1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include <queue> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 69 cl::desc("Enable register pressure scheduling."), cl::init(true)); 70 71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 72 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 73 74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 75 cl::desc("Enable load clustering."), cl::init(true)); 76 77 // Experimental heuristics 78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 79 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 80 81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 82 cl::desc("Verify machine instrs before and after machine scheduling")); 83 84 // DAG subtrees must have at least this many nodes. 85 static const unsigned MinSubtreeSize = 8; 86 87 // Pin the vtables to this file. 88 void MachineSchedStrategy::anchor() {} 89 void ScheduleDAGMutation::anchor() {} 90 91 //===----------------------------------------------------------------------===// 92 // Machine Instruction Scheduling Pass and Registry 93 //===----------------------------------------------------------------------===// 94 95 MachineSchedContext::MachineSchedContext(): 96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 97 RegClassInfo = new RegisterClassInfo(); 98 } 99 100 MachineSchedContext::~MachineSchedContext() { 101 delete RegClassInfo; 102 } 103 104 namespace { 105 /// Base class for a machine scheduler class that can run at any point. 106 class MachineSchedulerBase : public MachineSchedContext, 107 public MachineFunctionPass { 108 public: 109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 110 111 void print(raw_ostream &O, const Module* = nullptr) const override; 112 113 protected: 114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 115 }; 116 117 /// MachineScheduler runs after coalescing and before register allocation. 118 class MachineScheduler : public MachineSchedulerBase { 119 public: 120 MachineScheduler(); 121 122 void getAnalysisUsage(AnalysisUsage &AU) const override; 123 124 bool runOnMachineFunction(MachineFunction&) override; 125 126 static char ID; // Class identification, replacement for typeinfo 127 128 protected: 129 ScheduleDAGInstrs *createMachineScheduler(); 130 }; 131 132 /// PostMachineScheduler runs after shortly before code emission. 133 class PostMachineScheduler : public MachineSchedulerBase { 134 public: 135 PostMachineScheduler(); 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override; 138 139 bool runOnMachineFunction(MachineFunction&) override; 140 141 static char ID; // Class identification, replacement for typeinfo 142 143 protected: 144 ScheduleDAGInstrs *createPostMachineScheduler(); 145 }; 146 } // namespace 147 148 char MachineScheduler::ID = 0; 149 150 char &llvm::MachineSchedulerID = MachineScheduler::ID; 151 152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 153 "Machine Instruction Scheduler", false, false) 154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 158 "Machine Instruction Scheduler", false, false) 159 160 MachineScheduler::MachineScheduler() 161 : MachineSchedulerBase(ID) { 162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesCFG(); 167 AU.addRequiredID(MachineDominatorsID); 168 AU.addRequired<MachineLoopInfo>(); 169 AU.addRequired<AAResultsWrapperPass>(); 170 AU.addRequired<TargetPassConfig>(); 171 AU.addRequired<SlotIndexes>(); 172 AU.addPreserved<SlotIndexes>(); 173 AU.addRequired<LiveIntervals>(); 174 AU.addPreserved<LiveIntervals>(); 175 MachineFunctionPass::getAnalysisUsage(AU); 176 } 177 178 char PostMachineScheduler::ID = 0; 179 180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 181 182 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 183 "PostRA Machine Instruction Scheduler", false, false) 184 185 PostMachineScheduler::PostMachineScheduler() 186 : MachineSchedulerBase(ID) { 187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 188 } 189 190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 191 AU.setPreservesCFG(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addRequired<MachineLoopInfo>(); 194 AU.addRequired<TargetPassConfig>(); 195 MachineFunctionPass::getAnalysisUsage(AU); 196 } 197 198 MachinePassRegistry MachineSchedRegistry::Registry; 199 200 /// A dummy default scheduler factory indicates whether the scheduler 201 /// is overridden on the command line. 202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 203 return nullptr; 204 } 205 206 /// MachineSchedOpt allows command line selection of the scheduler. 207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 208 RegisterPassParser<MachineSchedRegistry> > 209 MachineSchedOpt("misched", 210 cl::init(&useDefaultMachineSched), cl::Hidden, 211 cl::desc("Machine instruction scheduler to use")); 212 213 static MachineSchedRegistry 214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 215 useDefaultMachineSched); 216 217 static cl::opt<bool> EnableMachineSched( 218 "enable-misched", 219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 220 cl::Hidden); 221 222 static cl::opt<bool> EnablePostRAMachineSched( 223 "enable-post-misched", 224 cl::desc("Enable the post-ra machine instruction scheduling pass."), 225 cl::init(true), cl::Hidden); 226 227 /// Forward declare the standard machine scheduler. This will be used as the 228 /// default scheduler if the target does not set a default. 229 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 230 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 231 232 /// Decrement this iterator until reaching the top or a non-debug instr. 233 static MachineBasicBlock::const_iterator 234 priorNonDebug(MachineBasicBlock::const_iterator I, 235 MachineBasicBlock::const_iterator Beg) { 236 assert(I != Beg && "reached the top of the region, cannot decrement"); 237 while (--I != Beg) { 238 if (!I->isDebugValue()) 239 break; 240 } 241 return I; 242 } 243 244 /// Non-const version. 245 static MachineBasicBlock::iterator 246 priorNonDebug(MachineBasicBlock::iterator I, 247 MachineBasicBlock::const_iterator Beg) { 248 return const_cast<MachineInstr*>( 249 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 250 } 251 252 /// If this iterator is a debug value, increment until reaching the End or a 253 /// non-debug instruction. 254 static MachineBasicBlock::const_iterator 255 nextIfDebug(MachineBasicBlock::const_iterator I, 256 MachineBasicBlock::const_iterator End) { 257 for(; I != End; ++I) { 258 if (!I->isDebugValue()) 259 break; 260 } 261 return I; 262 } 263 264 /// Non-const version. 265 static MachineBasicBlock::iterator 266 nextIfDebug(MachineBasicBlock::iterator I, 267 MachineBasicBlock::const_iterator End) { 268 // Cast the return value to nonconst MachineInstr, then cast to an 269 // instr_iterator, which does not check for null, finally return a 270 // bundle_iterator. 271 return MachineBasicBlock::instr_iterator( 272 const_cast<MachineInstr*>( 273 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 274 } 275 276 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 277 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 278 // Select the scheduler, or set the default. 279 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 280 if (Ctor != useDefaultMachineSched) 281 return Ctor(this); 282 283 // Get the default scheduler set by the target for this function. 284 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 285 if (Scheduler) 286 return Scheduler; 287 288 // Default to GenericScheduler. 289 return createGenericSchedLive(this); 290 } 291 292 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 293 /// the caller. We don't have a command line option to override the postRA 294 /// scheduler. The Target must configure it. 295 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 296 // Get the postRA scheduler set by the target for this function. 297 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 298 if (Scheduler) 299 return Scheduler; 300 301 // Default to GenericScheduler. 302 return createGenericSchedPostRA(this); 303 } 304 305 /// Top-level MachineScheduler pass driver. 306 /// 307 /// Visit blocks in function order. Divide each block into scheduling regions 308 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 309 /// consistent with the DAG builder, which traverses the interior of the 310 /// scheduling regions bottom-up. 311 /// 312 /// This design avoids exposing scheduling boundaries to the DAG builder, 313 /// simplifying the DAG builder's support for "special" target instructions. 314 /// At the same time the design allows target schedulers to operate across 315 /// scheduling boundaries, for example to bundle the boudary instructions 316 /// without reordering them. This creates complexity, because the target 317 /// scheduler must update the RegionBegin and RegionEnd positions cached by 318 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 319 /// design would be to split blocks at scheduling boundaries, but LLVM has a 320 /// general bias against block splitting purely for implementation simplicity. 321 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 322 if (skipOptnoneFunction(*mf.getFunction())) 323 return false; 324 325 if (EnableMachineSched.getNumOccurrences()) { 326 if (!EnableMachineSched) 327 return false; 328 } else if (!mf.getSubtarget().enableMachineScheduler()) 329 return false; 330 331 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 332 333 // Initialize the context of the pass. 334 MF = &mf; 335 MLI = &getAnalysis<MachineLoopInfo>(); 336 MDT = &getAnalysis<MachineDominatorTree>(); 337 PassConfig = &getAnalysis<TargetPassConfig>(); 338 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 339 340 LIS = &getAnalysis<LiveIntervals>(); 341 342 if (VerifyScheduling) { 343 DEBUG(LIS->dump()); 344 MF->verify(this, "Before machine scheduling."); 345 } 346 RegClassInfo->runOnMachineFunction(*MF); 347 348 // Instantiate the selected scheduler for this target, function, and 349 // optimization level. 350 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 351 scheduleRegions(*Scheduler, false); 352 353 DEBUG(LIS->dump()); 354 if (VerifyScheduling) 355 MF->verify(this, "After machine scheduling."); 356 return true; 357 } 358 359 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 360 if (skipOptnoneFunction(*mf.getFunction())) 361 return false; 362 363 if (EnablePostRAMachineSched.getNumOccurrences()) { 364 if (!EnablePostRAMachineSched) 365 return false; 366 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 367 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 368 return false; 369 } 370 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 371 372 // Initialize the context of the pass. 373 MF = &mf; 374 PassConfig = &getAnalysis<TargetPassConfig>(); 375 376 if (VerifyScheduling) 377 MF->verify(this, "Before post machine scheduling."); 378 379 // Instantiate the selected scheduler for this target, function, and 380 // optimization level. 381 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 382 scheduleRegions(*Scheduler, true); 383 384 if (VerifyScheduling) 385 MF->verify(this, "After post machine scheduling."); 386 return true; 387 } 388 389 /// Return true of the given instruction should not be included in a scheduling 390 /// region. 391 /// 392 /// MachineScheduler does not currently support scheduling across calls. To 393 /// handle calls, the DAG builder needs to be modified to create register 394 /// anti/output dependencies on the registers clobbered by the call's regmask 395 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 396 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 397 /// the boundary, but there would be no benefit to postRA scheduling across 398 /// calls this late anyway. 399 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 400 MachineBasicBlock *MBB, 401 MachineFunction *MF, 402 const TargetInstrInfo *TII) { 403 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 404 } 405 406 /// Main driver for both MachineScheduler and PostMachineScheduler. 407 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 408 bool FixKillFlags) { 409 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 410 411 // Visit all machine basic blocks. 412 // 413 // TODO: Visit blocks in global postorder or postorder within the bottom-up 414 // loop tree. Then we can optionally compute global RegPressure. 415 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 416 MBB != MBBEnd; ++MBB) { 417 418 Scheduler.startBlock(&*MBB); 419 420 #ifndef NDEBUG 421 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 422 continue; 423 if (SchedOnlyBlock.getNumOccurrences() 424 && (int)SchedOnlyBlock != MBB->getNumber()) 425 continue; 426 #endif 427 428 // Break the block into scheduling regions [I, RegionEnd), and schedule each 429 // region as soon as it is discovered. RegionEnd points the scheduling 430 // boundary at the bottom of the region. The DAG does not include RegionEnd, 431 // but the region does (i.e. the next RegionEnd is above the previous 432 // RegionBegin). If the current block has no terminator then RegionEnd == 433 // MBB->end() for the bottom region. 434 // 435 // The Scheduler may insert instructions during either schedule() or 436 // exitRegion(), even for empty regions. So the local iterators 'I' and 437 // 'RegionEnd' are invalid across these calls. 438 // 439 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 440 // as a single instruction. 441 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 442 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 443 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 444 445 // Avoid decrementing RegionEnd for blocks with no terminator. 446 if (RegionEnd != MBB->end() || 447 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 448 --RegionEnd; 449 // Count the boundary instruction. 450 --RemainingInstrs; 451 } 452 453 // The next region starts above the previous region. Look backward in the 454 // instruction stream until we find the nearest boundary. 455 unsigned NumRegionInstrs = 0; 456 MachineBasicBlock::iterator I = RegionEnd; 457 for(;I != MBB->begin(); --I, --RemainingInstrs) { 458 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII)) 459 break; 460 if (!I->isDebugValue()) 461 ++NumRegionInstrs; 462 } 463 // Notify the scheduler of the region, even if we may skip scheduling 464 // it. Perhaps it still needs to be bundled. 465 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 466 467 // Skip empty scheduling regions (0 or 1 schedulable instructions). 468 if (I == RegionEnd || I == std::prev(RegionEnd)) { 469 // Close the current region. Bundle the terminator if needed. 470 // This invalidates 'RegionEnd' and 'I'. 471 Scheduler.exitRegion(); 472 continue; 473 } 474 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 475 DEBUG(dbgs() << MF->getName() 476 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 477 << "\n From: " << *I << " To: "; 478 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 479 else dbgs() << "End"; 480 dbgs() << " RegionInstrs: " << NumRegionInstrs 481 << " Remaining: " << RemainingInstrs << "\n"); 482 if (DumpCriticalPathLength) { 483 errs() << MF->getName(); 484 errs() << ":BB# " << MBB->getNumber(); 485 errs() << " " << MBB->getName() << " \n"; 486 } 487 488 // Schedule a region: possibly reorder instructions. 489 // This invalidates 'RegionEnd' and 'I'. 490 Scheduler.schedule(); 491 492 // Close the current region. 493 Scheduler.exitRegion(); 494 495 // Scheduling has invalidated the current iterator 'I'. Ask the 496 // scheduler for the top of it's scheduled region. 497 RegionEnd = Scheduler.begin(); 498 } 499 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 500 Scheduler.finishBlock(); 501 // FIXME: Ideally, no further passes should rely on kill flags. However, 502 // thumb2 size reduction is currently an exception, so the PostMIScheduler 503 // needs to do this. 504 if (FixKillFlags) 505 Scheduler.fixupKills(&*MBB); 506 } 507 Scheduler.finalizeSchedule(); 508 } 509 510 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 511 // unimplemented 512 } 513 514 LLVM_DUMP_METHOD 515 void ReadyQueue::dump() { 516 dbgs() << "Queue " << Name << ": "; 517 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 518 dbgs() << Queue[i]->NodeNum << " "; 519 dbgs() << "\n"; 520 } 521 522 //===----------------------------------------------------------------------===// 523 // ScheduleDAGMI - Basic machine instruction scheduling. This is 524 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 525 // virtual registers. 526 // ===----------------------------------------------------------------------===/ 527 528 // Provide a vtable anchor. 529 ScheduleDAGMI::~ScheduleDAGMI() { 530 } 531 532 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 533 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 534 } 535 536 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 537 if (SuccSU != &ExitSU) { 538 // Do not use WillCreateCycle, it assumes SD scheduling. 539 // If Pred is reachable from Succ, then the edge creates a cycle. 540 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 541 return false; 542 Topo.AddPred(SuccSU, PredDep.getSUnit()); 543 } 544 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 545 // Return true regardless of whether a new edge needed to be inserted. 546 return true; 547 } 548 549 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 550 /// NumPredsLeft reaches zero, release the successor node. 551 /// 552 /// FIXME: Adjust SuccSU height based on MinLatency. 553 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 554 SUnit *SuccSU = SuccEdge->getSUnit(); 555 556 if (SuccEdge->isWeak()) { 557 --SuccSU->WeakPredsLeft; 558 if (SuccEdge->isCluster()) 559 NextClusterSucc = SuccSU; 560 return; 561 } 562 #ifndef NDEBUG 563 if (SuccSU->NumPredsLeft == 0) { 564 dbgs() << "*** Scheduling failed! ***\n"; 565 SuccSU->dump(this); 566 dbgs() << " has been released too many times!\n"; 567 llvm_unreachable(nullptr); 568 } 569 #endif 570 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 571 // CurrCycle may have advanced since then. 572 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 573 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 574 575 --SuccSU->NumPredsLeft; 576 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 577 SchedImpl->releaseTopNode(SuccSU); 578 } 579 580 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 581 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 582 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 583 I != E; ++I) { 584 releaseSucc(SU, &*I); 585 } 586 } 587 588 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 589 /// NumSuccsLeft reaches zero, release the predecessor node. 590 /// 591 /// FIXME: Adjust PredSU height based on MinLatency. 592 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 593 SUnit *PredSU = PredEdge->getSUnit(); 594 595 if (PredEdge->isWeak()) { 596 --PredSU->WeakSuccsLeft; 597 if (PredEdge->isCluster()) 598 NextClusterPred = PredSU; 599 return; 600 } 601 #ifndef NDEBUG 602 if (PredSU->NumSuccsLeft == 0) { 603 dbgs() << "*** Scheduling failed! ***\n"; 604 PredSU->dump(this); 605 dbgs() << " has been released too many times!\n"; 606 llvm_unreachable(nullptr); 607 } 608 #endif 609 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 610 // CurrCycle may have advanced since then. 611 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 612 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 613 614 --PredSU->NumSuccsLeft; 615 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 616 SchedImpl->releaseBottomNode(PredSU); 617 } 618 619 /// releasePredecessors - Call releasePred on each of SU's predecessors. 620 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 621 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 622 I != E; ++I) { 623 releasePred(SU, &*I); 624 } 625 } 626 627 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 628 /// crossing a scheduling boundary. [begin, end) includes all instructions in 629 /// the region, including the boundary itself and single-instruction regions 630 /// that don't get scheduled. 631 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 632 MachineBasicBlock::iterator begin, 633 MachineBasicBlock::iterator end, 634 unsigned regioninstrs) 635 { 636 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 637 638 SchedImpl->initPolicy(begin, end, regioninstrs); 639 } 640 641 /// This is normally called from the main scheduler loop but may also be invoked 642 /// by the scheduling strategy to perform additional code motion. 643 void ScheduleDAGMI::moveInstruction( 644 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 645 // Advance RegionBegin if the first instruction moves down. 646 if (&*RegionBegin == MI) 647 ++RegionBegin; 648 649 // Update the instruction stream. 650 BB->splice(InsertPos, BB, MI); 651 652 // Update LiveIntervals 653 if (LIS) 654 LIS->handleMove(*MI, /*UpdateFlags=*/true); 655 656 // Recede RegionBegin if an instruction moves above the first. 657 if (RegionBegin == InsertPos) 658 RegionBegin = MI; 659 } 660 661 bool ScheduleDAGMI::checkSchedLimit() { 662 #ifndef NDEBUG 663 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 664 CurrentTop = CurrentBottom; 665 return false; 666 } 667 ++NumInstrsScheduled; 668 #endif 669 return true; 670 } 671 672 /// Per-region scheduling driver, called back from 673 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 674 /// does not consider liveness or register pressure. It is useful for PostRA 675 /// scheduling and potentially other custom schedulers. 676 void ScheduleDAGMI::schedule() { 677 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 678 DEBUG(SchedImpl->dumpPolicy()); 679 680 // Build the DAG. 681 buildSchedGraph(AA); 682 683 Topo.InitDAGTopologicalSorting(); 684 685 postprocessDAG(); 686 687 SmallVector<SUnit*, 8> TopRoots, BotRoots; 688 findRootsAndBiasEdges(TopRoots, BotRoots); 689 690 // Initialize the strategy before modifying the DAG. 691 // This may initialize a DFSResult to be used for queue priority. 692 SchedImpl->initialize(this); 693 694 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 695 SUnits[su].dumpAll(this)); 696 if (ViewMISchedDAGs) viewGraph(); 697 698 // Initialize ready queues now that the DAG and priority data are finalized. 699 initQueues(TopRoots, BotRoots); 700 701 bool IsTopNode = false; 702 while (true) { 703 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 704 SUnit *SU = SchedImpl->pickNode(IsTopNode); 705 if (!SU) break; 706 707 assert(!SU->isScheduled && "Node already scheduled"); 708 if (!checkSchedLimit()) 709 break; 710 711 MachineInstr *MI = SU->getInstr(); 712 if (IsTopNode) { 713 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 714 if (&*CurrentTop == MI) 715 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 716 else 717 moveInstruction(MI, CurrentTop); 718 } 719 else { 720 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 721 MachineBasicBlock::iterator priorII = 722 priorNonDebug(CurrentBottom, CurrentTop); 723 if (&*priorII == MI) 724 CurrentBottom = priorII; 725 else { 726 if (&*CurrentTop == MI) 727 CurrentTop = nextIfDebug(++CurrentTop, priorII); 728 moveInstruction(MI, CurrentBottom); 729 CurrentBottom = MI; 730 } 731 } 732 // Notify the scheduling strategy before updating the DAG. 733 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 734 // runs, it can then use the accurate ReadyCycle time to determine whether 735 // newly released nodes can move to the readyQ. 736 SchedImpl->schedNode(SU, IsTopNode); 737 738 updateQueues(SU, IsTopNode); 739 } 740 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 741 742 placeDebugValues(); 743 744 DEBUG({ 745 unsigned BBNum = begin()->getParent()->getNumber(); 746 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 747 dumpSchedule(); 748 dbgs() << '\n'; 749 }); 750 } 751 752 /// Apply each ScheduleDAGMutation step in order. 753 void ScheduleDAGMI::postprocessDAG() { 754 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 755 Mutations[i]->apply(this); 756 } 757 } 758 759 void ScheduleDAGMI:: 760 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 761 SmallVectorImpl<SUnit*> &BotRoots) { 762 for (std::vector<SUnit>::iterator 763 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 764 SUnit *SU = &(*I); 765 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 766 767 // Order predecessors so DFSResult follows the critical path. 768 SU->biasCriticalPath(); 769 770 // A SUnit is ready to top schedule if it has no predecessors. 771 if (!I->NumPredsLeft) 772 TopRoots.push_back(SU); 773 // A SUnit is ready to bottom schedule if it has no successors. 774 if (!I->NumSuccsLeft) 775 BotRoots.push_back(SU); 776 } 777 ExitSU.biasCriticalPath(); 778 } 779 780 /// Identify DAG roots and setup scheduler queues. 781 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 782 ArrayRef<SUnit*> BotRoots) { 783 NextClusterSucc = nullptr; 784 NextClusterPred = nullptr; 785 786 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 787 // 788 // Nodes with unreleased weak edges can still be roots. 789 // Release top roots in forward order. 790 for (SmallVectorImpl<SUnit*>::const_iterator 791 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 792 SchedImpl->releaseTopNode(*I); 793 } 794 // Release bottom roots in reverse order so the higher priority nodes appear 795 // first. This is more natural and slightly more efficient. 796 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 797 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 798 SchedImpl->releaseBottomNode(*I); 799 } 800 801 releaseSuccessors(&EntrySU); 802 releasePredecessors(&ExitSU); 803 804 SchedImpl->registerRoots(); 805 806 // Advance past initial DebugValues. 807 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 808 CurrentBottom = RegionEnd; 809 } 810 811 /// Update scheduler queues after scheduling an instruction. 812 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 813 // Release dependent instructions for scheduling. 814 if (IsTopNode) 815 releaseSuccessors(SU); 816 else 817 releasePredecessors(SU); 818 819 SU->isScheduled = true; 820 } 821 822 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 823 void ScheduleDAGMI::placeDebugValues() { 824 // If first instruction was a DBG_VALUE then put it back. 825 if (FirstDbgValue) { 826 BB->splice(RegionBegin, BB, FirstDbgValue); 827 RegionBegin = FirstDbgValue; 828 } 829 830 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 831 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 832 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 833 MachineInstr *DbgValue = P.first; 834 MachineBasicBlock::iterator OrigPrevMI = P.second; 835 if (&*RegionBegin == DbgValue) 836 ++RegionBegin; 837 BB->splice(++OrigPrevMI, BB, DbgValue); 838 if (OrigPrevMI == std::prev(RegionEnd)) 839 RegionEnd = DbgValue; 840 } 841 DbgValues.clear(); 842 FirstDbgValue = nullptr; 843 } 844 845 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 846 void ScheduleDAGMI::dumpSchedule() const { 847 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 848 if (SUnit *SU = getSUnit(&(*MI))) 849 SU->dump(this); 850 else 851 dbgs() << "Missing SUnit\n"; 852 } 853 } 854 #endif 855 856 //===----------------------------------------------------------------------===// 857 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 858 // preservation. 859 //===----------------------------------------------------------------------===// 860 861 ScheduleDAGMILive::~ScheduleDAGMILive() { 862 delete DFSResult; 863 } 864 865 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 866 /// crossing a scheduling boundary. [begin, end) includes all instructions in 867 /// the region, including the boundary itself and single-instruction regions 868 /// that don't get scheduled. 869 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 870 MachineBasicBlock::iterator begin, 871 MachineBasicBlock::iterator end, 872 unsigned regioninstrs) 873 { 874 // ScheduleDAGMI initializes SchedImpl's per-region policy. 875 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 876 877 // For convenience remember the end of the liveness region. 878 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 879 880 SUPressureDiffs.clear(); 881 882 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 883 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 884 885 if (ShouldTrackLaneMasks) { 886 if (!ShouldTrackPressure) 887 report_fatal_error("ShouldTrackLaneMasks requires ShouldTrackPressure"); 888 // Dead subregister defs have no users and therefore no dependencies, 889 // moving them around may cause liveintervals to degrade into multiple 890 // components. Change independent components to have their own vreg to avoid 891 // this. 892 if (!DisconnectedComponentsRenamed) 893 LIS->renameDisconnectedComponents(); 894 } 895 } 896 897 // Setup the register pressure trackers for the top scheduled top and bottom 898 // scheduled regions. 899 void ScheduleDAGMILive::initRegPressure() { 900 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 901 ShouldTrackLaneMasks, false); 902 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 903 ShouldTrackLaneMasks, false); 904 905 // Close the RPTracker to finalize live ins. 906 RPTracker.closeRegion(); 907 908 DEBUG(RPTracker.dump()); 909 910 // Initialize the live ins and live outs. 911 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 912 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 913 914 // Close one end of the tracker so we can call 915 // getMaxUpward/DownwardPressureDelta before advancing across any 916 // instructions. This converts currently live regs into live ins/outs. 917 TopRPTracker.closeTop(); 918 BotRPTracker.closeBottom(); 919 920 BotRPTracker.initLiveThru(RPTracker); 921 if (!BotRPTracker.getLiveThru().empty()) { 922 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 923 DEBUG(dbgs() << "Live Thru: "; 924 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 925 }; 926 927 // For each live out vreg reduce the pressure change associated with other 928 // uses of the same vreg below the live-out reaching def. 929 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 930 931 // Account for liveness generated by the region boundary. 932 if (LiveRegionEnd != RegionEnd) { 933 SmallVector<RegisterMaskPair, 8> LiveUses; 934 BotRPTracker.recede(&LiveUses); 935 updatePressureDiffs(LiveUses); 936 } 937 938 DEBUG( 939 dbgs() << "Top Pressure:\n"; 940 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 941 dbgs() << "Bottom Pressure:\n"; 942 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 943 ); 944 945 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 946 947 // Cache the list of excess pressure sets in this region. This will also track 948 // the max pressure in the scheduled code for these sets. 949 RegionCriticalPSets.clear(); 950 const std::vector<unsigned> &RegionPressure = 951 RPTracker.getPressure().MaxSetPressure; 952 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 953 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 954 if (RegionPressure[i] > Limit) { 955 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 956 << " Limit " << Limit 957 << " Actual " << RegionPressure[i] << "\n"); 958 RegionCriticalPSets.push_back(PressureChange(i)); 959 } 960 } 961 DEBUG(dbgs() << "Excess PSets: "; 962 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 963 dbgs() << TRI->getRegPressureSetName( 964 RegionCriticalPSets[i].getPSet()) << " "; 965 dbgs() << "\n"); 966 } 967 968 void ScheduleDAGMILive:: 969 updateScheduledPressure(const SUnit *SU, 970 const std::vector<unsigned> &NewMaxPressure) { 971 const PressureDiff &PDiff = getPressureDiff(SU); 972 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 973 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 974 I != E; ++I) { 975 if (!I->isValid()) 976 break; 977 unsigned ID = I->getPSet(); 978 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 979 ++CritIdx; 980 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 981 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 982 && NewMaxPressure[ID] <= INT16_MAX) 983 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 984 } 985 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 986 if (NewMaxPressure[ID] >= Limit - 2) { 987 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 988 << NewMaxPressure[ID] 989 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 990 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 991 } 992 } 993 } 994 995 /// Update the PressureDiff array for liveness after scheduling this 996 /// instruction. 997 void ScheduleDAGMILive::updatePressureDiffs( 998 ArrayRef<RegisterMaskPair> LiveUses) { 999 for (const RegisterMaskPair &P : LiveUses) { 1000 unsigned Reg = P.RegUnit; 1001 /// FIXME: Currently assuming single-use physregs. 1002 if (!TRI->isVirtualRegister(Reg)) 1003 continue; 1004 1005 if (ShouldTrackLaneMasks) { 1006 // If the register has just become live then other uses won't change 1007 // this fact anymore => decrement pressure. 1008 // If the register has just become dead then other uses make it come 1009 // back to life => increment pressure. 1010 bool Decrement = P.LaneMask != 0; 1011 1012 for (const VReg2SUnit &V2SU 1013 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1014 SUnit &SU = *V2SU.SU; 1015 if (SU.isScheduled || &SU == &ExitSU) 1016 continue; 1017 1018 PressureDiff &PDiff = getPressureDiff(&SU); 1019 PDiff.addPressureChange(Reg, Decrement, &MRI); 1020 DEBUG( 1021 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1022 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1023 << ' ' << *SU.getInstr(); 1024 dbgs() << " to "; 1025 PDiff.dump(*TRI); 1026 ); 1027 } 1028 } else { 1029 assert(P.LaneMask != 0); 1030 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1031 // This may be called before CurrentBottom has been initialized. However, 1032 // BotRPTracker must have a valid position. We want the value live into the 1033 // instruction or live out of the block, so ask for the previous 1034 // instruction's live-out. 1035 const LiveInterval &LI = LIS->getInterval(Reg); 1036 VNInfo *VNI; 1037 MachineBasicBlock::const_iterator I = 1038 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1039 if (I == BB->end()) 1040 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1041 else { 1042 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1043 VNI = LRQ.valueIn(); 1044 } 1045 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1046 assert(VNI && "No live value at use."); 1047 for (const VReg2SUnit &V2SU 1048 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1049 SUnit *SU = V2SU.SU; 1050 // If this use comes before the reaching def, it cannot be a last use, 1051 // so decrease its pressure change. 1052 if (!SU->isScheduled && SU != &ExitSU) { 1053 LiveQueryResult LRQ = 1054 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1055 if (LRQ.valueIn() == VNI) { 1056 PressureDiff &PDiff = getPressureDiff(SU); 1057 PDiff.addPressureChange(Reg, true, &MRI); 1058 DEBUG( 1059 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1060 << *SU->getInstr(); 1061 dbgs() << " to "; 1062 PDiff.dump(*TRI); 1063 ); 1064 } 1065 } 1066 } 1067 } 1068 } 1069 } 1070 1071 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1072 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1073 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1074 /// 1075 /// This is a skeletal driver, with all the functionality pushed into helpers, 1076 /// so that it can be easily extended by experimental schedulers. Generally, 1077 /// implementing MachineSchedStrategy should be sufficient to implement a new 1078 /// scheduling algorithm. However, if a scheduler further subclasses 1079 /// ScheduleDAGMILive then it will want to override this virtual method in order 1080 /// to update any specialized state. 1081 void ScheduleDAGMILive::schedule() { 1082 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1083 DEBUG(SchedImpl->dumpPolicy()); 1084 buildDAGWithRegPressure(); 1085 1086 Topo.InitDAGTopologicalSorting(); 1087 1088 postprocessDAG(); 1089 1090 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1091 findRootsAndBiasEdges(TopRoots, BotRoots); 1092 1093 // Initialize the strategy before modifying the DAG. 1094 // This may initialize a DFSResult to be used for queue priority. 1095 SchedImpl->initialize(this); 1096 1097 DEBUG( 1098 for (const SUnit &SU : SUnits) { 1099 SU.dumpAll(this); 1100 if (ShouldTrackPressure) { 1101 dbgs() << " Pressure Diff : "; 1102 getPressureDiff(&SU).dump(*TRI); 1103 } 1104 dbgs() << '\n'; 1105 } 1106 ); 1107 if (ViewMISchedDAGs) viewGraph(); 1108 1109 // Initialize ready queues now that the DAG and priority data are finalized. 1110 initQueues(TopRoots, BotRoots); 1111 1112 if (ShouldTrackPressure) { 1113 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1114 TopRPTracker.setPos(CurrentTop); 1115 } 1116 1117 bool IsTopNode = false; 1118 while (true) { 1119 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1120 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1121 if (!SU) break; 1122 1123 assert(!SU->isScheduled && "Node already scheduled"); 1124 if (!checkSchedLimit()) 1125 break; 1126 1127 scheduleMI(SU, IsTopNode); 1128 1129 if (DFSResult) { 1130 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1131 if (!ScheduledTrees.test(SubtreeID)) { 1132 ScheduledTrees.set(SubtreeID); 1133 DFSResult->scheduleTree(SubtreeID); 1134 SchedImpl->scheduleTree(SubtreeID); 1135 } 1136 } 1137 1138 // Notify the scheduling strategy after updating the DAG. 1139 SchedImpl->schedNode(SU, IsTopNode); 1140 1141 updateQueues(SU, IsTopNode); 1142 } 1143 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1144 1145 placeDebugValues(); 1146 1147 DEBUG({ 1148 unsigned BBNum = begin()->getParent()->getNumber(); 1149 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1150 dumpSchedule(); 1151 dbgs() << '\n'; 1152 }); 1153 } 1154 1155 /// Build the DAG and setup three register pressure trackers. 1156 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1157 if (!ShouldTrackPressure) { 1158 RPTracker.reset(); 1159 RegionCriticalPSets.clear(); 1160 buildSchedGraph(AA); 1161 return; 1162 } 1163 1164 // Initialize the register pressure tracker used by buildSchedGraph. 1165 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1166 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1167 1168 // Account for liveness generate by the region boundary. 1169 if (LiveRegionEnd != RegionEnd) 1170 RPTracker.recede(); 1171 1172 // Build the DAG, and compute current register pressure. 1173 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1174 1175 // Initialize top/bottom trackers after computing region pressure. 1176 initRegPressure(); 1177 } 1178 1179 void ScheduleDAGMILive::computeDFSResult() { 1180 if (!DFSResult) 1181 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1182 DFSResult->clear(); 1183 ScheduledTrees.clear(); 1184 DFSResult->resize(SUnits.size()); 1185 DFSResult->compute(SUnits); 1186 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1187 } 1188 1189 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1190 /// only provides the critical path for single block loops. To handle loops that 1191 /// span blocks, we could use the vreg path latencies provided by 1192 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1193 /// available for use in the scheduler. 1194 /// 1195 /// The cyclic path estimation identifies a def-use pair that crosses the back 1196 /// edge and considers the depth and height of the nodes. For example, consider 1197 /// the following instruction sequence where each instruction has unit latency 1198 /// and defines an epomymous virtual register: 1199 /// 1200 /// a->b(a,c)->c(b)->d(c)->exit 1201 /// 1202 /// The cyclic critical path is a two cycles: b->c->b 1203 /// The acyclic critical path is four cycles: a->b->c->d->exit 1204 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1205 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1206 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1207 /// LiveInDepth = depth(b) = len(a->b) = 1 1208 /// 1209 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1210 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1211 /// CyclicCriticalPath = min(2, 2) = 2 1212 /// 1213 /// This could be relevant to PostRA scheduling, but is currently implemented 1214 /// assuming LiveIntervals. 1215 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1216 // This only applies to single block loop. 1217 if (!BB->isSuccessor(BB)) 1218 return 0; 1219 1220 unsigned MaxCyclicLatency = 0; 1221 // Visit each live out vreg def to find def/use pairs that cross iterations. 1222 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1223 unsigned Reg = P.RegUnit; 1224 if (!TRI->isVirtualRegister(Reg)) 1225 continue; 1226 const LiveInterval &LI = LIS->getInterval(Reg); 1227 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1228 if (!DefVNI) 1229 continue; 1230 1231 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1232 const SUnit *DefSU = getSUnit(DefMI); 1233 if (!DefSU) 1234 continue; 1235 1236 unsigned LiveOutHeight = DefSU->getHeight(); 1237 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1238 // Visit all local users of the vreg def. 1239 for (const VReg2SUnit &V2SU 1240 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1241 SUnit *SU = V2SU.SU; 1242 if (SU == &ExitSU) 1243 continue; 1244 1245 // Only consider uses of the phi. 1246 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1247 if (!LRQ.valueIn()->isPHIDef()) 1248 continue; 1249 1250 // Assume that a path spanning two iterations is a cycle, which could 1251 // overestimate in strange cases. This allows cyclic latency to be 1252 // estimated as the minimum slack of the vreg's depth or height. 1253 unsigned CyclicLatency = 0; 1254 if (LiveOutDepth > SU->getDepth()) 1255 CyclicLatency = LiveOutDepth - SU->getDepth(); 1256 1257 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1258 if (LiveInHeight > LiveOutHeight) { 1259 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1260 CyclicLatency = LiveInHeight - LiveOutHeight; 1261 } 1262 else 1263 CyclicLatency = 0; 1264 1265 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1266 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1267 if (CyclicLatency > MaxCyclicLatency) 1268 MaxCyclicLatency = CyclicLatency; 1269 } 1270 } 1271 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1272 return MaxCyclicLatency; 1273 } 1274 1275 /// Move an instruction and update register pressure. 1276 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1277 // Move the instruction to its new location in the instruction stream. 1278 MachineInstr *MI = SU->getInstr(); 1279 1280 if (IsTopNode) { 1281 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1282 if (&*CurrentTop == MI) 1283 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1284 else { 1285 moveInstruction(MI, CurrentTop); 1286 TopRPTracker.setPos(MI); 1287 } 1288 1289 if (ShouldTrackPressure) { 1290 // Update top scheduled pressure. 1291 RegisterOperands RegOpers; 1292 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1293 if (ShouldTrackLaneMasks) { 1294 // Adjust liveness and add missing dead+read-undef flags. 1295 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1296 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1297 } else { 1298 // Adjust for missing dead-def flags. 1299 RegOpers.detectDeadDefs(*MI, *LIS); 1300 } 1301 1302 TopRPTracker.advance(RegOpers); 1303 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1304 DEBUG( 1305 dbgs() << "Top Pressure:\n"; 1306 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1307 ); 1308 1309 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1310 } 1311 } 1312 else { 1313 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1314 MachineBasicBlock::iterator priorII = 1315 priorNonDebug(CurrentBottom, CurrentTop); 1316 if (&*priorII == MI) 1317 CurrentBottom = priorII; 1318 else { 1319 if (&*CurrentTop == MI) { 1320 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1321 TopRPTracker.setPos(CurrentTop); 1322 } 1323 moveInstruction(MI, CurrentBottom); 1324 CurrentBottom = MI; 1325 } 1326 if (ShouldTrackPressure) { 1327 RegisterOperands RegOpers; 1328 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1329 if (ShouldTrackLaneMasks) { 1330 // Adjust liveness and add missing dead+read-undef flags. 1331 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1332 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1333 } else { 1334 // Adjust for missing dead-def flags. 1335 RegOpers.detectDeadDefs(*MI, *LIS); 1336 } 1337 1338 BotRPTracker.recedeSkipDebugValues(); 1339 SmallVector<RegisterMaskPair, 8> LiveUses; 1340 BotRPTracker.recede(RegOpers, &LiveUses); 1341 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1342 DEBUG( 1343 dbgs() << "Bottom Pressure:\n"; 1344 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1345 ); 1346 1347 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1348 updatePressureDiffs(LiveUses); 1349 } 1350 } 1351 } 1352 1353 //===----------------------------------------------------------------------===// 1354 // LoadClusterMutation - DAG post-processing to cluster loads. 1355 //===----------------------------------------------------------------------===// 1356 1357 namespace { 1358 /// \brief Post-process the DAG to create cluster edges between neighboring 1359 /// loads. 1360 class LoadClusterMutation : public ScheduleDAGMutation { 1361 struct LoadInfo { 1362 SUnit *SU; 1363 unsigned BaseReg; 1364 int64_t Offset; 1365 LoadInfo(SUnit *su, unsigned reg, int64_t ofs) 1366 : SU(su), BaseReg(reg), Offset(ofs) {} 1367 1368 bool operator<(const LoadInfo &RHS) const { 1369 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset); 1370 } 1371 }; 1372 1373 const TargetInstrInfo *TII; 1374 const TargetRegisterInfo *TRI; 1375 public: 1376 LoadClusterMutation(const TargetInstrInfo *tii, 1377 const TargetRegisterInfo *tri) 1378 : TII(tii), TRI(tri) {} 1379 1380 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1381 protected: 1382 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1383 }; 1384 } // anonymous 1385 1386 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1387 ScheduleDAGMI *DAG) { 1388 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1389 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1390 SUnit *SU = Loads[Idx]; 1391 unsigned BaseReg; 1392 int64_t Offset; 1393 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1394 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1395 } 1396 if (LoadRecords.size() < 2) 1397 return; 1398 std::sort(LoadRecords.begin(), LoadRecords.end()); 1399 unsigned ClusterLength = 1; 1400 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1401 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1402 ClusterLength = 1; 1403 continue; 1404 } 1405 1406 SUnit *SUa = LoadRecords[Idx].SU; 1407 SUnit *SUb = LoadRecords[Idx+1].SU; 1408 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1409 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1410 1411 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1412 << SUb->NodeNum << ")\n"); 1413 // Copy successor edges from SUa to SUb. Interleaving computation 1414 // dependent on SUa can prevent load combining due to register reuse. 1415 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1416 // loads should have effectively the same inputs. 1417 for (SUnit::const_succ_iterator 1418 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1419 if (SI->getSUnit() == SUb) 1420 continue; 1421 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1422 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1423 } 1424 ++ClusterLength; 1425 } 1426 else 1427 ClusterLength = 1; 1428 } 1429 } 1430 1431 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1432 void LoadClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1433 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1434 1435 // Map DAG NodeNum to store chain ID. 1436 DenseMap<unsigned, unsigned> StoreChainIDs; 1437 // Map each store chain to a set of dependent loads. 1438 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1439 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1440 SUnit *SU = &DAG->SUnits[Idx]; 1441 if (!SU->getInstr()->mayLoad()) 1442 continue; 1443 unsigned ChainPredID = DAG->SUnits.size(); 1444 for (SUnit::const_pred_iterator 1445 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1446 if (PI->isCtrl()) { 1447 ChainPredID = PI->getSUnit()->NodeNum; 1448 break; 1449 } 1450 } 1451 // Check if this chain-like pred has been seen 1452 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1453 unsigned NumChains = StoreChainDependents.size(); 1454 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1455 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1456 if (Result.second) 1457 StoreChainDependents.resize(NumChains + 1); 1458 StoreChainDependents[Result.first->second].push_back(SU); 1459 } 1460 // Iterate over the store chains. 1461 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1462 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1463 } 1464 1465 //===----------------------------------------------------------------------===// 1466 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1467 //===----------------------------------------------------------------------===// 1468 1469 namespace { 1470 /// \brief Post-process the DAG to create cluster edges between instructions 1471 /// that may be fused by the processor into a single operation. 1472 class MacroFusion : public ScheduleDAGMutation { 1473 const TargetInstrInfo &TII; 1474 const TargetRegisterInfo &TRI; 1475 public: 1476 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) 1477 : TII(TII), TRI(TRI) {} 1478 1479 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1480 }; 1481 } // anonymous 1482 1483 /// Returns true if \p MI reads a register written by \p Other. 1484 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI, 1485 const MachineInstr &Other) { 1486 for (const MachineOperand &MO : MI.uses()) { 1487 if (!MO.isReg() || !MO.readsReg()) 1488 continue; 1489 1490 unsigned Reg = MO.getReg(); 1491 if (Other.modifiesRegister(Reg, &TRI)) 1492 return true; 1493 } 1494 return false; 1495 } 1496 1497 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1498 /// fused operations. 1499 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1500 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1501 1502 // For now, assume targets can only fuse with the branch. 1503 SUnit &ExitSU = DAG->ExitSU; 1504 MachineInstr *Branch = ExitSU.getInstr(); 1505 if (!Branch) 1506 return; 1507 1508 for (SUnit &SU : DAG->SUnits) { 1509 // SUnits with successors can't be schedule in front of the ExitSU. 1510 if (!SU.Succs.empty()) 1511 continue; 1512 // We only care if the node writes to a register that the branch reads. 1513 MachineInstr *Pred = SU.getInstr(); 1514 if (!HasDataDep(TRI, *Branch, *Pred)) 1515 continue; 1516 1517 if (!TII.shouldScheduleAdjacent(Pred, Branch)) 1518 continue; 1519 1520 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1521 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1522 // need to copy predecessor edges from ExitSU to SU, since top-down 1523 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1524 // of SU, we could create an artificial edge from the deepest root, but it 1525 // hasn't been needed yet. 1526 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1527 (void)Success; 1528 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1529 1530 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1531 break; 1532 } 1533 } 1534 1535 //===----------------------------------------------------------------------===// 1536 // CopyConstrain - DAG post-processing to encourage copy elimination. 1537 //===----------------------------------------------------------------------===// 1538 1539 namespace { 1540 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1541 /// the one use that defines the copy's source vreg, most likely an induction 1542 /// variable increment. 1543 class CopyConstrain : public ScheduleDAGMutation { 1544 // Transient state. 1545 SlotIndex RegionBeginIdx; 1546 // RegionEndIdx is the slot index of the last non-debug instruction in the 1547 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1548 SlotIndex RegionEndIdx; 1549 public: 1550 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1551 1552 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1553 1554 protected: 1555 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1556 }; 1557 } // anonymous 1558 1559 /// constrainLocalCopy handles two possibilities: 1560 /// 1) Local src: 1561 /// I0: = dst 1562 /// I1: src = ... 1563 /// I2: = dst 1564 /// I3: dst = src (copy) 1565 /// (create pred->succ edges I0->I1, I2->I1) 1566 /// 1567 /// 2) Local copy: 1568 /// I0: dst = src (copy) 1569 /// I1: = dst 1570 /// I2: src = ... 1571 /// I3: = dst 1572 /// (create pred->succ edges I1->I2, I3->I2) 1573 /// 1574 /// Although the MachineScheduler is currently constrained to single blocks, 1575 /// this algorithm should handle extended blocks. An EBB is a set of 1576 /// contiguously numbered blocks such that the previous block in the EBB is 1577 /// always the single predecessor. 1578 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1579 LiveIntervals *LIS = DAG->getLIS(); 1580 MachineInstr *Copy = CopySU->getInstr(); 1581 1582 // Check for pure vreg copies. 1583 const MachineOperand &SrcOp = Copy->getOperand(1); 1584 unsigned SrcReg = SrcOp.getReg(); 1585 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1586 return; 1587 1588 const MachineOperand &DstOp = Copy->getOperand(0); 1589 unsigned DstReg = DstOp.getReg(); 1590 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1591 return; 1592 1593 // Check if either the dest or source is local. If it's live across a back 1594 // edge, it's not local. Note that if both vregs are live across the back 1595 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1596 // If both the copy's source and dest are local live intervals, then we 1597 // should treat the dest as the global for the purpose of adding 1598 // constraints. This adds edges from source's other uses to the copy. 1599 unsigned LocalReg = SrcReg; 1600 unsigned GlobalReg = DstReg; 1601 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1602 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1603 LocalReg = DstReg; 1604 GlobalReg = SrcReg; 1605 LocalLI = &LIS->getInterval(LocalReg); 1606 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1607 return; 1608 } 1609 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1610 1611 // Find the global segment after the start of the local LI. 1612 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1613 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1614 // local live range. We could create edges from other global uses to the local 1615 // start, but the coalescer should have already eliminated these cases, so 1616 // don't bother dealing with it. 1617 if (GlobalSegment == GlobalLI->end()) 1618 return; 1619 1620 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1621 // returned the next global segment. But if GlobalSegment overlaps with 1622 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1623 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1624 if (GlobalSegment->contains(LocalLI->beginIndex())) 1625 ++GlobalSegment; 1626 1627 if (GlobalSegment == GlobalLI->end()) 1628 return; 1629 1630 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1631 if (GlobalSegment != GlobalLI->begin()) { 1632 // Two address defs have no hole. 1633 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1634 GlobalSegment->start)) { 1635 return; 1636 } 1637 // If the prior global segment may be defined by the same two-address 1638 // instruction that also defines LocalLI, then can't make a hole here. 1639 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1640 LocalLI->beginIndex())) { 1641 return; 1642 } 1643 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1644 // it would be a disconnected component in the live range. 1645 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1646 "Disconnected LRG within the scheduling region."); 1647 } 1648 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1649 if (!GlobalDef) 1650 return; 1651 1652 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1653 if (!GlobalSU) 1654 return; 1655 1656 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1657 // constraining the uses of the last local def to precede GlobalDef. 1658 SmallVector<SUnit*,8> LocalUses; 1659 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1660 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1661 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1662 for (SUnit::const_succ_iterator 1663 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1664 I != E; ++I) { 1665 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1666 continue; 1667 if (I->getSUnit() == GlobalSU) 1668 continue; 1669 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1670 return; 1671 LocalUses.push_back(I->getSUnit()); 1672 } 1673 // Open the top of the GlobalLI hole by constraining any earlier global uses 1674 // to precede the start of LocalLI. 1675 SmallVector<SUnit*,8> GlobalUses; 1676 MachineInstr *FirstLocalDef = 1677 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1678 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1679 for (SUnit::const_pred_iterator 1680 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1681 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1682 continue; 1683 if (I->getSUnit() == FirstLocalSU) 1684 continue; 1685 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1686 return; 1687 GlobalUses.push_back(I->getSUnit()); 1688 } 1689 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1690 // Add the weak edges. 1691 for (SmallVectorImpl<SUnit*>::const_iterator 1692 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1693 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1694 << GlobalSU->NodeNum << ")\n"); 1695 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1696 } 1697 for (SmallVectorImpl<SUnit*>::const_iterator 1698 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1699 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1700 << FirstLocalSU->NodeNum << ")\n"); 1701 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1702 } 1703 } 1704 1705 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1706 /// copy elimination. 1707 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1708 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1709 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1710 1711 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1712 if (FirstPos == DAG->end()) 1713 return; 1714 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1715 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1716 *priorNonDebug(DAG->end(), DAG->begin())); 1717 1718 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1719 SUnit *SU = &DAG->SUnits[Idx]; 1720 if (!SU->getInstr()->isCopy()) 1721 continue; 1722 1723 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1724 } 1725 } 1726 1727 //===----------------------------------------------------------------------===// 1728 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1729 // and possibly other custom schedulers. 1730 //===----------------------------------------------------------------------===// 1731 1732 static const unsigned InvalidCycle = ~0U; 1733 1734 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1735 1736 void SchedBoundary::reset() { 1737 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1738 // Destroying and reconstructing it is very expensive though. So keep 1739 // invalid, placeholder HazardRecs. 1740 if (HazardRec && HazardRec->isEnabled()) { 1741 delete HazardRec; 1742 HazardRec = nullptr; 1743 } 1744 Available.clear(); 1745 Pending.clear(); 1746 CheckPending = false; 1747 NextSUs.clear(); 1748 CurrCycle = 0; 1749 CurrMOps = 0; 1750 MinReadyCycle = UINT_MAX; 1751 ExpectedLatency = 0; 1752 DependentLatency = 0; 1753 RetiredMOps = 0; 1754 MaxExecutedResCount = 0; 1755 ZoneCritResIdx = 0; 1756 IsResourceLimited = false; 1757 ReservedCycles.clear(); 1758 #ifndef NDEBUG 1759 // Track the maximum number of stall cycles that could arise either from the 1760 // latency of a DAG edge or the number of cycles that a processor resource is 1761 // reserved (SchedBoundary::ReservedCycles). 1762 MaxObservedStall = 0; 1763 #endif 1764 // Reserve a zero-count for invalid CritResIdx. 1765 ExecutedResCounts.resize(1); 1766 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1767 } 1768 1769 void SchedRemainder:: 1770 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1771 reset(); 1772 if (!SchedModel->hasInstrSchedModel()) 1773 return; 1774 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1775 for (std::vector<SUnit>::iterator 1776 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1777 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1778 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1779 * SchedModel->getMicroOpFactor(); 1780 for (TargetSchedModel::ProcResIter 1781 PI = SchedModel->getWriteProcResBegin(SC), 1782 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1783 unsigned PIdx = PI->ProcResourceIdx; 1784 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1785 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1786 } 1787 } 1788 } 1789 1790 void SchedBoundary:: 1791 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1792 reset(); 1793 DAG = dag; 1794 SchedModel = smodel; 1795 Rem = rem; 1796 if (SchedModel->hasInstrSchedModel()) { 1797 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1798 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1799 } 1800 } 1801 1802 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1803 /// these "soft stalls" differently than the hard stall cycles based on CPU 1804 /// resources and computed by checkHazard(). A fully in-order model 1805 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1806 /// available for scheduling until they are ready. However, a weaker in-order 1807 /// model may use this for heuristics. For example, if a processor has in-order 1808 /// behavior when reading certain resources, this may come into play. 1809 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1810 if (!SU->isUnbuffered) 1811 return 0; 1812 1813 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1814 if (ReadyCycle > CurrCycle) 1815 return ReadyCycle - CurrCycle; 1816 return 0; 1817 } 1818 1819 /// Compute the next cycle at which the given processor resource can be 1820 /// scheduled. 1821 unsigned SchedBoundary:: 1822 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1823 unsigned NextUnreserved = ReservedCycles[PIdx]; 1824 // If this resource has never been used, always return cycle zero. 1825 if (NextUnreserved == InvalidCycle) 1826 return 0; 1827 // For bottom-up scheduling add the cycles needed for the current operation. 1828 if (!isTop()) 1829 NextUnreserved += Cycles; 1830 return NextUnreserved; 1831 } 1832 1833 /// Does this SU have a hazard within the current instruction group. 1834 /// 1835 /// The scheduler supports two modes of hazard recognition. The first is the 1836 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1837 /// supports highly complicated in-order reservation tables 1838 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1839 /// 1840 /// The second is a streamlined mechanism that checks for hazards based on 1841 /// simple counters that the scheduler itself maintains. It explicitly checks 1842 /// for instruction dispatch limitations, including the number of micro-ops that 1843 /// can dispatch per cycle. 1844 /// 1845 /// TODO: Also check whether the SU must start a new group. 1846 bool SchedBoundary::checkHazard(SUnit *SU) { 1847 if (HazardRec->isEnabled() 1848 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1849 return true; 1850 } 1851 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1852 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1853 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1854 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1855 return true; 1856 } 1857 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1858 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1859 for (TargetSchedModel::ProcResIter 1860 PI = SchedModel->getWriteProcResBegin(SC), 1861 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1862 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1863 if (NRCycle > CurrCycle) { 1864 #ifndef NDEBUG 1865 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1866 #endif 1867 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1868 << SchedModel->getResourceName(PI->ProcResourceIdx) 1869 << "=" << NRCycle << "c\n"); 1870 return true; 1871 } 1872 } 1873 } 1874 return false; 1875 } 1876 1877 // Find the unscheduled node in ReadySUs with the highest latency. 1878 unsigned SchedBoundary:: 1879 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1880 SUnit *LateSU = nullptr; 1881 unsigned RemLatency = 0; 1882 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1883 I != E; ++I) { 1884 unsigned L = getUnscheduledLatency(*I); 1885 if (L > RemLatency) { 1886 RemLatency = L; 1887 LateSU = *I; 1888 } 1889 } 1890 if (LateSU) { 1891 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1892 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1893 } 1894 return RemLatency; 1895 } 1896 1897 // Count resources in this zone and the remaining unscheduled 1898 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1899 // resource index, or zero if the zone is issue limited. 1900 unsigned SchedBoundary:: 1901 getOtherResourceCount(unsigned &OtherCritIdx) { 1902 OtherCritIdx = 0; 1903 if (!SchedModel->hasInstrSchedModel()) 1904 return 0; 1905 1906 unsigned OtherCritCount = Rem->RemIssueCount 1907 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1908 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1909 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1910 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1911 PIdx != PEnd; ++PIdx) { 1912 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1913 if (OtherCount > OtherCritCount) { 1914 OtherCritCount = OtherCount; 1915 OtherCritIdx = PIdx; 1916 } 1917 } 1918 if (OtherCritIdx) { 1919 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1920 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1921 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1922 } 1923 return OtherCritCount; 1924 } 1925 1926 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1927 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1928 1929 #ifndef NDEBUG 1930 // ReadyCycle was been bumped up to the CurrCycle when this node was 1931 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1932 // scheduling, so may now be greater than ReadyCycle. 1933 if (ReadyCycle > CurrCycle) 1934 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1935 #endif 1936 1937 if (ReadyCycle < MinReadyCycle) 1938 MinReadyCycle = ReadyCycle; 1939 1940 // Check for interlocks first. For the purpose of other heuristics, an 1941 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1942 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1943 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1944 Pending.push(SU); 1945 else 1946 Available.push(SU); 1947 1948 // Record this node as an immediate dependent of the scheduled node. 1949 NextSUs.insert(SU); 1950 } 1951 1952 void SchedBoundary::releaseTopNode(SUnit *SU) { 1953 if (SU->isScheduled) 1954 return; 1955 1956 releaseNode(SU, SU->TopReadyCycle); 1957 } 1958 1959 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1960 if (SU->isScheduled) 1961 return; 1962 1963 releaseNode(SU, SU->BotReadyCycle); 1964 } 1965 1966 /// Move the boundary of scheduled code by one cycle. 1967 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1968 if (SchedModel->getMicroOpBufferSize() == 0) { 1969 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1970 if (MinReadyCycle > NextCycle) 1971 NextCycle = MinReadyCycle; 1972 } 1973 // Update the current micro-ops, which will issue in the next cycle. 1974 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1975 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1976 1977 // Decrement DependentLatency based on the next cycle. 1978 if ((NextCycle - CurrCycle) > DependentLatency) 1979 DependentLatency = 0; 1980 else 1981 DependentLatency -= (NextCycle - CurrCycle); 1982 1983 if (!HazardRec->isEnabled()) { 1984 // Bypass HazardRec virtual calls. 1985 CurrCycle = NextCycle; 1986 } 1987 else { 1988 // Bypass getHazardType calls in case of long latency. 1989 for (; CurrCycle != NextCycle; ++CurrCycle) { 1990 if (isTop()) 1991 HazardRec->AdvanceCycle(); 1992 else 1993 HazardRec->RecedeCycle(); 1994 } 1995 } 1996 CheckPending = true; 1997 unsigned LFactor = SchedModel->getLatencyFactor(); 1998 IsResourceLimited = 1999 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2000 > (int)LFactor; 2001 2002 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2003 } 2004 2005 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2006 ExecutedResCounts[PIdx] += Count; 2007 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2008 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2009 } 2010 2011 /// Add the given processor resource to this scheduled zone. 2012 /// 2013 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2014 /// during which this resource is consumed. 2015 /// 2016 /// \return the next cycle at which the instruction may execute without 2017 /// oversubscribing resources. 2018 unsigned SchedBoundary:: 2019 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2020 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2021 unsigned Count = Factor * Cycles; 2022 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2023 << " +" << Cycles << "x" << Factor << "u\n"); 2024 2025 // Update Executed resources counts. 2026 incExecutedResources(PIdx, Count); 2027 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2028 Rem->RemainingCounts[PIdx] -= Count; 2029 2030 // Check if this resource exceeds the current critical resource. If so, it 2031 // becomes the critical resource. 2032 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2033 ZoneCritResIdx = PIdx; 2034 DEBUG(dbgs() << " *** Critical resource " 2035 << SchedModel->getResourceName(PIdx) << ": " 2036 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2037 } 2038 // For reserved resources, record the highest cycle using the resource. 2039 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2040 if (NextAvailable > CurrCycle) { 2041 DEBUG(dbgs() << " Resource conflict: " 2042 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2043 << NextAvailable << "\n"); 2044 } 2045 return NextAvailable; 2046 } 2047 2048 /// Move the boundary of scheduled code by one SUnit. 2049 void SchedBoundary::bumpNode(SUnit *SU) { 2050 // Update the reservation table. 2051 if (HazardRec->isEnabled()) { 2052 if (!isTop() && SU->isCall) { 2053 // Calls are scheduled with their preceding instructions. For bottom-up 2054 // scheduling, clear the pipeline state before emitting. 2055 HazardRec->Reset(); 2056 } 2057 HazardRec->EmitInstruction(SU); 2058 } 2059 // checkHazard should prevent scheduling multiple instructions per cycle that 2060 // exceed the issue width. 2061 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2062 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2063 assert( 2064 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2065 "Cannot schedule this instruction's MicroOps in the current cycle."); 2066 2067 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2068 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2069 2070 unsigned NextCycle = CurrCycle; 2071 switch (SchedModel->getMicroOpBufferSize()) { 2072 case 0: 2073 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2074 break; 2075 case 1: 2076 if (ReadyCycle > NextCycle) { 2077 NextCycle = ReadyCycle; 2078 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2079 } 2080 break; 2081 default: 2082 // We don't currently model the OOO reorder buffer, so consider all 2083 // scheduled MOps to be "retired". We do loosely model in-order resource 2084 // latency. If this instruction uses an in-order resource, account for any 2085 // likely stall cycles. 2086 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2087 NextCycle = ReadyCycle; 2088 break; 2089 } 2090 RetiredMOps += IncMOps; 2091 2092 // Update resource counts and critical resource. 2093 if (SchedModel->hasInstrSchedModel()) { 2094 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2095 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2096 Rem->RemIssueCount -= DecRemIssue; 2097 if (ZoneCritResIdx) { 2098 // Scale scheduled micro-ops for comparing with the critical resource. 2099 unsigned ScaledMOps = 2100 RetiredMOps * SchedModel->getMicroOpFactor(); 2101 2102 // If scaled micro-ops are now more than the previous critical resource by 2103 // a full cycle, then micro-ops issue becomes critical. 2104 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2105 >= (int)SchedModel->getLatencyFactor()) { 2106 ZoneCritResIdx = 0; 2107 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2108 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2109 } 2110 } 2111 for (TargetSchedModel::ProcResIter 2112 PI = SchedModel->getWriteProcResBegin(SC), 2113 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2114 unsigned RCycle = 2115 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2116 if (RCycle > NextCycle) 2117 NextCycle = RCycle; 2118 } 2119 if (SU->hasReservedResource) { 2120 // For reserved resources, record the highest cycle using the resource. 2121 // For top-down scheduling, this is the cycle in which we schedule this 2122 // instruction plus the number of cycles the operations reserves the 2123 // resource. For bottom-up is it simply the instruction's cycle. 2124 for (TargetSchedModel::ProcResIter 2125 PI = SchedModel->getWriteProcResBegin(SC), 2126 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2127 unsigned PIdx = PI->ProcResourceIdx; 2128 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2129 if (isTop()) { 2130 ReservedCycles[PIdx] = 2131 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2132 } 2133 else 2134 ReservedCycles[PIdx] = NextCycle; 2135 } 2136 } 2137 } 2138 } 2139 // Update ExpectedLatency and DependentLatency. 2140 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2141 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2142 if (SU->getDepth() > TopLatency) { 2143 TopLatency = SU->getDepth(); 2144 DEBUG(dbgs() << " " << Available.getName() 2145 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2146 } 2147 if (SU->getHeight() > BotLatency) { 2148 BotLatency = SU->getHeight(); 2149 DEBUG(dbgs() << " " << Available.getName() 2150 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2151 } 2152 // If we stall for any reason, bump the cycle. 2153 if (NextCycle > CurrCycle) { 2154 bumpCycle(NextCycle); 2155 } 2156 else { 2157 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2158 // resource limited. If a stall occurred, bumpCycle does this. 2159 unsigned LFactor = SchedModel->getLatencyFactor(); 2160 IsResourceLimited = 2161 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2162 > (int)LFactor; 2163 } 2164 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2165 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2166 // one cycle. Since we commonly reach the max MOps here, opportunistically 2167 // bump the cycle to avoid uselessly checking everything in the readyQ. 2168 CurrMOps += IncMOps; 2169 while (CurrMOps >= SchedModel->getIssueWidth()) { 2170 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2171 << " at cycle " << CurrCycle << '\n'); 2172 bumpCycle(++NextCycle); 2173 } 2174 DEBUG(dumpScheduledState()); 2175 } 2176 2177 /// Release pending ready nodes in to the available queue. This makes them 2178 /// visible to heuristics. 2179 void SchedBoundary::releasePending() { 2180 // If the available queue is empty, it is safe to reset MinReadyCycle. 2181 if (Available.empty()) 2182 MinReadyCycle = UINT_MAX; 2183 2184 // Check to see if any of the pending instructions are ready to issue. If 2185 // so, add them to the available queue. 2186 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2187 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2188 SUnit *SU = *(Pending.begin()+i); 2189 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2190 2191 if (ReadyCycle < MinReadyCycle) 2192 MinReadyCycle = ReadyCycle; 2193 2194 if (!IsBuffered && ReadyCycle > CurrCycle) 2195 continue; 2196 2197 if (checkHazard(SU)) 2198 continue; 2199 2200 Available.push(SU); 2201 Pending.remove(Pending.begin()+i); 2202 --i; --e; 2203 } 2204 DEBUG(if (!Pending.empty()) Pending.dump()); 2205 CheckPending = false; 2206 } 2207 2208 /// Remove SU from the ready set for this boundary. 2209 void SchedBoundary::removeReady(SUnit *SU) { 2210 if (Available.isInQueue(SU)) 2211 Available.remove(Available.find(SU)); 2212 else { 2213 assert(Pending.isInQueue(SU) && "bad ready count"); 2214 Pending.remove(Pending.find(SU)); 2215 } 2216 } 2217 2218 /// If this queue only has one ready candidate, return it. As a side effect, 2219 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2220 /// one node is ready. If multiple instructions are ready, return NULL. 2221 SUnit *SchedBoundary::pickOnlyChoice() { 2222 if (CheckPending) 2223 releasePending(); 2224 2225 if (CurrMOps > 0) { 2226 // Defer any ready instrs that now have a hazard. 2227 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2228 if (checkHazard(*I)) { 2229 Pending.push(*I); 2230 I = Available.remove(I); 2231 continue; 2232 } 2233 ++I; 2234 } 2235 } 2236 for (unsigned i = 0; Available.empty(); ++i) { 2237 // FIXME: Re-enable assert once PR20057 is resolved. 2238 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2239 // "permanent hazard"); 2240 (void)i; 2241 bumpCycle(CurrCycle + 1); 2242 releasePending(); 2243 } 2244 if (Available.size() == 1) 2245 return *Available.begin(); 2246 return nullptr; 2247 } 2248 2249 #ifndef NDEBUG 2250 // This is useful information to dump after bumpNode. 2251 // Note that the Queue contents are more useful before pickNodeFromQueue. 2252 void SchedBoundary::dumpScheduledState() { 2253 unsigned ResFactor; 2254 unsigned ResCount; 2255 if (ZoneCritResIdx) { 2256 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2257 ResCount = getResourceCount(ZoneCritResIdx); 2258 } 2259 else { 2260 ResFactor = SchedModel->getMicroOpFactor(); 2261 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2262 } 2263 unsigned LFactor = SchedModel->getLatencyFactor(); 2264 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2265 << " Retired: " << RetiredMOps; 2266 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2267 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2268 << ResCount / ResFactor << " " 2269 << SchedModel->getResourceName(ZoneCritResIdx) 2270 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2271 << (IsResourceLimited ? " - Resource" : " - Latency") 2272 << " limited.\n"; 2273 } 2274 #endif 2275 2276 //===----------------------------------------------------------------------===// 2277 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2278 //===----------------------------------------------------------------------===// 2279 2280 void GenericSchedulerBase::SchedCandidate:: 2281 initResourceDelta(const ScheduleDAGMI *DAG, 2282 const TargetSchedModel *SchedModel) { 2283 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2284 return; 2285 2286 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2287 for (TargetSchedModel::ProcResIter 2288 PI = SchedModel->getWriteProcResBegin(SC), 2289 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2290 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2291 ResDelta.CritResources += PI->Cycles; 2292 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2293 ResDelta.DemandedResources += PI->Cycles; 2294 } 2295 } 2296 2297 /// Set the CandPolicy given a scheduling zone given the current resources and 2298 /// latencies inside and outside the zone. 2299 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2300 bool IsPostRA, 2301 SchedBoundary &CurrZone, 2302 SchedBoundary *OtherZone) { 2303 // Apply preemptive heuristics based on the total latency and resources 2304 // inside and outside this zone. Potential stalls should be considered before 2305 // following this policy. 2306 2307 // Compute remaining latency. We need this both to determine whether the 2308 // overall schedule has become latency-limited and whether the instructions 2309 // outside this zone are resource or latency limited. 2310 // 2311 // The "dependent" latency is updated incrementally during scheduling as the 2312 // max height/depth of scheduled nodes minus the cycles since it was 2313 // scheduled: 2314 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2315 // 2316 // The "independent" latency is the max ready queue depth: 2317 // ILat = max N.depth for N in Available|Pending 2318 // 2319 // RemainingLatency is the greater of independent and dependent latency. 2320 unsigned RemLatency = CurrZone.getDependentLatency(); 2321 RemLatency = std::max(RemLatency, 2322 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2323 RemLatency = std::max(RemLatency, 2324 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2325 2326 // Compute the critical resource outside the zone. 2327 unsigned OtherCritIdx = 0; 2328 unsigned OtherCount = 2329 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2330 2331 bool OtherResLimited = false; 2332 if (SchedModel->hasInstrSchedModel()) { 2333 unsigned LFactor = SchedModel->getLatencyFactor(); 2334 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2335 } 2336 // Schedule aggressively for latency in PostRA mode. We don't check for 2337 // acyclic latency during PostRA, and highly out-of-order processors will 2338 // skip PostRA scheduling. 2339 if (!OtherResLimited) { 2340 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2341 Policy.ReduceLatency |= true; 2342 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2343 << " RemainingLatency " << RemLatency << " + " 2344 << CurrZone.getCurrCycle() << "c > CritPath " 2345 << Rem.CriticalPath << "\n"); 2346 } 2347 } 2348 // If the same resource is limiting inside and outside the zone, do nothing. 2349 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2350 return; 2351 2352 DEBUG( 2353 if (CurrZone.isResourceLimited()) { 2354 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2355 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2356 << "\n"; 2357 } 2358 if (OtherResLimited) 2359 dbgs() << " RemainingLimit: " 2360 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2361 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2362 dbgs() << " Latency limited both directions.\n"); 2363 2364 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2365 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2366 2367 if (OtherResLimited) 2368 Policy.DemandResIdx = OtherCritIdx; 2369 } 2370 2371 #ifndef NDEBUG 2372 const char *GenericSchedulerBase::getReasonStr( 2373 GenericSchedulerBase::CandReason Reason) { 2374 switch (Reason) { 2375 case NoCand: return "NOCAND "; 2376 case PhysRegCopy: return "PREG-COPY"; 2377 case RegExcess: return "REG-EXCESS"; 2378 case RegCritical: return "REG-CRIT "; 2379 case Stall: return "STALL "; 2380 case Cluster: return "CLUSTER "; 2381 case Weak: return "WEAK "; 2382 case RegMax: return "REG-MAX "; 2383 case ResourceReduce: return "RES-REDUCE"; 2384 case ResourceDemand: return "RES-DEMAND"; 2385 case TopDepthReduce: return "TOP-DEPTH "; 2386 case TopPathReduce: return "TOP-PATH "; 2387 case BotHeightReduce:return "BOT-HEIGHT"; 2388 case BotPathReduce: return "BOT-PATH "; 2389 case NextDefUse: return "DEF-USE "; 2390 case NodeOrder: return "ORDER "; 2391 }; 2392 llvm_unreachable("Unknown reason!"); 2393 } 2394 2395 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2396 PressureChange P; 2397 unsigned ResIdx = 0; 2398 unsigned Latency = 0; 2399 switch (Cand.Reason) { 2400 default: 2401 break; 2402 case RegExcess: 2403 P = Cand.RPDelta.Excess; 2404 break; 2405 case RegCritical: 2406 P = Cand.RPDelta.CriticalMax; 2407 break; 2408 case RegMax: 2409 P = Cand.RPDelta.CurrentMax; 2410 break; 2411 case ResourceReduce: 2412 ResIdx = Cand.Policy.ReduceResIdx; 2413 break; 2414 case ResourceDemand: 2415 ResIdx = Cand.Policy.DemandResIdx; 2416 break; 2417 case TopDepthReduce: 2418 Latency = Cand.SU->getDepth(); 2419 break; 2420 case TopPathReduce: 2421 Latency = Cand.SU->getHeight(); 2422 break; 2423 case BotHeightReduce: 2424 Latency = Cand.SU->getHeight(); 2425 break; 2426 case BotPathReduce: 2427 Latency = Cand.SU->getDepth(); 2428 break; 2429 } 2430 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2431 if (P.isValid()) 2432 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2433 << ":" << P.getUnitInc() << " "; 2434 else 2435 dbgs() << " "; 2436 if (ResIdx) 2437 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2438 else 2439 dbgs() << " "; 2440 if (Latency) 2441 dbgs() << " " << Latency << " cycles "; 2442 else 2443 dbgs() << " "; 2444 dbgs() << '\n'; 2445 } 2446 #endif 2447 2448 /// Return true if this heuristic determines order. 2449 static bool tryLess(int TryVal, int CandVal, 2450 GenericSchedulerBase::SchedCandidate &TryCand, 2451 GenericSchedulerBase::SchedCandidate &Cand, 2452 GenericSchedulerBase::CandReason Reason) { 2453 if (TryVal < CandVal) { 2454 TryCand.Reason = Reason; 2455 return true; 2456 } 2457 if (TryVal > CandVal) { 2458 if (Cand.Reason > Reason) 2459 Cand.Reason = Reason; 2460 return true; 2461 } 2462 Cand.setRepeat(Reason); 2463 return false; 2464 } 2465 2466 static bool tryGreater(int TryVal, int CandVal, 2467 GenericSchedulerBase::SchedCandidate &TryCand, 2468 GenericSchedulerBase::SchedCandidate &Cand, 2469 GenericSchedulerBase::CandReason Reason) { 2470 if (TryVal > CandVal) { 2471 TryCand.Reason = Reason; 2472 return true; 2473 } 2474 if (TryVal < CandVal) { 2475 if (Cand.Reason > Reason) 2476 Cand.Reason = Reason; 2477 return true; 2478 } 2479 Cand.setRepeat(Reason); 2480 return false; 2481 } 2482 2483 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2484 GenericSchedulerBase::SchedCandidate &Cand, 2485 SchedBoundary &Zone) { 2486 if (Zone.isTop()) { 2487 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2488 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2489 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2490 return true; 2491 } 2492 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2493 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2494 return true; 2495 } 2496 else { 2497 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2498 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2499 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2500 return true; 2501 } 2502 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2503 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2504 return true; 2505 } 2506 return false; 2507 } 2508 2509 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2510 bool IsTop) { 2511 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2512 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2513 } 2514 2515 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2516 assert(dag->hasVRegLiveness() && 2517 "(PreRA)GenericScheduler needs vreg liveness"); 2518 DAG = static_cast<ScheduleDAGMILive*>(dag); 2519 SchedModel = DAG->getSchedModel(); 2520 TRI = DAG->TRI; 2521 2522 Rem.init(DAG, SchedModel); 2523 Top.init(DAG, SchedModel, &Rem); 2524 Bot.init(DAG, SchedModel, &Rem); 2525 2526 // Initialize resource counts. 2527 2528 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2529 // are disabled, then these HazardRecs will be disabled. 2530 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2531 if (!Top.HazardRec) { 2532 Top.HazardRec = 2533 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2534 Itin, DAG); 2535 } 2536 if (!Bot.HazardRec) { 2537 Bot.HazardRec = 2538 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2539 Itin, DAG); 2540 } 2541 } 2542 2543 /// Initialize the per-region scheduling policy. 2544 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2545 MachineBasicBlock::iterator End, 2546 unsigned NumRegionInstrs) { 2547 const MachineFunction &MF = *Begin->getParent()->getParent(); 2548 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2549 2550 // Avoid setting up the register pressure tracker for small regions to save 2551 // compile time. As a rough heuristic, only track pressure when the number of 2552 // schedulable instructions exceeds half the integer register file. 2553 RegionPolicy.ShouldTrackPressure = true; 2554 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2555 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2556 if (TLI->isTypeLegal(LegalIntVT)) { 2557 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2558 TLI->getRegClassFor(LegalIntVT)); 2559 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2560 } 2561 } 2562 2563 // For generic targets, we default to bottom-up, because it's simpler and more 2564 // compile-time optimizations have been implemented in that direction. 2565 RegionPolicy.OnlyBottomUp = true; 2566 2567 // Allow the subtarget to override default policy. 2568 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End, 2569 NumRegionInstrs); 2570 2571 // After subtarget overrides, apply command line options. 2572 if (!EnableRegPressure) 2573 RegionPolicy.ShouldTrackPressure = false; 2574 2575 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2576 // e.g. -misched-bottomup=false allows scheduling in both directions. 2577 assert((!ForceTopDown || !ForceBottomUp) && 2578 "-misched-topdown incompatible with -misched-bottomup"); 2579 if (ForceBottomUp.getNumOccurrences() > 0) { 2580 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2581 if (RegionPolicy.OnlyBottomUp) 2582 RegionPolicy.OnlyTopDown = false; 2583 } 2584 if (ForceTopDown.getNumOccurrences() > 0) { 2585 RegionPolicy.OnlyTopDown = ForceTopDown; 2586 if (RegionPolicy.OnlyTopDown) 2587 RegionPolicy.OnlyBottomUp = false; 2588 } 2589 } 2590 2591 void GenericScheduler::dumpPolicy() { 2592 dbgs() << "GenericScheduler RegionPolicy: " 2593 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2594 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2595 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2596 << "\n"; 2597 } 2598 2599 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2600 /// critical path by more cycles than it takes to drain the instruction buffer. 2601 /// We estimate an upper bounds on in-flight instructions as: 2602 /// 2603 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2604 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2605 /// InFlightResources = InFlightIterations * LoopResources 2606 /// 2607 /// TODO: Check execution resources in addition to IssueCount. 2608 void GenericScheduler::checkAcyclicLatency() { 2609 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2610 return; 2611 2612 // Scaled number of cycles per loop iteration. 2613 unsigned IterCount = 2614 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2615 Rem.RemIssueCount); 2616 // Scaled acyclic critical path. 2617 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2618 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2619 unsigned InFlightCount = 2620 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2621 unsigned BufferLimit = 2622 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2623 2624 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2625 2626 DEBUG(dbgs() << "IssueCycles=" 2627 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2628 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2629 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2630 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2631 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2632 if (Rem.IsAcyclicLatencyLimited) 2633 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2634 } 2635 2636 void GenericScheduler::registerRoots() { 2637 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2638 2639 // Some roots may not feed into ExitSU. Check all of them in case. 2640 for (std::vector<SUnit*>::const_iterator 2641 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2642 if ((*I)->getDepth() > Rem.CriticalPath) 2643 Rem.CriticalPath = (*I)->getDepth(); 2644 } 2645 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2646 if (DumpCriticalPathLength) { 2647 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2648 } 2649 2650 if (EnableCyclicPath) { 2651 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2652 checkAcyclicLatency(); 2653 } 2654 } 2655 2656 static bool tryPressure(const PressureChange &TryP, 2657 const PressureChange &CandP, 2658 GenericSchedulerBase::SchedCandidate &TryCand, 2659 GenericSchedulerBase::SchedCandidate &Cand, 2660 GenericSchedulerBase::CandReason Reason, 2661 const TargetRegisterInfo *TRI, 2662 const MachineFunction &MF) { 2663 unsigned TryPSet = TryP.getPSetOrMax(); 2664 unsigned CandPSet = CandP.getPSetOrMax(); 2665 // If both candidates affect the same set, go with the smallest increase. 2666 if (TryPSet == CandPSet) { 2667 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2668 Reason); 2669 } 2670 // If one candidate decreases and the other increases, go with it. 2671 // Invalid candidates have UnitInc==0. 2672 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2673 Reason)) { 2674 return true; 2675 } 2676 2677 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2678 std::numeric_limits<int>::max(); 2679 2680 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2681 std::numeric_limits<int>::max(); 2682 2683 // If the candidates are decreasing pressure, reverse priority. 2684 if (TryP.getUnitInc() < 0) 2685 std::swap(TryRank, CandRank); 2686 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2687 } 2688 2689 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2690 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2691 } 2692 2693 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2694 /// their physreg def/use. 2695 /// 2696 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2697 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2698 /// with the operation that produces or consumes the physreg. We'll do this when 2699 /// regalloc has support for parallel copies. 2700 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2701 const MachineInstr *MI = SU->getInstr(); 2702 if (!MI->isCopy()) 2703 return 0; 2704 2705 unsigned ScheduledOper = isTop ? 1 : 0; 2706 unsigned UnscheduledOper = isTop ? 0 : 1; 2707 // If we have already scheduled the physreg produce/consumer, immediately 2708 // schedule the copy. 2709 if (TargetRegisterInfo::isPhysicalRegister( 2710 MI->getOperand(ScheduledOper).getReg())) 2711 return 1; 2712 // If the physreg is at the boundary, defer it. Otherwise schedule it 2713 // immediately to free the dependent. We can hoist the copy later. 2714 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2715 if (TargetRegisterInfo::isPhysicalRegister( 2716 MI->getOperand(UnscheduledOper).getReg())) 2717 return AtBoundary ? -1 : 1; 2718 return 0; 2719 } 2720 2721 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2722 /// hierarchical. This may be more efficient than a graduated cost model because 2723 /// we don't need to evaluate all aspects of the model for each node in the 2724 /// queue. But it's really done to make the heuristics easier to debug and 2725 /// statistically analyze. 2726 /// 2727 /// \param Cand provides the policy and current best candidate. 2728 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2729 /// \param Zone describes the scheduled zone that we are extending. 2730 /// \param RPTracker describes reg pressure within the scheduled zone. 2731 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2732 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2733 SchedCandidate &TryCand, 2734 SchedBoundary &Zone, 2735 const RegPressureTracker &RPTracker, 2736 RegPressureTracker &TempTracker) { 2737 2738 if (DAG->isTrackingPressure()) { 2739 // Always initialize TryCand's RPDelta. 2740 if (Zone.isTop()) { 2741 TempTracker.getMaxDownwardPressureDelta( 2742 TryCand.SU->getInstr(), 2743 TryCand.RPDelta, 2744 DAG->getRegionCriticalPSets(), 2745 DAG->getRegPressure().MaxSetPressure); 2746 } 2747 else { 2748 if (VerifyScheduling) { 2749 TempTracker.getMaxUpwardPressureDelta( 2750 TryCand.SU->getInstr(), 2751 &DAG->getPressureDiff(TryCand.SU), 2752 TryCand.RPDelta, 2753 DAG->getRegionCriticalPSets(), 2754 DAG->getRegPressure().MaxSetPressure); 2755 } 2756 else { 2757 RPTracker.getUpwardPressureDelta( 2758 TryCand.SU->getInstr(), 2759 DAG->getPressureDiff(TryCand.SU), 2760 TryCand.RPDelta, 2761 DAG->getRegionCriticalPSets(), 2762 DAG->getRegPressure().MaxSetPressure); 2763 } 2764 } 2765 } 2766 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2767 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") " 2768 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2769 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2770 2771 // Initialize the candidate if needed. 2772 if (!Cand.isValid()) { 2773 TryCand.Reason = NodeOrder; 2774 return; 2775 } 2776 2777 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2778 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2779 TryCand, Cand, PhysRegCopy)) 2780 return; 2781 2782 // Avoid exceeding the target's limit. 2783 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2784 Cand.RPDelta.Excess, 2785 TryCand, Cand, RegExcess, TRI, 2786 DAG->MF)) 2787 return; 2788 2789 // Avoid increasing the max critical pressure in the scheduled region. 2790 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2791 Cand.RPDelta.CriticalMax, 2792 TryCand, Cand, RegCritical, TRI, 2793 DAG->MF)) 2794 return; 2795 2796 // For loops that are acyclic path limited, aggressively schedule for latency. 2797 // This can result in very long dependence chains scheduled in sequence, so 2798 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2799 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2800 && tryLatency(TryCand, Cand, Zone)) 2801 return; 2802 2803 // Prioritize instructions that read unbuffered resources by stall cycles. 2804 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2805 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2806 return; 2807 2808 // Keep clustered nodes together to encourage downstream peephole 2809 // optimizations which may reduce resource requirements. 2810 // 2811 // This is a best effort to set things up for a post-RA pass. Optimizations 2812 // like generating loads of multiple registers should ideally be done within 2813 // the scheduler pass by combining the loads during DAG postprocessing. 2814 const SUnit *NextClusterSU = 2815 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2816 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2817 TryCand, Cand, Cluster)) 2818 return; 2819 2820 // Weak edges are for clustering and other constraints. 2821 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2822 getWeakLeft(Cand.SU, Zone.isTop()), 2823 TryCand, Cand, Weak)) { 2824 return; 2825 } 2826 // Avoid increasing the max pressure of the entire region. 2827 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2828 Cand.RPDelta.CurrentMax, 2829 TryCand, Cand, RegMax, TRI, 2830 DAG->MF)) 2831 return; 2832 2833 // Avoid critical resource consumption and balance the schedule. 2834 TryCand.initResourceDelta(DAG, SchedModel); 2835 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2836 TryCand, Cand, ResourceReduce)) 2837 return; 2838 if (tryGreater(TryCand.ResDelta.DemandedResources, 2839 Cand.ResDelta.DemandedResources, 2840 TryCand, Cand, ResourceDemand)) 2841 return; 2842 2843 // Avoid serializing long latency dependence chains. 2844 // For acyclic path limited loops, latency was already checked above. 2845 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency && 2846 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) { 2847 return; 2848 } 2849 2850 // Prefer immediate defs/users of the last scheduled instruction. This is a 2851 // local pressure avoidance strategy that also makes the machine code 2852 // readable. 2853 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2854 TryCand, Cand, NextDefUse)) 2855 return; 2856 2857 // Fall through to original instruction order. 2858 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2859 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2860 TryCand.Reason = NodeOrder; 2861 } 2862 } 2863 2864 /// Pick the best candidate from the queue. 2865 /// 2866 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2867 /// DAG building. To adjust for the current scheduling location we need to 2868 /// maintain the number of vreg uses remaining to be top-scheduled. 2869 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2870 const RegPressureTracker &RPTracker, 2871 SchedCandidate &Cand) { 2872 ReadyQueue &Q = Zone.Available; 2873 2874 DEBUG(Q.dump()); 2875 2876 // getMaxPressureDelta temporarily modifies the tracker. 2877 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2878 2879 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2880 2881 SchedCandidate TryCand(Cand.Policy); 2882 TryCand.SU = *I; 2883 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2884 if (TryCand.Reason != NoCand) { 2885 // Initialize resource delta if needed in case future heuristics query it. 2886 if (TryCand.ResDelta == SchedResourceDelta()) 2887 TryCand.initResourceDelta(DAG, SchedModel); 2888 Cand.setBest(TryCand); 2889 DEBUG(traceCandidate(Cand)); 2890 } 2891 } 2892 } 2893 2894 /// Pick the best candidate node from either the top or bottom queue. 2895 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2896 // Schedule as far as possible in the direction of no choice. This is most 2897 // efficient, but also provides the best heuristics for CriticalPSets. 2898 if (SUnit *SU = Bot.pickOnlyChoice()) { 2899 IsTopNode = false; 2900 DEBUG(dbgs() << "Pick Bot ONLY1\n"); 2901 return SU; 2902 } 2903 if (SUnit *SU = Top.pickOnlyChoice()) { 2904 IsTopNode = true; 2905 DEBUG(dbgs() << "Pick Top ONLY1\n"); 2906 return SU; 2907 } 2908 CandPolicy NoPolicy; 2909 SchedCandidate BotCand(NoPolicy); 2910 SchedCandidate TopCand(NoPolicy); 2911 // Set the bottom-up policy based on the state of the current bottom zone and 2912 // the instructions outside the zone, including the top zone. 2913 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2914 // Set the top-down policy based on the state of the current top zone and 2915 // the instructions outside the zone, including the bottom zone. 2916 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2917 2918 // Prefer bottom scheduling when heuristics are silent. 2919 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2920 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2921 2922 // If either Q has a single candidate that provides the least increase in 2923 // Excess pressure, we can immediately schedule from that Q. 2924 // 2925 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2926 // affects picking from either Q. If scheduling in one direction must 2927 // increase pressure for one of the excess PSets, then schedule in that 2928 // direction first to provide more freedom in the other direction. 2929 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2930 || (BotCand.Reason == RegCritical 2931 && !BotCand.isRepeat(RegCritical))) 2932 { 2933 IsTopNode = false; 2934 tracePick(BotCand, IsTopNode); 2935 return BotCand.SU; 2936 } 2937 // Check if the top Q has a better candidate. 2938 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2939 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2940 2941 // Choose the queue with the most important (lowest enum) reason. 2942 if (TopCand.Reason < BotCand.Reason) { 2943 IsTopNode = true; 2944 tracePick(TopCand, IsTopNode); 2945 return TopCand.SU; 2946 } 2947 // Otherwise prefer the bottom candidate, in node order if all else failed. 2948 IsTopNode = false; 2949 tracePick(BotCand, IsTopNode); 2950 return BotCand.SU; 2951 } 2952 2953 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2954 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2955 if (DAG->top() == DAG->bottom()) { 2956 assert(Top.Available.empty() && Top.Pending.empty() && 2957 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2958 return nullptr; 2959 } 2960 SUnit *SU; 2961 do { 2962 if (RegionPolicy.OnlyTopDown) { 2963 SU = Top.pickOnlyChoice(); 2964 if (!SU) { 2965 CandPolicy NoPolicy; 2966 SchedCandidate TopCand(NoPolicy); 2967 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2968 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2969 tracePick(TopCand, true); 2970 SU = TopCand.SU; 2971 } 2972 IsTopNode = true; 2973 } 2974 else if (RegionPolicy.OnlyBottomUp) { 2975 SU = Bot.pickOnlyChoice(); 2976 if (!SU) { 2977 CandPolicy NoPolicy; 2978 SchedCandidate BotCand(NoPolicy); 2979 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2980 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2981 tracePick(BotCand, false); 2982 SU = BotCand.SU; 2983 } 2984 IsTopNode = false; 2985 } 2986 else { 2987 SU = pickNodeBidirectional(IsTopNode); 2988 } 2989 } while (SU->isScheduled); 2990 2991 if (SU->isTopReady()) 2992 Top.removeReady(SU); 2993 if (SU->isBottomReady()) 2994 Bot.removeReady(SU); 2995 2996 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2997 return SU; 2998 } 2999 3000 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3001 3002 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3003 if (!isTop) 3004 ++InsertPos; 3005 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3006 3007 // Find already scheduled copies with a single physreg dependence and move 3008 // them just above the scheduled instruction. 3009 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3010 I != E; ++I) { 3011 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3012 continue; 3013 SUnit *DepSU = I->getSUnit(); 3014 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3015 continue; 3016 MachineInstr *Copy = DepSU->getInstr(); 3017 if (!Copy->isCopy()) 3018 continue; 3019 DEBUG(dbgs() << " Rescheduling physreg copy "; 3020 I->getSUnit()->dump(DAG)); 3021 DAG->moveInstruction(Copy, InsertPos); 3022 } 3023 } 3024 3025 /// Update the scheduler's state after scheduling a node. This is the same node 3026 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3027 /// update it's state based on the current cycle before MachineSchedStrategy 3028 /// does. 3029 /// 3030 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3031 /// them here. See comments in biasPhysRegCopy. 3032 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3033 if (IsTopNode) { 3034 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3035 Top.bumpNode(SU); 3036 if (SU->hasPhysRegUses) 3037 reschedulePhysRegCopies(SU, true); 3038 } 3039 else { 3040 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3041 Bot.bumpNode(SU); 3042 if (SU->hasPhysRegDefs) 3043 reschedulePhysRegCopies(SU, false); 3044 } 3045 } 3046 3047 /// Create the standard converging machine scheduler. This will be used as the 3048 /// default scheduler if the target does not set a default. 3049 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3050 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3051 // Register DAG post-processors. 3052 // 3053 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3054 // data and pass it to later mutations. Have a single mutation that gathers 3055 // the interesting nodes in one pass. 3056 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI)); 3057 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 3058 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI)); 3059 if (EnableMacroFusion) 3060 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI)); 3061 return DAG; 3062 } 3063 3064 static MachineSchedRegistry 3065 GenericSchedRegistry("converge", "Standard converging scheduler.", 3066 createGenericSchedLive); 3067 3068 //===----------------------------------------------------------------------===// 3069 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3070 //===----------------------------------------------------------------------===// 3071 3072 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3073 DAG = Dag; 3074 SchedModel = DAG->getSchedModel(); 3075 TRI = DAG->TRI; 3076 3077 Rem.init(DAG, SchedModel); 3078 Top.init(DAG, SchedModel, &Rem); 3079 BotRoots.clear(); 3080 3081 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3082 // or are disabled, then these HazardRecs will be disabled. 3083 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3084 if (!Top.HazardRec) { 3085 Top.HazardRec = 3086 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3087 Itin, DAG); 3088 } 3089 } 3090 3091 3092 void PostGenericScheduler::registerRoots() { 3093 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3094 3095 // Some roots may not feed into ExitSU. Check all of them in case. 3096 for (SmallVectorImpl<SUnit*>::const_iterator 3097 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3098 if ((*I)->getDepth() > Rem.CriticalPath) 3099 Rem.CriticalPath = (*I)->getDepth(); 3100 } 3101 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3102 if (DumpCriticalPathLength) { 3103 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3104 } 3105 } 3106 3107 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3108 /// 3109 /// \param Cand provides the policy and current best candidate. 3110 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3111 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3112 SchedCandidate &TryCand) { 3113 3114 // Initialize the candidate if needed. 3115 if (!Cand.isValid()) { 3116 TryCand.Reason = NodeOrder; 3117 return; 3118 } 3119 3120 // Prioritize instructions that read unbuffered resources by stall cycles. 3121 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3122 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3123 return; 3124 3125 // Avoid critical resource consumption and balance the schedule. 3126 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3127 TryCand, Cand, ResourceReduce)) 3128 return; 3129 if (tryGreater(TryCand.ResDelta.DemandedResources, 3130 Cand.ResDelta.DemandedResources, 3131 TryCand, Cand, ResourceDemand)) 3132 return; 3133 3134 // Avoid serializing long latency dependence chains. 3135 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3136 return; 3137 } 3138 3139 // Fall through to original instruction order. 3140 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3141 TryCand.Reason = NodeOrder; 3142 } 3143 3144 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3145 ReadyQueue &Q = Top.Available; 3146 3147 DEBUG(Q.dump()); 3148 3149 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3150 SchedCandidate TryCand(Cand.Policy); 3151 TryCand.SU = *I; 3152 TryCand.initResourceDelta(DAG, SchedModel); 3153 tryCandidate(Cand, TryCand); 3154 if (TryCand.Reason != NoCand) { 3155 Cand.setBest(TryCand); 3156 DEBUG(traceCandidate(Cand)); 3157 } 3158 } 3159 } 3160 3161 /// Pick the next node to schedule. 3162 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3163 if (DAG->top() == DAG->bottom()) { 3164 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3165 return nullptr; 3166 } 3167 SUnit *SU; 3168 do { 3169 SU = Top.pickOnlyChoice(); 3170 if (!SU) { 3171 CandPolicy NoPolicy; 3172 SchedCandidate TopCand(NoPolicy); 3173 // Set the top-down policy based on the state of the current top zone and 3174 // the instructions outside the zone, including the bottom zone. 3175 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3176 pickNodeFromQueue(TopCand); 3177 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3178 tracePick(TopCand, true); 3179 SU = TopCand.SU; 3180 } 3181 } while (SU->isScheduled); 3182 3183 IsTopNode = true; 3184 Top.removeReady(SU); 3185 3186 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3187 return SU; 3188 } 3189 3190 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3191 /// scheduled/remaining flags in the DAG nodes. 3192 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3193 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3194 Top.bumpNode(SU); 3195 } 3196 3197 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3198 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3199 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true); 3200 } 3201 3202 //===----------------------------------------------------------------------===// 3203 // ILP Scheduler. Currently for experimental analysis of heuristics. 3204 //===----------------------------------------------------------------------===// 3205 3206 namespace { 3207 /// \brief Order nodes by the ILP metric. 3208 struct ILPOrder { 3209 const SchedDFSResult *DFSResult; 3210 const BitVector *ScheduledTrees; 3211 bool MaximizeILP; 3212 3213 ILPOrder(bool MaxILP) 3214 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3215 3216 /// \brief Apply a less-than relation on node priority. 3217 /// 3218 /// (Return true if A comes after B in the Q.) 3219 bool operator()(const SUnit *A, const SUnit *B) const { 3220 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3221 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3222 if (SchedTreeA != SchedTreeB) { 3223 // Unscheduled trees have lower priority. 3224 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3225 return ScheduledTrees->test(SchedTreeB); 3226 3227 // Trees with shallower connections have have lower priority. 3228 if (DFSResult->getSubtreeLevel(SchedTreeA) 3229 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3230 return DFSResult->getSubtreeLevel(SchedTreeA) 3231 < DFSResult->getSubtreeLevel(SchedTreeB); 3232 } 3233 } 3234 if (MaximizeILP) 3235 return DFSResult->getILP(A) < DFSResult->getILP(B); 3236 else 3237 return DFSResult->getILP(A) > DFSResult->getILP(B); 3238 } 3239 }; 3240 3241 /// \brief Schedule based on the ILP metric. 3242 class ILPScheduler : public MachineSchedStrategy { 3243 ScheduleDAGMILive *DAG; 3244 ILPOrder Cmp; 3245 3246 std::vector<SUnit*> ReadyQ; 3247 public: 3248 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3249 3250 void initialize(ScheduleDAGMI *dag) override { 3251 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3252 DAG = static_cast<ScheduleDAGMILive*>(dag); 3253 DAG->computeDFSResult(); 3254 Cmp.DFSResult = DAG->getDFSResult(); 3255 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3256 ReadyQ.clear(); 3257 } 3258 3259 void registerRoots() override { 3260 // Restore the heap in ReadyQ with the updated DFS results. 3261 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3262 } 3263 3264 /// Implement MachineSchedStrategy interface. 3265 /// ----------------------------------------- 3266 3267 /// Callback to select the highest priority node from the ready Q. 3268 SUnit *pickNode(bool &IsTopNode) override { 3269 if (ReadyQ.empty()) return nullptr; 3270 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3271 SUnit *SU = ReadyQ.back(); 3272 ReadyQ.pop_back(); 3273 IsTopNode = false; 3274 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3275 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3276 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3277 << DAG->getDFSResult()->getSubtreeLevel( 3278 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3279 << "Scheduling " << *SU->getInstr()); 3280 return SU; 3281 } 3282 3283 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3284 void scheduleTree(unsigned SubtreeID) override { 3285 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3286 } 3287 3288 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3289 /// DFSResults, and resort the priority Q. 3290 void schedNode(SUnit *SU, bool IsTopNode) override { 3291 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3292 } 3293 3294 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3295 3296 void releaseBottomNode(SUnit *SU) override { 3297 ReadyQ.push_back(SU); 3298 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3299 } 3300 }; 3301 } // namespace 3302 3303 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3304 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3305 } 3306 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3307 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3308 } 3309 static MachineSchedRegistry ILPMaxRegistry( 3310 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3311 static MachineSchedRegistry ILPMinRegistry( 3312 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3313 3314 //===----------------------------------------------------------------------===// 3315 // Machine Instruction Shuffler for Correctness Testing 3316 //===----------------------------------------------------------------------===// 3317 3318 #ifndef NDEBUG 3319 namespace { 3320 /// Apply a less-than relation on the node order, which corresponds to the 3321 /// instruction order prior to scheduling. IsReverse implements greater-than. 3322 template<bool IsReverse> 3323 struct SUnitOrder { 3324 bool operator()(SUnit *A, SUnit *B) const { 3325 if (IsReverse) 3326 return A->NodeNum > B->NodeNum; 3327 else 3328 return A->NodeNum < B->NodeNum; 3329 } 3330 }; 3331 3332 /// Reorder instructions as much as possible. 3333 class InstructionShuffler : public MachineSchedStrategy { 3334 bool IsAlternating; 3335 bool IsTopDown; 3336 3337 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3338 // gives nodes with a higher number higher priority causing the latest 3339 // instructions to be scheduled first. 3340 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3341 TopQ; 3342 // When scheduling bottom-up, use greater-than as the queue priority. 3343 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3344 BottomQ; 3345 public: 3346 InstructionShuffler(bool alternate, bool topdown) 3347 : IsAlternating(alternate), IsTopDown(topdown) {} 3348 3349 void initialize(ScheduleDAGMI*) override { 3350 TopQ.clear(); 3351 BottomQ.clear(); 3352 } 3353 3354 /// Implement MachineSchedStrategy interface. 3355 /// ----------------------------------------- 3356 3357 SUnit *pickNode(bool &IsTopNode) override { 3358 SUnit *SU; 3359 if (IsTopDown) { 3360 do { 3361 if (TopQ.empty()) return nullptr; 3362 SU = TopQ.top(); 3363 TopQ.pop(); 3364 } while (SU->isScheduled); 3365 IsTopNode = true; 3366 } 3367 else { 3368 do { 3369 if (BottomQ.empty()) return nullptr; 3370 SU = BottomQ.top(); 3371 BottomQ.pop(); 3372 } while (SU->isScheduled); 3373 IsTopNode = false; 3374 } 3375 if (IsAlternating) 3376 IsTopDown = !IsTopDown; 3377 return SU; 3378 } 3379 3380 void schedNode(SUnit *SU, bool IsTopNode) override {} 3381 3382 void releaseTopNode(SUnit *SU) override { 3383 TopQ.push(SU); 3384 } 3385 void releaseBottomNode(SUnit *SU) override { 3386 BottomQ.push(SU); 3387 } 3388 }; 3389 } // namespace 3390 3391 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3392 bool Alternate = !ForceTopDown && !ForceBottomUp; 3393 bool TopDown = !ForceBottomUp; 3394 assert((TopDown || !ForceTopDown) && 3395 "-misched-topdown incompatible with -misched-bottomup"); 3396 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3397 } 3398 static MachineSchedRegistry ShufflerRegistry( 3399 "shuffle", "Shuffle machine instructions alternating directions", 3400 createInstructionShuffler); 3401 #endif // !NDEBUG 3402 3403 //===----------------------------------------------------------------------===// 3404 // GraphWriter support for ScheduleDAGMILive. 3405 //===----------------------------------------------------------------------===// 3406 3407 #ifndef NDEBUG 3408 namespace llvm { 3409 3410 template<> struct GraphTraits< 3411 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3412 3413 template<> 3414 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3415 3416 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3417 3418 static std::string getGraphName(const ScheduleDAG *G) { 3419 return G->MF.getName(); 3420 } 3421 3422 static bool renderGraphFromBottomUp() { 3423 return true; 3424 } 3425 3426 static bool isNodeHidden(const SUnit *Node) { 3427 if (ViewMISchedCutoff == 0) 3428 return false; 3429 return (Node->Preds.size() > ViewMISchedCutoff 3430 || Node->Succs.size() > ViewMISchedCutoff); 3431 } 3432 3433 /// If you want to override the dot attributes printed for a particular 3434 /// edge, override this method. 3435 static std::string getEdgeAttributes(const SUnit *Node, 3436 SUnitIterator EI, 3437 const ScheduleDAG *Graph) { 3438 if (EI.isArtificialDep()) 3439 return "color=cyan,style=dashed"; 3440 if (EI.isCtrlDep()) 3441 return "color=blue,style=dashed"; 3442 return ""; 3443 } 3444 3445 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3446 std::string Str; 3447 raw_string_ostream SS(Str); 3448 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3449 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3450 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3451 SS << "SU:" << SU->NodeNum; 3452 if (DFS) 3453 SS << " I:" << DFS->getNumInstrs(SU); 3454 return SS.str(); 3455 } 3456 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3457 return G->getGraphNodeLabel(SU); 3458 } 3459 3460 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3461 std::string Str("shape=Mrecord"); 3462 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3463 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3464 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3465 if (DFS) { 3466 Str += ",style=filled,fillcolor=\"#"; 3467 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3468 Str += '"'; 3469 } 3470 return Str; 3471 } 3472 }; 3473 } // namespace llvm 3474 #endif // NDEBUG 3475 3476 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3477 /// rendered using 'dot'. 3478 /// 3479 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3480 #ifndef NDEBUG 3481 ViewGraph(this, Name, false, Title); 3482 #else 3483 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3484 << "systems with Graphviz or gv!\n"; 3485 #endif // NDEBUG 3486 } 3487 3488 /// Out-of-line implementation with no arguments is handy for gdb. 3489 void ScheduleDAGMI::viewGraph() { 3490 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3491 } 3492