1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Decrement this iterator until reaching the top or a non-debug instr. 234 static MachineBasicBlock::const_iterator 235 priorNonDebug(MachineBasicBlock::const_iterator I, 236 MachineBasicBlock::const_iterator Beg) { 237 assert(I != Beg && "reached the top of the region, cannot decrement"); 238 while (--I != Beg) { 239 if (!I->isDebugValue()) 240 break; 241 } 242 return I; 243 } 244 245 /// Non-const version. 246 static MachineBasicBlock::iterator 247 priorNonDebug(MachineBasicBlock::iterator I, 248 MachineBasicBlock::const_iterator Beg) { 249 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 250 .getNonConstIterator(); 251 } 252 253 /// If this iterator is a debug value, increment until reaching the End or a 254 /// non-debug instruction. 255 static MachineBasicBlock::const_iterator 256 nextIfDebug(MachineBasicBlock::const_iterator I, 257 MachineBasicBlock::const_iterator End) { 258 for(; I != End; ++I) { 259 if (!I->isDebugValue()) 260 break; 261 } 262 return I; 263 } 264 265 /// Non-const version. 266 static MachineBasicBlock::iterator 267 nextIfDebug(MachineBasicBlock::iterator I, 268 MachineBasicBlock::const_iterator End) { 269 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 270 .getNonConstIterator(); 271 } 272 273 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 274 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 275 // Select the scheduler, or set the default. 276 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 277 if (Ctor != useDefaultMachineSched) 278 return Ctor(this); 279 280 // Get the default scheduler set by the target for this function. 281 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 282 if (Scheduler) 283 return Scheduler; 284 285 // Default to GenericScheduler. 286 return createGenericSchedLive(this); 287 } 288 289 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 290 /// the caller. We don't have a command line option to override the postRA 291 /// scheduler. The Target must configure it. 292 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 293 // Get the postRA scheduler set by the target for this function. 294 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 295 if (Scheduler) 296 return Scheduler; 297 298 // Default to GenericScheduler. 299 return createGenericSchedPostRA(this); 300 } 301 302 /// Top-level MachineScheduler pass driver. 303 /// 304 /// Visit blocks in function order. Divide each block into scheduling regions 305 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 306 /// consistent with the DAG builder, which traverses the interior of the 307 /// scheduling regions bottom-up. 308 /// 309 /// This design avoids exposing scheduling boundaries to the DAG builder, 310 /// simplifying the DAG builder's support for "special" target instructions. 311 /// At the same time the design allows target schedulers to operate across 312 /// scheduling boundaries, for example to bundle the boudary instructions 313 /// without reordering them. This creates complexity, because the target 314 /// scheduler must update the RegionBegin and RegionEnd positions cached by 315 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 316 /// design would be to split blocks at scheduling boundaries, but LLVM has a 317 /// general bias against block splitting purely for implementation simplicity. 318 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 319 if (skipFunction(*mf.getFunction())) 320 return false; 321 322 if (EnableMachineSched.getNumOccurrences()) { 323 if (!EnableMachineSched) 324 return false; 325 } else if (!mf.getSubtarget().enableMachineScheduler()) 326 return false; 327 328 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 329 330 // Initialize the context of the pass. 331 MF = &mf; 332 MLI = &getAnalysis<MachineLoopInfo>(); 333 MDT = &getAnalysis<MachineDominatorTree>(); 334 PassConfig = &getAnalysis<TargetPassConfig>(); 335 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 336 337 LIS = &getAnalysis<LiveIntervals>(); 338 339 if (VerifyScheduling) { 340 DEBUG(LIS->dump()); 341 MF->verify(this, "Before machine scheduling."); 342 } 343 RegClassInfo->runOnMachineFunction(*MF); 344 345 // Instantiate the selected scheduler for this target, function, and 346 // optimization level. 347 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 348 scheduleRegions(*Scheduler, false); 349 350 DEBUG(LIS->dump()); 351 if (VerifyScheduling) 352 MF->verify(this, "After machine scheduling."); 353 return true; 354 } 355 356 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 357 if (skipFunction(*mf.getFunction())) 358 return false; 359 360 if (EnablePostRAMachineSched.getNumOccurrences()) { 361 if (!EnablePostRAMachineSched) 362 return false; 363 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 364 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 365 return false; 366 } 367 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 368 369 // Initialize the context of the pass. 370 MF = &mf; 371 PassConfig = &getAnalysis<TargetPassConfig>(); 372 373 if (VerifyScheduling) 374 MF->verify(this, "Before post machine scheduling."); 375 376 // Instantiate the selected scheduler for this target, function, and 377 // optimization level. 378 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 379 scheduleRegions(*Scheduler, true); 380 381 if (VerifyScheduling) 382 MF->verify(this, "After post machine scheduling."); 383 return true; 384 } 385 386 /// Return true of the given instruction should not be included in a scheduling 387 /// region. 388 /// 389 /// MachineScheduler does not currently support scheduling across calls. To 390 /// handle calls, the DAG builder needs to be modified to create register 391 /// anti/output dependencies on the registers clobbered by the call's regmask 392 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 393 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 394 /// the boundary, but there would be no benefit to postRA scheduling across 395 /// calls this late anyway. 396 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 397 MachineBasicBlock *MBB, 398 MachineFunction *MF, 399 const TargetInstrInfo *TII) { 400 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 401 } 402 403 /// Main driver for both MachineScheduler and PostMachineScheduler. 404 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 405 bool FixKillFlags) { 406 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 407 408 // Visit all machine basic blocks. 409 // 410 // TODO: Visit blocks in global postorder or postorder within the bottom-up 411 // loop tree. Then we can optionally compute global RegPressure. 412 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 413 MBB != MBBEnd; ++MBB) { 414 415 Scheduler.startBlock(&*MBB); 416 417 #ifndef NDEBUG 418 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 419 continue; 420 if (SchedOnlyBlock.getNumOccurrences() 421 && (int)SchedOnlyBlock != MBB->getNumber()) 422 continue; 423 #endif 424 425 // Break the block into scheduling regions [I, RegionEnd), and schedule each 426 // region as soon as it is discovered. RegionEnd points the scheduling 427 // boundary at the bottom of the region. The DAG does not include RegionEnd, 428 // but the region does (i.e. the next RegionEnd is above the previous 429 // RegionBegin). If the current block has no terminator then RegionEnd == 430 // MBB->end() for the bottom region. 431 // 432 // The Scheduler may insert instructions during either schedule() or 433 // exitRegion(), even for empty regions. So the local iterators 'I' and 434 // 'RegionEnd' are invalid across these calls. 435 // 436 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 437 // as a single instruction. 438 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 439 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 440 441 // Avoid decrementing RegionEnd for blocks with no terminator. 442 if (RegionEnd != MBB->end() || 443 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 444 --RegionEnd; 445 } 446 447 // The next region starts above the previous region. Look backward in the 448 // instruction stream until we find the nearest boundary. 449 unsigned NumRegionInstrs = 0; 450 MachineBasicBlock::iterator I = RegionEnd; 451 for (;I != MBB->begin(); --I) { 452 MachineInstr &MI = *std::prev(I); 453 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 454 break; 455 if (!MI.isDebugValue()) 456 ++NumRegionInstrs; 457 } 458 // Notify the scheduler of the region, even if we may skip scheduling 459 // it. Perhaps it still needs to be bundled. 460 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 461 462 // Skip empty scheduling regions (0 or 1 schedulable instructions). 463 if (I == RegionEnd || I == std::prev(RegionEnd)) { 464 // Close the current region. Bundle the terminator if needed. 465 // This invalidates 'RegionEnd' and 'I'. 466 Scheduler.exitRegion(); 467 continue; 468 } 469 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 470 DEBUG(dbgs() << MF->getName() 471 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 472 << "\n From: " << *I << " To: "; 473 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 474 else dbgs() << "End"; 475 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 476 if (DumpCriticalPathLength) { 477 errs() << MF->getName(); 478 errs() << ":BB# " << MBB->getNumber(); 479 errs() << " " << MBB->getName() << " \n"; 480 } 481 482 // Schedule a region: possibly reorder instructions. 483 // This invalidates 'RegionEnd' and 'I'. 484 Scheduler.schedule(); 485 486 // Close the current region. 487 Scheduler.exitRegion(); 488 489 // Scheduling has invalidated the current iterator 'I'. Ask the 490 // scheduler for the top of it's scheduled region. 491 RegionEnd = Scheduler.begin(); 492 } 493 Scheduler.finishBlock(); 494 // FIXME: Ideally, no further passes should rely on kill flags. However, 495 // thumb2 size reduction is currently an exception, so the PostMIScheduler 496 // needs to do this. 497 if (FixKillFlags) 498 Scheduler.fixupKills(&*MBB); 499 } 500 Scheduler.finalizeSchedule(); 501 } 502 503 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 504 // unimplemented 505 } 506 507 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 508 LLVM_DUMP_METHOD void ReadyQueue::dump() { 509 dbgs() << "Queue " << Name << ": "; 510 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 511 dbgs() << Queue[i]->NodeNum << " "; 512 dbgs() << "\n"; 513 } 514 #endif 515 516 //===----------------------------------------------------------------------===// 517 // ScheduleDAGMI - Basic machine instruction scheduling. This is 518 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 519 // virtual registers. 520 // ===----------------------------------------------------------------------===/ 521 522 // Provide a vtable anchor. 523 ScheduleDAGMI::~ScheduleDAGMI() { 524 } 525 526 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 527 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 528 } 529 530 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 531 if (SuccSU != &ExitSU) { 532 // Do not use WillCreateCycle, it assumes SD scheduling. 533 // If Pred is reachable from Succ, then the edge creates a cycle. 534 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 535 return false; 536 Topo.AddPred(SuccSU, PredDep.getSUnit()); 537 } 538 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 539 // Return true regardless of whether a new edge needed to be inserted. 540 return true; 541 } 542 543 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 544 /// NumPredsLeft reaches zero, release the successor node. 545 /// 546 /// FIXME: Adjust SuccSU height based on MinLatency. 547 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 548 SUnit *SuccSU = SuccEdge->getSUnit(); 549 550 if (SuccEdge->isWeak()) { 551 --SuccSU->WeakPredsLeft; 552 if (SuccEdge->isCluster()) 553 NextClusterSucc = SuccSU; 554 return; 555 } 556 #ifndef NDEBUG 557 if (SuccSU->NumPredsLeft == 0) { 558 dbgs() << "*** Scheduling failed! ***\n"; 559 SuccSU->dump(this); 560 dbgs() << " has been released too many times!\n"; 561 llvm_unreachable(nullptr); 562 } 563 #endif 564 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 565 // CurrCycle may have advanced since then. 566 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 567 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 568 569 --SuccSU->NumPredsLeft; 570 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 571 SchedImpl->releaseTopNode(SuccSU); 572 } 573 574 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 575 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 576 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 577 I != E; ++I) { 578 releaseSucc(SU, &*I); 579 } 580 } 581 582 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 583 /// NumSuccsLeft reaches zero, release the predecessor node. 584 /// 585 /// FIXME: Adjust PredSU height based on MinLatency. 586 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 587 SUnit *PredSU = PredEdge->getSUnit(); 588 589 if (PredEdge->isWeak()) { 590 --PredSU->WeakSuccsLeft; 591 if (PredEdge->isCluster()) 592 NextClusterPred = PredSU; 593 return; 594 } 595 #ifndef NDEBUG 596 if (PredSU->NumSuccsLeft == 0) { 597 dbgs() << "*** Scheduling failed! ***\n"; 598 PredSU->dump(this); 599 dbgs() << " has been released too many times!\n"; 600 llvm_unreachable(nullptr); 601 } 602 #endif 603 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 604 // CurrCycle may have advanced since then. 605 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 606 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 607 608 --PredSU->NumSuccsLeft; 609 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 610 SchedImpl->releaseBottomNode(PredSU); 611 } 612 613 /// releasePredecessors - Call releasePred on each of SU's predecessors. 614 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 615 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 616 I != E; ++I) { 617 releasePred(SU, &*I); 618 } 619 } 620 621 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 622 /// crossing a scheduling boundary. [begin, end) includes all instructions in 623 /// the region, including the boundary itself and single-instruction regions 624 /// that don't get scheduled. 625 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 626 MachineBasicBlock::iterator begin, 627 MachineBasicBlock::iterator end, 628 unsigned regioninstrs) 629 { 630 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 631 632 SchedImpl->initPolicy(begin, end, regioninstrs); 633 } 634 635 /// This is normally called from the main scheduler loop but may also be invoked 636 /// by the scheduling strategy to perform additional code motion. 637 void ScheduleDAGMI::moveInstruction( 638 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 639 // Advance RegionBegin if the first instruction moves down. 640 if (&*RegionBegin == MI) 641 ++RegionBegin; 642 643 // Update the instruction stream. 644 BB->splice(InsertPos, BB, MI); 645 646 // Update LiveIntervals 647 if (LIS) 648 LIS->handleMove(*MI, /*UpdateFlags=*/true); 649 650 // Recede RegionBegin if an instruction moves above the first. 651 if (RegionBegin == InsertPos) 652 RegionBegin = MI; 653 } 654 655 bool ScheduleDAGMI::checkSchedLimit() { 656 #ifndef NDEBUG 657 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 658 CurrentTop = CurrentBottom; 659 return false; 660 } 661 ++NumInstrsScheduled; 662 #endif 663 return true; 664 } 665 666 /// Per-region scheduling driver, called back from 667 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 668 /// does not consider liveness or register pressure. It is useful for PostRA 669 /// scheduling and potentially other custom schedulers. 670 void ScheduleDAGMI::schedule() { 671 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 672 DEBUG(SchedImpl->dumpPolicy()); 673 674 // Build the DAG. 675 buildSchedGraph(AA); 676 677 Topo.InitDAGTopologicalSorting(); 678 679 postprocessDAG(); 680 681 SmallVector<SUnit*, 8> TopRoots, BotRoots; 682 findRootsAndBiasEdges(TopRoots, BotRoots); 683 684 // Initialize the strategy before modifying the DAG. 685 // This may initialize a DFSResult to be used for queue priority. 686 SchedImpl->initialize(this); 687 688 DEBUG( 689 if (EntrySU.getInstr() != nullptr) 690 EntrySU.dumpAll(this); 691 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 692 SUnits[su].dumpAll(this); 693 if (ExitSU.getInstr() != nullptr) 694 ExitSU.dumpAll(this); 695 ); 696 if (ViewMISchedDAGs) viewGraph(); 697 698 // Initialize ready queues now that the DAG and priority data are finalized. 699 initQueues(TopRoots, BotRoots); 700 701 bool IsTopNode = false; 702 while (true) { 703 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 704 SUnit *SU = SchedImpl->pickNode(IsTopNode); 705 if (!SU) break; 706 707 assert(!SU->isScheduled && "Node already scheduled"); 708 if (!checkSchedLimit()) 709 break; 710 711 MachineInstr *MI = SU->getInstr(); 712 if (IsTopNode) { 713 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 714 if (&*CurrentTop == MI) 715 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 716 else 717 moveInstruction(MI, CurrentTop); 718 } else { 719 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 720 MachineBasicBlock::iterator priorII = 721 priorNonDebug(CurrentBottom, CurrentTop); 722 if (&*priorII == MI) 723 CurrentBottom = priorII; 724 else { 725 if (&*CurrentTop == MI) 726 CurrentTop = nextIfDebug(++CurrentTop, priorII); 727 moveInstruction(MI, CurrentBottom); 728 CurrentBottom = MI; 729 } 730 } 731 // Notify the scheduling strategy before updating the DAG. 732 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 733 // runs, it can then use the accurate ReadyCycle time to determine whether 734 // newly released nodes can move to the readyQ. 735 SchedImpl->schedNode(SU, IsTopNode); 736 737 updateQueues(SU, IsTopNode); 738 } 739 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 740 741 placeDebugValues(); 742 743 DEBUG({ 744 unsigned BBNum = begin()->getParent()->getNumber(); 745 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 746 dumpSchedule(); 747 dbgs() << '\n'; 748 }); 749 } 750 751 /// Apply each ScheduleDAGMutation step in order. 752 void ScheduleDAGMI::postprocessDAG() { 753 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 754 Mutations[i]->apply(this); 755 } 756 } 757 758 void ScheduleDAGMI:: 759 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 760 SmallVectorImpl<SUnit*> &BotRoots) { 761 for (std::vector<SUnit>::iterator 762 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 763 SUnit *SU = &(*I); 764 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 765 766 // Order predecessors so DFSResult follows the critical path. 767 SU->biasCriticalPath(); 768 769 // A SUnit is ready to top schedule if it has no predecessors. 770 if (!I->NumPredsLeft) 771 TopRoots.push_back(SU); 772 // A SUnit is ready to bottom schedule if it has no successors. 773 if (!I->NumSuccsLeft) 774 BotRoots.push_back(SU); 775 } 776 ExitSU.biasCriticalPath(); 777 } 778 779 /// Identify DAG roots and setup scheduler queues. 780 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 781 ArrayRef<SUnit*> BotRoots) { 782 NextClusterSucc = nullptr; 783 NextClusterPred = nullptr; 784 785 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 786 // 787 // Nodes with unreleased weak edges can still be roots. 788 // Release top roots in forward order. 789 for (SmallVectorImpl<SUnit*>::const_iterator 790 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 791 SchedImpl->releaseTopNode(*I); 792 } 793 // Release bottom roots in reverse order so the higher priority nodes appear 794 // first. This is more natural and slightly more efficient. 795 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 796 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 797 SchedImpl->releaseBottomNode(*I); 798 } 799 800 releaseSuccessors(&EntrySU); 801 releasePredecessors(&ExitSU); 802 803 SchedImpl->registerRoots(); 804 805 // Advance past initial DebugValues. 806 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 807 CurrentBottom = RegionEnd; 808 } 809 810 /// Update scheduler queues after scheduling an instruction. 811 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 812 // Release dependent instructions for scheduling. 813 if (IsTopNode) 814 releaseSuccessors(SU); 815 else 816 releasePredecessors(SU); 817 818 SU->isScheduled = true; 819 } 820 821 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 822 void ScheduleDAGMI::placeDebugValues() { 823 // If first instruction was a DBG_VALUE then put it back. 824 if (FirstDbgValue) { 825 BB->splice(RegionBegin, BB, FirstDbgValue); 826 RegionBegin = FirstDbgValue; 827 } 828 829 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 830 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 831 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 832 MachineInstr *DbgValue = P.first; 833 MachineBasicBlock::iterator OrigPrevMI = P.second; 834 if (&*RegionBegin == DbgValue) 835 ++RegionBegin; 836 BB->splice(++OrigPrevMI, BB, DbgValue); 837 if (OrigPrevMI == std::prev(RegionEnd)) 838 RegionEnd = DbgValue; 839 } 840 DbgValues.clear(); 841 FirstDbgValue = nullptr; 842 } 843 844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 845 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 846 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 847 if (SUnit *SU = getSUnit(&(*MI))) 848 SU->dump(this); 849 else 850 dbgs() << "Missing SUnit\n"; 851 } 852 } 853 #endif 854 855 //===----------------------------------------------------------------------===// 856 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 857 // preservation. 858 //===----------------------------------------------------------------------===// 859 860 ScheduleDAGMILive::~ScheduleDAGMILive() { 861 delete DFSResult; 862 } 863 864 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 865 const MachineInstr &MI = *SU.getInstr(); 866 for (const MachineOperand &MO : MI.operands()) { 867 if (!MO.isReg()) 868 continue; 869 if (!MO.readsReg()) 870 continue; 871 if (TrackLaneMasks && !MO.isUse()) 872 continue; 873 874 unsigned Reg = MO.getReg(); 875 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 876 continue; 877 878 // Ignore re-defs. 879 if (TrackLaneMasks) { 880 bool FoundDef = false; 881 for (const MachineOperand &MO2 : MI.operands()) { 882 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 883 FoundDef = true; 884 break; 885 } 886 } 887 if (FoundDef) 888 continue; 889 } 890 891 // Record this local VReg use. 892 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 893 for (; UI != VRegUses.end(); ++UI) { 894 if (UI->SU == &SU) 895 break; 896 } 897 if (UI == VRegUses.end()) 898 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 899 } 900 } 901 902 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 903 /// crossing a scheduling boundary. [begin, end) includes all instructions in 904 /// the region, including the boundary itself and single-instruction regions 905 /// that don't get scheduled. 906 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 907 MachineBasicBlock::iterator begin, 908 MachineBasicBlock::iterator end, 909 unsigned regioninstrs) 910 { 911 // ScheduleDAGMI initializes SchedImpl's per-region policy. 912 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 913 914 // For convenience remember the end of the liveness region. 915 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 916 917 SUPressureDiffs.clear(); 918 919 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 920 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 921 922 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 923 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 924 } 925 926 // Setup the register pressure trackers for the top scheduled top and bottom 927 // scheduled regions. 928 void ScheduleDAGMILive::initRegPressure() { 929 VRegUses.clear(); 930 VRegUses.setUniverse(MRI.getNumVirtRegs()); 931 for (SUnit &SU : SUnits) 932 collectVRegUses(SU); 933 934 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 935 ShouldTrackLaneMasks, false); 936 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 937 ShouldTrackLaneMasks, false); 938 939 // Close the RPTracker to finalize live ins. 940 RPTracker.closeRegion(); 941 942 DEBUG(RPTracker.dump()); 943 944 // Initialize the live ins and live outs. 945 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 946 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 947 948 // Close one end of the tracker so we can call 949 // getMaxUpward/DownwardPressureDelta before advancing across any 950 // instructions. This converts currently live regs into live ins/outs. 951 TopRPTracker.closeTop(); 952 BotRPTracker.closeBottom(); 953 954 BotRPTracker.initLiveThru(RPTracker); 955 if (!BotRPTracker.getLiveThru().empty()) { 956 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 957 DEBUG(dbgs() << "Live Thru: "; 958 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 959 }; 960 961 // For each live out vreg reduce the pressure change associated with other 962 // uses of the same vreg below the live-out reaching def. 963 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 964 965 // Account for liveness generated by the region boundary. 966 if (LiveRegionEnd != RegionEnd) { 967 SmallVector<RegisterMaskPair, 8> LiveUses; 968 BotRPTracker.recede(&LiveUses); 969 updatePressureDiffs(LiveUses); 970 } 971 972 DEBUG( 973 dbgs() << "Top Pressure:\n"; 974 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 975 dbgs() << "Bottom Pressure:\n"; 976 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 977 ); 978 979 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 980 981 // Cache the list of excess pressure sets in this region. This will also track 982 // the max pressure in the scheduled code for these sets. 983 RegionCriticalPSets.clear(); 984 const std::vector<unsigned> &RegionPressure = 985 RPTracker.getPressure().MaxSetPressure; 986 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 987 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 988 if (RegionPressure[i] > Limit) { 989 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 990 << " Limit " << Limit 991 << " Actual " << RegionPressure[i] << "\n"); 992 RegionCriticalPSets.push_back(PressureChange(i)); 993 } 994 } 995 DEBUG(dbgs() << "Excess PSets: "; 996 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 997 dbgs() << TRI->getRegPressureSetName( 998 RegionCriticalPSets[i].getPSet()) << " "; 999 dbgs() << "\n"); 1000 } 1001 1002 void ScheduleDAGMILive:: 1003 updateScheduledPressure(const SUnit *SU, 1004 const std::vector<unsigned> &NewMaxPressure) { 1005 const PressureDiff &PDiff = getPressureDiff(SU); 1006 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1007 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 1008 I != E; ++I) { 1009 if (!I->isValid()) 1010 break; 1011 unsigned ID = I->getPSet(); 1012 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1013 ++CritIdx; 1014 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1015 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1016 && NewMaxPressure[ID] <= INT16_MAX) 1017 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1018 } 1019 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1020 if (NewMaxPressure[ID] >= Limit - 2) { 1021 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1022 << NewMaxPressure[ID] 1023 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1024 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1025 } 1026 } 1027 } 1028 1029 /// Update the PressureDiff array for liveness after scheduling this 1030 /// instruction. 1031 void ScheduleDAGMILive::updatePressureDiffs( 1032 ArrayRef<RegisterMaskPair> LiveUses) { 1033 for (const RegisterMaskPair &P : LiveUses) { 1034 unsigned Reg = P.RegUnit; 1035 /// FIXME: Currently assuming single-use physregs. 1036 if (!TRI->isVirtualRegister(Reg)) 1037 continue; 1038 1039 if (ShouldTrackLaneMasks) { 1040 // If the register has just become live then other uses won't change 1041 // this fact anymore => decrement pressure. 1042 // If the register has just become dead then other uses make it come 1043 // back to life => increment pressure. 1044 bool Decrement = P.LaneMask.any(); 1045 1046 for (const VReg2SUnit &V2SU 1047 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1048 SUnit &SU = *V2SU.SU; 1049 if (SU.isScheduled || &SU == &ExitSU) 1050 continue; 1051 1052 PressureDiff &PDiff = getPressureDiff(&SU); 1053 PDiff.addPressureChange(Reg, Decrement, &MRI); 1054 DEBUG( 1055 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1056 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1057 << ' ' << *SU.getInstr(); 1058 dbgs() << " to "; 1059 PDiff.dump(*TRI); 1060 ); 1061 } 1062 } else { 1063 assert(P.LaneMask.any()); 1064 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1065 // This may be called before CurrentBottom has been initialized. However, 1066 // BotRPTracker must have a valid position. We want the value live into the 1067 // instruction or live out of the block, so ask for the previous 1068 // instruction's live-out. 1069 const LiveInterval &LI = LIS->getInterval(Reg); 1070 VNInfo *VNI; 1071 MachineBasicBlock::const_iterator I = 1072 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1073 if (I == BB->end()) 1074 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1075 else { 1076 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1077 VNI = LRQ.valueIn(); 1078 } 1079 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1080 assert(VNI && "No live value at use."); 1081 for (const VReg2SUnit &V2SU 1082 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1083 SUnit *SU = V2SU.SU; 1084 // If this use comes before the reaching def, it cannot be a last use, 1085 // so decrease its pressure change. 1086 if (!SU->isScheduled && SU != &ExitSU) { 1087 LiveQueryResult LRQ = 1088 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1089 if (LRQ.valueIn() == VNI) { 1090 PressureDiff &PDiff = getPressureDiff(SU); 1091 PDiff.addPressureChange(Reg, true, &MRI); 1092 DEBUG( 1093 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1094 << *SU->getInstr(); 1095 dbgs() << " to "; 1096 PDiff.dump(*TRI); 1097 ); 1098 } 1099 } 1100 } 1101 } 1102 } 1103 } 1104 1105 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1106 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1107 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1108 /// 1109 /// This is a skeletal driver, with all the functionality pushed into helpers, 1110 /// so that it can be easily extended by experimental schedulers. Generally, 1111 /// implementing MachineSchedStrategy should be sufficient to implement a new 1112 /// scheduling algorithm. However, if a scheduler further subclasses 1113 /// ScheduleDAGMILive then it will want to override this virtual method in order 1114 /// to update any specialized state. 1115 void ScheduleDAGMILive::schedule() { 1116 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1117 DEBUG(SchedImpl->dumpPolicy()); 1118 buildDAGWithRegPressure(); 1119 1120 Topo.InitDAGTopologicalSorting(); 1121 1122 postprocessDAG(); 1123 1124 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1125 findRootsAndBiasEdges(TopRoots, BotRoots); 1126 1127 // Initialize the strategy before modifying the DAG. 1128 // This may initialize a DFSResult to be used for queue priority. 1129 SchedImpl->initialize(this); 1130 1131 DEBUG( 1132 if (EntrySU.getInstr() != nullptr) 1133 EntrySU.dumpAll(this); 1134 for (const SUnit &SU : SUnits) { 1135 SU.dumpAll(this); 1136 if (ShouldTrackPressure) { 1137 dbgs() << " Pressure Diff : "; 1138 getPressureDiff(&SU).dump(*TRI); 1139 } 1140 dbgs() << '\n'; 1141 } 1142 if (ExitSU.getInstr() != nullptr) 1143 ExitSU.dumpAll(this); 1144 ); 1145 if (ViewMISchedDAGs) viewGraph(); 1146 1147 // Initialize ready queues now that the DAG and priority data are finalized. 1148 initQueues(TopRoots, BotRoots); 1149 1150 bool IsTopNode = false; 1151 while (true) { 1152 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1153 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1154 if (!SU) break; 1155 1156 assert(!SU->isScheduled && "Node already scheduled"); 1157 if (!checkSchedLimit()) 1158 break; 1159 1160 scheduleMI(SU, IsTopNode); 1161 1162 if (DFSResult) { 1163 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1164 if (!ScheduledTrees.test(SubtreeID)) { 1165 ScheduledTrees.set(SubtreeID); 1166 DFSResult->scheduleTree(SubtreeID); 1167 SchedImpl->scheduleTree(SubtreeID); 1168 } 1169 } 1170 1171 // Notify the scheduling strategy after updating the DAG. 1172 SchedImpl->schedNode(SU, IsTopNode); 1173 1174 updateQueues(SU, IsTopNode); 1175 } 1176 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1177 1178 placeDebugValues(); 1179 1180 DEBUG({ 1181 unsigned BBNum = begin()->getParent()->getNumber(); 1182 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1183 dumpSchedule(); 1184 dbgs() << '\n'; 1185 }); 1186 } 1187 1188 /// Build the DAG and setup three register pressure trackers. 1189 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1190 if (!ShouldTrackPressure) { 1191 RPTracker.reset(); 1192 RegionCriticalPSets.clear(); 1193 buildSchedGraph(AA); 1194 return; 1195 } 1196 1197 // Initialize the register pressure tracker used by buildSchedGraph. 1198 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1199 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1200 1201 // Account for liveness generate by the region boundary. 1202 if (LiveRegionEnd != RegionEnd) 1203 RPTracker.recede(); 1204 1205 // Build the DAG, and compute current register pressure. 1206 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1207 1208 // Initialize top/bottom trackers after computing region pressure. 1209 initRegPressure(); 1210 } 1211 1212 void ScheduleDAGMILive::computeDFSResult() { 1213 if (!DFSResult) 1214 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1215 DFSResult->clear(); 1216 ScheduledTrees.clear(); 1217 DFSResult->resize(SUnits.size()); 1218 DFSResult->compute(SUnits); 1219 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1220 } 1221 1222 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1223 /// only provides the critical path for single block loops. To handle loops that 1224 /// span blocks, we could use the vreg path latencies provided by 1225 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1226 /// available for use in the scheduler. 1227 /// 1228 /// The cyclic path estimation identifies a def-use pair that crosses the back 1229 /// edge and considers the depth and height of the nodes. For example, consider 1230 /// the following instruction sequence where each instruction has unit latency 1231 /// and defines an epomymous virtual register: 1232 /// 1233 /// a->b(a,c)->c(b)->d(c)->exit 1234 /// 1235 /// The cyclic critical path is a two cycles: b->c->b 1236 /// The acyclic critical path is four cycles: a->b->c->d->exit 1237 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1238 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1239 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1240 /// LiveInDepth = depth(b) = len(a->b) = 1 1241 /// 1242 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1243 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1244 /// CyclicCriticalPath = min(2, 2) = 2 1245 /// 1246 /// This could be relevant to PostRA scheduling, but is currently implemented 1247 /// assuming LiveIntervals. 1248 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1249 // This only applies to single block loop. 1250 if (!BB->isSuccessor(BB)) 1251 return 0; 1252 1253 unsigned MaxCyclicLatency = 0; 1254 // Visit each live out vreg def to find def/use pairs that cross iterations. 1255 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1256 unsigned Reg = P.RegUnit; 1257 if (!TRI->isVirtualRegister(Reg)) 1258 continue; 1259 const LiveInterval &LI = LIS->getInterval(Reg); 1260 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1261 if (!DefVNI) 1262 continue; 1263 1264 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1265 const SUnit *DefSU = getSUnit(DefMI); 1266 if (!DefSU) 1267 continue; 1268 1269 unsigned LiveOutHeight = DefSU->getHeight(); 1270 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1271 // Visit all local users of the vreg def. 1272 for (const VReg2SUnit &V2SU 1273 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1274 SUnit *SU = V2SU.SU; 1275 if (SU == &ExitSU) 1276 continue; 1277 1278 // Only consider uses of the phi. 1279 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1280 if (!LRQ.valueIn()->isPHIDef()) 1281 continue; 1282 1283 // Assume that a path spanning two iterations is a cycle, which could 1284 // overestimate in strange cases. This allows cyclic latency to be 1285 // estimated as the minimum slack of the vreg's depth or height. 1286 unsigned CyclicLatency = 0; 1287 if (LiveOutDepth > SU->getDepth()) 1288 CyclicLatency = LiveOutDepth - SU->getDepth(); 1289 1290 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1291 if (LiveInHeight > LiveOutHeight) { 1292 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1293 CyclicLatency = LiveInHeight - LiveOutHeight; 1294 } else 1295 CyclicLatency = 0; 1296 1297 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1298 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1299 if (CyclicLatency > MaxCyclicLatency) 1300 MaxCyclicLatency = CyclicLatency; 1301 } 1302 } 1303 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1304 return MaxCyclicLatency; 1305 } 1306 1307 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1308 /// the Top RP tracker in case the region beginning has changed. 1309 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1310 ArrayRef<SUnit*> BotRoots) { 1311 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1312 if (ShouldTrackPressure) { 1313 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1314 TopRPTracker.setPos(CurrentTop); 1315 } 1316 } 1317 1318 /// Move an instruction and update register pressure. 1319 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1320 // Move the instruction to its new location in the instruction stream. 1321 MachineInstr *MI = SU->getInstr(); 1322 1323 if (IsTopNode) { 1324 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1325 if (&*CurrentTop == MI) 1326 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1327 else { 1328 moveInstruction(MI, CurrentTop); 1329 TopRPTracker.setPos(MI); 1330 } 1331 1332 if (ShouldTrackPressure) { 1333 // Update top scheduled pressure. 1334 RegisterOperands RegOpers; 1335 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1336 if (ShouldTrackLaneMasks) { 1337 // Adjust liveness and add missing dead+read-undef flags. 1338 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1339 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1340 } else { 1341 // Adjust for missing dead-def flags. 1342 RegOpers.detectDeadDefs(*MI, *LIS); 1343 } 1344 1345 TopRPTracker.advance(RegOpers); 1346 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1347 DEBUG( 1348 dbgs() << "Top Pressure:\n"; 1349 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1350 ); 1351 1352 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1353 } 1354 } else { 1355 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1356 MachineBasicBlock::iterator priorII = 1357 priorNonDebug(CurrentBottom, CurrentTop); 1358 if (&*priorII == MI) 1359 CurrentBottom = priorII; 1360 else { 1361 if (&*CurrentTop == MI) { 1362 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1363 TopRPTracker.setPos(CurrentTop); 1364 } 1365 moveInstruction(MI, CurrentBottom); 1366 CurrentBottom = MI; 1367 } 1368 if (ShouldTrackPressure) { 1369 RegisterOperands RegOpers; 1370 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1371 if (ShouldTrackLaneMasks) { 1372 // Adjust liveness and add missing dead+read-undef flags. 1373 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1374 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1375 } else { 1376 // Adjust for missing dead-def flags. 1377 RegOpers.detectDeadDefs(*MI, *LIS); 1378 } 1379 1380 BotRPTracker.recedeSkipDebugValues(); 1381 SmallVector<RegisterMaskPair, 8> LiveUses; 1382 BotRPTracker.recede(RegOpers, &LiveUses); 1383 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1384 DEBUG( 1385 dbgs() << "Bottom Pressure:\n"; 1386 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1387 ); 1388 1389 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1390 updatePressureDiffs(LiveUses); 1391 } 1392 } 1393 } 1394 1395 //===----------------------------------------------------------------------===// 1396 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1397 //===----------------------------------------------------------------------===// 1398 1399 namespace { 1400 /// \brief Post-process the DAG to create cluster edges between neighboring 1401 /// loads or between neighboring stores. 1402 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1403 struct MemOpInfo { 1404 SUnit *SU; 1405 unsigned BaseReg; 1406 int64_t Offset; 1407 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1408 : SU(su), BaseReg(reg), Offset(ofs) {} 1409 1410 bool operator<(const MemOpInfo&RHS) const { 1411 return std::tie(BaseReg, Offset, SU->NodeNum) < 1412 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1413 } 1414 }; 1415 1416 const TargetInstrInfo *TII; 1417 const TargetRegisterInfo *TRI; 1418 bool IsLoad; 1419 1420 public: 1421 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1422 const TargetRegisterInfo *tri, bool IsLoad) 1423 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1424 1425 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1426 1427 protected: 1428 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1429 }; 1430 1431 class StoreClusterMutation : public BaseMemOpClusterMutation { 1432 public: 1433 StoreClusterMutation(const TargetInstrInfo *tii, 1434 const TargetRegisterInfo *tri) 1435 : BaseMemOpClusterMutation(tii, tri, false) {} 1436 }; 1437 1438 class LoadClusterMutation : public BaseMemOpClusterMutation { 1439 public: 1440 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1441 : BaseMemOpClusterMutation(tii, tri, true) {} 1442 }; 1443 } // anonymous 1444 1445 namespace llvm { 1446 1447 std::unique_ptr<ScheduleDAGMutation> 1448 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1449 const TargetRegisterInfo *TRI) { 1450 return EnableMemOpCluster ? make_unique<LoadClusterMutation>(TII, TRI) 1451 : nullptr; 1452 } 1453 1454 std::unique_ptr<ScheduleDAGMutation> 1455 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1456 const TargetRegisterInfo *TRI) { 1457 return EnableMemOpCluster ? make_unique<StoreClusterMutation>(TII, TRI) 1458 : nullptr; 1459 } 1460 1461 } // namespace llvm 1462 1463 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1464 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1465 SmallVector<MemOpInfo, 32> MemOpRecords; 1466 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1467 SUnit *SU = MemOps[Idx]; 1468 unsigned BaseReg; 1469 int64_t Offset; 1470 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1471 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1472 } 1473 if (MemOpRecords.size() < 2) 1474 return; 1475 1476 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1477 unsigned ClusterLength = 1; 1478 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1479 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1480 ClusterLength = 1; 1481 continue; 1482 } 1483 1484 SUnit *SUa = MemOpRecords[Idx].SU; 1485 SUnit *SUb = MemOpRecords[Idx+1].SU; 1486 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1487 ClusterLength) && 1488 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1489 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1490 << SUb->NodeNum << ")\n"); 1491 // Copy successor edges from SUa to SUb. Interleaving computation 1492 // dependent on SUa can prevent load combining due to register reuse. 1493 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1494 // loads should have effectively the same inputs. 1495 for (SUnit::const_succ_iterator 1496 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1497 if (SI->getSUnit() == SUb) 1498 continue; 1499 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1500 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1501 } 1502 ++ClusterLength; 1503 } else 1504 ClusterLength = 1; 1505 } 1506 } 1507 1508 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1509 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1510 1511 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1512 1513 // Map DAG NodeNum to store chain ID. 1514 DenseMap<unsigned, unsigned> StoreChainIDs; 1515 // Map each store chain to a set of dependent MemOps. 1516 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1517 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1518 SUnit *SU = &DAG->SUnits[Idx]; 1519 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1520 (!IsLoad && !SU->getInstr()->mayStore())) 1521 continue; 1522 1523 unsigned ChainPredID = DAG->SUnits.size(); 1524 for (SUnit::const_pred_iterator 1525 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1526 if (PI->isCtrl()) { 1527 ChainPredID = PI->getSUnit()->NodeNum; 1528 break; 1529 } 1530 } 1531 // Check if this chain-like pred has been seen 1532 // before. ChainPredID==MaxNodeID at the top of the schedule. 1533 unsigned NumChains = StoreChainDependents.size(); 1534 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1535 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1536 if (Result.second) 1537 StoreChainDependents.resize(NumChains + 1); 1538 StoreChainDependents[Result.first->second].push_back(SU); 1539 } 1540 1541 // Iterate over the store chains. 1542 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1543 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1544 } 1545 1546 //===----------------------------------------------------------------------===// 1547 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1548 //===----------------------------------------------------------------------===// 1549 1550 namespace { 1551 /// \brief Post-process the DAG to create cluster edges between instructions 1552 /// that may be fused by the processor into a single operation. 1553 class MacroFusion : public ScheduleDAGMutation { 1554 const TargetInstrInfo &TII; 1555 public: 1556 MacroFusion(const TargetInstrInfo &TII) 1557 : TII(TII) {} 1558 1559 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1560 }; 1561 } // anonymous 1562 1563 namespace llvm { 1564 1565 std::unique_ptr<ScheduleDAGMutation> 1566 createMacroFusionDAGMutation(const TargetInstrInfo *TII) { 1567 return EnableMacroFusion ? make_unique<MacroFusion>(*TII) : nullptr; 1568 } 1569 1570 } // namespace llvm 1571 1572 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1573 /// fused operations. 1574 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1575 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1576 1577 // For now, assume targets can only fuse with the branch. 1578 SUnit &ExitSU = DAG->ExitSU; 1579 MachineInstr *Branch = ExitSU.getInstr(); 1580 if (!Branch) 1581 return; 1582 1583 for (SDep &PredDep : ExitSU.Preds) { 1584 if (PredDep.isWeak()) 1585 continue; 1586 SUnit &SU = *PredDep.getSUnit(); 1587 MachineInstr &Pred = *SU.getInstr(); 1588 if (!TII.shouldScheduleAdjacent(Pred, *Branch)) 1589 continue; 1590 1591 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1592 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1593 // need to copy predecessor edges from ExitSU to SU, since top-down 1594 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1595 // of SU, we could create an artificial edge from the deepest root, but it 1596 // hasn't been needed yet. 1597 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1598 (void)Success; 1599 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1600 1601 // Adjust latency of data deps between the nodes. 1602 for (SDep &PredDep : ExitSU.Preds) { 1603 if (PredDep.getSUnit() == &SU) 1604 PredDep.setLatency(0); 1605 } 1606 for (SDep &SuccDep : SU.Succs) { 1607 if (SuccDep.getSUnit() == &ExitSU) 1608 SuccDep.setLatency(0); 1609 } 1610 1611 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1612 break; 1613 } 1614 } 1615 1616 //===----------------------------------------------------------------------===// 1617 // CopyConstrain - DAG post-processing to encourage copy elimination. 1618 //===----------------------------------------------------------------------===// 1619 1620 namespace { 1621 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1622 /// the one use that defines the copy's source vreg, most likely an induction 1623 /// variable increment. 1624 class CopyConstrain : public ScheduleDAGMutation { 1625 // Transient state. 1626 SlotIndex RegionBeginIdx; 1627 // RegionEndIdx is the slot index of the last non-debug instruction in the 1628 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1629 SlotIndex RegionEndIdx; 1630 public: 1631 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1632 1633 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1634 1635 protected: 1636 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1637 }; 1638 } // anonymous 1639 1640 namespace llvm { 1641 1642 std::unique_ptr<ScheduleDAGMutation> 1643 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1644 const TargetRegisterInfo *TRI) { 1645 return make_unique<CopyConstrain>(TII, TRI); 1646 } 1647 1648 } // namespace llvm 1649 1650 /// constrainLocalCopy handles two possibilities: 1651 /// 1) Local src: 1652 /// I0: = dst 1653 /// I1: src = ... 1654 /// I2: = dst 1655 /// I3: dst = src (copy) 1656 /// (create pred->succ edges I0->I1, I2->I1) 1657 /// 1658 /// 2) Local copy: 1659 /// I0: dst = src (copy) 1660 /// I1: = dst 1661 /// I2: src = ... 1662 /// I3: = dst 1663 /// (create pred->succ edges I1->I2, I3->I2) 1664 /// 1665 /// Although the MachineScheduler is currently constrained to single blocks, 1666 /// this algorithm should handle extended blocks. An EBB is a set of 1667 /// contiguously numbered blocks such that the previous block in the EBB is 1668 /// always the single predecessor. 1669 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1670 LiveIntervals *LIS = DAG->getLIS(); 1671 MachineInstr *Copy = CopySU->getInstr(); 1672 1673 // Check for pure vreg copies. 1674 const MachineOperand &SrcOp = Copy->getOperand(1); 1675 unsigned SrcReg = SrcOp.getReg(); 1676 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1677 return; 1678 1679 const MachineOperand &DstOp = Copy->getOperand(0); 1680 unsigned DstReg = DstOp.getReg(); 1681 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1682 return; 1683 1684 // Check if either the dest or source is local. If it's live across a back 1685 // edge, it's not local. Note that if both vregs are live across the back 1686 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1687 // If both the copy's source and dest are local live intervals, then we 1688 // should treat the dest as the global for the purpose of adding 1689 // constraints. This adds edges from source's other uses to the copy. 1690 unsigned LocalReg = SrcReg; 1691 unsigned GlobalReg = DstReg; 1692 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1693 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1694 LocalReg = DstReg; 1695 GlobalReg = SrcReg; 1696 LocalLI = &LIS->getInterval(LocalReg); 1697 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1698 return; 1699 } 1700 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1701 1702 // Find the global segment after the start of the local LI. 1703 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1704 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1705 // local live range. We could create edges from other global uses to the local 1706 // start, but the coalescer should have already eliminated these cases, so 1707 // don't bother dealing with it. 1708 if (GlobalSegment == GlobalLI->end()) 1709 return; 1710 1711 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1712 // returned the next global segment. But if GlobalSegment overlaps with 1713 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1714 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1715 if (GlobalSegment->contains(LocalLI->beginIndex())) 1716 ++GlobalSegment; 1717 1718 if (GlobalSegment == GlobalLI->end()) 1719 return; 1720 1721 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1722 if (GlobalSegment != GlobalLI->begin()) { 1723 // Two address defs have no hole. 1724 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1725 GlobalSegment->start)) { 1726 return; 1727 } 1728 // If the prior global segment may be defined by the same two-address 1729 // instruction that also defines LocalLI, then can't make a hole here. 1730 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1731 LocalLI->beginIndex())) { 1732 return; 1733 } 1734 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1735 // it would be a disconnected component in the live range. 1736 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1737 "Disconnected LRG within the scheduling region."); 1738 } 1739 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1740 if (!GlobalDef) 1741 return; 1742 1743 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1744 if (!GlobalSU) 1745 return; 1746 1747 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1748 // constraining the uses of the last local def to precede GlobalDef. 1749 SmallVector<SUnit*,8> LocalUses; 1750 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1751 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1752 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1753 for (SUnit::const_succ_iterator 1754 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1755 I != E; ++I) { 1756 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1757 continue; 1758 if (I->getSUnit() == GlobalSU) 1759 continue; 1760 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1761 return; 1762 LocalUses.push_back(I->getSUnit()); 1763 } 1764 // Open the top of the GlobalLI hole by constraining any earlier global uses 1765 // to precede the start of LocalLI. 1766 SmallVector<SUnit*,8> GlobalUses; 1767 MachineInstr *FirstLocalDef = 1768 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1769 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1770 for (SUnit::const_pred_iterator 1771 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1772 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1773 continue; 1774 if (I->getSUnit() == FirstLocalSU) 1775 continue; 1776 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1777 return; 1778 GlobalUses.push_back(I->getSUnit()); 1779 } 1780 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1781 // Add the weak edges. 1782 for (SmallVectorImpl<SUnit*>::const_iterator 1783 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1784 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1785 << GlobalSU->NodeNum << ")\n"); 1786 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1787 } 1788 for (SmallVectorImpl<SUnit*>::const_iterator 1789 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1790 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1791 << FirstLocalSU->NodeNum << ")\n"); 1792 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1793 } 1794 } 1795 1796 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1797 /// copy elimination. 1798 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1799 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1800 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1801 1802 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1803 if (FirstPos == DAG->end()) 1804 return; 1805 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1806 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1807 *priorNonDebug(DAG->end(), DAG->begin())); 1808 1809 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1810 SUnit *SU = &DAG->SUnits[Idx]; 1811 if (!SU->getInstr()->isCopy()) 1812 continue; 1813 1814 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1815 } 1816 } 1817 1818 //===----------------------------------------------------------------------===// 1819 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1820 // and possibly other custom schedulers. 1821 //===----------------------------------------------------------------------===// 1822 1823 static const unsigned InvalidCycle = ~0U; 1824 1825 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1826 1827 void SchedBoundary::reset() { 1828 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1829 // Destroying and reconstructing it is very expensive though. So keep 1830 // invalid, placeholder HazardRecs. 1831 if (HazardRec && HazardRec->isEnabled()) { 1832 delete HazardRec; 1833 HazardRec = nullptr; 1834 } 1835 Available.clear(); 1836 Pending.clear(); 1837 CheckPending = false; 1838 CurrCycle = 0; 1839 CurrMOps = 0; 1840 MinReadyCycle = UINT_MAX; 1841 ExpectedLatency = 0; 1842 DependentLatency = 0; 1843 RetiredMOps = 0; 1844 MaxExecutedResCount = 0; 1845 ZoneCritResIdx = 0; 1846 IsResourceLimited = false; 1847 ReservedCycles.clear(); 1848 #ifndef NDEBUG 1849 // Track the maximum number of stall cycles that could arise either from the 1850 // latency of a DAG edge or the number of cycles that a processor resource is 1851 // reserved (SchedBoundary::ReservedCycles). 1852 MaxObservedStall = 0; 1853 #endif 1854 // Reserve a zero-count for invalid CritResIdx. 1855 ExecutedResCounts.resize(1); 1856 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1857 } 1858 1859 void SchedRemainder:: 1860 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1861 reset(); 1862 if (!SchedModel->hasInstrSchedModel()) 1863 return; 1864 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1865 for (std::vector<SUnit>::iterator 1866 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1867 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1868 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1869 * SchedModel->getMicroOpFactor(); 1870 for (TargetSchedModel::ProcResIter 1871 PI = SchedModel->getWriteProcResBegin(SC), 1872 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1873 unsigned PIdx = PI->ProcResourceIdx; 1874 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1875 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1876 } 1877 } 1878 } 1879 1880 void SchedBoundary:: 1881 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1882 reset(); 1883 DAG = dag; 1884 SchedModel = smodel; 1885 Rem = rem; 1886 if (SchedModel->hasInstrSchedModel()) { 1887 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1888 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1889 } 1890 } 1891 1892 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1893 /// these "soft stalls" differently than the hard stall cycles based on CPU 1894 /// resources and computed by checkHazard(). A fully in-order model 1895 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1896 /// available for scheduling until they are ready. However, a weaker in-order 1897 /// model may use this for heuristics. For example, if a processor has in-order 1898 /// behavior when reading certain resources, this may come into play. 1899 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1900 if (!SU->isUnbuffered) 1901 return 0; 1902 1903 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1904 if (ReadyCycle > CurrCycle) 1905 return ReadyCycle - CurrCycle; 1906 return 0; 1907 } 1908 1909 /// Compute the next cycle at which the given processor resource can be 1910 /// scheduled. 1911 unsigned SchedBoundary:: 1912 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1913 unsigned NextUnreserved = ReservedCycles[PIdx]; 1914 // If this resource has never been used, always return cycle zero. 1915 if (NextUnreserved == InvalidCycle) 1916 return 0; 1917 // For bottom-up scheduling add the cycles needed for the current operation. 1918 if (!isTop()) 1919 NextUnreserved += Cycles; 1920 return NextUnreserved; 1921 } 1922 1923 /// Does this SU have a hazard within the current instruction group. 1924 /// 1925 /// The scheduler supports two modes of hazard recognition. The first is the 1926 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1927 /// supports highly complicated in-order reservation tables 1928 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1929 /// 1930 /// The second is a streamlined mechanism that checks for hazards based on 1931 /// simple counters that the scheduler itself maintains. It explicitly checks 1932 /// for instruction dispatch limitations, including the number of micro-ops that 1933 /// can dispatch per cycle. 1934 /// 1935 /// TODO: Also check whether the SU must start a new group. 1936 bool SchedBoundary::checkHazard(SUnit *SU) { 1937 if (HazardRec->isEnabled() 1938 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1939 return true; 1940 } 1941 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1942 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1943 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1944 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1945 return true; 1946 } 1947 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1948 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1949 for (TargetSchedModel::ProcResIter 1950 PI = SchedModel->getWriteProcResBegin(SC), 1951 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1952 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1953 if (NRCycle > CurrCycle) { 1954 #ifndef NDEBUG 1955 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1956 #endif 1957 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1958 << SchedModel->getResourceName(PI->ProcResourceIdx) 1959 << "=" << NRCycle << "c\n"); 1960 return true; 1961 } 1962 } 1963 } 1964 return false; 1965 } 1966 1967 // Find the unscheduled node in ReadySUs with the highest latency. 1968 unsigned SchedBoundary:: 1969 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1970 SUnit *LateSU = nullptr; 1971 unsigned RemLatency = 0; 1972 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1973 I != E; ++I) { 1974 unsigned L = getUnscheduledLatency(*I); 1975 if (L > RemLatency) { 1976 RemLatency = L; 1977 LateSU = *I; 1978 } 1979 } 1980 if (LateSU) { 1981 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1982 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1983 } 1984 return RemLatency; 1985 } 1986 1987 // Count resources in this zone and the remaining unscheduled 1988 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1989 // resource index, or zero if the zone is issue limited. 1990 unsigned SchedBoundary:: 1991 getOtherResourceCount(unsigned &OtherCritIdx) { 1992 OtherCritIdx = 0; 1993 if (!SchedModel->hasInstrSchedModel()) 1994 return 0; 1995 1996 unsigned OtherCritCount = Rem->RemIssueCount 1997 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1998 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1999 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2000 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2001 PIdx != PEnd; ++PIdx) { 2002 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2003 if (OtherCount > OtherCritCount) { 2004 OtherCritCount = OtherCount; 2005 OtherCritIdx = PIdx; 2006 } 2007 } 2008 if (OtherCritIdx) { 2009 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2010 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2011 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2012 } 2013 return OtherCritCount; 2014 } 2015 2016 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2017 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2018 2019 #ifndef NDEBUG 2020 // ReadyCycle was been bumped up to the CurrCycle when this node was 2021 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2022 // scheduling, so may now be greater than ReadyCycle. 2023 if (ReadyCycle > CurrCycle) 2024 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2025 #endif 2026 2027 if (ReadyCycle < MinReadyCycle) 2028 MinReadyCycle = ReadyCycle; 2029 2030 // Check for interlocks first. For the purpose of other heuristics, an 2031 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2032 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2033 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2034 Available.size() >= ReadyListLimit) 2035 Pending.push(SU); 2036 else 2037 Available.push(SU); 2038 } 2039 2040 /// Move the boundary of scheduled code by one cycle. 2041 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2042 if (SchedModel->getMicroOpBufferSize() == 0) { 2043 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 2044 if (MinReadyCycle > NextCycle) 2045 NextCycle = MinReadyCycle; 2046 } 2047 // Update the current micro-ops, which will issue in the next cycle. 2048 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2049 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2050 2051 // Decrement DependentLatency based on the next cycle. 2052 if ((NextCycle - CurrCycle) > DependentLatency) 2053 DependentLatency = 0; 2054 else 2055 DependentLatency -= (NextCycle - CurrCycle); 2056 2057 if (!HazardRec->isEnabled()) { 2058 // Bypass HazardRec virtual calls. 2059 CurrCycle = NextCycle; 2060 } else { 2061 // Bypass getHazardType calls in case of long latency. 2062 for (; CurrCycle != NextCycle; ++CurrCycle) { 2063 if (isTop()) 2064 HazardRec->AdvanceCycle(); 2065 else 2066 HazardRec->RecedeCycle(); 2067 } 2068 } 2069 CheckPending = true; 2070 unsigned LFactor = SchedModel->getLatencyFactor(); 2071 IsResourceLimited = 2072 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2073 > (int)LFactor; 2074 2075 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2076 } 2077 2078 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2079 ExecutedResCounts[PIdx] += Count; 2080 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2081 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2082 } 2083 2084 /// Add the given processor resource to this scheduled zone. 2085 /// 2086 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2087 /// during which this resource is consumed. 2088 /// 2089 /// \return the next cycle at which the instruction may execute without 2090 /// oversubscribing resources. 2091 unsigned SchedBoundary:: 2092 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2093 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2094 unsigned Count = Factor * Cycles; 2095 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2096 << " +" << Cycles << "x" << Factor << "u\n"); 2097 2098 // Update Executed resources counts. 2099 incExecutedResources(PIdx, Count); 2100 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2101 Rem->RemainingCounts[PIdx] -= Count; 2102 2103 // Check if this resource exceeds the current critical resource. If so, it 2104 // becomes the critical resource. 2105 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2106 ZoneCritResIdx = PIdx; 2107 DEBUG(dbgs() << " *** Critical resource " 2108 << SchedModel->getResourceName(PIdx) << ": " 2109 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2110 } 2111 // For reserved resources, record the highest cycle using the resource. 2112 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2113 if (NextAvailable > CurrCycle) { 2114 DEBUG(dbgs() << " Resource conflict: " 2115 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2116 << NextAvailable << "\n"); 2117 } 2118 return NextAvailable; 2119 } 2120 2121 /// Move the boundary of scheduled code by one SUnit. 2122 void SchedBoundary::bumpNode(SUnit *SU) { 2123 // Update the reservation table. 2124 if (HazardRec->isEnabled()) { 2125 if (!isTop() && SU->isCall) { 2126 // Calls are scheduled with their preceding instructions. For bottom-up 2127 // scheduling, clear the pipeline state before emitting. 2128 HazardRec->Reset(); 2129 } 2130 HazardRec->EmitInstruction(SU); 2131 } 2132 // checkHazard should prevent scheduling multiple instructions per cycle that 2133 // exceed the issue width. 2134 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2135 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2136 assert( 2137 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2138 "Cannot schedule this instruction's MicroOps in the current cycle."); 2139 2140 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2141 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2142 2143 unsigned NextCycle = CurrCycle; 2144 switch (SchedModel->getMicroOpBufferSize()) { 2145 case 0: 2146 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2147 break; 2148 case 1: 2149 if (ReadyCycle > NextCycle) { 2150 NextCycle = ReadyCycle; 2151 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2152 } 2153 break; 2154 default: 2155 // We don't currently model the OOO reorder buffer, so consider all 2156 // scheduled MOps to be "retired". We do loosely model in-order resource 2157 // latency. If this instruction uses an in-order resource, account for any 2158 // likely stall cycles. 2159 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2160 NextCycle = ReadyCycle; 2161 break; 2162 } 2163 RetiredMOps += IncMOps; 2164 2165 // Update resource counts and critical resource. 2166 if (SchedModel->hasInstrSchedModel()) { 2167 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2168 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2169 Rem->RemIssueCount -= DecRemIssue; 2170 if (ZoneCritResIdx) { 2171 // Scale scheduled micro-ops for comparing with the critical resource. 2172 unsigned ScaledMOps = 2173 RetiredMOps * SchedModel->getMicroOpFactor(); 2174 2175 // If scaled micro-ops are now more than the previous critical resource by 2176 // a full cycle, then micro-ops issue becomes critical. 2177 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2178 >= (int)SchedModel->getLatencyFactor()) { 2179 ZoneCritResIdx = 0; 2180 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2181 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2182 } 2183 } 2184 for (TargetSchedModel::ProcResIter 2185 PI = SchedModel->getWriteProcResBegin(SC), 2186 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2187 unsigned RCycle = 2188 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2189 if (RCycle > NextCycle) 2190 NextCycle = RCycle; 2191 } 2192 if (SU->hasReservedResource) { 2193 // For reserved resources, record the highest cycle using the resource. 2194 // For top-down scheduling, this is the cycle in which we schedule this 2195 // instruction plus the number of cycles the operations reserves the 2196 // resource. For bottom-up is it simply the instruction's cycle. 2197 for (TargetSchedModel::ProcResIter 2198 PI = SchedModel->getWriteProcResBegin(SC), 2199 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2200 unsigned PIdx = PI->ProcResourceIdx; 2201 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2202 if (isTop()) { 2203 ReservedCycles[PIdx] = 2204 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2205 } 2206 else 2207 ReservedCycles[PIdx] = NextCycle; 2208 } 2209 } 2210 } 2211 } 2212 // Update ExpectedLatency and DependentLatency. 2213 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2214 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2215 if (SU->getDepth() > TopLatency) { 2216 TopLatency = SU->getDepth(); 2217 DEBUG(dbgs() << " " << Available.getName() 2218 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2219 } 2220 if (SU->getHeight() > BotLatency) { 2221 BotLatency = SU->getHeight(); 2222 DEBUG(dbgs() << " " << Available.getName() 2223 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2224 } 2225 // If we stall for any reason, bump the cycle. 2226 if (NextCycle > CurrCycle) { 2227 bumpCycle(NextCycle); 2228 } else { 2229 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2230 // resource limited. If a stall occurred, bumpCycle does this. 2231 unsigned LFactor = SchedModel->getLatencyFactor(); 2232 IsResourceLimited = 2233 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2234 > (int)LFactor; 2235 } 2236 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2237 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2238 // one cycle. Since we commonly reach the max MOps here, opportunistically 2239 // bump the cycle to avoid uselessly checking everything in the readyQ. 2240 CurrMOps += IncMOps; 2241 while (CurrMOps >= SchedModel->getIssueWidth()) { 2242 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2243 << " at cycle " << CurrCycle << '\n'); 2244 bumpCycle(++NextCycle); 2245 } 2246 DEBUG(dumpScheduledState()); 2247 } 2248 2249 /// Release pending ready nodes in to the available queue. This makes them 2250 /// visible to heuristics. 2251 void SchedBoundary::releasePending() { 2252 // If the available queue is empty, it is safe to reset MinReadyCycle. 2253 if (Available.empty()) 2254 MinReadyCycle = UINT_MAX; 2255 2256 // Check to see if any of the pending instructions are ready to issue. If 2257 // so, add them to the available queue. 2258 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2259 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2260 SUnit *SU = *(Pending.begin()+i); 2261 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2262 2263 if (ReadyCycle < MinReadyCycle) 2264 MinReadyCycle = ReadyCycle; 2265 2266 if (!IsBuffered && ReadyCycle > CurrCycle) 2267 continue; 2268 2269 if (checkHazard(SU)) 2270 continue; 2271 2272 if (Available.size() >= ReadyListLimit) 2273 break; 2274 2275 Available.push(SU); 2276 Pending.remove(Pending.begin()+i); 2277 --i; --e; 2278 } 2279 CheckPending = false; 2280 } 2281 2282 /// Remove SU from the ready set for this boundary. 2283 void SchedBoundary::removeReady(SUnit *SU) { 2284 if (Available.isInQueue(SU)) 2285 Available.remove(Available.find(SU)); 2286 else { 2287 assert(Pending.isInQueue(SU) && "bad ready count"); 2288 Pending.remove(Pending.find(SU)); 2289 } 2290 } 2291 2292 /// If this queue only has one ready candidate, return it. As a side effect, 2293 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2294 /// one node is ready. If multiple instructions are ready, return NULL. 2295 SUnit *SchedBoundary::pickOnlyChoice() { 2296 if (CheckPending) 2297 releasePending(); 2298 2299 if (CurrMOps > 0) { 2300 // Defer any ready instrs that now have a hazard. 2301 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2302 if (checkHazard(*I)) { 2303 Pending.push(*I); 2304 I = Available.remove(I); 2305 continue; 2306 } 2307 ++I; 2308 } 2309 } 2310 for (unsigned i = 0; Available.empty(); ++i) { 2311 // FIXME: Re-enable assert once PR20057 is resolved. 2312 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2313 // "permanent hazard"); 2314 (void)i; 2315 bumpCycle(CurrCycle + 1); 2316 releasePending(); 2317 } 2318 2319 DEBUG(Pending.dump()); 2320 DEBUG(Available.dump()); 2321 2322 if (Available.size() == 1) 2323 return *Available.begin(); 2324 return nullptr; 2325 } 2326 2327 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2328 // This is useful information to dump after bumpNode. 2329 // Note that the Queue contents are more useful before pickNodeFromQueue. 2330 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() { 2331 unsigned ResFactor; 2332 unsigned ResCount; 2333 if (ZoneCritResIdx) { 2334 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2335 ResCount = getResourceCount(ZoneCritResIdx); 2336 } else { 2337 ResFactor = SchedModel->getMicroOpFactor(); 2338 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2339 } 2340 unsigned LFactor = SchedModel->getLatencyFactor(); 2341 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2342 << " Retired: " << RetiredMOps; 2343 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2344 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2345 << ResCount / ResFactor << " " 2346 << SchedModel->getResourceName(ZoneCritResIdx) 2347 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2348 << (IsResourceLimited ? " - Resource" : " - Latency") 2349 << " limited.\n"; 2350 } 2351 #endif 2352 2353 //===----------------------------------------------------------------------===// 2354 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2355 //===----------------------------------------------------------------------===// 2356 2357 void GenericSchedulerBase::SchedCandidate:: 2358 initResourceDelta(const ScheduleDAGMI *DAG, 2359 const TargetSchedModel *SchedModel) { 2360 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2361 return; 2362 2363 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2364 for (TargetSchedModel::ProcResIter 2365 PI = SchedModel->getWriteProcResBegin(SC), 2366 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2367 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2368 ResDelta.CritResources += PI->Cycles; 2369 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2370 ResDelta.DemandedResources += PI->Cycles; 2371 } 2372 } 2373 2374 /// Set the CandPolicy given a scheduling zone given the current resources and 2375 /// latencies inside and outside the zone. 2376 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2377 SchedBoundary &CurrZone, 2378 SchedBoundary *OtherZone) { 2379 // Apply preemptive heuristics based on the total latency and resources 2380 // inside and outside this zone. Potential stalls should be considered before 2381 // following this policy. 2382 2383 // Compute remaining latency. We need this both to determine whether the 2384 // overall schedule has become latency-limited and whether the instructions 2385 // outside this zone are resource or latency limited. 2386 // 2387 // The "dependent" latency is updated incrementally during scheduling as the 2388 // max height/depth of scheduled nodes minus the cycles since it was 2389 // scheduled: 2390 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2391 // 2392 // The "independent" latency is the max ready queue depth: 2393 // ILat = max N.depth for N in Available|Pending 2394 // 2395 // RemainingLatency is the greater of independent and dependent latency. 2396 unsigned RemLatency = CurrZone.getDependentLatency(); 2397 RemLatency = std::max(RemLatency, 2398 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2399 RemLatency = std::max(RemLatency, 2400 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2401 2402 // Compute the critical resource outside the zone. 2403 unsigned OtherCritIdx = 0; 2404 unsigned OtherCount = 2405 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2406 2407 bool OtherResLimited = false; 2408 if (SchedModel->hasInstrSchedModel()) { 2409 unsigned LFactor = SchedModel->getLatencyFactor(); 2410 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2411 } 2412 // Schedule aggressively for latency in PostRA mode. We don't check for 2413 // acyclic latency during PostRA, and highly out-of-order processors will 2414 // skip PostRA scheduling. 2415 if (!OtherResLimited) { 2416 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2417 Policy.ReduceLatency |= true; 2418 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2419 << " RemainingLatency " << RemLatency << " + " 2420 << CurrZone.getCurrCycle() << "c > CritPath " 2421 << Rem.CriticalPath << "\n"); 2422 } 2423 } 2424 // If the same resource is limiting inside and outside the zone, do nothing. 2425 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2426 return; 2427 2428 DEBUG( 2429 if (CurrZone.isResourceLimited()) { 2430 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2431 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2432 << "\n"; 2433 } 2434 if (OtherResLimited) 2435 dbgs() << " RemainingLimit: " 2436 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2437 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2438 dbgs() << " Latency limited both directions.\n"); 2439 2440 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2441 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2442 2443 if (OtherResLimited) 2444 Policy.DemandResIdx = OtherCritIdx; 2445 } 2446 2447 #ifndef NDEBUG 2448 const char *GenericSchedulerBase::getReasonStr( 2449 GenericSchedulerBase::CandReason Reason) { 2450 switch (Reason) { 2451 case NoCand: return "NOCAND "; 2452 case Only1: return "ONLY1 "; 2453 case PhysRegCopy: return "PREG-COPY "; 2454 case RegExcess: return "REG-EXCESS"; 2455 case RegCritical: return "REG-CRIT "; 2456 case Stall: return "STALL "; 2457 case Cluster: return "CLUSTER "; 2458 case Weak: return "WEAK "; 2459 case RegMax: return "REG-MAX "; 2460 case ResourceReduce: return "RES-REDUCE"; 2461 case ResourceDemand: return "RES-DEMAND"; 2462 case TopDepthReduce: return "TOP-DEPTH "; 2463 case TopPathReduce: return "TOP-PATH "; 2464 case BotHeightReduce:return "BOT-HEIGHT"; 2465 case BotPathReduce: return "BOT-PATH "; 2466 case NextDefUse: return "DEF-USE "; 2467 case NodeOrder: return "ORDER "; 2468 }; 2469 llvm_unreachable("Unknown reason!"); 2470 } 2471 2472 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2473 PressureChange P; 2474 unsigned ResIdx = 0; 2475 unsigned Latency = 0; 2476 switch (Cand.Reason) { 2477 default: 2478 break; 2479 case RegExcess: 2480 P = Cand.RPDelta.Excess; 2481 break; 2482 case RegCritical: 2483 P = Cand.RPDelta.CriticalMax; 2484 break; 2485 case RegMax: 2486 P = Cand.RPDelta.CurrentMax; 2487 break; 2488 case ResourceReduce: 2489 ResIdx = Cand.Policy.ReduceResIdx; 2490 break; 2491 case ResourceDemand: 2492 ResIdx = Cand.Policy.DemandResIdx; 2493 break; 2494 case TopDepthReduce: 2495 Latency = Cand.SU->getDepth(); 2496 break; 2497 case TopPathReduce: 2498 Latency = Cand.SU->getHeight(); 2499 break; 2500 case BotHeightReduce: 2501 Latency = Cand.SU->getHeight(); 2502 break; 2503 case BotPathReduce: 2504 Latency = Cand.SU->getDepth(); 2505 break; 2506 } 2507 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2508 if (P.isValid()) 2509 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2510 << ":" << P.getUnitInc() << " "; 2511 else 2512 dbgs() << " "; 2513 if (ResIdx) 2514 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2515 else 2516 dbgs() << " "; 2517 if (Latency) 2518 dbgs() << " " << Latency << " cycles "; 2519 else 2520 dbgs() << " "; 2521 dbgs() << '\n'; 2522 } 2523 #endif 2524 2525 /// Return true if this heuristic determines order. 2526 static bool tryLess(int TryVal, int CandVal, 2527 GenericSchedulerBase::SchedCandidate &TryCand, 2528 GenericSchedulerBase::SchedCandidate &Cand, 2529 GenericSchedulerBase::CandReason Reason) { 2530 if (TryVal < CandVal) { 2531 TryCand.Reason = Reason; 2532 return true; 2533 } 2534 if (TryVal > CandVal) { 2535 if (Cand.Reason > Reason) 2536 Cand.Reason = Reason; 2537 return true; 2538 } 2539 return false; 2540 } 2541 2542 static bool tryGreater(int TryVal, int CandVal, 2543 GenericSchedulerBase::SchedCandidate &TryCand, 2544 GenericSchedulerBase::SchedCandidate &Cand, 2545 GenericSchedulerBase::CandReason Reason) { 2546 if (TryVal > CandVal) { 2547 TryCand.Reason = Reason; 2548 return true; 2549 } 2550 if (TryVal < CandVal) { 2551 if (Cand.Reason > Reason) 2552 Cand.Reason = Reason; 2553 return true; 2554 } 2555 return false; 2556 } 2557 2558 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2559 GenericSchedulerBase::SchedCandidate &Cand, 2560 SchedBoundary &Zone) { 2561 if (Zone.isTop()) { 2562 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2563 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2564 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2565 return true; 2566 } 2567 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2568 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2569 return true; 2570 } else { 2571 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2572 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2573 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2574 return true; 2575 } 2576 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2577 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2578 return true; 2579 } 2580 return false; 2581 } 2582 2583 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2584 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2585 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2586 } 2587 2588 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2589 tracePick(Cand.Reason, Cand.AtTop); 2590 } 2591 2592 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2593 assert(dag->hasVRegLiveness() && 2594 "(PreRA)GenericScheduler needs vreg liveness"); 2595 DAG = static_cast<ScheduleDAGMILive*>(dag); 2596 SchedModel = DAG->getSchedModel(); 2597 TRI = DAG->TRI; 2598 2599 Rem.init(DAG, SchedModel); 2600 Top.init(DAG, SchedModel, &Rem); 2601 Bot.init(DAG, SchedModel, &Rem); 2602 2603 // Initialize resource counts. 2604 2605 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2606 // are disabled, then these HazardRecs will be disabled. 2607 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2608 if (!Top.HazardRec) { 2609 Top.HazardRec = 2610 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2611 Itin, DAG); 2612 } 2613 if (!Bot.HazardRec) { 2614 Bot.HazardRec = 2615 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2616 Itin, DAG); 2617 } 2618 TopCand.SU = nullptr; 2619 BotCand.SU = nullptr; 2620 } 2621 2622 /// Initialize the per-region scheduling policy. 2623 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2624 MachineBasicBlock::iterator End, 2625 unsigned NumRegionInstrs) { 2626 const MachineFunction &MF = *Begin->getParent()->getParent(); 2627 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2628 2629 // Avoid setting up the register pressure tracker for small regions to save 2630 // compile time. As a rough heuristic, only track pressure when the number of 2631 // schedulable instructions exceeds half the integer register file. 2632 RegionPolicy.ShouldTrackPressure = true; 2633 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2634 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2635 if (TLI->isTypeLegal(LegalIntVT)) { 2636 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2637 TLI->getRegClassFor(LegalIntVT)); 2638 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2639 } 2640 } 2641 2642 // For generic targets, we default to bottom-up, because it's simpler and more 2643 // compile-time optimizations have been implemented in that direction. 2644 RegionPolicy.OnlyBottomUp = true; 2645 2646 // Allow the subtarget to override default policy. 2647 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2648 2649 // After subtarget overrides, apply command line options. 2650 if (!EnableRegPressure) 2651 RegionPolicy.ShouldTrackPressure = false; 2652 2653 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2654 // e.g. -misched-bottomup=false allows scheduling in both directions. 2655 assert((!ForceTopDown || !ForceBottomUp) && 2656 "-misched-topdown incompatible with -misched-bottomup"); 2657 if (ForceBottomUp.getNumOccurrences() > 0) { 2658 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2659 if (RegionPolicy.OnlyBottomUp) 2660 RegionPolicy.OnlyTopDown = false; 2661 } 2662 if (ForceTopDown.getNumOccurrences() > 0) { 2663 RegionPolicy.OnlyTopDown = ForceTopDown; 2664 if (RegionPolicy.OnlyTopDown) 2665 RegionPolicy.OnlyBottomUp = false; 2666 } 2667 } 2668 2669 void GenericScheduler::dumpPolicy() { 2670 // Cannot completely remove virtual function even in release mode. 2671 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2672 dbgs() << "GenericScheduler RegionPolicy: " 2673 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2674 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2675 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2676 << "\n"; 2677 #endif 2678 } 2679 2680 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2681 /// critical path by more cycles than it takes to drain the instruction buffer. 2682 /// We estimate an upper bounds on in-flight instructions as: 2683 /// 2684 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2685 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2686 /// InFlightResources = InFlightIterations * LoopResources 2687 /// 2688 /// TODO: Check execution resources in addition to IssueCount. 2689 void GenericScheduler::checkAcyclicLatency() { 2690 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2691 return; 2692 2693 // Scaled number of cycles per loop iteration. 2694 unsigned IterCount = 2695 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2696 Rem.RemIssueCount); 2697 // Scaled acyclic critical path. 2698 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2699 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2700 unsigned InFlightCount = 2701 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2702 unsigned BufferLimit = 2703 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2704 2705 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2706 2707 DEBUG(dbgs() << "IssueCycles=" 2708 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2709 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2710 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2711 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2712 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2713 if (Rem.IsAcyclicLatencyLimited) 2714 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2715 } 2716 2717 void GenericScheduler::registerRoots() { 2718 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2719 2720 // Some roots may not feed into ExitSU. Check all of them in case. 2721 for (std::vector<SUnit*>::const_iterator 2722 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2723 if ((*I)->getDepth() > Rem.CriticalPath) 2724 Rem.CriticalPath = (*I)->getDepth(); 2725 } 2726 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2727 if (DumpCriticalPathLength) { 2728 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2729 } 2730 2731 if (EnableCyclicPath) { 2732 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2733 checkAcyclicLatency(); 2734 } 2735 } 2736 2737 static bool tryPressure(const PressureChange &TryP, 2738 const PressureChange &CandP, 2739 GenericSchedulerBase::SchedCandidate &TryCand, 2740 GenericSchedulerBase::SchedCandidate &Cand, 2741 GenericSchedulerBase::CandReason Reason, 2742 const TargetRegisterInfo *TRI, 2743 const MachineFunction &MF) { 2744 // If one candidate decreases and the other increases, go with it. 2745 // Invalid candidates have UnitInc==0. 2746 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2747 Reason)) { 2748 return true; 2749 } 2750 // Do not compare the magnitude of pressure changes between top and bottom 2751 // boundary. 2752 if (Cand.AtTop != TryCand.AtTop) 2753 return false; 2754 2755 // If both candidates affect the same set in the same boundary, go with the 2756 // smallest increase. 2757 unsigned TryPSet = TryP.getPSetOrMax(); 2758 unsigned CandPSet = CandP.getPSetOrMax(); 2759 if (TryPSet == CandPSet) { 2760 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2761 Reason); 2762 } 2763 2764 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2765 std::numeric_limits<int>::max(); 2766 2767 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2768 std::numeric_limits<int>::max(); 2769 2770 // If the candidates are decreasing pressure, reverse priority. 2771 if (TryP.getUnitInc() < 0) 2772 std::swap(TryRank, CandRank); 2773 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2774 } 2775 2776 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2777 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2778 } 2779 2780 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2781 /// their physreg def/use. 2782 /// 2783 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2784 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2785 /// with the operation that produces or consumes the physreg. We'll do this when 2786 /// regalloc has support for parallel copies. 2787 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2788 const MachineInstr *MI = SU->getInstr(); 2789 if (!MI->isCopy()) 2790 return 0; 2791 2792 unsigned ScheduledOper = isTop ? 1 : 0; 2793 unsigned UnscheduledOper = isTop ? 0 : 1; 2794 // If we have already scheduled the physreg produce/consumer, immediately 2795 // schedule the copy. 2796 if (TargetRegisterInfo::isPhysicalRegister( 2797 MI->getOperand(ScheduledOper).getReg())) 2798 return 1; 2799 // If the physreg is at the boundary, defer it. Otherwise schedule it 2800 // immediately to free the dependent. We can hoist the copy later. 2801 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2802 if (TargetRegisterInfo::isPhysicalRegister( 2803 MI->getOperand(UnscheduledOper).getReg())) 2804 return AtBoundary ? -1 : 1; 2805 return 0; 2806 } 2807 2808 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2809 bool AtTop, 2810 const RegPressureTracker &RPTracker, 2811 RegPressureTracker &TempTracker) { 2812 Cand.SU = SU; 2813 Cand.AtTop = AtTop; 2814 if (DAG->isTrackingPressure()) { 2815 if (AtTop) { 2816 TempTracker.getMaxDownwardPressureDelta( 2817 Cand.SU->getInstr(), 2818 Cand.RPDelta, 2819 DAG->getRegionCriticalPSets(), 2820 DAG->getRegPressure().MaxSetPressure); 2821 } else { 2822 if (VerifyScheduling) { 2823 TempTracker.getMaxUpwardPressureDelta( 2824 Cand.SU->getInstr(), 2825 &DAG->getPressureDiff(Cand.SU), 2826 Cand.RPDelta, 2827 DAG->getRegionCriticalPSets(), 2828 DAG->getRegPressure().MaxSetPressure); 2829 } else { 2830 RPTracker.getUpwardPressureDelta( 2831 Cand.SU->getInstr(), 2832 DAG->getPressureDiff(Cand.SU), 2833 Cand.RPDelta, 2834 DAG->getRegionCriticalPSets(), 2835 DAG->getRegPressure().MaxSetPressure); 2836 } 2837 } 2838 } 2839 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2840 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2841 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2842 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2843 } 2844 2845 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2846 /// hierarchical. This may be more efficient than a graduated cost model because 2847 /// we don't need to evaluate all aspects of the model for each node in the 2848 /// queue. But it's really done to make the heuristics easier to debug and 2849 /// statistically analyze. 2850 /// 2851 /// \param Cand provides the policy and current best candidate. 2852 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2853 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2854 // if Cand is from a different zone than TryCand. 2855 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2856 SchedCandidate &TryCand, 2857 SchedBoundary *Zone) { 2858 // Initialize the candidate if needed. 2859 if (!Cand.isValid()) { 2860 TryCand.Reason = NodeOrder; 2861 return; 2862 } 2863 2864 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2865 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2866 TryCand, Cand, PhysRegCopy)) 2867 return; 2868 2869 // Avoid exceeding the target's limit. 2870 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2871 Cand.RPDelta.Excess, 2872 TryCand, Cand, RegExcess, TRI, 2873 DAG->MF)) 2874 return; 2875 2876 // Avoid increasing the max critical pressure in the scheduled region. 2877 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2878 Cand.RPDelta.CriticalMax, 2879 TryCand, Cand, RegCritical, TRI, 2880 DAG->MF)) 2881 return; 2882 2883 // We only compare a subset of features when comparing nodes between 2884 // Top and Bottom boundary. Some properties are simply incomparable, in many 2885 // other instances we should only override the other boundary if something 2886 // is a clear good pick on one boundary. Skip heuristics that are more 2887 // "tie-breaking" in nature. 2888 bool SameBoundary = Zone != nullptr; 2889 if (SameBoundary) { 2890 // For loops that are acyclic path limited, aggressively schedule for 2891 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2892 // heuristics to take precedence. 2893 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2894 tryLatency(TryCand, Cand, *Zone)) 2895 return; 2896 2897 // Prioritize instructions that read unbuffered resources by stall cycles. 2898 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2899 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2900 return; 2901 } 2902 2903 // Keep clustered nodes together to encourage downstream peephole 2904 // optimizations which may reduce resource requirements. 2905 // 2906 // This is a best effort to set things up for a post-RA pass. Optimizations 2907 // like generating loads of multiple registers should ideally be done within 2908 // the scheduler pass by combining the loads during DAG postprocessing. 2909 const SUnit *CandNextClusterSU = 2910 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2911 const SUnit *TryCandNextClusterSU = 2912 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2913 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2914 Cand.SU == CandNextClusterSU, 2915 TryCand, Cand, Cluster)) 2916 return; 2917 2918 if (SameBoundary) { 2919 // Weak edges are for clustering and other constraints. 2920 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2921 getWeakLeft(Cand.SU, Cand.AtTop), 2922 TryCand, Cand, Weak)) 2923 return; 2924 } 2925 2926 // Avoid increasing the max pressure of the entire region. 2927 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2928 Cand.RPDelta.CurrentMax, 2929 TryCand, Cand, RegMax, TRI, 2930 DAG->MF)) 2931 return; 2932 2933 if (SameBoundary) { 2934 // Avoid critical resource consumption and balance the schedule. 2935 TryCand.initResourceDelta(DAG, SchedModel); 2936 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2937 TryCand, Cand, ResourceReduce)) 2938 return; 2939 if (tryGreater(TryCand.ResDelta.DemandedResources, 2940 Cand.ResDelta.DemandedResources, 2941 TryCand, Cand, ResourceDemand)) 2942 return; 2943 2944 // Avoid serializing long latency dependence chains. 2945 // For acyclic path limited loops, latency was already checked above. 2946 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2947 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2948 return; 2949 2950 // Fall through to original instruction order. 2951 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2952 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2953 TryCand.Reason = NodeOrder; 2954 } 2955 } 2956 } 2957 2958 /// Pick the best candidate from the queue. 2959 /// 2960 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2961 /// DAG building. To adjust for the current scheduling location we need to 2962 /// maintain the number of vreg uses remaining to be top-scheduled. 2963 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2964 const CandPolicy &ZonePolicy, 2965 const RegPressureTracker &RPTracker, 2966 SchedCandidate &Cand) { 2967 // getMaxPressureDelta temporarily modifies the tracker. 2968 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2969 2970 ReadyQueue &Q = Zone.Available; 2971 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2972 2973 SchedCandidate TryCand(ZonePolicy); 2974 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2975 // Pass SchedBoundary only when comparing nodes from the same boundary. 2976 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2977 tryCandidate(Cand, TryCand, ZoneArg); 2978 if (TryCand.Reason != NoCand) { 2979 // Initialize resource delta if needed in case future heuristics query it. 2980 if (TryCand.ResDelta == SchedResourceDelta()) 2981 TryCand.initResourceDelta(DAG, SchedModel); 2982 Cand.setBest(TryCand); 2983 DEBUG(traceCandidate(Cand)); 2984 } 2985 } 2986 } 2987 2988 /// Pick the best candidate node from either the top or bottom queue. 2989 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2990 // Schedule as far as possible in the direction of no choice. This is most 2991 // efficient, but also provides the best heuristics for CriticalPSets. 2992 if (SUnit *SU = Bot.pickOnlyChoice()) { 2993 IsTopNode = false; 2994 tracePick(Only1, false); 2995 return SU; 2996 } 2997 if (SUnit *SU = Top.pickOnlyChoice()) { 2998 IsTopNode = true; 2999 tracePick(Only1, true); 3000 return SU; 3001 } 3002 // Set the bottom-up policy based on the state of the current bottom zone and 3003 // the instructions outside the zone, including the top zone. 3004 CandPolicy BotPolicy; 3005 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3006 // Set the top-down policy based on the state of the current top zone and 3007 // the instructions outside the zone, including the bottom zone. 3008 CandPolicy TopPolicy; 3009 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3010 3011 // See if BotCand is still valid (because we previously scheduled from Top). 3012 DEBUG(dbgs() << "Picking from Bot:\n"); 3013 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3014 BotCand.Policy != BotPolicy) { 3015 BotCand.reset(CandPolicy()); 3016 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3017 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3018 } else { 3019 DEBUG(traceCandidate(BotCand)); 3020 #ifndef NDEBUG 3021 if (VerifyScheduling) { 3022 SchedCandidate TCand; 3023 TCand.reset(CandPolicy()); 3024 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3025 assert(TCand.SU == BotCand.SU && 3026 "Last pick result should correspond to re-picking right now"); 3027 } 3028 #endif 3029 } 3030 3031 // Check if the top Q has a better candidate. 3032 DEBUG(dbgs() << "Picking from Top:\n"); 3033 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3034 TopCand.Policy != TopPolicy) { 3035 TopCand.reset(CandPolicy()); 3036 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3037 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3038 } else { 3039 DEBUG(traceCandidate(TopCand)); 3040 #ifndef NDEBUG 3041 if (VerifyScheduling) { 3042 SchedCandidate TCand; 3043 TCand.reset(CandPolicy()); 3044 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3045 assert(TCand.SU == TopCand.SU && 3046 "Last pick result should correspond to re-picking right now"); 3047 } 3048 #endif 3049 } 3050 3051 // Pick best from BotCand and TopCand. 3052 assert(BotCand.isValid()); 3053 assert(TopCand.isValid()); 3054 SchedCandidate Cand = BotCand; 3055 TopCand.Reason = NoCand; 3056 tryCandidate(Cand, TopCand, nullptr); 3057 if (TopCand.Reason != NoCand) { 3058 Cand.setBest(TopCand); 3059 DEBUG(traceCandidate(Cand)); 3060 } 3061 3062 IsTopNode = Cand.AtTop; 3063 tracePick(Cand); 3064 return Cand.SU; 3065 } 3066 3067 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3068 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3069 if (DAG->top() == DAG->bottom()) { 3070 assert(Top.Available.empty() && Top.Pending.empty() && 3071 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3072 return nullptr; 3073 } 3074 SUnit *SU; 3075 do { 3076 if (RegionPolicy.OnlyTopDown) { 3077 SU = Top.pickOnlyChoice(); 3078 if (!SU) { 3079 CandPolicy NoPolicy; 3080 TopCand.reset(NoPolicy); 3081 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3082 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3083 tracePick(TopCand); 3084 SU = TopCand.SU; 3085 } 3086 IsTopNode = true; 3087 } else if (RegionPolicy.OnlyBottomUp) { 3088 SU = Bot.pickOnlyChoice(); 3089 if (!SU) { 3090 CandPolicy NoPolicy; 3091 BotCand.reset(NoPolicy); 3092 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3093 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3094 tracePick(BotCand); 3095 SU = BotCand.SU; 3096 } 3097 IsTopNode = false; 3098 } else { 3099 SU = pickNodeBidirectional(IsTopNode); 3100 } 3101 } while (SU->isScheduled); 3102 3103 if (SU->isTopReady()) 3104 Top.removeReady(SU); 3105 if (SU->isBottomReady()) 3106 Bot.removeReady(SU); 3107 3108 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3109 return SU; 3110 } 3111 3112 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3113 3114 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3115 if (!isTop) 3116 ++InsertPos; 3117 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3118 3119 // Find already scheduled copies with a single physreg dependence and move 3120 // them just above the scheduled instruction. 3121 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3122 I != E; ++I) { 3123 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3124 continue; 3125 SUnit *DepSU = I->getSUnit(); 3126 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3127 continue; 3128 MachineInstr *Copy = DepSU->getInstr(); 3129 if (!Copy->isCopy()) 3130 continue; 3131 DEBUG(dbgs() << " Rescheduling physreg copy "; 3132 I->getSUnit()->dump(DAG)); 3133 DAG->moveInstruction(Copy, InsertPos); 3134 } 3135 } 3136 3137 /// Update the scheduler's state after scheduling a node. This is the same node 3138 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3139 /// update it's state based on the current cycle before MachineSchedStrategy 3140 /// does. 3141 /// 3142 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3143 /// them here. See comments in biasPhysRegCopy. 3144 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3145 if (IsTopNode) { 3146 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3147 Top.bumpNode(SU); 3148 if (SU->hasPhysRegUses) 3149 reschedulePhysRegCopies(SU, true); 3150 } else { 3151 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3152 Bot.bumpNode(SU); 3153 if (SU->hasPhysRegDefs) 3154 reschedulePhysRegCopies(SU, false); 3155 } 3156 } 3157 3158 /// Create the standard converging machine scheduler. This will be used as the 3159 /// default scheduler if the target does not set a default. 3160 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3161 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3162 // Register DAG post-processors. 3163 // 3164 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3165 // data and pass it to later mutations. Have a single mutation that gathers 3166 // the interesting nodes in one pass. 3167 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3168 return DAG; 3169 } 3170 3171 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3172 return createGenericSchedLive(C); 3173 } 3174 3175 static MachineSchedRegistry 3176 GenericSchedRegistry("converge", "Standard converging scheduler.", 3177 createConveringSched); 3178 3179 //===----------------------------------------------------------------------===// 3180 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3181 //===----------------------------------------------------------------------===// 3182 3183 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3184 DAG = Dag; 3185 SchedModel = DAG->getSchedModel(); 3186 TRI = DAG->TRI; 3187 3188 Rem.init(DAG, SchedModel); 3189 Top.init(DAG, SchedModel, &Rem); 3190 BotRoots.clear(); 3191 3192 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3193 // or are disabled, then these HazardRecs will be disabled. 3194 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3195 if (!Top.HazardRec) { 3196 Top.HazardRec = 3197 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3198 Itin, DAG); 3199 } 3200 } 3201 3202 3203 void PostGenericScheduler::registerRoots() { 3204 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3205 3206 // Some roots may not feed into ExitSU. Check all of them in case. 3207 for (SmallVectorImpl<SUnit*>::const_iterator 3208 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3209 if ((*I)->getDepth() > Rem.CriticalPath) 3210 Rem.CriticalPath = (*I)->getDepth(); 3211 } 3212 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3213 if (DumpCriticalPathLength) { 3214 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3215 } 3216 } 3217 3218 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3219 /// 3220 /// \param Cand provides the policy and current best candidate. 3221 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3222 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3223 SchedCandidate &TryCand) { 3224 3225 // Initialize the candidate if needed. 3226 if (!Cand.isValid()) { 3227 TryCand.Reason = NodeOrder; 3228 return; 3229 } 3230 3231 // Prioritize instructions that read unbuffered resources by stall cycles. 3232 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3233 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3234 return; 3235 3236 // Avoid critical resource consumption and balance the schedule. 3237 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3238 TryCand, Cand, ResourceReduce)) 3239 return; 3240 if (tryGreater(TryCand.ResDelta.DemandedResources, 3241 Cand.ResDelta.DemandedResources, 3242 TryCand, Cand, ResourceDemand)) 3243 return; 3244 3245 // Avoid serializing long latency dependence chains. 3246 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3247 return; 3248 } 3249 3250 // Fall through to original instruction order. 3251 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3252 TryCand.Reason = NodeOrder; 3253 } 3254 3255 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3256 ReadyQueue &Q = Top.Available; 3257 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3258 SchedCandidate TryCand(Cand.Policy); 3259 TryCand.SU = *I; 3260 TryCand.AtTop = true; 3261 TryCand.initResourceDelta(DAG, SchedModel); 3262 tryCandidate(Cand, TryCand); 3263 if (TryCand.Reason != NoCand) { 3264 Cand.setBest(TryCand); 3265 DEBUG(traceCandidate(Cand)); 3266 } 3267 } 3268 } 3269 3270 /// Pick the next node to schedule. 3271 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3272 if (DAG->top() == DAG->bottom()) { 3273 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3274 return nullptr; 3275 } 3276 SUnit *SU; 3277 do { 3278 SU = Top.pickOnlyChoice(); 3279 if (SU) { 3280 tracePick(Only1, true); 3281 } else { 3282 CandPolicy NoPolicy; 3283 SchedCandidate TopCand(NoPolicy); 3284 // Set the top-down policy based on the state of the current top zone and 3285 // the instructions outside the zone, including the bottom zone. 3286 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3287 pickNodeFromQueue(TopCand); 3288 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3289 tracePick(TopCand); 3290 SU = TopCand.SU; 3291 } 3292 } while (SU->isScheduled); 3293 3294 IsTopNode = true; 3295 Top.removeReady(SU); 3296 3297 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3298 return SU; 3299 } 3300 3301 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3302 /// scheduled/remaining flags in the DAG nodes. 3303 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3304 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3305 Top.bumpNode(SU); 3306 } 3307 3308 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3309 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), 3310 /*RemoveKillFlags=*/true); 3311 } 3312 3313 //===----------------------------------------------------------------------===// 3314 // ILP Scheduler. Currently for experimental analysis of heuristics. 3315 //===----------------------------------------------------------------------===// 3316 3317 namespace { 3318 /// \brief Order nodes by the ILP metric. 3319 struct ILPOrder { 3320 const SchedDFSResult *DFSResult; 3321 const BitVector *ScheduledTrees; 3322 bool MaximizeILP; 3323 3324 ILPOrder(bool MaxILP) 3325 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3326 3327 /// \brief Apply a less-than relation on node priority. 3328 /// 3329 /// (Return true if A comes after B in the Q.) 3330 bool operator()(const SUnit *A, const SUnit *B) const { 3331 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3332 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3333 if (SchedTreeA != SchedTreeB) { 3334 // Unscheduled trees have lower priority. 3335 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3336 return ScheduledTrees->test(SchedTreeB); 3337 3338 // Trees with shallower connections have have lower priority. 3339 if (DFSResult->getSubtreeLevel(SchedTreeA) 3340 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3341 return DFSResult->getSubtreeLevel(SchedTreeA) 3342 < DFSResult->getSubtreeLevel(SchedTreeB); 3343 } 3344 } 3345 if (MaximizeILP) 3346 return DFSResult->getILP(A) < DFSResult->getILP(B); 3347 else 3348 return DFSResult->getILP(A) > DFSResult->getILP(B); 3349 } 3350 }; 3351 3352 /// \brief Schedule based on the ILP metric. 3353 class ILPScheduler : public MachineSchedStrategy { 3354 ScheduleDAGMILive *DAG; 3355 ILPOrder Cmp; 3356 3357 std::vector<SUnit*> ReadyQ; 3358 public: 3359 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3360 3361 void initialize(ScheduleDAGMI *dag) override { 3362 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3363 DAG = static_cast<ScheduleDAGMILive*>(dag); 3364 DAG->computeDFSResult(); 3365 Cmp.DFSResult = DAG->getDFSResult(); 3366 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3367 ReadyQ.clear(); 3368 } 3369 3370 void registerRoots() override { 3371 // Restore the heap in ReadyQ with the updated DFS results. 3372 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3373 } 3374 3375 /// Implement MachineSchedStrategy interface. 3376 /// ----------------------------------------- 3377 3378 /// Callback to select the highest priority node from the ready Q. 3379 SUnit *pickNode(bool &IsTopNode) override { 3380 if (ReadyQ.empty()) return nullptr; 3381 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3382 SUnit *SU = ReadyQ.back(); 3383 ReadyQ.pop_back(); 3384 IsTopNode = false; 3385 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3386 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3387 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3388 << DAG->getDFSResult()->getSubtreeLevel( 3389 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3390 << "Scheduling " << *SU->getInstr()); 3391 return SU; 3392 } 3393 3394 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3395 void scheduleTree(unsigned SubtreeID) override { 3396 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3397 } 3398 3399 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3400 /// DFSResults, and resort the priority Q. 3401 void schedNode(SUnit *SU, bool IsTopNode) override { 3402 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3403 } 3404 3405 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3406 3407 void releaseBottomNode(SUnit *SU) override { 3408 ReadyQ.push_back(SU); 3409 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3410 } 3411 }; 3412 } // namespace 3413 3414 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3415 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3416 } 3417 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3418 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3419 } 3420 static MachineSchedRegistry ILPMaxRegistry( 3421 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3422 static MachineSchedRegistry ILPMinRegistry( 3423 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3424 3425 //===----------------------------------------------------------------------===// 3426 // Machine Instruction Shuffler for Correctness Testing 3427 //===----------------------------------------------------------------------===// 3428 3429 #ifndef NDEBUG 3430 namespace { 3431 /// Apply a less-than relation on the node order, which corresponds to the 3432 /// instruction order prior to scheduling. IsReverse implements greater-than. 3433 template<bool IsReverse> 3434 struct SUnitOrder { 3435 bool operator()(SUnit *A, SUnit *B) const { 3436 if (IsReverse) 3437 return A->NodeNum > B->NodeNum; 3438 else 3439 return A->NodeNum < B->NodeNum; 3440 } 3441 }; 3442 3443 /// Reorder instructions as much as possible. 3444 class InstructionShuffler : public MachineSchedStrategy { 3445 bool IsAlternating; 3446 bool IsTopDown; 3447 3448 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3449 // gives nodes with a higher number higher priority causing the latest 3450 // instructions to be scheduled first. 3451 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3452 TopQ; 3453 // When scheduling bottom-up, use greater-than as the queue priority. 3454 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3455 BottomQ; 3456 public: 3457 InstructionShuffler(bool alternate, bool topdown) 3458 : IsAlternating(alternate), IsTopDown(topdown) {} 3459 3460 void initialize(ScheduleDAGMI*) override { 3461 TopQ.clear(); 3462 BottomQ.clear(); 3463 } 3464 3465 /// Implement MachineSchedStrategy interface. 3466 /// ----------------------------------------- 3467 3468 SUnit *pickNode(bool &IsTopNode) override { 3469 SUnit *SU; 3470 if (IsTopDown) { 3471 do { 3472 if (TopQ.empty()) return nullptr; 3473 SU = TopQ.top(); 3474 TopQ.pop(); 3475 } while (SU->isScheduled); 3476 IsTopNode = true; 3477 } else { 3478 do { 3479 if (BottomQ.empty()) return nullptr; 3480 SU = BottomQ.top(); 3481 BottomQ.pop(); 3482 } while (SU->isScheduled); 3483 IsTopNode = false; 3484 } 3485 if (IsAlternating) 3486 IsTopDown = !IsTopDown; 3487 return SU; 3488 } 3489 3490 void schedNode(SUnit *SU, bool IsTopNode) override {} 3491 3492 void releaseTopNode(SUnit *SU) override { 3493 TopQ.push(SU); 3494 } 3495 void releaseBottomNode(SUnit *SU) override { 3496 BottomQ.push(SU); 3497 } 3498 }; 3499 } // namespace 3500 3501 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3502 bool Alternate = !ForceTopDown && !ForceBottomUp; 3503 bool TopDown = !ForceBottomUp; 3504 assert((TopDown || !ForceTopDown) && 3505 "-misched-topdown incompatible with -misched-bottomup"); 3506 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3507 } 3508 static MachineSchedRegistry ShufflerRegistry( 3509 "shuffle", "Shuffle machine instructions alternating directions", 3510 createInstructionShuffler); 3511 #endif // !NDEBUG 3512 3513 //===----------------------------------------------------------------------===// 3514 // GraphWriter support for ScheduleDAGMILive. 3515 //===----------------------------------------------------------------------===// 3516 3517 #ifndef NDEBUG 3518 namespace llvm { 3519 3520 template<> struct GraphTraits< 3521 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3522 3523 template<> 3524 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3525 3526 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3527 3528 static std::string getGraphName(const ScheduleDAG *G) { 3529 return G->MF.getName(); 3530 } 3531 3532 static bool renderGraphFromBottomUp() { 3533 return true; 3534 } 3535 3536 static bool isNodeHidden(const SUnit *Node) { 3537 if (ViewMISchedCutoff == 0) 3538 return false; 3539 return (Node->Preds.size() > ViewMISchedCutoff 3540 || Node->Succs.size() > ViewMISchedCutoff); 3541 } 3542 3543 /// If you want to override the dot attributes printed for a particular 3544 /// edge, override this method. 3545 static std::string getEdgeAttributes(const SUnit *Node, 3546 SUnitIterator EI, 3547 const ScheduleDAG *Graph) { 3548 if (EI.isArtificialDep()) 3549 return "color=cyan,style=dashed"; 3550 if (EI.isCtrlDep()) 3551 return "color=blue,style=dashed"; 3552 return ""; 3553 } 3554 3555 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3556 std::string Str; 3557 raw_string_ostream SS(Str); 3558 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3559 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3560 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3561 SS << "SU:" << SU->NodeNum; 3562 if (DFS) 3563 SS << " I:" << DFS->getNumInstrs(SU); 3564 return SS.str(); 3565 } 3566 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3567 return G->getGraphNodeLabel(SU); 3568 } 3569 3570 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3571 std::string Str("shape=Mrecord"); 3572 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3573 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3574 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3575 if (DFS) { 3576 Str += ",style=filled,fillcolor=\"#"; 3577 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3578 Str += '"'; 3579 } 3580 return Str; 3581 } 3582 }; 3583 } // namespace llvm 3584 #endif // NDEBUG 3585 3586 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3587 /// rendered using 'dot'. 3588 /// 3589 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3590 #ifndef NDEBUG 3591 ViewGraph(this, Name, false, Title); 3592 #else 3593 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3594 << "systems with Graphviz or gv!\n"; 3595 #endif // NDEBUG 3596 } 3597 3598 /// Out-of-line implementation with no arguments is handy for gdb. 3599 void ScheduleDAGMI::viewGraph() { 3600 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3601 } 3602