1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/RegisterPressure.h" 38 #include "llvm/CodeGen/ScheduleDAG.h" 39 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 40 #include "llvm/CodeGen/ScheduleDAGMutation.h" 41 #include "llvm/CodeGen/ScheduleDFS.h" 42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/Config/llvm-config.h" 51 #include "llvm/MC/LaneBitmask.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/GraphWriter.h" 58 #include "llvm/Support/MachineValueType.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 #include <vector> 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "machine-scheduler" 74 75 namespace llvm { 76 77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 78 cl::desc("Force top-down list scheduling")); 79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 80 cl::desc("Force bottom-up list scheduling")); 81 cl::opt<bool> 82 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 83 cl::desc("Print critical path length to stdout")); 84 85 } // end namespace llvm 86 87 #ifndef NDEBUG 88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 89 cl::desc("Pop up a window to show MISched dags after they are processed")); 90 91 /// In some situations a few uninteresting nodes depend on nearly all other 92 /// nodes in the graph, provide a cutoff to hide them. 93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 94 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 95 96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 97 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 98 99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 100 cl::desc("Only schedule this function")); 101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 102 cl::desc("Only schedule this MBB#")); 103 #else 104 static bool ViewMISchedDAGs = false; 105 #endif // NDEBUG 106 107 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 108 /// size of the ready lists. 109 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 110 cl::desc("Limit ready list to N instructions"), cl::init(256)); 111 112 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 113 cl::desc("Enable register pressure scheduling."), cl::init(true)); 114 115 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 116 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 117 118 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 119 cl::desc("Enable memop clustering."), 120 cl::init(true)); 121 122 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 123 cl::desc("Verify machine instrs before and after machine scheduling")); 124 125 // DAG subtrees must have at least this many nodes. 126 static const unsigned MinSubtreeSize = 8; 127 128 // Pin the vtables to this file. 129 void MachineSchedStrategy::anchor() {} 130 131 void ScheduleDAGMutation::anchor() {} 132 133 //===----------------------------------------------------------------------===// 134 // Machine Instruction Scheduling Pass and Registry 135 //===----------------------------------------------------------------------===// 136 137 MachineSchedContext::MachineSchedContext() { 138 RegClassInfo = new RegisterClassInfo(); 139 } 140 141 MachineSchedContext::~MachineSchedContext() { 142 delete RegClassInfo; 143 } 144 145 namespace { 146 147 /// Base class for a machine scheduler class that can run at any point. 148 class MachineSchedulerBase : public MachineSchedContext, 149 public MachineFunctionPass { 150 public: 151 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 152 153 void print(raw_ostream &O, const Module* = nullptr) const override; 154 155 protected: 156 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 157 }; 158 159 /// MachineScheduler runs after coalescing and before register allocation. 160 class MachineScheduler : public MachineSchedulerBase { 161 public: 162 MachineScheduler(); 163 164 void getAnalysisUsage(AnalysisUsage &AU) const override; 165 166 bool runOnMachineFunction(MachineFunction&) override; 167 168 static char ID; // Class identification, replacement for typeinfo 169 170 protected: 171 ScheduleDAGInstrs *createMachineScheduler(); 172 }; 173 174 /// PostMachineScheduler runs after shortly before code emission. 175 class PostMachineScheduler : public MachineSchedulerBase { 176 public: 177 PostMachineScheduler(); 178 179 void getAnalysisUsage(AnalysisUsage &AU) const override; 180 181 bool runOnMachineFunction(MachineFunction&) override; 182 183 static char ID; // Class identification, replacement for typeinfo 184 185 protected: 186 ScheduleDAGInstrs *createPostMachineScheduler(); 187 }; 188 189 } // end anonymous namespace 190 191 char MachineScheduler::ID = 0; 192 193 char &llvm::MachineSchedulerID = MachineScheduler::ID; 194 195 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 196 "Machine Instruction Scheduler", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 199 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 201 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 202 "Machine Instruction Scheduler", false, false) 203 204 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 205 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 206 } 207 208 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 209 AU.setPreservesCFG(); 210 AU.addRequiredID(MachineDominatorsID); 211 AU.addRequired<MachineLoopInfo>(); 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addRequired<TargetPassConfig>(); 214 AU.addRequired<SlotIndexes>(); 215 AU.addPreserved<SlotIndexes>(); 216 AU.addRequired<LiveIntervals>(); 217 AU.addPreserved<LiveIntervals>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 char PostMachineScheduler::ID = 0; 222 223 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 224 225 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 226 "PostRA Machine Instruction Scheduler", false, false) 227 228 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 229 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 230 } 231 232 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 233 AU.setPreservesCFG(); 234 AU.addRequiredID(MachineDominatorsID); 235 AU.addRequired<MachineLoopInfo>(); 236 AU.addRequired<TargetPassConfig>(); 237 MachineFunctionPass::getAnalysisUsage(AU); 238 } 239 240 MachinePassRegistry MachineSchedRegistry::Registry; 241 242 /// A dummy default scheduler factory indicates whether the scheduler 243 /// is overridden on the command line. 244 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 245 return nullptr; 246 } 247 248 /// MachineSchedOpt allows command line selection of the scheduler. 249 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 250 RegisterPassParser<MachineSchedRegistry>> 251 MachineSchedOpt("misched", 252 cl::init(&useDefaultMachineSched), cl::Hidden, 253 cl::desc("Machine instruction scheduler to use")); 254 255 static MachineSchedRegistry 256 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 257 useDefaultMachineSched); 258 259 static cl::opt<bool> EnableMachineSched( 260 "enable-misched", 261 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 262 cl::Hidden); 263 264 static cl::opt<bool> EnablePostRAMachineSched( 265 "enable-post-misched", 266 cl::desc("Enable the post-ra machine instruction scheduling pass."), 267 cl::init(true), cl::Hidden); 268 269 /// Decrement this iterator until reaching the top or a non-debug instr. 270 static MachineBasicBlock::const_iterator 271 priorNonDebug(MachineBasicBlock::const_iterator I, 272 MachineBasicBlock::const_iterator Beg) { 273 assert(I != Beg && "reached the top of the region, cannot decrement"); 274 while (--I != Beg) { 275 if (!I->isDebugInstr()) 276 break; 277 } 278 return I; 279 } 280 281 /// Non-const version. 282 static MachineBasicBlock::iterator 283 priorNonDebug(MachineBasicBlock::iterator I, 284 MachineBasicBlock::const_iterator Beg) { 285 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 286 .getNonConstIterator(); 287 } 288 289 /// If this iterator is a debug value, increment until reaching the End or a 290 /// non-debug instruction. 291 static MachineBasicBlock::const_iterator 292 nextIfDebug(MachineBasicBlock::const_iterator I, 293 MachineBasicBlock::const_iterator End) { 294 for(; I != End; ++I) { 295 if (!I->isDebugInstr()) 296 break; 297 } 298 return I; 299 } 300 301 /// Non-const version. 302 static MachineBasicBlock::iterator 303 nextIfDebug(MachineBasicBlock::iterator I, 304 MachineBasicBlock::const_iterator End) { 305 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 306 .getNonConstIterator(); 307 } 308 309 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 310 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 311 // Select the scheduler, or set the default. 312 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 313 if (Ctor != useDefaultMachineSched) 314 return Ctor(this); 315 316 // Get the default scheduler set by the target for this function. 317 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 318 if (Scheduler) 319 return Scheduler; 320 321 // Default to GenericScheduler. 322 return createGenericSchedLive(this); 323 } 324 325 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 326 /// the caller. We don't have a command line option to override the postRA 327 /// scheduler. The Target must configure it. 328 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 329 // Get the postRA scheduler set by the target for this function. 330 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 331 if (Scheduler) 332 return Scheduler; 333 334 // Default to GenericScheduler. 335 return createGenericSchedPostRA(this); 336 } 337 338 /// Top-level MachineScheduler pass driver. 339 /// 340 /// Visit blocks in function order. Divide each block into scheduling regions 341 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 342 /// consistent with the DAG builder, which traverses the interior of the 343 /// scheduling regions bottom-up. 344 /// 345 /// This design avoids exposing scheduling boundaries to the DAG builder, 346 /// simplifying the DAG builder's support for "special" target instructions. 347 /// At the same time the design allows target schedulers to operate across 348 /// scheduling boundaries, for example to bundle the boudary instructions 349 /// without reordering them. This creates complexity, because the target 350 /// scheduler must update the RegionBegin and RegionEnd positions cached by 351 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 352 /// design would be to split blocks at scheduling boundaries, but LLVM has a 353 /// general bias against block splitting purely for implementation simplicity. 354 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 355 if (skipFunction(mf.getFunction())) 356 return false; 357 358 if (EnableMachineSched.getNumOccurrences()) { 359 if (!EnableMachineSched) 360 return false; 361 } else if (!mf.getSubtarget().enableMachineScheduler()) 362 return false; 363 364 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 365 366 // Initialize the context of the pass. 367 MF = &mf; 368 MLI = &getAnalysis<MachineLoopInfo>(); 369 MDT = &getAnalysis<MachineDominatorTree>(); 370 PassConfig = &getAnalysis<TargetPassConfig>(); 371 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 372 373 LIS = &getAnalysis<LiveIntervals>(); 374 375 if (VerifyScheduling) { 376 DEBUG(LIS->dump()); 377 MF->verify(this, "Before machine scheduling."); 378 } 379 RegClassInfo->runOnMachineFunction(*MF); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 384 scheduleRegions(*Scheduler, false); 385 386 DEBUG(LIS->dump()); 387 if (VerifyScheduling) 388 MF->verify(this, "After machine scheduling."); 389 return true; 390 } 391 392 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 393 if (skipFunction(mf.getFunction())) 394 return false; 395 396 if (EnablePostRAMachineSched.getNumOccurrences()) { 397 if (!EnablePostRAMachineSched) 398 return false; 399 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 400 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 401 return false; 402 } 403 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 404 405 // Initialize the context of the pass. 406 MF = &mf; 407 MLI = &getAnalysis<MachineLoopInfo>(); 408 PassConfig = &getAnalysis<TargetPassConfig>(); 409 410 if (VerifyScheduling) 411 MF->verify(this, "Before post machine scheduling."); 412 413 // Instantiate the selected scheduler for this target, function, and 414 // optimization level. 415 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 416 scheduleRegions(*Scheduler, true); 417 418 if (VerifyScheduling) 419 MF->verify(this, "After post machine scheduling."); 420 return true; 421 } 422 423 /// Return true of the given instruction should not be included in a scheduling 424 /// region. 425 /// 426 /// MachineScheduler does not currently support scheduling across calls. To 427 /// handle calls, the DAG builder needs to be modified to create register 428 /// anti/output dependencies on the registers clobbered by the call's regmask 429 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 430 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 431 /// the boundary, but there would be no benefit to postRA scheduling across 432 /// calls this late anyway. 433 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 434 MachineBasicBlock *MBB, 435 MachineFunction *MF, 436 const TargetInstrInfo *TII) { 437 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 438 } 439 440 /// A region of an MBB for scheduling. 441 namespace { 442 struct SchedRegion { 443 /// RegionBegin is the first instruction in the scheduling region, and 444 /// RegionEnd is either MBB->end() or the scheduling boundary after the 445 /// last instruction in the scheduling region. These iterators cannot refer 446 /// to instructions outside of the identified scheduling region because 447 /// those may be reordered before scheduling this region. 448 MachineBasicBlock::iterator RegionBegin; 449 MachineBasicBlock::iterator RegionEnd; 450 unsigned NumRegionInstrs; 451 452 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 453 unsigned N) : 454 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 455 }; 456 } // end anonymous namespace 457 458 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 459 460 static void 461 getSchedRegions(MachineBasicBlock *MBB, 462 MBBRegionsVector &Regions, 463 bool RegionsTopDown) { 464 MachineFunction *MF = MBB->getParent(); 465 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 466 467 MachineBasicBlock::iterator I = nullptr; 468 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 469 RegionEnd != MBB->begin(); RegionEnd = I) { 470 471 // Avoid decrementing RegionEnd for blocks with no terminator. 472 if (RegionEnd != MBB->end() || 473 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 474 --RegionEnd; 475 } 476 477 // The next region starts above the previous region. Look backward in the 478 // instruction stream until we find the nearest boundary. 479 unsigned NumRegionInstrs = 0; 480 I = RegionEnd; 481 for (;I != MBB->begin(); --I) { 482 MachineInstr &MI = *std::prev(I); 483 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 484 break; 485 if (!MI.isDebugInstr()) 486 // MBB::size() uses instr_iterator to count. Here we need a bundle to 487 // count as a single instruction. 488 ++NumRegionInstrs; 489 } 490 491 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 492 } 493 494 if (RegionsTopDown) 495 std::reverse(Regions.begin(), Regions.end()); 496 } 497 498 /// Main driver for both MachineScheduler and PostMachineScheduler. 499 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 500 bool FixKillFlags) { 501 // Visit all machine basic blocks. 502 // 503 // TODO: Visit blocks in global postorder or postorder within the bottom-up 504 // loop tree. Then we can optionally compute global RegPressure. 505 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 506 MBB != MBBEnd; ++MBB) { 507 508 Scheduler.startBlock(&*MBB); 509 510 #ifndef NDEBUG 511 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 512 continue; 513 if (SchedOnlyBlock.getNumOccurrences() 514 && (int)SchedOnlyBlock != MBB->getNumber()) 515 continue; 516 #endif 517 518 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 519 // points to the scheduling boundary at the bottom of the region. The DAG 520 // does not include RegionEnd, but the region does (i.e. the next 521 // RegionEnd is above the previous RegionBegin). If the current block has 522 // no terminator then RegionEnd == MBB->end() for the bottom region. 523 // 524 // All the regions of MBB are first found and stored in MBBRegions, which 525 // will be processed (MBB) top-down if initialized with true. 526 // 527 // The Scheduler may insert instructions during either schedule() or 528 // exitRegion(), even for empty regions. So the local iterators 'I' and 529 // 'RegionEnd' are invalid across these calls. Instructions must not be 530 // added to other regions than the current one without updating MBBRegions. 531 532 MBBRegionsVector MBBRegions; 533 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 534 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 535 R != MBBRegions.end(); ++R) { 536 MachineBasicBlock::iterator I = R->RegionBegin; 537 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 538 unsigned NumRegionInstrs = R->NumRegionInstrs; 539 540 // Notify the scheduler of the region, even if we may skip scheduling 541 // it. Perhaps it still needs to be bundled. 542 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 543 544 // Skip empty scheduling regions (0 or 1 schedulable instructions). 545 if (I == RegionEnd || I == std::prev(RegionEnd)) { 546 // Close the current region. Bundle the terminator if needed. 547 // This invalidates 'RegionEnd' and 'I'. 548 Scheduler.exitRegion(); 549 continue; 550 } 551 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 552 DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " " 553 << MBB->getName() << "\n From: " << *I << " To: "; 554 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 555 else dbgs() << "End"; 556 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 557 if (DumpCriticalPathLength) { 558 errs() << MF->getName(); 559 errs() << ":%bb. " << MBB->getNumber(); 560 errs() << " " << MBB->getName() << " \n"; 561 } 562 563 // Schedule a region: possibly reorder instructions. 564 // This invalidates the original region iterators. 565 Scheduler.schedule(); 566 567 // Close the current region. 568 Scheduler.exitRegion(); 569 } 570 Scheduler.finishBlock(); 571 // FIXME: Ideally, no further passes should rely on kill flags. However, 572 // thumb2 size reduction is currently an exception, so the PostMIScheduler 573 // needs to do this. 574 if (FixKillFlags) 575 Scheduler.fixupKills(*MBB); 576 } 577 Scheduler.finalizeSchedule(); 578 } 579 580 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 581 // unimplemented 582 } 583 584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 585 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 586 dbgs() << "Queue " << Name << ": "; 587 for (const SUnit *SU : Queue) 588 dbgs() << SU->NodeNum << " "; 589 dbgs() << "\n"; 590 } 591 #endif 592 593 //===----------------------------------------------------------------------===// 594 // ScheduleDAGMI - Basic machine instruction scheduling. This is 595 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 596 // virtual registers. 597 // ===----------------------------------------------------------------------===/ 598 599 // Provide a vtable anchor. 600 ScheduleDAGMI::~ScheduleDAGMI() = default; 601 602 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 603 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 604 } 605 606 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 607 if (SuccSU != &ExitSU) { 608 // Do not use WillCreateCycle, it assumes SD scheduling. 609 // If Pred is reachable from Succ, then the edge creates a cycle. 610 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 611 return false; 612 Topo.AddPred(SuccSU, PredDep.getSUnit()); 613 } 614 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 615 // Return true regardless of whether a new edge needed to be inserted. 616 return true; 617 } 618 619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 620 /// NumPredsLeft reaches zero, release the successor node. 621 /// 622 /// FIXME: Adjust SuccSU height based on MinLatency. 623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 624 SUnit *SuccSU = SuccEdge->getSUnit(); 625 626 if (SuccEdge->isWeak()) { 627 --SuccSU->WeakPredsLeft; 628 if (SuccEdge->isCluster()) 629 NextClusterSucc = SuccSU; 630 return; 631 } 632 #ifndef NDEBUG 633 if (SuccSU->NumPredsLeft == 0) { 634 dbgs() << "*** Scheduling failed! ***\n"; 635 SuccSU->dump(this); 636 dbgs() << " has been released too many times!\n"; 637 llvm_unreachable(nullptr); 638 } 639 #endif 640 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 641 // CurrCycle may have advanced since then. 642 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 643 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 644 645 --SuccSU->NumPredsLeft; 646 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 647 SchedImpl->releaseTopNode(SuccSU); 648 } 649 650 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 652 for (SDep &Succ : SU->Succs) 653 releaseSucc(SU, &Succ); 654 } 655 656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 657 /// NumSuccsLeft reaches zero, release the predecessor node. 658 /// 659 /// FIXME: Adjust PredSU height based on MinLatency. 660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 661 SUnit *PredSU = PredEdge->getSUnit(); 662 663 if (PredEdge->isWeak()) { 664 --PredSU->WeakSuccsLeft; 665 if (PredEdge->isCluster()) 666 NextClusterPred = PredSU; 667 return; 668 } 669 #ifndef NDEBUG 670 if (PredSU->NumSuccsLeft == 0) { 671 dbgs() << "*** Scheduling failed! ***\n"; 672 PredSU->dump(this); 673 dbgs() << " has been released too many times!\n"; 674 llvm_unreachable(nullptr); 675 } 676 #endif 677 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 678 // CurrCycle may have advanced since then. 679 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 680 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 681 682 --PredSU->NumSuccsLeft; 683 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 684 SchedImpl->releaseBottomNode(PredSU); 685 } 686 687 /// releasePredecessors - Call releasePred on each of SU's predecessors. 688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 689 for (SDep &Pred : SU->Preds) 690 releasePred(SU, &Pred); 691 } 692 693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 694 ScheduleDAGInstrs::startBlock(bb); 695 SchedImpl->enterMBB(bb); 696 } 697 698 void ScheduleDAGMI::finishBlock() { 699 SchedImpl->leaveMBB(); 700 ScheduleDAGInstrs::finishBlock(); 701 } 702 703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 704 /// crossing a scheduling boundary. [begin, end) includes all instructions in 705 /// the region, including the boundary itself and single-instruction regions 706 /// that don't get scheduled. 707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 708 MachineBasicBlock::iterator begin, 709 MachineBasicBlock::iterator end, 710 unsigned regioninstrs) 711 { 712 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 713 714 SchedImpl->initPolicy(begin, end, regioninstrs); 715 } 716 717 /// This is normally called from the main scheduler loop but may also be invoked 718 /// by the scheduling strategy to perform additional code motion. 719 void ScheduleDAGMI::moveInstruction( 720 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 721 // Advance RegionBegin if the first instruction moves down. 722 if (&*RegionBegin == MI) 723 ++RegionBegin; 724 725 // Update the instruction stream. 726 BB->splice(InsertPos, BB, MI); 727 728 // Update LiveIntervals 729 if (LIS) 730 LIS->handleMove(*MI, /*UpdateFlags=*/true); 731 732 // Recede RegionBegin if an instruction moves above the first. 733 if (RegionBegin == InsertPos) 734 RegionBegin = MI; 735 } 736 737 bool ScheduleDAGMI::checkSchedLimit() { 738 #ifndef NDEBUG 739 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 740 CurrentTop = CurrentBottom; 741 return false; 742 } 743 ++NumInstrsScheduled; 744 #endif 745 return true; 746 } 747 748 /// Per-region scheduling driver, called back from 749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 750 /// does not consider liveness or register pressure. It is useful for PostRA 751 /// scheduling and potentially other custom schedulers. 752 void ScheduleDAGMI::schedule() { 753 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 754 DEBUG(SchedImpl->dumpPolicy()); 755 756 // Build the DAG. 757 buildSchedGraph(AA); 758 759 Topo.InitDAGTopologicalSorting(); 760 761 postprocessDAG(); 762 763 SmallVector<SUnit*, 8> TopRoots, BotRoots; 764 findRootsAndBiasEdges(TopRoots, BotRoots); 765 766 DEBUG( 767 if (EntrySU.getInstr() != nullptr) 768 EntrySU.dumpAll(this); 769 for (const SUnit &SU : SUnits) 770 SU.dumpAll(this); 771 if (ExitSU.getInstr() != nullptr) 772 ExitSU.dumpAll(this); 773 ); 774 if (ViewMISchedDAGs) viewGraph(); 775 776 // Initialize the strategy before modifying the DAG. 777 // This may initialize a DFSResult to be used for queue priority. 778 SchedImpl->initialize(this); 779 780 // Initialize ready queues now that the DAG and priority data are finalized. 781 initQueues(TopRoots, BotRoots); 782 783 bool IsTopNode = false; 784 while (true) { 785 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 786 SUnit *SU = SchedImpl->pickNode(IsTopNode); 787 if (!SU) break; 788 789 assert(!SU->isScheduled && "Node already scheduled"); 790 if (!checkSchedLimit()) 791 break; 792 793 MachineInstr *MI = SU->getInstr(); 794 if (IsTopNode) { 795 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 798 else 799 moveInstruction(MI, CurrentTop); 800 } else { 801 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 802 MachineBasicBlock::iterator priorII = 803 priorNonDebug(CurrentBottom, CurrentTop); 804 if (&*priorII == MI) 805 CurrentBottom = priorII; 806 else { 807 if (&*CurrentTop == MI) 808 CurrentTop = nextIfDebug(++CurrentTop, priorII); 809 moveInstruction(MI, CurrentBottom); 810 CurrentBottom = MI; 811 } 812 } 813 // Notify the scheduling strategy before updating the DAG. 814 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 815 // runs, it can then use the accurate ReadyCycle time to determine whether 816 // newly released nodes can move to the readyQ. 817 SchedImpl->schedNode(SU, IsTopNode); 818 819 updateQueues(SU, IsTopNode); 820 } 821 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 822 823 placeDebugValues(); 824 825 DEBUG({ 826 dbgs() << "*** Final schedule for " 827 << printMBBReference(*begin()->getParent()) << " ***\n"; 828 dumpSchedule(); 829 dbgs() << '\n'; 830 }); 831 } 832 833 /// Apply each ScheduleDAGMutation step in order. 834 void ScheduleDAGMI::postprocessDAG() { 835 for (auto &m : Mutations) 836 m->apply(this); 837 } 838 839 void ScheduleDAGMI:: 840 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 841 SmallVectorImpl<SUnit*> &BotRoots) { 842 for (SUnit &SU : SUnits) { 843 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 844 845 // Order predecessors so DFSResult follows the critical path. 846 SU.biasCriticalPath(); 847 848 // A SUnit is ready to top schedule if it has no predecessors. 849 if (!SU.NumPredsLeft) 850 TopRoots.push_back(&SU); 851 // A SUnit is ready to bottom schedule if it has no successors. 852 if (!SU.NumSuccsLeft) 853 BotRoots.push_back(&SU); 854 } 855 ExitSU.biasCriticalPath(); 856 } 857 858 /// Identify DAG roots and setup scheduler queues. 859 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 860 ArrayRef<SUnit*> BotRoots) { 861 NextClusterSucc = nullptr; 862 NextClusterPred = nullptr; 863 864 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 865 // 866 // Nodes with unreleased weak edges can still be roots. 867 // Release top roots in forward order. 868 for (SUnit *SU : TopRoots) 869 SchedImpl->releaseTopNode(SU); 870 871 // Release bottom roots in reverse order so the higher priority nodes appear 872 // first. This is more natural and slightly more efficient. 873 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 874 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 875 SchedImpl->releaseBottomNode(*I); 876 } 877 878 releaseSuccessors(&EntrySU); 879 releasePredecessors(&ExitSU); 880 881 SchedImpl->registerRoots(); 882 883 // Advance past initial DebugValues. 884 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 885 CurrentBottom = RegionEnd; 886 } 887 888 /// Update scheduler queues after scheduling an instruction. 889 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 890 // Release dependent instructions for scheduling. 891 if (IsTopNode) 892 releaseSuccessors(SU); 893 else 894 releasePredecessors(SU); 895 896 SU->isScheduled = true; 897 } 898 899 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 900 void ScheduleDAGMI::placeDebugValues() { 901 // If first instruction was a DBG_VALUE then put it back. 902 if (FirstDbgValue) { 903 BB->splice(RegionBegin, BB, FirstDbgValue); 904 RegionBegin = FirstDbgValue; 905 } 906 907 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 908 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 909 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 910 MachineInstr *DbgValue = P.first; 911 MachineBasicBlock::iterator OrigPrevMI = P.second; 912 if (&*RegionBegin == DbgValue) 913 ++RegionBegin; 914 BB->splice(++OrigPrevMI, BB, DbgValue); 915 if (OrigPrevMI == std::prev(RegionEnd)) 916 RegionEnd = DbgValue; 917 } 918 DbgValues.clear(); 919 FirstDbgValue = nullptr; 920 } 921 922 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 923 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 924 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 925 if (SUnit *SU = getSUnit(&(*MI))) 926 SU->dump(this); 927 else 928 dbgs() << "Missing SUnit\n"; 929 } 930 } 931 #endif 932 933 //===----------------------------------------------------------------------===// 934 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 935 // preservation. 936 //===----------------------------------------------------------------------===// 937 938 ScheduleDAGMILive::~ScheduleDAGMILive() { 939 delete DFSResult; 940 } 941 942 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 943 const MachineInstr &MI = *SU.getInstr(); 944 for (const MachineOperand &MO : MI.operands()) { 945 if (!MO.isReg()) 946 continue; 947 if (!MO.readsReg()) 948 continue; 949 if (TrackLaneMasks && !MO.isUse()) 950 continue; 951 952 unsigned Reg = MO.getReg(); 953 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 954 continue; 955 956 // Ignore re-defs. 957 if (TrackLaneMasks) { 958 bool FoundDef = false; 959 for (const MachineOperand &MO2 : MI.operands()) { 960 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 961 FoundDef = true; 962 break; 963 } 964 } 965 if (FoundDef) 966 continue; 967 } 968 969 // Record this local VReg use. 970 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 971 for (; UI != VRegUses.end(); ++UI) { 972 if (UI->SU == &SU) 973 break; 974 } 975 if (UI == VRegUses.end()) 976 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 977 } 978 } 979 980 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 981 /// crossing a scheduling boundary. [begin, end) includes all instructions in 982 /// the region, including the boundary itself and single-instruction regions 983 /// that don't get scheduled. 984 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 985 MachineBasicBlock::iterator begin, 986 MachineBasicBlock::iterator end, 987 unsigned regioninstrs) 988 { 989 // ScheduleDAGMI initializes SchedImpl's per-region policy. 990 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 991 992 // For convenience remember the end of the liveness region. 993 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 994 995 SUPressureDiffs.clear(); 996 997 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 998 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 999 1000 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1001 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1002 } 1003 1004 // Setup the register pressure trackers for the top scheduled top and bottom 1005 // scheduled regions. 1006 void ScheduleDAGMILive::initRegPressure() { 1007 VRegUses.clear(); 1008 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1009 for (SUnit &SU : SUnits) 1010 collectVRegUses(SU); 1011 1012 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1013 ShouldTrackLaneMasks, false); 1014 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1015 ShouldTrackLaneMasks, false); 1016 1017 // Close the RPTracker to finalize live ins. 1018 RPTracker.closeRegion(); 1019 1020 DEBUG(RPTracker.dump()); 1021 1022 // Initialize the live ins and live outs. 1023 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1024 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1025 1026 // Close one end of the tracker so we can call 1027 // getMaxUpward/DownwardPressureDelta before advancing across any 1028 // instructions. This converts currently live regs into live ins/outs. 1029 TopRPTracker.closeTop(); 1030 BotRPTracker.closeBottom(); 1031 1032 BotRPTracker.initLiveThru(RPTracker); 1033 if (!BotRPTracker.getLiveThru().empty()) { 1034 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1035 DEBUG(dbgs() << "Live Thru: "; 1036 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1037 }; 1038 1039 // For each live out vreg reduce the pressure change associated with other 1040 // uses of the same vreg below the live-out reaching def. 1041 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1042 1043 // Account for liveness generated by the region boundary. 1044 if (LiveRegionEnd != RegionEnd) { 1045 SmallVector<RegisterMaskPair, 8> LiveUses; 1046 BotRPTracker.recede(&LiveUses); 1047 updatePressureDiffs(LiveUses); 1048 } 1049 1050 DEBUG( 1051 dbgs() << "Top Pressure:\n"; 1052 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1053 dbgs() << "Bottom Pressure:\n"; 1054 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1055 ); 1056 1057 assert((BotRPTracker.getPos() == RegionEnd || 1058 (RegionEnd->isDebugInstr() && 1059 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1060 "Can't find the region bottom"); 1061 1062 // Cache the list of excess pressure sets in this region. This will also track 1063 // the max pressure in the scheduled code for these sets. 1064 RegionCriticalPSets.clear(); 1065 const std::vector<unsigned> &RegionPressure = 1066 RPTracker.getPressure().MaxSetPressure; 1067 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1068 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1069 if (RegionPressure[i] > Limit) { 1070 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1071 << " Limit " << Limit 1072 << " Actual " << RegionPressure[i] << "\n"); 1073 RegionCriticalPSets.push_back(PressureChange(i)); 1074 } 1075 } 1076 DEBUG(dbgs() << "Excess PSets: "; 1077 for (const PressureChange &RCPS : RegionCriticalPSets) 1078 dbgs() << TRI->getRegPressureSetName( 1079 RCPS.getPSet()) << " "; 1080 dbgs() << "\n"); 1081 } 1082 1083 void ScheduleDAGMILive:: 1084 updateScheduledPressure(const SUnit *SU, 1085 const std::vector<unsigned> &NewMaxPressure) { 1086 const PressureDiff &PDiff = getPressureDiff(SU); 1087 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1088 for (const PressureChange &PC : PDiff) { 1089 if (!PC.isValid()) 1090 break; 1091 unsigned ID = PC.getPSet(); 1092 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1093 ++CritIdx; 1094 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1095 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1096 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1097 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1098 } 1099 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1100 if (NewMaxPressure[ID] >= Limit - 2) { 1101 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1102 << NewMaxPressure[ID] 1103 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1104 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1105 } 1106 } 1107 } 1108 1109 /// Update the PressureDiff array for liveness after scheduling this 1110 /// instruction. 1111 void ScheduleDAGMILive::updatePressureDiffs( 1112 ArrayRef<RegisterMaskPair> LiveUses) { 1113 for (const RegisterMaskPair &P : LiveUses) { 1114 unsigned Reg = P.RegUnit; 1115 /// FIXME: Currently assuming single-use physregs. 1116 if (!TRI->isVirtualRegister(Reg)) 1117 continue; 1118 1119 if (ShouldTrackLaneMasks) { 1120 // If the register has just become live then other uses won't change 1121 // this fact anymore => decrement pressure. 1122 // If the register has just become dead then other uses make it come 1123 // back to life => increment pressure. 1124 bool Decrement = P.LaneMask.any(); 1125 1126 for (const VReg2SUnit &V2SU 1127 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1128 SUnit &SU = *V2SU.SU; 1129 if (SU.isScheduled || &SU == &ExitSU) 1130 continue; 1131 1132 PressureDiff &PDiff = getPressureDiff(&SU); 1133 PDiff.addPressureChange(Reg, Decrement, &MRI); 1134 DEBUG( 1135 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1136 << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1137 << ' ' << *SU.getInstr(); 1138 dbgs() << " to "; 1139 PDiff.dump(*TRI); 1140 ); 1141 } 1142 } else { 1143 assert(P.LaneMask.any()); 1144 DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1145 // This may be called before CurrentBottom has been initialized. However, 1146 // BotRPTracker must have a valid position. We want the value live into the 1147 // instruction or live out of the block, so ask for the previous 1148 // instruction's live-out. 1149 const LiveInterval &LI = LIS->getInterval(Reg); 1150 VNInfo *VNI; 1151 MachineBasicBlock::const_iterator I = 1152 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1153 if (I == BB->end()) 1154 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1155 else { 1156 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1157 VNI = LRQ.valueIn(); 1158 } 1159 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1160 assert(VNI && "No live value at use."); 1161 for (const VReg2SUnit &V2SU 1162 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1163 SUnit *SU = V2SU.SU; 1164 // If this use comes before the reaching def, it cannot be a last use, 1165 // so decrease its pressure change. 1166 if (!SU->isScheduled && SU != &ExitSU) { 1167 LiveQueryResult LRQ = 1168 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1169 if (LRQ.valueIn() == VNI) { 1170 PressureDiff &PDiff = getPressureDiff(SU); 1171 PDiff.addPressureChange(Reg, true, &MRI); 1172 DEBUG( 1173 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1174 << *SU->getInstr(); 1175 dbgs() << " to "; 1176 PDiff.dump(*TRI); 1177 ); 1178 } 1179 } 1180 } 1181 } 1182 } 1183 } 1184 1185 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1186 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1187 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1188 /// 1189 /// This is a skeletal driver, with all the functionality pushed into helpers, 1190 /// so that it can be easily extended by experimental schedulers. Generally, 1191 /// implementing MachineSchedStrategy should be sufficient to implement a new 1192 /// scheduling algorithm. However, if a scheduler further subclasses 1193 /// ScheduleDAGMILive then it will want to override this virtual method in order 1194 /// to update any specialized state. 1195 void ScheduleDAGMILive::schedule() { 1196 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1197 DEBUG(SchedImpl->dumpPolicy()); 1198 buildDAGWithRegPressure(); 1199 1200 Topo.InitDAGTopologicalSorting(); 1201 1202 postprocessDAG(); 1203 1204 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1205 findRootsAndBiasEdges(TopRoots, BotRoots); 1206 1207 // Initialize the strategy before modifying the DAG. 1208 // This may initialize a DFSResult to be used for queue priority. 1209 SchedImpl->initialize(this); 1210 1211 DEBUG( 1212 if (EntrySU.getInstr() != nullptr) 1213 EntrySU.dumpAll(this); 1214 for (const SUnit &SU : SUnits) { 1215 SU.dumpAll(this); 1216 if (ShouldTrackPressure) { 1217 dbgs() << " Pressure Diff : "; 1218 getPressureDiff(&SU).dump(*TRI); 1219 } 1220 dbgs() << " Single Issue : "; 1221 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1222 SchedModel.mustEndGroup(SU.getInstr())) 1223 dbgs() << "true;"; 1224 else 1225 dbgs() << "false;"; 1226 dbgs() << '\n'; 1227 } 1228 if (ExitSU.getInstr() != nullptr) 1229 ExitSU.dumpAll(this); 1230 ); 1231 if (ViewMISchedDAGs) viewGraph(); 1232 1233 // Initialize ready queues now that the DAG and priority data are finalized. 1234 initQueues(TopRoots, BotRoots); 1235 1236 bool IsTopNode = false; 1237 while (true) { 1238 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1239 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1240 if (!SU) break; 1241 1242 assert(!SU->isScheduled && "Node already scheduled"); 1243 if (!checkSchedLimit()) 1244 break; 1245 1246 scheduleMI(SU, IsTopNode); 1247 1248 if (DFSResult) { 1249 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1250 if (!ScheduledTrees.test(SubtreeID)) { 1251 ScheduledTrees.set(SubtreeID); 1252 DFSResult->scheduleTree(SubtreeID); 1253 SchedImpl->scheduleTree(SubtreeID); 1254 } 1255 } 1256 1257 // Notify the scheduling strategy after updating the DAG. 1258 SchedImpl->schedNode(SU, IsTopNode); 1259 1260 updateQueues(SU, IsTopNode); 1261 } 1262 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1263 1264 placeDebugValues(); 1265 1266 DEBUG({ 1267 dbgs() << "*** Final schedule for " 1268 << printMBBReference(*begin()->getParent()) << " ***\n"; 1269 dumpSchedule(); 1270 dbgs() << '\n'; 1271 }); 1272 } 1273 1274 /// Build the DAG and setup three register pressure trackers. 1275 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1276 if (!ShouldTrackPressure) { 1277 RPTracker.reset(); 1278 RegionCriticalPSets.clear(); 1279 buildSchedGraph(AA); 1280 return; 1281 } 1282 1283 // Initialize the register pressure tracker used by buildSchedGraph. 1284 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1285 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1286 1287 // Account for liveness generate by the region boundary. 1288 if (LiveRegionEnd != RegionEnd) 1289 RPTracker.recede(); 1290 1291 // Build the DAG, and compute current register pressure. 1292 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1293 1294 // Initialize top/bottom trackers after computing region pressure. 1295 initRegPressure(); 1296 } 1297 1298 void ScheduleDAGMILive::computeDFSResult() { 1299 if (!DFSResult) 1300 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1301 DFSResult->clear(); 1302 ScheduledTrees.clear(); 1303 DFSResult->resize(SUnits.size()); 1304 DFSResult->compute(SUnits); 1305 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1306 } 1307 1308 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1309 /// only provides the critical path for single block loops. To handle loops that 1310 /// span blocks, we could use the vreg path latencies provided by 1311 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1312 /// available for use in the scheduler. 1313 /// 1314 /// The cyclic path estimation identifies a def-use pair that crosses the back 1315 /// edge and considers the depth and height of the nodes. For example, consider 1316 /// the following instruction sequence where each instruction has unit latency 1317 /// and defines an epomymous virtual register: 1318 /// 1319 /// a->b(a,c)->c(b)->d(c)->exit 1320 /// 1321 /// The cyclic critical path is a two cycles: b->c->b 1322 /// The acyclic critical path is four cycles: a->b->c->d->exit 1323 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1324 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1325 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1326 /// LiveInDepth = depth(b) = len(a->b) = 1 1327 /// 1328 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1329 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1330 /// CyclicCriticalPath = min(2, 2) = 2 1331 /// 1332 /// This could be relevant to PostRA scheduling, but is currently implemented 1333 /// assuming LiveIntervals. 1334 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1335 // This only applies to single block loop. 1336 if (!BB->isSuccessor(BB)) 1337 return 0; 1338 1339 unsigned MaxCyclicLatency = 0; 1340 // Visit each live out vreg def to find def/use pairs that cross iterations. 1341 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1342 unsigned Reg = P.RegUnit; 1343 if (!TRI->isVirtualRegister(Reg)) 1344 continue; 1345 const LiveInterval &LI = LIS->getInterval(Reg); 1346 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1347 if (!DefVNI) 1348 continue; 1349 1350 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1351 const SUnit *DefSU = getSUnit(DefMI); 1352 if (!DefSU) 1353 continue; 1354 1355 unsigned LiveOutHeight = DefSU->getHeight(); 1356 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1357 // Visit all local users of the vreg def. 1358 for (const VReg2SUnit &V2SU 1359 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1360 SUnit *SU = V2SU.SU; 1361 if (SU == &ExitSU) 1362 continue; 1363 1364 // Only consider uses of the phi. 1365 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1366 if (!LRQ.valueIn()->isPHIDef()) 1367 continue; 1368 1369 // Assume that a path spanning two iterations is a cycle, which could 1370 // overestimate in strange cases. This allows cyclic latency to be 1371 // estimated as the minimum slack of the vreg's depth or height. 1372 unsigned CyclicLatency = 0; 1373 if (LiveOutDepth > SU->getDepth()) 1374 CyclicLatency = LiveOutDepth - SU->getDepth(); 1375 1376 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1377 if (LiveInHeight > LiveOutHeight) { 1378 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1379 CyclicLatency = LiveInHeight - LiveOutHeight; 1380 } else 1381 CyclicLatency = 0; 1382 1383 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1384 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1385 if (CyclicLatency > MaxCyclicLatency) 1386 MaxCyclicLatency = CyclicLatency; 1387 } 1388 } 1389 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1390 return MaxCyclicLatency; 1391 } 1392 1393 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1394 /// the Top RP tracker in case the region beginning has changed. 1395 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1396 ArrayRef<SUnit*> BotRoots) { 1397 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1398 if (ShouldTrackPressure) { 1399 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1400 TopRPTracker.setPos(CurrentTop); 1401 } 1402 } 1403 1404 /// Move an instruction and update register pressure. 1405 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1406 // Move the instruction to its new location in the instruction stream. 1407 MachineInstr *MI = SU->getInstr(); 1408 1409 if (IsTopNode) { 1410 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1411 if (&*CurrentTop == MI) 1412 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1413 else { 1414 moveInstruction(MI, CurrentTop); 1415 TopRPTracker.setPos(MI); 1416 } 1417 1418 if (ShouldTrackPressure) { 1419 // Update top scheduled pressure. 1420 RegisterOperands RegOpers; 1421 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1422 if (ShouldTrackLaneMasks) { 1423 // Adjust liveness and add missing dead+read-undef flags. 1424 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1425 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1426 } else { 1427 // Adjust for missing dead-def flags. 1428 RegOpers.detectDeadDefs(*MI, *LIS); 1429 } 1430 1431 TopRPTracker.advance(RegOpers); 1432 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1433 DEBUG( 1434 dbgs() << "Top Pressure:\n"; 1435 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1436 ); 1437 1438 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1439 } 1440 } else { 1441 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1442 MachineBasicBlock::iterator priorII = 1443 priorNonDebug(CurrentBottom, CurrentTop); 1444 if (&*priorII == MI) 1445 CurrentBottom = priorII; 1446 else { 1447 if (&*CurrentTop == MI) { 1448 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1449 TopRPTracker.setPos(CurrentTop); 1450 } 1451 moveInstruction(MI, CurrentBottom); 1452 CurrentBottom = MI; 1453 BotRPTracker.setPos(CurrentBottom); 1454 } 1455 if (ShouldTrackPressure) { 1456 RegisterOperands RegOpers; 1457 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1458 if (ShouldTrackLaneMasks) { 1459 // Adjust liveness and add missing dead+read-undef flags. 1460 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1461 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1462 } else { 1463 // Adjust for missing dead-def flags. 1464 RegOpers.detectDeadDefs(*MI, *LIS); 1465 } 1466 1467 if (BotRPTracker.getPos() != CurrentBottom) 1468 BotRPTracker.recedeSkipDebugValues(); 1469 SmallVector<RegisterMaskPair, 8> LiveUses; 1470 BotRPTracker.recede(RegOpers, &LiveUses); 1471 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1472 DEBUG( 1473 dbgs() << "Bottom Pressure:\n"; 1474 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1475 ); 1476 1477 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1478 updatePressureDiffs(LiveUses); 1479 } 1480 } 1481 } 1482 1483 //===----------------------------------------------------------------------===// 1484 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1485 //===----------------------------------------------------------------------===// 1486 1487 namespace { 1488 1489 /// Post-process the DAG to create cluster edges between neighboring 1490 /// loads or between neighboring stores. 1491 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1492 struct MemOpInfo { 1493 SUnit *SU; 1494 unsigned BaseReg; 1495 int64_t Offset; 1496 1497 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1498 : SU(su), BaseReg(reg), Offset(ofs) {} 1499 1500 bool operator<(const MemOpInfo&RHS) const { 1501 return std::tie(BaseReg, Offset, SU->NodeNum) < 1502 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1503 } 1504 }; 1505 1506 const TargetInstrInfo *TII; 1507 const TargetRegisterInfo *TRI; 1508 bool IsLoad; 1509 1510 public: 1511 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1512 const TargetRegisterInfo *tri, bool IsLoad) 1513 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1514 1515 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1516 1517 protected: 1518 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1519 }; 1520 1521 class StoreClusterMutation : public BaseMemOpClusterMutation { 1522 public: 1523 StoreClusterMutation(const TargetInstrInfo *tii, 1524 const TargetRegisterInfo *tri) 1525 : BaseMemOpClusterMutation(tii, tri, false) {} 1526 }; 1527 1528 class LoadClusterMutation : public BaseMemOpClusterMutation { 1529 public: 1530 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1531 : BaseMemOpClusterMutation(tii, tri, true) {} 1532 }; 1533 1534 } // end anonymous namespace 1535 1536 namespace llvm { 1537 1538 std::unique_ptr<ScheduleDAGMutation> 1539 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1540 const TargetRegisterInfo *TRI) { 1541 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1542 : nullptr; 1543 } 1544 1545 std::unique_ptr<ScheduleDAGMutation> 1546 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1547 const TargetRegisterInfo *TRI) { 1548 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1549 : nullptr; 1550 } 1551 1552 } // end namespace llvm 1553 1554 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1555 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1556 SmallVector<MemOpInfo, 32> MemOpRecords; 1557 for (SUnit *SU : MemOps) { 1558 unsigned BaseReg; 1559 int64_t Offset; 1560 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1561 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1562 } 1563 if (MemOpRecords.size() < 2) 1564 return; 1565 1566 llvm::sort(MemOpRecords.begin(), MemOpRecords.end()); 1567 unsigned ClusterLength = 1; 1568 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1569 SUnit *SUa = MemOpRecords[Idx].SU; 1570 SUnit *SUb = MemOpRecords[Idx+1].SU; 1571 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1572 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1573 ClusterLength) && 1574 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1575 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1576 << SUb->NodeNum << ")\n"); 1577 // Copy successor edges from SUa to SUb. Interleaving computation 1578 // dependent on SUa can prevent load combining due to register reuse. 1579 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1580 // loads should have effectively the same inputs. 1581 for (const SDep &Succ : SUa->Succs) { 1582 if (Succ.getSUnit() == SUb) 1583 continue; 1584 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1585 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1586 } 1587 ++ClusterLength; 1588 } else 1589 ClusterLength = 1; 1590 } 1591 } 1592 1593 /// Callback from DAG postProcessing to create cluster edges for loads. 1594 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1595 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1596 1597 // Map DAG NodeNum to store chain ID. 1598 DenseMap<unsigned, unsigned> StoreChainIDs; 1599 // Map each store chain to a set of dependent MemOps. 1600 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1601 for (SUnit &SU : DAG->SUnits) { 1602 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1603 (!IsLoad && !SU.getInstr()->mayStore())) 1604 continue; 1605 1606 unsigned ChainPredID = DAG->SUnits.size(); 1607 for (const SDep &Pred : SU.Preds) { 1608 if (Pred.isCtrl()) { 1609 ChainPredID = Pred.getSUnit()->NodeNum; 1610 break; 1611 } 1612 } 1613 // Check if this chain-like pred has been seen 1614 // before. ChainPredID==MaxNodeID at the top of the schedule. 1615 unsigned NumChains = StoreChainDependents.size(); 1616 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1617 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1618 if (Result.second) 1619 StoreChainDependents.resize(NumChains + 1); 1620 StoreChainDependents[Result.first->second].push_back(&SU); 1621 } 1622 1623 // Iterate over the store chains. 1624 for (auto &SCD : StoreChainDependents) 1625 clusterNeighboringMemOps(SCD, DAG); 1626 } 1627 1628 //===----------------------------------------------------------------------===// 1629 // CopyConstrain - DAG post-processing to encourage copy elimination. 1630 //===----------------------------------------------------------------------===// 1631 1632 namespace { 1633 1634 /// Post-process the DAG to create weak edges from all uses of a copy to 1635 /// the one use that defines the copy's source vreg, most likely an induction 1636 /// variable increment. 1637 class CopyConstrain : public ScheduleDAGMutation { 1638 // Transient state. 1639 SlotIndex RegionBeginIdx; 1640 1641 // RegionEndIdx is the slot index of the last non-debug instruction in the 1642 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1643 SlotIndex RegionEndIdx; 1644 1645 public: 1646 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1647 1648 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1649 1650 protected: 1651 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1652 }; 1653 1654 } // end anonymous namespace 1655 1656 namespace llvm { 1657 1658 std::unique_ptr<ScheduleDAGMutation> 1659 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1660 const TargetRegisterInfo *TRI) { 1661 return llvm::make_unique<CopyConstrain>(TII, TRI); 1662 } 1663 1664 } // end namespace llvm 1665 1666 /// constrainLocalCopy handles two possibilities: 1667 /// 1) Local src: 1668 /// I0: = dst 1669 /// I1: src = ... 1670 /// I2: = dst 1671 /// I3: dst = src (copy) 1672 /// (create pred->succ edges I0->I1, I2->I1) 1673 /// 1674 /// 2) Local copy: 1675 /// I0: dst = src (copy) 1676 /// I1: = dst 1677 /// I2: src = ... 1678 /// I3: = dst 1679 /// (create pred->succ edges I1->I2, I3->I2) 1680 /// 1681 /// Although the MachineScheduler is currently constrained to single blocks, 1682 /// this algorithm should handle extended blocks. An EBB is a set of 1683 /// contiguously numbered blocks such that the previous block in the EBB is 1684 /// always the single predecessor. 1685 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1686 LiveIntervals *LIS = DAG->getLIS(); 1687 MachineInstr *Copy = CopySU->getInstr(); 1688 1689 // Check for pure vreg copies. 1690 const MachineOperand &SrcOp = Copy->getOperand(1); 1691 unsigned SrcReg = SrcOp.getReg(); 1692 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1693 return; 1694 1695 const MachineOperand &DstOp = Copy->getOperand(0); 1696 unsigned DstReg = DstOp.getReg(); 1697 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1698 return; 1699 1700 // Check if either the dest or source is local. If it's live across a back 1701 // edge, it's not local. Note that if both vregs are live across the back 1702 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1703 // If both the copy's source and dest are local live intervals, then we 1704 // should treat the dest as the global for the purpose of adding 1705 // constraints. This adds edges from source's other uses to the copy. 1706 unsigned LocalReg = SrcReg; 1707 unsigned GlobalReg = DstReg; 1708 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1709 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1710 LocalReg = DstReg; 1711 GlobalReg = SrcReg; 1712 LocalLI = &LIS->getInterval(LocalReg); 1713 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1714 return; 1715 } 1716 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1717 1718 // Find the global segment after the start of the local LI. 1719 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1720 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1721 // local live range. We could create edges from other global uses to the local 1722 // start, but the coalescer should have already eliminated these cases, so 1723 // don't bother dealing with it. 1724 if (GlobalSegment == GlobalLI->end()) 1725 return; 1726 1727 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1728 // returned the next global segment. But if GlobalSegment overlaps with 1729 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1730 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1731 if (GlobalSegment->contains(LocalLI->beginIndex())) 1732 ++GlobalSegment; 1733 1734 if (GlobalSegment == GlobalLI->end()) 1735 return; 1736 1737 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1738 if (GlobalSegment != GlobalLI->begin()) { 1739 // Two address defs have no hole. 1740 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1741 GlobalSegment->start)) { 1742 return; 1743 } 1744 // If the prior global segment may be defined by the same two-address 1745 // instruction that also defines LocalLI, then can't make a hole here. 1746 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1747 LocalLI->beginIndex())) { 1748 return; 1749 } 1750 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1751 // it would be a disconnected component in the live range. 1752 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1753 "Disconnected LRG within the scheduling region."); 1754 } 1755 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1756 if (!GlobalDef) 1757 return; 1758 1759 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1760 if (!GlobalSU) 1761 return; 1762 1763 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1764 // constraining the uses of the last local def to precede GlobalDef. 1765 SmallVector<SUnit*,8> LocalUses; 1766 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1767 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1768 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1769 for (const SDep &Succ : LastLocalSU->Succs) { 1770 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1771 continue; 1772 if (Succ.getSUnit() == GlobalSU) 1773 continue; 1774 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1775 return; 1776 LocalUses.push_back(Succ.getSUnit()); 1777 } 1778 // Open the top of the GlobalLI hole by constraining any earlier global uses 1779 // to precede the start of LocalLI. 1780 SmallVector<SUnit*,8> GlobalUses; 1781 MachineInstr *FirstLocalDef = 1782 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1783 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1784 for (const SDep &Pred : GlobalSU->Preds) { 1785 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1786 continue; 1787 if (Pred.getSUnit() == FirstLocalSU) 1788 continue; 1789 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1790 return; 1791 GlobalUses.push_back(Pred.getSUnit()); 1792 } 1793 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1794 // Add the weak edges. 1795 for (SmallVectorImpl<SUnit*>::const_iterator 1796 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1797 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1798 << GlobalSU->NodeNum << ")\n"); 1799 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1800 } 1801 for (SmallVectorImpl<SUnit*>::const_iterator 1802 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1803 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1804 << FirstLocalSU->NodeNum << ")\n"); 1805 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1806 } 1807 } 1808 1809 /// Callback from DAG postProcessing to create weak edges to encourage 1810 /// copy elimination. 1811 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1812 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1813 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1814 1815 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1816 if (FirstPos == DAG->end()) 1817 return; 1818 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1819 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1820 *priorNonDebug(DAG->end(), DAG->begin())); 1821 1822 for (SUnit &SU : DAG->SUnits) { 1823 if (!SU.getInstr()->isCopy()) 1824 continue; 1825 1826 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1827 } 1828 } 1829 1830 //===----------------------------------------------------------------------===// 1831 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1832 // and possibly other custom schedulers. 1833 //===----------------------------------------------------------------------===// 1834 1835 static const unsigned InvalidCycle = ~0U; 1836 1837 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1838 1839 /// Given a Count of resource usage and a Latency value, return true if a 1840 /// SchedBoundary becomes resource limited. 1841 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 1842 unsigned Latency) { 1843 return (int)(Count - (Latency * LFactor)) > (int)LFactor; 1844 } 1845 1846 void SchedBoundary::reset() { 1847 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1848 // Destroying and reconstructing it is very expensive though. So keep 1849 // invalid, placeholder HazardRecs. 1850 if (HazardRec && HazardRec->isEnabled()) { 1851 delete HazardRec; 1852 HazardRec = nullptr; 1853 } 1854 Available.clear(); 1855 Pending.clear(); 1856 CheckPending = false; 1857 CurrCycle = 0; 1858 CurrMOps = 0; 1859 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1860 ExpectedLatency = 0; 1861 DependentLatency = 0; 1862 RetiredMOps = 0; 1863 MaxExecutedResCount = 0; 1864 ZoneCritResIdx = 0; 1865 IsResourceLimited = false; 1866 ReservedCycles.clear(); 1867 #ifndef NDEBUG 1868 // Track the maximum number of stall cycles that could arise either from the 1869 // latency of a DAG edge or the number of cycles that a processor resource is 1870 // reserved (SchedBoundary::ReservedCycles). 1871 MaxObservedStall = 0; 1872 #endif 1873 // Reserve a zero-count for invalid CritResIdx. 1874 ExecutedResCounts.resize(1); 1875 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1876 } 1877 1878 void SchedRemainder:: 1879 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1880 reset(); 1881 if (!SchedModel->hasInstrSchedModel()) 1882 return; 1883 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1884 for (SUnit &SU : DAG->SUnits) { 1885 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1886 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1887 * SchedModel->getMicroOpFactor(); 1888 for (TargetSchedModel::ProcResIter 1889 PI = SchedModel->getWriteProcResBegin(SC), 1890 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1891 unsigned PIdx = PI->ProcResourceIdx; 1892 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1893 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1894 } 1895 } 1896 } 1897 1898 void SchedBoundary:: 1899 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1900 reset(); 1901 DAG = dag; 1902 SchedModel = smodel; 1903 Rem = rem; 1904 if (SchedModel->hasInstrSchedModel()) { 1905 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1906 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1907 } 1908 } 1909 1910 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1911 /// these "soft stalls" differently than the hard stall cycles based on CPU 1912 /// resources and computed by checkHazard(). A fully in-order model 1913 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1914 /// available for scheduling until they are ready. However, a weaker in-order 1915 /// model may use this for heuristics. For example, if a processor has in-order 1916 /// behavior when reading certain resources, this may come into play. 1917 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1918 if (!SU->isUnbuffered) 1919 return 0; 1920 1921 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1922 if (ReadyCycle > CurrCycle) 1923 return ReadyCycle - CurrCycle; 1924 return 0; 1925 } 1926 1927 /// Compute the next cycle at which the given processor resource can be 1928 /// scheduled. 1929 unsigned SchedBoundary:: 1930 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1931 unsigned NextUnreserved = ReservedCycles[PIdx]; 1932 // If this resource has never been used, always return cycle zero. 1933 if (NextUnreserved == InvalidCycle) 1934 return 0; 1935 // For bottom-up scheduling add the cycles needed for the current operation. 1936 if (!isTop()) 1937 NextUnreserved += Cycles; 1938 return NextUnreserved; 1939 } 1940 1941 /// Does this SU have a hazard within the current instruction group. 1942 /// 1943 /// The scheduler supports two modes of hazard recognition. The first is the 1944 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1945 /// supports highly complicated in-order reservation tables 1946 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1947 /// 1948 /// The second is a streamlined mechanism that checks for hazards based on 1949 /// simple counters that the scheduler itself maintains. It explicitly checks 1950 /// for instruction dispatch limitations, including the number of micro-ops that 1951 /// can dispatch per cycle. 1952 /// 1953 /// TODO: Also check whether the SU must start a new group. 1954 bool SchedBoundary::checkHazard(SUnit *SU) { 1955 if (HazardRec->isEnabled() 1956 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1957 return true; 1958 } 1959 1960 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1961 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1962 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1963 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1964 return true; 1965 } 1966 1967 if (CurrMOps > 0 && 1968 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1969 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1970 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1971 << (isTop()? "begin" : "end") << " group\n"); 1972 return true; 1973 } 1974 1975 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1976 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1977 for (const MCWriteProcResEntry &PE : 1978 make_range(SchedModel->getWriteProcResBegin(SC), 1979 SchedModel->getWriteProcResEnd(SC))) { 1980 unsigned ResIdx = PE.ProcResourceIdx; 1981 unsigned Cycles = PE.Cycles; 1982 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1983 if (NRCycle > CurrCycle) { 1984 #ifndef NDEBUG 1985 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1986 #endif 1987 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1988 << SchedModel->getResourceName(ResIdx) 1989 << "=" << NRCycle << "c\n"); 1990 return true; 1991 } 1992 } 1993 } 1994 return false; 1995 } 1996 1997 // Find the unscheduled node in ReadySUs with the highest latency. 1998 unsigned SchedBoundary:: 1999 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2000 SUnit *LateSU = nullptr; 2001 unsigned RemLatency = 0; 2002 for (SUnit *SU : ReadySUs) { 2003 unsigned L = getUnscheduledLatency(SU); 2004 if (L > RemLatency) { 2005 RemLatency = L; 2006 LateSU = SU; 2007 } 2008 } 2009 if (LateSU) { 2010 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2011 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2012 } 2013 return RemLatency; 2014 } 2015 2016 // Count resources in this zone and the remaining unscheduled 2017 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2018 // resource index, or zero if the zone is issue limited. 2019 unsigned SchedBoundary:: 2020 getOtherResourceCount(unsigned &OtherCritIdx) { 2021 OtherCritIdx = 0; 2022 if (!SchedModel->hasInstrSchedModel()) 2023 return 0; 2024 2025 unsigned OtherCritCount = Rem->RemIssueCount 2026 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2027 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2028 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2029 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2030 PIdx != PEnd; ++PIdx) { 2031 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2032 if (OtherCount > OtherCritCount) { 2033 OtherCritCount = OtherCount; 2034 OtherCritIdx = PIdx; 2035 } 2036 } 2037 if (OtherCritIdx) { 2038 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2039 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2040 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2041 } 2042 return OtherCritCount; 2043 } 2044 2045 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2046 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2047 2048 #ifndef NDEBUG 2049 // ReadyCycle was been bumped up to the CurrCycle when this node was 2050 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2051 // scheduling, so may now be greater than ReadyCycle. 2052 if (ReadyCycle > CurrCycle) 2053 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2054 #endif 2055 2056 if (ReadyCycle < MinReadyCycle) 2057 MinReadyCycle = ReadyCycle; 2058 2059 // Check for interlocks first. For the purpose of other heuristics, an 2060 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2061 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2062 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2063 Available.size() >= ReadyListLimit) 2064 Pending.push(SU); 2065 else 2066 Available.push(SU); 2067 } 2068 2069 /// Move the boundary of scheduled code by one cycle. 2070 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2071 if (SchedModel->getMicroOpBufferSize() == 0) { 2072 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2073 "MinReadyCycle uninitialized"); 2074 if (MinReadyCycle > NextCycle) 2075 NextCycle = MinReadyCycle; 2076 } 2077 // Update the current micro-ops, which will issue in the next cycle. 2078 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2079 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2080 2081 // Decrement DependentLatency based on the next cycle. 2082 if ((NextCycle - CurrCycle) > DependentLatency) 2083 DependentLatency = 0; 2084 else 2085 DependentLatency -= (NextCycle - CurrCycle); 2086 2087 if (!HazardRec->isEnabled()) { 2088 // Bypass HazardRec virtual calls. 2089 CurrCycle = NextCycle; 2090 } else { 2091 // Bypass getHazardType calls in case of long latency. 2092 for (; CurrCycle != NextCycle; ++CurrCycle) { 2093 if (isTop()) 2094 HazardRec->AdvanceCycle(); 2095 else 2096 HazardRec->RecedeCycle(); 2097 } 2098 } 2099 CheckPending = true; 2100 IsResourceLimited = 2101 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2102 getScheduledLatency()); 2103 2104 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2105 } 2106 2107 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2108 ExecutedResCounts[PIdx] += Count; 2109 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2110 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2111 } 2112 2113 /// Add the given processor resource to this scheduled zone. 2114 /// 2115 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2116 /// during which this resource is consumed. 2117 /// 2118 /// \return the next cycle at which the instruction may execute without 2119 /// oversubscribing resources. 2120 unsigned SchedBoundary:: 2121 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2122 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2123 unsigned Count = Factor * Cycles; 2124 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2125 << " +" << Cycles << "x" << Factor << "u\n"); 2126 2127 // Update Executed resources counts. 2128 incExecutedResources(PIdx, Count); 2129 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2130 Rem->RemainingCounts[PIdx] -= Count; 2131 2132 // Check if this resource exceeds the current critical resource. If so, it 2133 // becomes the critical resource. 2134 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2135 ZoneCritResIdx = PIdx; 2136 DEBUG(dbgs() << " *** Critical resource " 2137 << SchedModel->getResourceName(PIdx) << ": " 2138 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2139 } 2140 // For reserved resources, record the highest cycle using the resource. 2141 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2142 if (NextAvailable > CurrCycle) { 2143 DEBUG(dbgs() << " Resource conflict: " 2144 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2145 << NextAvailable << "\n"); 2146 } 2147 return NextAvailable; 2148 } 2149 2150 /// Move the boundary of scheduled code by one SUnit. 2151 void SchedBoundary::bumpNode(SUnit *SU) { 2152 // Update the reservation table. 2153 if (HazardRec->isEnabled()) { 2154 if (!isTop() && SU->isCall) { 2155 // Calls are scheduled with their preceding instructions. For bottom-up 2156 // scheduling, clear the pipeline state before emitting. 2157 HazardRec->Reset(); 2158 } 2159 HazardRec->EmitInstruction(SU); 2160 } 2161 // checkHazard should prevent scheduling multiple instructions per cycle that 2162 // exceed the issue width. 2163 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2164 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2165 assert( 2166 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2167 "Cannot schedule this instruction's MicroOps in the current cycle."); 2168 2169 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2170 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2171 2172 unsigned NextCycle = CurrCycle; 2173 switch (SchedModel->getMicroOpBufferSize()) { 2174 case 0: 2175 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2176 break; 2177 case 1: 2178 if (ReadyCycle > NextCycle) { 2179 NextCycle = ReadyCycle; 2180 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2181 } 2182 break; 2183 default: 2184 // We don't currently model the OOO reorder buffer, so consider all 2185 // scheduled MOps to be "retired". We do loosely model in-order resource 2186 // latency. If this instruction uses an in-order resource, account for any 2187 // likely stall cycles. 2188 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2189 NextCycle = ReadyCycle; 2190 break; 2191 } 2192 RetiredMOps += IncMOps; 2193 2194 // Update resource counts and critical resource. 2195 if (SchedModel->hasInstrSchedModel()) { 2196 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2197 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2198 Rem->RemIssueCount -= DecRemIssue; 2199 if (ZoneCritResIdx) { 2200 // Scale scheduled micro-ops for comparing with the critical resource. 2201 unsigned ScaledMOps = 2202 RetiredMOps * SchedModel->getMicroOpFactor(); 2203 2204 // If scaled micro-ops are now more than the previous critical resource by 2205 // a full cycle, then micro-ops issue becomes critical. 2206 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2207 >= (int)SchedModel->getLatencyFactor()) { 2208 ZoneCritResIdx = 0; 2209 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2210 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2211 } 2212 } 2213 for (TargetSchedModel::ProcResIter 2214 PI = SchedModel->getWriteProcResBegin(SC), 2215 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2216 unsigned RCycle = 2217 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2218 if (RCycle > NextCycle) 2219 NextCycle = RCycle; 2220 } 2221 if (SU->hasReservedResource) { 2222 // For reserved resources, record the highest cycle using the resource. 2223 // For top-down scheduling, this is the cycle in which we schedule this 2224 // instruction plus the number of cycles the operations reserves the 2225 // resource. For bottom-up is it simply the instruction's cycle. 2226 for (TargetSchedModel::ProcResIter 2227 PI = SchedModel->getWriteProcResBegin(SC), 2228 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2229 unsigned PIdx = PI->ProcResourceIdx; 2230 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2231 if (isTop()) { 2232 ReservedCycles[PIdx] = 2233 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2234 } 2235 else 2236 ReservedCycles[PIdx] = NextCycle; 2237 } 2238 } 2239 } 2240 } 2241 // Update ExpectedLatency and DependentLatency. 2242 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2243 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2244 if (SU->getDepth() > TopLatency) { 2245 TopLatency = SU->getDepth(); 2246 DEBUG(dbgs() << " " << Available.getName() 2247 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2248 } 2249 if (SU->getHeight() > BotLatency) { 2250 BotLatency = SU->getHeight(); 2251 DEBUG(dbgs() << " " << Available.getName() 2252 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2253 } 2254 // If we stall for any reason, bump the cycle. 2255 if (NextCycle > CurrCycle) 2256 bumpCycle(NextCycle); 2257 else 2258 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2259 // resource limited. If a stall occurred, bumpCycle does this. 2260 IsResourceLimited = 2261 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2262 getScheduledLatency()); 2263 2264 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2265 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2266 // one cycle. Since we commonly reach the max MOps here, opportunistically 2267 // bump the cycle to avoid uselessly checking everything in the readyQ. 2268 CurrMOps += IncMOps; 2269 2270 // Bump the cycle count for issue group constraints. 2271 // This must be done after NextCycle has been adjust for all other stalls. 2272 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2273 // currCycle to X. 2274 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2275 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2276 DEBUG(dbgs() << " Bump cycle to " 2277 << (isTop() ? "end" : "begin") << " group\n"); 2278 bumpCycle(++NextCycle); 2279 } 2280 2281 while (CurrMOps >= SchedModel->getIssueWidth()) { 2282 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2283 << " at cycle " << CurrCycle << '\n'); 2284 bumpCycle(++NextCycle); 2285 } 2286 DEBUG(dumpScheduledState()); 2287 } 2288 2289 /// Release pending ready nodes in to the available queue. This makes them 2290 /// visible to heuristics. 2291 void SchedBoundary::releasePending() { 2292 // If the available queue is empty, it is safe to reset MinReadyCycle. 2293 if (Available.empty()) 2294 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2295 2296 // Check to see if any of the pending instructions are ready to issue. If 2297 // so, add them to the available queue. 2298 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2299 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2300 SUnit *SU = *(Pending.begin()+i); 2301 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2302 2303 if (ReadyCycle < MinReadyCycle) 2304 MinReadyCycle = ReadyCycle; 2305 2306 if (!IsBuffered && ReadyCycle > CurrCycle) 2307 continue; 2308 2309 if (checkHazard(SU)) 2310 continue; 2311 2312 if (Available.size() >= ReadyListLimit) 2313 break; 2314 2315 Available.push(SU); 2316 Pending.remove(Pending.begin()+i); 2317 --i; --e; 2318 } 2319 CheckPending = false; 2320 } 2321 2322 /// Remove SU from the ready set for this boundary. 2323 void SchedBoundary::removeReady(SUnit *SU) { 2324 if (Available.isInQueue(SU)) 2325 Available.remove(Available.find(SU)); 2326 else { 2327 assert(Pending.isInQueue(SU) && "bad ready count"); 2328 Pending.remove(Pending.find(SU)); 2329 } 2330 } 2331 2332 /// If this queue only has one ready candidate, return it. As a side effect, 2333 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2334 /// one node is ready. If multiple instructions are ready, return NULL. 2335 SUnit *SchedBoundary::pickOnlyChoice() { 2336 if (CheckPending) 2337 releasePending(); 2338 2339 if (CurrMOps > 0) { 2340 // Defer any ready instrs that now have a hazard. 2341 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2342 if (checkHazard(*I)) { 2343 Pending.push(*I); 2344 I = Available.remove(I); 2345 continue; 2346 } 2347 ++I; 2348 } 2349 } 2350 for (unsigned i = 0; Available.empty(); ++i) { 2351 // FIXME: Re-enable assert once PR20057 is resolved. 2352 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2353 // "permanent hazard"); 2354 (void)i; 2355 bumpCycle(CurrCycle + 1); 2356 releasePending(); 2357 } 2358 2359 DEBUG(Pending.dump()); 2360 DEBUG(Available.dump()); 2361 2362 if (Available.size() == 1) 2363 return *Available.begin(); 2364 return nullptr; 2365 } 2366 2367 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2368 // This is useful information to dump after bumpNode. 2369 // Note that the Queue contents are more useful before pickNodeFromQueue. 2370 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2371 unsigned ResFactor; 2372 unsigned ResCount; 2373 if (ZoneCritResIdx) { 2374 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2375 ResCount = getResourceCount(ZoneCritResIdx); 2376 } else { 2377 ResFactor = SchedModel->getMicroOpFactor(); 2378 ResCount = RetiredMOps * ResFactor; 2379 } 2380 unsigned LFactor = SchedModel->getLatencyFactor(); 2381 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2382 << " Retired: " << RetiredMOps; 2383 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2384 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2385 << ResCount / ResFactor << " " 2386 << SchedModel->getResourceName(ZoneCritResIdx) 2387 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2388 << (IsResourceLimited ? " - Resource" : " - Latency") 2389 << " limited.\n"; 2390 } 2391 #endif 2392 2393 //===----------------------------------------------------------------------===// 2394 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2395 //===----------------------------------------------------------------------===// 2396 2397 void GenericSchedulerBase::SchedCandidate:: 2398 initResourceDelta(const ScheduleDAGMI *DAG, 2399 const TargetSchedModel *SchedModel) { 2400 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2401 return; 2402 2403 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2404 for (TargetSchedModel::ProcResIter 2405 PI = SchedModel->getWriteProcResBegin(SC), 2406 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2407 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2408 ResDelta.CritResources += PI->Cycles; 2409 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2410 ResDelta.DemandedResources += PI->Cycles; 2411 } 2412 } 2413 2414 /// Set the CandPolicy given a scheduling zone given the current resources and 2415 /// latencies inside and outside the zone. 2416 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2417 SchedBoundary &CurrZone, 2418 SchedBoundary *OtherZone) { 2419 // Apply preemptive heuristics based on the total latency and resources 2420 // inside and outside this zone. Potential stalls should be considered before 2421 // following this policy. 2422 2423 // Compute remaining latency. We need this both to determine whether the 2424 // overall schedule has become latency-limited and whether the instructions 2425 // outside this zone are resource or latency limited. 2426 // 2427 // The "dependent" latency is updated incrementally during scheduling as the 2428 // max height/depth of scheduled nodes minus the cycles since it was 2429 // scheduled: 2430 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2431 // 2432 // The "independent" latency is the max ready queue depth: 2433 // ILat = max N.depth for N in Available|Pending 2434 // 2435 // RemainingLatency is the greater of independent and dependent latency. 2436 unsigned RemLatency = CurrZone.getDependentLatency(); 2437 RemLatency = std::max(RemLatency, 2438 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2439 RemLatency = std::max(RemLatency, 2440 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2441 2442 // Compute the critical resource outside the zone. 2443 unsigned OtherCritIdx = 0; 2444 unsigned OtherCount = 2445 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2446 2447 bool OtherResLimited = false; 2448 if (SchedModel->hasInstrSchedModel()) 2449 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 2450 OtherCount, RemLatency); 2451 2452 // Schedule aggressively for latency in PostRA mode. We don't check for 2453 // acyclic latency during PostRA, and highly out-of-order processors will 2454 // skip PostRA scheduling. 2455 if (!OtherResLimited) { 2456 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2457 Policy.ReduceLatency |= true; 2458 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2459 << " RemainingLatency " << RemLatency << " + " 2460 << CurrZone.getCurrCycle() << "c > CritPath " 2461 << Rem.CriticalPath << "\n"); 2462 } 2463 } 2464 // If the same resource is limiting inside and outside the zone, do nothing. 2465 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2466 return; 2467 2468 DEBUG( 2469 if (CurrZone.isResourceLimited()) { 2470 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2471 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2472 << "\n"; 2473 } 2474 if (OtherResLimited) 2475 dbgs() << " RemainingLimit: " 2476 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2477 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2478 dbgs() << " Latency limited both directions.\n"); 2479 2480 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2481 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2482 2483 if (OtherResLimited) 2484 Policy.DemandResIdx = OtherCritIdx; 2485 } 2486 2487 #ifndef NDEBUG 2488 const char *GenericSchedulerBase::getReasonStr( 2489 GenericSchedulerBase::CandReason Reason) { 2490 switch (Reason) { 2491 case NoCand: return "NOCAND "; 2492 case Only1: return "ONLY1 "; 2493 case PhysRegCopy: return "PREG-COPY "; 2494 case RegExcess: return "REG-EXCESS"; 2495 case RegCritical: return "REG-CRIT "; 2496 case Stall: return "STALL "; 2497 case Cluster: return "CLUSTER "; 2498 case Weak: return "WEAK "; 2499 case RegMax: return "REG-MAX "; 2500 case ResourceReduce: return "RES-REDUCE"; 2501 case ResourceDemand: return "RES-DEMAND"; 2502 case TopDepthReduce: return "TOP-DEPTH "; 2503 case TopPathReduce: return "TOP-PATH "; 2504 case BotHeightReduce:return "BOT-HEIGHT"; 2505 case BotPathReduce: return "BOT-PATH "; 2506 case NextDefUse: return "DEF-USE "; 2507 case NodeOrder: return "ORDER "; 2508 }; 2509 llvm_unreachable("Unknown reason!"); 2510 } 2511 2512 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2513 PressureChange P; 2514 unsigned ResIdx = 0; 2515 unsigned Latency = 0; 2516 switch (Cand.Reason) { 2517 default: 2518 break; 2519 case RegExcess: 2520 P = Cand.RPDelta.Excess; 2521 break; 2522 case RegCritical: 2523 P = Cand.RPDelta.CriticalMax; 2524 break; 2525 case RegMax: 2526 P = Cand.RPDelta.CurrentMax; 2527 break; 2528 case ResourceReduce: 2529 ResIdx = Cand.Policy.ReduceResIdx; 2530 break; 2531 case ResourceDemand: 2532 ResIdx = Cand.Policy.DemandResIdx; 2533 break; 2534 case TopDepthReduce: 2535 Latency = Cand.SU->getDepth(); 2536 break; 2537 case TopPathReduce: 2538 Latency = Cand.SU->getHeight(); 2539 break; 2540 case BotHeightReduce: 2541 Latency = Cand.SU->getHeight(); 2542 break; 2543 case BotPathReduce: 2544 Latency = Cand.SU->getDepth(); 2545 break; 2546 } 2547 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2548 if (P.isValid()) 2549 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2550 << ":" << P.getUnitInc() << " "; 2551 else 2552 dbgs() << " "; 2553 if (ResIdx) 2554 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2555 else 2556 dbgs() << " "; 2557 if (Latency) 2558 dbgs() << " " << Latency << " cycles "; 2559 else 2560 dbgs() << " "; 2561 dbgs() << '\n'; 2562 } 2563 #endif 2564 2565 namespace llvm { 2566 /// Return true if this heuristic determines order. 2567 bool tryLess(int TryVal, int CandVal, 2568 GenericSchedulerBase::SchedCandidate &TryCand, 2569 GenericSchedulerBase::SchedCandidate &Cand, 2570 GenericSchedulerBase::CandReason Reason) { 2571 if (TryVal < CandVal) { 2572 TryCand.Reason = Reason; 2573 return true; 2574 } 2575 if (TryVal > CandVal) { 2576 if (Cand.Reason > Reason) 2577 Cand.Reason = Reason; 2578 return true; 2579 } 2580 return false; 2581 } 2582 2583 bool tryGreater(int TryVal, int CandVal, 2584 GenericSchedulerBase::SchedCandidate &TryCand, 2585 GenericSchedulerBase::SchedCandidate &Cand, 2586 GenericSchedulerBase::CandReason Reason) { 2587 if (TryVal > CandVal) { 2588 TryCand.Reason = Reason; 2589 return true; 2590 } 2591 if (TryVal < CandVal) { 2592 if (Cand.Reason > Reason) 2593 Cand.Reason = Reason; 2594 return true; 2595 } 2596 return false; 2597 } 2598 2599 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2600 GenericSchedulerBase::SchedCandidate &Cand, 2601 SchedBoundary &Zone) { 2602 if (Zone.isTop()) { 2603 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2604 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2605 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2606 return true; 2607 } 2608 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2609 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2610 return true; 2611 } else { 2612 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2613 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2614 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2615 return true; 2616 } 2617 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2618 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2619 return true; 2620 } 2621 return false; 2622 } 2623 } // end namespace llvm 2624 2625 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2626 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2627 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2628 } 2629 2630 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2631 tracePick(Cand.Reason, Cand.AtTop); 2632 } 2633 2634 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2635 assert(dag->hasVRegLiveness() && 2636 "(PreRA)GenericScheduler needs vreg liveness"); 2637 DAG = static_cast<ScheduleDAGMILive*>(dag); 2638 SchedModel = DAG->getSchedModel(); 2639 TRI = DAG->TRI; 2640 2641 Rem.init(DAG, SchedModel); 2642 Top.init(DAG, SchedModel, &Rem); 2643 Bot.init(DAG, SchedModel, &Rem); 2644 2645 // Initialize resource counts. 2646 2647 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2648 // are disabled, then these HazardRecs will be disabled. 2649 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2650 if (!Top.HazardRec) { 2651 Top.HazardRec = 2652 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2653 Itin, DAG); 2654 } 2655 if (!Bot.HazardRec) { 2656 Bot.HazardRec = 2657 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2658 Itin, DAG); 2659 } 2660 TopCand.SU = nullptr; 2661 BotCand.SU = nullptr; 2662 } 2663 2664 /// Initialize the per-region scheduling policy. 2665 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2666 MachineBasicBlock::iterator End, 2667 unsigned NumRegionInstrs) { 2668 const MachineFunction &MF = *Begin->getMF(); 2669 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2670 2671 // Avoid setting up the register pressure tracker for small regions to save 2672 // compile time. As a rough heuristic, only track pressure when the number of 2673 // schedulable instructions exceeds half the integer register file. 2674 RegionPolicy.ShouldTrackPressure = true; 2675 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2676 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2677 if (TLI->isTypeLegal(LegalIntVT)) { 2678 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2679 TLI->getRegClassFor(LegalIntVT)); 2680 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2681 } 2682 } 2683 2684 // For generic targets, we default to bottom-up, because it's simpler and more 2685 // compile-time optimizations have been implemented in that direction. 2686 RegionPolicy.OnlyBottomUp = true; 2687 2688 // Allow the subtarget to override default policy. 2689 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2690 2691 // After subtarget overrides, apply command line options. 2692 if (!EnableRegPressure) 2693 RegionPolicy.ShouldTrackPressure = false; 2694 2695 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2696 // e.g. -misched-bottomup=false allows scheduling in both directions. 2697 assert((!ForceTopDown || !ForceBottomUp) && 2698 "-misched-topdown incompatible with -misched-bottomup"); 2699 if (ForceBottomUp.getNumOccurrences() > 0) { 2700 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2701 if (RegionPolicy.OnlyBottomUp) 2702 RegionPolicy.OnlyTopDown = false; 2703 } 2704 if (ForceTopDown.getNumOccurrences() > 0) { 2705 RegionPolicy.OnlyTopDown = ForceTopDown; 2706 if (RegionPolicy.OnlyTopDown) 2707 RegionPolicy.OnlyBottomUp = false; 2708 } 2709 } 2710 2711 void GenericScheduler::dumpPolicy() const { 2712 // Cannot completely remove virtual function even in release mode. 2713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2714 dbgs() << "GenericScheduler RegionPolicy: " 2715 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2716 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2717 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2718 << "\n"; 2719 #endif 2720 } 2721 2722 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2723 /// critical path by more cycles than it takes to drain the instruction buffer. 2724 /// We estimate an upper bounds on in-flight instructions as: 2725 /// 2726 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2727 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2728 /// InFlightResources = InFlightIterations * LoopResources 2729 /// 2730 /// TODO: Check execution resources in addition to IssueCount. 2731 void GenericScheduler::checkAcyclicLatency() { 2732 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2733 return; 2734 2735 // Scaled number of cycles per loop iteration. 2736 unsigned IterCount = 2737 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2738 Rem.RemIssueCount); 2739 // Scaled acyclic critical path. 2740 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2741 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2742 unsigned InFlightCount = 2743 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2744 unsigned BufferLimit = 2745 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2746 2747 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2748 2749 DEBUG(dbgs() << "IssueCycles=" 2750 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2751 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2752 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2753 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2754 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2755 if (Rem.IsAcyclicLatencyLimited) 2756 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2757 } 2758 2759 void GenericScheduler::registerRoots() { 2760 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2761 2762 // Some roots may not feed into ExitSU. Check all of them in case. 2763 for (const SUnit *SU : Bot.Available) { 2764 if (SU->getDepth() > Rem.CriticalPath) 2765 Rem.CriticalPath = SU->getDepth(); 2766 } 2767 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2768 if (DumpCriticalPathLength) { 2769 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2770 } 2771 2772 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2773 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2774 checkAcyclicLatency(); 2775 } 2776 } 2777 2778 namespace llvm { 2779 bool tryPressure(const PressureChange &TryP, 2780 const PressureChange &CandP, 2781 GenericSchedulerBase::SchedCandidate &TryCand, 2782 GenericSchedulerBase::SchedCandidate &Cand, 2783 GenericSchedulerBase::CandReason Reason, 2784 const TargetRegisterInfo *TRI, 2785 const MachineFunction &MF) { 2786 // If one candidate decreases and the other increases, go with it. 2787 // Invalid candidates have UnitInc==0. 2788 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2789 Reason)) { 2790 return true; 2791 } 2792 // Do not compare the magnitude of pressure changes between top and bottom 2793 // boundary. 2794 if (Cand.AtTop != TryCand.AtTop) 2795 return false; 2796 2797 // If both candidates affect the same set in the same boundary, go with the 2798 // smallest increase. 2799 unsigned TryPSet = TryP.getPSetOrMax(); 2800 unsigned CandPSet = CandP.getPSetOrMax(); 2801 if (TryPSet == CandPSet) { 2802 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2803 Reason); 2804 } 2805 2806 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2807 std::numeric_limits<int>::max(); 2808 2809 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2810 std::numeric_limits<int>::max(); 2811 2812 // If the candidates are decreasing pressure, reverse priority. 2813 if (TryP.getUnitInc() < 0) 2814 std::swap(TryRank, CandRank); 2815 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2816 } 2817 2818 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2819 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2820 } 2821 2822 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2823 /// their physreg def/use. 2824 /// 2825 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2826 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2827 /// with the operation that produces or consumes the physreg. We'll do this when 2828 /// regalloc has support for parallel copies. 2829 int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2830 const MachineInstr *MI = SU->getInstr(); 2831 if (!MI->isCopy()) 2832 return 0; 2833 2834 unsigned ScheduledOper = isTop ? 1 : 0; 2835 unsigned UnscheduledOper = isTop ? 0 : 1; 2836 // If we have already scheduled the physreg produce/consumer, immediately 2837 // schedule the copy. 2838 if (TargetRegisterInfo::isPhysicalRegister( 2839 MI->getOperand(ScheduledOper).getReg())) 2840 return 1; 2841 // If the physreg is at the boundary, defer it. Otherwise schedule it 2842 // immediately to free the dependent. We can hoist the copy later. 2843 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2844 if (TargetRegisterInfo::isPhysicalRegister( 2845 MI->getOperand(UnscheduledOper).getReg())) 2846 return AtBoundary ? -1 : 1; 2847 return 0; 2848 } 2849 } // end namespace llvm 2850 2851 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2852 bool AtTop, 2853 const RegPressureTracker &RPTracker, 2854 RegPressureTracker &TempTracker) { 2855 Cand.SU = SU; 2856 Cand.AtTop = AtTop; 2857 if (DAG->isTrackingPressure()) { 2858 if (AtTop) { 2859 TempTracker.getMaxDownwardPressureDelta( 2860 Cand.SU->getInstr(), 2861 Cand.RPDelta, 2862 DAG->getRegionCriticalPSets(), 2863 DAG->getRegPressure().MaxSetPressure); 2864 } else { 2865 if (VerifyScheduling) { 2866 TempTracker.getMaxUpwardPressureDelta( 2867 Cand.SU->getInstr(), 2868 &DAG->getPressureDiff(Cand.SU), 2869 Cand.RPDelta, 2870 DAG->getRegionCriticalPSets(), 2871 DAG->getRegPressure().MaxSetPressure); 2872 } else { 2873 RPTracker.getUpwardPressureDelta( 2874 Cand.SU->getInstr(), 2875 DAG->getPressureDiff(Cand.SU), 2876 Cand.RPDelta, 2877 DAG->getRegionCriticalPSets(), 2878 DAG->getRegPressure().MaxSetPressure); 2879 } 2880 } 2881 } 2882 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2883 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2884 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2885 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2886 } 2887 2888 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2889 /// hierarchical. This may be more efficient than a graduated cost model because 2890 /// we don't need to evaluate all aspects of the model for each node in the 2891 /// queue. But it's really done to make the heuristics easier to debug and 2892 /// statistically analyze. 2893 /// 2894 /// \param Cand provides the policy and current best candidate. 2895 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2896 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2897 // if Cand is from a different zone than TryCand. 2898 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2899 SchedCandidate &TryCand, 2900 SchedBoundary *Zone) const { 2901 // Initialize the candidate if needed. 2902 if (!Cand.isValid()) { 2903 TryCand.Reason = NodeOrder; 2904 return; 2905 } 2906 2907 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2908 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2909 TryCand, Cand, PhysRegCopy)) 2910 return; 2911 2912 // Avoid exceeding the target's limit. 2913 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2914 Cand.RPDelta.Excess, 2915 TryCand, Cand, RegExcess, TRI, 2916 DAG->MF)) 2917 return; 2918 2919 // Avoid increasing the max critical pressure in the scheduled region. 2920 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2921 Cand.RPDelta.CriticalMax, 2922 TryCand, Cand, RegCritical, TRI, 2923 DAG->MF)) 2924 return; 2925 2926 // We only compare a subset of features when comparing nodes between 2927 // Top and Bottom boundary. Some properties are simply incomparable, in many 2928 // other instances we should only override the other boundary if something 2929 // is a clear good pick on one boundary. Skip heuristics that are more 2930 // "tie-breaking" in nature. 2931 bool SameBoundary = Zone != nullptr; 2932 if (SameBoundary) { 2933 // For loops that are acyclic path limited, aggressively schedule for 2934 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2935 // heuristics to take precedence. 2936 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2937 tryLatency(TryCand, Cand, *Zone)) 2938 return; 2939 2940 // Prioritize instructions that read unbuffered resources by stall cycles. 2941 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2942 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2943 return; 2944 } 2945 2946 // Keep clustered nodes together to encourage downstream peephole 2947 // optimizations which may reduce resource requirements. 2948 // 2949 // This is a best effort to set things up for a post-RA pass. Optimizations 2950 // like generating loads of multiple registers should ideally be done within 2951 // the scheduler pass by combining the loads during DAG postprocessing. 2952 const SUnit *CandNextClusterSU = 2953 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2954 const SUnit *TryCandNextClusterSU = 2955 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2956 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2957 Cand.SU == CandNextClusterSU, 2958 TryCand, Cand, Cluster)) 2959 return; 2960 2961 if (SameBoundary) { 2962 // Weak edges are for clustering and other constraints. 2963 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2964 getWeakLeft(Cand.SU, Cand.AtTop), 2965 TryCand, Cand, Weak)) 2966 return; 2967 } 2968 2969 // Avoid increasing the max pressure of the entire region. 2970 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2971 Cand.RPDelta.CurrentMax, 2972 TryCand, Cand, RegMax, TRI, 2973 DAG->MF)) 2974 return; 2975 2976 if (SameBoundary) { 2977 // Avoid critical resource consumption and balance the schedule. 2978 TryCand.initResourceDelta(DAG, SchedModel); 2979 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2980 TryCand, Cand, ResourceReduce)) 2981 return; 2982 if (tryGreater(TryCand.ResDelta.DemandedResources, 2983 Cand.ResDelta.DemandedResources, 2984 TryCand, Cand, ResourceDemand)) 2985 return; 2986 2987 // Avoid serializing long latency dependence chains. 2988 // For acyclic path limited loops, latency was already checked above. 2989 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2990 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2991 return; 2992 2993 // Fall through to original instruction order. 2994 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2995 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2996 TryCand.Reason = NodeOrder; 2997 } 2998 } 2999 } 3000 3001 /// Pick the best candidate from the queue. 3002 /// 3003 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3004 /// DAG building. To adjust for the current scheduling location we need to 3005 /// maintain the number of vreg uses remaining to be top-scheduled. 3006 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3007 const CandPolicy &ZonePolicy, 3008 const RegPressureTracker &RPTracker, 3009 SchedCandidate &Cand) { 3010 // getMaxPressureDelta temporarily modifies the tracker. 3011 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3012 3013 ReadyQueue &Q = Zone.Available; 3014 for (SUnit *SU : Q) { 3015 3016 SchedCandidate TryCand(ZonePolicy); 3017 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3018 // Pass SchedBoundary only when comparing nodes from the same boundary. 3019 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3020 tryCandidate(Cand, TryCand, ZoneArg); 3021 if (TryCand.Reason != NoCand) { 3022 // Initialize resource delta if needed in case future heuristics query it. 3023 if (TryCand.ResDelta == SchedResourceDelta()) 3024 TryCand.initResourceDelta(DAG, SchedModel); 3025 Cand.setBest(TryCand); 3026 DEBUG(traceCandidate(Cand)); 3027 } 3028 } 3029 } 3030 3031 /// Pick the best candidate node from either the top or bottom queue. 3032 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3033 // Schedule as far as possible in the direction of no choice. This is most 3034 // efficient, but also provides the best heuristics for CriticalPSets. 3035 if (SUnit *SU = Bot.pickOnlyChoice()) { 3036 IsTopNode = false; 3037 tracePick(Only1, false); 3038 return SU; 3039 } 3040 if (SUnit *SU = Top.pickOnlyChoice()) { 3041 IsTopNode = true; 3042 tracePick(Only1, true); 3043 return SU; 3044 } 3045 // Set the bottom-up policy based on the state of the current bottom zone and 3046 // the instructions outside the zone, including the top zone. 3047 CandPolicy BotPolicy; 3048 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3049 // Set the top-down policy based on the state of the current top zone and 3050 // the instructions outside the zone, including the bottom zone. 3051 CandPolicy TopPolicy; 3052 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3053 3054 // See if BotCand is still valid (because we previously scheduled from Top). 3055 DEBUG(dbgs() << "Picking from Bot:\n"); 3056 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3057 BotCand.Policy != BotPolicy) { 3058 BotCand.reset(CandPolicy()); 3059 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3060 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3061 } else { 3062 DEBUG(traceCandidate(BotCand)); 3063 #ifndef NDEBUG 3064 if (VerifyScheduling) { 3065 SchedCandidate TCand; 3066 TCand.reset(CandPolicy()); 3067 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3068 assert(TCand.SU == BotCand.SU && 3069 "Last pick result should correspond to re-picking right now"); 3070 } 3071 #endif 3072 } 3073 3074 // Check if the top Q has a better candidate. 3075 DEBUG(dbgs() << "Picking from Top:\n"); 3076 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3077 TopCand.Policy != TopPolicy) { 3078 TopCand.reset(CandPolicy()); 3079 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3080 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3081 } else { 3082 DEBUG(traceCandidate(TopCand)); 3083 #ifndef NDEBUG 3084 if (VerifyScheduling) { 3085 SchedCandidate TCand; 3086 TCand.reset(CandPolicy()); 3087 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3088 assert(TCand.SU == TopCand.SU && 3089 "Last pick result should correspond to re-picking right now"); 3090 } 3091 #endif 3092 } 3093 3094 // Pick best from BotCand and TopCand. 3095 assert(BotCand.isValid()); 3096 assert(TopCand.isValid()); 3097 SchedCandidate Cand = BotCand; 3098 TopCand.Reason = NoCand; 3099 tryCandidate(Cand, TopCand, nullptr); 3100 if (TopCand.Reason != NoCand) { 3101 Cand.setBest(TopCand); 3102 DEBUG(traceCandidate(Cand)); 3103 } 3104 3105 IsTopNode = Cand.AtTop; 3106 tracePick(Cand); 3107 return Cand.SU; 3108 } 3109 3110 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3111 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3112 if (DAG->top() == DAG->bottom()) { 3113 assert(Top.Available.empty() && Top.Pending.empty() && 3114 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3115 return nullptr; 3116 } 3117 SUnit *SU; 3118 do { 3119 if (RegionPolicy.OnlyTopDown) { 3120 SU = Top.pickOnlyChoice(); 3121 if (!SU) { 3122 CandPolicy NoPolicy; 3123 TopCand.reset(NoPolicy); 3124 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3125 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3126 tracePick(TopCand); 3127 SU = TopCand.SU; 3128 } 3129 IsTopNode = true; 3130 } else if (RegionPolicy.OnlyBottomUp) { 3131 SU = Bot.pickOnlyChoice(); 3132 if (!SU) { 3133 CandPolicy NoPolicy; 3134 BotCand.reset(NoPolicy); 3135 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3136 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3137 tracePick(BotCand); 3138 SU = BotCand.SU; 3139 } 3140 IsTopNode = false; 3141 } else { 3142 SU = pickNodeBidirectional(IsTopNode); 3143 } 3144 } while (SU->isScheduled); 3145 3146 if (SU->isTopReady()) 3147 Top.removeReady(SU); 3148 if (SU->isBottomReady()) 3149 Bot.removeReady(SU); 3150 3151 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3152 return SU; 3153 } 3154 3155 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3156 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3157 if (!isTop) 3158 ++InsertPos; 3159 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3160 3161 // Find already scheduled copies with a single physreg dependence and move 3162 // them just above the scheduled instruction. 3163 for (SDep &Dep : Deps) { 3164 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3165 continue; 3166 SUnit *DepSU = Dep.getSUnit(); 3167 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3168 continue; 3169 MachineInstr *Copy = DepSU->getInstr(); 3170 if (!Copy->isCopy()) 3171 continue; 3172 DEBUG(dbgs() << " Rescheduling physreg copy "; 3173 Dep.getSUnit()->dump(DAG)); 3174 DAG->moveInstruction(Copy, InsertPos); 3175 } 3176 } 3177 3178 /// Update the scheduler's state after scheduling a node. This is the same node 3179 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3180 /// update it's state based on the current cycle before MachineSchedStrategy 3181 /// does. 3182 /// 3183 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3184 /// them here. See comments in biasPhysRegCopy. 3185 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3186 if (IsTopNode) { 3187 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3188 Top.bumpNode(SU); 3189 if (SU->hasPhysRegUses) 3190 reschedulePhysRegCopies(SU, true); 3191 } else { 3192 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3193 Bot.bumpNode(SU); 3194 if (SU->hasPhysRegDefs) 3195 reschedulePhysRegCopies(SU, false); 3196 } 3197 } 3198 3199 /// Create the standard converging machine scheduler. This will be used as the 3200 /// default scheduler if the target does not set a default. 3201 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3202 ScheduleDAGMILive *DAG = 3203 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3204 // Register DAG post-processors. 3205 // 3206 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3207 // data and pass it to later mutations. Have a single mutation that gathers 3208 // the interesting nodes in one pass. 3209 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3210 return DAG; 3211 } 3212 3213 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3214 return createGenericSchedLive(C); 3215 } 3216 3217 static MachineSchedRegistry 3218 GenericSchedRegistry("converge", "Standard converging scheduler.", 3219 createConveringSched); 3220 3221 //===----------------------------------------------------------------------===// 3222 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3223 //===----------------------------------------------------------------------===// 3224 3225 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3226 DAG = Dag; 3227 SchedModel = DAG->getSchedModel(); 3228 TRI = DAG->TRI; 3229 3230 Rem.init(DAG, SchedModel); 3231 Top.init(DAG, SchedModel, &Rem); 3232 BotRoots.clear(); 3233 3234 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3235 // or are disabled, then these HazardRecs will be disabled. 3236 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3237 if (!Top.HazardRec) { 3238 Top.HazardRec = 3239 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3240 Itin, DAG); 3241 } 3242 } 3243 3244 void PostGenericScheduler::registerRoots() { 3245 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3246 3247 // Some roots may not feed into ExitSU. Check all of them in case. 3248 for (const SUnit *SU : BotRoots) { 3249 if (SU->getDepth() > Rem.CriticalPath) 3250 Rem.CriticalPath = SU->getDepth(); 3251 } 3252 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3253 if (DumpCriticalPathLength) { 3254 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3255 } 3256 } 3257 3258 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3259 /// 3260 /// \param Cand provides the policy and current best candidate. 3261 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3262 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3263 SchedCandidate &TryCand) { 3264 // Initialize the candidate if needed. 3265 if (!Cand.isValid()) { 3266 TryCand.Reason = NodeOrder; 3267 return; 3268 } 3269 3270 // Prioritize instructions that read unbuffered resources by stall cycles. 3271 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3272 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3273 return; 3274 3275 // Keep clustered nodes together. 3276 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3277 Cand.SU == DAG->getNextClusterSucc(), 3278 TryCand, Cand, Cluster)) 3279 return; 3280 3281 // Avoid critical resource consumption and balance the schedule. 3282 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3283 TryCand, Cand, ResourceReduce)) 3284 return; 3285 if (tryGreater(TryCand.ResDelta.DemandedResources, 3286 Cand.ResDelta.DemandedResources, 3287 TryCand, Cand, ResourceDemand)) 3288 return; 3289 3290 // Avoid serializing long latency dependence chains. 3291 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3292 return; 3293 } 3294 3295 // Fall through to original instruction order. 3296 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3297 TryCand.Reason = NodeOrder; 3298 } 3299 3300 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3301 ReadyQueue &Q = Top.Available; 3302 for (SUnit *SU : Q) { 3303 SchedCandidate TryCand(Cand.Policy); 3304 TryCand.SU = SU; 3305 TryCand.AtTop = true; 3306 TryCand.initResourceDelta(DAG, SchedModel); 3307 tryCandidate(Cand, TryCand); 3308 if (TryCand.Reason != NoCand) { 3309 Cand.setBest(TryCand); 3310 DEBUG(traceCandidate(Cand)); 3311 } 3312 } 3313 } 3314 3315 /// Pick the next node to schedule. 3316 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3317 if (DAG->top() == DAG->bottom()) { 3318 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3319 return nullptr; 3320 } 3321 SUnit *SU; 3322 do { 3323 SU = Top.pickOnlyChoice(); 3324 if (SU) { 3325 tracePick(Only1, true); 3326 } else { 3327 CandPolicy NoPolicy; 3328 SchedCandidate TopCand(NoPolicy); 3329 // Set the top-down policy based on the state of the current top zone and 3330 // the instructions outside the zone, including the bottom zone. 3331 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3332 pickNodeFromQueue(TopCand); 3333 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3334 tracePick(TopCand); 3335 SU = TopCand.SU; 3336 } 3337 } while (SU->isScheduled); 3338 3339 IsTopNode = true; 3340 Top.removeReady(SU); 3341 3342 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3343 return SU; 3344 } 3345 3346 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3347 /// scheduled/remaining flags in the DAG nodes. 3348 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3349 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3350 Top.bumpNode(SU); 3351 } 3352 3353 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3354 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3355 /*RemoveKillFlags=*/true); 3356 } 3357 3358 //===----------------------------------------------------------------------===// 3359 // ILP Scheduler. Currently for experimental analysis of heuristics. 3360 //===----------------------------------------------------------------------===// 3361 3362 namespace { 3363 3364 /// Order nodes by the ILP metric. 3365 struct ILPOrder { 3366 const SchedDFSResult *DFSResult = nullptr; 3367 const BitVector *ScheduledTrees = nullptr; 3368 bool MaximizeILP; 3369 3370 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3371 3372 /// Apply a less-than relation on node priority. 3373 /// 3374 /// (Return true if A comes after B in the Q.) 3375 bool operator()(const SUnit *A, const SUnit *B) const { 3376 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3377 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3378 if (SchedTreeA != SchedTreeB) { 3379 // Unscheduled trees have lower priority. 3380 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3381 return ScheduledTrees->test(SchedTreeB); 3382 3383 // Trees with shallower connections have have lower priority. 3384 if (DFSResult->getSubtreeLevel(SchedTreeA) 3385 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3386 return DFSResult->getSubtreeLevel(SchedTreeA) 3387 < DFSResult->getSubtreeLevel(SchedTreeB); 3388 } 3389 } 3390 if (MaximizeILP) 3391 return DFSResult->getILP(A) < DFSResult->getILP(B); 3392 else 3393 return DFSResult->getILP(A) > DFSResult->getILP(B); 3394 } 3395 }; 3396 3397 /// Schedule based on the ILP metric. 3398 class ILPScheduler : public MachineSchedStrategy { 3399 ScheduleDAGMILive *DAG = nullptr; 3400 ILPOrder Cmp; 3401 3402 std::vector<SUnit*> ReadyQ; 3403 3404 public: 3405 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3406 3407 void initialize(ScheduleDAGMI *dag) override { 3408 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3409 DAG = static_cast<ScheduleDAGMILive*>(dag); 3410 DAG->computeDFSResult(); 3411 Cmp.DFSResult = DAG->getDFSResult(); 3412 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3413 ReadyQ.clear(); 3414 } 3415 3416 void registerRoots() override { 3417 // Restore the heap in ReadyQ with the updated DFS results. 3418 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3419 } 3420 3421 /// Implement MachineSchedStrategy interface. 3422 /// ----------------------------------------- 3423 3424 /// Callback to select the highest priority node from the ready Q. 3425 SUnit *pickNode(bool &IsTopNode) override { 3426 if (ReadyQ.empty()) return nullptr; 3427 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3428 SUnit *SU = ReadyQ.back(); 3429 ReadyQ.pop_back(); 3430 IsTopNode = false; 3431 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3432 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3433 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3434 << DAG->getDFSResult()->getSubtreeLevel( 3435 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3436 << "Scheduling " << *SU->getInstr()); 3437 return SU; 3438 } 3439 3440 /// Scheduler callback to notify that a new subtree is scheduled. 3441 void scheduleTree(unsigned SubtreeID) override { 3442 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3443 } 3444 3445 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3446 /// DFSResults, and resort the priority Q. 3447 void schedNode(SUnit *SU, bool IsTopNode) override { 3448 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3449 } 3450 3451 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3452 3453 void releaseBottomNode(SUnit *SU) override { 3454 ReadyQ.push_back(SU); 3455 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3456 } 3457 }; 3458 3459 } // end anonymous namespace 3460 3461 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3462 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3463 } 3464 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3465 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3466 } 3467 3468 static MachineSchedRegistry ILPMaxRegistry( 3469 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3470 static MachineSchedRegistry ILPMinRegistry( 3471 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3472 3473 //===----------------------------------------------------------------------===// 3474 // Machine Instruction Shuffler for Correctness Testing 3475 //===----------------------------------------------------------------------===// 3476 3477 #ifndef NDEBUG 3478 namespace { 3479 3480 /// Apply a less-than relation on the node order, which corresponds to the 3481 /// instruction order prior to scheduling. IsReverse implements greater-than. 3482 template<bool IsReverse> 3483 struct SUnitOrder { 3484 bool operator()(SUnit *A, SUnit *B) const { 3485 if (IsReverse) 3486 return A->NodeNum > B->NodeNum; 3487 else 3488 return A->NodeNum < B->NodeNum; 3489 } 3490 }; 3491 3492 /// Reorder instructions as much as possible. 3493 class InstructionShuffler : public MachineSchedStrategy { 3494 bool IsAlternating; 3495 bool IsTopDown; 3496 3497 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3498 // gives nodes with a higher number higher priority causing the latest 3499 // instructions to be scheduled first. 3500 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3501 TopQ; 3502 3503 // When scheduling bottom-up, use greater-than as the queue priority. 3504 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3505 BottomQ; 3506 3507 public: 3508 InstructionShuffler(bool alternate, bool topdown) 3509 : IsAlternating(alternate), IsTopDown(topdown) {} 3510 3511 void initialize(ScheduleDAGMI*) override { 3512 TopQ.clear(); 3513 BottomQ.clear(); 3514 } 3515 3516 /// Implement MachineSchedStrategy interface. 3517 /// ----------------------------------------- 3518 3519 SUnit *pickNode(bool &IsTopNode) override { 3520 SUnit *SU; 3521 if (IsTopDown) { 3522 do { 3523 if (TopQ.empty()) return nullptr; 3524 SU = TopQ.top(); 3525 TopQ.pop(); 3526 } while (SU->isScheduled); 3527 IsTopNode = true; 3528 } else { 3529 do { 3530 if (BottomQ.empty()) return nullptr; 3531 SU = BottomQ.top(); 3532 BottomQ.pop(); 3533 } while (SU->isScheduled); 3534 IsTopNode = false; 3535 } 3536 if (IsAlternating) 3537 IsTopDown = !IsTopDown; 3538 return SU; 3539 } 3540 3541 void schedNode(SUnit *SU, bool IsTopNode) override {} 3542 3543 void releaseTopNode(SUnit *SU) override { 3544 TopQ.push(SU); 3545 } 3546 void releaseBottomNode(SUnit *SU) override { 3547 BottomQ.push(SU); 3548 } 3549 }; 3550 3551 } // end anonymous namespace 3552 3553 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3554 bool Alternate = !ForceTopDown && !ForceBottomUp; 3555 bool TopDown = !ForceBottomUp; 3556 assert((TopDown || !ForceTopDown) && 3557 "-misched-topdown incompatible with -misched-bottomup"); 3558 return new ScheduleDAGMILive( 3559 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3560 } 3561 3562 static MachineSchedRegistry ShufflerRegistry( 3563 "shuffle", "Shuffle machine instructions alternating directions", 3564 createInstructionShuffler); 3565 #endif // !NDEBUG 3566 3567 //===----------------------------------------------------------------------===// 3568 // GraphWriter support for ScheduleDAGMILive. 3569 //===----------------------------------------------------------------------===// 3570 3571 #ifndef NDEBUG 3572 namespace llvm { 3573 3574 template<> struct GraphTraits< 3575 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3576 3577 template<> 3578 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3579 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3580 3581 static std::string getGraphName(const ScheduleDAG *G) { 3582 return G->MF.getName(); 3583 } 3584 3585 static bool renderGraphFromBottomUp() { 3586 return true; 3587 } 3588 3589 static bool isNodeHidden(const SUnit *Node) { 3590 if (ViewMISchedCutoff == 0) 3591 return false; 3592 return (Node->Preds.size() > ViewMISchedCutoff 3593 || Node->Succs.size() > ViewMISchedCutoff); 3594 } 3595 3596 /// If you want to override the dot attributes printed for a particular 3597 /// edge, override this method. 3598 static std::string getEdgeAttributes(const SUnit *Node, 3599 SUnitIterator EI, 3600 const ScheduleDAG *Graph) { 3601 if (EI.isArtificialDep()) 3602 return "color=cyan,style=dashed"; 3603 if (EI.isCtrlDep()) 3604 return "color=blue,style=dashed"; 3605 return ""; 3606 } 3607 3608 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3609 std::string Str; 3610 raw_string_ostream SS(Str); 3611 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3612 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3613 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3614 SS << "SU:" << SU->NodeNum; 3615 if (DFS) 3616 SS << " I:" << DFS->getNumInstrs(SU); 3617 return SS.str(); 3618 } 3619 3620 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3621 return G->getGraphNodeLabel(SU); 3622 } 3623 3624 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3625 std::string Str("shape=Mrecord"); 3626 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3627 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3628 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3629 if (DFS) { 3630 Str += ",style=filled,fillcolor=\"#"; 3631 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3632 Str += '"'; 3633 } 3634 return Str; 3635 } 3636 }; 3637 3638 } // end namespace llvm 3639 #endif // NDEBUG 3640 3641 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3642 /// rendered using 'dot'. 3643 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3644 #ifndef NDEBUG 3645 ViewGraph(this, Name, false, Title); 3646 #else 3647 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3648 << "systems with Graphviz or gv!\n"; 3649 #endif // NDEBUG 3650 } 3651 3652 /// Out-of-line implementation with no arguments is handy for gdb. 3653 void ScheduleDAGMI::viewGraph() { 3654 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3655 } 3656