xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 7511abd5c1c6a8adcd7609cca53446613310a6d9)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include <queue>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "misched"
37 
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                            cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                             cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45                        cl::desc("Print critical path length to stdout"));
46 }
47 
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50   cl::desc("Pop up a window to show MISched dags after they are processed"));
51 
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56 
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59 
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61   cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63   cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67 
68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
69   cl::desc("Enable register pressure scheduling."), cl::init(true));
70 
71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
72   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
73 
74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
75   cl::desc("Enable load clustering."), cl::init(true));
76 
77 // Experimental heuristics
78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
79   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
80 
81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
82   cl::desc("Verify machine instrs before and after machine scheduling"));
83 
84 // DAG subtrees must have at least this many nodes.
85 static const unsigned MinSubtreeSize = 8;
86 
87 // Pin the vtables to this file.
88 void MachineSchedStrategy::anchor() {}
89 void ScheduleDAGMutation::anchor() {}
90 
91 //===----------------------------------------------------------------------===//
92 // Machine Instruction Scheduling Pass and Registry
93 //===----------------------------------------------------------------------===//
94 
95 MachineSchedContext::MachineSchedContext():
96     MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
97   RegClassInfo = new RegisterClassInfo();
98 }
99 
100 MachineSchedContext::~MachineSchedContext() {
101   delete RegClassInfo;
102 }
103 
104 namespace {
105 /// Base class for a machine scheduler class that can run at any point.
106 class MachineSchedulerBase : public MachineSchedContext,
107                              public MachineFunctionPass {
108 public:
109   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
110 
111   void print(raw_ostream &O, const Module* = nullptr) const override;
112 
113 protected:
114   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
115 };
116 
117 /// MachineScheduler runs after coalescing and before register allocation.
118 class MachineScheduler : public MachineSchedulerBase {
119 public:
120   MachineScheduler();
121 
122   void getAnalysisUsage(AnalysisUsage &AU) const override;
123 
124   bool runOnMachineFunction(MachineFunction&) override;
125 
126   static char ID; // Class identification, replacement for typeinfo
127 
128 protected:
129   ScheduleDAGInstrs *createMachineScheduler();
130 };
131 
132 /// PostMachineScheduler runs after shortly before code emission.
133 class PostMachineScheduler : public MachineSchedulerBase {
134 public:
135   PostMachineScheduler();
136 
137   void getAnalysisUsage(AnalysisUsage &AU) const override;
138 
139   bool runOnMachineFunction(MachineFunction&) override;
140 
141   static char ID; // Class identification, replacement for typeinfo
142 
143 protected:
144   ScheduleDAGInstrs *createPostMachineScheduler();
145 };
146 } // namespace
147 
148 char MachineScheduler::ID = 0;
149 
150 char &llvm::MachineSchedulerID = MachineScheduler::ID;
151 
152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
153                       "Machine Instruction Scheduler", false, false)
154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
158                     "Machine Instruction Scheduler", false, false)
159 
160 MachineScheduler::MachineScheduler()
161 : MachineSchedulerBase(ID) {
162   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
163 }
164 
165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
166   AU.setPreservesCFG();
167   AU.addRequiredID(MachineDominatorsID);
168   AU.addRequired<MachineLoopInfo>();
169   AU.addRequired<AAResultsWrapperPass>();
170   AU.addRequired<TargetPassConfig>();
171   AU.addRequired<SlotIndexes>();
172   AU.addPreserved<SlotIndexes>();
173   AU.addRequired<LiveIntervals>();
174   AU.addPreserved<LiveIntervals>();
175   MachineFunctionPass::getAnalysisUsage(AU);
176 }
177 
178 char PostMachineScheduler::ID = 0;
179 
180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
181 
182 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
183                 "PostRA Machine Instruction Scheduler", false, false)
184 
185 PostMachineScheduler::PostMachineScheduler()
186 : MachineSchedulerBase(ID) {
187   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
188 }
189 
190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
191   AU.setPreservesCFG();
192   AU.addRequiredID(MachineDominatorsID);
193   AU.addRequired<MachineLoopInfo>();
194   AU.addRequired<TargetPassConfig>();
195   MachineFunctionPass::getAnalysisUsage(AU);
196 }
197 
198 MachinePassRegistry MachineSchedRegistry::Registry;
199 
200 /// A dummy default scheduler factory indicates whether the scheduler
201 /// is overridden on the command line.
202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
203   return nullptr;
204 }
205 
206 /// MachineSchedOpt allows command line selection of the scheduler.
207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
208                RegisterPassParser<MachineSchedRegistry> >
209 MachineSchedOpt("misched",
210                 cl::init(&useDefaultMachineSched), cl::Hidden,
211                 cl::desc("Machine instruction scheduler to use"));
212 
213 static MachineSchedRegistry
214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
215                      useDefaultMachineSched);
216 
217 static cl::opt<bool> EnableMachineSched(
218     "enable-misched",
219     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
220     cl::Hidden);
221 
222 static cl::opt<bool> EnablePostRAMachineSched(
223     "enable-post-misched",
224     cl::desc("Enable the post-ra machine instruction scheduling pass."),
225     cl::init(true), cl::Hidden);
226 
227 /// Forward declare the standard machine scheduler. This will be used as the
228 /// default scheduler if the target does not set a default.
229 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
230 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
231 
232 /// Decrement this iterator until reaching the top or a non-debug instr.
233 static MachineBasicBlock::const_iterator
234 priorNonDebug(MachineBasicBlock::const_iterator I,
235               MachineBasicBlock::const_iterator Beg) {
236   assert(I != Beg && "reached the top of the region, cannot decrement");
237   while (--I != Beg) {
238     if (!I->isDebugValue())
239       break;
240   }
241   return I;
242 }
243 
244 /// Non-const version.
245 static MachineBasicBlock::iterator
246 priorNonDebug(MachineBasicBlock::iterator I,
247               MachineBasicBlock::const_iterator Beg) {
248   return const_cast<MachineInstr*>(
249     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
250 }
251 
252 /// If this iterator is a debug value, increment until reaching the End or a
253 /// non-debug instruction.
254 static MachineBasicBlock::const_iterator
255 nextIfDebug(MachineBasicBlock::const_iterator I,
256             MachineBasicBlock::const_iterator End) {
257   for(; I != End; ++I) {
258     if (!I->isDebugValue())
259       break;
260   }
261   return I;
262 }
263 
264 /// Non-const version.
265 static MachineBasicBlock::iterator
266 nextIfDebug(MachineBasicBlock::iterator I,
267             MachineBasicBlock::const_iterator End) {
268   // Cast the return value to nonconst MachineInstr, then cast to an
269   // instr_iterator, which does not check for null, finally return a
270   // bundle_iterator.
271   return MachineBasicBlock::instr_iterator(
272     const_cast<MachineInstr*>(
273       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
274 }
275 
276 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
277 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
278   // Select the scheduler, or set the default.
279   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
280   if (Ctor != useDefaultMachineSched)
281     return Ctor(this);
282 
283   // Get the default scheduler set by the target for this function.
284   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
285   if (Scheduler)
286     return Scheduler;
287 
288   // Default to GenericScheduler.
289   return createGenericSchedLive(this);
290 }
291 
292 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
293 /// the caller. We don't have a command line option to override the postRA
294 /// scheduler. The Target must configure it.
295 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
296   // Get the postRA scheduler set by the target for this function.
297   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
298   if (Scheduler)
299     return Scheduler;
300 
301   // Default to GenericScheduler.
302   return createGenericSchedPostRA(this);
303 }
304 
305 /// Top-level MachineScheduler pass driver.
306 ///
307 /// Visit blocks in function order. Divide each block into scheduling regions
308 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
309 /// consistent with the DAG builder, which traverses the interior of the
310 /// scheduling regions bottom-up.
311 ///
312 /// This design avoids exposing scheduling boundaries to the DAG builder,
313 /// simplifying the DAG builder's support for "special" target instructions.
314 /// At the same time the design allows target schedulers to operate across
315 /// scheduling boundaries, for example to bundle the boudary instructions
316 /// without reordering them. This creates complexity, because the target
317 /// scheduler must update the RegionBegin and RegionEnd positions cached by
318 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
319 /// design would be to split blocks at scheduling boundaries, but LLVM has a
320 /// general bias against block splitting purely for implementation simplicity.
321 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
322   if (skipOptnoneFunction(*mf.getFunction()))
323     return false;
324 
325   if (EnableMachineSched.getNumOccurrences()) {
326     if (!EnableMachineSched)
327       return false;
328   } else if (!mf.getSubtarget().enableMachineScheduler())
329     return false;
330 
331   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
332 
333   // Initialize the context of the pass.
334   MF = &mf;
335   MLI = &getAnalysis<MachineLoopInfo>();
336   MDT = &getAnalysis<MachineDominatorTree>();
337   PassConfig = &getAnalysis<TargetPassConfig>();
338   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339 
340   LIS = &getAnalysis<LiveIntervals>();
341 
342   if (VerifyScheduling) {
343     DEBUG(LIS->dump());
344     MF->verify(this, "Before machine scheduling.");
345   }
346   RegClassInfo->runOnMachineFunction(*MF);
347 
348   // Instantiate the selected scheduler for this target, function, and
349   // optimization level.
350   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
351   scheduleRegions(*Scheduler, false);
352 
353   DEBUG(LIS->dump());
354   if (VerifyScheduling)
355     MF->verify(this, "After machine scheduling.");
356   return true;
357 }
358 
359 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
360   if (skipOptnoneFunction(*mf.getFunction()))
361     return false;
362 
363   if (EnablePostRAMachineSched.getNumOccurrences()) {
364     if (!EnablePostRAMachineSched)
365       return false;
366   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
367     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
368     return false;
369   }
370   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
371 
372   // Initialize the context of the pass.
373   MF = &mf;
374   PassConfig = &getAnalysis<TargetPassConfig>();
375 
376   if (VerifyScheduling)
377     MF->verify(this, "Before post machine scheduling.");
378 
379   // Instantiate the selected scheduler for this target, function, and
380   // optimization level.
381   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
382   scheduleRegions(*Scheduler, true);
383 
384   if (VerifyScheduling)
385     MF->verify(this, "After post machine scheduling.");
386   return true;
387 }
388 
389 /// Return true of the given instruction should not be included in a scheduling
390 /// region.
391 ///
392 /// MachineScheduler does not currently support scheduling across calls. To
393 /// handle calls, the DAG builder needs to be modified to create register
394 /// anti/output dependencies on the registers clobbered by the call's regmask
395 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
396 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
397 /// the boundary, but there would be no benefit to postRA scheduling across
398 /// calls this late anyway.
399 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
400                             MachineBasicBlock *MBB,
401                             MachineFunction *MF,
402                             const TargetInstrInfo *TII) {
403   return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
404 }
405 
406 /// Main driver for both MachineScheduler and PostMachineScheduler.
407 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
408                                            bool FixKillFlags) {
409   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
410 
411   // Visit all machine basic blocks.
412   //
413   // TODO: Visit blocks in global postorder or postorder within the bottom-up
414   // loop tree. Then we can optionally compute global RegPressure.
415   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
416        MBB != MBBEnd; ++MBB) {
417 
418     Scheduler.startBlock(&*MBB);
419 
420 #ifndef NDEBUG
421     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
422       continue;
423     if (SchedOnlyBlock.getNumOccurrences()
424         && (int)SchedOnlyBlock != MBB->getNumber())
425       continue;
426 #endif
427 
428     // Break the block into scheduling regions [I, RegionEnd), and schedule each
429     // region as soon as it is discovered. RegionEnd points the scheduling
430     // boundary at the bottom of the region. The DAG does not include RegionEnd,
431     // but the region does (i.e. the next RegionEnd is above the previous
432     // RegionBegin). If the current block has no terminator then RegionEnd ==
433     // MBB->end() for the bottom region.
434     //
435     // The Scheduler may insert instructions during either schedule() or
436     // exitRegion(), even for empty regions. So the local iterators 'I' and
437     // 'RegionEnd' are invalid across these calls.
438     //
439     // MBB::size() uses instr_iterator to count. Here we need a bundle to count
440     // as a single instruction.
441     unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
442     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
443         RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
444 
445       // Avoid decrementing RegionEnd for blocks with no terminator.
446       if (RegionEnd != MBB->end() ||
447           isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
448         --RegionEnd;
449         // Count the boundary instruction.
450         --RemainingInstrs;
451       }
452 
453       // The next region starts above the previous region. Look backward in the
454       // instruction stream until we find the nearest boundary.
455       unsigned NumRegionInstrs = 0;
456       MachineBasicBlock::iterator I = RegionEnd;
457       for(;I != MBB->begin(); --I, --RemainingInstrs) {
458         if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
459           break;
460         if (!I->isDebugValue())
461           ++NumRegionInstrs;
462       }
463       // Notify the scheduler of the region, even if we may skip scheduling
464       // it. Perhaps it still needs to be bundled.
465       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
466 
467       // Skip empty scheduling regions (0 or 1 schedulable instructions).
468       if (I == RegionEnd || I == std::prev(RegionEnd)) {
469         // Close the current region. Bundle the terminator if needed.
470         // This invalidates 'RegionEnd' and 'I'.
471         Scheduler.exitRegion();
472         continue;
473       }
474       DEBUG(dbgs() << "********** MI Scheduling **********\n");
475       DEBUG(dbgs() << MF->getName()
476             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
477             << "\n  From: " << *I << "    To: ";
478             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
479             else dbgs() << "End";
480             dbgs() << " RegionInstrs: " << NumRegionInstrs
481             << " Remaining: " << RemainingInstrs << "\n");
482       if (DumpCriticalPathLength) {
483         errs() << MF->getName();
484         errs() << ":BB# " << MBB->getNumber();
485         errs() << " " << MBB->getName() << " \n";
486       }
487 
488       // Schedule a region: possibly reorder instructions.
489       // This invalidates 'RegionEnd' and 'I'.
490       Scheduler.schedule();
491 
492       // Close the current region.
493       Scheduler.exitRegion();
494 
495       // Scheduling has invalidated the current iterator 'I'. Ask the
496       // scheduler for the top of it's scheduled region.
497       RegionEnd = Scheduler.begin();
498     }
499     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
500     Scheduler.finishBlock();
501     // FIXME: Ideally, no further passes should rely on kill flags. However,
502     // thumb2 size reduction is currently an exception, so the PostMIScheduler
503     // needs to do this.
504     if (FixKillFlags)
505         Scheduler.fixupKills(&*MBB);
506   }
507   Scheduler.finalizeSchedule();
508 }
509 
510 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
511   // unimplemented
512 }
513 
514 LLVM_DUMP_METHOD
515 void ReadyQueue::dump() {
516   dbgs() << "Queue " << Name << ": ";
517   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
518     dbgs() << Queue[i]->NodeNum << " ";
519   dbgs() << "\n";
520 }
521 
522 //===----------------------------------------------------------------------===//
523 // ScheduleDAGMI - Basic machine instruction scheduling. This is
524 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
525 // virtual registers.
526 // ===----------------------------------------------------------------------===/
527 
528 // Provide a vtable anchor.
529 ScheduleDAGMI::~ScheduleDAGMI() {
530 }
531 
532 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
533   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
534 }
535 
536 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
537   if (SuccSU != &ExitSU) {
538     // Do not use WillCreateCycle, it assumes SD scheduling.
539     // If Pred is reachable from Succ, then the edge creates a cycle.
540     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
541       return false;
542     Topo.AddPred(SuccSU, PredDep.getSUnit());
543   }
544   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
545   // Return true regardless of whether a new edge needed to be inserted.
546   return true;
547 }
548 
549 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
550 /// NumPredsLeft reaches zero, release the successor node.
551 ///
552 /// FIXME: Adjust SuccSU height based on MinLatency.
553 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
554   SUnit *SuccSU = SuccEdge->getSUnit();
555 
556   if (SuccEdge->isWeak()) {
557     --SuccSU->WeakPredsLeft;
558     if (SuccEdge->isCluster())
559       NextClusterSucc = SuccSU;
560     return;
561   }
562 #ifndef NDEBUG
563   if (SuccSU->NumPredsLeft == 0) {
564     dbgs() << "*** Scheduling failed! ***\n";
565     SuccSU->dump(this);
566     dbgs() << " has been released too many times!\n";
567     llvm_unreachable(nullptr);
568   }
569 #endif
570   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
571   // CurrCycle may have advanced since then.
572   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
573     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
574 
575   --SuccSU->NumPredsLeft;
576   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
577     SchedImpl->releaseTopNode(SuccSU);
578 }
579 
580 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
581 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
582   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
583        I != E; ++I) {
584     releaseSucc(SU, &*I);
585   }
586 }
587 
588 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
589 /// NumSuccsLeft reaches zero, release the predecessor node.
590 ///
591 /// FIXME: Adjust PredSU height based on MinLatency.
592 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
593   SUnit *PredSU = PredEdge->getSUnit();
594 
595   if (PredEdge->isWeak()) {
596     --PredSU->WeakSuccsLeft;
597     if (PredEdge->isCluster())
598       NextClusterPred = PredSU;
599     return;
600   }
601 #ifndef NDEBUG
602   if (PredSU->NumSuccsLeft == 0) {
603     dbgs() << "*** Scheduling failed! ***\n";
604     PredSU->dump(this);
605     dbgs() << " has been released too many times!\n";
606     llvm_unreachable(nullptr);
607   }
608 #endif
609   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
610   // CurrCycle may have advanced since then.
611   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
612     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
613 
614   --PredSU->NumSuccsLeft;
615   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
616     SchedImpl->releaseBottomNode(PredSU);
617 }
618 
619 /// releasePredecessors - Call releasePred on each of SU's predecessors.
620 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
621   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
622        I != E; ++I) {
623     releasePred(SU, &*I);
624   }
625 }
626 
627 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
628 /// crossing a scheduling boundary. [begin, end) includes all instructions in
629 /// the region, including the boundary itself and single-instruction regions
630 /// that don't get scheduled.
631 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
632                                      MachineBasicBlock::iterator begin,
633                                      MachineBasicBlock::iterator end,
634                                      unsigned regioninstrs)
635 {
636   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
637 
638   SchedImpl->initPolicy(begin, end, regioninstrs);
639 }
640 
641 /// This is normally called from the main scheduler loop but may also be invoked
642 /// by the scheduling strategy to perform additional code motion.
643 void ScheduleDAGMI::moveInstruction(
644   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
645   // Advance RegionBegin if the first instruction moves down.
646   if (&*RegionBegin == MI)
647     ++RegionBegin;
648 
649   // Update the instruction stream.
650   BB->splice(InsertPos, BB, MI);
651 
652   // Update LiveIntervals
653   if (LIS)
654     LIS->handleMove(*MI, /*UpdateFlags=*/true);
655 
656   // Recede RegionBegin if an instruction moves above the first.
657   if (RegionBegin == InsertPos)
658     RegionBegin = MI;
659 }
660 
661 bool ScheduleDAGMI::checkSchedLimit() {
662 #ifndef NDEBUG
663   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
664     CurrentTop = CurrentBottom;
665     return false;
666   }
667   ++NumInstrsScheduled;
668 #endif
669   return true;
670 }
671 
672 /// Per-region scheduling driver, called back from
673 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
674 /// does not consider liveness or register pressure. It is useful for PostRA
675 /// scheduling and potentially other custom schedulers.
676 void ScheduleDAGMI::schedule() {
677   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
678   DEBUG(SchedImpl->dumpPolicy());
679 
680   // Build the DAG.
681   buildSchedGraph(AA);
682 
683   Topo.InitDAGTopologicalSorting();
684 
685   postprocessDAG();
686 
687   SmallVector<SUnit*, 8> TopRoots, BotRoots;
688   findRootsAndBiasEdges(TopRoots, BotRoots);
689 
690   // Initialize the strategy before modifying the DAG.
691   // This may initialize a DFSResult to be used for queue priority.
692   SchedImpl->initialize(this);
693 
694   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
695           SUnits[su].dumpAll(this));
696   if (ViewMISchedDAGs) viewGraph();
697 
698   // Initialize ready queues now that the DAG and priority data are finalized.
699   initQueues(TopRoots, BotRoots);
700 
701   bool IsTopNode = false;
702   while (true) {
703     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
704     SUnit *SU = SchedImpl->pickNode(IsTopNode);
705     if (!SU) break;
706 
707     assert(!SU->isScheduled && "Node already scheduled");
708     if (!checkSchedLimit())
709       break;
710 
711     MachineInstr *MI = SU->getInstr();
712     if (IsTopNode) {
713       assert(SU->isTopReady() && "node still has unscheduled dependencies");
714       if (&*CurrentTop == MI)
715         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
716       else
717         moveInstruction(MI, CurrentTop);
718     }
719     else {
720       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
721       MachineBasicBlock::iterator priorII =
722         priorNonDebug(CurrentBottom, CurrentTop);
723       if (&*priorII == MI)
724         CurrentBottom = priorII;
725       else {
726         if (&*CurrentTop == MI)
727           CurrentTop = nextIfDebug(++CurrentTop, priorII);
728         moveInstruction(MI, CurrentBottom);
729         CurrentBottom = MI;
730       }
731     }
732     // Notify the scheduling strategy before updating the DAG.
733     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
734     // runs, it can then use the accurate ReadyCycle time to determine whether
735     // newly released nodes can move to the readyQ.
736     SchedImpl->schedNode(SU, IsTopNode);
737 
738     updateQueues(SU, IsTopNode);
739   }
740   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
741 
742   placeDebugValues();
743 
744   DEBUG({
745       unsigned BBNum = begin()->getParent()->getNumber();
746       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
747       dumpSchedule();
748       dbgs() << '\n';
749     });
750 }
751 
752 /// Apply each ScheduleDAGMutation step in order.
753 void ScheduleDAGMI::postprocessDAG() {
754   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
755     Mutations[i]->apply(this);
756   }
757 }
758 
759 void ScheduleDAGMI::
760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
761                       SmallVectorImpl<SUnit*> &BotRoots) {
762   for (std::vector<SUnit>::iterator
763          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
764     SUnit *SU = &(*I);
765     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
766 
767     // Order predecessors so DFSResult follows the critical path.
768     SU->biasCriticalPath();
769 
770     // A SUnit is ready to top schedule if it has no predecessors.
771     if (!I->NumPredsLeft)
772       TopRoots.push_back(SU);
773     // A SUnit is ready to bottom schedule if it has no successors.
774     if (!I->NumSuccsLeft)
775       BotRoots.push_back(SU);
776   }
777   ExitSU.biasCriticalPath();
778 }
779 
780 /// Identify DAG roots and setup scheduler queues.
781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
782                                ArrayRef<SUnit*> BotRoots) {
783   NextClusterSucc = nullptr;
784   NextClusterPred = nullptr;
785 
786   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
787   //
788   // Nodes with unreleased weak edges can still be roots.
789   // Release top roots in forward order.
790   for (SmallVectorImpl<SUnit*>::const_iterator
791          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
792     SchedImpl->releaseTopNode(*I);
793   }
794   // Release bottom roots in reverse order so the higher priority nodes appear
795   // first. This is more natural and slightly more efficient.
796   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
797          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
798     SchedImpl->releaseBottomNode(*I);
799   }
800 
801   releaseSuccessors(&EntrySU);
802   releasePredecessors(&ExitSU);
803 
804   SchedImpl->registerRoots();
805 
806   // Advance past initial DebugValues.
807   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
808   CurrentBottom = RegionEnd;
809 }
810 
811 /// Update scheduler queues after scheduling an instruction.
812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
813   // Release dependent instructions for scheduling.
814   if (IsTopNode)
815     releaseSuccessors(SU);
816   else
817     releasePredecessors(SU);
818 
819   SU->isScheduled = true;
820 }
821 
822 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
823 void ScheduleDAGMI::placeDebugValues() {
824   // If first instruction was a DBG_VALUE then put it back.
825   if (FirstDbgValue) {
826     BB->splice(RegionBegin, BB, FirstDbgValue);
827     RegionBegin = FirstDbgValue;
828   }
829 
830   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
831          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
832     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
833     MachineInstr *DbgValue = P.first;
834     MachineBasicBlock::iterator OrigPrevMI = P.second;
835     if (&*RegionBegin == DbgValue)
836       ++RegionBegin;
837     BB->splice(++OrigPrevMI, BB, DbgValue);
838     if (OrigPrevMI == std::prev(RegionEnd))
839       RegionEnd = DbgValue;
840   }
841   DbgValues.clear();
842   FirstDbgValue = nullptr;
843 }
844 
845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
846 void ScheduleDAGMI::dumpSchedule() const {
847   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
848     if (SUnit *SU = getSUnit(&(*MI)))
849       SU->dump(this);
850     else
851       dbgs() << "Missing SUnit\n";
852   }
853 }
854 #endif
855 
856 //===----------------------------------------------------------------------===//
857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
858 // preservation.
859 //===----------------------------------------------------------------------===//
860 
861 ScheduleDAGMILive::~ScheduleDAGMILive() {
862   delete DFSResult;
863 }
864 
865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
866 /// crossing a scheduling boundary. [begin, end) includes all instructions in
867 /// the region, including the boundary itself and single-instruction regions
868 /// that don't get scheduled.
869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
870                                 MachineBasicBlock::iterator begin,
871                                 MachineBasicBlock::iterator end,
872                                 unsigned regioninstrs)
873 {
874   // ScheduleDAGMI initializes SchedImpl's per-region policy.
875   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
876 
877   // For convenience remember the end of the liveness region.
878   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
879 
880   SUPressureDiffs.clear();
881 
882   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
883   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
884 
885   if (ShouldTrackLaneMasks) {
886     if (!ShouldTrackPressure)
887       report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure");
888     // Dead subregister defs have no users and therefore no dependencies,
889     // moving them around may cause liveintervals to degrade into multiple
890     // components. Change independent components to have their own vreg to avoid
891     // this.
892     if (!DisconnectedComponentsRenamed)
893       LIS->renameDisconnectedComponents();
894   }
895 }
896 
897 // Setup the register pressure trackers for the top scheduled top and bottom
898 // scheduled regions.
899 void ScheduleDAGMILive::initRegPressure() {
900   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
901                     ShouldTrackLaneMasks, false);
902   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
903                     ShouldTrackLaneMasks, false);
904 
905   // Close the RPTracker to finalize live ins.
906   RPTracker.closeRegion();
907 
908   DEBUG(RPTracker.dump());
909 
910   // Initialize the live ins and live outs.
911   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
912   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
913 
914   // Close one end of the tracker so we can call
915   // getMaxUpward/DownwardPressureDelta before advancing across any
916   // instructions. This converts currently live regs into live ins/outs.
917   TopRPTracker.closeTop();
918   BotRPTracker.closeBottom();
919 
920   BotRPTracker.initLiveThru(RPTracker);
921   if (!BotRPTracker.getLiveThru().empty()) {
922     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
923     DEBUG(dbgs() << "Live Thru: ";
924           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
925   };
926 
927   // For each live out vreg reduce the pressure change associated with other
928   // uses of the same vreg below the live-out reaching def.
929   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
930 
931   // Account for liveness generated by the region boundary.
932   if (LiveRegionEnd != RegionEnd) {
933     SmallVector<RegisterMaskPair, 8> LiveUses;
934     BotRPTracker.recede(&LiveUses);
935     updatePressureDiffs(LiveUses);
936   }
937 
938   DEBUG(
939     dbgs() << "Top Pressure:\n";
940     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
941     dbgs() << "Bottom Pressure:\n";
942     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
943   );
944 
945   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
946 
947   // Cache the list of excess pressure sets in this region. This will also track
948   // the max pressure in the scheduled code for these sets.
949   RegionCriticalPSets.clear();
950   const std::vector<unsigned> &RegionPressure =
951     RPTracker.getPressure().MaxSetPressure;
952   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
953     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
954     if (RegionPressure[i] > Limit) {
955       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
956             << " Limit " << Limit
957             << " Actual " << RegionPressure[i] << "\n");
958       RegionCriticalPSets.push_back(PressureChange(i));
959     }
960   }
961   DEBUG(dbgs() << "Excess PSets: ";
962         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
963           dbgs() << TRI->getRegPressureSetName(
964             RegionCriticalPSets[i].getPSet()) << " ";
965         dbgs() << "\n");
966 }
967 
968 void ScheduleDAGMILive::
969 updateScheduledPressure(const SUnit *SU,
970                         const std::vector<unsigned> &NewMaxPressure) {
971   const PressureDiff &PDiff = getPressureDiff(SU);
972   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
973   for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
974        I != E; ++I) {
975     if (!I->isValid())
976       break;
977     unsigned ID = I->getPSet();
978     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
979       ++CritIdx;
980     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
981       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
982           && NewMaxPressure[ID] <= INT16_MAX)
983         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
984     }
985     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
986     if (NewMaxPressure[ID] >= Limit - 2) {
987       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
988             << NewMaxPressure[ID]
989             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
990             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
991     }
992   }
993 }
994 
995 /// Update the PressureDiff array for liveness after scheduling this
996 /// instruction.
997 void ScheduleDAGMILive::updatePressureDiffs(
998     ArrayRef<RegisterMaskPair> LiveUses) {
999   for (const RegisterMaskPair &P : LiveUses) {
1000     unsigned Reg = P.RegUnit;
1001     /// FIXME: Currently assuming single-use physregs.
1002     if (!TRI->isVirtualRegister(Reg))
1003       continue;
1004 
1005     if (ShouldTrackLaneMasks) {
1006       // If the register has just become live then other uses won't change
1007       // this fact anymore => decrement pressure.
1008       // If the register has just become dead then other uses make it come
1009       // back to life => increment pressure.
1010       bool Decrement = P.LaneMask != 0;
1011 
1012       for (const VReg2SUnit &V2SU
1013            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1014         SUnit &SU = *V2SU.SU;
1015         if (SU.isScheduled || &SU == &ExitSU)
1016           continue;
1017 
1018         PressureDiff &PDiff = getPressureDiff(&SU);
1019         PDiff.addPressureChange(Reg, Decrement, &MRI);
1020         DEBUG(
1021           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1022                  << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1023                  << ' ' << *SU.getInstr();
1024           dbgs() << "              to ";
1025           PDiff.dump(*TRI);
1026         );
1027       }
1028     } else {
1029       assert(P.LaneMask != 0);
1030       DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
1031       // This may be called before CurrentBottom has been initialized. However,
1032       // BotRPTracker must have a valid position. We want the value live into the
1033       // instruction or live out of the block, so ask for the previous
1034       // instruction's live-out.
1035       const LiveInterval &LI = LIS->getInterval(Reg);
1036       VNInfo *VNI;
1037       MachineBasicBlock::const_iterator I =
1038         nextIfDebug(BotRPTracker.getPos(), BB->end());
1039       if (I == BB->end())
1040         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1041       else {
1042         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1043         VNI = LRQ.valueIn();
1044       }
1045       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1046       assert(VNI && "No live value at use.");
1047       for (const VReg2SUnit &V2SU
1048            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1049         SUnit *SU = V2SU.SU;
1050         // If this use comes before the reaching def, it cannot be a last use,
1051         // so decrease its pressure change.
1052         if (!SU->isScheduled && SU != &ExitSU) {
1053           LiveQueryResult LRQ =
1054               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1055           if (LRQ.valueIn() == VNI) {
1056             PressureDiff &PDiff = getPressureDiff(SU);
1057             PDiff.addPressureChange(Reg, true, &MRI);
1058             DEBUG(
1059               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1060                      << *SU->getInstr();
1061               dbgs() << "              to ";
1062               PDiff.dump(*TRI);
1063             );
1064           }
1065         }
1066       }
1067     }
1068   }
1069 }
1070 
1071 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1072 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1073 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1074 ///
1075 /// This is a skeletal driver, with all the functionality pushed into helpers,
1076 /// so that it can be easily extended by experimental schedulers. Generally,
1077 /// implementing MachineSchedStrategy should be sufficient to implement a new
1078 /// scheduling algorithm. However, if a scheduler further subclasses
1079 /// ScheduleDAGMILive then it will want to override this virtual method in order
1080 /// to update any specialized state.
1081 void ScheduleDAGMILive::schedule() {
1082   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1083   DEBUG(SchedImpl->dumpPolicy());
1084   buildDAGWithRegPressure();
1085 
1086   Topo.InitDAGTopologicalSorting();
1087 
1088   postprocessDAG();
1089 
1090   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1091   findRootsAndBiasEdges(TopRoots, BotRoots);
1092 
1093   // Initialize the strategy before modifying the DAG.
1094   // This may initialize a DFSResult to be used for queue priority.
1095   SchedImpl->initialize(this);
1096 
1097   DEBUG(
1098     for (const SUnit &SU : SUnits) {
1099       SU.dumpAll(this);
1100       if (ShouldTrackPressure) {
1101         dbgs() << "  Pressure Diff      : ";
1102         getPressureDiff(&SU).dump(*TRI);
1103       }
1104       dbgs() << '\n';
1105     }
1106   );
1107   if (ViewMISchedDAGs) viewGraph();
1108 
1109   // Initialize ready queues now that the DAG and priority data are finalized.
1110   initQueues(TopRoots, BotRoots);
1111 
1112   if (ShouldTrackPressure) {
1113     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1114     TopRPTracker.setPos(CurrentTop);
1115   }
1116 
1117   bool IsTopNode = false;
1118   while (true) {
1119     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1120     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1121     if (!SU) break;
1122 
1123     assert(!SU->isScheduled && "Node already scheduled");
1124     if (!checkSchedLimit())
1125       break;
1126 
1127     scheduleMI(SU, IsTopNode);
1128 
1129     if (DFSResult) {
1130       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1131       if (!ScheduledTrees.test(SubtreeID)) {
1132         ScheduledTrees.set(SubtreeID);
1133         DFSResult->scheduleTree(SubtreeID);
1134         SchedImpl->scheduleTree(SubtreeID);
1135       }
1136     }
1137 
1138     // Notify the scheduling strategy after updating the DAG.
1139     SchedImpl->schedNode(SU, IsTopNode);
1140 
1141     updateQueues(SU, IsTopNode);
1142   }
1143   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1144 
1145   placeDebugValues();
1146 
1147   DEBUG({
1148       unsigned BBNum = begin()->getParent()->getNumber();
1149       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1150       dumpSchedule();
1151       dbgs() << '\n';
1152     });
1153 }
1154 
1155 /// Build the DAG and setup three register pressure trackers.
1156 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1157   if (!ShouldTrackPressure) {
1158     RPTracker.reset();
1159     RegionCriticalPSets.clear();
1160     buildSchedGraph(AA);
1161     return;
1162   }
1163 
1164   // Initialize the register pressure tracker used by buildSchedGraph.
1165   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1166                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1167 
1168   // Account for liveness generate by the region boundary.
1169   if (LiveRegionEnd != RegionEnd)
1170     RPTracker.recede();
1171 
1172   // Build the DAG, and compute current register pressure.
1173   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1174 
1175   // Initialize top/bottom trackers after computing region pressure.
1176   initRegPressure();
1177 }
1178 
1179 void ScheduleDAGMILive::computeDFSResult() {
1180   if (!DFSResult)
1181     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1182   DFSResult->clear();
1183   ScheduledTrees.clear();
1184   DFSResult->resize(SUnits.size());
1185   DFSResult->compute(SUnits);
1186   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1187 }
1188 
1189 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1190 /// only provides the critical path for single block loops. To handle loops that
1191 /// span blocks, we could use the vreg path latencies provided by
1192 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1193 /// available for use in the scheduler.
1194 ///
1195 /// The cyclic path estimation identifies a def-use pair that crosses the back
1196 /// edge and considers the depth and height of the nodes. For example, consider
1197 /// the following instruction sequence where each instruction has unit latency
1198 /// and defines an epomymous virtual register:
1199 ///
1200 /// a->b(a,c)->c(b)->d(c)->exit
1201 ///
1202 /// The cyclic critical path is a two cycles: b->c->b
1203 /// The acyclic critical path is four cycles: a->b->c->d->exit
1204 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1205 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1206 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1207 /// LiveInDepth = depth(b) = len(a->b) = 1
1208 ///
1209 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1210 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1211 /// CyclicCriticalPath = min(2, 2) = 2
1212 ///
1213 /// This could be relevant to PostRA scheduling, but is currently implemented
1214 /// assuming LiveIntervals.
1215 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1216   // This only applies to single block loop.
1217   if (!BB->isSuccessor(BB))
1218     return 0;
1219 
1220   unsigned MaxCyclicLatency = 0;
1221   // Visit each live out vreg def to find def/use pairs that cross iterations.
1222   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1223     unsigned Reg = P.RegUnit;
1224     if (!TRI->isVirtualRegister(Reg))
1225         continue;
1226     const LiveInterval &LI = LIS->getInterval(Reg);
1227     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1228     if (!DefVNI)
1229       continue;
1230 
1231     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1232     const SUnit *DefSU = getSUnit(DefMI);
1233     if (!DefSU)
1234       continue;
1235 
1236     unsigned LiveOutHeight = DefSU->getHeight();
1237     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1238     // Visit all local users of the vreg def.
1239     for (const VReg2SUnit &V2SU
1240          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1241       SUnit *SU = V2SU.SU;
1242       if (SU == &ExitSU)
1243         continue;
1244 
1245       // Only consider uses of the phi.
1246       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1247       if (!LRQ.valueIn()->isPHIDef())
1248         continue;
1249 
1250       // Assume that a path spanning two iterations is a cycle, which could
1251       // overestimate in strange cases. This allows cyclic latency to be
1252       // estimated as the minimum slack of the vreg's depth or height.
1253       unsigned CyclicLatency = 0;
1254       if (LiveOutDepth > SU->getDepth())
1255         CyclicLatency = LiveOutDepth - SU->getDepth();
1256 
1257       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1258       if (LiveInHeight > LiveOutHeight) {
1259         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1260           CyclicLatency = LiveInHeight - LiveOutHeight;
1261       }
1262       else
1263         CyclicLatency = 0;
1264 
1265       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1266             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1267       if (CyclicLatency > MaxCyclicLatency)
1268         MaxCyclicLatency = CyclicLatency;
1269     }
1270   }
1271   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1272   return MaxCyclicLatency;
1273 }
1274 
1275 /// Move an instruction and update register pressure.
1276 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1277   // Move the instruction to its new location in the instruction stream.
1278   MachineInstr *MI = SU->getInstr();
1279 
1280   if (IsTopNode) {
1281     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1282     if (&*CurrentTop == MI)
1283       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1284     else {
1285       moveInstruction(MI, CurrentTop);
1286       TopRPTracker.setPos(MI);
1287     }
1288 
1289     if (ShouldTrackPressure) {
1290       // Update top scheduled pressure.
1291       RegisterOperands RegOpers;
1292       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1293       if (ShouldTrackLaneMasks) {
1294         // Adjust liveness and add missing dead+read-undef flags.
1295         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1296         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1297       } else {
1298         // Adjust for missing dead-def flags.
1299         RegOpers.detectDeadDefs(*MI, *LIS);
1300       }
1301 
1302       TopRPTracker.advance(RegOpers);
1303       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1304       DEBUG(
1305         dbgs() << "Top Pressure:\n";
1306         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1307       );
1308 
1309       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1310     }
1311   }
1312   else {
1313     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1314     MachineBasicBlock::iterator priorII =
1315       priorNonDebug(CurrentBottom, CurrentTop);
1316     if (&*priorII == MI)
1317       CurrentBottom = priorII;
1318     else {
1319       if (&*CurrentTop == MI) {
1320         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1321         TopRPTracker.setPos(CurrentTop);
1322       }
1323       moveInstruction(MI, CurrentBottom);
1324       CurrentBottom = MI;
1325     }
1326     if (ShouldTrackPressure) {
1327       RegisterOperands RegOpers;
1328       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1329       if (ShouldTrackLaneMasks) {
1330         // Adjust liveness and add missing dead+read-undef flags.
1331         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1332         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1333       } else {
1334         // Adjust for missing dead-def flags.
1335         RegOpers.detectDeadDefs(*MI, *LIS);
1336       }
1337 
1338       BotRPTracker.recedeSkipDebugValues();
1339       SmallVector<RegisterMaskPair, 8> LiveUses;
1340       BotRPTracker.recede(RegOpers, &LiveUses);
1341       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1342       DEBUG(
1343         dbgs() << "Bottom Pressure:\n";
1344         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1345       );
1346 
1347       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1348       updatePressureDiffs(LiveUses);
1349     }
1350   }
1351 }
1352 
1353 //===----------------------------------------------------------------------===//
1354 // LoadClusterMutation - DAG post-processing to cluster loads.
1355 //===----------------------------------------------------------------------===//
1356 
1357 namespace {
1358 /// \brief Post-process the DAG to create cluster edges between neighboring
1359 /// loads.
1360 class LoadClusterMutation : public ScheduleDAGMutation {
1361   struct LoadInfo {
1362     SUnit *SU;
1363     unsigned BaseReg;
1364     int64_t Offset;
1365     LoadInfo(SUnit *su, unsigned reg, int64_t ofs)
1366       : SU(su), BaseReg(reg), Offset(ofs) {}
1367 
1368     bool operator<(const LoadInfo &RHS) const {
1369       return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1370     }
1371   };
1372 
1373   const TargetInstrInfo *TII;
1374   const TargetRegisterInfo *TRI;
1375 public:
1376   LoadClusterMutation(const TargetInstrInfo *tii,
1377                       const TargetRegisterInfo *tri)
1378     : TII(tii), TRI(tri) {}
1379 
1380   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1381 protected:
1382   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1383 };
1384 } // anonymous
1385 
1386 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1387                                                   ScheduleDAGMI *DAG) {
1388   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1389   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1390     SUnit *SU = Loads[Idx];
1391     unsigned BaseReg;
1392     int64_t Offset;
1393     if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1394       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1395   }
1396   if (LoadRecords.size() < 2)
1397     return;
1398   std::sort(LoadRecords.begin(), LoadRecords.end());
1399   unsigned ClusterLength = 1;
1400   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1401     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1402       ClusterLength = 1;
1403       continue;
1404     }
1405 
1406     SUnit *SUa = LoadRecords[Idx].SU;
1407     SUnit *SUb = LoadRecords[Idx+1].SU;
1408     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1409         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1410 
1411       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1412             << SUb->NodeNum << ")\n");
1413       // Copy successor edges from SUa to SUb. Interleaving computation
1414       // dependent on SUa can prevent load combining due to register reuse.
1415       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1416       // loads should have effectively the same inputs.
1417       for (SUnit::const_succ_iterator
1418              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1419         if (SI->getSUnit() == SUb)
1420           continue;
1421         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1422         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1423       }
1424       ++ClusterLength;
1425     }
1426     else
1427       ClusterLength = 1;
1428   }
1429 }
1430 
1431 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1432 void LoadClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1433   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1434 
1435   // Map DAG NodeNum to store chain ID.
1436   DenseMap<unsigned, unsigned> StoreChainIDs;
1437   // Map each store chain to a set of dependent loads.
1438   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1439   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1440     SUnit *SU = &DAG->SUnits[Idx];
1441     if (!SU->getInstr()->mayLoad())
1442       continue;
1443     unsigned ChainPredID = DAG->SUnits.size();
1444     for (SUnit::const_pred_iterator
1445            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1446       if (PI->isCtrl()) {
1447         ChainPredID = PI->getSUnit()->NodeNum;
1448         break;
1449       }
1450     }
1451     // Check if this chain-like pred has been seen
1452     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1453     unsigned NumChains = StoreChainDependents.size();
1454     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1455       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1456     if (Result.second)
1457       StoreChainDependents.resize(NumChains + 1);
1458     StoreChainDependents[Result.first->second].push_back(SU);
1459   }
1460   // Iterate over the store chains.
1461   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1462     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1463 }
1464 
1465 //===----------------------------------------------------------------------===//
1466 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1467 //===----------------------------------------------------------------------===//
1468 
1469 namespace {
1470 /// \brief Post-process the DAG to create cluster edges between instructions
1471 /// that may be fused by the processor into a single operation.
1472 class MacroFusion : public ScheduleDAGMutation {
1473   const TargetInstrInfo &TII;
1474   const TargetRegisterInfo &TRI;
1475 public:
1476   MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1477     : TII(TII), TRI(TRI) {}
1478 
1479   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1480 };
1481 } // anonymous
1482 
1483 /// Returns true if \p MI reads a register written by \p Other.
1484 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1485                        const MachineInstr &Other) {
1486   for (const MachineOperand &MO : MI.uses()) {
1487     if (!MO.isReg() || !MO.readsReg())
1488       continue;
1489 
1490     unsigned Reg = MO.getReg();
1491     if (Other.modifiesRegister(Reg, &TRI))
1492       return true;
1493   }
1494   return false;
1495 }
1496 
1497 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1498 /// fused operations.
1499 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
1500   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1501 
1502   // For now, assume targets can only fuse with the branch.
1503   SUnit &ExitSU = DAG->ExitSU;
1504   MachineInstr *Branch = ExitSU.getInstr();
1505   if (!Branch)
1506     return;
1507 
1508   for (SUnit &SU : DAG->SUnits) {
1509     // SUnits with successors can't be schedule in front of the ExitSU.
1510     if (!SU.Succs.empty())
1511       continue;
1512     // We only care if the node writes to a register that the branch reads.
1513     MachineInstr *Pred = SU.getInstr();
1514     if (!HasDataDep(TRI, *Branch, *Pred))
1515       continue;
1516 
1517     if (!TII.shouldScheduleAdjacent(Pred, Branch))
1518       continue;
1519 
1520     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1521     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1522     // need to copy predecessor edges from ExitSU to SU, since top-down
1523     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1524     // of SU, we could create an artificial edge from the deepest root, but it
1525     // hasn't been needed yet.
1526     bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1527     (void)Success;
1528     assert(Success && "No DAG nodes should be reachable from ExitSU");
1529 
1530     DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1531     break;
1532   }
1533 }
1534 
1535 //===----------------------------------------------------------------------===//
1536 // CopyConstrain - DAG post-processing to encourage copy elimination.
1537 //===----------------------------------------------------------------------===//
1538 
1539 namespace {
1540 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1541 /// the one use that defines the copy's source vreg, most likely an induction
1542 /// variable increment.
1543 class CopyConstrain : public ScheduleDAGMutation {
1544   // Transient state.
1545   SlotIndex RegionBeginIdx;
1546   // RegionEndIdx is the slot index of the last non-debug instruction in the
1547   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1548   SlotIndex RegionEndIdx;
1549 public:
1550   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1551 
1552   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1553 
1554 protected:
1555   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1556 };
1557 } // anonymous
1558 
1559 /// constrainLocalCopy handles two possibilities:
1560 /// 1) Local src:
1561 /// I0:     = dst
1562 /// I1: src = ...
1563 /// I2:     = dst
1564 /// I3: dst = src (copy)
1565 /// (create pred->succ edges I0->I1, I2->I1)
1566 ///
1567 /// 2) Local copy:
1568 /// I0: dst = src (copy)
1569 /// I1:     = dst
1570 /// I2: src = ...
1571 /// I3:     = dst
1572 /// (create pred->succ edges I1->I2, I3->I2)
1573 ///
1574 /// Although the MachineScheduler is currently constrained to single blocks,
1575 /// this algorithm should handle extended blocks. An EBB is a set of
1576 /// contiguously numbered blocks such that the previous block in the EBB is
1577 /// always the single predecessor.
1578 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1579   LiveIntervals *LIS = DAG->getLIS();
1580   MachineInstr *Copy = CopySU->getInstr();
1581 
1582   // Check for pure vreg copies.
1583   const MachineOperand &SrcOp = Copy->getOperand(1);
1584   unsigned SrcReg = SrcOp.getReg();
1585   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1586     return;
1587 
1588   const MachineOperand &DstOp = Copy->getOperand(0);
1589   unsigned DstReg = DstOp.getReg();
1590   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1591     return;
1592 
1593   // Check if either the dest or source is local. If it's live across a back
1594   // edge, it's not local. Note that if both vregs are live across the back
1595   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1596   // If both the copy's source and dest are local live intervals, then we
1597   // should treat the dest as the global for the purpose of adding
1598   // constraints. This adds edges from source's other uses to the copy.
1599   unsigned LocalReg = SrcReg;
1600   unsigned GlobalReg = DstReg;
1601   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1602   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1603     LocalReg = DstReg;
1604     GlobalReg = SrcReg;
1605     LocalLI = &LIS->getInterval(LocalReg);
1606     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1607       return;
1608   }
1609   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1610 
1611   // Find the global segment after the start of the local LI.
1612   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1613   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1614   // local live range. We could create edges from other global uses to the local
1615   // start, but the coalescer should have already eliminated these cases, so
1616   // don't bother dealing with it.
1617   if (GlobalSegment == GlobalLI->end())
1618     return;
1619 
1620   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1621   // returned the next global segment. But if GlobalSegment overlaps with
1622   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1623   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1624   if (GlobalSegment->contains(LocalLI->beginIndex()))
1625     ++GlobalSegment;
1626 
1627   if (GlobalSegment == GlobalLI->end())
1628     return;
1629 
1630   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1631   if (GlobalSegment != GlobalLI->begin()) {
1632     // Two address defs have no hole.
1633     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1634                                GlobalSegment->start)) {
1635       return;
1636     }
1637     // If the prior global segment may be defined by the same two-address
1638     // instruction that also defines LocalLI, then can't make a hole here.
1639     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1640                                LocalLI->beginIndex())) {
1641       return;
1642     }
1643     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1644     // it would be a disconnected component in the live range.
1645     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1646            "Disconnected LRG within the scheduling region.");
1647   }
1648   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1649   if (!GlobalDef)
1650     return;
1651 
1652   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1653   if (!GlobalSU)
1654     return;
1655 
1656   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1657   // constraining the uses of the last local def to precede GlobalDef.
1658   SmallVector<SUnit*,8> LocalUses;
1659   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1660   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1661   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1662   for (SUnit::const_succ_iterator
1663          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1664        I != E; ++I) {
1665     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1666       continue;
1667     if (I->getSUnit() == GlobalSU)
1668       continue;
1669     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1670       return;
1671     LocalUses.push_back(I->getSUnit());
1672   }
1673   // Open the top of the GlobalLI hole by constraining any earlier global uses
1674   // to precede the start of LocalLI.
1675   SmallVector<SUnit*,8> GlobalUses;
1676   MachineInstr *FirstLocalDef =
1677     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1678   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1679   for (SUnit::const_pred_iterator
1680          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1681     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1682       continue;
1683     if (I->getSUnit() == FirstLocalSU)
1684       continue;
1685     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1686       return;
1687     GlobalUses.push_back(I->getSUnit());
1688   }
1689   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1690   // Add the weak edges.
1691   for (SmallVectorImpl<SUnit*>::const_iterator
1692          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1693     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1694           << GlobalSU->NodeNum << ")\n");
1695     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1696   }
1697   for (SmallVectorImpl<SUnit*>::const_iterator
1698          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1699     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1700           << FirstLocalSU->NodeNum << ")\n");
1701     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1702   }
1703 }
1704 
1705 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1706 /// copy elimination.
1707 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1708   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1709   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1710 
1711   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1712   if (FirstPos == DAG->end())
1713     return;
1714   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1715   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1716       *priorNonDebug(DAG->end(), DAG->begin()));
1717 
1718   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1719     SUnit *SU = &DAG->SUnits[Idx];
1720     if (!SU->getInstr()->isCopy())
1721       continue;
1722 
1723     constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1724   }
1725 }
1726 
1727 //===----------------------------------------------------------------------===//
1728 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1729 // and possibly other custom schedulers.
1730 //===----------------------------------------------------------------------===//
1731 
1732 static const unsigned InvalidCycle = ~0U;
1733 
1734 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1735 
1736 void SchedBoundary::reset() {
1737   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1738   // Destroying and reconstructing it is very expensive though. So keep
1739   // invalid, placeholder HazardRecs.
1740   if (HazardRec && HazardRec->isEnabled()) {
1741     delete HazardRec;
1742     HazardRec = nullptr;
1743   }
1744   Available.clear();
1745   Pending.clear();
1746   CheckPending = false;
1747   NextSUs.clear();
1748   CurrCycle = 0;
1749   CurrMOps = 0;
1750   MinReadyCycle = UINT_MAX;
1751   ExpectedLatency = 0;
1752   DependentLatency = 0;
1753   RetiredMOps = 0;
1754   MaxExecutedResCount = 0;
1755   ZoneCritResIdx = 0;
1756   IsResourceLimited = false;
1757   ReservedCycles.clear();
1758 #ifndef NDEBUG
1759   // Track the maximum number of stall cycles that could arise either from the
1760   // latency of a DAG edge or the number of cycles that a processor resource is
1761   // reserved (SchedBoundary::ReservedCycles).
1762   MaxObservedStall = 0;
1763 #endif
1764   // Reserve a zero-count for invalid CritResIdx.
1765   ExecutedResCounts.resize(1);
1766   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1767 }
1768 
1769 void SchedRemainder::
1770 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1771   reset();
1772   if (!SchedModel->hasInstrSchedModel())
1773     return;
1774   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1775   for (std::vector<SUnit>::iterator
1776          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1777     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1778     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1779       * SchedModel->getMicroOpFactor();
1780     for (TargetSchedModel::ProcResIter
1781            PI = SchedModel->getWriteProcResBegin(SC),
1782            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1783       unsigned PIdx = PI->ProcResourceIdx;
1784       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1785       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1786     }
1787   }
1788 }
1789 
1790 void SchedBoundary::
1791 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1792   reset();
1793   DAG = dag;
1794   SchedModel = smodel;
1795   Rem = rem;
1796   if (SchedModel->hasInstrSchedModel()) {
1797     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1798     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1799   }
1800 }
1801 
1802 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1803 /// these "soft stalls" differently than the hard stall cycles based on CPU
1804 /// resources and computed by checkHazard(). A fully in-order model
1805 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1806 /// available for scheduling until they are ready. However, a weaker in-order
1807 /// model may use this for heuristics. For example, if a processor has in-order
1808 /// behavior when reading certain resources, this may come into play.
1809 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1810   if (!SU->isUnbuffered)
1811     return 0;
1812 
1813   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1814   if (ReadyCycle > CurrCycle)
1815     return ReadyCycle - CurrCycle;
1816   return 0;
1817 }
1818 
1819 /// Compute the next cycle at which the given processor resource can be
1820 /// scheduled.
1821 unsigned SchedBoundary::
1822 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1823   unsigned NextUnreserved = ReservedCycles[PIdx];
1824   // If this resource has never been used, always return cycle zero.
1825   if (NextUnreserved == InvalidCycle)
1826     return 0;
1827   // For bottom-up scheduling add the cycles needed for the current operation.
1828   if (!isTop())
1829     NextUnreserved += Cycles;
1830   return NextUnreserved;
1831 }
1832 
1833 /// Does this SU have a hazard within the current instruction group.
1834 ///
1835 /// The scheduler supports two modes of hazard recognition. The first is the
1836 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1837 /// supports highly complicated in-order reservation tables
1838 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1839 ///
1840 /// The second is a streamlined mechanism that checks for hazards based on
1841 /// simple counters that the scheduler itself maintains. It explicitly checks
1842 /// for instruction dispatch limitations, including the number of micro-ops that
1843 /// can dispatch per cycle.
1844 ///
1845 /// TODO: Also check whether the SU must start a new group.
1846 bool SchedBoundary::checkHazard(SUnit *SU) {
1847   if (HazardRec->isEnabled()
1848       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1849     return true;
1850   }
1851   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1852   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1853     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1854           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1855     return true;
1856   }
1857   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1858     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1859     for (TargetSchedModel::ProcResIter
1860            PI = SchedModel->getWriteProcResBegin(SC),
1861            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1862       unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1863       if (NRCycle > CurrCycle) {
1864 #ifndef NDEBUG
1865         MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1866 #endif
1867         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1868               << SchedModel->getResourceName(PI->ProcResourceIdx)
1869               << "=" << NRCycle << "c\n");
1870         return true;
1871       }
1872     }
1873   }
1874   return false;
1875 }
1876 
1877 // Find the unscheduled node in ReadySUs with the highest latency.
1878 unsigned SchedBoundary::
1879 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1880   SUnit *LateSU = nullptr;
1881   unsigned RemLatency = 0;
1882   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1883        I != E; ++I) {
1884     unsigned L = getUnscheduledLatency(*I);
1885     if (L > RemLatency) {
1886       RemLatency = L;
1887       LateSU = *I;
1888     }
1889   }
1890   if (LateSU) {
1891     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1892           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1893   }
1894   return RemLatency;
1895 }
1896 
1897 // Count resources in this zone and the remaining unscheduled
1898 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1899 // resource index, or zero if the zone is issue limited.
1900 unsigned SchedBoundary::
1901 getOtherResourceCount(unsigned &OtherCritIdx) {
1902   OtherCritIdx = 0;
1903   if (!SchedModel->hasInstrSchedModel())
1904     return 0;
1905 
1906   unsigned OtherCritCount = Rem->RemIssueCount
1907     + (RetiredMOps * SchedModel->getMicroOpFactor());
1908   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1909         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1910   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1911        PIdx != PEnd; ++PIdx) {
1912     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1913     if (OtherCount > OtherCritCount) {
1914       OtherCritCount = OtherCount;
1915       OtherCritIdx = PIdx;
1916     }
1917   }
1918   if (OtherCritIdx) {
1919     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1920           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1921           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1922   }
1923   return OtherCritCount;
1924 }
1925 
1926 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1927   assert(SU->getInstr() && "Scheduled SUnit must have instr");
1928 
1929 #ifndef NDEBUG
1930   // ReadyCycle was been bumped up to the CurrCycle when this node was
1931   // scheduled, but CurrCycle may have been eagerly advanced immediately after
1932   // scheduling, so may now be greater than ReadyCycle.
1933   if (ReadyCycle > CurrCycle)
1934     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1935 #endif
1936 
1937   if (ReadyCycle < MinReadyCycle)
1938     MinReadyCycle = ReadyCycle;
1939 
1940   // Check for interlocks first. For the purpose of other heuristics, an
1941   // instruction that cannot issue appears as if it's not in the ReadyQueue.
1942   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1943   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1944     Pending.push(SU);
1945   else
1946     Available.push(SU);
1947 
1948   // Record this node as an immediate dependent of the scheduled node.
1949   NextSUs.insert(SU);
1950 }
1951 
1952 void SchedBoundary::releaseTopNode(SUnit *SU) {
1953   if (SU->isScheduled)
1954     return;
1955 
1956   releaseNode(SU, SU->TopReadyCycle);
1957 }
1958 
1959 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1960   if (SU->isScheduled)
1961     return;
1962 
1963   releaseNode(SU, SU->BotReadyCycle);
1964 }
1965 
1966 /// Move the boundary of scheduled code by one cycle.
1967 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1968   if (SchedModel->getMicroOpBufferSize() == 0) {
1969     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1970     if (MinReadyCycle > NextCycle)
1971       NextCycle = MinReadyCycle;
1972   }
1973   // Update the current micro-ops, which will issue in the next cycle.
1974   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1975   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1976 
1977   // Decrement DependentLatency based on the next cycle.
1978   if ((NextCycle - CurrCycle) > DependentLatency)
1979     DependentLatency = 0;
1980   else
1981     DependentLatency -= (NextCycle - CurrCycle);
1982 
1983   if (!HazardRec->isEnabled()) {
1984     // Bypass HazardRec virtual calls.
1985     CurrCycle = NextCycle;
1986   }
1987   else {
1988     // Bypass getHazardType calls in case of long latency.
1989     for (; CurrCycle != NextCycle; ++CurrCycle) {
1990       if (isTop())
1991         HazardRec->AdvanceCycle();
1992       else
1993         HazardRec->RecedeCycle();
1994     }
1995   }
1996   CheckPending = true;
1997   unsigned LFactor = SchedModel->getLatencyFactor();
1998   IsResourceLimited =
1999     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2000     > (int)LFactor;
2001 
2002   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2003 }
2004 
2005 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2006   ExecutedResCounts[PIdx] += Count;
2007   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2008     MaxExecutedResCount = ExecutedResCounts[PIdx];
2009 }
2010 
2011 /// Add the given processor resource to this scheduled zone.
2012 ///
2013 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2014 /// during which this resource is consumed.
2015 ///
2016 /// \return the next cycle at which the instruction may execute without
2017 /// oversubscribing resources.
2018 unsigned SchedBoundary::
2019 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2020   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2021   unsigned Count = Factor * Cycles;
2022   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2023         << " +" << Cycles << "x" << Factor << "u\n");
2024 
2025   // Update Executed resources counts.
2026   incExecutedResources(PIdx, Count);
2027   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2028   Rem->RemainingCounts[PIdx] -= Count;
2029 
2030   // Check if this resource exceeds the current critical resource. If so, it
2031   // becomes the critical resource.
2032   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2033     ZoneCritResIdx = PIdx;
2034     DEBUG(dbgs() << "  *** Critical resource "
2035           << SchedModel->getResourceName(PIdx) << ": "
2036           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2037   }
2038   // For reserved resources, record the highest cycle using the resource.
2039   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2040   if (NextAvailable > CurrCycle) {
2041     DEBUG(dbgs() << "  Resource conflict: "
2042           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2043           << NextAvailable << "\n");
2044   }
2045   return NextAvailable;
2046 }
2047 
2048 /// Move the boundary of scheduled code by one SUnit.
2049 void SchedBoundary::bumpNode(SUnit *SU) {
2050   // Update the reservation table.
2051   if (HazardRec->isEnabled()) {
2052     if (!isTop() && SU->isCall) {
2053       // Calls are scheduled with their preceding instructions. For bottom-up
2054       // scheduling, clear the pipeline state before emitting.
2055       HazardRec->Reset();
2056     }
2057     HazardRec->EmitInstruction(SU);
2058   }
2059   // checkHazard should prevent scheduling multiple instructions per cycle that
2060   // exceed the issue width.
2061   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2062   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2063   assert(
2064       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2065       "Cannot schedule this instruction's MicroOps in the current cycle.");
2066 
2067   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2068   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2069 
2070   unsigned NextCycle = CurrCycle;
2071   switch (SchedModel->getMicroOpBufferSize()) {
2072   case 0:
2073     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2074     break;
2075   case 1:
2076     if (ReadyCycle > NextCycle) {
2077       NextCycle = ReadyCycle;
2078       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2079     }
2080     break;
2081   default:
2082     // We don't currently model the OOO reorder buffer, so consider all
2083     // scheduled MOps to be "retired". We do loosely model in-order resource
2084     // latency. If this instruction uses an in-order resource, account for any
2085     // likely stall cycles.
2086     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2087       NextCycle = ReadyCycle;
2088     break;
2089   }
2090   RetiredMOps += IncMOps;
2091 
2092   // Update resource counts and critical resource.
2093   if (SchedModel->hasInstrSchedModel()) {
2094     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2095     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2096     Rem->RemIssueCount -= DecRemIssue;
2097     if (ZoneCritResIdx) {
2098       // Scale scheduled micro-ops for comparing with the critical resource.
2099       unsigned ScaledMOps =
2100         RetiredMOps * SchedModel->getMicroOpFactor();
2101 
2102       // If scaled micro-ops are now more than the previous critical resource by
2103       // a full cycle, then micro-ops issue becomes critical.
2104       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2105           >= (int)SchedModel->getLatencyFactor()) {
2106         ZoneCritResIdx = 0;
2107         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2108               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2109       }
2110     }
2111     for (TargetSchedModel::ProcResIter
2112            PI = SchedModel->getWriteProcResBegin(SC),
2113            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2114       unsigned RCycle =
2115         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2116       if (RCycle > NextCycle)
2117         NextCycle = RCycle;
2118     }
2119     if (SU->hasReservedResource) {
2120       // For reserved resources, record the highest cycle using the resource.
2121       // For top-down scheduling, this is the cycle in which we schedule this
2122       // instruction plus the number of cycles the operations reserves the
2123       // resource. For bottom-up is it simply the instruction's cycle.
2124       for (TargetSchedModel::ProcResIter
2125              PI = SchedModel->getWriteProcResBegin(SC),
2126              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2127         unsigned PIdx = PI->ProcResourceIdx;
2128         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2129           if (isTop()) {
2130             ReservedCycles[PIdx] =
2131               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2132           }
2133           else
2134             ReservedCycles[PIdx] = NextCycle;
2135         }
2136       }
2137     }
2138   }
2139   // Update ExpectedLatency and DependentLatency.
2140   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2141   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2142   if (SU->getDepth() > TopLatency) {
2143     TopLatency = SU->getDepth();
2144     DEBUG(dbgs() << "  " << Available.getName()
2145           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2146   }
2147   if (SU->getHeight() > BotLatency) {
2148     BotLatency = SU->getHeight();
2149     DEBUG(dbgs() << "  " << Available.getName()
2150           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2151   }
2152   // If we stall for any reason, bump the cycle.
2153   if (NextCycle > CurrCycle) {
2154     bumpCycle(NextCycle);
2155   }
2156   else {
2157     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2158     // resource limited. If a stall occurred, bumpCycle does this.
2159     unsigned LFactor = SchedModel->getLatencyFactor();
2160     IsResourceLimited =
2161       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2162       > (int)LFactor;
2163   }
2164   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2165   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2166   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2167   // bump the cycle to avoid uselessly checking everything in the readyQ.
2168   CurrMOps += IncMOps;
2169   while (CurrMOps >= SchedModel->getIssueWidth()) {
2170     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2171           << " at cycle " << CurrCycle << '\n');
2172     bumpCycle(++NextCycle);
2173   }
2174   DEBUG(dumpScheduledState());
2175 }
2176 
2177 /// Release pending ready nodes in to the available queue. This makes them
2178 /// visible to heuristics.
2179 void SchedBoundary::releasePending() {
2180   // If the available queue is empty, it is safe to reset MinReadyCycle.
2181   if (Available.empty())
2182     MinReadyCycle = UINT_MAX;
2183 
2184   // Check to see if any of the pending instructions are ready to issue.  If
2185   // so, add them to the available queue.
2186   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2187   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2188     SUnit *SU = *(Pending.begin()+i);
2189     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2190 
2191     if (ReadyCycle < MinReadyCycle)
2192       MinReadyCycle = ReadyCycle;
2193 
2194     if (!IsBuffered && ReadyCycle > CurrCycle)
2195       continue;
2196 
2197     if (checkHazard(SU))
2198       continue;
2199 
2200     Available.push(SU);
2201     Pending.remove(Pending.begin()+i);
2202     --i; --e;
2203   }
2204   DEBUG(if (!Pending.empty()) Pending.dump());
2205   CheckPending = false;
2206 }
2207 
2208 /// Remove SU from the ready set for this boundary.
2209 void SchedBoundary::removeReady(SUnit *SU) {
2210   if (Available.isInQueue(SU))
2211     Available.remove(Available.find(SU));
2212   else {
2213     assert(Pending.isInQueue(SU) && "bad ready count");
2214     Pending.remove(Pending.find(SU));
2215   }
2216 }
2217 
2218 /// If this queue only has one ready candidate, return it. As a side effect,
2219 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2220 /// one node is ready. If multiple instructions are ready, return NULL.
2221 SUnit *SchedBoundary::pickOnlyChoice() {
2222   if (CheckPending)
2223     releasePending();
2224 
2225   if (CurrMOps > 0) {
2226     // Defer any ready instrs that now have a hazard.
2227     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2228       if (checkHazard(*I)) {
2229         Pending.push(*I);
2230         I = Available.remove(I);
2231         continue;
2232       }
2233       ++I;
2234     }
2235   }
2236   for (unsigned i = 0; Available.empty(); ++i) {
2237 //  FIXME: Re-enable assert once PR20057 is resolved.
2238 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2239 //           "permanent hazard");
2240     (void)i;
2241     bumpCycle(CurrCycle + 1);
2242     releasePending();
2243   }
2244   if (Available.size() == 1)
2245     return *Available.begin();
2246   return nullptr;
2247 }
2248 
2249 #ifndef NDEBUG
2250 // This is useful information to dump after bumpNode.
2251 // Note that the Queue contents are more useful before pickNodeFromQueue.
2252 void SchedBoundary::dumpScheduledState() {
2253   unsigned ResFactor;
2254   unsigned ResCount;
2255   if (ZoneCritResIdx) {
2256     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2257     ResCount = getResourceCount(ZoneCritResIdx);
2258   }
2259   else {
2260     ResFactor = SchedModel->getMicroOpFactor();
2261     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2262   }
2263   unsigned LFactor = SchedModel->getLatencyFactor();
2264   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2265          << "  Retired: " << RetiredMOps;
2266   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2267   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2268          << ResCount / ResFactor << " "
2269          << SchedModel->getResourceName(ZoneCritResIdx)
2270          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2271          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2272          << " limited.\n";
2273 }
2274 #endif
2275 
2276 //===----------------------------------------------------------------------===//
2277 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2278 //===----------------------------------------------------------------------===//
2279 
2280 void GenericSchedulerBase::SchedCandidate::
2281 initResourceDelta(const ScheduleDAGMI *DAG,
2282                   const TargetSchedModel *SchedModel) {
2283   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2284     return;
2285 
2286   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2287   for (TargetSchedModel::ProcResIter
2288          PI = SchedModel->getWriteProcResBegin(SC),
2289          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2290     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2291       ResDelta.CritResources += PI->Cycles;
2292     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2293       ResDelta.DemandedResources += PI->Cycles;
2294   }
2295 }
2296 
2297 /// Set the CandPolicy given a scheduling zone given the current resources and
2298 /// latencies inside and outside the zone.
2299 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2300                                      bool IsPostRA,
2301                                      SchedBoundary &CurrZone,
2302                                      SchedBoundary *OtherZone) {
2303   // Apply preemptive heuristics based on the total latency and resources
2304   // inside and outside this zone. Potential stalls should be considered before
2305   // following this policy.
2306 
2307   // Compute remaining latency. We need this both to determine whether the
2308   // overall schedule has become latency-limited and whether the instructions
2309   // outside this zone are resource or latency limited.
2310   //
2311   // The "dependent" latency is updated incrementally during scheduling as the
2312   // max height/depth of scheduled nodes minus the cycles since it was
2313   // scheduled:
2314   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2315   //
2316   // The "independent" latency is the max ready queue depth:
2317   //   ILat = max N.depth for N in Available|Pending
2318   //
2319   // RemainingLatency is the greater of independent and dependent latency.
2320   unsigned RemLatency = CurrZone.getDependentLatency();
2321   RemLatency = std::max(RemLatency,
2322                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2323   RemLatency = std::max(RemLatency,
2324                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2325 
2326   // Compute the critical resource outside the zone.
2327   unsigned OtherCritIdx = 0;
2328   unsigned OtherCount =
2329     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2330 
2331   bool OtherResLimited = false;
2332   if (SchedModel->hasInstrSchedModel()) {
2333     unsigned LFactor = SchedModel->getLatencyFactor();
2334     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2335   }
2336   // Schedule aggressively for latency in PostRA mode. We don't check for
2337   // acyclic latency during PostRA, and highly out-of-order processors will
2338   // skip PostRA scheduling.
2339   if (!OtherResLimited) {
2340     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2341       Policy.ReduceLatency |= true;
2342       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2343             << " RemainingLatency " << RemLatency << " + "
2344             << CurrZone.getCurrCycle() << "c > CritPath "
2345             << Rem.CriticalPath << "\n");
2346     }
2347   }
2348   // If the same resource is limiting inside and outside the zone, do nothing.
2349   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2350     return;
2351 
2352   DEBUG(
2353     if (CurrZone.isResourceLimited()) {
2354       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2355              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2356              << "\n";
2357     }
2358     if (OtherResLimited)
2359       dbgs() << "  RemainingLimit: "
2360              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2361     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2362       dbgs() << "  Latency limited both directions.\n");
2363 
2364   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2365     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2366 
2367   if (OtherResLimited)
2368     Policy.DemandResIdx = OtherCritIdx;
2369 }
2370 
2371 #ifndef NDEBUG
2372 const char *GenericSchedulerBase::getReasonStr(
2373   GenericSchedulerBase::CandReason Reason) {
2374   switch (Reason) {
2375   case NoCand:         return "NOCAND    ";
2376   case PhysRegCopy:    return "PREG-COPY";
2377   case RegExcess:      return "REG-EXCESS";
2378   case RegCritical:    return "REG-CRIT  ";
2379   case Stall:          return "STALL     ";
2380   case Cluster:        return "CLUSTER   ";
2381   case Weak:           return "WEAK      ";
2382   case RegMax:         return "REG-MAX   ";
2383   case ResourceReduce: return "RES-REDUCE";
2384   case ResourceDemand: return "RES-DEMAND";
2385   case TopDepthReduce: return "TOP-DEPTH ";
2386   case TopPathReduce:  return "TOP-PATH  ";
2387   case BotHeightReduce:return "BOT-HEIGHT";
2388   case BotPathReduce:  return "BOT-PATH  ";
2389   case NextDefUse:     return "DEF-USE   ";
2390   case NodeOrder:      return "ORDER     ";
2391   };
2392   llvm_unreachable("Unknown reason!");
2393 }
2394 
2395 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2396   PressureChange P;
2397   unsigned ResIdx = 0;
2398   unsigned Latency = 0;
2399   switch (Cand.Reason) {
2400   default:
2401     break;
2402   case RegExcess:
2403     P = Cand.RPDelta.Excess;
2404     break;
2405   case RegCritical:
2406     P = Cand.RPDelta.CriticalMax;
2407     break;
2408   case RegMax:
2409     P = Cand.RPDelta.CurrentMax;
2410     break;
2411   case ResourceReduce:
2412     ResIdx = Cand.Policy.ReduceResIdx;
2413     break;
2414   case ResourceDemand:
2415     ResIdx = Cand.Policy.DemandResIdx;
2416     break;
2417   case TopDepthReduce:
2418     Latency = Cand.SU->getDepth();
2419     break;
2420   case TopPathReduce:
2421     Latency = Cand.SU->getHeight();
2422     break;
2423   case BotHeightReduce:
2424     Latency = Cand.SU->getHeight();
2425     break;
2426   case BotPathReduce:
2427     Latency = Cand.SU->getDepth();
2428     break;
2429   }
2430   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2431   if (P.isValid())
2432     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2433            << ":" << P.getUnitInc() << " ";
2434   else
2435     dbgs() << "      ";
2436   if (ResIdx)
2437     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2438   else
2439     dbgs() << "         ";
2440   if (Latency)
2441     dbgs() << " " << Latency << " cycles ";
2442   else
2443     dbgs() << "          ";
2444   dbgs() << '\n';
2445 }
2446 #endif
2447 
2448 /// Return true if this heuristic determines order.
2449 static bool tryLess(int TryVal, int CandVal,
2450                     GenericSchedulerBase::SchedCandidate &TryCand,
2451                     GenericSchedulerBase::SchedCandidate &Cand,
2452                     GenericSchedulerBase::CandReason Reason) {
2453   if (TryVal < CandVal) {
2454     TryCand.Reason = Reason;
2455     return true;
2456   }
2457   if (TryVal > CandVal) {
2458     if (Cand.Reason > Reason)
2459       Cand.Reason = Reason;
2460     return true;
2461   }
2462   Cand.setRepeat(Reason);
2463   return false;
2464 }
2465 
2466 static bool tryGreater(int TryVal, int CandVal,
2467                        GenericSchedulerBase::SchedCandidate &TryCand,
2468                        GenericSchedulerBase::SchedCandidate &Cand,
2469                        GenericSchedulerBase::CandReason Reason) {
2470   if (TryVal > CandVal) {
2471     TryCand.Reason = Reason;
2472     return true;
2473   }
2474   if (TryVal < CandVal) {
2475     if (Cand.Reason > Reason)
2476       Cand.Reason = Reason;
2477     return true;
2478   }
2479   Cand.setRepeat(Reason);
2480   return false;
2481 }
2482 
2483 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2484                        GenericSchedulerBase::SchedCandidate &Cand,
2485                        SchedBoundary &Zone) {
2486   if (Zone.isTop()) {
2487     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2488       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2489                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2490         return true;
2491     }
2492     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2493                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2494       return true;
2495   }
2496   else {
2497     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2498       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2499                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2500         return true;
2501     }
2502     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2503                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2504       return true;
2505   }
2506   return false;
2507 }
2508 
2509 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2510                       bool IsTop) {
2511   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2512         << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2513 }
2514 
2515 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2516   assert(dag->hasVRegLiveness() &&
2517          "(PreRA)GenericScheduler needs vreg liveness");
2518   DAG = static_cast<ScheduleDAGMILive*>(dag);
2519   SchedModel = DAG->getSchedModel();
2520   TRI = DAG->TRI;
2521 
2522   Rem.init(DAG, SchedModel);
2523   Top.init(DAG, SchedModel, &Rem);
2524   Bot.init(DAG, SchedModel, &Rem);
2525 
2526   // Initialize resource counts.
2527 
2528   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2529   // are disabled, then these HazardRecs will be disabled.
2530   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2531   if (!Top.HazardRec) {
2532     Top.HazardRec =
2533         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2534             Itin, DAG);
2535   }
2536   if (!Bot.HazardRec) {
2537     Bot.HazardRec =
2538         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2539             Itin, DAG);
2540   }
2541 }
2542 
2543 /// Initialize the per-region scheduling policy.
2544 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2545                                   MachineBasicBlock::iterator End,
2546                                   unsigned NumRegionInstrs) {
2547   const MachineFunction &MF = *Begin->getParent()->getParent();
2548   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2549 
2550   // Avoid setting up the register pressure tracker for small regions to save
2551   // compile time. As a rough heuristic, only track pressure when the number of
2552   // schedulable instructions exceeds half the integer register file.
2553   RegionPolicy.ShouldTrackPressure = true;
2554   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2555     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2556     if (TLI->isTypeLegal(LegalIntVT)) {
2557       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2558         TLI->getRegClassFor(LegalIntVT));
2559       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2560     }
2561   }
2562 
2563   // For generic targets, we default to bottom-up, because it's simpler and more
2564   // compile-time optimizations have been implemented in that direction.
2565   RegionPolicy.OnlyBottomUp = true;
2566 
2567   // Allow the subtarget to override default policy.
2568   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2569                                         NumRegionInstrs);
2570 
2571   // After subtarget overrides, apply command line options.
2572   if (!EnableRegPressure)
2573     RegionPolicy.ShouldTrackPressure = false;
2574 
2575   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2576   // e.g. -misched-bottomup=false allows scheduling in both directions.
2577   assert((!ForceTopDown || !ForceBottomUp) &&
2578          "-misched-topdown incompatible with -misched-bottomup");
2579   if (ForceBottomUp.getNumOccurrences() > 0) {
2580     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2581     if (RegionPolicy.OnlyBottomUp)
2582       RegionPolicy.OnlyTopDown = false;
2583   }
2584   if (ForceTopDown.getNumOccurrences() > 0) {
2585     RegionPolicy.OnlyTopDown = ForceTopDown;
2586     if (RegionPolicy.OnlyTopDown)
2587       RegionPolicy.OnlyBottomUp = false;
2588   }
2589 }
2590 
2591 void GenericScheduler::dumpPolicy() {
2592   dbgs() << "GenericScheduler RegionPolicy: "
2593          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2594          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2595          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2596          << "\n";
2597 }
2598 
2599 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2600 /// critical path by more cycles than it takes to drain the instruction buffer.
2601 /// We estimate an upper bounds on in-flight instructions as:
2602 ///
2603 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2604 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2605 /// InFlightResources = InFlightIterations * LoopResources
2606 ///
2607 /// TODO: Check execution resources in addition to IssueCount.
2608 void GenericScheduler::checkAcyclicLatency() {
2609   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2610     return;
2611 
2612   // Scaled number of cycles per loop iteration.
2613   unsigned IterCount =
2614     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2615              Rem.RemIssueCount);
2616   // Scaled acyclic critical path.
2617   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2618   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2619   unsigned InFlightCount =
2620     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2621   unsigned BufferLimit =
2622     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2623 
2624   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2625 
2626   DEBUG(dbgs() << "IssueCycles="
2627         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2628         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2629         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2630         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2631         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2632         if (Rem.IsAcyclicLatencyLimited)
2633           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2634 }
2635 
2636 void GenericScheduler::registerRoots() {
2637   Rem.CriticalPath = DAG->ExitSU.getDepth();
2638 
2639   // Some roots may not feed into ExitSU. Check all of them in case.
2640   for (std::vector<SUnit*>::const_iterator
2641          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2642     if ((*I)->getDepth() > Rem.CriticalPath)
2643       Rem.CriticalPath = (*I)->getDepth();
2644   }
2645   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2646   if (DumpCriticalPathLength) {
2647     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2648   }
2649 
2650   if (EnableCyclicPath) {
2651     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2652     checkAcyclicLatency();
2653   }
2654 }
2655 
2656 static bool tryPressure(const PressureChange &TryP,
2657                         const PressureChange &CandP,
2658                         GenericSchedulerBase::SchedCandidate &TryCand,
2659                         GenericSchedulerBase::SchedCandidate &Cand,
2660                         GenericSchedulerBase::CandReason Reason,
2661                         const TargetRegisterInfo *TRI,
2662                         const MachineFunction &MF) {
2663   unsigned TryPSet = TryP.getPSetOrMax();
2664   unsigned CandPSet = CandP.getPSetOrMax();
2665   // If both candidates affect the same set, go with the smallest increase.
2666   if (TryPSet == CandPSet) {
2667     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2668                    Reason);
2669   }
2670   // If one candidate decreases and the other increases, go with it.
2671   // Invalid candidates have UnitInc==0.
2672   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2673                  Reason)) {
2674     return true;
2675   }
2676 
2677   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2678                                  std::numeric_limits<int>::max();
2679 
2680   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2681                                    std::numeric_limits<int>::max();
2682 
2683   // If the candidates are decreasing pressure, reverse priority.
2684   if (TryP.getUnitInc() < 0)
2685     std::swap(TryRank, CandRank);
2686   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2687 }
2688 
2689 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2690   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2691 }
2692 
2693 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2694 /// their physreg def/use.
2695 ///
2696 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2697 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2698 /// with the operation that produces or consumes the physreg. We'll do this when
2699 /// regalloc has support for parallel copies.
2700 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2701   const MachineInstr *MI = SU->getInstr();
2702   if (!MI->isCopy())
2703     return 0;
2704 
2705   unsigned ScheduledOper = isTop ? 1 : 0;
2706   unsigned UnscheduledOper = isTop ? 0 : 1;
2707   // If we have already scheduled the physreg produce/consumer, immediately
2708   // schedule the copy.
2709   if (TargetRegisterInfo::isPhysicalRegister(
2710         MI->getOperand(ScheduledOper).getReg()))
2711     return 1;
2712   // If the physreg is at the boundary, defer it. Otherwise schedule it
2713   // immediately to free the dependent. We can hoist the copy later.
2714   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2715   if (TargetRegisterInfo::isPhysicalRegister(
2716         MI->getOperand(UnscheduledOper).getReg()))
2717     return AtBoundary ? -1 : 1;
2718   return 0;
2719 }
2720 
2721 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2722 /// hierarchical. This may be more efficient than a graduated cost model because
2723 /// we don't need to evaluate all aspects of the model for each node in the
2724 /// queue. But it's really done to make the heuristics easier to debug and
2725 /// statistically analyze.
2726 ///
2727 /// \param Cand provides the policy and current best candidate.
2728 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2729 /// \param Zone describes the scheduled zone that we are extending.
2730 /// \param RPTracker describes reg pressure within the scheduled zone.
2731 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2732 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2733                                     SchedCandidate &TryCand,
2734                                     SchedBoundary &Zone,
2735                                     const RegPressureTracker &RPTracker,
2736                                     RegPressureTracker &TempTracker) {
2737 
2738   if (DAG->isTrackingPressure()) {
2739     // Always initialize TryCand's RPDelta.
2740     if (Zone.isTop()) {
2741       TempTracker.getMaxDownwardPressureDelta(
2742         TryCand.SU->getInstr(),
2743         TryCand.RPDelta,
2744         DAG->getRegionCriticalPSets(),
2745         DAG->getRegPressure().MaxSetPressure);
2746     }
2747     else {
2748       if (VerifyScheduling) {
2749         TempTracker.getMaxUpwardPressureDelta(
2750           TryCand.SU->getInstr(),
2751           &DAG->getPressureDiff(TryCand.SU),
2752           TryCand.RPDelta,
2753           DAG->getRegionCriticalPSets(),
2754           DAG->getRegPressure().MaxSetPressure);
2755       }
2756       else {
2757         RPTracker.getUpwardPressureDelta(
2758           TryCand.SU->getInstr(),
2759           DAG->getPressureDiff(TryCand.SU),
2760           TryCand.RPDelta,
2761           DAG->getRegionCriticalPSets(),
2762           DAG->getRegPressure().MaxSetPressure);
2763       }
2764     }
2765   }
2766   DEBUG(if (TryCand.RPDelta.Excess.isValid())
2767           dbgs() << "  Try  SU(" << TryCand.SU->NodeNum << ") "
2768                  << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2769                  << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2770 
2771   // Initialize the candidate if needed.
2772   if (!Cand.isValid()) {
2773     TryCand.Reason = NodeOrder;
2774     return;
2775   }
2776 
2777   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2778                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
2779                  TryCand, Cand, PhysRegCopy))
2780     return;
2781 
2782   // Avoid exceeding the target's limit.
2783   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2784                                                Cand.RPDelta.Excess,
2785                                                TryCand, Cand, RegExcess, TRI,
2786                                                DAG->MF))
2787     return;
2788 
2789   // Avoid increasing the max critical pressure in the scheduled region.
2790   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2791                                                Cand.RPDelta.CriticalMax,
2792                                                TryCand, Cand, RegCritical, TRI,
2793                                                DAG->MF))
2794     return;
2795 
2796   // For loops that are acyclic path limited, aggressively schedule for latency.
2797   // This can result in very long dependence chains scheduled in sequence, so
2798   // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2799   if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2800       && tryLatency(TryCand, Cand, Zone))
2801     return;
2802 
2803   // Prioritize instructions that read unbuffered resources by stall cycles.
2804   if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2805               Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2806     return;
2807 
2808   // Keep clustered nodes together to encourage downstream peephole
2809   // optimizations which may reduce resource requirements.
2810   //
2811   // This is a best effort to set things up for a post-RA pass. Optimizations
2812   // like generating loads of multiple registers should ideally be done within
2813   // the scheduler pass by combining the loads during DAG postprocessing.
2814   const SUnit *NextClusterSU =
2815     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2816   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2817                  TryCand, Cand, Cluster))
2818     return;
2819 
2820   // Weak edges are for clustering and other constraints.
2821   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2822               getWeakLeft(Cand.SU, Zone.isTop()),
2823               TryCand, Cand, Weak)) {
2824     return;
2825   }
2826   // Avoid increasing the max pressure of the entire region.
2827   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2828                                                Cand.RPDelta.CurrentMax,
2829                                                TryCand, Cand, RegMax, TRI,
2830                                                DAG->MF))
2831     return;
2832 
2833   // Avoid critical resource consumption and balance the schedule.
2834   TryCand.initResourceDelta(DAG, SchedModel);
2835   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2836               TryCand, Cand, ResourceReduce))
2837     return;
2838   if (tryGreater(TryCand.ResDelta.DemandedResources,
2839                  Cand.ResDelta.DemandedResources,
2840                  TryCand, Cand, ResourceDemand))
2841     return;
2842 
2843   // Avoid serializing long latency dependence chains.
2844   // For acyclic path limited loops, latency was already checked above.
2845   if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2846       !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2847     return;
2848   }
2849 
2850   // Prefer immediate defs/users of the last scheduled instruction. This is a
2851   // local pressure avoidance strategy that also makes the machine code
2852   // readable.
2853   if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2854                  TryCand, Cand, NextDefUse))
2855     return;
2856 
2857   // Fall through to original instruction order.
2858   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2859       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2860     TryCand.Reason = NodeOrder;
2861   }
2862 }
2863 
2864 /// Pick the best candidate from the queue.
2865 ///
2866 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2867 /// DAG building. To adjust for the current scheduling location we need to
2868 /// maintain the number of vreg uses remaining to be top-scheduled.
2869 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2870                                          const RegPressureTracker &RPTracker,
2871                                          SchedCandidate &Cand) {
2872   ReadyQueue &Q = Zone.Available;
2873 
2874   DEBUG(Q.dump());
2875 
2876   // getMaxPressureDelta temporarily modifies the tracker.
2877   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2878 
2879   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2880 
2881     SchedCandidate TryCand(Cand.Policy);
2882     TryCand.SU = *I;
2883     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2884     if (TryCand.Reason != NoCand) {
2885       // Initialize resource delta if needed in case future heuristics query it.
2886       if (TryCand.ResDelta == SchedResourceDelta())
2887         TryCand.initResourceDelta(DAG, SchedModel);
2888       Cand.setBest(TryCand);
2889       DEBUG(traceCandidate(Cand));
2890     }
2891   }
2892 }
2893 
2894 /// Pick the best candidate node from either the top or bottom queue.
2895 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2896   // Schedule as far as possible in the direction of no choice. This is most
2897   // efficient, but also provides the best heuristics for CriticalPSets.
2898   if (SUnit *SU = Bot.pickOnlyChoice()) {
2899     IsTopNode = false;
2900     DEBUG(dbgs() << "Pick Bot ONLY1\n");
2901     return SU;
2902   }
2903   if (SUnit *SU = Top.pickOnlyChoice()) {
2904     IsTopNode = true;
2905     DEBUG(dbgs() << "Pick Top ONLY1\n");
2906     return SU;
2907   }
2908   CandPolicy NoPolicy;
2909   SchedCandidate BotCand(NoPolicy);
2910   SchedCandidate TopCand(NoPolicy);
2911   // Set the bottom-up policy based on the state of the current bottom zone and
2912   // the instructions outside the zone, including the top zone.
2913   setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2914   // Set the top-down policy based on the state of the current top zone and
2915   // the instructions outside the zone, including the bottom zone.
2916   setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2917 
2918   // Prefer bottom scheduling when heuristics are silent.
2919   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2920   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2921 
2922   // If either Q has a single candidate that provides the least increase in
2923   // Excess pressure, we can immediately schedule from that Q.
2924   //
2925   // RegionCriticalPSets summarizes the pressure within the scheduled region and
2926   // affects picking from either Q. If scheduling in one direction must
2927   // increase pressure for one of the excess PSets, then schedule in that
2928   // direction first to provide more freedom in the other direction.
2929   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2930       || (BotCand.Reason == RegCritical
2931           && !BotCand.isRepeat(RegCritical)))
2932   {
2933     IsTopNode = false;
2934     tracePick(BotCand, IsTopNode);
2935     return BotCand.SU;
2936   }
2937   // Check if the top Q has a better candidate.
2938   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2939   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2940 
2941   // Choose the queue with the most important (lowest enum) reason.
2942   if (TopCand.Reason < BotCand.Reason) {
2943     IsTopNode = true;
2944     tracePick(TopCand, IsTopNode);
2945     return TopCand.SU;
2946   }
2947   // Otherwise prefer the bottom candidate, in node order if all else failed.
2948   IsTopNode = false;
2949   tracePick(BotCand, IsTopNode);
2950   return BotCand.SU;
2951 }
2952 
2953 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2954 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2955   if (DAG->top() == DAG->bottom()) {
2956     assert(Top.Available.empty() && Top.Pending.empty() &&
2957            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2958     return nullptr;
2959   }
2960   SUnit *SU;
2961   do {
2962     if (RegionPolicy.OnlyTopDown) {
2963       SU = Top.pickOnlyChoice();
2964       if (!SU) {
2965         CandPolicy NoPolicy;
2966         SchedCandidate TopCand(NoPolicy);
2967         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2968         assert(TopCand.Reason != NoCand && "failed to find a candidate");
2969         tracePick(TopCand, true);
2970         SU = TopCand.SU;
2971       }
2972       IsTopNode = true;
2973     }
2974     else if (RegionPolicy.OnlyBottomUp) {
2975       SU = Bot.pickOnlyChoice();
2976       if (!SU) {
2977         CandPolicy NoPolicy;
2978         SchedCandidate BotCand(NoPolicy);
2979         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2980         assert(BotCand.Reason != NoCand && "failed to find a candidate");
2981         tracePick(BotCand, false);
2982         SU = BotCand.SU;
2983       }
2984       IsTopNode = false;
2985     }
2986     else {
2987       SU = pickNodeBidirectional(IsTopNode);
2988     }
2989   } while (SU->isScheduled);
2990 
2991   if (SU->isTopReady())
2992     Top.removeReady(SU);
2993   if (SU->isBottomReady())
2994     Bot.removeReady(SU);
2995 
2996   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2997   return SU;
2998 }
2999 
3000 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3001 
3002   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3003   if (!isTop)
3004     ++InsertPos;
3005   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3006 
3007   // Find already scheduled copies with a single physreg dependence and move
3008   // them just above the scheduled instruction.
3009   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
3010        I != E; ++I) {
3011     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
3012       continue;
3013     SUnit *DepSU = I->getSUnit();
3014     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3015       continue;
3016     MachineInstr *Copy = DepSU->getInstr();
3017     if (!Copy->isCopy())
3018       continue;
3019     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3020           I->getSUnit()->dump(DAG));
3021     DAG->moveInstruction(Copy, InsertPos);
3022   }
3023 }
3024 
3025 /// Update the scheduler's state after scheduling a node. This is the same node
3026 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3027 /// update it's state based on the current cycle before MachineSchedStrategy
3028 /// does.
3029 ///
3030 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3031 /// them here. See comments in biasPhysRegCopy.
3032 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3033   if (IsTopNode) {
3034     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3035     Top.bumpNode(SU);
3036     if (SU->hasPhysRegUses)
3037       reschedulePhysRegCopies(SU, true);
3038   }
3039   else {
3040     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3041     Bot.bumpNode(SU);
3042     if (SU->hasPhysRegDefs)
3043       reschedulePhysRegCopies(SU, false);
3044   }
3045 }
3046 
3047 /// Create the standard converging machine scheduler. This will be used as the
3048 /// default scheduler if the target does not set a default.
3049 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
3050   ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
3051   // Register DAG post-processors.
3052   //
3053   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3054   // data and pass it to later mutations. Have a single mutation that gathers
3055   // the interesting nodes in one pass.
3056   DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
3057   if (EnableLoadCluster && DAG->TII->enableClusterLoads())
3058     DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
3059   if (EnableMacroFusion)
3060     DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
3061   return DAG;
3062 }
3063 
3064 static MachineSchedRegistry
3065 GenericSchedRegistry("converge", "Standard converging scheduler.",
3066                      createGenericSchedLive);
3067 
3068 //===----------------------------------------------------------------------===//
3069 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3070 //===----------------------------------------------------------------------===//
3071 
3072 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3073   DAG = Dag;
3074   SchedModel = DAG->getSchedModel();
3075   TRI = DAG->TRI;
3076 
3077   Rem.init(DAG, SchedModel);
3078   Top.init(DAG, SchedModel, &Rem);
3079   BotRoots.clear();
3080 
3081   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3082   // or are disabled, then these HazardRecs will be disabled.
3083   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3084   if (!Top.HazardRec) {
3085     Top.HazardRec =
3086         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3087             Itin, DAG);
3088   }
3089 }
3090 
3091 
3092 void PostGenericScheduler::registerRoots() {
3093   Rem.CriticalPath = DAG->ExitSU.getDepth();
3094 
3095   // Some roots may not feed into ExitSU. Check all of them in case.
3096   for (SmallVectorImpl<SUnit*>::const_iterator
3097          I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3098     if ((*I)->getDepth() > Rem.CriticalPath)
3099       Rem.CriticalPath = (*I)->getDepth();
3100   }
3101   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3102   if (DumpCriticalPathLength) {
3103     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3104   }
3105 }
3106 
3107 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3108 ///
3109 /// \param Cand provides the policy and current best candidate.
3110 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3111 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3112                                         SchedCandidate &TryCand) {
3113 
3114   // Initialize the candidate if needed.
3115   if (!Cand.isValid()) {
3116     TryCand.Reason = NodeOrder;
3117     return;
3118   }
3119 
3120   // Prioritize instructions that read unbuffered resources by stall cycles.
3121   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3122               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3123     return;
3124 
3125   // Avoid critical resource consumption and balance the schedule.
3126   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3127               TryCand, Cand, ResourceReduce))
3128     return;
3129   if (tryGreater(TryCand.ResDelta.DemandedResources,
3130                  Cand.ResDelta.DemandedResources,
3131                  TryCand, Cand, ResourceDemand))
3132     return;
3133 
3134   // Avoid serializing long latency dependence chains.
3135   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3136     return;
3137   }
3138 
3139   // Fall through to original instruction order.
3140   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3141     TryCand.Reason = NodeOrder;
3142 }
3143 
3144 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3145   ReadyQueue &Q = Top.Available;
3146 
3147   DEBUG(Q.dump());
3148 
3149   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3150     SchedCandidate TryCand(Cand.Policy);
3151     TryCand.SU = *I;
3152     TryCand.initResourceDelta(DAG, SchedModel);
3153     tryCandidate(Cand, TryCand);
3154     if (TryCand.Reason != NoCand) {
3155       Cand.setBest(TryCand);
3156       DEBUG(traceCandidate(Cand));
3157     }
3158   }
3159 }
3160 
3161 /// Pick the next node to schedule.
3162 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3163   if (DAG->top() == DAG->bottom()) {
3164     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3165     return nullptr;
3166   }
3167   SUnit *SU;
3168   do {
3169     SU = Top.pickOnlyChoice();
3170     if (!SU) {
3171       CandPolicy NoPolicy;
3172       SchedCandidate TopCand(NoPolicy);
3173       // Set the top-down policy based on the state of the current top zone and
3174       // the instructions outside the zone, including the bottom zone.
3175       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3176       pickNodeFromQueue(TopCand);
3177       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3178       tracePick(TopCand, true);
3179       SU = TopCand.SU;
3180     }
3181   } while (SU->isScheduled);
3182 
3183   IsTopNode = true;
3184   Top.removeReady(SU);
3185 
3186   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3187   return SU;
3188 }
3189 
3190 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3191 /// scheduled/remaining flags in the DAG nodes.
3192 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3193   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3194   Top.bumpNode(SU);
3195 }
3196 
3197 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3198 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3199   return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3200 }
3201 
3202 //===----------------------------------------------------------------------===//
3203 // ILP Scheduler. Currently for experimental analysis of heuristics.
3204 //===----------------------------------------------------------------------===//
3205 
3206 namespace {
3207 /// \brief Order nodes by the ILP metric.
3208 struct ILPOrder {
3209   const SchedDFSResult *DFSResult;
3210   const BitVector *ScheduledTrees;
3211   bool MaximizeILP;
3212 
3213   ILPOrder(bool MaxILP)
3214     : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3215 
3216   /// \brief Apply a less-than relation on node priority.
3217   ///
3218   /// (Return true if A comes after B in the Q.)
3219   bool operator()(const SUnit *A, const SUnit *B) const {
3220     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3221     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3222     if (SchedTreeA != SchedTreeB) {
3223       // Unscheduled trees have lower priority.
3224       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3225         return ScheduledTrees->test(SchedTreeB);
3226 
3227       // Trees with shallower connections have have lower priority.
3228       if (DFSResult->getSubtreeLevel(SchedTreeA)
3229           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3230         return DFSResult->getSubtreeLevel(SchedTreeA)
3231           < DFSResult->getSubtreeLevel(SchedTreeB);
3232       }
3233     }
3234     if (MaximizeILP)
3235       return DFSResult->getILP(A) < DFSResult->getILP(B);
3236     else
3237       return DFSResult->getILP(A) > DFSResult->getILP(B);
3238   }
3239 };
3240 
3241 /// \brief Schedule based on the ILP metric.
3242 class ILPScheduler : public MachineSchedStrategy {
3243   ScheduleDAGMILive *DAG;
3244   ILPOrder Cmp;
3245 
3246   std::vector<SUnit*> ReadyQ;
3247 public:
3248   ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3249 
3250   void initialize(ScheduleDAGMI *dag) override {
3251     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3252     DAG = static_cast<ScheduleDAGMILive*>(dag);
3253     DAG->computeDFSResult();
3254     Cmp.DFSResult = DAG->getDFSResult();
3255     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3256     ReadyQ.clear();
3257   }
3258 
3259   void registerRoots() override {
3260     // Restore the heap in ReadyQ with the updated DFS results.
3261     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3262   }
3263 
3264   /// Implement MachineSchedStrategy interface.
3265   /// -----------------------------------------
3266 
3267   /// Callback to select the highest priority node from the ready Q.
3268   SUnit *pickNode(bool &IsTopNode) override {
3269     if (ReadyQ.empty()) return nullptr;
3270     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3271     SUnit *SU = ReadyQ.back();
3272     ReadyQ.pop_back();
3273     IsTopNode = false;
3274     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3275           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3276           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3277           << DAG->getDFSResult()->getSubtreeLevel(
3278             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3279           << "Scheduling " << *SU->getInstr());
3280     return SU;
3281   }
3282 
3283   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3284   void scheduleTree(unsigned SubtreeID) override {
3285     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3286   }
3287 
3288   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3289   /// DFSResults, and resort the priority Q.
3290   void schedNode(SUnit *SU, bool IsTopNode) override {
3291     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3292   }
3293 
3294   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3295 
3296   void releaseBottomNode(SUnit *SU) override {
3297     ReadyQ.push_back(SU);
3298     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3299   }
3300 };
3301 } // namespace
3302 
3303 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3304   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3305 }
3306 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3307   return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3308 }
3309 static MachineSchedRegistry ILPMaxRegistry(
3310   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3311 static MachineSchedRegistry ILPMinRegistry(
3312   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3313 
3314 //===----------------------------------------------------------------------===//
3315 // Machine Instruction Shuffler for Correctness Testing
3316 //===----------------------------------------------------------------------===//
3317 
3318 #ifndef NDEBUG
3319 namespace {
3320 /// Apply a less-than relation on the node order, which corresponds to the
3321 /// instruction order prior to scheduling. IsReverse implements greater-than.
3322 template<bool IsReverse>
3323 struct SUnitOrder {
3324   bool operator()(SUnit *A, SUnit *B) const {
3325     if (IsReverse)
3326       return A->NodeNum > B->NodeNum;
3327     else
3328       return A->NodeNum < B->NodeNum;
3329   }
3330 };
3331 
3332 /// Reorder instructions as much as possible.
3333 class InstructionShuffler : public MachineSchedStrategy {
3334   bool IsAlternating;
3335   bool IsTopDown;
3336 
3337   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3338   // gives nodes with a higher number higher priority causing the latest
3339   // instructions to be scheduled first.
3340   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3341     TopQ;
3342   // When scheduling bottom-up, use greater-than as the queue priority.
3343   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3344     BottomQ;
3345 public:
3346   InstructionShuffler(bool alternate, bool topdown)
3347     : IsAlternating(alternate), IsTopDown(topdown) {}
3348 
3349   void initialize(ScheduleDAGMI*) override {
3350     TopQ.clear();
3351     BottomQ.clear();
3352   }
3353 
3354   /// Implement MachineSchedStrategy interface.
3355   /// -----------------------------------------
3356 
3357   SUnit *pickNode(bool &IsTopNode) override {
3358     SUnit *SU;
3359     if (IsTopDown) {
3360       do {
3361         if (TopQ.empty()) return nullptr;
3362         SU = TopQ.top();
3363         TopQ.pop();
3364       } while (SU->isScheduled);
3365       IsTopNode = true;
3366     }
3367     else {
3368       do {
3369         if (BottomQ.empty()) return nullptr;
3370         SU = BottomQ.top();
3371         BottomQ.pop();
3372       } while (SU->isScheduled);
3373       IsTopNode = false;
3374     }
3375     if (IsAlternating)
3376       IsTopDown = !IsTopDown;
3377     return SU;
3378   }
3379 
3380   void schedNode(SUnit *SU, bool IsTopNode) override {}
3381 
3382   void releaseTopNode(SUnit *SU) override {
3383     TopQ.push(SU);
3384   }
3385   void releaseBottomNode(SUnit *SU) override {
3386     BottomQ.push(SU);
3387   }
3388 };
3389 } // namespace
3390 
3391 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3392   bool Alternate = !ForceTopDown && !ForceBottomUp;
3393   bool TopDown = !ForceBottomUp;
3394   assert((TopDown || !ForceTopDown) &&
3395          "-misched-topdown incompatible with -misched-bottomup");
3396   return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3397 }
3398 static MachineSchedRegistry ShufflerRegistry(
3399   "shuffle", "Shuffle machine instructions alternating directions",
3400   createInstructionShuffler);
3401 #endif // !NDEBUG
3402 
3403 //===----------------------------------------------------------------------===//
3404 // GraphWriter support for ScheduleDAGMILive.
3405 //===----------------------------------------------------------------------===//
3406 
3407 #ifndef NDEBUG
3408 namespace llvm {
3409 
3410 template<> struct GraphTraits<
3411   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3412 
3413 template<>
3414 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3415 
3416   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3417 
3418   static std::string getGraphName(const ScheduleDAG *G) {
3419     return G->MF.getName();
3420   }
3421 
3422   static bool renderGraphFromBottomUp() {
3423     return true;
3424   }
3425 
3426   static bool isNodeHidden(const SUnit *Node) {
3427     if (ViewMISchedCutoff == 0)
3428       return false;
3429     return (Node->Preds.size() > ViewMISchedCutoff
3430          || Node->Succs.size() > ViewMISchedCutoff);
3431   }
3432 
3433   /// If you want to override the dot attributes printed for a particular
3434   /// edge, override this method.
3435   static std::string getEdgeAttributes(const SUnit *Node,
3436                                        SUnitIterator EI,
3437                                        const ScheduleDAG *Graph) {
3438     if (EI.isArtificialDep())
3439       return "color=cyan,style=dashed";
3440     if (EI.isCtrlDep())
3441       return "color=blue,style=dashed";
3442     return "";
3443   }
3444 
3445   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3446     std::string Str;
3447     raw_string_ostream SS(Str);
3448     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3449     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3450       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3451     SS << "SU:" << SU->NodeNum;
3452     if (DFS)
3453       SS << " I:" << DFS->getNumInstrs(SU);
3454     return SS.str();
3455   }
3456   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3457     return G->getGraphNodeLabel(SU);
3458   }
3459 
3460   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3461     std::string Str("shape=Mrecord");
3462     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3463     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3464       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3465     if (DFS) {
3466       Str += ",style=filled,fillcolor=\"#";
3467       Str += DOT::getColorString(DFS->getSubtreeID(N));
3468       Str += '"';
3469     }
3470     return Str;
3471   }
3472 };
3473 } // namespace llvm
3474 #endif // NDEBUG
3475 
3476 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3477 /// rendered using 'dot'.
3478 ///
3479 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3480 #ifndef NDEBUG
3481   ViewGraph(this, Name, false, Title);
3482 #else
3483   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3484          << "systems with Graphviz or gv!\n";
3485 #endif  // NDEBUG
3486 }
3487 
3488 /// Out-of-line implementation with no arguments is handy for gdb.
3489 void ScheduleDAGMI::viewGraph() {
3490   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3491 }
3492