterator I = RegionEnd; 447 for (;I != MBB->begin(); --I) { 448 MachineInstr &MI = *std::prev(I); 449 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 450 break; 451 if (!MI.isDebugValue()) 452 ++NumRegionInstrs; 453 } 454 // Notify the scheduler of the region, even if we may skip scheduling 455 // it. Perhaps it still needs to be bundled. 456 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 457 458 // Skip empty scheduling regions (0 or 1 schedulable instructions). 459 if (I == RegionEnd || I == std::prev(RegionEnd)) { 460 // Close the current region. Bundle the terminator if needed. 461 // This invalidates 'RegionEnd' and 'I'. 462 Scheduler.exitRegion(); 463 continue; 464 } 465 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 466 DEBUG(dbgs() << MF->getName() 467 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 468 << "\n From: " << *I << " To: "; 469 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 470 else dbgs() << "End"; 471 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 472 if (DumpCriticalPathLength) { 473 errs() << MF->getName(); 474 errs() << ":BB# " << MBB->getNumber(); 475 errs() << " " << MBB->getName() << " \n"; 476 } 477 478 // Schedule a region: possibly reorder instructions. 479 // This invalidates 'RegionEnd' and 'I'. 480 Scheduler.schedule(); 481 482 // Close the current region. 483 Scheduler.exitRegion(); 484 485 // Scheduling has invalidated the current iterator 'I'. Ask the 486 // scheduler for the top of it's scheduled region. 487 RegionEnd = Scheduler.begin(); 488 } 489 Scheduler.finishBlock(); 490 // FIXME: Ideally, no further passes should rely on kill flags. However, 491 // thumb2 size reduction is currently an exception, so the PostMIScheduler 492 // needs to do this. 493 if (FixKillFlags) 494 Scheduler.fixupKills(&*MBB); 495 } 496 Scheduler.finalizeSchedule(); 497 } 498 499 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 500 // unimplemented 501 } 502 503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 504 LLVM_DUMP_METHOD void ReadyQueue::dump() { 505 dbgs() << "Queue " << Name << ": "; 506 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 507 dbgs() << Queue[i]->NodeNum << " "; 508 dbgs() << "\n"; 509 } 510 #endif 511 512 //===----------------------------------------------------------------------===// 513 // ScheduleDAGMI - Basic machine instruction scheduling. This is 514 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 515 // virtual registers. 516 // ===----------------------------------------------------------------------===/ 517 518 // Provide a vtable anchor. 519 ScheduleDAGMI::~ScheduleDAGMI() { 520 } 521 522 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 523 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 524 } 525 526 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 527 if (SuccSU != &ExitSU) { 528 // Do not use WillCreateCycle, it assumes SD scheduling. 529 // If Pred is reachable from Succ, then the edge creates a cycle. 530 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 531 return false; 532 Topo.AddPred(SuccSU, PredDep.getSUnit()); 533 } 534 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 535 // Return true regardless of whether a new edge needed to be inserted. 536 return true; 537 } 538 539 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 540 /// NumPredsLeft reaches zero, release the successor node. 541 /// 542 /// FIXME: Adjust SuccSU height based on MinLatency. 543 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 544 SUnit *SuccSU = SuccEdge->getSUnit(); 545 546 if (SuccEdge->isWeak()) { 547 --SuccSU->WeakPredsLeft; 548 if (SuccEdge->isCluster()) 549 NextClusterSucc = SuccSU; 550 return; 551 } 552 #ifndef NDEBUG 553 if (SuccSU->NumPredsLeft == 0) { 554 dbgs() << "*** Scheduling failed! ***\n"; 555 SuccSU->dump(this); 556 dbgs() << " has been released too many times!\n"; 557 llvm_unreachable(nullptr); 558 } 559 #endif 560 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 561 // CurrCycle may have advanced since then. 562 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 563 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 564 565 --SuccSU->NumPredsLeft; 566 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 567 SchedImpl->releaseTopNode(SuccSU); 568 } 569 570 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 571 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 572 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 573 I != E; ++I) { 574 releaseSucc(SU, &*I); 575 } 576 } 577 578 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 579 /// NumSuccsLeft reaches zero, release the predecessor node. 580 /// 581 /// FIXME: Adjust PredSU height based on MinLatency. 582 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 583 SUnit *PredSU = PredEdge->getSUnit(); 584 585 if (PredEdge->isWeak()) { 586 --PredSU->WeakSuccsLeft; 587 if (PredEdge->isCluster()) 588 NextClusterPred = PredSU; 589 return; 590 } 591 #ifndef NDEBUG 592 if (PredSU->NumSuccsLeft == 0) { 593 dbgs() << "*** Scheduling failed! ***\n"; 594 PredSU->dump(this); 595 dbgs() << " has been released too many times!\n"; 596 llvm_unreachable(nullptr); 597 } 598 #endif 599 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 600 // CurrCycle may have advanced since then. 601 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 602 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 603 604 --PredSU->NumSuccsLeft; 605 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 606 SchedImpl->releaseBottomNode(PredSU); 607 } 608 609 /// releasePredecessors - Call releasePred on each of SU's predecessors. 610 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 611 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 612 I != E; ++I) { 613 releasePred(SU, &*I); 614 } 615 } 616 617 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 618 /// crossing a scheduling boundary. [begin, end) includes all instructions in 619 /// the region, including the boundary itself and single-instruction regions 620 /// that don't get scheduled. 621 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 622 MachineBasicBlock::iterator begin, 623 MachineBasicBlock::iterator end, 624 unsigned regioninstrs) 625 { 626 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 627 628 SchedImpl->initPolicy(begin, end, regioninstrs); 629 } 630 631 /// This is normally called from the main scheduler loop but may also be invoked 632 /// by the scheduling strategy to perform additional code motion. 633 void ScheduleDAGMI::moveInstruction( 634 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 635 // Advance RegionBegin if the first instruction moves down. 636 if (&*RegionBegin == MI) 637 ++RegionBegin; 638 639 // Update the instruction stream. 640 BB->splice(InsertPos, BB, MI); 641 642 // Update LiveIntervals 643 if (LIS) 644 LIS->handleMove(*MI, /*UpdateFlags=*/true); 645 646 // Recede RegionBegin if an instruction moves above the first. 647 if (RegionBegin == InsertPos) 648 RegionBegin = MI; 649 } 650 651 bool ScheduleDAGMI::checkSchedLimit() { 652 #ifndef NDEBUG 653 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 654 CurrentTop = CurrentBottom; 655 return false; 656 } 657 ++NumInstrsScheduled; 658 #endif 659 return true; 660 } 661 662 /// Per-region scheduling driver, called back from 663 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 664 /// does not consider liveness or register pressure. It is useful for PostRA 665 /// scheduling and potentially other custom schedulers. 666 void ScheduleDAGMI::schedule() { 667 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 668 DEBUG(SchedImpl->dumpPolicy()); 669 670 // Build the DAG. 671 buildSchedGraph(AA); 672 673 Topo.InitDAGTopologicalSorting(); 674 675 postprocessDAG(); 676 677 SmallVector<SUnit*, 8> TopRoots, BotRoots; 678 findRootsAndBiasEdges(TopRoots, BotRoots); 679 680 // Initialize the strategy before modifying the DAG. 681 // This may initialize a DFSResult to be used for queue priority. 682 SchedImpl->initialize(this); 683 684 DEBUG( 685 if (EntrySU.getInstr() != nullptr) 686 EntrySU.dumpAll(this); 687 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 688 SUnits[su].dumpAll(this); 689 if (ExitSU.getInstr() != nullptr) 690 ExitSU.dumpAll(this); 691 ); 692 if (ViewMISchedDAGs) viewGraph(); 693 694 // Initialize ready queues now that the DAG and priority data are finalized. 695 initQueues(TopRoots, BotRoots); 696 697 bool IsTopNode = false; 698 while (true) { 699 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 700 SUnit *SU = SchedImpl->pickNode(IsTopNode); 701 if (!SU) break; 702 703 assert(!SU->isScheduled && "Node already scheduled"); 704 if (!checkSchedLimit()) 705 break; 706 707 MachineInstr *MI = SU->getInstr(); 708 if (IsTopNode) { 709 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 710 if (&*CurrentTop == MI) 711 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 712 else 713 moveInstruction(MI, CurrentTop); 714 } else { 715 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 716 MachineBasicBlock::iterator priorII = 717 priorNonDebug(CurrentBottom, CurrentTop); 718 if (&*priorII == MI) 719 CurrentBottom = priorII; 720 else { 721 if (&*CurrentTop == MI) 722 CurrentTop = nextIfDebug(++CurrentTop, priorII); 723 moveInstruction(MI, CurrentBottom); 724 CurrentBottom = MI; 725 } 726 } 727 // Notify the scheduling strategy before updating the DAG. 728 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 729 // runs, it can then use the accurate ReadyCycle time to determine whether 730 // newly released nodes can move to the readyQ. 731 SchedImpl->schedNode(SU, IsTopNode); 732 733 updateQueues(SU, IsTopNode); 734 } 735 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 736 737 placeDebugValues(); 738 739 DEBUG({ 740 unsigned BBNum = begin()->getParent()->getNumber(); 741 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 742 dumpSchedule(); 743 dbgs() << '\n'; 744 }); 745 } 746 747 /// Apply each ScheduleDAGMutation step in order. 748 void ScheduleDAGMI::postprocessDAG() { 749 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 750 Mutations[i]->apply(this); 751 } 752 } 753 754 void ScheduleDAGMI:: 755 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 756 SmallVectorImpl<SUnit*> &BotRoots) { 757 for (std::vector<SUnit>::iterator 758 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 759 SUnit *SU = &(*I); 760 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 761 762 // Order predecessors so DFSResult follows the critical path. 763 SU->biasCriticalPath(); 764 765 // A SUnit is ready to top schedule if it has no predecessors. 766 if (!I->NumPredsLeft) 767 TopRoots.push_back(SU); 768 // A SUnit is ready to bottom schedule if it has no successors. 769 if (!I->NumSuccsLeft) 770 BotRoots.push_back(SU); 771 } 772 ExitSU.biasCriticalPath(); 773 } 774 775 /// Identify DAG roots and setup scheduler queues. 776 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 777 ArrayRef<SUnit*> BotRoots) { 778 NextClusterSucc = nullptr; 779 NextClusterPred = nullptr; 780 781 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 782 // 783 // Nodes with unreleased weak edges can still be roots. 784 // Release top roots in forward order. 785 for (SmallVectorImpl<SUnit*>::const_iterator 786 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 787 SchedImpl->releaseTopNode(*I); 788 } 789 // Release bottom roots in reverse order so the higher priority nodes appear 790 // first. This is more natural and slightly more efficient. 791 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 792 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 793 SchedImpl->releaseBottomNode(*I); 794 } 795 796 releaseSuccessors(&EntrySU); 797 releasePredecessors(&ExitSU); 798 799 SchedImpl->registerRoots(); 800 801 // Advance past initial DebugValues. 802 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 803 CurrentBottom = RegionEnd; 804 } 805 806 /// Update scheduler queues after scheduling an instruction. 807 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 808 // Release dependent instructions for scheduling. 809 if (IsTopNode) 810 releaseSuccessors(SU); 811 else 812 releasePredecessors(SU); 813 814 SU->isScheduled = true; 815 } 816 817 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 818 void ScheduleDAGMI::placeDebugValues() { 819 // If first instruction was a DBG_VALUE then put it back. 820 if (FirstDbgValue) { 821 BB->splice(RegionBegin, BB, FirstDbgValue); 822 RegionBegin = FirstDbgValue; 823 } 824 825 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 826 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 827 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 828 MachineInstr *DbgValue = P.first; 829 MachineBasicBlock::iterator OrigPrevMI = P.second; 830 if (&*RegionBegin == DbgValue) 831 ++RegionBegin; 832 BB->splice(++OrigPrevMI, BB, DbgValue); 833 if (OrigPrevMI == std::prev(RegionEnd)) 834 RegionEnd = DbgValue; 835 } 836 DbgValues.clear(); 837 FirstDbgValue = nullptr; 838 } 839 840 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 841 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 842 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 843 if (SUnit *SU = getSUnit(&(*MI))) 844 SU->dump(this); 845 else 846 dbgs() << "Missing SUnit\n"; 847 } 848 } 849 #endif 850 851 //===----------------------------------------------------------------------===// 852 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 853 // preservation. 854 //===----------------------------------------------------------------------===// 855 856 ScheduleDAGMILive::~ScheduleDAGMILive() { 857 delete DFSResult; 858 } 859 860 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 861 const MachineInstr &MI = *SU.getInstr(); 862 for (const MachineOperand &MO : MI.operands()) { 863 if (!MO.isReg()) 864 continue; 865 if (!MO.readsReg()) 866 continue; 867 if (TrackLaneMasks && !MO.isUse()) 868 continue; 869 870 unsigned Reg = MO.getReg(); 871 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 872 continue; 873 874 // Ignore re-defs. 875 if (TrackLaneMasks) { 876 bool FoundDef = false; 877 for (const MachineOperand &MO2 : MI.operands()) { 878 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 879 FoundDef = true; 880 break; 881 } 882 } 883 if (FoundDef) 884 continue; 885 } 886 887 // Record this local VReg use. 888 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 889 for (; UI != VRegUses.end(); ++UI) { 890 if (UI->SU == &SU) 891 break; 892 } 893 if (UI == VRegUses.end()) 894 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 895 } 896 } 897 898 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 899 /// crossing a scheduling boundary. [begin, end) includes all instructions in 900 /// the region, including the boundary itself and single-instruction regions 901 /// that don't get scheduled. 902 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 903 MachineBasicBlock::iterator begin, 904 MachineBasicBlock::iterator end, 905 unsigned regioninstrs) 906 { 907 // ScheduleDAGMI initializes SchedImpl's per-region policy. 908 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 909 910 // For convenience remember the end of the liveness region. 911 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 912 913 SUPressureDiffs.clear(); 914 915 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 916 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 917 918 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 919 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 920 } 921 922 // Setup the register pressure trackers for the top scheduled top and bottom 923 // scheduled regions. 924 void ScheduleDAGMILive::initRegPressure() { 925 VRegUses.clear(); 926 VRegUses.setUniverse(MRI.getNumVirtRegs()); 927 for (SUnit &SU : SUnits) 928 collectVRegUses(SU); 929 930 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 931 ShouldTrackLaneMasks, false); 932 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 933 ShouldTrackLaneMasks, false); 934 935 // Close the RPTracker to finalize live ins. 936 RPTracker.closeRegion(); 937 938 DEBUG(RPTracker.dump()); 939 940 // Initialize the live ins and live outs. 941 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 942 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 943 944 // Close one end of the tracker so we can call 945 // getMaxUpward/DownwardPressureDelta before advancing across any 946 // instructions. This converts currently live regs into live ins/outs. 947 TopRPTracker.closeTop(); 948 BotRPTracker.closeBottom(); 949 950 BotRPTracker.initLiveThru(RPTracker); 951 if (!BotRPTracker.getLiveThru().empty()) { 952 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 953 DEBUG(dbgs() << "Live Thru: "; 954 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 955 }; 956 957 // For each live out vreg reduce the pressure change associated with other 958 // uses of the same vreg below the live-out reaching def. 959 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 960 961 // Account for liveness generated by the region boundary. 962 if (LiveRegionEnd != RegionEnd) { 963 SmallVector<RegisterMaskPair, 8> LiveUses; 964 BotRPTracker.recede(&LiveUses); 965 updatePressureDiffs(LiveUses); 966 } 967 968 DEBUG( 969 dbgs() << "Top Pressure:\n"; 970 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 971 dbgs() << "Bottom Pressure:\n"; 972 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 973 ); 974 975 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 976 977 // Cache the list of excess pressure sets in this region. This will also track 978 // the max pressure in the scheduled code for these sets. 979 RegionCriticalPSets.clear(); 980 const std::vector<unsigned> &RegionPressure = 981 RPTracker.getPressure().MaxSetPressure; 982 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 983 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 984 if (RegionPressure[i] > Limit) { 985 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 986 << " Limit " << Limit 987 << " Actual " << RegionPressure[i] << "\n"); 988 RegionCriticalPSets.push_back(PressureChange(i)); 989 } 990 } 991 DEBUG(dbgs() << "Excess PSets: "; 992 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 993 dbgs() << TRI->getRegPressureSetName( 994 RegionCriticalPSets[i].getPSet()) << " "; 995 dbgs() << "\n"); 996 } 997 998 void ScheduleDAGMILive:: 999 updateScheduledPressure(const SUnit *SU, 1000 const std::vector<unsigned> &NewMaxPressure) { 1001 const PressureDiff &PDiff = getPressureDiff(SU); 1002 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1003 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 1004 I != E; ++I) { 1005 if (!I->isValid()) 1006 break; 1007 unsigned ID = I->getPSet(); 1008 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1009 ++CritIdx; 1010 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1011 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1012 && NewMaxPressure[ID] <= INT16_MAX) 1013 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1014 } 1015 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1016 if (NewMaxPressure[ID] >= Limit - 2) { 1017 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1018 << NewMaxPressure[ID] 1019 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1020 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1021 } 1022 } 1023 } 1024 1025 /// Update the PressureDiff array for liveness after scheduling this 1026 /// instruction. 1027 void ScheduleDAGMILive::updatePressureDiffs( 1028 ArrayRef<RegisterMaskPair> LiveUses) { 1029 for (const RegisterMaskPair &P : LiveUses) { 1030 unsigned Reg = P.RegUnit; 1031 /// FIXME: Currently assuming single-use physregs. 1032 if (!TRI->isVirtualRegister(Reg)) 1033 continue; 1034 1035 if (ShouldTrackLaneMasks) { 1036 // If the register has just become live then other uses won't change 1037 // this fact anymore => decrement pressure. 1038 // If the register has just become dead then other uses make it come 1039 // back to life => increment pressure. 1040 bool Decrement = P.LaneMask.any(); 1041 1042 for (const VReg2SUnit &V2SU 1043 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1044 SUnit &SU = *V2SU.SU; 1045 if (SU.isScheduled || &SU == &ExitSU) 1046 continue; 1047 1048 PressureDiff &PDiff = getPressureDiff(&SU); 1049 PDiff.addPressureChange(Reg, Decrement, &MRI); 1050 DEBUG( 1051 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1052 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1053 << ' ' << *SU.getInstr(); 1054 dbgs() << " to "; 1055 PDiff.dump(*TRI); 1056 ); 1057 } 1058 } else { 1059 assert(P.LaneMask.any()); 1060 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1061 // This may be called before CurrentBottom has been initialized. However, 1062 // BotRPTracker must have a valid position. We want the value live into the 1063 // instruction or live out of the block, so ask for the previous 1064 // instruction's live-out. 1065 const LiveInterval &LI = LIS->getInterval(Reg); 1066 VNInfo *VNI; 1067 MachineBasicBlock::const_iterator I = 1068 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1069 if (I == BB->end()) 1070 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1071 else { 1072 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1073 VNI = LRQ.valueIn(); 1074 } 1075 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1076 assert(VNI && "No live value at use."); 1077 for (const VReg2SUnit &V2SU 1078 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1079 SUnit *SU = V2SU.SU; 1080 // If this use comes before the reaching def, it cannot be a last use, 1081 // so decrease its pressure change. 1082 if (!SU->isScheduled && SU != &ExitSU) { 1083 LiveQueryResult LRQ = 1084 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1085 if (LRQ.valueIn() == VNI) { 1086 PressureDiff &PDiff = getPressureDiff(SU); 1087 PDiff.addPressureChange(Reg, true, &MRI); 1088 DEBUG( 1089 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1090 << *SU->getInstr(); 1091 dbgs() << " to "; 1092 PDiff.dump(*TRI); 1093 ); 1094 } 1095 } 1096 } 1097 } 1098 } 1099 } 1100 1101 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1102 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1103 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1104 /// 1105 /// This is a skeletal driver, with all the functionality pushed into helpers, 1106 /// so that it can be easily extended by experimental schedulers. Generally, 1107 /// implementing MachineSchedStrategy should be sufficient to implement a new 1108 /// scheduling algorithm. However, if a scheduler further subclasses 1109 /// ScheduleDAGMILive then it will want to override this virtual method in order 1110 /// to update any specialized state. 1111 void ScheduleDAGMILive::schedule() { 1112 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1113 DEBUG(SchedImpl->dumpPolicy()); 1114 buildDAGWithRegPressure(); 1115 1116 Topo.InitDAGTopologicalSorting(); 1117 1118 postprocessDAG(); 1119 1120 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1121 findRootsAndBiasEdges(TopRoots, BotRoots); 1122 1123 // Initialize the strategy before modifying the DAG. 1124 // This may initialize a DFSResult to be used for queue priority. 1125 SchedImpl->initialize(this); 1126 1127 DEBUG( 1128 if (EntrySU.getInstr() != nullptr) 1129 EntrySU.dumpAll(this); 1130 for (const SUnit &SU : SUnits) { 1131 SU.dumpAll(this); 1132 if (ShouldTrackPressure) { 1133 dbgs() << " Pressure Diff : "; 1134 getPressureDiff(&SU).dump(*TRI); 1135 } 1136 dbgs() << '\n'; 1137 } 1138 if (ExitSU.getInstr() != nullptr) 1139 ExitSU.dumpAll(this); 1140 ); 1141 if (ViewMISchedDAGs) viewGraph(); 1142 1143 // Initialize ready queues now that the DAG and priority data are finalized. 1144 initQueues(TopRoots, BotRoots); 1145 1146 bool IsTopNode = false; 1147 while (true) { 1148 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1149 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1150 if (!SU) break; 1151 1152 assert(!SU->isScheduled && "Node already scheduled"); 1153 if (!checkSchedLimit()) 1154 break; 1155 1156 scheduleMI(SU, IsTopNode); 1157 1158 if (DFSResult) { 1159 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1160 if (!ScheduledTrees.test(SubtreeID)) { 1161 ScheduledTrees.set(SubtreeID); 1162 DFSResult->scheduleTree(SubtreeID); 1163 SchedImpl->scheduleTree(SubtreeID); 1164 } 1165 } 1166 1167 // Notify the scheduling strategy after updating the DAG. 1168 SchedImpl->schedNode(SU, IsTopNode); 1169 1170 updateQueues(SU, IsTopNode); 1171 } 1172 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1173 1174 placeDebugValues(); 1175 1176 DEBUG({ 1177 unsigned BBNum = begin()->getParent()->getNumber(); 1178 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1179 dumpSchedule(); 1180 dbgs() << '\n'; 1181 }); 1182 } 1183 1184 /// Build the DAG and setup three register pressure trackers. 1185 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1186 if (!ShouldTrackPressure) { 1187 RPTracker.reset(); 1188 RegionCriticalPSets.clear(); 1189 buildSchedGraph(AA); 1190 return; 1191 } 1192 1193 // Initialize the register pressure tracker used by buildSchedGraph. 1194 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1195 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1196 1197 // Account for liveness generate by the region boundary. 1198 if (LiveRegionEnd != RegionEnd) 1199 RPTracker.recede(); 1200 1201 // Build the DAG, and compute current register pressure. 1202 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1203 1204 // Initialize top/bottom trackers after computing region pressure. 1205 initRegPressure(); 1206 } 1207 1208 void ScheduleDAGMILive::computeDFSResult() { 1209 if (!DFSResult) 1210 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1211 DFSResult->clear(); 1212 ScheduledTrees.clear(); 1213 DFSResult->resize(SUnits.size()); 1214 DFSResult->compute(SUnits); 1215 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1216 } 1217 1218 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1219 /// only provides the critical path for single block loops. To handle loops that 1220 /// span blocks, we could use the vreg path latencies provided by 1221 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1222 /// available for use in the scheduler. 1223 /// 1224 /// The cyclic path estimation identifies a def-use pair that crosses the back 1225 /// edge and considers the depth and height of the nodes. For example, consider 1226 /// the following instruction sequence where each instruction has unit latency 1227 /// and defines an epomymous virtual register: 1228 /// 1229 /// a->b(a,c)->c(b)->d(c)->exit 1230 /// 1231 /// The cyclic critical path is a two cycles: b->c->b 1232 /// The acyclic critical path is four cycles: a->b->c->d->exit 1233 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1234 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1235 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1236 /// LiveInDepth = depth(b) = len(a->b) = 1 1237 /// 1238 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1239 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1240 /// CyclicCriticalPath = min(2, 2) = 2 1241 /// 1242 /// This could be relevant to PostRA scheduling, but is currently implemented 1243 /// assuming LiveIntervals. 1244 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1245 // This only applies to single block loop. 1246 if (!BB->isSuccessor(BB)) 1247 return 0; 1248 1249 unsigned MaxCyclicLatency = 0; 1250 // Visit each live out vreg def to find def/use pairs that cross iterations. 1251 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1252 unsigned Reg = P.RegUnit; 1253 if (!TRI->isVirtualRegister(Reg)) 1254 continue; 1255 const LiveInterval &LI = LIS->getInterval(Reg); 1256 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1257 if (!DefVNI) 1258 continue; 1259 1260 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1261 const SUnit *DefSU = getSUnit(DefMI); 1262 if (!DefSU) 1263 continue; 1264 1265 unsigned LiveOutHeight = DefSU->getHeight(); 1266 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1267 // Visit all local users of the vreg def. 1268 for (const VReg2SUnit &V2SU 1269 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1270 SUnit *SU = V2SU.SU; 1271 if (SU == &ExitSU) 1272 continue; 1273 1274 // Only consider uses of the phi. 1275 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1276 if (!LRQ.valueIn()->isPHIDef()) 1277 continue; 1278 1279 // Assume that a path spanning two iterations is a cycle, which could 1280 // overestimate in strange cases. This allows cyclic latency to be 1281 // estimated as the minimum slack of the vreg's depth or height. 1282 unsigned CyclicLatency = 0; 1283 if (LiveOutDepth > SU->getDepth()) 1284 CyclicLatency = LiveOutDepth - SU->getDepth(); 1285 1286 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1287 if (LiveInHeight > LiveOutHeight) { 1288 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1289 CyclicLatency = LiveInHeight - LiveOutHeight; 1290 } else 1291 CyclicLatency = 0; 1292 1293 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1294 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1295 if (CyclicLatency > MaxCyclicLatency) 1296 MaxCyclicLatency = CyclicLatency; 1297 } 1298 } 1299 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1300 return MaxCyclicLatency; 1301 } 1302 1303 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1304 /// the Top RP tracker in case the region beginning has changed. 1305 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1306 ArrayRef<SUnit*> BotRoots) { 1307 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1308 if (ShouldTrackPressure) { 1309 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1310 TopRPTracker.setPos(CurrentTop); 1311 } 1312 } 1313 1314 /// Move an instruction and update register pressure. 1315 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1316 // Move the instruction to its new location in the instruction stream. 1317 MachineInstr *MI = SU->getInstr(); 1318 1319 if (IsTopNode) { 1320 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1321 if (&*CurrentTop == MI) 1322 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1323 else { 1324 moveInstruction(MI, CurrentTop); 1325 TopRPTracker.setPos(MI); 1326 } 1327 1328 if (ShouldTrackPressure) { 1329 // Update top scheduled pressure. 1330 RegisterOperands RegOpers; 1331 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1332 if (ShouldTrackLaneMasks) { 1333 // Adjust liveness and add missing dead+read-undef flags. 1334 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1335 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1336 } else { 1337 // Adjust for missing dead-def flags. 1338 RegOpers.detectDeadDefs(*MI, *LIS); 1339 } 1340 1341 TopRPTracker.advance(RegOpers); 1342 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1343 DEBUG( 1344 dbgs() << "Top Pressure:\n"; 1345 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1346 ); 1347 1348 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1349 } 1350 } else { 1351 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1352 MachineBasicBlock::iterator priorII = 1353 priorNonDebug(CurrentBottom, CurrentTop); 1354 if (&*priorII == MI) 1355 CurrentBottom = priorII; 1356 else { 1357 if (&*CurrentTop == MI) { 1358 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1359 TopRPTracker.setPos(CurrentTop); 1360 } 1361 moveInstruction(MI, CurrentBottom); 1362 CurrentBottom = MI; 1363 } 1364 if (ShouldTrackPressure) { 1365 RegisterOperands RegOpers; 1366 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1367 if (ShouldTrackLaneMasks) { 1368 // Adjust liveness and add missing dead+read-undef flags. 1369 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1370 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1371 } else { 1372 // Adjust for missing dead-def flags. 1373 RegOpers.detectDeadDefs(*MI, *LIS); 1374 } 1375 1376 BotRPTracker.recedeSkipDebugValues(); 1377 SmallVector<RegisterMaskPair, 8> LiveUses; 1378 BotRPTracker.recede(RegOpers, &LiveUses); 1379 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1380 DEBUG( 1381 dbgs() << "Bottom Pressure:\n"; 1382 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1383 ); 1384 1385 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1386 updatePressureDiffs(LiveUses); 1387 } 1388 } 1389 } 1390 1391 //===----------------------------------------------------------------------===// 1392 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1393 //===----------------------------------------------------------------------===// 1394 1395 namespace { 1396 /// \brief Post-process the DAG to create cluster edges between neighboring 1397 /// loads or between neighboring stores. 1398 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1399 struct MemOpInfo { 1400 SUnit *SU; 1401 unsigned BaseReg; 1402 int64_t Offset; 1403 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1404 : SU(su), BaseReg(reg), Offset(ofs) {} 1405 1406 bool operator<(const MemOpInfo&RHS) const { 1407 return std::tie(BaseReg, Offset, SU->NodeNum) < 1408 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1409 } 1410 }; 1411 1412 const TargetInstrInfo *TII; 1413 const TargetRegisterInfo *TRI; 1414 bool IsLoad; 1415 1416 public: 1417 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1418 const TargetRegisterInfo *tri, bool IsLoad) 1419 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1420 1421 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1422 1423 protected: 1424 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1425 }; 1426 1427 class StoreClusterMutation : public BaseMemOpClusterMutation { 1428 public: 1429 StoreClusterMutation(const TargetInstrInfo *tii, 1430 const TargetRegisterInfo *tri) 1431 : BaseMemOpClusterMutation(tii, tri, false) {} 1432 }; 1433 1434 class LoadClusterMutation : public BaseMemOpClusterMutation { 1435 public: 1436 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1437 : BaseMemOpClusterMutation(tii, tri, true) {} 1438 }; 1439 } // anonymous 1440 1441 namespace llvm { 1442 1443 std::unique_ptr<ScheduleDAGMutation> 1444 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1445 const TargetRegisterInfo *TRI) { 1446 return EnableMemOpCluster ? make_unique<LoadClusterMutation>(TII, TRI) 1447 : nullptr; 1448 } 1449 1450 std::unique_ptr<ScheduleDAGMutation> 1451 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1452 const TargetRegisterInfo *TRI) { 1453 return EnableMemOpCluster ? make_unique<StoreClusterMutation>(TII, TRI) 1454 : nullptr; 1455 } 1456 1457 } // namespace llvm 1458 1459 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1460 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1461 SmallVector<MemOpInfo, 32> MemOpRecords; 1462 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1463 SUnit *SU = MemOps[Idx]; 1464 unsigned BaseReg; 1465 int64_t Offset; 1466 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1467 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1468 } 1469 if (MemOpRecords.size() < 2) 1470 return; 1471 1472 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1473 unsigned ClusterLength = 1; 1474 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1475 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1476 ClusterLength = 1; 1477 continue; 1478 } 1479 1480 SUnit *SUa = MemOpRecords[Idx].SU; 1481 SUnit *SUb = MemOpRecords[Idx+1].SU; 1482 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1483 ClusterLength) && 1484 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1485 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1486 << SUb->NodeNum << ")\n"); 1487 // Copy successor edges from SUa to SUb. Interleaving computation 1488 // dependent on SUa can prevent load combining due to register reuse. 1489 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1490 // loads should have effectively the same inputs. 1491 for (SUnit::const_succ_iterator 1492 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1493 if (SI->getSUnit() == SUb) 1494 continue; 1495 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1496 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1497 } 1498 ++ClusterLength; 1499 } else 1500 ClusterLength = 1; 1501 } 1502 } 1503 1504 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1505 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1506 1507 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1508 1509 // Map DAG NodeNum to store chain ID. 1510 DenseMap<unsigned, unsigned> StoreChainIDs; 1511 // Map each store chain to a set of dependent MemOps. 1512 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1513 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1514 SUnit *SU = &DAG->SUnits[Idx]; 1515 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1516 (!IsLoad && !SU->getInstr()->mayStore())) 1517 continue; 1518 1519 unsigned ChainPredID = DAG->SUnits.size(); 1520 for (SUnit::const_pred_iterator 1521 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1522 if (PI->isCtrl()) { 1523 ChainPredID = PI->getSUnit()->NodeNum; 1524 break; 1525 } 1526 } 1527 // Check if this chain-like pred has been seen 1528 // before. ChainPredID==MaxNodeID at the top of the schedule. 1529 unsigned NumChains = StoreChainDependents.size(); 1530 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1531 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1532 if (Result.second) 1533 StoreChainDependents.resize(NumChains + 1); 1534 StoreChainDependents[Result.first->second].push_back(SU); 1535 } 1536 1537 // Iterate over the store chains. 1538 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1539 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1540 } 1541 1542 //===----------------------------------------------------------------------===// 1543 // CopyConstrain - DAG post-processing to encourage copy elimination. 1544 //===----------------------------------------------------------------------===// 1545 1546 namespace { 1547 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1548 /// the one use that defines the copy's source vreg, most likely an induction 1549 /// variable increment. 1550 class CopyConstrain : public ScheduleDAGMutation { 1551 // Transient state. 1552 SlotIndex RegionBeginIdx; 1553 // RegionEndIdx is the slot index of the last non-debug instruction in the 1554 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1555 SlotIndex RegionEndIdx; 1556 public: 1557 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1558 1559 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1560 1561 protected: 1562 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1563 }; 1564 } // anonymous 1565 1566 namespace llvm { 1567 1568 std::unique_ptr<ScheduleDAGMutation> 1569 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1570 const TargetRegisterInfo *TRI) { 1571 return make_unique<CopyConstrain>(TII, TRI); 1572 } 1573 1574 } // namespace llvm 1575 1576 /// constrainLocalCopy handles two possibilities: 1577 /// 1) Local src: 1578 /// I0: = dst 1579 /// I1: src = ... 1580 /// I2: = dst 1581 /// I3: dst = src (copy) 1582 /// (create pred->succ edges I0->I1, I2->I1) 1583 /// 1584 /// 2) Local copy: 1585 /// I0: dst = src (copy) 1586 /// I1: = dst 1587 /// I2: src = ... 1588 /// I3: = dst 1589 /// (create pred->succ edges I1->I2, I3->I2) 1590 /// 1591 /// Although the MachineScheduler is currently constrained to single blocks, 1592 /// this algorithm should handle extended blocks. An EBB is a set of 1593 /// contiguously numbered blocks such that the previous block in the EBB is 1594 /// always the single predecessor. 1595 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1596 LiveIntervals *LIS = DAG->getLIS(); 1597 MachineInstr *Copy = CopySU->getInstr(); 1598 1599 // Check for pure vreg copies. 1600 const MachineOperand &SrcOp = Copy->getOperand(1); 1601 unsigned SrcReg = SrcOp.getReg(); 1602 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1603 return; 1604 1605 const MachineOperand &DstOp = Copy->getOperand(0); 1606 unsigned DstReg = DstOp.getReg(); 1607 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1608 return; 1609 1610 // Check if either the dest or source is local. If it's live across a back 1611 // edge, it's not local. Note that if both vregs are live across the back 1612 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1613 // If both the copy's source and dest are local live intervals, then we 1614 // should treat the dest as the global for the purpose of adding 1615 // constraints. This adds edges from source's other uses to the copy. 1616 unsigned LocalReg = SrcReg; 1617 unsigned GlobalReg = DstReg; 1618 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1619 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1620 LocalReg = DstReg; 1621 GlobalReg = SrcReg; 1622 LocalLI = &LIS->getInterval(LocalReg); 1623 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1624 return; 1625 } 1626 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1627 1628 // Find the global segment after the start of the local LI. 1629 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1630 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1631 // local live range. We could create edges from other global uses to the local 1632 // start, but the coalescer should have already eliminated these cases, so 1633 // don't bother dealing with it. 1634 if (GlobalSegment == GlobalLI->end()) 1635 return; 1636 1637 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1638 // returned the next global segment. But if GlobalSegment overlaps with 1639 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1640 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1641 if (GlobalSegment->contains(LocalLI->beginIndex())) 1642 ++GlobalSegment; 1643 1644 if (GlobalSegment == GlobalLI->end()) 1645 return; 1646 1647 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1648 if (GlobalSegment != GlobalLI->begin()) { 1649 // Two address defs have no hole. 1650 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1651 GlobalSegment->start)) { 1652 return; 1653 } 1654 // If the prior global segment may be defined by the same two-address 1655 // instruction that also defines LocalLI, then can't make a hole here. 1656 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1657 LocalLI->beginIndex())) { 1658 return; 1659 } 1660 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1661 // it would be a disconnected component in the live range. 1662 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1663 "Disconnected LRG within the scheduling region."); 1664 } 1665 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1666 if (!GlobalDef) 1667 return; 1668 1669 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1670 if (!GlobalSU) 1671 return; 1672 1673 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1674 // constraining the uses of the last local def to precede GlobalDef. 1675 SmallVector<SUnit*,8> LocalUses; 1676 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1677 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1678 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1679 for (SUnit::const_succ_iterator 1680 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1681 I != E; ++I) { 1682 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1683 continue; 1684 if (I->getSUnit() == GlobalSU) 1685 continue; 1686 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1687 return; 1688 LocalUses.push_back(I->getSUnit()); 1689 } 1690 // Open the top of the GlobalLI hole by constraining any earlier global uses 1691 // to precede the start of LocalLI. 1692 SmallVector<SUnit*,8> GlobalUses; 1693 MachineInstr *FirstLocalDef = 1694 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1695 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1696 for (SUnit::const_pred_iterator 1697 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1698 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1699 continue; 1700 if (I->getSUnit() == FirstLocalSU) 1701 continue; 1702 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1703 return; 1704 GlobalUses.push_back(I->getSUnit()); 1705 } 1706 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1707 // Add the weak edges. 1708 for (SmallVectorImpl<SUnit*>::const_iterator 1709 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1710 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1711 << GlobalSU->NodeNum << ")\n"); 1712 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1713 } 1714 for (SmallVectorImpl<SUnit*>::const_iterator 1715 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1716 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1717 << FirstLocalSU->NodeNum << ")\n"); 1718 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1719 } 1720 } 1721 1722 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1723 /// copy elimination. 1724 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1725 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1726 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1727 1728 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1729 if (FirstPos == DAG->end()) 1730 return; 1731 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1732 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1733 *priorNonDebug(DAG->end(), DAG->begin())); 1734 1735 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1736 SUnit *SU = &DAG->SUnits[Idx]; 1737 if (!SU->getInstr()->isCopy()) 1738 continue; 1739 1740 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1741 } 1742 } 1743 1744 //===----------------------------------------------------------------------===// 1745 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1746 // and possibly other custom schedulers. 1747 //===----------------------------------------------------------------------===// 1748 1749 static const unsigned InvalidCycle = ~0U; 1750 1751 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1752 1753 void SchedBoundary::reset() { 1754 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1755 // Destroying and reconstructing it is very expensive though. So keep 1756 // invalid, placeholder HazardRecs. 1757 if (HazardRec && HazardRec->isEnabled()) { 1758 delete HazardRec; 1759 HazardRec = nullptr; 1760 } 1761 Available.clear(); 1762 Pending.clear(); 1763 CheckPending = false; 1764 CurrCycle = 0; 1765 CurrMOps = 0; 1766 MinReadyCycle = UINT_MAX; 1767 ExpectedLatency = 0; 1768 DependentLatency = 0; 1769 RetiredMOps = 0; 1770 MaxExecutedResCount = 0; 1771 ZoneCritResIdx = 0; 1772 IsResourceLimited = false; 1773 ReservedCycles.clear(); 1774 #ifndef NDEBUG 1775 // Track the maximum number of stall cycles that could arise either from the 1776 // latency of a DAG edge or the number of cycles that a processor resource is 1777 // reserved (SchedBoundary::ReservedCycles). 1778 MaxObservedStall = 0; 1779 #endif 1780 // Reserve a zero-count for invalid CritResIdx. 1781 ExecutedResCounts.resize(1); 1782 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1783 } 1784 1785 void SchedRemainder:: 1786 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1787 reset(); 1788 if (!SchedModel->hasInstrSchedModel()) 1789 return; 1790 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1791 for (std::vector<SUnit>::iterator 1792 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1793 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1794 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1795 * SchedModel->getMicroOpFactor(); 1796 for (TargetSchedModel::ProcResIter 1797 PI = SchedModel->getWriteProcResBegin(SC), 1798 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1799 unsigned PIdx = PI->ProcResourceIdx; 1800 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1801 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1802 } 1803 } 1804 } 1805 1806 void SchedBoundary:: 1807 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1808 reset(); 1809 DAG = dag; 1810 SchedModel = smodel; 1811 Rem = rem; 1812 if (SchedModel->hasInstrSchedModel()) { 1813 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1814 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1815 } 1816 } 1817 1818 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1819 /// these "soft stalls" differently than the hard stall cycles based on CPU 1820 /// resources and computed by checkHazard(). A fully in-order model 1821 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1822 /// available for scheduling until they are ready. However, a weaker in-order 1823 /// model may use this for heuristics. For example, if a processor has in-order 1824 /// behavior when reading certain resources, this may come into play. 1825 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1826 if (!SU->isUnbuffered) 1827 return 0; 1828 1829 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1830 if (ReadyCycle > CurrCycle) 1831 return ReadyCycle - CurrCycle; 1832 return 0; 1833 } 1834 1835 /// Compute the next cycle at which the given processor resource can be 1836 /// scheduled. 1837 unsigned SchedBoundary:: 1838 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1839 unsigned NextUnreserved = ReservedCycles[PIdx]; 1840 // If this resource has never been used, always return cycle zero. 1841 if (NextUnreserved == InvalidCycle) 1842 return 0; 1843 // For bottom-up scheduling add the cycles needed for the current operation. 1844 if (!isTop()) 1845 NextUnreserved += Cycles; 1846 return NextUnreserved; 1847 } 1848 1849 /// Does this SU have a hazard within the current instruction group. 1850 /// 1851 /// The scheduler supports two modes of hazard recognition. The first is the 1852 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1853 /// supports highly complicated in-order reservation tables 1854 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1855 /// 1856 /// The second is a streamlined mechanism that checks for hazards based on 1857 /// simple counters that the scheduler itself maintains. It explicitly checks 1858 /// for instruction dispatch limitations, including the number of micro-ops that 1859 /// can dispatch per cycle. 1860 /// 1861 /// TODO: Also check whether the SU must start a new group. 1862 bool SchedBoundary::checkHazard(SUnit *SU) { 1863 if (HazardRec->isEnabled() 1864 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1865 return true; 1866 } 1867 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1868 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1869 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1870 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1871 return true; 1872 } 1873 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1874 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1875 for (TargetSchedModel::ProcResIter 1876 PI = SchedModel->getWriteProcResBegin(SC), 1877 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1878 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1879 if (NRCycle > CurrCycle) { 1880 #ifndef NDEBUG 1881 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1882 #endif 1883 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1884 << SchedModel->getResourceName(PI->ProcResourceIdx) 1885 << "=" << NRCycle << "c\n"); 1886 return true; 1887 } 1888 } 1889 } 1890 return false; 1891 } 1892 1893 // Find the unscheduled node in ReadySUs with the highest latency. 1894 unsigned SchedBoundary:: 1895 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1896 SUnit *LateSU = nullptr; 1897 unsigned RemLatency = 0; 1898 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1899 I != E; ++I) { 1900 unsigned L = getUnscheduledLatency(*I); 1901 if (L > RemLatency) { 1902 RemLatency = L; 1903 LateSU = *I; 1904 } 1905 } 1906 if (LateSU) { 1907 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1908 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1909 } 1910 return RemLatency; 1911 } 1912 1913 // Count resources in this zone and the remaining unscheduled 1914 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1915 // resource index, or zero if the zone is issue limited. 1916 unsigned SchedBoundary:: 1917 getOtherResourceCount(unsigned &OtherCritIdx) { 1918 OtherCritIdx = 0; 1919 if (!SchedModel->hasInstrSchedModel()) 1920 return 0; 1921 1922 unsigned OtherCritCount = Rem->RemIssueCount 1923 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1924 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1925 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1926 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1927 PIdx != PEnd; ++PIdx) { 1928 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1929 if (OtherCount > OtherCritCount) { 1930 OtherCritCount = OtherCount; 1931 OtherCritIdx = PIdx; 1932 } 1933 } 1934 if (OtherCritIdx) { 1935 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1936 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1937 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1938 } 1939 return OtherCritCount; 1940 } 1941 1942 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1943 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1944 1945 #ifndef NDEBUG 1946 // ReadyCycle was been bumped up to the CurrCycle when this node was 1947 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1948 // scheduling, so may now be greater than ReadyCycle. 1949 if (ReadyCycle > CurrCycle) 1950 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1951 #endif 1952 1953 if (ReadyCycle < MinReadyCycle) 1954 MinReadyCycle = ReadyCycle; 1955 1956 // Check for interlocks first. For the purpose of other heuristics, an 1957 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1958 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1959 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 1960 Available.size() >= ReadyListLimit) 1961 Pending.push(SU); 1962 else 1963 Available.push(SU); 1964 } 1965 1966 /// Move the boundary of scheduled code by one cycle. 1967 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1968 if (SchedModel->getMicroOpBufferSize() == 0) { 1969 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1970 if (MinReadyCycle > NextCycle) 1971 NextCycle = MinReadyCycle; 1972 } 1973 // Update the current micro-ops, which will issue in the next cycle. 1974 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1975 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1976 1977 // Decrement DependentLatency based on the next cycle. 1978 if ((NextCycle - CurrCycle) > DependentLatency) 1979 DependentLatency = 0; 1980 else 1981 DependentLatency -= (NextCycle - CurrCycle); 1982 1983 if (!HazardRec->isEnabled()) { 1984 // Bypass HazardRec virtual calls. 1985 CurrCycle = NextCycle; 1986 } else { 1987 // Bypass getHazardType calls in case of long latency. 1988 for (; CurrCycle != NextCycle; ++CurrCycle) { 1989 if (isTop()) 1990 HazardRec->AdvanceCycle(); 1991 else 1992 HazardRec->RecedeCycle(); 1993 } 1994 } 1995 CheckPending = true; 1996 unsigned LFactor = SchedModel->getLatencyFactor(); 1997 IsResourceLimited = 1998 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1999 > (int)LFactor; 2000 2001 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2002 } 2003 2004 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2005 ExecutedResCounts[PIdx] += Count; 2006 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2007 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2008 } 2009 2010 /// Add the given processor resource to this scheduled zone. 2011 /// 2012 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2013 /// during which this resource is consumed. 2014 /// 2015 /// \return the next cycle at which the instruction may execute without 2016 /// oversubscribing resources. 2017 unsigned SchedBoundary:: 2018 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2019 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2020 unsigned Count = Factor * Cycles; 2021 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2022 << " +" << Cycles << "x" << Factor << "u\n"); 2023 2024 // Update Executed resources counts. 2025 incExecutedResources(PIdx, Count); 2026 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2027 Rem->RemainingCounts[PIdx] -= Count; 2028 2029 // Check if this resource exceeds the current critical resource. If so, it 2030 // becomes the critical resource. 2031 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2032 ZoneCritResIdx = PIdx; 2033 DEBUG(dbgs() << " *** Critical resource " 2034 << SchedModel->getResourceName(PIdx) << ": " 2035 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2036 } 2037 // For reserved resources, record the highest cycle using the resource. 2038 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2039 if (NextAvailable > CurrCycle) { 2040 DEBUG(dbgs() << " Resource conflict: " 2041 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2042 << NextAvailable << "\n"); 2043 } 2044 return NextAvailable; 2045 } 2046 2047 /// Move the boundary of scheduled code by one SUnit. 2048 void SchedBoundary::bumpNode(SUnit *SU) { 2049 // Update the reservation table. 2050 if (HazardRec->isEnabled()) { 2051 if (!isTop() && SU->isCall) { 2052 // Calls are scheduled with their preceding instructions. For bottom-up 2053 // scheduling, clear the pipeline state before emitting. 2054 HazardRec->Reset(); 2055 } 2056 HazardRec->EmitInstruction(SU); 2057 } 2058 // checkHazard should prevent scheduling multiple instructions per cycle that 2059 // exceed the issue width. 2060 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2061 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2062 assert( 2063 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2064 "Cannot schedule this instruction's MicroOps in the current cycle."); 2065 2066 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2067 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2068 2069 unsigned NextCycle = CurrCycle; 2070 switch (SchedModel->getMicroOpBufferSize()) { 2071 case 0: 2072 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2073 break; 2074 case 1: 2075 if (ReadyCycle > NextCycle) { 2076 NextCycle = ReadyCycle; 2077 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2078 } 2079 break; 2080 default: 2081 // We don't currently model the OOO reorder buffer, so consider all 2082 // scheduled MOps to be "retired". We do loosely model in-order resource 2083 // latency. If this instruction uses an in-order resource, account for any 2084 // likely stall cycles. 2085 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2086 NextCycle = ReadyCycle; 2087 break; 2088 } 2089 RetiredMOps += IncMOps; 2090 2091 // Update resource counts and critical resource. 2092 if (SchedModel->hasInstrSchedModel()) { 2093 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2094 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2095 Rem->RemIssueCount -= DecRemIssue; 2096 if (ZoneCritResIdx) { 2097 // Scale scheduled micro-ops for comparing with the critical resource. 2098 unsigned ScaledMOps = 2099 RetiredMOps * SchedModel->getMicroOpFactor(); 2100 2101 // If scaled micro-ops are now more than the previous critical resource by 2102 // a full cycle, then micro-ops issue becomes critical. 2103 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2104 >= (int)SchedModel->getLatencyFactor()) { 2105 ZoneCritResIdx = 0; 2106 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2107 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2108 } 2109 } 2110 for (TargetSchedModel::ProcResIter 2111 PI = SchedModel->getWriteProcResBegin(SC), 2112 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2113 unsigned RCycle = 2114 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2115 if (RCycle > NextCycle) 2116 NextCycle = RCycle; 2117 } 2118 if (SU->hasReservedResource) { 2119 // For reserved resources, record the highest cycle using the resource. 2120 // For top-down scheduling, this is the cycle in which we schedule this 2121 // instruction plus the number of cycles the operations reserves the 2122 // resource. For bottom-up is it simply the instruction's cycle. 2123 for (TargetSchedModel::ProcResIter 2124 PI = SchedModel->getWriteProcResBegin(SC), 2125 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2126 unsigned PIdx = PI->ProcResourceIdx; 2127 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2128 if (isTop()) { 2129 ReservedCycles[PIdx] = 2130 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2131 } 2132 else 2133 ReservedCycles[PIdx] = NextCycle; 2134 } 2135 } 2136 } 2137 } 2138 // Update ExpectedLatency and DependentLatency. 2139 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2140 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2141 if (SU->getDepth() > TopLatency) { 2142 TopLatency = SU->getDepth(); 2143 DEBUG(dbgs() << " " << Available.getName() 2144 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2145 } 2146 if (SU->getHeight() > BotLatency) { 2147 BotLatency = SU->getHeight(); 2148 DEBUG(dbgs() << " " << Available.getName() 2149 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2150 } 2151 // If we stall for any reason, bump the cycle. 2152 if (NextCycle > CurrCycle) { 2153 bumpCycle(NextCycle); 2154 } else { 2155 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2156 // resource limited. If a stall occurred, bumpCycle does this. 2157 unsigned LFactor = SchedModel->getLatencyFactor(); 2158 IsResourceLimited = 2159 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2160 > (int)LFactor; 2161 } 2162 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2163 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2164 // one cycle. Since we commonly reach the max MOps here, opportunistically 2165 // bump the cycle to avoid uselessly checking everything in the readyQ. 2166 CurrMOps += IncMOps; 2167 while (CurrMOps >= SchedModel->getIssueWidth()) { 2168 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2169 << " at cycle " << CurrCycle << '\n'); 2170 bumpCycle(++NextCycle); 2171 } 2172 DEBUG(dumpScheduledState()); 2173 } 2174 2175 /// Release pending ready nodes in to the available queue. This makes them 2176 /// visible to heuristics. 2177 void SchedBoundary::releasePending() { 2178 // If the available queue is empty, it is safe to reset MinReadyCycle. 2179 if (Available.empty()) 2180 MinReadyCycle = UINT_MAX; 2181 2182 // Check to see if any of the pending instructions are ready to issue. If 2183 // so, add them to the available queue. 2184 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2185 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2186 SUnit *SU = *(Pending.begin()+i); 2187 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2188 2189 if (ReadyCycle < MinReadyCycle) 2190 MinReadyCycle = ReadyCycle; 2191 2192 if (!IsBuffered && ReadyCycle > CurrCycle) 2193 continue; 2194 2195 if (checkHazard(SU)) 2196 continue; 2197 2198 if (Available.size() >= ReadyListLimit) 2199 break; 2200 2201 Available.push(SU); 2202 Pending.remove(Pending.begin()+i); 2203 --i; --e; 2204 } 2205 CheckPending = false; 2206 } 2207 2208 /// Remove SU from the ready set for this boundary. 2209 void SchedBoundary::removeReady(SUnit *SU) { 2210 if (Available.isInQueue(SU)) 2211 Available.remove(Available.find(SU)); 2212 else { 2213 assert(Pending.isInQueue(SU) && "bad ready count"); 2214 Pending.remove(Pending.find(SU)); 2215 } 2216 } 2217 2218 /// If this queue only has one ready candidate, return it. As a side effect, 2219 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2220 /// one node is ready. If multiple instructions are ready, return NULL. 2221 SUnit *SchedBoundary::pickOnlyChoice() { 2222 if (CheckPending) 2223 releasePending(); 2224 2225 if (CurrMOps > 0) { 2226 // Defer any ready instrs that now have a hazard. 2227 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2228 if (checkHazard(*I)) { 2229 Pending.push(*I); 2230 I = Available.remove(I); 2231 continue; 2232 } 2233 ++I; 2234 } 2235 } 2236 for (unsigned i = 0; Available.empty(); ++i) { 2237 // FIXME: Re-enable assert once PR20057 is resolved. 2238 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2239 // "permanent hazard"); 2240 (void)i; 2241 bumpCycle(CurrCycle + 1); 2242 releasePending(); 2243 } 2244 2245 DEBUG(Pending.dump()); 2246 DEBUG(Available.dump()); 2247 2248 if (Available.size() == 1) 2249 return *Available.begin(); 2250 return nullptr; 2251 } 2252 2253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2254 // This is useful information to dump after bumpNode. 2255 // Note that the Queue contents are more useful before pickNodeFromQueue. 2256 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() { 2257 unsigned ResFactor; 2258 unsigned ResCount; 2259 if (ZoneCritResIdx) { 2260 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2261 ResCount = getResourceCount(ZoneCritResIdx); 2262 } else { 2263 ResFactor = SchedModel->getMicroOpFactor(); 2264 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2265 } 2266 unsigned LFactor = SchedModel->getLatencyFactor(); 2267 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2268 << " Retired: " << RetiredMOps; 2269 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2270 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2271 << ResCount / ResFactor << " " 2272 << SchedModel->getResourceName(ZoneCritResIdx) 2273 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2274 << (IsResourceLimited ? " - Resource" : " - Latency") 2275 << " limited.\n"; 2276 } 2277 #endif 2278 2279 //===----------------------------------------------------------------------===// 2280 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2281 //===----------------------------------------------------------------------===// 2282 2283 void GenericSchedulerBase::SchedCandidate:: 2284 initResourceDelta(const ScheduleDAGMI *DAG, 2285 const TargetSchedModel *SchedModel) { 2286 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2287 return; 2288 2289 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2290 for (TargetSchedModel::ProcResIter 2291 PI = SchedModel->getWriteProcResBegin(SC), 2292 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2293 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2294 ResDelta.CritResources += PI->Cycles; 2295 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2296 ResDelta.DemandedResources += PI->Cycles; 2297 } 2298 } 2299 2300 /// Set the CandPolicy given a scheduling zone given the current resources and 2301 /// latencies inside and outside the zone. 2302 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2303 SchedBoundary &CurrZone, 2304 SchedBoundary *OtherZone) { 2305 // Apply preemptive heuristics based on the total latency and resources 2306 // inside and outside this zone. Potential stalls should be considered before 2307 // following this policy. 2308 2309 // Compute remaining latency. We need this both to determine whether the 2310 // overall schedule has become latency-limited and whether the instructions 2311 // outside this zone are resource or latency limited. 2312 // 2313 // The "dependent" latency is updated incrementally during scheduling as the 2314 // max height/depth of scheduled nodes minus the cycles since it was 2315 // scheduled: 2316 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2317 // 2318 // The "independent" latency is the max ready queue depth: 2319 // ILat = max N.depth for N in Available|Pending 2320 // 2321 // RemainingLatency is the greater of independent and dependent latency. 2322 unsigned RemLatency = CurrZone.getDependentLatency(); 2323 RemLatency = std::max(RemLatency, 2324 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2325 RemLatency = std::max(RemLatency, 2326 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2327 2328 // Compute the critical resource outside the zone. 2329 unsigned OtherCritIdx = 0; 2330 unsigned OtherCount = 2331 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2332 2333 bool OtherResLimited = false; 2334 if (SchedModel->hasInstrSchedModel()) { 2335 unsigned LFactor = SchedModel->getLatencyFactor(); 2336 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2337 } 2338 // Schedule aggressively for latency in PostRA mode. We don't check for 2339 // acyclic latency during PostRA, and highly out-of-order processors will 2340 // skip PostRA scheduling. 2341 if (!OtherResLimited) { 2342 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2343 Policy.ReduceLatency |= true; 2344 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2345 << " RemainingLatency " << RemLatency << " + " 2346 << CurrZone.getCurrCycle() << "c > CritPath " 2347 << Rem.CriticalPath << "\n"); 2348 } 2349 } 2350 // If the same resource is limiting inside and outside the zone, do nothing. 2351 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2352 return; 2353 2354 DEBUG( 2355 if (CurrZone.isResourceLimited()) { 2356 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2357 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2358 << "\n"; 2359 } 2360 if (OtherResLimited) 2361 dbgs() << " RemainingLimit: " 2362 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2363 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2364 dbgs() << " Latency limited both directions.\n"); 2365 2366 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2367 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2368 2369 if (OtherResLimited) 2370 Policy.DemandResIdx = OtherCritIdx; 2371 } 2372 2373 #ifndef NDEBUG 2374 const char *GenericSchedulerBase::getReasonStr( 2375 GenericSchedulerBase::CandReason Reason) { 2376 switch (Reason) { 2377 case NoCand: return "NOCAND "; 2378 case Only1: return "ONLY1 "; 2379 case PhysRegCopy: return "PREG-COPY "; 2380 case RegExcess: return "REG-EXCESS"; 2381 case RegCritical: return "REG-CRIT "; 2382 case Stall: return "STALL "; 2383 case Cluster: return "CLUSTER "; 2384 case Weak: return "WEAK "; 2385 case RegMax: return "REG-MAX "; 2386 case ResourceReduce: return "RES-REDUCE"; 2387 case ResourceDemand: return "RES-DEMAND"; 2388 case TopDepthReduce: return "TOP-DEPTH "; 2389 case TopPathReduce: return "TOP-PATH "; 2390 case BotHeightReduce:return "BOT-HEIGHT"; 2391 case BotPathReduce: return "BOT-PATH "; 2392 case NextDefUse: return "DEF-USE "; 2393 case NodeOrder: return "ORDER "; 2394 }; 2395 llvm_unreachable("Unknown reason!"); 2396 } 2397 2398 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2399 PressureChange P; 2400 unsigned ResIdx = 0; 2401 unsigned Latency = 0; 2402 switch (Cand.Reason) { 2403 default: 2404 break; 2405 case RegExcess: 2406 P = Cand.RPDelta.Excess; 2407 break; 2408 case RegCritical: 2409 P = Cand.RPDelta.CriticalMax; 2410 break; 2411 case RegMax: 2412 P = Cand.RPDelta.CurrentMax; 2413 break; 2414 case ResourceReduce: 2415 ResIdx = Cand.Policy.ReduceResIdx; 2416 break; 2417 case ResourceDemand: 2418 ResIdx = Cand.Policy.DemandResIdx; 2419 break; 2420 case TopDepthReduce: 2421 Latency = Cand.SU->getDepth(); 2422 break; 2423 case TopPathReduce: 2424 Latency = Cand.SU->getHeight(); 2425 break; 2426 case BotHeightReduce: 2427 Latency = Cand.SU->getHeight(); 2428 break; 2429 case BotPathReduce: 2430 Latency = Cand.SU->getDepth(); 2431 break; 2432 } 2433 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2434 if (P.isValid()) 2435 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2436 << ":" << P.getUnitInc() << " "; 2437 else 2438 dbgs() << " "; 2439 if (ResIdx) 2440 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2441 else 2442 dbgs() << " "; 2443 if (Latency) 2444 dbgs() << " " << Latency << " cycles "; 2445 else 2446 dbgs() << " "; 2447 dbgs() << '\n'; 2448 } 2449 #endif 2450 2451 /// Return true if this heuristic determines order. 2452 static bool tryLess(int TryVal, int CandVal, 2453 GenericSchedulerBase::SchedCandidate &TryCand, 2454 GenericSchedulerBase::SchedCandidate &Cand, 2455 GenericSchedulerBase::CandReason Reason) { 2456 if (TryVal < CandVal) { 2457 TryCand.Reason = Reason; 2458 return true; 2459 } 2460 if (TryVal > CandVal) { 2461 if (Cand.Reason > Reason) 2462 Cand.Reason = Reason; 2463 return true; 2464 } 2465 return false; 2466 } 2467 2468 static bool tryGreater(int TryVal, int CandVal, 2469 GenericSchedulerBase::SchedCandidate &TryCand, 2470 GenericSchedulerBase::SchedCandidate &Cand, 2471 GenericSchedulerBase::CandReason Reason) { 2472 if (TryVal > CandVal) { 2473 TryCand.Reason = Reason; 2474 return true; 2475 } 2476 if (TryVal < CandVal) { 2477 if (Cand.Reason > Reason) 2478 Cand.Reason = Reason; 2479 return true; 2480 } 2481 return false; 2482 } 2483 2484 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2485 GenericSchedulerBase::SchedCandidate &Cand, 2486 SchedBoundary &Zone) { 2487 if (Zone.isTop()) { 2488 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2489 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2490 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2491 return true; 2492 } 2493 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2494 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2495 return true; 2496 } else { 2497 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2498 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2499 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2500 return true; 2501 } 2502 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2503 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2504 return true; 2505 } 2506 return false; 2507 } 2508 2509 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2510 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2511 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2512 } 2513 2514 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2515 tracePick(Cand.Reason, Cand.AtTop); 2516 } 2517 2518 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2519 assert(dag->hasVRegLiveness() && 2520 "(PreRA)GenericScheduler needs vreg liveness"); 2521 DAG = static_cast<ScheduleDAGMILive*>(dag); 2522 SchedModel = DAG->getSchedModel(); 2523 TRI = DAG->TRI; 2524 2525 Rem.init(DAG, SchedModel); 2526 Top.init(DAG, SchedModel, &Rem); 2527 Bot.init(DAG, SchedModel, &Rem); 2528 2529 // Initialize resource counts. 2530 2531 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2532 // are disabled, then these HazardRecs will be disabled. 2533 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2534 if (!Top.HazardRec) { 2535 Top.HazardRec = 2536 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2537 Itin, DAG); 2538 } 2539 if (!Bot.HazardRec) { 2540 Bot.HazardRec = 2541 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2542 Itin, DAG); 2543 } 2544 TopCand.SU = nullptr; 2545 BotCand.SU = nullptr; 2546 } 2547 2548 /// Initialize the per-region scheduling policy. 2549 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2550 MachineBasicBlock::iterator End, 2551 unsigned NumRegionInstrs) { 2552 const MachineFunction &MF = *Begin->getParent()->getParent(); 2553 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2554 2555 // Avoid setting up the register pressure tracker for small regions to save 2556 // compile time. As a rough heuristic, only track pressure when the number of 2557 // schedulable instructions exceeds half the integer register file. 2558 RegionPolicy.ShouldTrackPressure = true; 2559 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2560 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2561 if (TLI->isTypeLegal(LegalIntVT)) { 2562 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2563 TLI->getRegClassFor(LegalIntVT)); 2564 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2565 } 2566 } 2567 2568 // For generic targets, we default to bottom-up, because it's simpler and more 2569 // compile-time optimizations have been implemented in that direction. 2570 RegionPolicy.OnlyBottomUp = true; 2571 2572 // Allow the subtarget to override default policy. 2573 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2574 2575 // After subtarget overrides, apply command line options. 2576 if (!EnableRegPressure) 2577 RegionPolicy.ShouldTrackPressure = false; 2578 2579 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2580 // e.g. -misched-bottomup=false allows scheduling in both directions. 2581 assert((!ForceTopDown || !ForceBottomUp) && 2582 "-misched-topdown incompatible with -misched-bottomup"); 2583 if (ForceBottomUp.getNumOccurrences() > 0) { 2584 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2585 if (RegionPolicy.OnlyBottomUp) 2586 RegionPolicy.OnlyTopDown = false; 2587 } 2588 if (ForceTopDown.getNumOccurrences() > 0) { 2589 RegionPolicy.OnlyTopDown = ForceTopDown; 2590 if (RegionPolicy.OnlyTopDown) 2591 RegionPolicy.OnlyBottomUp = false; 2592 } 2593 } 2594 2595 void GenericScheduler::dumpPolicy() { 2596 // Cannot completely remove virtual function even in release mode. 2597 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2598 dbgs() << "GenericScheduler RegionPolicy: " 2599 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2600 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2601 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2602 << "\n"; 2603 #endif 2604 } 2605 2606 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2607 /// critical path by more cycles than it takes to drain the instruction buffer. 2608 /// We estimate an upper bounds on in-flight instructions as: 2609 /// 2610 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2611 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2612 /// InFlightResources = InFlightIterations * LoopResources 2613 /// 2614 /// TODO: Check execution resources in addition to IssueCount. 2615 void GenericScheduler::checkAcyclicLatency() { 2616 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2617 return; 2618 2619 // Scaled number of cycles per loop iteration. 2620 unsigned IterCount = 2621 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2622 Rem.RemIssueCount); 2623 // Scaled acyclic critical path. 2624 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2625 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2626 unsigned InFlightCount = 2627 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2628 unsigned BufferLimit = 2629 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2630 2631 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2632 2633 DEBUG(dbgs() << "IssueCycles=" 2634 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2635 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2636 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2637 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2638 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2639 if (Rem.IsAcyclicLatencyLimited) 2640 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2641 } 2642 2643 void GenericScheduler::registerRoots() { 2644 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2645 2646 // Some roots may not feed into ExitSU. Check all of them in case. 2647 for (std::vector<SUnit*>::const_iterator 2648 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2649 if ((*I)->getDepth() > Rem.CriticalPath) 2650 Rem.CriticalPath = (*I)->getDepth(); 2651 } 2652 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2653 if (DumpCriticalPathLength) { 2654 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2655 } 2656 2657 if (EnableCyclicPath) { 2658 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2659 checkAcyclicLatency(); 2660 } 2661 } 2662 2663 static bool tryPressure(const PressureChange &TryP, 2664 const PressureChange &CandP, 2665 GenericSchedulerBase::SchedCandidate &TryCand, 2666 GenericSchedulerBase::SchedCandidate &Cand, 2667 GenericSchedulerBase::CandReason Reason, 2668 const TargetRegisterInfo *TRI, 2669 const MachineFunction &MF) { 2670 // If one candidate decreases and the other increases, go with it. 2671 // Invalid candidates have UnitInc==0. 2672 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2673 Reason)) { 2674 return true; 2675 } 2676 // Do not compare the magnitude of pressure changes between top and bottom 2677 // boundary. 2678 if (Cand.AtTop != TryCand.AtTop) 2679 return false; 2680 2681 // If both candidates affect the same set in the same boundary, go with the 2682 // smallest increase. 2683 unsigned TryPSet = TryP.getPSetOrMax(); 2684 unsigned CandPSet = CandP.getPSetOrMax(); 2685 if (TryPSet == CandPSet) { 2686 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2687 Reason); 2688 } 2689 2690 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2691 std::numeric_limits<int>::max(); 2692 2693 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2694 std::numeric_limits<int>::max(); 2695 2696 // If the candidates are decreasing pressure, reverse priority. 2697 if (TryP.getUnitInc() < 0) 2698 std::swap(TryRank, CandRank); 2699 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2700 } 2701 2702 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2703 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2704 } 2705 2706 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2707 /// their physreg def/use. 2708 /// 2709 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2710 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2711 /// with the operation that produces or consumes the physreg. We'll do this when 2712 /// regalloc has support for parallel copies. 2713 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2714 const MachineInstr *MI = SU->getInstr(); 2715 if (!MI->isCopy()) 2716 return 0; 2717 2718 unsigned ScheduledOper = isTop ? 1 : 0; 2719 unsigned UnscheduledOper = isTop ? 0 : 1; 2720 // If we have already scheduled the physreg produce/consumer, immediately 2721 // schedule the copy. 2722 if (TargetRegisterInfo::isPhysicalRegister( 2723 MI->getOperand(ScheduledOper).getReg())) 2724 return 1; 2725 // If the physreg is at the boundary, defer it. Otherwise schedule it 2726 // immediately to free the dependent. We can hoist the copy later. 2727 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2728 if (TargetRegisterInfo::isPhysicalRegister( 2729 MI->getOperand(UnscheduledOper).getReg())) 2730 return AtBoundary ? -1 : 1; 2731 return 0; 2732 } 2733 2734 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2735 bool AtTop, 2736 const RegPressureTracker &RPTracker, 2737 RegPressureTracker &TempTracker) { 2738 Cand.SU = SU; 2739 Cand.AtTop = AtTop; 2740 if (DAG->isTrackingPressure()) { 2741 if (AtTop) { 2742 TempTracker.getMaxDownwardPressureDelta( 2743 Cand.SU->getInstr(), 2744 Cand.RPDelta, 2745 DAG->getRegionCriticalPSets(), 2746 DAG->getRegPressure().MaxSetPressure); 2747 } else { 2748 if (VerifyScheduling) { 2749 TempTracker.getMaxUpwardPressureDelta( 2750 Cand.SU->getInstr(), 2751 &DAG->getPressureDiff(Cand.SU), 2752 Cand.RPDelta, 2753 DAG->getRegionCriticalPSets(), 2754 DAG->getRegPressure().MaxSetPressure); 2755 } else { 2756 RPTracker.getUpwardPressureDelta( 2757 Cand.SU->getInstr(), 2758 DAG->getPressureDiff(Cand.SU), 2759 Cand.RPDelta, 2760 DAG->getRegionCriticalPSets(), 2761 DAG->getRegPressure().MaxSetPressure); 2762 } 2763 } 2764 } 2765 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2766 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2767 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2768 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2769 } 2770 2771 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2772 /// hierarchical. This may be more efficient than a graduated cost model because 2773 /// we don't need to evaluate all aspects of the model for each node in the 2774 /// queue. But it's really done to make the heuristics easier to debug and 2775 /// statistically analyze. 2776 /// 2777 /// \param Cand provides the policy and current best candidate. 2778 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2779 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2780 // if Cand is from a different zone than TryCand. 2781 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2782 SchedCandidate &TryCand, 2783 SchedBoundary *Zone) { 2784 // Initialize the candidate if needed. 2785 if (!Cand.isValid()) { 2786 TryCand.Reason = NodeOrder; 2787 return; 2788 } 2789 2790 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2791 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2792 TryCand, Cand, PhysRegCopy)) 2793 return; 2794 2795 // Avoid exceeding the target's limit. 2796 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2797 Cand.RPDelta.Excess, 2798 TryCand, Cand, RegExcess, TRI, 2799 DAG->MF)) 2800 return; 2801 2802 // Avoid increasing the max critical pressure in the scheduled region. 2803 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2804 Cand.RPDelta.CriticalMax, 2805 TryCand, Cand, RegCritical, TRI, 2806 DAG->MF)) 2807 return; 2808 2809 // We only compare a subset of features when comparing nodes between 2810 // Top and Bottom boundary. Some properties are simply incomparable, in many 2811 // other instances we should only override the other boundary if something 2812 // is a clear good pick on one boundary. Skip heuristics that are more 2813 // "tie-breaking" in nature. 2814 bool SameBoundary = Zone != nullptr; 2815 if (SameBoundary) { 2816 // For loops that are acyclic path limited, aggressively schedule for 2817 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2818 // heuristics to take precedence. 2819 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2820 tryLatency(TryCand, Cand, *Zone)) 2821 return; 2822 2823 // Prioritize instructions that read unbuffered resources by stall cycles. 2824 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2825 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2826 return; 2827 } 2828 2829 // Keep clustered nodes together to encourage downstream peephole 2830 // optimizations which may reduce resource requirements. 2831 // 2832 // This is a best effort to set things up for a post-RA pass. Optimizations 2833 // like generating loads of multiple registers should ideally be done within 2834 // the scheduler pass by combining the loads during DAG postprocessing. 2835 const SUnit *CandNextClusterSU = 2836 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2837 const SUnit *TryCandNextClusterSU = 2838 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2839 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2840 Cand.SU == CandNextClusterSU, 2841 TryCand, Cand, Cluster)) 2842 return; 2843 2844 if (SameBoundary) { 2845 // Weak edges are for clustering and other constraints. 2846 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2847 getWeakLeft(Cand.SU, Cand.AtTop), 2848 TryCand, Cand, Weak)) 2849 return; 2850 } 2851 2852 // Avoid increasing the max pressure of the entire region. 2853 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2854 Cand.RPDelta.CurrentMax, 2855 TryCand, Cand, RegMax, TRI, 2856 DAG->MF)) 2857 return; 2858 2859 if (SameBoundary) { 2860 // Avoid critical resource consumption and balance the schedule. 2861 TryCand.initResourceDelta(DAG, SchedModel); 2862 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2863 TryCand, Cand, ResourceReduce)) 2864 return; 2865 if (tryGreater(TryCand.ResDelta.DemandedResources, 2866 Cand.ResDelta.DemandedResources, 2867 TryCand, Cand, ResourceDemand)) 2868 return; 2869 2870 // Avoid serializing long latency dependence chains. 2871 // For acyclic path limited loops, latency was already checked above. 2872 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2873 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2874 return; 2875 2876 // Fall through to original instruction order. 2877 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2878 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2879 TryCand.Reason = NodeOrder; 2880 } 2881 } 2882 } 2883 2884 /// Pick the best candidate from the queue. 2885 /// 2886 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2887 /// DAG building. To adjust for the current scheduling location we need to 2888 /// maintain the number of vreg uses remaining to be top-scheduled. 2889 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2890 const CandPolicy &ZonePolicy, 2891 const RegPressureTracker &RPTracker, 2892 SchedCandidate &Cand) { 2893 // getMaxPressureDelta temporarily modifies the tracker. 2894 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2895 2896 ReadyQueue &Q = Zone.Available; 2897 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2898 2899 SchedCandidate TryCand(ZonePolicy); 2900 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2901 // Pass SchedBoundary only when comparing nodes from the same boundary. 2902 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2903 tryCandidate(Cand, TryCand, ZoneArg); 2904 if (TryCand.Reason != NoCand) { 2905 // Initialize resource delta if needed in case future heuristics query it. 2906 if (TryCand.ResDelta == SchedResourceDelta()) 2907 TryCand.initResourceDelta(DAG, SchedModel); 2908 Cand.setBest(TryCand); 2909 DEBUG(traceCandidate(Cand)); 2910 } 2911 } 2912 } 2913 2914 /// Pick the best candidate node from either the top or bottom queue. 2915 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2916 // Schedule as far as possible in the direction of no choice. This is most 2917 // efficient, but also provides the best heuristics for CriticalPSets. 2918 if (SUnit *SU = Bot.pickOnlyChoice()) { 2919 IsTopNode = false; 2920 tracePick(Only1, false); 2921 return SU; 2922 } 2923 if (SUnit *SU = Top.pickOnlyChoice()) { 2924 IsTopNode = true; 2925 tracePick(Only1, true); 2926 return SU; 2927 } 2928 // Set the bottom-up policy based on the state of the current bottom zone and 2929 // the instructions outside the zone, including the top zone. 2930 CandPolicy BotPolicy; 2931 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2932 // Set the top-down policy based on the state of the current top zone and 2933 // the instructions outside the zone, including the bottom zone. 2934 CandPolicy TopPolicy; 2935 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2936 2937 // See if BotCand is still valid (because we previously scheduled from Top). 2938 DEBUG(dbgs() << "Picking from Bot:\n"); 2939 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2940 BotCand.Policy != BotPolicy) { 2941 BotCand.reset(CandPolicy()); 2942 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2943 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2944 } else { 2945 DEBUG(traceCandidate(BotCand)); 2946 #ifndef NDEBUG 2947 if (VerifyScheduling) { 2948 SchedCandidate TCand; 2949 TCand.reset(CandPolicy()); 2950 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 2951 assert(TCand.SU == BotCand.SU && 2952 "Last pick result should correspond to re-picking right now"); 2953 } 2954 #endif 2955 } 2956 2957 // Check if the top Q has a better candidate. 2958 DEBUG(dbgs() << "Picking from Top:\n"); 2959 if (!TopCand.isValid() || TopCand.SU->isScheduled || 2960 TopCand.Policy != TopPolicy) { 2961 TopCand.reset(CandPolicy()); 2962 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 2963 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2964 } else { 2965 DEBUG(traceCandidate(TopCand)); 2966 #ifndef NDEBUG 2967 if (VerifyScheduling) { 2968 SchedCandidate TCand; 2969 TCand.reset(CandPolicy()); 2970 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 2971 assert(TCand.SU == TopCand.SU && 2972 "Last pick result should correspond to re-picking right now"); 2973 } 2974 #endif 2975 } 2976 2977 // Pick best from BotCand and TopCand. 2978 assert(BotCand.isValid()); 2979 assert(TopCand.isValid()); 2980 SchedCandidate Cand = BotCand; 2981 TopCand.Reason = NoCand; 2982 tryCandidate(Cand, TopCand, nullptr); 2983 if (TopCand.Reason != NoCand) { 2984 Cand.setBest(TopCand); 2985 DEBUG(traceCandidate(Cand)); 2986 } 2987 2988 IsTopNode = Cand.AtTop; 2989 tracePick(Cand); 2990 return Cand.SU; 2991 } 2992 2993 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2994 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2995 if (DAG->top() == DAG->bottom()) { 2996 assert(Top.Available.empty() && Top.Pending.empty() && 2997 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2998 return nullptr; 2999 } 3000 SUnit *SU; 3001 do { 3002 if (RegionPolicy.OnlyTopDown) { 3003 SU = Top.pickOnlyChoice(); 3004 if (!SU) { 3005 CandPolicy NoPolicy; 3006 TopCand.reset(NoPolicy); 3007 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3008 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3009 tracePick(TopCand); 3010 SU = TopCand.SU; 3011 } 3012 IsTopNode = true; 3013 } else if (RegionPolicy.OnlyBottomUp) { 3014 SU = Bot.pickOnlyChoice(); 3015 if (!SU) { 3016 CandPolicy NoPolicy; 3017 BotCand.reset(NoPolicy); 3018 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3019 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3020 tracePick(BotCand); 3021 SU = BotCand.SU; 3022 } 3023 IsTopNode = false; 3024 } else { 3025 SU = pickNodeBidirectional(IsTopNode); 3026 } 3027 } while (SU->isScheduled); 3028 3029 if (SU->isTopReady()) 3030 Top.removeReady(SU); 3031 if (SU->isBottomReady()) 3032 Bot.removeReady(SU); 3033 3034 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3035 return SU; 3036 } 3037 3038 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3039 3040 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3041 if (!isTop) 3042 ++InsertPos; 3043 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3044 3045 // Find already scheduled copies with a single physreg dependence and move 3046 // them just above the scheduled instruction. 3047 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3048 I != E; ++I) { 3049 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3050 continue; 3051 SUnit *DepSU = I->getSUnit(); 3052 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3053 continue; 3054 MachineInstr *Copy = DepSU->getInstr(); 3055 if (!Copy->isCopy()) 3056 continue; 3057 DEBUG(dbgs() << " Rescheduling physreg copy "; 3058 I->getSUnit()->dump(DAG)); 3059 DAG->moveInstruction(Copy, InsertPos); 3060 } 3061 } 3062 3063 /// Update the scheduler's state after scheduling a node. This is the same node 3064 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3065 /// update it's state based on the current cycle before MachineSchedStrategy 3066 /// does. 3067 /// 3068 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3069 /// them here. See comments in biasPhysRegCopy. 3070 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3071 if (IsTopNode) { 3072 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3073 Top.bumpNode(SU); 3074 if (SU->hasPhysRegUses) 3075 reschedulePhysRegCopies(SU, true); 3076 } else { 3077 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3078 Bot.bumpNode(SU); 3079 if (SU->hasPhysRegDefs) 3080 reschedulePhysRegCopies(SU, false); 3081 } 3082 } 3083 3084 /// Create the standard converging machine scheduler. This will be used as the 3085 /// default scheduler if the target does not set a default. 3086 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3087 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3088 // Register DAG post-processors. 3089 // 3090 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3091 // data and pass it to later mutations. Have a single mutation that gathers 3092 // the interesting nodes in one pass. 3093 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3094 return DAG; 3095 } 3096 3097 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3098 return createGenericSchedLive(C); 3099 } 3100 3101 static MachineSchedRegistry 3102 GenericSchedRegistry("converge", "Standard converging scheduler.", 3103 createConveringSched); 3104 3105 //===----------------------------------------------------------------------===// 3106 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3107 //===----------------------------------------------------------------------===// 3108 3109 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3110 DAG = Dag; 3111 SchedModel = DAG->getSchedModel(); 3112 TRI = DAG->TRI; 3113 3114 Rem.init(DAG, SchedModel); 3115 Top.init(DAG, SchedModel, &Rem); 3116 BotRoots.clear(); 3117 3118 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3119 // or are disabled, then these HazardRecs will be disabled. 3120 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3121 if (!Top.HazardRec) { 3122 Top.HazardRec = 3123 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3124 Itin, DAG); 3125 } 3126 } 3127 3128 3129 void PostGenericScheduler::registerRoots() { 3130 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3131 3132 // Some roots may not feed into ExitSU. Check all of them in case. 3133 for (SmallVectorImpl<SUnit*>::const_iterator 3134 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3135 if ((*I)->getDepth() > Rem.CriticalPath) 3136 Rem.CriticalPath = (*I)->getDepth(); 3137 } 3138 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3139 if (DumpCriticalPathLength) { 3140 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3141 } 3142 } 3143 3144 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3145 /// 3146 /// \param Cand provides the policy and current best candidate. 3147 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3148 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3149 SchedCandidate &TryCand) { 3150 3151 // Initialize the candidate if needed. 3152 if (!Cand.isValid()) { 3153 TryCand.Reason = NodeOrder; 3154 return; 3155 } 3156 3157 // Prioritize instructions that read unbuffered resources by stall cycles. 3158 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3159 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3160 return; 3161 3162 // Avoid critical resource consumption and balance the schedule. 3163 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3164 TryCand, Cand, ResourceReduce)) 3165 return; 3166 if (tryGreater(TryCand.ResDelta.DemandedResources, 3167 Cand.ResDelta.DemandedResources, 3168 TryCand, Cand, ResourceDemand)) 3169 return; 3170 3171 // Avoid serializing long latency dependence chains. 3172 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3173 return; 3174 } 3175 3176 // Fall through to original instruction order. 3177 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3178 TryCand.Reason = NodeOrder; 3179 } 3180 3181 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3182 ReadyQueue &Q = Top.Available; 3183 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3184 SchedCandidate TryCand(Cand.Policy); 3185 TryCand.SU = *I; 3186 TryCand.AtTop = true; 3187 TryCand.initResourceDelta(DAG, SchedModel); 3188 tryCandidate(Cand, TryCand); 3189 if (TryCand.Reason != NoCand) { 3190 Cand.setBest(TryCand); 3191 DEBUG(traceCandidate(Cand)); 3192 } 3193 } 3194 } 3195 3196 /// Pick the next node to schedule. 3197 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3198 if (DAG->top() == DAG->bottom()) { 3199 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3200 return nullptr; 3201 } 3202 SUnit *SU; 3203 do { 3204 SU = Top.pickOnlyChoice(); 3205 if (SU) { 3206 tracePick(Only1, true); 3207 } else { 3208 CandPolicy NoPolicy; 3209 SchedCandidate TopCand(NoPolicy); 3210 // Set the top-down policy based on the state of the current top zone and 3211 // the instructions outside the zone, including the bottom zone. 3212 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3213 pickNodeFromQueue(TopCand); 3214 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3215 tracePick(TopCand); 3216 SU = TopCand.SU; 3217 } 3218 } while (SU->isScheduled); 3219 3220 IsTopNode = true; 3221 Top.removeReady(SU); 3222 3223 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3224 return SU; 3225 } 3226 3227 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3228 /// scheduled/remaining flags in the DAG nodes. 3229 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3230 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3231 Top.bumpNode(SU); 3232 } 3233 3234 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3235 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), 3236 /*RemoveKillFlags=*/true); 3237 } 3238 3239 //===----------------------------------------------------------------------===// 3240 // ILP Scheduler. Currently for experimental analysis of heuristics. 3241 //===----------------------------------------------------------------------===// 3242 3243 namespace { 3244 /// \brief Order nodes by the ILP metric. 3245 struct ILPOrder { 3246 const SchedDFSResult *DFSResult; 3247 const BitVector *ScheduledTrees; 3248 bool MaximizeILP; 3249 3250 ILPOrder(bool MaxILP) 3251 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3252 3253 /// \brief Apply a less-than relation on node priority. 3254 /// 3255 /// (Return true if A comes after B in the Q.) 3256 bool operator()(const SUnit *A, const SUnit *B) const { 3257 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3258 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3259 if (SchedTreeA != SchedTreeB) { 3260 // Unscheduled trees have lower priority. 3261 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3262 return ScheduledTrees->test(SchedTreeB); 3263 3264 // Trees with shallower connections have have lower priority. 3265 if (DFSResult->getSubtreeLevel(SchedTreeA) 3266 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3267 return DFSResult->getSubtreeLevel(SchedTreeA) 3268 < DFSResult->getSubtreeLevel(SchedTreeB); 3269 } 3270 } 3271 if (MaximizeILP) 3272 return DFSResult->getILP(A) < DFSResult->getILP(B); 3273 else 3274 return DFSResult->getILP(A) > DFSResult->getILP(B); 3275 } 3276 }; 3277 3278 /// \brief Schedule based on the ILP metric. 3279 class ILPScheduler : public MachineSchedStrategy { 3280 ScheduleDAGMILive *DAG; 3281 ILPOrder Cmp; 3282 3283 std::vector<SUnit*> ReadyQ; 3284 public: 3285 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3286 3287 void initialize(ScheduleDAGMI *dag) override { 3288 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3289 DAG = static_cast<ScheduleDAGMILive*>(dag); 3290 DAG->computeDFSResult(); 3291 Cmp.DFSResult = DAG->getDFSResult(); 3292 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3293 ReadyQ.clear(); 3294 } 3295 3296 void registerRoots() override { 3297 // Restore the heap in ReadyQ with the updated DFS results. 3298 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3299 } 3300 3301 /// Implement MachineSchedStrategy interface. 3302 /// ----------------------------------------- 3303 3304 /// Callback to select the highest priority node from the ready Q. 3305 SUnit *pickNode(bool &IsTopNode) override { 3306 if (ReadyQ.empty()) return nullptr; 3307 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3308 SUnit *SU = ReadyQ.back(); 3309 ReadyQ.pop_back(); 3310 IsTopNode = false; 3311 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3312 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3313 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3314 << DAG->getDFSResult()->getSubtreeLevel( 3315 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3316 << "Scheduling " << *SU->getInstr()); 3317 return SU; 3318 } 3319 3320 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3321 void scheduleTree(unsigned SubtreeID) override { 3322 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3323 } 3324 3325 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3326 /// DFSResults, and resort the priority Q. 3327 void schedNode(SUnit *SU, bool IsTopNode) override { 3328 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3329 } 3330 3331 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3332 3333 void releaseBottomNode(SUnit *SU) override { 3334 ReadyQ.push_back(SU); 3335 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3336 } 3337 }; 3338 } // namespace 3339 3340 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3341 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3342 } 3343 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3344 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3345 } 3346 static MachineSchedRegistry ILPMaxRegistry( 3347 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3348 static MachineSchedRegistry ILPMinRegistry( 3349 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3350 3351 //===----------------------------------------------------------------------===// 3352 // Machine Instruction Shuffler for Correctness Testing 3353 //===----------------------------------------------------------------------===// 3354 3355 #ifndef NDEBUG 3356 namespace { 3357 /// Apply a less-than relation on the node order, which corresponds to the 3358 /// instruction order prior to scheduling. IsReverse implements greater-than. 3359 template<bool IsReverse> 3360 struct SUnitOrder { 3361 bool operator()(SUnit *A, SUnit *B) const { 3362 if (IsReverse) 3363 return A->NodeNum > B->NodeNum; 3364 else 3365 return A->NodeNum < B->NodeNum; 3366 } 3367 }; 3368 3369 /// Reorder instructions as much as possible. 3370 class InstructionShuffler : public MachineSchedStrategy { 3371 bool IsAlternating; 3372 bool IsTopDown; 3373 3374 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3375 // gives nodes with a higher number higher priority causing the latest 3376 // instructions to be scheduled first. 3377 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3378 TopQ; 3379 // When scheduling bottom-up, use greater-than as the queue priority. 3380 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3381 BottomQ; 3382 public: 3383 InstructionShuffler(bool alternate, bool topdown) 3384 : IsAlternating(alternate), IsTopDown(topdown) {} 3385 3386 void initialize(ScheduleDAGMI*) override { 3387 TopQ.clear(); 3388 BottomQ.clear(); 3389 } 3390 3391 /// Implement MachineSchedStrategy interface. 3392 /// ----------------------------------------- 3393 3394 SUnit *pickNode(bool &IsTopNode) override { 3395 SUnit *SU; 3396 if (IsTopDown) { 3397 do { 3398 if (TopQ.empty()) return nullptr; 3399 SU = TopQ.top(); 3400 TopQ.pop(); 3401 } while (SU->isScheduled); 3402 IsTopNode = true; 3403 } else { 3404 do { 3405 if (BottomQ.empty()) return nullptr; 3406 SU = BottomQ.top(); 3407 BottomQ.pop(); 3408 } while (SU->isScheduled); 3409 IsTopNode = false; 3410 } 3411 if (IsAlternating) 3412 IsTopDown = !IsTopDown; 3413 return SU; 3414 } 3415 3416 void schedNode(SUnit *SU, bool IsTopNode) override {} 3417 3418 void releaseTopNode(SUnit *SU) override { 3419 TopQ.push(SU); 3420 } 3421 void releaseBottomNode(SUnit *SU) override { 3422 BottomQ.push(SU); 3423 } 3424 }; 3425 } // namespace 3426 3427 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3428 bool Alternate = !ForceTopDown && !ForceBottomUp; 3429 bool TopDown = !ForceBottomUp; 3430 assert((TopDown || !ForceTopDown) && 3431 "-misched-topdown incompatible with -misched-bottomup"); 3432 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3433 } 3434 static MachineSchedRegistry ShufflerRegistry( 3435 "shuffle", "Shuffle machine instructions alternating directions", 3436 createInstructionShuffler); 3437 #endif // !NDEBUG 3438 3439 //===----------------------------------------------------------------------===// 3440 // GraphWriter support for ScheduleDAGMILive. 3441 //===----------------------------------------------------------------------===// 3442 3443 #ifndef NDEBUG 3444 namespace llvm { 3445 3446 template<> struct GraphTraits< 3447 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3448 3449 template<> 3450 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3451 3452 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3453 3454 static std::string getGraphName(const ScheduleDAG *G) { 3455 return G->MF.getName(); 3456 } 3457 3458 static bool renderGraphFromBottomUp() { 3459 return true; 3460 } 3461 3462 static bool isNodeHidden(const SUnit *Node) { 3463 if (ViewMISchedCutoff == 0) 3464 return false; 3465 return (Node->Preds.size() > ViewMISchedCutoff 3466 || Node->Succs.size() > ViewMISchedCutoff); 3467 } 3468 3469 /// If you want to override the dot attributes printed for a particular 3470 /// edge, override this method. 3471 static std::string getEdgeAttributes(const SUnit *Node, 3472 SUnitIterator EI, 3473 const ScheduleDAG *Graph) { 3474 if (EI.isArtificialDep()) 3475 return "color=cyan,style=dashed"; 3476 if (EI.isCtrlDep()) 3477 return "color=blue,style=dashed"; 3478 return ""; 3479 } 3480 3481 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3482 std::string Str; 3483 raw_string_ostream SS(Str); 3484 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3485 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3486 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3487 SS << "SU:" << SU->NodeNum; 3488 if (DFS) 3489 SS << " I:" << DFS->getNumInstrs(SU); 3490 return SS.str(); 3491 } 3492 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3493 return G->getGraphNodeLabel(SU); 3494 } 3495 3496 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3497 std::string Str("shape=Mrecord"); 3498 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3499 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3500 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3501 if (DFS) { 3502 Str += ",style=filled,fillcolor=\"#"; 3503 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3504 Str += '"'; 3505 } 3506 return Str; 3507 } 3508 }; 3509 } // namespace llvm 3510 #endif // NDEBUG 3511 3512 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3513 /// rendered using 'dot'. 3514 /// 3515 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3516 #ifndef NDEBUG 3517 ViewGraph(this, Name, false, Title); 3518 #else 3519 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3520 << "systems with Graphviz or gv!\n"; 3521 #endif // NDEBUG 3522 } 3523 3524 /// Out-of-line implementation with no arguments is handy for gdb. 3525 void ScheduleDAGMI::viewGraph() { 3526 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3527 } 3528