xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 816a1ab9d9f3f640200895215a19772db11e9c99)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include <queue>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "misched"
37 
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                            cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                             cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                        cl::desc("Print critical path length to stdout"));
46 }
47 
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50   cl::desc("Pop up a window to show MISched dags after they are processed"));
51 
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56 
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59 
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61   cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63   cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67 
68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
69   cl::desc("Enable register pressure scheduling."), cl::init(true));
70 
71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
72   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
73 
74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
75   cl::desc("Enable load clustering."), cl::init(true));
76 
77 // Experimental heuristics
78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
79   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
80 
81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
82   cl::desc("Verify machine instrs before and after machine scheduling"));
83 
84 // DAG subtrees must have at least this many nodes.
85 static const unsigned MinSubtreeSize = 8;
86 
87 // Pin the vtables to this file.
88 void MachineSchedStrategy::anchor() {}
89 void ScheduleDAGMutation::anchor() {}
90 
91 //===----------------------------------------------------------------------===//
92 // Machine Instruction Scheduling Pass and Registry
93 //===----------------------------------------------------------------------===//
94 
95 MachineSchedContext::MachineSchedContext():
96     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
97   RegClassInfo = new RegisterClassInfo();
98 }
99 
100 MachineSchedContext::~MachineSchedContext() {
101   delete RegClassInfo;
102 }
103 
104 namespace {
105 /// Base class for a machine scheduler class that can run at any point.
106 class MachineSchedulerBase : public MachineSchedContext,
107                              public MachineFunctionPass {
108 public:
109   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
110 
111   void print(raw_ostream &O, const Module* = nullptr) const override;
112 
113 protected:
114   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
115 };
116 
117 /// MachineScheduler runs after coalescing and before register allocation.
118 class MachineScheduler : public MachineSchedulerBase {
119 public:
120   MachineScheduler();
121 
122   void getAnalysisUsage(AnalysisUsage &AU) const override;
123 
124   bool runOnMachineFunction(MachineFunction&) override;
125 
126   static char ID; // Class identification, replacement for typeinfo
127 
128 protected:
129   ScheduleDAGInstrs *createMachineScheduler();
130 };
131 
132 /// PostMachineScheduler runs after shortly before code emission.
133 class PostMachineScheduler : public MachineSchedulerBase {
134 public:
135   PostMachineScheduler();
136 
137   void getAnalysisUsage(AnalysisUsage &AU) const override;
138 
139   bool runOnMachineFunction(MachineFunction&) override;
140 
141   static char ID; // Class identification, replacement for typeinfo
142 
143 protected:
144   ScheduleDAGInstrs *createPostMachineScheduler();
145 };
146 } // namespace
147 
148 char MachineScheduler::ID = 0;
149 
150 char &llvm::MachineSchedulerID = MachineScheduler::ID;
151 
152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
153                       "Machine Instruction Scheduler", false, false)
154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
158                     "Machine Instruction Scheduler", false, false)
159 
160 MachineScheduler::MachineScheduler()
161 : MachineSchedulerBase(ID) {
162   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
163 }
164 
165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
166   AU.setPreservesCFG();
167   AU.addRequiredID(MachineDominatorsID);
168   AU.addRequired<MachineLoopInfo>();
169   AU.addRequired<AAResultsWrapperPass>();
170   AU.addRequired<TargetPassConfig>();
171   AU.addRequired<SlotIndexes>();
172   AU.addPreserved<SlotIndexes>();
173   AU.addRequired<LiveIntervals>();
174   AU.addPreserved<LiveIntervals>();
175   MachineFunctionPass::getAnalysisUsage(AU);
176 }
177 
178 char PostMachineScheduler::ID = 0;
179 
180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
181 
182 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
183                 "PostRA Machine Instruction Scheduler", false, false)
184 
185 PostMachineScheduler::PostMachineScheduler()
186 : MachineSchedulerBase(ID) {
187   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
188 }
189 
190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
191   AU.setPreservesCFG();
192   AU.addRequiredID(MachineDominatorsID);
193   AU.addRequired<MachineLoopInfo>();
194   AU.addRequired<TargetPassConfig>();
195   MachineFunctionPass::getAnalysisUsage(AU);
196 }
197 
198 MachinePassRegistry MachineSchedRegistry::Registry;
199 
200 /// A dummy default scheduler factory indicates whether the scheduler
201 /// is overridden on the command line.
202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
203   return nullptr;
204 }
205 
206 /// MachineSchedOpt allows command line selection of the scheduler.
207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
208                RegisterPassParser<MachineSchedRegistry> >
209 MachineSchedOpt("misched",
210                 cl::init(&useDefaultMachineSched), cl::Hidden,
211                 cl::desc("Machine instruction scheduler to use"));
212 
213 static MachineSchedRegistry
214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
215                      useDefaultMachineSched);
216 
217 static cl::opt<bool> EnableMachineSched(
218     "enable-misched",
219     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
220     cl::Hidden);
221 
222 static cl::opt<bool> EnablePostRAMachineSched(
223     "enable-post-misched",
224     cl::desc("Enable the post-ra machine instruction scheduling pass."),
225     cl::init(true), cl::Hidden);
226 
227 /// Forward declare the standard machine scheduler. This will be used as the
228 /// default scheduler if the target does not set a default.
229 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
230 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
231 
232 /// Decrement this iterator until reaching the top or a non-debug instr.
233 static MachineBasicBlock::const_iterator
234 priorNonDebug(MachineBasicBlock::const_iterator I,
235               MachineBasicBlock::const_iterator Beg) {
236   assert(I != Beg && "reached the top of the region, cannot decrement");
237   while (--I != Beg) {
238     if (!I->isDebugValue())
239       break;
240   }
241   return I;
242 }
243 
244 /// Non-const version.
245 static MachineBasicBlock::iterator
246 priorNonDebug(MachineBasicBlock::iterator I,
247               MachineBasicBlock::const_iterator Beg) {
248   return const_cast<MachineInstr*>(
249     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
250 }
251 
252 /// If this iterator is a debug value, increment until reaching the End or a
253 /// non-debug instruction.
254 static MachineBasicBlock::const_iterator
255 nextIfDebug(MachineBasicBlock::const_iterator I,
256             MachineBasicBlock::const_iterator End) {
257   for(; I != End; ++I) {
258     if (!I->isDebugValue())
259       break;
260   }
261   return I;
262 }
263 
264 /// Non-const version.
265 static MachineBasicBlock::iterator
266 nextIfDebug(MachineBasicBlock::iterator I,
267             MachineBasicBlock::const_iterator End) {
268   // Cast the return value to nonconst MachineInstr, then cast to an
269   // instr_iterator, which does not check for null, finally return a
270   // bundle_iterator.
271   return MachineBasicBlock::instr_iterator(
272     const_cast<MachineInstr*>(
273       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
274 }
275 
276 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
277 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
278   // Select the scheduler, or set the default.
279   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
280   if (Ctor != useDefaultMachineSched)
281     return Ctor(this);
282 
283   // Get the default scheduler set by the target for this function.
284   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
285   if (Scheduler)
286     return Scheduler;
287 
288   // Default to GenericScheduler.
289   return createGenericSchedLive(this);
290 }
291 
292 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
293 /// the caller. We don't have a command line option to override the postRA
294 /// scheduler. The Target must configure it.
295 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
296   // Get the postRA scheduler set by the target for this function.
297   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
298   if (Scheduler)
299     return Scheduler;
300 
301   // Default to GenericScheduler.
302   return createGenericSchedPostRA(this);
303 }
304 
305 /// Top-level MachineScheduler pass driver.
306 ///
307 /// Visit blocks in function order. Divide each block into scheduling regions
308 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
309 /// consistent with the DAG builder, which traverses the interior of the
310 /// scheduling regions bottom-up.
311 ///
312 /// This design avoids exposing scheduling boundaries to the DAG builder,
313 /// simplifying the DAG builder's support for "special" target instructions.
314 /// At the same time the design allows target schedulers to operate across
315 /// scheduling boundaries, for example to bundle the boudary instructions
316 /// without reordering them. This creates complexity, because the target
317 /// scheduler must update the RegionBegin and RegionEnd positions cached by
318 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
319 /// design would be to split blocks at scheduling boundaries, but LLVM has a
320 /// general bias against block splitting purely for implementation simplicity.
321 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
322   if (skipOptnoneFunction(*mf.getFunction()))
323     return false;
324 
325   if (EnableMachineSched.getNumOccurrences()) {
326     if (!EnableMachineSched)
327       return false;
328   } else if (!mf.getSubtarget().enableMachineScheduler())
329     return false;
330 
331   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
332 
333   // Initialize the context of the pass.
334   MF = &mf;
335   MLI = &getAnalysis<MachineLoopInfo>();
336   MDT = &getAnalysis<MachineDominatorTree>();
337   PassConfig = &getAnalysis<TargetPassConfig>();
338   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339 
340   LIS = &getAnalysis<LiveIntervals>();
341 
342   if (VerifyScheduling) {
343     DEBUG(LIS->dump());
344     MF->verify(this, "Before machine scheduling.");
345   }
346   RegClassInfo->runOnMachineFunction(*MF);
347 
348   // Instantiate the selected scheduler for this target, function, and
349   // optimization level.
350   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
351   scheduleRegions(*Scheduler, false);
352 
353   DEBUG(LIS->dump());
354   if (VerifyScheduling)
355     MF->verify(this, "After machine scheduling.");
356   return true;
357 }
358 
359 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
360   if (skipOptnoneFunction(*mf.getFunction()))
361     return false;
362 
363   if (EnablePostRAMachineSched.getNumOccurrences()) {
364     if (!EnablePostRAMachineSched)
365       return false;
366   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
367     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
368     return false;
369   }
370   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
371 
372   // Initialize the context of the pass.
373   MF = &mf;
374   PassConfig = &getAnalysis<TargetPassConfig>();
375 
376   if (VerifyScheduling)
377     MF->verify(this, "Before post machine scheduling.");
378 
379   // Instantiate the selected scheduler for this target, function, and
380   // optimization level.
381   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
382   scheduleRegions(*Scheduler, true);
383 
384   if (VerifyScheduling)
385     MF->verify(this, "After post machine scheduling.");
386   return true;
387 }
388 
389 /// Return true of the given instruction should not be included in a scheduling
390 /// region.
391 ///
392 /// MachineScheduler does not currently support scheduling across calls. To
393 /// handle calls, the DAG builder needs to be modified to create register
394 /// anti/output dependencies on the registers clobbered by the call's regmask
395 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
396 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
397 /// the boundary, but there would be no benefit to postRA scheduling across
398 /// calls this late anyway.
399 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
400                             MachineBasicBlock *MBB,
401                             MachineFunction *MF,
402                             const TargetInstrInfo *TII) {
403   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
404 }
405 
406 /// Main driver for both MachineScheduler and PostMachineScheduler.
407 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
408                                            bool FixKillFlags) {
409   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
410 
411   // Visit all machine basic blocks.
412   //
413   // TODO: Visit blocks in global postorder or postorder within the bottom-up
414   // loop tree. Then we can optionally compute global RegPressure.
415   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
416        MBB != MBBEnd; ++MBB) {
417 
418     Scheduler.startBlock(&*MBB);
419 
420 #ifndef NDEBUG
421     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
422       continue;
423     if (SchedOnlyBlock.getNumOccurrences()
424         && (int)SchedOnlyBlock != MBB->getNumber())
425       continue;
426 #endif
427 
428     // Break the block into scheduling regions [I, RegionEnd), and schedule each
429     // region as soon as it is discovered. RegionEnd points the scheduling
430     // boundary at the bottom of the region. The DAG does not include RegionEnd,
431     // but the region does (i.e. the next RegionEnd is above the previous
432     // RegionBegin). If the current block has no terminator then RegionEnd ==
433     // MBB->end() for the bottom region.
434     //
435     // The Scheduler may insert instructions during either schedule() or
436     // exitRegion(), even for empty regions. So the local iterators 'I' and
437     // 'RegionEnd' are invalid across these calls.
438     //
439     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
440     // as a single instruction.
441     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
442     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
443         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
444 
445       // Avoid decrementing RegionEnd for blocks with no terminator.
446       if (RegionEnd != MBB->end() ||
447           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
448         --RegionEnd;
449         // Count the boundary instruction.
450         --RemainingInstrs;
451       }
452 
453       // The next region starts above the previous region. Look backward in the
454       // instruction stream until we find the nearest boundary.
455       unsigned NumRegionInstrs = 0;
456       MachineBasicBlock::iterator I = RegionEnd;
457       for(;I != MBB->begin(); --I, --RemainingInstrs) {
458         if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
459           break;
460         if (!I->isDebugValue())
461           ++NumRegionInstrs;
462       }
463       // Notify the scheduler of the region, even if we may skip scheduling
464       // it. Perhaps it still needs to be bundled.
465       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
466 
467       // Skip empty scheduling regions (0 or 1 schedulable instructions).
468       if (I == RegionEnd || I == std::prev(RegionEnd)) {
469         // Close the current region. Bundle the terminator if needed.
470         // This invalidates 'RegionEnd' and 'I'.
471         Scheduler.exitRegion();
472         continue;
473       }
474       DEBUG(dbgs() << "********** MI Scheduling **********\n");
475       DEBUG(dbgs() << MF->getName()
476             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
477             << "\n  From: " << *I << "    To: ";
478             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
479             else dbgs() << "End";
480             dbgs() << " RegionInstrs: " << NumRegionInstrs
481             << " Remaining: " << RemainingInstrs << "\n");
482       if (DumpCriticalPathLength) {
483         errs() << MF->getName();
484         errs() << ":BB# " << MBB->getNumber();
485         errs() << " " << MBB->getName() << " \n";
486       }
487 
488       // Schedule a region: possibly reorder instructions.
489       // This invalidates 'RegionEnd' and 'I'.
490       Scheduler.schedule();
491 
492       // Close the current region.
493       Scheduler.exitRegion();
494 
495       // Scheduling has invalidated the current iterator 'I'. Ask the
496       // scheduler for the top of it's scheduled region.
497       RegionEnd = Scheduler.begin();
498     }
499     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
500     Scheduler.finishBlock();
501     // FIXME: Ideally, no further passes should rely on kill flags. However,
502     // thumb2 size reduction is currently an exception, so the PostMIScheduler
503     // needs to do this.
504     if (FixKillFlags)
505         Scheduler.fixupKills(&*MBB);
506   }
507   Scheduler.finalizeSchedule();
508 }
509 
510 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
511   // unimplemented
512 }
513 
514 LLVM_DUMP_METHOD
515 void ReadyQueue::dump() {
516   dbgs() << "Queue " << Name << ": ";
517   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
518     dbgs() << Queue[i]->NodeNum << " ";
519   dbgs() << "\n";
520 }
521 
522 //===----------------------------------------------------------------------===//
523 // ScheduleDAGMI - Basic machine instruction scheduling. This is
524 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
525 // virtual registers.
526 // ===----------------------------------------------------------------------===/
527 
528 // Provide a vtable anchor.
529 ScheduleDAGMI::~ScheduleDAGMI() {
530 }
531 
532 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
533   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
534 }
535 
536 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
537   if (SuccSU != &ExitSU) {
538     // Do not use WillCreateCycle, it assumes SD scheduling.
539     // If Pred is reachable from Succ, then the edge creates a cycle.
540     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
541       return false;
542     Topo.AddPred(SuccSU, PredDep.getSUnit());
543   }
544   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
545   // Return true regardless of whether a new edge needed to be inserted.
546   return true;
547 }
548 
549 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
550 /// NumPredsLeft reaches zero, release the successor node.
551 ///
552 /// FIXME: Adjust SuccSU height based on MinLatency.
553 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
554   SUnit *SuccSU = SuccEdge->getSUnit();
555 
556   if (SuccEdge->isWeak()) {
557     --SuccSU->WeakPredsLeft;
558     if (SuccEdge->isCluster())
559       NextClusterSucc = SuccSU;
560     return;
561   }
562 #ifndef NDEBUG
563   if (SuccSU->NumPredsLeft == 0) {
564     dbgs() << "*** Scheduling failed! ***\n";
565     SuccSU->dump(this);
566     dbgs() << " has been released too many times!\n";
567     llvm_unreachable(nullptr);
568   }
569 #endif
570   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
571   // CurrCycle may have advanced since then.
572   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
573     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
574 
575   --SuccSU->NumPredsLeft;
576   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
577     SchedImpl->releaseTopNode(SuccSU);
578 }
579 
580 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
581 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
582   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
583        I != E; ++I) {
584     releaseSucc(SU, &*I);
585   }
586 }
587 
588 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
589 /// NumSuccsLeft reaches zero, release the predecessor node.
590 ///
591 /// FIXME: Adjust PredSU height based on MinLatency.
592 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
593   SUnit *PredSU = PredEdge->getSUnit();
594 
595   if (PredEdge->isWeak()) {
596     --PredSU->WeakSuccsLeft;
597     if (PredEdge->isCluster())
598       NextClusterPred = PredSU;
599     return;
600   }
601 #ifndef NDEBUG
602   if (PredSU->NumSuccsLeft == 0) {
603     dbgs() << "*** Scheduling failed! ***\n";
604     PredSU->dump(this);
605     dbgs() << " has been released too many times!\n";
606     llvm_unreachable(nullptr);
607   }
608 #endif
609   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
610   // CurrCycle may have advanced since then.
611   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
612     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
613 
614   --PredSU->NumSuccsLeft;
615   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
616     SchedImpl->releaseBottomNode(PredSU);
617 }
618 
619 /// releasePredecessors - Call releasePred on each of SU's predecessors.
620 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
621   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
622        I != E; ++I) {
623     releasePred(SU, &*I);
624   }
625 }
626 
627 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
628 /// crossing a scheduling boundary. [begin, end) includes all instructions in
629 /// the region, including the boundary itself and single-instruction regions
630 /// that don't get scheduled.
631 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
632                                      MachineBasicBlock::iterator begin,
633                                      MachineBasicBlock::iterator end,
634                                      unsigned regioninstrs)
635 {
636   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
637 
638   SchedImpl->initPolicy(begin, end, regioninstrs);
639 }
640 
641 /// This is normally called from the main scheduler loop but may also be invoked
642 /// by the scheduling strategy to perform additional code motion.
643 void ScheduleDAGMI::moveInstruction(
644   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
645   // Advance RegionBegin if the first instruction moves down.
646   if (&*RegionBegin == MI)
647     ++RegionBegin;
648 
649   // Update the instruction stream.
650   BB->splice(InsertPos, BB, MI);
651 
652   // Update LiveIntervals
653   if (LIS)
654     LIS->handleMove(MI, /*UpdateFlags=*/true);
655 
656   // Recede RegionBegin if an instruction moves above the first.
657   if (RegionBegin == InsertPos)
658     RegionBegin = MI;
659 }
660 
661 bool ScheduleDAGMI::checkSchedLimit() {
662 #ifndef NDEBUG
663   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
664     CurrentTop = CurrentBottom;
665     return false;
666   }
667   ++NumInstrsScheduled;
668 #endif
669   return true;
670 }
671 
672 /// Per-region scheduling driver, called back from
673 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
674 /// does not consider liveness or register pressure. It is useful for PostRA
675 /// scheduling and potentially other custom schedulers.
676 void ScheduleDAGMI::schedule() {
677   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
678   DEBUG(SchedImpl->dumpPolicy());
679 
680   // Build the DAG.
681   buildSchedGraph(AA);
682 
683   Topo.InitDAGTopologicalSorting();
684 
685   postprocessDAG();
686 
687   SmallVector<SUnit*, 8> TopRoots, BotRoots;
688   findRootsAndBiasEdges(TopRoots, BotRoots);
689 
690   // Initialize the strategy before modifying the DAG.
691   // This may initialize a DFSResult to be used for queue priority.
692   SchedImpl->initialize(this);
693 
694   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
695           SUnits[su].dumpAll(this));
696   if (ViewMISchedDAGs) viewGraph();
697 
698   // Initialize ready queues now that the DAG and priority data are finalized.
699   initQueues(TopRoots, BotRoots);
700 
701   bool IsTopNode = false;
702   while (true) {
703     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
704     SUnit *SU = SchedImpl->pickNode(IsTopNode);
705     if (!SU) break;
706 
707     assert(!SU->isScheduled && "Node already scheduled");
708     if (!checkSchedLimit())
709       break;
710 
711     MachineInstr *MI = SU->getInstr();
712     if (IsTopNode) {
713       assert(SU->isTopReady() && "node still has unscheduled dependencies");
714       if (&*CurrentTop == MI)
715         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
716       else
717         moveInstruction(MI, CurrentTop);
718     }
719     else {
720       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
721       MachineBasicBlock::iterator priorII =
722         priorNonDebug(CurrentBottom, CurrentTop);
723       if (&*priorII == MI)
724         CurrentBottom = priorII;
725       else {
726         if (&*CurrentTop == MI)
727           CurrentTop = nextIfDebug(++CurrentTop, priorII);
728         moveInstruction(MI, CurrentBottom);
729         CurrentBottom = MI;
730       }
731     }
732     // Notify the scheduling strategy before updating the DAG.
733     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
734     // runs, it can then use the accurate ReadyCycle time to determine whether
735     // newly released nodes can move to the readyQ.
736     SchedImpl->schedNode(SU, IsTopNode);
737 
738     updateQueues(SU, IsTopNode);
739   }
740   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
741 
742   placeDebugValues();
743 
744   DEBUG({
745       unsigned BBNum = begin()->getParent()->getNumber();
746       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
747       dumpSchedule();
748       dbgs() << '\n';
749     });
750 }
751 
752 /// Apply each ScheduleDAGMutation step in order.
753 void ScheduleDAGMI::postprocessDAG() {
754   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
755     Mutations[i]->apply(this);
756   }
757 }
758 
759 void ScheduleDAGMI::
760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
761                       SmallVectorImpl<SUnit*> &BotRoots) {
762   for (std::vector<SUnit>::iterator
763          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
764     SUnit *SU = &(*I);
765     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
766 
767     // Order predecessors so DFSResult follows the critical path.
768     SU->biasCriticalPath();
769 
770     // A SUnit is ready to top schedule if it has no predecessors.
771     if (!I->NumPredsLeft)
772       TopRoots.push_back(SU);
773     // A SUnit is ready to bottom schedule if it has no successors.
774     if (!I->NumSuccsLeft)
775       BotRoots.push_back(SU);
776   }
777   ExitSU.biasCriticalPath();
778 }
779 
780 /// Identify DAG roots and setup scheduler queues.
781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
782                                ArrayRef<SUnit*> BotRoots) {
783   NextClusterSucc = nullptr;
784   NextClusterPred = nullptr;
785 
786   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
787   //
788   // Nodes with unreleased weak edges can still be roots.
789   // Release top roots in forward order.
790   for (SmallVectorImpl<SUnit*>::const_iterator
791          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
792     SchedImpl->releaseTopNode(*I);
793   }
794   // Release bottom roots in reverse order so the higher priority nodes appear
795   // first. This is more natural and slightly more efficient.
796   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
797          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
798     SchedImpl->releaseBottomNode(*I);
799   }
800 
801   releaseSuccessors(&EntrySU);
802   releasePredecessors(&ExitSU);
803 
804   SchedImpl->registerRoots();
805 
806   // Advance past initial DebugValues.
807   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
808   CurrentBottom = RegionEnd;
809 }
810 
811 /// Update scheduler queues after scheduling an instruction.
812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
813   // Release dependent instructions for scheduling.
814   if (IsTopNode)
815     releaseSuccessors(SU);
816   else
817     releasePredecessors(SU);
818 
819   SU->isScheduled = true;
820 }
821 
822 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
823 void ScheduleDAGMI::placeDebugValues() {
824   // If first instruction was a DBG_VALUE then put it back.
825   if (FirstDbgValue) {
826     BB->splice(RegionBegin, BB, FirstDbgValue);
827     RegionBegin = FirstDbgValue;
828   }
829 
830   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
831          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
832     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
833     MachineInstr *DbgValue = P.first;
834     MachineBasicBlock::iterator OrigPrevMI = P.second;
835     if (&*RegionBegin == DbgValue)
836       ++RegionBegin;
837     BB->splice(++OrigPrevMI, BB, DbgValue);
838     if (OrigPrevMI == std::prev(RegionEnd))
839       RegionEnd = DbgValue;
840   }
841   DbgValues.clear();
842   FirstDbgValue = nullptr;
843 }
844 
845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
846 void ScheduleDAGMI::dumpSchedule() const {
847   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
848     if (SUnit *SU = getSUnit(&(*MI)))
849       SU->dump(this);
850     else
851       dbgs() << "Missing SUnit\n";
852   }
853 }
854 #endif
855 
856 //===----------------------------------------------------------------------===//
857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
858 // preservation.
859 //===----------------------------------------------------------------------===//
860 
861 ScheduleDAGMILive::~ScheduleDAGMILive() {
862   delete DFSResult;
863 }
864 
865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
866 /// crossing a scheduling boundary. [begin, end) includes all instructions in
867 /// the region, including the boundary itself and single-instruction regions
868 /// that don't get scheduled.
869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
870                                 MachineBasicBlock::iterator begin,
871                                 MachineBasicBlock::iterator end,
872                                 unsigned regioninstrs)
873 {
874   // ScheduleDAGMI initializes SchedImpl's per-region policy.
875   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
876 
877   // For convenience remember the end of the liveness region.
878   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
879 
880   SUPressureDiffs.clear();
881 
882   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
883   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
884 
885   if (ShouldTrackLaneMasks) {
886     if (!ShouldTrackPressure)
887       report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure");
888     // Dead subregister defs have no users and therefore no dependencies,
889     // moving them around may cause liveintervals to degrade into multiple
890     // components. Change independent components to have their own vreg to avoid
891     // this.
892     if (!DisconnectedComponentsRenamed)
893       LIS->renameDisconnectedComponents();
894   }
895 }
896 
897 // Setup the register pressure trackers for the top scheduled top and bottom
898 // scheduled regions.
899 void ScheduleDAGMILive::initRegPressure() {
900   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
901                     ShouldTrackLaneMasks, false);
902   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
903                     ShouldTrackLaneMasks, false);
904 
905   // Close the RPTracker to finalize live ins.
906   RPTracker.closeRegion();
907 
908   DEBUG(RPTracker.dump());
909 
910   // Initialize the live ins and live outs.
911   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
912   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
913 
914   // Close one end of the tracker so we can call
915   // getMaxUpward/DownwardPressureDelta before advancing across any
916   // instructions. This converts currently live regs into live ins/outs.
917   TopRPTracker.closeTop();
918   BotRPTracker.closeBottom();
919 
920   BotRPTracker.initLiveThru(RPTracker);
921   if (!BotRPTracker.getLiveThru().empty()) {
922     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
923     DEBUG(dbgs() << "Live Thru: ";
924           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
925   };
926 
927   // For each live out vreg reduce the pressure change associated with other
928   // uses of the same vreg below the live-out reaching def.
929   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
930 
931   // Account for liveness generated by the region boundary.
932   if (LiveRegionEnd != RegionEnd) {
933     SmallVector<RegisterMaskPair, 8> LiveUses;
934     BotRPTracker.recede(&LiveUses);
935     updatePressureDiffs(LiveUses);
936   }
937 
938   DEBUG(
939     dbgs() << "Top Pressure:\n";
940     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
941     dbgs() << "Bottom Pressure:\n";
942     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
943   );
944 
945   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
946 
947   // Cache the list of excess pressure sets in this region. This will also track
948   // the max pressure in the scheduled code for these sets.
949   RegionCriticalPSets.clear();
950   const std::vector<unsigned> &RegionPressure =
951     RPTracker.getPressure().MaxSetPressure;
952   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
953     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
954     if (RegionPressure[i] > Limit) {
955       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
956             << " Limit " << Limit
957             << " Actual " << RegionPressure[i] << "\n");
958       RegionCriticalPSets.push_back(PressureChange(i));
959     }
960   }
961   DEBUG(dbgs() << "Excess PSets: ";
962         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
963           dbgs() << TRI->getRegPressureSetName(
964             RegionCriticalPSets[i].getPSet()) << " ";
965         dbgs() << "\n");
966 }
967 
968 void ScheduleDAGMILive::
969 updateScheduledPressure(const SUnit *SU,
970                         const std::vector<unsigned> &NewMaxPressure) {
971   const PressureDiff &PDiff = getPressureDiff(SU);
972   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
973   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
974        I != E; ++I) {
975     if (!I->isValid())
976       break;
977     unsigned ID = I->getPSet();
978     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
979       ++CritIdx;
980     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
981       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
982           && NewMaxPressure[ID] <= INT16_MAX)
983         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
984     }
985     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
986     if (NewMaxPressure[ID] >= Limit - 2) {
987       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
988             << NewMaxPressure[ID]
989             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
990             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
991     }
992   }
993 }
994 
995 /// Update the PressureDiff array for liveness after scheduling this
996 /// instruction.
997 void ScheduleDAGMILive::updatePressureDiffs(
998     ArrayRef<RegisterMaskPair> LiveUses) {
999   for (const RegisterMaskPair &P : LiveUses) {
1000     unsigned Reg = P.RegUnit;
1001     /// FIXME: Currently assuming single-use physregs.
1002     if (!TRI->isVirtualRegister(Reg))
1003       continue;
1004 
1005     if (ShouldTrackLaneMasks) {
1006       // If the register has just become live then other uses won't change
1007       // this fact anymore => decrement pressure.
1008       // If the register has just become dead then other uses make it come
1009       // back to life => increment pressure.
1010       bool Decrement = P.LaneMask != 0;
1011 
1012       for (const VReg2SUnit &V2SU
1013            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1014         SUnit &SU = *V2SU.SU;
1015         if (SU.isScheduled || &SU == &ExitSU)
1016           continue;
1017 
1018         PressureDiff &PDiff = getPressureDiff(&SU);
1019         PDiff.addPressureChange(Reg, Decrement, &MRI);
1020         DEBUG(
1021           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1022                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1023                  << ' ' << *SU.getInstr();
1024           dbgs() << "              to ";
1025           PDiff.dump(*TRI);
1026         );
1027       }
1028     } else {
1029       assert(P.LaneMask != 0);
1030       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1031       // This may be called before CurrentBottom has been initialized. However,
1032       // BotRPTracker must have a valid position. We want the value live into the
1033       // instruction or live out of the block, so ask for the previous
1034       // instruction's live-out.
1035       const LiveInterval &LI = LIS->getInterval(Reg);
1036       VNInfo *VNI;
1037       MachineBasicBlock::const_iterator I =
1038         nextIfDebug(BotRPTracker.getPos(), BB->end());
1039       if (I == BB->end())
1040         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1041       else {
1042         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
1043         VNI = LRQ.valueIn();
1044       }
1045       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1046       assert(VNI && "No live value at use.");
1047       for (const VReg2SUnit &V2SU
1048            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1049         SUnit *SU = V2SU.SU;
1050         // If this use comes before the reaching def, it cannot be a last use,
1051         // so decrease its pressure change.
1052         if (!SU->isScheduled && SU != &ExitSU) {
1053           LiveQueryResult LRQ
1054             = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1055           if (LRQ.valueIn() == VNI) {
1056             PressureDiff &PDiff = getPressureDiff(SU);
1057             PDiff.addPressureChange(Reg, true, &MRI);
1058             DEBUG(
1059               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1060                      << *SU->getInstr();
1061               dbgs() << "              to ";
1062               PDiff.dump(*TRI);
1063             );
1064           }
1065         }
1066       }
1067     }
1068   }
1069 }
1070 
1071 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1072 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1073 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1074 ///
1075 /// This is a skeletal driver, with all the functionality pushed into helpers,
1076 /// so that it can be easily extended by experimental schedulers. Generally,
1077 /// implementing MachineSchedStrategy should be sufficient to implement a new
1078 /// scheduling algorithm. However, if a scheduler further subclasses
1079 /// ScheduleDAGMILive then it will want to override this virtual method in order
1080 /// to update any specialized state.
1081 void ScheduleDAGMILive::schedule() {
1082   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1083   DEBUG(SchedImpl->dumpPolicy());
1084   buildDAGWithRegPressure();
1085 
1086   Topo.InitDAGTopologicalSorting();
1087 
1088   postprocessDAG();
1089 
1090   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1091   findRootsAndBiasEdges(TopRoots, BotRoots);
1092 
1093   // Initialize the strategy before modifying the DAG.
1094   // This may initialize a DFSResult to be used for queue priority.
1095   SchedImpl->initialize(this);
1096 
1097   DEBUG(
1098     for (const SUnit &SU : SUnits) {
1099       SU.dumpAll(this);
1100       if (ShouldTrackPressure) {
1101         dbgs() << "  Pressure Diff      : ";
1102         getPressureDiff(&SU).dump(*TRI);
1103       }
1104       dbgs() << '\n';
1105     }
1106   );
1107   if (ViewMISchedDAGs) viewGraph();
1108 
1109   // Initialize ready queues now that the DAG and priority data are finalized.
1110   initQueues(TopRoots, BotRoots);
1111 
1112   if (ShouldTrackPressure) {
1113     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1114     TopRPTracker.setPos(CurrentTop);
1115   }
1116 
1117   bool IsTopNode = false;
1118   while (true) {
1119     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1120     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1121     if (!SU) break;
1122 
1123     assert(!SU->isScheduled && "Node already scheduled");
1124     if (!checkSchedLimit())
1125       break;
1126 
1127     scheduleMI(SU, IsTopNode);
1128 
1129     if (DFSResult) {
1130       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1131       if (!ScheduledTrees.test(SubtreeID)) {
1132         ScheduledTrees.set(SubtreeID);
1133         DFSResult->scheduleTree(SubtreeID);
1134         SchedImpl->scheduleTree(SubtreeID);
1135       }
1136     }
1137 
1138     // Notify the scheduling strategy after updating the DAG.
1139     SchedImpl->schedNode(SU, IsTopNode);
1140 
1141     updateQueues(SU, IsTopNode);
1142   }
1143   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1144 
1145   placeDebugValues();
1146 
1147   DEBUG({
1148       unsigned BBNum = begin()->getParent()->getNumber();
1149       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1150       dumpSchedule();
1151       dbgs() << '\n';
1152     });
1153 }
1154 
1155 /// Build the DAG and setup three register pressure trackers.
1156 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1157   if (!ShouldTrackPressure) {
1158     RPTracker.reset();
1159     RegionCriticalPSets.clear();
1160     buildSchedGraph(AA);
1161     return;
1162   }
1163 
1164   // Initialize the register pressure tracker used by buildSchedGraph.
1165   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1166                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1167 
1168   // Account for liveness generate by the region boundary.
1169   if (LiveRegionEnd != RegionEnd)
1170     RPTracker.recede();
1171 
1172   // Build the DAG, and compute current register pressure.
1173   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1174 
1175   // Initialize top/bottom trackers after computing region pressure.
1176   initRegPressure();
1177 }
1178 
1179 void ScheduleDAGMILive::computeDFSResult() {
1180   if (!DFSResult)
1181     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1182   DFSResult->clear();
1183   ScheduledTrees.clear();
1184   DFSResult->resize(SUnits.size());
1185   DFSResult->compute(SUnits);
1186   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1187 }
1188 
1189 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1190 /// only provides the critical path for single block loops. To handle loops that
1191 /// span blocks, we could use the vreg path latencies provided by
1192 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1193 /// available for use in the scheduler.
1194 ///
1195 /// The cyclic path estimation identifies a def-use pair that crosses the back
1196 /// edge and considers the depth and height of the nodes. For example, consider
1197 /// the following instruction sequence where each instruction has unit latency
1198 /// and defines an epomymous virtual register:
1199 ///
1200 /// a->b(a,c)->c(b)->d(c)->exit
1201 ///
1202 /// The cyclic critical path is a two cycles: b->c->b
1203 /// The acyclic critical path is four cycles: a->b->c->d->exit
1204 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1205 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1206 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1207 /// LiveInDepth = depth(b) = len(a->b) = 1
1208 ///
1209 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1210 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1211 /// CyclicCriticalPath = min(2, 2) = 2
1212 ///
1213 /// This could be relevant to PostRA scheduling, but is currently implemented
1214 /// assuming LiveIntervals.
1215 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1216   // This only applies to single block loop.
1217   if (!BB->isSuccessor(BB))
1218     return 0;
1219 
1220   unsigned MaxCyclicLatency = 0;
1221   // Visit each live out vreg def to find def/use pairs that cross iterations.
1222   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1223     unsigned Reg = P.RegUnit;
1224     if (!TRI->isVirtualRegister(Reg))
1225         continue;
1226     const LiveInterval &LI = LIS->getInterval(Reg);
1227     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1228     if (!DefVNI)
1229       continue;
1230 
1231     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1232     const SUnit *DefSU = getSUnit(DefMI);
1233     if (!DefSU)
1234       continue;
1235 
1236     unsigned LiveOutHeight = DefSU->getHeight();
1237     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1238     // Visit all local users of the vreg def.
1239     for (const VReg2SUnit &V2SU
1240          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1241       SUnit *SU = V2SU.SU;
1242       if (SU == &ExitSU)
1243         continue;
1244 
1245       // Only consider uses of the phi.
1246       LiveQueryResult LRQ =
1247         LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1248       if (!LRQ.valueIn()->isPHIDef())
1249         continue;
1250 
1251       // Assume that a path spanning two iterations is a cycle, which could
1252       // overestimate in strange cases. This allows cyclic latency to be
1253       // estimated as the minimum slack of the vreg's depth or height.
1254       unsigned CyclicLatency = 0;
1255       if (LiveOutDepth > SU->getDepth())
1256         CyclicLatency = LiveOutDepth - SU->getDepth();
1257 
1258       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1259       if (LiveInHeight > LiveOutHeight) {
1260         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1261           CyclicLatency = LiveInHeight - LiveOutHeight;
1262       }
1263       else
1264         CyclicLatency = 0;
1265 
1266       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1267             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1268       if (CyclicLatency > MaxCyclicLatency)
1269         MaxCyclicLatency = CyclicLatency;
1270     }
1271   }
1272   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1273   return MaxCyclicLatency;
1274 }
1275 
1276 /// Move an instruction and update register pressure.
1277 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1278   // Move the instruction to its new location in the instruction stream.
1279   MachineInstr *MI = SU->getInstr();
1280 
1281   if (IsTopNode) {
1282     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1283     if (&*CurrentTop == MI)
1284       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1285     else {
1286       moveInstruction(MI, CurrentTop);
1287       TopRPTracker.setPos(MI);
1288     }
1289 
1290     if (ShouldTrackPressure) {
1291       // Update top scheduled pressure.
1292       RegisterOperands RegOpers;
1293       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1294       if (ShouldTrackLaneMasks) {
1295         // Adjust liveness and add missing dead+read-undef flags.
1296         SlotIndex SlotIdx = LIS->getInstructionIndex(MI).getRegSlot();
1297         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1298       } else {
1299         // Adjust for missing dead-def flags.
1300         RegOpers.detectDeadDefs(*MI, *LIS);
1301       }
1302 
1303       TopRPTracker.advance(RegOpers);
1304       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1305       DEBUG(
1306         dbgs() << "Top Pressure:\n";
1307         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1308       );
1309 
1310       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1311     }
1312   }
1313   else {
1314     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1315     MachineBasicBlock::iterator priorII =
1316       priorNonDebug(CurrentBottom, CurrentTop);
1317     if (&*priorII == MI)
1318       CurrentBottom = priorII;
1319     else {
1320       if (&*CurrentTop == MI) {
1321         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1322         TopRPTracker.setPos(CurrentTop);
1323       }
1324       moveInstruction(MI, CurrentBottom);
1325       CurrentBottom = MI;
1326     }
1327     if (ShouldTrackPressure) {
1328       RegisterOperands RegOpers;
1329       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1330       if (ShouldTrackLaneMasks) {
1331         // Adjust liveness and add missing dead+read-undef flags.
1332         SlotIndex SlotIdx = LIS->getInstructionIndex(MI).getRegSlot();
1333         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1334       } else {
1335         // Adjust for missing dead-def flags.
1336         RegOpers.detectDeadDefs(*MI, *LIS);
1337       }
1338 
1339       BotRPTracker.recedeSkipDebugValues();
1340       SmallVector<RegisterMaskPair, 8> LiveUses;
1341       BotRPTracker.recede(RegOpers, &LiveUses);
1342       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1343       DEBUG(
1344         dbgs() << "Bottom Pressure:\n";
1345         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1346       );
1347 
1348       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1349       updatePressureDiffs(LiveUses);
1350     }
1351   }
1352 }
1353 
1354 //===----------------------------------------------------------------------===//
1355 // LoadClusterMutation - DAG post-processing to cluster loads.
1356 //===----------------------------------------------------------------------===//
1357 
1358 namespace {
1359 /// \brief Post-process the DAG to create cluster edges between neighboring
1360 /// loads.
1361 class LoadClusterMutation : public ScheduleDAGMutation {
1362   struct LoadInfo {
1363     SUnit *SU;
1364     unsigned BaseReg;
1365     unsigned Offset;
1366     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1367       : SU(su), BaseReg(reg), Offset(ofs) {}
1368 
1369     bool operator<(const LoadInfo &RHS) const {
1370       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1371     }
1372   };
1373 
1374   const TargetInstrInfo *TII;
1375   const TargetRegisterInfo *TRI;
1376 public:
1377   LoadClusterMutation(const TargetInstrInfo *tii,
1378                       const TargetRegisterInfo *tri)
1379     : TII(tii), TRI(tri) {}
1380 
1381   void apply(ScheduleDAGMI *DAG) override;
1382 protected:
1383   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1384 };
1385 } // anonymous
1386 
1387 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1388                                                   ScheduleDAGMI *DAG) {
1389   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1390   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1391     SUnit *SU = Loads[Idx];
1392     unsigned BaseReg;
1393     unsigned Offset;
1394     if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1395       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1396   }
1397   if (LoadRecords.size() < 2)
1398     return;
1399   std::sort(LoadRecords.begin(), LoadRecords.end());
1400   unsigned ClusterLength = 1;
1401   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1402     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1403       ClusterLength = 1;
1404       continue;
1405     }
1406 
1407     SUnit *SUa = LoadRecords[Idx].SU;
1408     SUnit *SUb = LoadRecords[Idx+1].SU;
1409     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1410         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1411 
1412       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1413             << SUb->NodeNum << ")\n");
1414       // Copy successor edges from SUa to SUb. Interleaving computation
1415       // dependent on SUa can prevent load combining due to register reuse.
1416       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1417       // loads should have effectively the same inputs.
1418       for (SUnit::const_succ_iterator
1419              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1420         if (SI->getSUnit() == SUb)
1421           continue;
1422         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1423         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1424       }
1425       ++ClusterLength;
1426     }
1427     else
1428       ClusterLength = 1;
1429   }
1430 }
1431 
1432 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1433 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1434   // Map DAG NodeNum to store chain ID.
1435   DenseMap<unsigned, unsigned> StoreChainIDs;
1436   // Map each store chain to a set of dependent loads.
1437   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1438   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1439     SUnit *SU = &DAG->SUnits[Idx];
1440     if (!SU->getInstr()->mayLoad())
1441       continue;
1442     unsigned ChainPredID = DAG->SUnits.size();
1443     for (SUnit::const_pred_iterator
1444            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1445       if (PI->isCtrl()) {
1446         ChainPredID = PI->getSUnit()->NodeNum;
1447         break;
1448       }
1449     }
1450     // Check if this chain-like pred has been seen
1451     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1452     unsigned NumChains = StoreChainDependents.size();
1453     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1454       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1455     if (Result.second)
1456       StoreChainDependents.resize(NumChains + 1);
1457     StoreChainDependents[Result.first->second].push_back(SU);
1458   }
1459   // Iterate over the store chains.
1460   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1461     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1466 //===----------------------------------------------------------------------===//
1467 
1468 namespace {
1469 /// \brief Post-process the DAG to create cluster edges between instructions
1470 /// that may be fused by the processor into a single operation.
1471 class MacroFusion : public ScheduleDAGMutation {
1472   const TargetInstrInfo &TII;
1473   const TargetRegisterInfo &TRI;
1474 public:
1475   MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1476     : TII(TII), TRI(TRI) {}
1477 
1478   void apply(ScheduleDAGMI *DAG) override;
1479 };
1480 } // anonymous
1481 
1482 /// Returns true if \p MI reads a register written by \p Other.
1483 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1484                        const MachineInstr &Other) {
1485   for (const MachineOperand &MO : MI.uses()) {
1486     if (!MO.isReg() || !MO.readsReg())
1487       continue;
1488 
1489     unsigned Reg = MO.getReg();
1490     if (Other.modifiesRegister(Reg, &TRI))
1491       return true;
1492   }
1493   return false;
1494 }
1495 
1496 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1497 /// fused operations.
1498 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1499   // For now, assume targets can only fuse with the branch.
1500   SUnit &ExitSU = DAG->ExitSU;
1501   MachineInstr *Branch = ExitSU.getInstr();
1502   if (!Branch)
1503     return;
1504 
1505   for (SUnit &SU : DAG->SUnits) {
1506     // SUnits with successors can't be schedule in front of the ExitSU.
1507     if (!SU.Succs.empty())
1508       continue;
1509     // We only care if the node writes to a register that the branch reads.
1510     MachineInstr *Pred = SU.getInstr();
1511     if (!HasDataDep(TRI, *Branch, *Pred))
1512       continue;
1513 
1514     if (!TII.shouldScheduleAdjacent(Pred, Branch))
1515       continue;
1516 
1517     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1518     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1519     // need to copy predecessor edges from ExitSU to SU, since top-down
1520     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1521     // of SU, we could create an artificial edge from the deepest root, but it
1522     // hasn't been needed yet.
1523     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1524     (void)Success;
1525     assert(Success && "No DAG nodes should be reachable from ExitSU");
1526 
1527     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1528     break;
1529   }
1530 }
1531 
1532 //===----------------------------------------------------------------------===//
1533 // CopyConstrain - DAG post-processing to encourage copy elimination.
1534 //===----------------------------------------------------------------------===//
1535 
1536 namespace {
1537 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1538 /// the one use that defines the copy's source vreg, most likely an induction
1539 /// variable increment.
1540 class CopyConstrain : public ScheduleDAGMutation {
1541   // Transient state.
1542   SlotIndex RegionBeginIdx;
1543   // RegionEndIdx is the slot index of the last non-debug instruction in the
1544   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1545   SlotIndex RegionEndIdx;
1546 public:
1547   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1548 
1549   void apply(ScheduleDAGMI *DAG) override;
1550 
1551 protected:
1552   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1553 };
1554 } // anonymous
1555 
1556 /// constrainLocalCopy handles two possibilities:
1557 /// 1) Local src:
1558 /// I0:     = dst
1559 /// I1: src = ...
1560 /// I2:     = dst
1561 /// I3: dst = src (copy)
1562 /// (create pred->succ edges I0->I1, I2->I1)
1563 ///
1564 /// 2) Local copy:
1565 /// I0: dst = src (copy)
1566 /// I1:     = dst
1567 /// I2: src = ...
1568 /// I3:     = dst
1569 /// (create pred->succ edges I1->I2, I3->I2)
1570 ///
1571 /// Although the MachineScheduler is currently constrained to single blocks,
1572 /// this algorithm should handle extended blocks. An EBB is a set of
1573 /// contiguously numbered blocks such that the previous block in the EBB is
1574 /// always the single predecessor.
1575 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1576   LiveIntervals *LIS = DAG->getLIS();
1577   MachineInstr *Copy = CopySU->getInstr();
1578 
1579   // Check for pure vreg copies.
1580   unsigned SrcReg = Copy->getOperand(1).getReg();
1581   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1582     return;
1583 
1584   unsigned DstReg = Copy->getOperand(0).getReg();
1585   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1586     return;
1587 
1588   // Check if either the dest or source is local. If it's live across a back
1589   // edge, it's not local. Note that if both vregs are live across the back
1590   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1591   // If both the copy's source and dest are local live intervals, then we
1592   // should treat the dest as the global for the purpose of adding
1593   // constraints. This adds edges from source's other uses to the copy.
1594   unsigned LocalReg = SrcReg;
1595   unsigned GlobalReg = DstReg;
1596   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1597   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1598     LocalReg = DstReg;
1599     GlobalReg = SrcReg;
1600     LocalLI = &LIS->getInterval(LocalReg);
1601     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1602       return;
1603   }
1604   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1605 
1606   // Find the global segment after the start of the local LI.
1607   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1608   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1609   // local live range. We could create edges from other global uses to the local
1610   // start, but the coalescer should have already eliminated these cases, so
1611   // don't bother dealing with it.
1612   if (GlobalSegment == GlobalLI->end())
1613     return;
1614 
1615   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1616   // returned the next global segment. But if GlobalSegment overlaps with
1617   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1618   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1619   if (GlobalSegment->contains(LocalLI->beginIndex()))
1620     ++GlobalSegment;
1621 
1622   if (GlobalSegment == GlobalLI->end())
1623     return;
1624 
1625   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1626   if (GlobalSegment != GlobalLI->begin()) {
1627     // Two address defs have no hole.
1628     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1629                                GlobalSegment->start)) {
1630       return;
1631     }
1632     // If the prior global segment may be defined by the same two-address
1633     // instruction that also defines LocalLI, then can't make a hole here.
1634     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1635                                LocalLI->beginIndex())) {
1636       return;
1637     }
1638     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1639     // it would be a disconnected component in the live range.
1640     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1641            "Disconnected LRG within the scheduling region.");
1642   }
1643   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1644   if (!GlobalDef)
1645     return;
1646 
1647   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1648   if (!GlobalSU)
1649     return;
1650 
1651   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1652   // constraining the uses of the last local def to precede GlobalDef.
1653   SmallVector<SUnit*,8> LocalUses;
1654   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1655   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1656   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1657   for (SUnit::const_succ_iterator
1658          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1659        I != E; ++I) {
1660     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1661       continue;
1662     if (I->getSUnit() == GlobalSU)
1663       continue;
1664     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1665       return;
1666     LocalUses.push_back(I->getSUnit());
1667   }
1668   // Open the top of the GlobalLI hole by constraining any earlier global uses
1669   // to precede the start of LocalLI.
1670   SmallVector<SUnit*,8> GlobalUses;
1671   MachineInstr *FirstLocalDef =
1672     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1673   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1674   for (SUnit::const_pred_iterator
1675          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1676     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1677       continue;
1678     if (I->getSUnit() == FirstLocalSU)
1679       continue;
1680     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1681       return;
1682     GlobalUses.push_back(I->getSUnit());
1683   }
1684   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1685   // Add the weak edges.
1686   for (SmallVectorImpl<SUnit*>::const_iterator
1687          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1688     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1689           << GlobalSU->NodeNum << ")\n");
1690     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1691   }
1692   for (SmallVectorImpl<SUnit*>::const_iterator
1693          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1694     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1695           << FirstLocalSU->NodeNum << ")\n");
1696     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1697   }
1698 }
1699 
1700 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1701 /// copy elimination.
1702 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1703   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1704 
1705   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1706   if (FirstPos == DAG->end())
1707     return;
1708   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1709   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1710     &*priorNonDebug(DAG->end(), DAG->begin()));
1711 
1712   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1713     SUnit *SU = &DAG->SUnits[Idx];
1714     if (!SU->getInstr()->isCopy())
1715       continue;
1716 
1717     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1718   }
1719 }
1720 
1721 //===----------------------------------------------------------------------===//
1722 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1723 // and possibly other custom schedulers.
1724 //===----------------------------------------------------------------------===//
1725 
1726 static const unsigned InvalidCycle = ~0U;
1727 
1728 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1729 
1730 void SchedBoundary::reset() {
1731   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1732   // Destroying and reconstructing it is very expensive though. So keep
1733   // invalid, placeholder HazardRecs.
1734   if (HazardRec && HazardRec->isEnabled()) {
1735     delete HazardRec;
1736     HazardRec = nullptr;
1737   }
1738   Available.clear();
1739   Pending.clear();
1740   CheckPending = false;
1741   NextSUs.clear();
1742   CurrCycle = 0;
1743   CurrMOps = 0;
1744   MinReadyCycle = UINT_MAX;
1745   ExpectedLatency = 0;
1746   DependentLatency = 0;
1747   RetiredMOps = 0;
1748   MaxExecutedResCount = 0;
1749   ZoneCritResIdx = 0;
1750   IsResourceLimited = false;
1751   ReservedCycles.clear();
1752 #ifndef NDEBUG
1753   // Track the maximum number of stall cycles that could arise either from the
1754   // latency of a DAG edge or the number of cycles that a processor resource is
1755   // reserved (SchedBoundary::ReservedCycles).
1756   MaxObservedStall = 0;
1757 #endif
1758   // Reserve a zero-count for invalid CritResIdx.
1759   ExecutedResCounts.resize(1);
1760   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1761 }
1762 
1763 void SchedRemainder::
1764 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1765   reset();
1766   if (!SchedModel->hasInstrSchedModel())
1767     return;
1768   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1769   for (std::vector<SUnit>::iterator
1770          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1771     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1772     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1773       * SchedModel->getMicroOpFactor();
1774     for (TargetSchedModel::ProcResIter
1775            PI = SchedModel->getWriteProcResBegin(SC),
1776            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1777       unsigned PIdx = PI->ProcResourceIdx;
1778       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1779       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1780     }
1781   }
1782 }
1783 
1784 void SchedBoundary::
1785 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1786   reset();
1787   DAG = dag;
1788   SchedModel = smodel;
1789   Rem = rem;
1790   if (SchedModel->hasInstrSchedModel()) {
1791     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1792     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1793   }
1794 }
1795 
1796 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1797 /// these "soft stalls" differently than the hard stall cycles based on CPU
1798 /// resources and computed by checkHazard(). A fully in-order model
1799 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1800 /// available for scheduling until they are ready. However, a weaker in-order
1801 /// model may use this for heuristics. For example, if a processor has in-order
1802 /// behavior when reading certain resources, this may come into play.
1803 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1804   if (!SU->isUnbuffered)
1805     return 0;
1806 
1807   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1808   if (ReadyCycle > CurrCycle)
1809     return ReadyCycle - CurrCycle;
1810   return 0;
1811 }
1812 
1813 /// Compute the next cycle at which the given processor resource can be
1814 /// scheduled.
1815 unsigned SchedBoundary::
1816 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1817   unsigned NextUnreserved = ReservedCycles[PIdx];
1818   // If this resource has never been used, always return cycle zero.
1819   if (NextUnreserved == InvalidCycle)
1820     return 0;
1821   // For bottom-up scheduling add the cycles needed for the current operation.
1822   if (!isTop())
1823     NextUnreserved += Cycles;
1824   return NextUnreserved;
1825 }
1826 
1827 /// Does this SU have a hazard within the current instruction group.
1828 ///
1829 /// The scheduler supports two modes of hazard recognition. The first is the
1830 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1831 /// supports highly complicated in-order reservation tables
1832 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1833 ///
1834 /// The second is a streamlined mechanism that checks for hazards based on
1835 /// simple counters that the scheduler itself maintains. It explicitly checks
1836 /// for instruction dispatch limitations, including the number of micro-ops that
1837 /// can dispatch per cycle.
1838 ///
1839 /// TODO: Also check whether the SU must start a new group.
1840 bool SchedBoundary::checkHazard(SUnit *SU) {
1841   if (HazardRec->isEnabled()
1842       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1843     return true;
1844   }
1845   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1846   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1847     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1848           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1849     return true;
1850   }
1851   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1852     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1853     for (TargetSchedModel::ProcResIter
1854            PI = SchedModel->getWriteProcResBegin(SC),
1855            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1856       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1857       if (NRCycle > CurrCycle) {
1858 #ifndef NDEBUG
1859         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1860 #endif
1861         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1862               << SchedModel->getResourceName(PI->ProcResourceIdx)
1863               << "=" << NRCycle << "c\n");
1864         return true;
1865       }
1866     }
1867   }
1868   return false;
1869 }
1870 
1871 // Find the unscheduled node in ReadySUs with the highest latency.
1872 unsigned SchedBoundary::
1873 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1874   SUnit *LateSU = nullptr;
1875   unsigned RemLatency = 0;
1876   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1877        I != E; ++I) {
1878     unsigned L = getUnscheduledLatency(*I);
1879     if (L > RemLatency) {
1880       RemLatency = L;
1881       LateSU = *I;
1882     }
1883   }
1884   if (LateSU) {
1885     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1886           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1887   }
1888   return RemLatency;
1889 }
1890 
1891 // Count resources in this zone and the remaining unscheduled
1892 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1893 // resource index, or zero if the zone is issue limited.
1894 unsigned SchedBoundary::
1895 getOtherResourceCount(unsigned &OtherCritIdx) {
1896   OtherCritIdx = 0;
1897   if (!SchedModel->hasInstrSchedModel())
1898     return 0;
1899 
1900   unsigned OtherCritCount = Rem->RemIssueCount
1901     + (RetiredMOps * SchedModel->getMicroOpFactor());
1902   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1903         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1904   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1905        PIdx != PEnd; ++PIdx) {
1906     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1907     if (OtherCount > OtherCritCount) {
1908       OtherCritCount = OtherCount;
1909       OtherCritIdx = PIdx;
1910     }
1911   }
1912   if (OtherCritIdx) {
1913     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1914           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1915           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1916   }
1917   return OtherCritCount;
1918 }
1919 
1920 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1921   assert(SU->getInstr() && "Scheduled SUnit must have instr");
1922 
1923 #ifndef NDEBUG
1924   // ReadyCycle was been bumped up to the CurrCycle when this node was
1925   // scheduled, but CurrCycle may have been eagerly advanced immediately after
1926   // scheduling, so may now be greater than ReadyCycle.
1927   if (ReadyCycle > CurrCycle)
1928     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1929 #endif
1930 
1931   if (ReadyCycle < MinReadyCycle)
1932     MinReadyCycle = ReadyCycle;
1933 
1934   // Check for interlocks first. For the purpose of other heuristics, an
1935   // instruction that cannot issue appears as if it's not in the ReadyQueue.
1936   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1937   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1938     Pending.push(SU);
1939   else
1940     Available.push(SU);
1941 
1942   // Record this node as an immediate dependent of the scheduled node.
1943   NextSUs.insert(SU);
1944 }
1945 
1946 void SchedBoundary::releaseTopNode(SUnit *SU) {
1947   if (SU->isScheduled)
1948     return;
1949 
1950   releaseNode(SU, SU->TopReadyCycle);
1951 }
1952 
1953 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1954   if (SU->isScheduled)
1955     return;
1956 
1957   releaseNode(SU, SU->BotReadyCycle);
1958 }
1959 
1960 /// Move the boundary of scheduled code by one cycle.
1961 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1962   if (SchedModel->getMicroOpBufferSize() == 0) {
1963     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1964     if (MinReadyCycle > NextCycle)
1965       NextCycle = MinReadyCycle;
1966   }
1967   // Update the current micro-ops, which will issue in the next cycle.
1968   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1969   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1970 
1971   // Decrement DependentLatency based on the next cycle.
1972   if ((NextCycle - CurrCycle) > DependentLatency)
1973     DependentLatency = 0;
1974   else
1975     DependentLatency -= (NextCycle - CurrCycle);
1976 
1977   if (!HazardRec->isEnabled()) {
1978     // Bypass HazardRec virtual calls.
1979     CurrCycle = NextCycle;
1980   }
1981   else {
1982     // Bypass getHazardType calls in case of long latency.
1983     for (; CurrCycle != NextCycle; ++CurrCycle) {
1984       if (isTop())
1985         HazardRec->AdvanceCycle();
1986       else
1987         HazardRec->RecedeCycle();
1988     }
1989   }
1990   CheckPending = true;
1991   unsigned LFactor = SchedModel->getLatencyFactor();
1992   IsResourceLimited =
1993     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1994     > (int)LFactor;
1995 
1996   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1997 }
1998 
1999 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2000   ExecutedResCounts[PIdx] += Count;
2001   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2002     MaxExecutedResCount = ExecutedResCounts[PIdx];
2003 }
2004 
2005 /// Add the given processor resource to this scheduled zone.
2006 ///
2007 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2008 /// during which this resource is consumed.
2009 ///
2010 /// \return the next cycle at which the instruction may execute without
2011 /// oversubscribing resources.
2012 unsigned SchedBoundary::
2013 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2014   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2015   unsigned Count = Factor * Cycles;
2016   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2017         << " +" << Cycles << "x" << Factor << "u\n");
2018 
2019   // Update Executed resources counts.
2020   incExecutedResources(PIdx, Count);
2021   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2022   Rem->RemainingCounts[PIdx] -= Count;
2023 
2024   // Check if this resource exceeds the current critical resource. If so, it
2025   // becomes the critical resource.
2026   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2027     ZoneCritResIdx = PIdx;
2028     DEBUG(dbgs() << "  *** Critical resource "
2029           << SchedModel->getResourceName(PIdx) << ": "
2030           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2031   }
2032   // For reserved resources, record the highest cycle using the resource.
2033   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2034   if (NextAvailable > CurrCycle) {
2035     DEBUG(dbgs() << "  Resource conflict: "
2036           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2037           << NextAvailable << "\n");
2038   }
2039   return NextAvailable;
2040 }
2041 
2042 /// Move the boundary of scheduled code by one SUnit.
2043 void SchedBoundary::bumpNode(SUnit *SU) {
2044   // Update the reservation table.
2045   if (HazardRec->isEnabled()) {
2046     if (!isTop() && SU->isCall) {
2047       // Calls are scheduled with their preceding instructions. For bottom-up
2048       // scheduling, clear the pipeline state before emitting.
2049       HazardRec->Reset();
2050     }
2051     HazardRec->EmitInstruction(SU);
2052   }
2053   // checkHazard should prevent scheduling multiple instructions per cycle that
2054   // exceed the issue width.
2055   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2056   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2057   assert(
2058       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2059       "Cannot schedule this instruction's MicroOps in the current cycle.");
2060 
2061   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2062   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2063 
2064   unsigned NextCycle = CurrCycle;
2065   switch (SchedModel->getMicroOpBufferSize()) {
2066   case 0:
2067     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2068     break;
2069   case 1:
2070     if (ReadyCycle > NextCycle) {
2071       NextCycle = ReadyCycle;
2072       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2073     }
2074     break;
2075   default:
2076     // We don't currently model the OOO reorder buffer, so consider all
2077     // scheduled MOps to be "retired". We do loosely model in-order resource
2078     // latency. If this instruction uses an in-order resource, account for any
2079     // likely stall cycles.
2080     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2081       NextCycle = ReadyCycle;
2082     break;
2083   }
2084   RetiredMOps += IncMOps;
2085 
2086   // Update resource counts and critical resource.
2087   if (SchedModel->hasInstrSchedModel()) {
2088     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2089     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2090     Rem->RemIssueCount -= DecRemIssue;
2091     if (ZoneCritResIdx) {
2092       // Scale scheduled micro-ops for comparing with the critical resource.
2093       unsigned ScaledMOps =
2094         RetiredMOps * SchedModel->getMicroOpFactor();
2095 
2096       // If scaled micro-ops are now more than the previous critical resource by
2097       // a full cycle, then micro-ops issue becomes critical.
2098       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2099           >= (int)SchedModel->getLatencyFactor()) {
2100         ZoneCritResIdx = 0;
2101         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2102               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2103       }
2104     }
2105     for (TargetSchedModel::ProcResIter
2106            PI = SchedModel->getWriteProcResBegin(SC),
2107            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2108       unsigned RCycle =
2109         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2110       if (RCycle > NextCycle)
2111         NextCycle = RCycle;
2112     }
2113     if (SU->hasReservedResource) {
2114       // For reserved resources, record the highest cycle using the resource.
2115       // For top-down scheduling, this is the cycle in which we schedule this
2116       // instruction plus the number of cycles the operations reserves the
2117       // resource. For bottom-up is it simply the instruction's cycle.
2118       for (TargetSchedModel::ProcResIter
2119              PI = SchedModel->getWriteProcResBegin(SC),
2120              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2121         unsigned PIdx = PI->ProcResourceIdx;
2122         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2123           if (isTop()) {
2124             ReservedCycles[PIdx] =
2125               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2126           }
2127           else
2128             ReservedCycles[PIdx] = NextCycle;
2129         }
2130       }
2131     }
2132   }
2133   // Update ExpectedLatency and DependentLatency.
2134   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2135   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2136   if (SU->getDepth() > TopLatency) {
2137     TopLatency = SU->getDepth();
2138     DEBUG(dbgs() << "  " << Available.getName()
2139           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2140   }
2141   if (SU->getHeight() > BotLatency) {
2142     BotLatency = SU->getHeight();
2143     DEBUG(dbgs() << "  " << Available.getName()
2144           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2145   }
2146   // If we stall for any reason, bump the cycle.
2147   if (NextCycle > CurrCycle) {
2148     bumpCycle(NextCycle);
2149   }
2150   else {
2151     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2152     // resource limited. If a stall occurred, bumpCycle does this.
2153     unsigned LFactor = SchedModel->getLatencyFactor();
2154     IsResourceLimited =
2155       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2156       > (int)LFactor;
2157   }
2158   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2159   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2160   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2161   // bump the cycle to avoid uselessly checking everything in the readyQ.
2162   CurrMOps += IncMOps;
2163   while (CurrMOps >= SchedModel->getIssueWidth()) {
2164     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2165           << " at cycle " << CurrCycle << '\n');
2166     bumpCycle(++NextCycle);
2167   }
2168   DEBUG(dumpScheduledState());
2169 }
2170 
2171 /// Release pending ready nodes in to the available queue. This makes them
2172 /// visible to heuristics.
2173 void SchedBoundary::releasePending() {
2174   // If the available queue is empty, it is safe to reset MinReadyCycle.
2175   if (Available.empty())
2176     MinReadyCycle = UINT_MAX;
2177 
2178   // Check to see if any of the pending instructions are ready to issue.  If
2179   // so, add them to the available queue.
2180   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2181   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2182     SUnit *SU = *(Pending.begin()+i);
2183     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2184 
2185     if (ReadyCycle < MinReadyCycle)
2186       MinReadyCycle = ReadyCycle;
2187 
2188     if (!IsBuffered && ReadyCycle > CurrCycle)
2189       continue;
2190 
2191     if (checkHazard(SU))
2192       continue;
2193 
2194     Available.push(SU);
2195     Pending.remove(Pending.begin()+i);
2196     --i; --e;
2197   }
2198   DEBUG(if (!Pending.empty()) Pending.dump());
2199   CheckPending = false;
2200 }
2201 
2202 /// Remove SU from the ready set for this boundary.
2203 void SchedBoundary::removeReady(SUnit *SU) {
2204   if (Available.isInQueue(SU))
2205     Available.remove(Available.find(SU));
2206   else {
2207     assert(Pending.isInQueue(SU) && "bad ready count");
2208     Pending.remove(Pending.find(SU));
2209   }
2210 }
2211 
2212 /// If this queue only has one ready candidate, return it. As a side effect,
2213 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2214 /// one node is ready. If multiple instructions are ready, return NULL.
2215 SUnit *SchedBoundary::pickOnlyChoice() {
2216   if (CheckPending)
2217     releasePending();
2218 
2219   if (CurrMOps > 0) {
2220     // Defer any ready instrs that now have a hazard.
2221     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2222       if (checkHazard(*I)) {
2223         Pending.push(*I);
2224         I = Available.remove(I);
2225         continue;
2226       }
2227       ++I;
2228     }
2229   }
2230   for (unsigned i = 0; Available.empty(); ++i) {
2231 //  FIXME: Re-enable assert once PR20057 is resolved.
2232 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2233 //           "permanent hazard");
2234     (void)i;
2235     bumpCycle(CurrCycle + 1);
2236     releasePending();
2237   }
2238   if (Available.size() == 1)
2239     return *Available.begin();
2240   return nullptr;
2241 }
2242 
2243 #ifndef NDEBUG
2244 // This is useful information to dump after bumpNode.
2245 // Note that the Queue contents are more useful before pickNodeFromQueue.
2246 void SchedBoundary::dumpScheduledState() {
2247   unsigned ResFactor;
2248   unsigned ResCount;
2249   if (ZoneCritResIdx) {
2250     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2251     ResCount = getResourceCount(ZoneCritResIdx);
2252   }
2253   else {
2254     ResFactor = SchedModel->getMicroOpFactor();
2255     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2256   }
2257   unsigned LFactor = SchedModel->getLatencyFactor();
2258   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2259          << "  Retired: " << RetiredMOps;
2260   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2261   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2262          << ResCount / ResFactor << " "
2263          << SchedModel->getResourceName(ZoneCritResIdx)
2264          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2265          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2266          << " limited.\n";
2267 }
2268 #endif
2269 
2270 //===----------------------------------------------------------------------===//
2271 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2272 //===----------------------------------------------------------------------===//
2273 
2274 void GenericSchedulerBase::SchedCandidate::
2275 initResourceDelta(const ScheduleDAGMI *DAG,
2276                   const TargetSchedModel *SchedModel) {
2277   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2278     return;
2279 
2280   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2281   for (TargetSchedModel::ProcResIter
2282          PI = SchedModel->getWriteProcResBegin(SC),
2283          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2284     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2285       ResDelta.CritResources += PI->Cycles;
2286     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2287       ResDelta.DemandedResources += PI->Cycles;
2288   }
2289 }
2290 
2291 /// Set the CandPolicy given a scheduling zone given the current resources and
2292 /// latencies inside and outside the zone.
2293 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2294                                      bool IsPostRA,
2295                                      SchedBoundary &CurrZone,
2296                                      SchedBoundary *OtherZone) {
2297   // Apply preemptive heuristics based on the total latency and resources
2298   // inside and outside this zone. Potential stalls should be considered before
2299   // following this policy.
2300 
2301   // Compute remaining latency. We need this both to determine whether the
2302   // overall schedule has become latency-limited and whether the instructions
2303   // outside this zone are resource or latency limited.
2304   //
2305   // The "dependent" latency is updated incrementally during scheduling as the
2306   // max height/depth of scheduled nodes minus the cycles since it was
2307   // scheduled:
2308   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2309   //
2310   // The "independent" latency is the max ready queue depth:
2311   //   ILat = max N.depth for N in Available|Pending
2312   //
2313   // RemainingLatency is the greater of independent and dependent latency.
2314   unsigned RemLatency = CurrZone.getDependentLatency();
2315   RemLatency = std::max(RemLatency,
2316                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2317   RemLatency = std::max(RemLatency,
2318                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2319 
2320   // Compute the critical resource outside the zone.
2321   unsigned OtherCritIdx = 0;
2322   unsigned OtherCount =
2323     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2324 
2325   bool OtherResLimited = false;
2326   if (SchedModel->hasInstrSchedModel()) {
2327     unsigned LFactor = SchedModel->getLatencyFactor();
2328     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2329   }
2330   // Schedule aggressively for latency in PostRA mode. We don't check for
2331   // acyclic latency during PostRA, and highly out-of-order processors will
2332   // skip PostRA scheduling.
2333   if (!OtherResLimited) {
2334     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2335       Policy.ReduceLatency |= true;
2336       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2337             << " RemainingLatency " << RemLatency << " + "
2338             << CurrZone.getCurrCycle() << "c > CritPath "
2339             << Rem.CriticalPath << "\n");
2340     }
2341   }
2342   // If the same resource is limiting inside and outside the zone, do nothing.
2343   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2344     return;
2345 
2346   DEBUG(
2347     if (CurrZone.isResourceLimited()) {
2348       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2349              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2350              << "\n";
2351     }
2352     if (OtherResLimited)
2353       dbgs() << "  RemainingLimit: "
2354              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2355     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2356       dbgs() << "  Latency limited both directions.\n");
2357 
2358   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2359     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2360 
2361   if (OtherResLimited)
2362     Policy.DemandResIdx = OtherCritIdx;
2363 }
2364 
2365 #ifndef NDEBUG
2366 const char *GenericSchedulerBase::getReasonStr(
2367   GenericSchedulerBase::CandReason Reason) {
2368   switch (Reason) {
2369   case NoCand:         return "NOCAND    ";
2370   case PhysRegCopy:    return "PREG-COPY";
2371   case RegExcess:      return "REG-EXCESS";
2372   case RegCritical:    return "REG-CRIT  ";
2373   case Stall:          return "STALL     ";
2374   case Cluster:        return "CLUSTER   ";
2375   case Weak:           return "WEAK      ";
2376   case RegMax:         return "REG-MAX   ";
2377   case ResourceReduce: return "RES-REDUCE";
2378   case ResourceDemand: return "RES-DEMAND";
2379   case TopDepthReduce: return "TOP-DEPTH ";
2380   case TopPathReduce:  return "TOP-PATH  ";
2381   case BotHeightReduce:return "BOT-HEIGHT";
2382   case BotPathReduce:  return "BOT-PATH  ";
2383   case NextDefUse:     return "DEF-USE   ";
2384   case NodeOrder:      return "ORDER     ";
2385   };
2386   llvm_unreachable("Unknown reason!");
2387 }
2388 
2389 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2390   PressureChange P;
2391   unsigned ResIdx = 0;
2392   unsigned Latency = 0;
2393   switch (Cand.Reason) {
2394   default:
2395     break;
2396   case RegExcess:
2397     P = Cand.RPDelta.Excess;
2398     break;
2399   case RegCritical:
2400     P = Cand.RPDelta.CriticalMax;
2401     break;
2402   case RegMax:
2403     P = Cand.RPDelta.CurrentMax;
2404     break;
2405   case ResourceReduce:
2406     ResIdx = Cand.Policy.ReduceResIdx;
2407     break;
2408   case ResourceDemand:
2409     ResIdx = Cand.Policy.DemandResIdx;
2410     break;
2411   case TopDepthReduce:
2412     Latency = Cand.SU->getDepth();
2413     break;
2414   case TopPathReduce:
2415     Latency = Cand.SU->getHeight();
2416     break;
2417   case BotHeightReduce:
2418     Latency = Cand.SU->getHeight();
2419     break;
2420   case BotPathReduce:
2421     Latency = Cand.SU->getDepth();
2422     break;
2423   }
2424   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2425   if (P.isValid())
2426     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2427            << ":" << P.getUnitInc() << " ";
2428   else
2429     dbgs() << "      ";
2430   if (ResIdx)
2431     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2432   else
2433     dbgs() << "         ";
2434   if (Latency)
2435     dbgs() << " " << Latency << " cycles ";
2436   else
2437     dbgs() << "          ";
2438   dbgs() << '\n';
2439 }
2440 #endif
2441 
2442 /// Return true if this heuristic determines order.
2443 static bool tryLess(int TryVal, int CandVal,
2444                     GenericSchedulerBase::SchedCandidate &TryCand,
2445                     GenericSchedulerBase::SchedCandidate &Cand,
2446                     GenericSchedulerBase::CandReason Reason) {
2447   if (TryVal < CandVal) {
2448     TryCand.Reason = Reason;
2449     return true;
2450   }
2451   if (TryVal > CandVal) {
2452     if (Cand.Reason > Reason)
2453       Cand.Reason = Reason;
2454     return true;
2455   }
2456   Cand.setRepeat(Reason);
2457   return false;
2458 }
2459 
2460 static bool tryGreater(int TryVal, int CandVal,
2461                        GenericSchedulerBase::SchedCandidate &TryCand,
2462                        GenericSchedulerBase::SchedCandidate &Cand,
2463                        GenericSchedulerBase::CandReason Reason) {
2464   if (TryVal > CandVal) {
2465     TryCand.Reason = Reason;
2466     return true;
2467   }
2468   if (TryVal < CandVal) {
2469     if (Cand.Reason > Reason)
2470       Cand.Reason = Reason;
2471     return true;
2472   }
2473   Cand.setRepeat(Reason);
2474   return false;
2475 }
2476 
2477 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2478                        GenericSchedulerBase::SchedCandidate &Cand,
2479                        SchedBoundary &Zone) {
2480   if (Zone.isTop()) {
2481     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2482       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2483                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2484         return true;
2485     }
2486     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2487                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2488       return true;
2489   }
2490   else {
2491     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2492       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2493                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2494         return true;
2495     }
2496     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2497                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2498       return true;
2499   }
2500   return false;
2501 }
2502 
2503 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2504                       bool IsTop) {
2505   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2506         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2507 }
2508 
2509 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2510   assert(dag->hasVRegLiveness() &&
2511          "(PreRA)GenericScheduler needs vreg liveness");
2512   DAG = static_cast<ScheduleDAGMILive*>(dag);
2513   SchedModel = DAG->getSchedModel();
2514   TRI = DAG->TRI;
2515 
2516   Rem.init(DAG, SchedModel);
2517   Top.init(DAG, SchedModel, &Rem);
2518   Bot.init(DAG, SchedModel, &Rem);
2519 
2520   // Initialize resource counts.
2521 
2522   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2523   // are disabled, then these HazardRecs will be disabled.
2524   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2525   if (!Top.HazardRec) {
2526     Top.HazardRec =
2527         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2528             Itin, DAG);
2529   }
2530   if (!Bot.HazardRec) {
2531     Bot.HazardRec =
2532         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2533             Itin, DAG);
2534   }
2535 }
2536 
2537 /// Initialize the per-region scheduling policy.
2538 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2539                                   MachineBasicBlock::iterator End,
2540                                   unsigned NumRegionInstrs) {
2541   const MachineFunction &MF = *Begin->getParent()->getParent();
2542   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2543 
2544   // Avoid setting up the register pressure tracker for small regions to save
2545   // compile time. As a rough heuristic, only track pressure when the number of
2546   // schedulable instructions exceeds half the integer register file.
2547   RegionPolicy.ShouldTrackPressure = true;
2548   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2549     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2550     if (TLI->isTypeLegal(LegalIntVT)) {
2551       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2552         TLI->getRegClassFor(LegalIntVT));
2553       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2554     }
2555   }
2556 
2557   // For generic targets, we default to bottom-up, because it's simpler and more
2558   // compile-time optimizations have been implemented in that direction.
2559   RegionPolicy.OnlyBottomUp = true;
2560 
2561   // Allow the subtarget to override default policy.
2562   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2563                                         NumRegionInstrs);
2564 
2565   // After subtarget overrides, apply command line options.
2566   if (!EnableRegPressure)
2567     RegionPolicy.ShouldTrackPressure = false;
2568 
2569   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2570   // e.g. -misched-bottomup=false allows scheduling in both directions.
2571   assert((!ForceTopDown || !ForceBottomUp) &&
2572          "-misched-topdown incompatible with -misched-bottomup");
2573   if (ForceBottomUp.getNumOccurrences() > 0) {
2574     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2575     if (RegionPolicy.OnlyBottomUp)
2576       RegionPolicy.OnlyTopDown = false;
2577   }
2578   if (ForceTopDown.getNumOccurrences() > 0) {
2579     RegionPolicy.OnlyTopDown = ForceTopDown;
2580     if (RegionPolicy.OnlyTopDown)
2581       RegionPolicy.OnlyBottomUp = false;
2582   }
2583 }
2584 
2585 void GenericScheduler::dumpPolicy() {
2586   dbgs() << "GenericScheduler RegionPolicy: "
2587          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2588          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2589          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2590          << "\n";
2591 }
2592 
2593 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2594 /// critical path by more cycles than it takes to drain the instruction buffer.
2595 /// We estimate an upper bounds on in-flight instructions as:
2596 ///
2597 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2598 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2599 /// InFlightResources = InFlightIterations * LoopResources
2600 ///
2601 /// TODO: Check execution resources in addition to IssueCount.
2602 void GenericScheduler::checkAcyclicLatency() {
2603   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2604     return;
2605 
2606   // Scaled number of cycles per loop iteration.
2607   unsigned IterCount =
2608     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2609              Rem.RemIssueCount);
2610   // Scaled acyclic critical path.
2611   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2612   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2613   unsigned InFlightCount =
2614     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2615   unsigned BufferLimit =
2616     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2617 
2618   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2619 
2620   DEBUG(dbgs() << "IssueCycles="
2621         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2622         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2623         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2624         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2625         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2626         if (Rem.IsAcyclicLatencyLimited)
2627           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2628 }
2629 
2630 void GenericScheduler::registerRoots() {
2631   Rem.CriticalPath = DAG->ExitSU.getDepth();
2632 
2633   // Some roots may not feed into ExitSU. Check all of them in case.
2634   for (std::vector<SUnit*>::const_iterator
2635          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2636     if ((*I)->getDepth() > Rem.CriticalPath)
2637       Rem.CriticalPath = (*I)->getDepth();
2638   }
2639   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2640   if (DumpCriticalPathLength) {
2641     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2642   }
2643 
2644   if (EnableCyclicPath) {
2645     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2646     checkAcyclicLatency();
2647   }
2648 }
2649 
2650 static bool tryPressure(const PressureChange &TryP,
2651                         const PressureChange &CandP,
2652                         GenericSchedulerBase::SchedCandidate &TryCand,
2653                         GenericSchedulerBase::SchedCandidate &Cand,
2654                         GenericSchedulerBase::CandReason Reason,
2655                         const TargetRegisterInfo *TRI,
2656                         const MachineFunction &MF) {
2657   unsigned TryPSet = TryP.getPSetOrMax();
2658   unsigned CandPSet = CandP.getPSetOrMax();
2659   // If both candidates affect the same set, go with the smallest increase.
2660   if (TryPSet == CandPSet) {
2661     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2662                    Reason);
2663   }
2664   // If one candidate decreases and the other increases, go with it.
2665   // Invalid candidates have UnitInc==0.
2666   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2667                  Reason)) {
2668     return true;
2669   }
2670 
2671   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2672                                  std::numeric_limits<int>::max();
2673 
2674   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2675                                    std::numeric_limits<int>::max();
2676 
2677   // If the candidates are decreasing pressure, reverse priority.
2678   if (TryP.getUnitInc() < 0)
2679     std::swap(TryRank, CandRank);
2680   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2681 }
2682 
2683 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2684   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2685 }
2686 
2687 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2688 /// their physreg def/use.
2689 ///
2690 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2691 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2692 /// with the operation that produces or consumes the physreg. We'll do this when
2693 /// regalloc has support for parallel copies.
2694 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2695   const MachineInstr *MI = SU->getInstr();
2696   if (!MI->isCopy())
2697     return 0;
2698 
2699   unsigned ScheduledOper = isTop ? 1 : 0;
2700   unsigned UnscheduledOper = isTop ? 0 : 1;
2701   // If we have already scheduled the physreg produce/consumer, immediately
2702   // schedule the copy.
2703   if (TargetRegisterInfo::isPhysicalRegister(
2704         MI->getOperand(ScheduledOper).getReg()))
2705     return 1;
2706   // If the physreg is at the boundary, defer it. Otherwise schedule it
2707   // immediately to free the dependent. We can hoist the copy later.
2708   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2709   if (TargetRegisterInfo::isPhysicalRegister(
2710         MI->getOperand(UnscheduledOper).getReg()))
2711     return AtBoundary ? -1 : 1;
2712   return 0;
2713 }
2714 
2715 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2716 /// hierarchical. This may be more efficient than a graduated cost model because
2717 /// we don't need to evaluate all aspects of the model for each node in the
2718 /// queue. But it's really done to make the heuristics easier to debug and
2719 /// statistically analyze.
2720 ///
2721 /// \param Cand provides the policy and current best candidate.
2722 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2723 /// \param Zone describes the scheduled zone that we are extending.
2724 /// \param RPTracker describes reg pressure within the scheduled zone.
2725 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2726 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2727                                     SchedCandidate &TryCand,
2728                                     SchedBoundary &Zone,
2729                                     const RegPressureTracker &RPTracker,
2730                                     RegPressureTracker &TempTracker) {
2731 
2732   if (DAG->isTrackingPressure()) {
2733     // Always initialize TryCand's RPDelta.
2734     if (Zone.isTop()) {
2735       TempTracker.getMaxDownwardPressureDelta(
2736         TryCand.SU->getInstr(),
2737         TryCand.RPDelta,
2738         DAG->getRegionCriticalPSets(),
2739         DAG->getRegPressure().MaxSetPressure);
2740     }
2741     else {
2742       if (VerifyScheduling) {
2743         TempTracker.getMaxUpwardPressureDelta(
2744           TryCand.SU->getInstr(),
2745           &DAG->getPressureDiff(TryCand.SU),
2746           TryCand.RPDelta,
2747           DAG->getRegionCriticalPSets(),
2748           DAG->getRegPressure().MaxSetPressure);
2749       }
2750       else {
2751         RPTracker.getUpwardPressureDelta(
2752           TryCand.SU->getInstr(),
2753           DAG->getPressureDiff(TryCand.SU),
2754           TryCand.RPDelta,
2755           DAG->getRegionCriticalPSets(),
2756           DAG->getRegPressure().MaxSetPressure);
2757       }
2758     }
2759   }
2760   DEBUG(if (TryCand.RPDelta.Excess.isValid())
2761           dbgs() << "  Try  SU(" << TryCand.SU->NodeNum << ") "
2762                  << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2763                  << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2764 
2765   // Initialize the candidate if needed.
2766   if (!Cand.isValid()) {
2767     TryCand.Reason = NodeOrder;
2768     return;
2769   }
2770 
2771   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2772                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
2773                  TryCand, Cand, PhysRegCopy))
2774     return;
2775 
2776   // Avoid exceeding the target's limit.
2777   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2778                                                Cand.RPDelta.Excess,
2779                                                TryCand, Cand, RegExcess, TRI,
2780                                                DAG->MF))
2781     return;
2782 
2783   // Avoid increasing the max critical pressure in the scheduled region.
2784   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2785                                                Cand.RPDelta.CriticalMax,
2786                                                TryCand, Cand, RegCritical, TRI,
2787                                                DAG->MF))
2788     return;
2789 
2790   // For loops that are acyclic path limited, aggressively schedule for latency.
2791   // This can result in very long dependence chains scheduled in sequence, so
2792   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2793   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2794       && tryLatency(TryCand, Cand, Zone))
2795     return;
2796 
2797   // Prioritize instructions that read unbuffered resources by stall cycles.
2798   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2799               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2800     return;
2801 
2802   // Keep clustered nodes together to encourage downstream peephole
2803   // optimizations which may reduce resource requirements.
2804   //
2805   // This is a best effort to set things up for a post-RA pass. Optimizations
2806   // like generating loads of multiple registers should ideally be done within
2807   // the scheduler pass by combining the loads during DAG postprocessing.
2808   const SUnit *NextClusterSU =
2809     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2810   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2811                  TryCand, Cand, Cluster))
2812     return;
2813 
2814   // Weak edges are for clustering and other constraints.
2815   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2816               getWeakLeft(Cand.SU, Zone.isTop()),
2817               TryCand, Cand, Weak)) {
2818     return;
2819   }
2820   // Avoid increasing the max pressure of the entire region.
2821   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2822                                                Cand.RPDelta.CurrentMax,
2823                                                TryCand, Cand, RegMax, TRI,
2824                                                DAG->MF))
2825     return;
2826 
2827   // Avoid critical resource consumption and balance the schedule.
2828   TryCand.initResourceDelta(DAG, SchedModel);
2829   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2830               TryCand, Cand, ResourceReduce))
2831     return;
2832   if (tryGreater(TryCand.ResDelta.DemandedResources,
2833                  Cand.ResDelta.DemandedResources,
2834                  TryCand, Cand, ResourceDemand))
2835     return;
2836 
2837   // Avoid serializing long latency dependence chains.
2838   // For acyclic path limited loops, latency was already checked above.
2839   if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2840       !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2841     return;
2842   }
2843 
2844   // Prefer immediate defs/users of the last scheduled instruction. This is a
2845   // local pressure avoidance strategy that also makes the machine code
2846   // readable.
2847   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2848                  TryCand, Cand, NextDefUse))
2849     return;
2850 
2851   // Fall through to original instruction order.
2852   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2853       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2854     TryCand.Reason = NodeOrder;
2855   }
2856 }
2857 
2858 /// Pick the best candidate from the queue.
2859 ///
2860 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2861 /// DAG building. To adjust for the current scheduling location we need to
2862 /// maintain the number of vreg uses remaining to be top-scheduled.
2863 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2864                                          const RegPressureTracker &RPTracker,
2865                                          SchedCandidate &Cand) {
2866   ReadyQueue &Q = Zone.Available;
2867 
2868   DEBUG(Q.dump());
2869 
2870   // getMaxPressureDelta temporarily modifies the tracker.
2871   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2872 
2873   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2874 
2875     SchedCandidate TryCand(Cand.Policy);
2876     TryCand.SU = *I;
2877     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2878     if (TryCand.Reason != NoCand) {
2879       // Initialize resource delta if needed in case future heuristics query it.
2880       if (TryCand.ResDelta == SchedResourceDelta())
2881         TryCand.initResourceDelta(DAG, SchedModel);
2882       Cand.setBest(TryCand);
2883       DEBUG(traceCandidate(Cand));
2884     }
2885   }
2886 }
2887 
2888 /// Pick the best candidate node from either the top or bottom queue.
2889 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2890   // Schedule as far as possible in the direction of no choice. This is most
2891   // efficient, but also provides the best heuristics for CriticalPSets.
2892   if (SUnit *SU = Bot.pickOnlyChoice()) {
2893     IsTopNode = false;
2894     DEBUG(dbgs() << "Pick Bot ONLY1\n");
2895     return SU;
2896   }
2897   if (SUnit *SU = Top.pickOnlyChoice()) {
2898     IsTopNode = true;
2899     DEBUG(dbgs() << "Pick Top ONLY1\n");
2900     return SU;
2901   }
2902   CandPolicy NoPolicy;
2903   SchedCandidate BotCand(NoPolicy);
2904   SchedCandidate TopCand(NoPolicy);
2905   // Set the bottom-up policy based on the state of the current bottom zone and
2906   // the instructions outside the zone, including the top zone.
2907   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2908   // Set the top-down policy based on the state of the current top zone and
2909   // the instructions outside the zone, including the bottom zone.
2910   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2911 
2912   // Prefer bottom scheduling when heuristics are silent.
2913   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2914   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2915 
2916   // If either Q has a single candidate that provides the least increase in
2917   // Excess pressure, we can immediately schedule from that Q.
2918   //
2919   // RegionCriticalPSets summarizes the pressure within the scheduled region and
2920   // affects picking from either Q. If scheduling in one direction must
2921   // increase pressure for one of the excess PSets, then schedule in that
2922   // direction first to provide more freedom in the other direction.
2923   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2924       || (BotCand.Reason == RegCritical
2925           && !BotCand.isRepeat(RegCritical)))
2926   {
2927     IsTopNode = false;
2928     tracePick(BotCand, IsTopNode);
2929     return BotCand.SU;
2930   }
2931   // Check if the top Q has a better candidate.
2932   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2933   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2934 
2935   // Choose the queue with the most important (lowest enum) reason.
2936   if (TopCand.Reason < BotCand.Reason) {
2937     IsTopNode = true;
2938     tracePick(TopCand, IsTopNode);
2939     return TopCand.SU;
2940   }
2941   // Otherwise prefer the bottom candidate, in node order if all else failed.
2942   IsTopNode = false;
2943   tracePick(BotCand, IsTopNode);
2944   return BotCand.SU;
2945 }
2946 
2947 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2948 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2949   if (DAG->top() == DAG->bottom()) {
2950     assert(Top.Available.empty() && Top.Pending.empty() &&
2951            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2952     return nullptr;
2953   }
2954   SUnit *SU;
2955   do {
2956     if (RegionPolicy.OnlyTopDown) {
2957       SU = Top.pickOnlyChoice();
2958       if (!SU) {
2959         CandPolicy NoPolicy;
2960         SchedCandidate TopCand(NoPolicy);
2961         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2962         assert(TopCand.Reason != NoCand && "failed to find a candidate");
2963         tracePick(TopCand, true);
2964         SU = TopCand.SU;
2965       }
2966       IsTopNode = true;
2967     }
2968     else if (RegionPolicy.OnlyBottomUp) {
2969       SU = Bot.pickOnlyChoice();
2970       if (!SU) {
2971         CandPolicy NoPolicy;
2972         SchedCandidate BotCand(NoPolicy);
2973         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2974         assert(BotCand.Reason != NoCand && "failed to find a candidate");
2975         tracePick(BotCand, false);
2976         SU = BotCand.SU;
2977       }
2978       IsTopNode = false;
2979     }
2980     else {
2981       SU = pickNodeBidirectional(IsTopNode);
2982     }
2983   } while (SU->isScheduled);
2984 
2985   if (SU->isTopReady())
2986     Top.removeReady(SU);
2987   if (SU->isBottomReady())
2988     Bot.removeReady(SU);
2989 
2990   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2991   return SU;
2992 }
2993 
2994 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2995 
2996   MachineBasicBlock::iterator InsertPos = SU->getInstr();
2997   if (!isTop)
2998     ++InsertPos;
2999   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3000 
3001   // Find already scheduled copies with a single physreg dependence and move
3002   // them just above the scheduled instruction.
3003   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3004        I != E; ++I) {
3005     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3006       continue;
3007     SUnit *DepSU = I->getSUnit();
3008     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3009       continue;
3010     MachineInstr *Copy = DepSU->getInstr();
3011     if (!Copy->isCopy())
3012       continue;
3013     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3014           I->getSUnit()->dump(DAG));
3015     DAG->moveInstruction(Copy, InsertPos);
3016   }
3017 }
3018 
3019 /// Update the scheduler's state after scheduling a node. This is the same node
3020 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3021 /// update it's state based on the current cycle before MachineSchedStrategy
3022 /// does.
3023 ///
3024 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3025 /// them here. See comments in biasPhysRegCopy.
3026 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3027   if (IsTopNode) {
3028     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3029     Top.bumpNode(SU);
3030     if (SU->hasPhysRegUses)
3031       reschedulePhysRegCopies(SU, true);
3032   }
3033   else {
3034     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3035     Bot.bumpNode(SU);
3036     if (SU->hasPhysRegDefs)
3037       reschedulePhysRegCopies(SU, false);
3038   }
3039 }
3040 
3041 /// Create the standard converging machine scheduler. This will be used as the
3042 /// default scheduler if the target does not set a default.
3043 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3044   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3045   // Register DAG post-processors.
3046   //
3047   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3048   // data and pass it to later mutations. Have a single mutation that gathers
3049   // the interesting nodes in one pass.
3050   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
3051   if (EnableLoadCluster && DAG->TII->enableClusterLoads())
3052     DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
3053   if (EnableMacroFusion)
3054     DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
3055   return DAG;
3056 }
3057 
3058 static MachineSchedRegistry
3059 GenericSchedRegistry("converge", "Standard converging scheduler.",
3060                      createGenericSchedLive);
3061 
3062 //===----------------------------------------------------------------------===//
3063 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3064 //===----------------------------------------------------------------------===//
3065 
3066 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3067   DAG = Dag;
3068   SchedModel = DAG->getSchedModel();
3069   TRI = DAG->TRI;
3070 
3071   Rem.init(DAG, SchedModel);
3072   Top.init(DAG, SchedModel, &Rem);
3073   BotRoots.clear();
3074 
3075   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3076   // or are disabled, then these HazardRecs will be disabled.
3077   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3078   if (!Top.HazardRec) {
3079     Top.HazardRec =
3080         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3081             Itin, DAG);
3082   }
3083 }
3084 
3085 
3086 void PostGenericScheduler::registerRoots() {
3087   Rem.CriticalPath = DAG->ExitSU.getDepth();
3088 
3089   // Some roots may not feed into ExitSU. Check all of them in case.
3090   for (SmallVectorImpl<SUnit*>::const_iterator
3091          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3092     if ((*I)->getDepth() > Rem.CriticalPath)
3093       Rem.CriticalPath = (*I)->getDepth();
3094   }
3095   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3096   if (DumpCriticalPathLength) {
3097     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3098   }
3099 }
3100 
3101 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3102 ///
3103 /// \param Cand provides the policy and current best candidate.
3104 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3105 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3106                                         SchedCandidate &TryCand) {
3107 
3108   // Initialize the candidate if needed.
3109   if (!Cand.isValid()) {
3110     TryCand.Reason = NodeOrder;
3111     return;
3112   }
3113 
3114   // Prioritize instructions that read unbuffered resources by stall cycles.
3115   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3116               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3117     return;
3118 
3119   // Avoid critical resource consumption and balance the schedule.
3120   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3121               TryCand, Cand, ResourceReduce))
3122     return;
3123   if (tryGreater(TryCand.ResDelta.DemandedResources,
3124                  Cand.ResDelta.DemandedResources,
3125                  TryCand, Cand, ResourceDemand))
3126     return;
3127 
3128   // Avoid serializing long latency dependence chains.
3129   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3130     return;
3131   }
3132 
3133   // Fall through to original instruction order.
3134   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3135     TryCand.Reason = NodeOrder;
3136 }
3137 
3138 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3139   ReadyQueue &Q = Top.Available;
3140 
3141   DEBUG(Q.dump());
3142 
3143   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3144     SchedCandidate TryCand(Cand.Policy);
3145     TryCand.SU = *I;
3146     TryCand.initResourceDelta(DAG, SchedModel);
3147     tryCandidate(Cand, TryCand);
3148     if (TryCand.Reason != NoCand) {
3149       Cand.setBest(TryCand);
3150       DEBUG(traceCandidate(Cand));
3151     }
3152   }
3153 }
3154 
3155 /// Pick the next node to schedule.
3156 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3157   if (DAG->top() == DAG->bottom()) {
3158     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3159     return nullptr;
3160   }
3161   SUnit *SU;
3162   do {
3163     SU = Top.pickOnlyChoice();
3164     if (!SU) {
3165       CandPolicy NoPolicy;
3166       SchedCandidate TopCand(NoPolicy);
3167       // Set the top-down policy based on the state of the current top zone and
3168       // the instructions outside the zone, including the bottom zone.
3169       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3170       pickNodeFromQueue(TopCand);
3171       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3172       tracePick(TopCand, true);
3173       SU = TopCand.SU;
3174     }
3175   } while (SU->isScheduled);
3176 
3177   IsTopNode = true;
3178   Top.removeReady(SU);
3179 
3180   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3181   return SU;
3182 }
3183 
3184 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3185 /// scheduled/remaining flags in the DAG nodes.
3186 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3187   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3188   Top.bumpNode(SU);
3189 }
3190 
3191 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3192 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3193   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3194 }
3195 
3196 //===----------------------------------------------------------------------===//
3197 // ILP Scheduler. Currently for experimental analysis of heuristics.
3198 //===----------------------------------------------------------------------===//
3199 
3200 namespace {
3201 /// \brief Order nodes by the ILP metric.
3202 struct ILPOrder {
3203   const SchedDFSResult *DFSResult;
3204   const BitVector *ScheduledTrees;
3205   bool MaximizeILP;
3206 
3207   ILPOrder(bool MaxILP)
3208     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3209 
3210   /// \brief Apply a less-than relation on node priority.
3211   ///
3212   /// (Return true if A comes after B in the Q.)
3213   bool operator()(const SUnit *A, const SUnit *B) const {
3214     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3215     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3216     if (SchedTreeA != SchedTreeB) {
3217       // Unscheduled trees have lower priority.
3218       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3219         return ScheduledTrees->test(SchedTreeB);
3220 
3221       // Trees with shallower connections have have lower priority.
3222       if (DFSResult->getSubtreeLevel(SchedTreeA)
3223           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3224         return DFSResult->getSubtreeLevel(SchedTreeA)
3225           < DFSResult->getSubtreeLevel(SchedTreeB);
3226       }
3227     }
3228     if (MaximizeILP)
3229       return DFSResult->getILP(A) < DFSResult->getILP(B);
3230     else
3231       return DFSResult->getILP(A) > DFSResult->getILP(B);
3232   }
3233 };
3234 
3235 /// \brief Schedule based on the ILP metric.
3236 class ILPScheduler : public MachineSchedStrategy {
3237   ScheduleDAGMILive *DAG;
3238   ILPOrder Cmp;
3239 
3240   std::vector<SUnit*> ReadyQ;
3241 public:
3242   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3243 
3244   void initialize(ScheduleDAGMI *dag) override {
3245     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3246     DAG = static_cast<ScheduleDAGMILive*>(dag);
3247     DAG->computeDFSResult();
3248     Cmp.DFSResult = DAG->getDFSResult();
3249     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3250     ReadyQ.clear();
3251   }
3252 
3253   void registerRoots() override {
3254     // Restore the heap in ReadyQ with the updated DFS results.
3255     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3256   }
3257 
3258   /// Implement MachineSchedStrategy interface.
3259   /// -----------------------------------------
3260 
3261   /// Callback to select the highest priority node from the ready Q.
3262   SUnit *pickNode(bool &IsTopNode) override {
3263     if (ReadyQ.empty()) return nullptr;
3264     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3265     SUnit *SU = ReadyQ.back();
3266     ReadyQ.pop_back();
3267     IsTopNode = false;
3268     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3269           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3270           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3271           << DAG->getDFSResult()->getSubtreeLevel(
3272             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3273           << "Scheduling " << *SU->getInstr());
3274     return SU;
3275   }
3276 
3277   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3278   void scheduleTree(unsigned SubtreeID) override {
3279     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3280   }
3281 
3282   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3283   /// DFSResults, and resort the priority Q.
3284   void schedNode(SUnit *SU, bool IsTopNode) override {
3285     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3286   }
3287 
3288   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3289 
3290   void releaseBottomNode(SUnit *SU) override {
3291     ReadyQ.push_back(SU);
3292     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3293   }
3294 };
3295 } // namespace
3296 
3297 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3298   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3299 }
3300 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3301   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3302 }
3303 static MachineSchedRegistry ILPMaxRegistry(
3304   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3305 static MachineSchedRegistry ILPMinRegistry(
3306   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3307 
3308 //===----------------------------------------------------------------------===//
3309 // Machine Instruction Shuffler for Correctness Testing
3310 //===----------------------------------------------------------------------===//
3311 
3312 #ifndef NDEBUG
3313 namespace {
3314 /// Apply a less-than relation on the node order, which corresponds to the
3315 /// instruction order prior to scheduling. IsReverse implements greater-than.
3316 template<bool IsReverse>
3317 struct SUnitOrder {
3318   bool operator()(SUnit *A, SUnit *B) const {
3319     if (IsReverse)
3320       return A->NodeNum > B->NodeNum;
3321     else
3322       return A->NodeNum < B->NodeNum;
3323   }
3324 };
3325 
3326 /// Reorder instructions as much as possible.
3327 class InstructionShuffler : public MachineSchedStrategy {
3328   bool IsAlternating;
3329   bool IsTopDown;
3330 
3331   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3332   // gives nodes with a higher number higher priority causing the latest
3333   // instructions to be scheduled first.
3334   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3335     TopQ;
3336   // When scheduling bottom-up, use greater-than as the queue priority.
3337   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3338     BottomQ;
3339 public:
3340   InstructionShuffler(bool alternate, bool topdown)
3341     : IsAlternating(alternate), IsTopDown(topdown) {}
3342 
3343   void initialize(ScheduleDAGMI*) override {
3344     TopQ.clear();
3345     BottomQ.clear();
3346   }
3347 
3348   /// Implement MachineSchedStrategy interface.
3349   /// -----------------------------------------
3350 
3351   SUnit *pickNode(bool &IsTopNode) override {
3352     SUnit *SU;
3353     if (IsTopDown) {
3354       do {
3355         if (TopQ.empty()) return nullptr;
3356         SU = TopQ.top();
3357         TopQ.pop();
3358       } while (SU->isScheduled);
3359       IsTopNode = true;
3360     }
3361     else {
3362       do {
3363         if (BottomQ.empty()) return nullptr;
3364         SU = BottomQ.top();
3365         BottomQ.pop();
3366       } while (SU->isScheduled);
3367       IsTopNode = false;
3368     }
3369     if (IsAlternating)
3370       IsTopDown = !IsTopDown;
3371     return SU;
3372   }
3373 
3374   void schedNode(SUnit *SU, bool IsTopNode) override {}
3375 
3376   void releaseTopNode(SUnit *SU) override {
3377     TopQ.push(SU);
3378   }
3379   void releaseBottomNode(SUnit *SU) override {
3380     BottomQ.push(SU);
3381   }
3382 };
3383 } // namespace
3384 
3385 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3386   bool Alternate = !ForceTopDown && !ForceBottomUp;
3387   bool TopDown = !ForceBottomUp;
3388   assert((TopDown || !ForceTopDown) &&
3389          "-misched-topdown incompatible with -misched-bottomup");
3390   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3391 }
3392 static MachineSchedRegistry ShufflerRegistry(
3393   "shuffle", "Shuffle machine instructions alternating directions",
3394   createInstructionShuffler);
3395 #endif // !NDEBUG
3396 
3397 //===----------------------------------------------------------------------===//
3398 // GraphWriter support for ScheduleDAGMILive.
3399 //===----------------------------------------------------------------------===//
3400 
3401 #ifndef NDEBUG
3402 namespace llvm {
3403 
3404 template<> struct GraphTraits<
3405   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3406 
3407 template<>
3408 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3409 
3410   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3411 
3412   static std::string getGraphName(const ScheduleDAG *G) {
3413     return G->MF.getName();
3414   }
3415 
3416   static bool renderGraphFromBottomUp() {
3417     return true;
3418   }
3419 
3420   static bool isNodeHidden(const SUnit *Node) {
3421     if (ViewMISchedCutoff == 0)
3422       return false;
3423     return (Node->Preds.size() > ViewMISchedCutoff
3424          || Node->Succs.size() > ViewMISchedCutoff);
3425   }
3426 
3427   /// If you want to override the dot attributes printed for a particular
3428   /// edge, override this method.
3429   static std::string getEdgeAttributes(const SUnit *Node,
3430                                        SUnitIterator EI,
3431                                        const ScheduleDAG *Graph) {
3432     if (EI.isArtificialDep())
3433       return "color=cyan,style=dashed";
3434     if (EI.isCtrlDep())
3435       return "color=blue,style=dashed";
3436     return "";
3437   }
3438 
3439   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3440     std::string Str;
3441     raw_string_ostream SS(Str);
3442     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3443     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3444       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3445     SS << "SU:" << SU->NodeNum;
3446     if (DFS)
3447       SS << " I:" << DFS->getNumInstrs(SU);
3448     return SS.str();
3449   }
3450   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3451     return G->getGraphNodeLabel(SU);
3452   }
3453 
3454   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3455     std::string Str("shape=Mrecord");
3456     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3457     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3458       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3459     if (DFS) {
3460       Str += ",style=filled,fillcolor=\"#";
3461       Str += DOT::getColorString(DFS->getSubtreeID(N));
3462       Str += '"';
3463     }
3464     return Str;
3465   }
3466 };
3467 } // namespace llvm
3468 #endif // NDEBUG
3469 
3470 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3471 /// rendered using 'dot'.
3472 ///
3473 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3474 #ifndef NDEBUG
3475   ViewGraph(this, Name, false, Title);
3476 #else
3477   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3478          << "systems with Graphviz or gv!\n";
3479 #endif  // NDEBUG
3480 }
3481 
3482 /// Out-of-line implementation with no arguments is handy for gdb.
3483 void ScheduleDAGMI::viewGraph() {
3484   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3485 }
3486