xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 726e12cf0ce6c926877bd8e19e6afe05e5101eeb)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/RegisterPressure.h"
38 #include "llvm/CodeGen/ScheduleDAG.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/CodeGen/ScheduleDAGMutation.h"
41 #include "llvm/CodeGen/ScheduleDFS.h"
42 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/Config/llvm-config.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/MachineValueType.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <tuple>
68 #include <utility>
69 #include <vector>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "machine-scheduler"
74 
75 namespace llvm {
76 
77 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
78                            cl::desc("Force top-down list scheduling"));
79 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
80                             cl::desc("Force bottom-up list scheduling"));
81 cl::opt<bool>
82 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
83                        cl::desc("Print critical path length to stdout"));
84 
85 } // end namespace llvm
86 
87 #ifndef NDEBUG
88 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
89   cl::desc("Pop up a window to show MISched dags after they are processed"));
90 
91 /// In some situations a few uninteresting nodes depend on nearly all other
92 /// nodes in the graph, provide a cutoff to hide them.
93 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
94   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
95 
96 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
97   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
98 
99 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
100   cl::desc("Only schedule this function"));
101 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
102                                         cl::desc("Only schedule this MBB#"));
103 #else
104 static bool ViewMISchedDAGs = false;
105 #endif // NDEBUG
106 
107 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
108 /// size of the ready lists.
109 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
110   cl::desc("Limit ready list to N instructions"), cl::init(256));
111 
112 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
113   cl::desc("Enable register pressure scheduling."), cl::init(true));
114 
115 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
116   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
117 
118 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
119                                         cl::desc("Enable memop clustering."),
120                                         cl::init(true));
121 
122 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
123   cl::desc("Verify machine instrs before and after machine scheduling"));
124 
125 // DAG subtrees must have at least this many nodes.
126 static const unsigned MinSubtreeSize = 8;
127 
128 // Pin the vtables to this file.
129 void MachineSchedStrategy::anchor() {}
130 
131 void ScheduleDAGMutation::anchor() {}
132 
133 //===----------------------------------------------------------------------===//
134 // Machine Instruction Scheduling Pass and Registry
135 //===----------------------------------------------------------------------===//
136 
137 MachineSchedContext::MachineSchedContext() {
138   RegClassInfo = new RegisterClassInfo();
139 }
140 
141 MachineSchedContext::~MachineSchedContext() {
142   delete RegClassInfo;
143 }
144 
145 namespace {
146 
147 /// Base class for a machine scheduler class that can run at any point.
148 class MachineSchedulerBase : public MachineSchedContext,
149                              public MachineFunctionPass {
150 public:
151   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
152 
153   void print(raw_ostream &O, const Module* = nullptr) const override;
154 
155 protected:
156   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
157 };
158 
159 /// MachineScheduler runs after coalescing and before register allocation.
160 class MachineScheduler : public MachineSchedulerBase {
161 public:
162   MachineScheduler();
163 
164   void getAnalysisUsage(AnalysisUsage &AU) const override;
165 
166   bool runOnMachineFunction(MachineFunction&) override;
167 
168   static char ID; // Class identification, replacement for typeinfo
169 
170 protected:
171   ScheduleDAGInstrs *createMachineScheduler();
172 };
173 
174 /// PostMachineScheduler runs after shortly before code emission.
175 class PostMachineScheduler : public MachineSchedulerBase {
176 public:
177   PostMachineScheduler();
178 
179   void getAnalysisUsage(AnalysisUsage &AU) const override;
180 
181   bool runOnMachineFunction(MachineFunction&) override;
182 
183   static char ID; // Class identification, replacement for typeinfo
184 
185 protected:
186   ScheduleDAGInstrs *createPostMachineScheduler();
187 };
188 
189 } // end anonymous namespace
190 
191 char MachineScheduler::ID = 0;
192 
193 char &llvm::MachineSchedulerID = MachineScheduler::ID;
194 
195 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
196                       "Machine Instruction Scheduler", false, false)
197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
198 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
199 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
200 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
201 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
202                     "Machine Instruction Scheduler", false, false)
203 
204 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
205   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
206 }
207 
208 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
209   AU.setPreservesCFG();
210   AU.addRequiredID(MachineDominatorsID);
211   AU.addRequired<MachineLoopInfo>();
212   AU.addRequired<AAResultsWrapperPass>();
213   AU.addRequired<TargetPassConfig>();
214   AU.addRequired<SlotIndexes>();
215   AU.addPreserved<SlotIndexes>();
216   AU.addRequired<LiveIntervals>();
217   AU.addPreserved<LiveIntervals>();
218   MachineFunctionPass::getAnalysisUsage(AU);
219 }
220 
221 char PostMachineScheduler::ID = 0;
222 
223 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
224 
225 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
226                 "PostRA Machine Instruction Scheduler", false, false)
227 
228 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
229   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
230 }
231 
232 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
233   AU.setPreservesCFG();
234   AU.addRequiredID(MachineDominatorsID);
235   AU.addRequired<MachineLoopInfo>();
236   AU.addRequired<TargetPassConfig>();
237   MachineFunctionPass::getAnalysisUsage(AU);
238 }
239 
240 MachinePassRegistry MachineSchedRegistry::Registry;
241 
242 /// A dummy default scheduler factory indicates whether the scheduler
243 /// is overridden on the command line.
244 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
245   return nullptr;
246 }
247 
248 /// MachineSchedOpt allows command line selection of the scheduler.
249 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
250                RegisterPassParser<MachineSchedRegistry>>
251 MachineSchedOpt("misched",
252                 cl::init(&useDefaultMachineSched), cl::Hidden,
253                 cl::desc("Machine instruction scheduler to use"));
254 
255 static MachineSchedRegistry
256 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
257                      useDefaultMachineSched);
258 
259 static cl::opt<bool> EnableMachineSched(
260     "enable-misched",
261     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
262     cl::Hidden);
263 
264 static cl::opt<bool> EnablePostRAMachineSched(
265     "enable-post-misched",
266     cl::desc("Enable the post-ra machine instruction scheduling pass."),
267     cl::init(true), cl::Hidden);
268 
269 /// Decrement this iterator until reaching the top or a non-debug instr.
270 static MachineBasicBlock::const_iterator
271 priorNonDebug(MachineBasicBlock::const_iterator I,
272               MachineBasicBlock::const_iterator Beg) {
273   assert(I != Beg && "reached the top of the region, cannot decrement");
274   while (--I != Beg) {
275     if (!I->isDebugInstr())
276       break;
277   }
278   return I;
279 }
280 
281 /// Non-const version.
282 static MachineBasicBlock::iterator
283 priorNonDebug(MachineBasicBlock::iterator I,
284               MachineBasicBlock::const_iterator Beg) {
285   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
286       .getNonConstIterator();
287 }
288 
289 /// If this iterator is a debug value, increment until reaching the End or a
290 /// non-debug instruction.
291 static MachineBasicBlock::const_iterator
292 nextIfDebug(MachineBasicBlock::const_iterator I,
293             MachineBasicBlock::const_iterator End) {
294   for(; I != End; ++I) {
295     if (!I->isDebugInstr())
296       break;
297   }
298   return I;
299 }
300 
301 /// Non-const version.
302 static MachineBasicBlock::iterator
303 nextIfDebug(MachineBasicBlock::iterator I,
304             MachineBasicBlock::const_iterator End) {
305   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
306       .getNonConstIterator();
307 }
308 
309 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
310 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
311   // Select the scheduler, or set the default.
312   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
313   if (Ctor != useDefaultMachineSched)
314     return Ctor(this);
315 
316   // Get the default scheduler set by the target for this function.
317   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
318   if (Scheduler)
319     return Scheduler;
320 
321   // Default to GenericScheduler.
322   return createGenericSchedLive(this);
323 }
324 
325 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
326 /// the caller. We don't have a command line option to override the postRA
327 /// scheduler. The Target must configure it.
328 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
329   // Get the postRA scheduler set by the target for this function.
330   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
331   if (Scheduler)
332     return Scheduler;
333 
334   // Default to GenericScheduler.
335   return createGenericSchedPostRA(this);
336 }
337 
338 /// Top-level MachineScheduler pass driver.
339 ///
340 /// Visit blocks in function order. Divide each block into scheduling regions
341 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
342 /// consistent with the DAG builder, which traverses the interior of the
343 /// scheduling regions bottom-up.
344 ///
345 /// This design avoids exposing scheduling boundaries to the DAG builder,
346 /// simplifying the DAG builder's support for "special" target instructions.
347 /// At the same time the design allows target schedulers to operate across
348 /// scheduling boundaries, for example to bundle the boundary instructions
349 /// without reordering them. This creates complexity, because the target
350 /// scheduler must update the RegionBegin and RegionEnd positions cached by
351 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
352 /// design would be to split blocks at scheduling boundaries, but LLVM has a
353 /// general bias against block splitting purely for implementation simplicity.
354 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
355   if (skipFunction(mf.getFunction()))
356     return false;
357 
358   if (EnableMachineSched.getNumOccurrences()) {
359     if (!EnableMachineSched)
360       return false;
361   } else if (!mf.getSubtarget().enableMachineScheduler())
362     return false;
363 
364   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
365 
366   // Initialize the context of the pass.
367   MF = &mf;
368   MLI = &getAnalysis<MachineLoopInfo>();
369   MDT = &getAnalysis<MachineDominatorTree>();
370   PassConfig = &getAnalysis<TargetPassConfig>();
371   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
372 
373   LIS = &getAnalysis<LiveIntervals>();
374 
375   if (VerifyScheduling) {
376     LLVM_DEBUG(LIS->dump());
377     MF->verify(this, "Before machine scheduling.");
378   }
379   RegClassInfo->runOnMachineFunction(*MF);
380 
381   // Instantiate the selected scheduler for this target, function, and
382   // optimization level.
383   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
384   scheduleRegions(*Scheduler, false);
385 
386   LLVM_DEBUG(LIS->dump());
387   if (VerifyScheduling)
388     MF->verify(this, "After machine scheduling.");
389   return true;
390 }
391 
392 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
393   if (skipFunction(mf.getFunction()))
394     return false;
395 
396   if (EnablePostRAMachineSched.getNumOccurrences()) {
397     if (!EnablePostRAMachineSched)
398       return false;
399   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
400     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
401     return false;
402   }
403   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
404 
405   // Initialize the context of the pass.
406   MF = &mf;
407   MLI = &getAnalysis<MachineLoopInfo>();
408   PassConfig = &getAnalysis<TargetPassConfig>();
409 
410   if (VerifyScheduling)
411     MF->verify(this, "Before post machine scheduling.");
412 
413   // Instantiate the selected scheduler for this target, function, and
414   // optimization level.
415   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
416   scheduleRegions(*Scheduler, true);
417 
418   if (VerifyScheduling)
419     MF->verify(this, "After post machine scheduling.");
420   return true;
421 }
422 
423 /// Return true of the given instruction should not be included in a scheduling
424 /// region.
425 ///
426 /// MachineScheduler does not currently support scheduling across calls. To
427 /// handle calls, the DAG builder needs to be modified to create register
428 /// anti/output dependencies on the registers clobbered by the call's regmask
429 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
430 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
431 /// the boundary, but there would be no benefit to postRA scheduling across
432 /// calls this late anyway.
433 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
434                             MachineBasicBlock *MBB,
435                             MachineFunction *MF,
436                             const TargetInstrInfo *TII) {
437   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
438 }
439 
440 /// A region of an MBB for scheduling.
441 namespace {
442 struct SchedRegion {
443   /// RegionBegin is the first instruction in the scheduling region, and
444   /// RegionEnd is either MBB->end() or the scheduling boundary after the
445   /// last instruction in the scheduling region. These iterators cannot refer
446   /// to instructions outside of the identified scheduling region because
447   /// those may be reordered before scheduling this region.
448   MachineBasicBlock::iterator RegionBegin;
449   MachineBasicBlock::iterator RegionEnd;
450   unsigned NumRegionInstrs;
451 
452   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
453               unsigned N) :
454     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
455 };
456 } // end anonymous namespace
457 
458 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
459 
460 static void
461 getSchedRegions(MachineBasicBlock *MBB,
462                 MBBRegionsVector &Regions,
463                 bool RegionsTopDown) {
464   MachineFunction *MF = MBB->getParent();
465   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
466 
467   MachineBasicBlock::iterator I = nullptr;
468   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
469       RegionEnd != MBB->begin(); RegionEnd = I) {
470 
471     // Avoid decrementing RegionEnd for blocks with no terminator.
472     if (RegionEnd != MBB->end() ||
473         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
474       --RegionEnd;
475     }
476 
477     // The next region starts above the previous region. Look backward in the
478     // instruction stream until we find the nearest boundary.
479     unsigned NumRegionInstrs = 0;
480     I = RegionEnd;
481     for (;I != MBB->begin(); --I) {
482       MachineInstr &MI = *std::prev(I);
483       if (isSchedBoundary(&MI, &*MBB, MF, TII))
484         break;
485       if (!MI.isDebugInstr())
486         // MBB::size() uses instr_iterator to count. Here we need a bundle to
487         // count as a single instruction.
488         ++NumRegionInstrs;
489     }
490 
491     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
492   }
493 
494   if (RegionsTopDown)
495     std::reverse(Regions.begin(), Regions.end());
496 }
497 
498 /// Main driver for both MachineScheduler and PostMachineScheduler.
499 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
500                                            bool FixKillFlags) {
501   // Visit all machine basic blocks.
502   //
503   // TODO: Visit blocks in global postorder or postorder within the bottom-up
504   // loop tree. Then we can optionally compute global RegPressure.
505   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
506        MBB != MBBEnd; ++MBB) {
507 
508     Scheduler.startBlock(&*MBB);
509 
510 #ifndef NDEBUG
511     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
512       continue;
513     if (SchedOnlyBlock.getNumOccurrences()
514         && (int)SchedOnlyBlock != MBB->getNumber())
515       continue;
516 #endif
517 
518     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
519     // points to the scheduling boundary at the bottom of the region. The DAG
520     // does not include RegionEnd, but the region does (i.e. the next
521     // RegionEnd is above the previous RegionBegin). If the current block has
522     // no terminator then RegionEnd == MBB->end() for the bottom region.
523     //
524     // All the regions of MBB are first found and stored in MBBRegions, which
525     // will be processed (MBB) top-down if initialized with true.
526     //
527     // The Scheduler may insert instructions during either schedule() or
528     // exitRegion(), even for empty regions. So the local iterators 'I' and
529     // 'RegionEnd' are invalid across these calls. Instructions must not be
530     // added to other regions than the current one without updating MBBRegions.
531 
532     MBBRegionsVector MBBRegions;
533     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
534     for (MBBRegionsVector::iterator R = MBBRegions.begin();
535          R != MBBRegions.end(); ++R) {
536       MachineBasicBlock::iterator I = R->RegionBegin;
537       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
538       unsigned NumRegionInstrs = R->NumRegionInstrs;
539 
540       // Notify the scheduler of the region, even if we may skip scheduling
541       // it. Perhaps it still needs to be bundled.
542       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
543 
544       // Skip empty scheduling regions (0 or 1 schedulable instructions).
545       if (I == RegionEnd || I == std::prev(RegionEnd)) {
546         // Close the current region. Bundle the terminator if needed.
547         // This invalidates 'RegionEnd' and 'I'.
548         Scheduler.exitRegion();
549         continue;
550       }
551       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
552       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
553                         << " " << MBB->getName() << "\n  From: " << *I
554                         << "    To: ";
555                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
556                  else dbgs() << "End";
557                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
558       if (DumpCriticalPathLength) {
559         errs() << MF->getName();
560         errs() << ":%bb. " << MBB->getNumber();
561         errs() << " " << MBB->getName() << " \n";
562       }
563 
564       // Schedule a region: possibly reorder instructions.
565       // This invalidates the original region iterators.
566       Scheduler.schedule();
567 
568       // Close the current region.
569       Scheduler.exitRegion();
570     }
571     Scheduler.finishBlock();
572     // FIXME: Ideally, no further passes should rely on kill flags. However,
573     // thumb2 size reduction is currently an exception, so the PostMIScheduler
574     // needs to do this.
575     if (FixKillFlags)
576       Scheduler.fixupKills(*MBB);
577   }
578   Scheduler.finalizeSchedule();
579 }
580 
581 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
582   // unimplemented
583 }
584 
585 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
586 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
587   dbgs() << "Queue " << Name << ": ";
588   for (const SUnit *SU : Queue)
589     dbgs() << SU->NodeNum << " ";
590   dbgs() << "\n";
591 }
592 #endif
593 
594 //===----------------------------------------------------------------------===//
595 // ScheduleDAGMI - Basic machine instruction scheduling. This is
596 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
597 // virtual registers.
598 // ===----------------------------------------------------------------------===/
599 
600 // Provide a vtable anchor.
601 ScheduleDAGMI::~ScheduleDAGMI() = default;
602 
603 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
604   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
605 }
606 
607 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
608   if (SuccSU != &ExitSU) {
609     // Do not use WillCreateCycle, it assumes SD scheduling.
610     // If Pred is reachable from Succ, then the edge creates a cycle.
611     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
612       return false;
613     Topo.AddPred(SuccSU, PredDep.getSUnit());
614   }
615   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
616   // Return true regardless of whether a new edge needed to be inserted.
617   return true;
618 }
619 
620 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
621 /// NumPredsLeft reaches zero, release the successor node.
622 ///
623 /// FIXME: Adjust SuccSU height based on MinLatency.
624 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
625   SUnit *SuccSU = SuccEdge->getSUnit();
626 
627   if (SuccEdge->isWeak()) {
628     --SuccSU->WeakPredsLeft;
629     if (SuccEdge->isCluster())
630       NextClusterSucc = SuccSU;
631     return;
632   }
633 #ifndef NDEBUG
634   if (SuccSU->NumPredsLeft == 0) {
635     dbgs() << "*** Scheduling failed! ***\n";
636     dumpNode(*SuccSU);
637     dbgs() << " has been released too many times!\n";
638     llvm_unreachable(nullptr);
639   }
640 #endif
641   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
642   // CurrCycle may have advanced since then.
643   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
644     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
645 
646   --SuccSU->NumPredsLeft;
647   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
648     SchedImpl->releaseTopNode(SuccSU);
649 }
650 
651 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
652 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
653   for (SDep &Succ : SU->Succs)
654     releaseSucc(SU, &Succ);
655 }
656 
657 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
658 /// NumSuccsLeft reaches zero, release the predecessor node.
659 ///
660 /// FIXME: Adjust PredSU height based on MinLatency.
661 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
662   SUnit *PredSU = PredEdge->getSUnit();
663 
664   if (PredEdge->isWeak()) {
665     --PredSU->WeakSuccsLeft;
666     if (PredEdge->isCluster())
667       NextClusterPred = PredSU;
668     return;
669   }
670 #ifndef NDEBUG
671   if (PredSU->NumSuccsLeft == 0) {
672     dbgs() << "*** Scheduling failed! ***\n";
673     dumpNode(*PredSU);
674     dbgs() << " has been released too many times!\n";
675     llvm_unreachable(nullptr);
676   }
677 #endif
678   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
679   // CurrCycle may have advanced since then.
680   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
681     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
682 
683   --PredSU->NumSuccsLeft;
684   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
685     SchedImpl->releaseBottomNode(PredSU);
686 }
687 
688 /// releasePredecessors - Call releasePred on each of SU's predecessors.
689 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
690   for (SDep &Pred : SU->Preds)
691     releasePred(SU, &Pred);
692 }
693 
694 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
695   ScheduleDAGInstrs::startBlock(bb);
696   SchedImpl->enterMBB(bb);
697 }
698 
699 void ScheduleDAGMI::finishBlock() {
700   SchedImpl->leaveMBB();
701   ScheduleDAGInstrs::finishBlock();
702 }
703 
704 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
705 /// crossing a scheduling boundary. [begin, end) includes all instructions in
706 /// the region, including the boundary itself and single-instruction regions
707 /// that don't get scheduled.
708 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
709                                      MachineBasicBlock::iterator begin,
710                                      MachineBasicBlock::iterator end,
711                                      unsigned regioninstrs)
712 {
713   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
714 
715   SchedImpl->initPolicy(begin, end, regioninstrs);
716 }
717 
718 /// This is normally called from the main scheduler loop but may also be invoked
719 /// by the scheduling strategy to perform additional code motion.
720 void ScheduleDAGMI::moveInstruction(
721   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
722   // Advance RegionBegin if the first instruction moves down.
723   if (&*RegionBegin == MI)
724     ++RegionBegin;
725 
726   // Update the instruction stream.
727   BB->splice(InsertPos, BB, MI);
728 
729   // Update LiveIntervals
730   if (LIS)
731     LIS->handleMove(*MI, /*UpdateFlags=*/true);
732 
733   // Recede RegionBegin if an instruction moves above the first.
734   if (RegionBegin == InsertPos)
735     RegionBegin = MI;
736 }
737 
738 bool ScheduleDAGMI::checkSchedLimit() {
739 #ifndef NDEBUG
740   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
741     CurrentTop = CurrentBottom;
742     return false;
743   }
744   ++NumInstrsScheduled;
745 #endif
746   return true;
747 }
748 
749 /// Per-region scheduling driver, called back from
750 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
751 /// does not consider liveness or register pressure. It is useful for PostRA
752 /// scheduling and potentially other custom schedulers.
753 void ScheduleDAGMI::schedule() {
754   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
755   LLVM_DEBUG(SchedImpl->dumpPolicy());
756 
757   // Build the DAG.
758   buildSchedGraph(AA);
759 
760   Topo.InitDAGTopologicalSorting();
761 
762   postprocessDAG();
763 
764   SmallVector<SUnit*, 8> TopRoots, BotRoots;
765   findRootsAndBiasEdges(TopRoots, BotRoots);
766 
767   LLVM_DEBUG(dump());
768   if (ViewMISchedDAGs) viewGraph();
769 
770   // Initialize the strategy before modifying the DAG.
771   // This may initialize a DFSResult to be used for queue priority.
772   SchedImpl->initialize(this);
773 
774   // Initialize ready queues now that the DAG and priority data are finalized.
775   initQueues(TopRoots, BotRoots);
776 
777   bool IsTopNode = false;
778   while (true) {
779     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
780     SUnit *SU = SchedImpl->pickNode(IsTopNode);
781     if (!SU) break;
782 
783     assert(!SU->isScheduled && "Node already scheduled");
784     if (!checkSchedLimit())
785       break;
786 
787     MachineInstr *MI = SU->getInstr();
788     if (IsTopNode) {
789       assert(SU->isTopReady() && "node still has unscheduled dependencies");
790       if (&*CurrentTop == MI)
791         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
792       else
793         moveInstruction(MI, CurrentTop);
794     } else {
795       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
796       MachineBasicBlock::iterator priorII =
797         priorNonDebug(CurrentBottom, CurrentTop);
798       if (&*priorII == MI)
799         CurrentBottom = priorII;
800       else {
801         if (&*CurrentTop == MI)
802           CurrentTop = nextIfDebug(++CurrentTop, priorII);
803         moveInstruction(MI, CurrentBottom);
804         CurrentBottom = MI;
805       }
806     }
807     // Notify the scheduling strategy before updating the DAG.
808     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
809     // runs, it can then use the accurate ReadyCycle time to determine whether
810     // newly released nodes can move to the readyQ.
811     SchedImpl->schedNode(SU, IsTopNode);
812 
813     updateQueues(SU, IsTopNode);
814   }
815   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
816 
817   placeDebugValues();
818 
819   LLVM_DEBUG({
820     dbgs() << "*** Final schedule for "
821            << printMBBReference(*begin()->getParent()) << " ***\n";
822     dumpSchedule();
823     dbgs() << '\n';
824   });
825 }
826 
827 /// Apply each ScheduleDAGMutation step in order.
828 void ScheduleDAGMI::postprocessDAG() {
829   for (auto &m : Mutations)
830     m->apply(this);
831 }
832 
833 void ScheduleDAGMI::
834 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
835                       SmallVectorImpl<SUnit*> &BotRoots) {
836   for (SUnit &SU : SUnits) {
837     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
838 
839     // Order predecessors so DFSResult follows the critical path.
840     SU.biasCriticalPath();
841 
842     // A SUnit is ready to top schedule if it has no predecessors.
843     if (!SU.NumPredsLeft)
844       TopRoots.push_back(&SU);
845     // A SUnit is ready to bottom schedule if it has no successors.
846     if (!SU.NumSuccsLeft)
847       BotRoots.push_back(&SU);
848   }
849   ExitSU.biasCriticalPath();
850 }
851 
852 /// Identify DAG roots and setup scheduler queues.
853 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
854                                ArrayRef<SUnit*> BotRoots) {
855   NextClusterSucc = nullptr;
856   NextClusterPred = nullptr;
857 
858   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
859   //
860   // Nodes with unreleased weak edges can still be roots.
861   // Release top roots in forward order.
862   for (SUnit *SU : TopRoots)
863     SchedImpl->releaseTopNode(SU);
864 
865   // Release bottom roots in reverse order so the higher priority nodes appear
866   // first. This is more natural and slightly more efficient.
867   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
868          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
869     SchedImpl->releaseBottomNode(*I);
870   }
871 
872   releaseSuccessors(&EntrySU);
873   releasePredecessors(&ExitSU);
874 
875   SchedImpl->registerRoots();
876 
877   // Advance past initial DebugValues.
878   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
879   CurrentBottom = RegionEnd;
880 }
881 
882 /// Update scheduler queues after scheduling an instruction.
883 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
884   // Release dependent instructions for scheduling.
885   if (IsTopNode)
886     releaseSuccessors(SU);
887   else
888     releasePredecessors(SU);
889 
890   SU->isScheduled = true;
891 }
892 
893 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
894 void ScheduleDAGMI::placeDebugValues() {
895   // If first instruction was a DBG_VALUE then put it back.
896   if (FirstDbgValue) {
897     BB->splice(RegionBegin, BB, FirstDbgValue);
898     RegionBegin = FirstDbgValue;
899   }
900 
901   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
902          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
903     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
904     MachineInstr *DbgValue = P.first;
905     MachineBasicBlock::iterator OrigPrevMI = P.second;
906     if (&*RegionBegin == DbgValue)
907       ++RegionBegin;
908     BB->splice(++OrigPrevMI, BB, DbgValue);
909     if (OrigPrevMI == std::prev(RegionEnd))
910       RegionEnd = DbgValue;
911   }
912   DbgValues.clear();
913   FirstDbgValue = nullptr;
914 }
915 
916 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
917 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
918   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
919     if (SUnit *SU = getSUnit(&(*MI)))
920       dumpNode(*SU);
921     else
922       dbgs() << "Missing SUnit\n";
923   }
924 }
925 #endif
926 
927 //===----------------------------------------------------------------------===//
928 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
929 // preservation.
930 //===----------------------------------------------------------------------===//
931 
932 ScheduleDAGMILive::~ScheduleDAGMILive() {
933   delete DFSResult;
934 }
935 
936 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
937   const MachineInstr &MI = *SU.getInstr();
938   for (const MachineOperand &MO : MI.operands()) {
939     if (!MO.isReg())
940       continue;
941     if (!MO.readsReg())
942       continue;
943     if (TrackLaneMasks && !MO.isUse())
944       continue;
945 
946     unsigned Reg = MO.getReg();
947     if (!TargetRegisterInfo::isVirtualRegister(Reg))
948       continue;
949 
950     // Ignore re-defs.
951     if (TrackLaneMasks) {
952       bool FoundDef = false;
953       for (const MachineOperand &MO2 : MI.operands()) {
954         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
955           FoundDef = true;
956           break;
957         }
958       }
959       if (FoundDef)
960         continue;
961     }
962 
963     // Record this local VReg use.
964     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
965     for (; UI != VRegUses.end(); ++UI) {
966       if (UI->SU == &SU)
967         break;
968     }
969     if (UI == VRegUses.end())
970       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
971   }
972 }
973 
974 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
975 /// crossing a scheduling boundary. [begin, end) includes all instructions in
976 /// the region, including the boundary itself and single-instruction regions
977 /// that don't get scheduled.
978 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
979                                 MachineBasicBlock::iterator begin,
980                                 MachineBasicBlock::iterator end,
981                                 unsigned regioninstrs)
982 {
983   // ScheduleDAGMI initializes SchedImpl's per-region policy.
984   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
985 
986   // For convenience remember the end of the liveness region.
987   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
988 
989   SUPressureDiffs.clear();
990 
991   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
992   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
993 
994   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
995          "ShouldTrackLaneMasks requires ShouldTrackPressure");
996 }
997 
998 // Setup the register pressure trackers for the top scheduled top and bottom
999 // scheduled regions.
1000 void ScheduleDAGMILive::initRegPressure() {
1001   VRegUses.clear();
1002   VRegUses.setUniverse(MRI.getNumVirtRegs());
1003   for (SUnit &SU : SUnits)
1004     collectVRegUses(SU);
1005 
1006   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1007                     ShouldTrackLaneMasks, false);
1008   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1009                     ShouldTrackLaneMasks, false);
1010 
1011   // Close the RPTracker to finalize live ins.
1012   RPTracker.closeRegion();
1013 
1014   LLVM_DEBUG(RPTracker.dump());
1015 
1016   // Initialize the live ins and live outs.
1017   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1018   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1019 
1020   // Close one end of the tracker so we can call
1021   // getMaxUpward/DownwardPressureDelta before advancing across any
1022   // instructions. This converts currently live regs into live ins/outs.
1023   TopRPTracker.closeTop();
1024   BotRPTracker.closeBottom();
1025 
1026   BotRPTracker.initLiveThru(RPTracker);
1027   if (!BotRPTracker.getLiveThru().empty()) {
1028     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1029     LLVM_DEBUG(dbgs() << "Live Thru: ";
1030                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1031   };
1032 
1033   // For each live out vreg reduce the pressure change associated with other
1034   // uses of the same vreg below the live-out reaching def.
1035   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1036 
1037   // Account for liveness generated by the region boundary.
1038   if (LiveRegionEnd != RegionEnd) {
1039     SmallVector<RegisterMaskPair, 8> LiveUses;
1040     BotRPTracker.recede(&LiveUses);
1041     updatePressureDiffs(LiveUses);
1042   }
1043 
1044   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
1045              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1046              dbgs() << "Bottom Pressure:\n";
1047              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
1048 
1049   assert((BotRPTracker.getPos() == RegionEnd ||
1050           (RegionEnd->isDebugInstr() &&
1051            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1052          "Can't find the region bottom");
1053 
1054   // Cache the list of excess pressure sets in this region. This will also track
1055   // the max pressure in the scheduled code for these sets.
1056   RegionCriticalPSets.clear();
1057   const std::vector<unsigned> &RegionPressure =
1058     RPTracker.getPressure().MaxSetPressure;
1059   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1060     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1061     if (RegionPressure[i] > Limit) {
1062       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
1063                         << " Actual " << RegionPressure[i] << "\n");
1064       RegionCriticalPSets.push_back(PressureChange(i));
1065     }
1066   }
1067   LLVM_DEBUG(dbgs() << "Excess PSets: ";
1068              for (const PressureChange &RCPS
1069                   : RegionCriticalPSets) dbgs()
1070              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
1071              dbgs() << "\n");
1072 }
1073 
1074 void ScheduleDAGMILive::
1075 updateScheduledPressure(const SUnit *SU,
1076                         const std::vector<unsigned> &NewMaxPressure) {
1077   const PressureDiff &PDiff = getPressureDiff(SU);
1078   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1079   for (const PressureChange &PC : PDiff) {
1080     if (!PC.isValid())
1081       break;
1082     unsigned ID = PC.getPSet();
1083     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1084       ++CritIdx;
1085     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1086       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1087           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1088         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1089     }
1090     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1091     if (NewMaxPressure[ID] >= Limit - 2) {
1092       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1093                         << NewMaxPressure[ID]
1094                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
1095                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
1096                         << " livethru)\n");
1097     }
1098   }
1099 }
1100 
1101 /// Update the PressureDiff array for liveness after scheduling this
1102 /// instruction.
1103 void ScheduleDAGMILive::updatePressureDiffs(
1104     ArrayRef<RegisterMaskPair> LiveUses) {
1105   for (const RegisterMaskPair &P : LiveUses) {
1106     unsigned Reg = P.RegUnit;
1107     /// FIXME: Currently assuming single-use physregs.
1108     if (!TRI->isVirtualRegister(Reg))
1109       continue;
1110 
1111     if (ShouldTrackLaneMasks) {
1112       // If the register has just become live then other uses won't change
1113       // this fact anymore => decrement pressure.
1114       // If the register has just become dead then other uses make it come
1115       // back to life => increment pressure.
1116       bool Decrement = P.LaneMask.any();
1117 
1118       for (const VReg2SUnit &V2SU
1119            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1120         SUnit &SU = *V2SU.SU;
1121         if (SU.isScheduled || &SU == &ExitSU)
1122           continue;
1123 
1124         PressureDiff &PDiff = getPressureDiff(&SU);
1125         PDiff.addPressureChange(Reg, Decrement, &MRI);
1126         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1127                           << printReg(Reg, TRI) << ':'
1128                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
1129                    dbgs() << "              to "; PDiff.dump(*TRI););
1130       }
1131     } else {
1132       assert(P.LaneMask.any());
1133       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1134       // This may be called before CurrentBottom has been initialized. However,
1135       // BotRPTracker must have a valid position. We want the value live into the
1136       // instruction or live out of the block, so ask for the previous
1137       // instruction's live-out.
1138       const LiveInterval &LI = LIS->getInterval(Reg);
1139       VNInfo *VNI;
1140       MachineBasicBlock::const_iterator I =
1141         nextIfDebug(BotRPTracker.getPos(), BB->end());
1142       if (I == BB->end())
1143         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1144       else {
1145         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1146         VNI = LRQ.valueIn();
1147       }
1148       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1149       assert(VNI && "No live value at use.");
1150       for (const VReg2SUnit &V2SU
1151            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1152         SUnit *SU = V2SU.SU;
1153         // If this use comes before the reaching def, it cannot be a last use,
1154         // so decrease its pressure change.
1155         if (!SU->isScheduled && SU != &ExitSU) {
1156           LiveQueryResult LRQ =
1157               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1158           if (LRQ.valueIn() == VNI) {
1159             PressureDiff &PDiff = getPressureDiff(SU);
1160             PDiff.addPressureChange(Reg, true, &MRI);
1161             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1162                               << *SU->getInstr();
1163                        dbgs() << "              to "; PDiff.dump(*TRI););
1164           }
1165         }
1166       }
1167     }
1168   }
1169 }
1170 
1171 void ScheduleDAGMILive::dump() const {
1172 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1173   if (EntrySU.getInstr() != nullptr)
1174     dumpNodeAll(EntrySU);
1175   for (const SUnit &SU : SUnits) {
1176     dumpNodeAll(SU);
1177     if (ShouldTrackPressure) {
1178       dbgs() << "  Pressure Diff      : ";
1179       getPressureDiff(&SU).dump(*TRI);
1180     }
1181     dbgs() << "  Single Issue       : ";
1182     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1183         SchedModel.mustEndGroup(SU.getInstr()))
1184       dbgs() << "true;";
1185     else
1186       dbgs() << "false;";
1187     dbgs() << '\n';
1188   }
1189   if (ExitSU.getInstr() != nullptr)
1190     dumpNodeAll(ExitSU);
1191 #endif
1192 }
1193 
1194 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1195 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1196 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1197 ///
1198 /// This is a skeletal driver, with all the functionality pushed into helpers,
1199 /// so that it can be easily extended by experimental schedulers. Generally,
1200 /// implementing MachineSchedStrategy should be sufficient to implement a new
1201 /// scheduling algorithm. However, if a scheduler further subclasses
1202 /// ScheduleDAGMILive then it will want to override this virtual method in order
1203 /// to update any specialized state.
1204 void ScheduleDAGMILive::schedule() {
1205   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1206   LLVM_DEBUG(SchedImpl->dumpPolicy());
1207   buildDAGWithRegPressure();
1208 
1209   Topo.InitDAGTopologicalSorting();
1210 
1211   postprocessDAG();
1212 
1213   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1214   findRootsAndBiasEdges(TopRoots, BotRoots);
1215 
1216   // Initialize the strategy before modifying the DAG.
1217   // This may initialize a DFSResult to be used for queue priority.
1218   SchedImpl->initialize(this);
1219 
1220   LLVM_DEBUG(dump());
1221   if (ViewMISchedDAGs) viewGraph();
1222 
1223   // Initialize ready queues now that the DAG and priority data are finalized.
1224   initQueues(TopRoots, BotRoots);
1225 
1226   bool IsTopNode = false;
1227   while (true) {
1228     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1229     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1230     if (!SU) break;
1231 
1232     assert(!SU->isScheduled && "Node already scheduled");
1233     if (!checkSchedLimit())
1234       break;
1235 
1236     scheduleMI(SU, IsTopNode);
1237 
1238     if (DFSResult) {
1239       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1240       if (!ScheduledTrees.test(SubtreeID)) {
1241         ScheduledTrees.set(SubtreeID);
1242         DFSResult->scheduleTree(SubtreeID);
1243         SchedImpl->scheduleTree(SubtreeID);
1244       }
1245     }
1246 
1247     // Notify the scheduling strategy after updating the DAG.
1248     SchedImpl->schedNode(SU, IsTopNode);
1249 
1250     updateQueues(SU, IsTopNode);
1251   }
1252   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1253 
1254   placeDebugValues();
1255 
1256   LLVM_DEBUG({
1257     dbgs() << "*** Final schedule for "
1258            << printMBBReference(*begin()->getParent()) << " ***\n";
1259     dumpSchedule();
1260     dbgs() << '\n';
1261   });
1262 }
1263 
1264 /// Build the DAG and setup three register pressure trackers.
1265 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1266   if (!ShouldTrackPressure) {
1267     RPTracker.reset();
1268     RegionCriticalPSets.clear();
1269     buildSchedGraph(AA);
1270     return;
1271   }
1272 
1273   // Initialize the register pressure tracker used by buildSchedGraph.
1274   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1275                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1276 
1277   // Account for liveness generate by the region boundary.
1278   if (LiveRegionEnd != RegionEnd)
1279     RPTracker.recede();
1280 
1281   // Build the DAG, and compute current register pressure.
1282   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1283 
1284   // Initialize top/bottom trackers after computing region pressure.
1285   initRegPressure();
1286 }
1287 
1288 void ScheduleDAGMILive::computeDFSResult() {
1289   if (!DFSResult)
1290     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1291   DFSResult->clear();
1292   ScheduledTrees.clear();
1293   DFSResult->resize(SUnits.size());
1294   DFSResult->compute(SUnits);
1295   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1296 }
1297 
1298 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1299 /// only provides the critical path for single block loops. To handle loops that
1300 /// span blocks, we could use the vreg path latencies provided by
1301 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1302 /// available for use in the scheduler.
1303 ///
1304 /// The cyclic path estimation identifies a def-use pair that crosses the back
1305 /// edge and considers the depth and height of the nodes. For example, consider
1306 /// the following instruction sequence where each instruction has unit latency
1307 /// and defines an epomymous virtual register:
1308 ///
1309 /// a->b(a,c)->c(b)->d(c)->exit
1310 ///
1311 /// The cyclic critical path is a two cycles: b->c->b
1312 /// The acyclic critical path is four cycles: a->b->c->d->exit
1313 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1314 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1315 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1316 /// LiveInDepth = depth(b) = len(a->b) = 1
1317 ///
1318 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1319 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1320 /// CyclicCriticalPath = min(2, 2) = 2
1321 ///
1322 /// This could be relevant to PostRA scheduling, but is currently implemented
1323 /// assuming LiveIntervals.
1324 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1325   // This only applies to single block loop.
1326   if (!BB->isSuccessor(BB))
1327     return 0;
1328 
1329   unsigned MaxCyclicLatency = 0;
1330   // Visit each live out vreg def to find def/use pairs that cross iterations.
1331   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1332     unsigned Reg = P.RegUnit;
1333     if (!TRI->isVirtualRegister(Reg))
1334         continue;
1335     const LiveInterval &LI = LIS->getInterval(Reg);
1336     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1337     if (!DefVNI)
1338       continue;
1339 
1340     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1341     const SUnit *DefSU = getSUnit(DefMI);
1342     if (!DefSU)
1343       continue;
1344 
1345     unsigned LiveOutHeight = DefSU->getHeight();
1346     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1347     // Visit all local users of the vreg def.
1348     for (const VReg2SUnit &V2SU
1349          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1350       SUnit *SU = V2SU.SU;
1351       if (SU == &ExitSU)
1352         continue;
1353 
1354       // Only consider uses of the phi.
1355       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1356       if (!LRQ.valueIn()->isPHIDef())
1357         continue;
1358 
1359       // Assume that a path spanning two iterations is a cycle, which could
1360       // overestimate in strange cases. This allows cyclic latency to be
1361       // estimated as the minimum slack of the vreg's depth or height.
1362       unsigned CyclicLatency = 0;
1363       if (LiveOutDepth > SU->getDepth())
1364         CyclicLatency = LiveOutDepth - SU->getDepth();
1365 
1366       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1367       if (LiveInHeight > LiveOutHeight) {
1368         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1369           CyclicLatency = LiveInHeight - LiveOutHeight;
1370       } else
1371         CyclicLatency = 0;
1372 
1373       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1374                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1375       if (CyclicLatency > MaxCyclicLatency)
1376         MaxCyclicLatency = CyclicLatency;
1377     }
1378   }
1379   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1380   return MaxCyclicLatency;
1381 }
1382 
1383 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1384 /// the Top RP tracker in case the region beginning has changed.
1385 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1386                                    ArrayRef<SUnit*> BotRoots) {
1387   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1388   if (ShouldTrackPressure) {
1389     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1390     TopRPTracker.setPos(CurrentTop);
1391   }
1392 }
1393 
1394 /// Move an instruction and update register pressure.
1395 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1396   // Move the instruction to its new location in the instruction stream.
1397   MachineInstr *MI = SU->getInstr();
1398 
1399   if (IsTopNode) {
1400     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1401     if (&*CurrentTop == MI)
1402       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1403     else {
1404       moveInstruction(MI, CurrentTop);
1405       TopRPTracker.setPos(MI);
1406     }
1407 
1408     if (ShouldTrackPressure) {
1409       // Update top scheduled pressure.
1410       RegisterOperands RegOpers;
1411       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1412       if (ShouldTrackLaneMasks) {
1413         // Adjust liveness and add missing dead+read-undef flags.
1414         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1415         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1416       } else {
1417         // Adjust for missing dead-def flags.
1418         RegOpers.detectDeadDefs(*MI, *LIS);
1419       }
1420 
1421       TopRPTracker.advance(RegOpers);
1422       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1423       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
1424                      TopRPTracker.getRegSetPressureAtPos(), TRI););
1425 
1426       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1427     }
1428   } else {
1429     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1430     MachineBasicBlock::iterator priorII =
1431       priorNonDebug(CurrentBottom, CurrentTop);
1432     if (&*priorII == MI)
1433       CurrentBottom = priorII;
1434     else {
1435       if (&*CurrentTop == MI) {
1436         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1437         TopRPTracker.setPos(CurrentTop);
1438       }
1439       moveInstruction(MI, CurrentBottom);
1440       CurrentBottom = MI;
1441       BotRPTracker.setPos(CurrentBottom);
1442     }
1443     if (ShouldTrackPressure) {
1444       RegisterOperands RegOpers;
1445       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1446       if (ShouldTrackLaneMasks) {
1447         // Adjust liveness and add missing dead+read-undef flags.
1448         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1449         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1450       } else {
1451         // Adjust for missing dead-def flags.
1452         RegOpers.detectDeadDefs(*MI, *LIS);
1453       }
1454 
1455       if (BotRPTracker.getPos() != CurrentBottom)
1456         BotRPTracker.recedeSkipDebugValues();
1457       SmallVector<RegisterMaskPair, 8> LiveUses;
1458       BotRPTracker.recede(RegOpers, &LiveUses);
1459       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1460       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
1461                      BotRPTracker.getRegSetPressureAtPos(), TRI););
1462 
1463       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1464       updatePressureDiffs(LiveUses);
1465     }
1466   }
1467 }
1468 
1469 //===----------------------------------------------------------------------===//
1470 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1471 //===----------------------------------------------------------------------===//
1472 
1473 namespace {
1474 
1475 /// Post-process the DAG to create cluster edges between neighboring
1476 /// loads or between neighboring stores.
1477 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1478   struct MemOpInfo {
1479     SUnit *SU;
1480     unsigned BaseReg;
1481     int64_t Offset;
1482 
1483     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1484         : SU(su), BaseReg(reg), Offset(ofs) {}
1485 
1486     bool operator<(const MemOpInfo&RHS) const {
1487       return std::tie(BaseReg, Offset, SU->NodeNum) <
1488              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1489     }
1490   };
1491 
1492   const TargetInstrInfo *TII;
1493   const TargetRegisterInfo *TRI;
1494   bool IsLoad;
1495 
1496 public:
1497   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1498                            const TargetRegisterInfo *tri, bool IsLoad)
1499       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1500 
1501   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1502 
1503 protected:
1504   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1505 };
1506 
1507 class StoreClusterMutation : public BaseMemOpClusterMutation {
1508 public:
1509   StoreClusterMutation(const TargetInstrInfo *tii,
1510                        const TargetRegisterInfo *tri)
1511       : BaseMemOpClusterMutation(tii, tri, false) {}
1512 };
1513 
1514 class LoadClusterMutation : public BaseMemOpClusterMutation {
1515 public:
1516   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1517       : BaseMemOpClusterMutation(tii, tri, true) {}
1518 };
1519 
1520 } // end anonymous namespace
1521 
1522 namespace llvm {
1523 
1524 std::unique_ptr<ScheduleDAGMutation>
1525 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1526                              const TargetRegisterInfo *TRI) {
1527   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1528                             : nullptr;
1529 }
1530 
1531 std::unique_ptr<ScheduleDAGMutation>
1532 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1533                               const TargetRegisterInfo *TRI) {
1534   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1535                             : nullptr;
1536 }
1537 
1538 } // end namespace llvm
1539 
1540 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1541     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1542   SmallVector<MemOpInfo, 32> MemOpRecords;
1543   for (SUnit *SU : MemOps) {
1544     unsigned BaseReg;
1545     int64_t Offset;
1546     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1547       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1548   }
1549   if (MemOpRecords.size() < 2)
1550     return;
1551 
1552   llvm::sort(MemOpRecords.begin(), MemOpRecords.end());
1553   unsigned ClusterLength = 1;
1554   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1555     SUnit *SUa = MemOpRecords[Idx].SU;
1556     SUnit *SUb = MemOpRecords[Idx+1].SU;
1557     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1558                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1559                                  ClusterLength) &&
1560         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1561       LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1562                         << SUb->NodeNum << ")\n");
1563       // Copy successor edges from SUa to SUb. Interleaving computation
1564       // dependent on SUa can prevent load combining due to register reuse.
1565       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1566       // loads should have effectively the same inputs.
1567       for (const SDep &Succ : SUa->Succs) {
1568         if (Succ.getSUnit() == SUb)
1569           continue;
1570         LLVM_DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum
1571                           << ")\n");
1572         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1573       }
1574       ++ClusterLength;
1575     } else
1576       ClusterLength = 1;
1577   }
1578 }
1579 
1580 /// Callback from DAG postProcessing to create cluster edges for loads.
1581 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1582   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1583 
1584   // Map DAG NodeNum to store chain ID.
1585   DenseMap<unsigned, unsigned> StoreChainIDs;
1586   // Map each store chain to a set of dependent MemOps.
1587   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1588   for (SUnit &SU : DAG->SUnits) {
1589     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1590         (!IsLoad && !SU.getInstr()->mayStore()))
1591       continue;
1592 
1593     unsigned ChainPredID = DAG->SUnits.size();
1594     for (const SDep &Pred : SU.Preds) {
1595       if (Pred.isCtrl()) {
1596         ChainPredID = Pred.getSUnit()->NodeNum;
1597         break;
1598       }
1599     }
1600     // Check if this chain-like pred has been seen
1601     // before. ChainPredID==MaxNodeID at the top of the schedule.
1602     unsigned NumChains = StoreChainDependents.size();
1603     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1604       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1605     if (Result.second)
1606       StoreChainDependents.resize(NumChains + 1);
1607     StoreChainDependents[Result.first->second].push_back(&SU);
1608   }
1609 
1610   // Iterate over the store chains.
1611   for (auto &SCD : StoreChainDependents)
1612     clusterNeighboringMemOps(SCD, DAG);
1613 }
1614 
1615 //===----------------------------------------------------------------------===//
1616 // CopyConstrain - DAG post-processing to encourage copy elimination.
1617 //===----------------------------------------------------------------------===//
1618 
1619 namespace {
1620 
1621 /// Post-process the DAG to create weak edges from all uses of a copy to
1622 /// the one use that defines the copy's source vreg, most likely an induction
1623 /// variable increment.
1624 class CopyConstrain : public ScheduleDAGMutation {
1625   // Transient state.
1626   SlotIndex RegionBeginIdx;
1627 
1628   // RegionEndIdx is the slot index of the last non-debug instruction in the
1629   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1630   SlotIndex RegionEndIdx;
1631 
1632 public:
1633   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1634 
1635   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1636 
1637 protected:
1638   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1639 };
1640 
1641 } // end anonymous namespace
1642 
1643 namespace llvm {
1644 
1645 std::unique_ptr<ScheduleDAGMutation>
1646 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1647                                const TargetRegisterInfo *TRI) {
1648   return llvm::make_unique<CopyConstrain>(TII, TRI);
1649 }
1650 
1651 } // end namespace llvm
1652 
1653 /// constrainLocalCopy handles two possibilities:
1654 /// 1) Local src:
1655 /// I0:     = dst
1656 /// I1: src = ...
1657 /// I2:     = dst
1658 /// I3: dst = src (copy)
1659 /// (create pred->succ edges I0->I1, I2->I1)
1660 ///
1661 /// 2) Local copy:
1662 /// I0: dst = src (copy)
1663 /// I1:     = dst
1664 /// I2: src = ...
1665 /// I3:     = dst
1666 /// (create pred->succ edges I1->I2, I3->I2)
1667 ///
1668 /// Although the MachineScheduler is currently constrained to single blocks,
1669 /// this algorithm should handle extended blocks. An EBB is a set of
1670 /// contiguously numbered blocks such that the previous block in the EBB is
1671 /// always the single predecessor.
1672 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1673   LiveIntervals *LIS = DAG->getLIS();
1674   MachineInstr *Copy = CopySU->getInstr();
1675 
1676   // Check for pure vreg copies.
1677   const MachineOperand &SrcOp = Copy->getOperand(1);
1678   unsigned SrcReg = SrcOp.getReg();
1679   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1680     return;
1681 
1682   const MachineOperand &DstOp = Copy->getOperand(0);
1683   unsigned DstReg = DstOp.getReg();
1684   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1685     return;
1686 
1687   // Check if either the dest or source is local. If it's live across a back
1688   // edge, it's not local. Note that if both vregs are live across the back
1689   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1690   // If both the copy's source and dest are local live intervals, then we
1691   // should treat the dest as the global for the purpose of adding
1692   // constraints. This adds edges from source's other uses to the copy.
1693   unsigned LocalReg = SrcReg;
1694   unsigned GlobalReg = DstReg;
1695   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1696   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1697     LocalReg = DstReg;
1698     GlobalReg = SrcReg;
1699     LocalLI = &LIS->getInterval(LocalReg);
1700     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1701       return;
1702   }
1703   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1704 
1705   // Find the global segment after the start of the local LI.
1706   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1707   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1708   // local live range. We could create edges from other global uses to the local
1709   // start, but the coalescer should have already eliminated these cases, so
1710   // don't bother dealing with it.
1711   if (GlobalSegment == GlobalLI->end())
1712     return;
1713 
1714   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1715   // returned the next global segment. But if GlobalSegment overlaps with
1716   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
1717   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1718   if (GlobalSegment->contains(LocalLI->beginIndex()))
1719     ++GlobalSegment;
1720 
1721   if (GlobalSegment == GlobalLI->end())
1722     return;
1723 
1724   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1725   if (GlobalSegment != GlobalLI->begin()) {
1726     // Two address defs have no hole.
1727     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1728                                GlobalSegment->start)) {
1729       return;
1730     }
1731     // If the prior global segment may be defined by the same two-address
1732     // instruction that also defines LocalLI, then can't make a hole here.
1733     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1734                                LocalLI->beginIndex())) {
1735       return;
1736     }
1737     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1738     // it would be a disconnected component in the live range.
1739     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1740            "Disconnected LRG within the scheduling region.");
1741   }
1742   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1743   if (!GlobalDef)
1744     return;
1745 
1746   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1747   if (!GlobalSU)
1748     return;
1749 
1750   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1751   // constraining the uses of the last local def to precede GlobalDef.
1752   SmallVector<SUnit*,8> LocalUses;
1753   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1754   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1755   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1756   for (const SDep &Succ : LastLocalSU->Succs) {
1757     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1758       continue;
1759     if (Succ.getSUnit() == GlobalSU)
1760       continue;
1761     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1762       return;
1763     LocalUses.push_back(Succ.getSUnit());
1764   }
1765   // Open the top of the GlobalLI hole by constraining any earlier global uses
1766   // to precede the start of LocalLI.
1767   SmallVector<SUnit*,8> GlobalUses;
1768   MachineInstr *FirstLocalDef =
1769     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1770   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1771   for (const SDep &Pred : GlobalSU->Preds) {
1772     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1773       continue;
1774     if (Pred.getSUnit() == FirstLocalSU)
1775       continue;
1776     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1777       return;
1778     GlobalUses.push_back(Pred.getSUnit());
1779   }
1780   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1781   // Add the weak edges.
1782   for (SmallVectorImpl<SUnit*>::const_iterator
1783          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1784     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1785                       << GlobalSU->NodeNum << ")\n");
1786     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1787   }
1788   for (SmallVectorImpl<SUnit*>::const_iterator
1789          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1790     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1791                       << FirstLocalSU->NodeNum << ")\n");
1792     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1793   }
1794 }
1795 
1796 /// Callback from DAG postProcessing to create weak edges to encourage
1797 /// copy elimination.
1798 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1799   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1800   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1801 
1802   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1803   if (FirstPos == DAG->end())
1804     return;
1805   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1806   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1807       *priorNonDebug(DAG->end(), DAG->begin()));
1808 
1809   for (SUnit &SU : DAG->SUnits) {
1810     if (!SU.getInstr()->isCopy())
1811       continue;
1812 
1813     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1814   }
1815 }
1816 
1817 //===----------------------------------------------------------------------===//
1818 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1819 // and possibly other custom schedulers.
1820 //===----------------------------------------------------------------------===//
1821 
1822 static const unsigned InvalidCycle = ~0U;
1823 
1824 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1825 
1826 /// Given a Count of resource usage and a Latency value, return true if a
1827 /// SchedBoundary becomes resource limited.
1828 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1829                                unsigned Latency) {
1830   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1831 }
1832 
1833 void SchedBoundary::reset() {
1834   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1835   // Destroying and reconstructing it is very expensive though. So keep
1836   // invalid, placeholder HazardRecs.
1837   if (HazardRec && HazardRec->isEnabled()) {
1838     delete HazardRec;
1839     HazardRec = nullptr;
1840   }
1841   Available.clear();
1842   Pending.clear();
1843   CheckPending = false;
1844   CurrCycle = 0;
1845   CurrMOps = 0;
1846   MinReadyCycle = std::numeric_limits<unsigned>::max();
1847   ExpectedLatency = 0;
1848   DependentLatency = 0;
1849   RetiredMOps = 0;
1850   MaxExecutedResCount = 0;
1851   ZoneCritResIdx = 0;
1852   IsResourceLimited = false;
1853   ReservedCycles.clear();
1854 #ifndef NDEBUG
1855   // Track the maximum number of stall cycles that could arise either from the
1856   // latency of a DAG edge or the number of cycles that a processor resource is
1857   // reserved (SchedBoundary::ReservedCycles).
1858   MaxObservedStall = 0;
1859 #endif
1860   // Reserve a zero-count for invalid CritResIdx.
1861   ExecutedResCounts.resize(1);
1862   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1863 }
1864 
1865 void SchedRemainder::
1866 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1867   reset();
1868   if (!SchedModel->hasInstrSchedModel())
1869     return;
1870   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1871   for (SUnit &SU : DAG->SUnits) {
1872     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1873     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1874       * SchedModel->getMicroOpFactor();
1875     for (TargetSchedModel::ProcResIter
1876            PI = SchedModel->getWriteProcResBegin(SC),
1877            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1878       unsigned PIdx = PI->ProcResourceIdx;
1879       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1880       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1881     }
1882   }
1883 }
1884 
1885 void SchedBoundary::
1886 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1887   reset();
1888   DAG = dag;
1889   SchedModel = smodel;
1890   Rem = rem;
1891   if (SchedModel->hasInstrSchedModel()) {
1892     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1893     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1894   }
1895 }
1896 
1897 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1898 /// these "soft stalls" differently than the hard stall cycles based on CPU
1899 /// resources and computed by checkHazard(). A fully in-order model
1900 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1901 /// available for scheduling until they are ready. However, a weaker in-order
1902 /// model may use this for heuristics. For example, if a processor has in-order
1903 /// behavior when reading certain resources, this may come into play.
1904 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1905   if (!SU->isUnbuffered)
1906     return 0;
1907 
1908   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1909   if (ReadyCycle > CurrCycle)
1910     return ReadyCycle - CurrCycle;
1911   return 0;
1912 }
1913 
1914 /// Compute the next cycle at which the given processor resource can be
1915 /// scheduled.
1916 unsigned SchedBoundary::
1917 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1918   unsigned NextUnreserved = ReservedCycles[PIdx];
1919   // If this resource has never been used, always return cycle zero.
1920   if (NextUnreserved == InvalidCycle)
1921     return 0;
1922   // For bottom-up scheduling add the cycles needed for the current operation.
1923   if (!isTop())
1924     NextUnreserved += Cycles;
1925   return NextUnreserved;
1926 }
1927 
1928 /// Does this SU have a hazard within the current instruction group.
1929 ///
1930 /// The scheduler supports two modes of hazard recognition. The first is the
1931 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1932 /// supports highly complicated in-order reservation tables
1933 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
1934 ///
1935 /// The second is a streamlined mechanism that checks for hazards based on
1936 /// simple counters that the scheduler itself maintains. It explicitly checks
1937 /// for instruction dispatch limitations, including the number of micro-ops that
1938 /// can dispatch per cycle.
1939 ///
1940 /// TODO: Also check whether the SU must start a new group.
1941 bool SchedBoundary::checkHazard(SUnit *SU) {
1942   if (HazardRec->isEnabled()
1943       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1944     return true;
1945   }
1946 
1947   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1948   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1949     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1950                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1951     return true;
1952   }
1953 
1954   if (CurrMOps > 0 &&
1955       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1956        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1957     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1958                       << (isTop() ? "begin" : "end") << " group\n");
1959     return true;
1960   }
1961 
1962   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1963     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1964     for (const MCWriteProcResEntry &PE :
1965           make_range(SchedModel->getWriteProcResBegin(SC),
1966                      SchedModel->getWriteProcResEnd(SC))) {
1967       unsigned ResIdx = PE.ProcResourceIdx;
1968       unsigned Cycles = PE.Cycles;
1969       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1970       if (NRCycle > CurrCycle) {
1971 #ifndef NDEBUG
1972         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1973 #endif
1974         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1975                           << SchedModel->getResourceName(ResIdx) << "="
1976                           << NRCycle << "c\n");
1977         return true;
1978       }
1979     }
1980   }
1981   return false;
1982 }
1983 
1984 // Find the unscheduled node in ReadySUs with the highest latency.
1985 unsigned SchedBoundary::
1986 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1987   SUnit *LateSU = nullptr;
1988   unsigned RemLatency = 0;
1989   for (SUnit *SU : ReadySUs) {
1990     unsigned L = getUnscheduledLatency(SU);
1991     if (L > RemLatency) {
1992       RemLatency = L;
1993       LateSU = SU;
1994     }
1995   }
1996   if (LateSU) {
1997     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1998                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
1999   }
2000   return RemLatency;
2001 }
2002 
2003 // Count resources in this zone and the remaining unscheduled
2004 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2005 // resource index, or zero if the zone is issue limited.
2006 unsigned SchedBoundary::
2007 getOtherResourceCount(unsigned &OtherCritIdx) {
2008   OtherCritIdx = 0;
2009   if (!SchedModel->hasInstrSchedModel())
2010     return 0;
2011 
2012   unsigned OtherCritCount = Rem->RemIssueCount
2013     + (RetiredMOps * SchedModel->getMicroOpFactor());
2014   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2015                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2016   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2017        PIdx != PEnd; ++PIdx) {
2018     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2019     if (OtherCount > OtherCritCount) {
2020       OtherCritCount = OtherCount;
2021       OtherCritIdx = PIdx;
2022     }
2023   }
2024   if (OtherCritIdx) {
2025     LLVM_DEBUG(
2026         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2027                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2028                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2029   }
2030   return OtherCritCount;
2031 }
2032 
2033 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2034   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2035 
2036 #ifndef NDEBUG
2037   // ReadyCycle was been bumped up to the CurrCycle when this node was
2038   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2039   // scheduling, so may now be greater than ReadyCycle.
2040   if (ReadyCycle > CurrCycle)
2041     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2042 #endif
2043 
2044   if (ReadyCycle < MinReadyCycle)
2045     MinReadyCycle = ReadyCycle;
2046 
2047   // Check for interlocks first. For the purpose of other heuristics, an
2048   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2049   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2050   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2051       Available.size() >= ReadyListLimit)
2052     Pending.push(SU);
2053   else
2054     Available.push(SU);
2055 }
2056 
2057 /// Move the boundary of scheduled code by one cycle.
2058 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2059   if (SchedModel->getMicroOpBufferSize() == 0) {
2060     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2061            "MinReadyCycle uninitialized");
2062     if (MinReadyCycle > NextCycle)
2063       NextCycle = MinReadyCycle;
2064   }
2065   // Update the current micro-ops, which will issue in the next cycle.
2066   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2067   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2068 
2069   // Decrement DependentLatency based on the next cycle.
2070   if ((NextCycle - CurrCycle) > DependentLatency)
2071     DependentLatency = 0;
2072   else
2073     DependentLatency -= (NextCycle - CurrCycle);
2074 
2075   if (!HazardRec->isEnabled()) {
2076     // Bypass HazardRec virtual calls.
2077     CurrCycle = NextCycle;
2078   } else {
2079     // Bypass getHazardType calls in case of long latency.
2080     for (; CurrCycle != NextCycle; ++CurrCycle) {
2081       if (isTop())
2082         HazardRec->AdvanceCycle();
2083       else
2084         HazardRec->RecedeCycle();
2085     }
2086   }
2087   CheckPending = true;
2088   IsResourceLimited =
2089       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2090                          getScheduledLatency());
2091 
2092   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
2093                     << '\n');
2094 }
2095 
2096 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2097   ExecutedResCounts[PIdx] += Count;
2098   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2099     MaxExecutedResCount = ExecutedResCounts[PIdx];
2100 }
2101 
2102 /// Add the given processor resource to this scheduled zone.
2103 ///
2104 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2105 /// during which this resource is consumed.
2106 ///
2107 /// \return the next cycle at which the instruction may execute without
2108 /// oversubscribing resources.
2109 unsigned SchedBoundary::
2110 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2111   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2112   unsigned Count = Factor * Cycles;
2113   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
2114                     << Cycles << "x" << Factor << "u\n");
2115 
2116   // Update Executed resources counts.
2117   incExecutedResources(PIdx, Count);
2118   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2119   Rem->RemainingCounts[PIdx] -= Count;
2120 
2121   // Check if this resource exceeds the current critical resource. If so, it
2122   // becomes the critical resource.
2123   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2124     ZoneCritResIdx = PIdx;
2125     LLVM_DEBUG(dbgs() << "  *** Critical resource "
2126                       << SchedModel->getResourceName(PIdx) << ": "
2127                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
2128                       << "c\n");
2129   }
2130   // For reserved resources, record the highest cycle using the resource.
2131   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2132   if (NextAvailable > CurrCycle) {
2133     LLVM_DEBUG(dbgs() << "  Resource conflict: "
2134                       << SchedModel->getProcResource(PIdx)->Name
2135                       << " reserved until @" << NextAvailable << "\n");
2136   }
2137   return NextAvailable;
2138 }
2139 
2140 /// Move the boundary of scheduled code by one SUnit.
2141 void SchedBoundary::bumpNode(SUnit *SU) {
2142   // Update the reservation table.
2143   if (HazardRec->isEnabled()) {
2144     if (!isTop() && SU->isCall) {
2145       // Calls are scheduled with their preceding instructions. For bottom-up
2146       // scheduling, clear the pipeline state before emitting.
2147       HazardRec->Reset();
2148     }
2149     HazardRec->EmitInstruction(SU);
2150   }
2151   // checkHazard should prevent scheduling multiple instructions per cycle that
2152   // exceed the issue width.
2153   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2154   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2155   assert(
2156       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2157       "Cannot schedule this instruction's MicroOps in the current cycle.");
2158 
2159   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2160   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2161 
2162   unsigned NextCycle = CurrCycle;
2163   switch (SchedModel->getMicroOpBufferSize()) {
2164   case 0:
2165     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2166     break;
2167   case 1:
2168     if (ReadyCycle > NextCycle) {
2169       NextCycle = ReadyCycle;
2170       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2171     }
2172     break;
2173   default:
2174     // We don't currently model the OOO reorder buffer, so consider all
2175     // scheduled MOps to be "retired". We do loosely model in-order resource
2176     // latency. If this instruction uses an in-order resource, account for any
2177     // likely stall cycles.
2178     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2179       NextCycle = ReadyCycle;
2180     break;
2181   }
2182   RetiredMOps += IncMOps;
2183 
2184   // Update resource counts and critical resource.
2185   if (SchedModel->hasInstrSchedModel()) {
2186     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2187     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2188     Rem->RemIssueCount -= DecRemIssue;
2189     if (ZoneCritResIdx) {
2190       // Scale scheduled micro-ops for comparing with the critical resource.
2191       unsigned ScaledMOps =
2192         RetiredMOps * SchedModel->getMicroOpFactor();
2193 
2194       // If scaled micro-ops are now more than the previous critical resource by
2195       // a full cycle, then micro-ops issue becomes critical.
2196       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2197           >= (int)SchedModel->getLatencyFactor()) {
2198         ZoneCritResIdx = 0;
2199         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2200                           << ScaledMOps / SchedModel->getLatencyFactor()
2201                           << "c\n");
2202       }
2203     }
2204     for (TargetSchedModel::ProcResIter
2205            PI = SchedModel->getWriteProcResBegin(SC),
2206            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2207       unsigned RCycle =
2208         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2209       if (RCycle > NextCycle)
2210         NextCycle = RCycle;
2211     }
2212     if (SU->hasReservedResource) {
2213       // For reserved resources, record the highest cycle using the resource.
2214       // For top-down scheduling, this is the cycle in which we schedule this
2215       // instruction plus the number of cycles the operations reserves the
2216       // resource. For bottom-up is it simply the instruction's cycle.
2217       for (TargetSchedModel::ProcResIter
2218              PI = SchedModel->getWriteProcResBegin(SC),
2219              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2220         unsigned PIdx = PI->ProcResourceIdx;
2221         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2222           if (isTop()) {
2223             ReservedCycles[PIdx] =
2224               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2225           }
2226           else
2227             ReservedCycles[PIdx] = NextCycle;
2228         }
2229       }
2230     }
2231   }
2232   // Update ExpectedLatency and DependentLatency.
2233   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2234   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2235   if (SU->getDepth() > TopLatency) {
2236     TopLatency = SU->getDepth();
2237     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
2238                       << SU->NodeNum << ") " << TopLatency << "c\n");
2239   }
2240   if (SU->getHeight() > BotLatency) {
2241     BotLatency = SU->getHeight();
2242     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
2243                       << SU->NodeNum << ") " << BotLatency << "c\n");
2244   }
2245   // If we stall for any reason, bump the cycle.
2246   if (NextCycle > CurrCycle)
2247     bumpCycle(NextCycle);
2248   else
2249     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2250     // resource limited. If a stall occurred, bumpCycle does this.
2251     IsResourceLimited =
2252         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2253                            getScheduledLatency());
2254 
2255   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2256   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2257   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2258   // bump the cycle to avoid uselessly checking everything in the readyQ.
2259   CurrMOps += IncMOps;
2260 
2261   // Bump the cycle count for issue group constraints.
2262   // This must be done after NextCycle has been adjust for all other stalls.
2263   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2264   // currCycle to X.
2265   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2266       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2267     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
2268                       << " group\n");
2269     bumpCycle(++NextCycle);
2270   }
2271 
2272   while (CurrMOps >= SchedModel->getIssueWidth()) {
2273     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
2274                       << CurrCycle << '\n');
2275     bumpCycle(++NextCycle);
2276   }
2277   LLVM_DEBUG(dumpScheduledState());
2278 }
2279 
2280 /// Release pending ready nodes in to the available queue. This makes them
2281 /// visible to heuristics.
2282 void SchedBoundary::releasePending() {
2283   // If the available queue is empty, it is safe to reset MinReadyCycle.
2284   if (Available.empty())
2285     MinReadyCycle = std::numeric_limits<unsigned>::max();
2286 
2287   // Check to see if any of the pending instructions are ready to issue.  If
2288   // so, add them to the available queue.
2289   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2290   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2291     SUnit *SU = *(Pending.begin()+i);
2292     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2293 
2294     if (ReadyCycle < MinReadyCycle)
2295       MinReadyCycle = ReadyCycle;
2296 
2297     if (!IsBuffered && ReadyCycle > CurrCycle)
2298       continue;
2299 
2300     if (checkHazard(SU))
2301       continue;
2302 
2303     if (Available.size() >= ReadyListLimit)
2304       break;
2305 
2306     Available.push(SU);
2307     Pending.remove(Pending.begin()+i);
2308     --i; --e;
2309   }
2310   CheckPending = false;
2311 }
2312 
2313 /// Remove SU from the ready set for this boundary.
2314 void SchedBoundary::removeReady(SUnit *SU) {
2315   if (Available.isInQueue(SU))
2316     Available.remove(Available.find(SU));
2317   else {
2318     assert(Pending.isInQueue(SU) && "bad ready count");
2319     Pending.remove(Pending.find(SU));
2320   }
2321 }
2322 
2323 /// If this queue only has one ready candidate, return it. As a side effect,
2324 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2325 /// one node is ready. If multiple instructions are ready, return NULL.
2326 SUnit *SchedBoundary::pickOnlyChoice() {
2327   if (CheckPending)
2328     releasePending();
2329 
2330   if (CurrMOps > 0) {
2331     // Defer any ready instrs that now have a hazard.
2332     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2333       if (checkHazard(*I)) {
2334         Pending.push(*I);
2335         I = Available.remove(I);
2336         continue;
2337       }
2338       ++I;
2339     }
2340   }
2341   for (unsigned i = 0; Available.empty(); ++i) {
2342 //  FIXME: Re-enable assert once PR20057 is resolved.
2343 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2344 //           "permanent hazard");
2345     (void)i;
2346     bumpCycle(CurrCycle + 1);
2347     releasePending();
2348   }
2349 
2350   LLVM_DEBUG(Pending.dump());
2351   LLVM_DEBUG(Available.dump());
2352 
2353   if (Available.size() == 1)
2354     return *Available.begin();
2355   return nullptr;
2356 }
2357 
2358 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2359 // This is useful information to dump after bumpNode.
2360 // Note that the Queue contents are more useful before pickNodeFromQueue.
2361 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2362   unsigned ResFactor;
2363   unsigned ResCount;
2364   if (ZoneCritResIdx) {
2365     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2366     ResCount = getResourceCount(ZoneCritResIdx);
2367   } else {
2368     ResFactor = SchedModel->getMicroOpFactor();
2369     ResCount = RetiredMOps * ResFactor;
2370   }
2371   unsigned LFactor = SchedModel->getLatencyFactor();
2372   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2373          << "  Retired: " << RetiredMOps;
2374   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2375   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2376          << ResCount / ResFactor << " "
2377          << SchedModel->getResourceName(ZoneCritResIdx)
2378          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2379          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2380          << " limited.\n";
2381 }
2382 #endif
2383 
2384 //===----------------------------------------------------------------------===//
2385 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2386 //===----------------------------------------------------------------------===//
2387 
2388 void GenericSchedulerBase::SchedCandidate::
2389 initResourceDelta(const ScheduleDAGMI *DAG,
2390                   const TargetSchedModel *SchedModel) {
2391   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2392     return;
2393 
2394   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2395   for (TargetSchedModel::ProcResIter
2396          PI = SchedModel->getWriteProcResBegin(SC),
2397          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2398     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2399       ResDelta.CritResources += PI->Cycles;
2400     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2401       ResDelta.DemandedResources += PI->Cycles;
2402   }
2403 }
2404 
2405 /// Compute remaining latency. We need this both to determine whether the
2406 /// overall schedule has become latency-limited and whether the instructions
2407 /// outside this zone are resource or latency limited.
2408 ///
2409 /// The "dependent" latency is updated incrementally during scheduling as the
2410 /// max height/depth of scheduled nodes minus the cycles since it was
2411 /// scheduled:
2412 ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2413 ///
2414 /// The "independent" latency is the max ready queue depth:
2415 ///   ILat = max N.depth for N in Available|Pending
2416 ///
2417 /// RemainingLatency is the greater of independent and dependent latency.
2418 ///
2419 /// These computations are expensive, especially in DAGs with many edges, so
2420 /// only do them if necessary.
2421 static unsigned computeRemLatency(SchedBoundary &CurrZone) {
2422   unsigned RemLatency = CurrZone.getDependentLatency();
2423   RemLatency = std::max(RemLatency,
2424                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2425   RemLatency = std::max(RemLatency,
2426                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2427   return RemLatency;
2428 }
2429 
2430 /// Returns true if the current cycle plus remaning latency is greater than
2431 /// the cirtical path in the scheduling region.
2432 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
2433                                                SchedBoundary &CurrZone,
2434                                                bool ComputeRemLatency,
2435                                                unsigned &RemLatency) const {
2436   // The current cycle is already greater than the critical path, so we are
2437   // already latnecy limited and don't need to compute the remaining latency.
2438   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
2439     return true;
2440 
2441   // If we haven't scheduled anything yet, then we aren't latency limited.
2442   if (CurrZone.getCurrCycle() == 0)
2443     return false;
2444 
2445   if (ComputeRemLatency)
2446     RemLatency = computeRemLatency(CurrZone);
2447 
2448   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
2449 }
2450 
2451 /// Set the CandPolicy given a scheduling zone given the current resources and
2452 /// latencies inside and outside the zone.
2453 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2454                                      SchedBoundary &CurrZone,
2455                                      SchedBoundary *OtherZone) {
2456   // Apply preemptive heuristics based on the total latency and resources
2457   // inside and outside this zone. Potential stalls should be considered before
2458   // following this policy.
2459 
2460   // Compute the critical resource outside the zone.
2461   unsigned OtherCritIdx = 0;
2462   unsigned OtherCount =
2463     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2464 
2465   bool OtherResLimited = false;
2466   unsigned RemLatency = 0;
2467   bool RemLatencyComputed = false;
2468   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
2469     RemLatency = computeRemLatency(CurrZone);
2470     RemLatencyComputed = true;
2471     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2472                                          OtherCount, RemLatency);
2473   }
2474 
2475   // Schedule aggressively for latency in PostRA mode. We don't check for
2476   // acyclic latency during PostRA, and highly out-of-order processors will
2477   // skip PostRA scheduling.
2478   if (!OtherResLimited &&
2479       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
2480                                        RemLatency))) {
2481     Policy.ReduceLatency |= true;
2482     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2483                       << " RemainingLatency " << RemLatency << " + "
2484                       << CurrZone.getCurrCycle() << "c > CritPath "
2485                       << Rem.CriticalPath << "\n");
2486   }
2487   // If the same resource is limiting inside and outside the zone, do nothing.
2488   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2489     return;
2490 
2491   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
2492     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2493            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
2494   } if (OtherResLimited) dbgs()
2495                  << "  RemainingLimit: "
2496                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
2497              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
2498              << "  Latency limited both directions.\n");
2499 
2500   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2501     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2502 
2503   if (OtherResLimited)
2504     Policy.DemandResIdx = OtherCritIdx;
2505 }
2506 
2507 #ifndef NDEBUG
2508 const char *GenericSchedulerBase::getReasonStr(
2509   GenericSchedulerBase::CandReason Reason) {
2510   switch (Reason) {
2511   case NoCand:         return "NOCAND    ";
2512   case Only1:          return "ONLY1     ";
2513   case PhysRegCopy:    return "PREG-COPY ";
2514   case RegExcess:      return "REG-EXCESS";
2515   case RegCritical:    return "REG-CRIT  ";
2516   case Stall:          return "STALL     ";
2517   case Cluster:        return "CLUSTER   ";
2518   case Weak:           return "WEAK      ";
2519   case RegMax:         return "REG-MAX   ";
2520   case ResourceReduce: return "RES-REDUCE";
2521   case ResourceDemand: return "RES-DEMAND";
2522   case TopDepthReduce: return "TOP-DEPTH ";
2523   case TopPathReduce:  return "TOP-PATH  ";
2524   case BotHeightReduce:return "BOT-HEIGHT";
2525   case BotPathReduce:  return "BOT-PATH  ";
2526   case NextDefUse:     return "DEF-USE   ";
2527   case NodeOrder:      return "ORDER     ";
2528   };
2529   llvm_unreachable("Unknown reason!");
2530 }
2531 
2532 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2533   PressureChange P;
2534   unsigned ResIdx = 0;
2535   unsigned Latency = 0;
2536   switch (Cand.Reason) {
2537   default:
2538     break;
2539   case RegExcess:
2540     P = Cand.RPDelta.Excess;
2541     break;
2542   case RegCritical:
2543     P = Cand.RPDelta.CriticalMax;
2544     break;
2545   case RegMax:
2546     P = Cand.RPDelta.CurrentMax;
2547     break;
2548   case ResourceReduce:
2549     ResIdx = Cand.Policy.ReduceResIdx;
2550     break;
2551   case ResourceDemand:
2552     ResIdx = Cand.Policy.DemandResIdx;
2553     break;
2554   case TopDepthReduce:
2555     Latency = Cand.SU->getDepth();
2556     break;
2557   case TopPathReduce:
2558     Latency = Cand.SU->getHeight();
2559     break;
2560   case BotHeightReduce:
2561     Latency = Cand.SU->getHeight();
2562     break;
2563   case BotPathReduce:
2564     Latency = Cand.SU->getDepth();
2565     break;
2566   }
2567   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2568   if (P.isValid())
2569     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2570            << ":" << P.getUnitInc() << " ";
2571   else
2572     dbgs() << "      ";
2573   if (ResIdx)
2574     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2575   else
2576     dbgs() << "         ";
2577   if (Latency)
2578     dbgs() << " " << Latency << " cycles ";
2579   else
2580     dbgs() << "          ";
2581   dbgs() << '\n';
2582 }
2583 #endif
2584 
2585 namespace llvm {
2586 /// Return true if this heuristic determines order.
2587 bool tryLess(int TryVal, int CandVal,
2588              GenericSchedulerBase::SchedCandidate &TryCand,
2589              GenericSchedulerBase::SchedCandidate &Cand,
2590              GenericSchedulerBase::CandReason Reason) {
2591   if (TryVal < CandVal) {
2592     TryCand.Reason = Reason;
2593     return true;
2594   }
2595   if (TryVal > CandVal) {
2596     if (Cand.Reason > Reason)
2597       Cand.Reason = Reason;
2598     return true;
2599   }
2600   return false;
2601 }
2602 
2603 bool tryGreater(int TryVal, int CandVal,
2604                 GenericSchedulerBase::SchedCandidate &TryCand,
2605                 GenericSchedulerBase::SchedCandidate &Cand,
2606                 GenericSchedulerBase::CandReason Reason) {
2607   if (TryVal > CandVal) {
2608     TryCand.Reason = Reason;
2609     return true;
2610   }
2611   if (TryVal < CandVal) {
2612     if (Cand.Reason > Reason)
2613       Cand.Reason = Reason;
2614     return true;
2615   }
2616   return false;
2617 }
2618 
2619 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2620                 GenericSchedulerBase::SchedCandidate &Cand,
2621                 SchedBoundary &Zone) {
2622   if (Zone.isTop()) {
2623     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2624       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2625                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2626         return true;
2627     }
2628     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2629                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2630       return true;
2631   } else {
2632     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2633       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2634                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2635         return true;
2636     }
2637     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2638                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2639       return true;
2640   }
2641   return false;
2642 }
2643 } // end namespace llvm
2644 
2645 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2646   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2647                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2648 }
2649 
2650 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2651   tracePick(Cand.Reason, Cand.AtTop);
2652 }
2653 
2654 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2655   assert(dag->hasVRegLiveness() &&
2656          "(PreRA)GenericScheduler needs vreg liveness");
2657   DAG = static_cast<ScheduleDAGMILive*>(dag);
2658   SchedModel = DAG->getSchedModel();
2659   TRI = DAG->TRI;
2660 
2661   Rem.init(DAG, SchedModel);
2662   Top.init(DAG, SchedModel, &Rem);
2663   Bot.init(DAG, SchedModel, &Rem);
2664 
2665   // Initialize resource counts.
2666 
2667   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2668   // are disabled, then these HazardRecs will be disabled.
2669   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2670   if (!Top.HazardRec) {
2671     Top.HazardRec =
2672         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2673             Itin, DAG);
2674   }
2675   if (!Bot.HazardRec) {
2676     Bot.HazardRec =
2677         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2678             Itin, DAG);
2679   }
2680   TopCand.SU = nullptr;
2681   BotCand.SU = nullptr;
2682 }
2683 
2684 /// Initialize the per-region scheduling policy.
2685 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2686                                   MachineBasicBlock::iterator End,
2687                                   unsigned NumRegionInstrs) {
2688   const MachineFunction &MF = *Begin->getMF();
2689   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2690 
2691   // Avoid setting up the register pressure tracker for small regions to save
2692   // compile time. As a rough heuristic, only track pressure when the number of
2693   // schedulable instructions exceeds half the integer register file.
2694   RegionPolicy.ShouldTrackPressure = true;
2695   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2696     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2697     if (TLI->isTypeLegal(LegalIntVT)) {
2698       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2699         TLI->getRegClassFor(LegalIntVT));
2700       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2701     }
2702   }
2703 
2704   // For generic targets, we default to bottom-up, because it's simpler and more
2705   // compile-time optimizations have been implemented in that direction.
2706   RegionPolicy.OnlyBottomUp = true;
2707 
2708   // Allow the subtarget to override default policy.
2709   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2710 
2711   // After subtarget overrides, apply command line options.
2712   if (!EnableRegPressure)
2713     RegionPolicy.ShouldTrackPressure = false;
2714 
2715   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2716   // e.g. -misched-bottomup=false allows scheduling in both directions.
2717   assert((!ForceTopDown || !ForceBottomUp) &&
2718          "-misched-topdown incompatible with -misched-bottomup");
2719   if (ForceBottomUp.getNumOccurrences() > 0) {
2720     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2721     if (RegionPolicy.OnlyBottomUp)
2722       RegionPolicy.OnlyTopDown = false;
2723   }
2724   if (ForceTopDown.getNumOccurrences() > 0) {
2725     RegionPolicy.OnlyTopDown = ForceTopDown;
2726     if (RegionPolicy.OnlyTopDown)
2727       RegionPolicy.OnlyBottomUp = false;
2728   }
2729 }
2730 
2731 void GenericScheduler::dumpPolicy() const {
2732   // Cannot completely remove virtual function even in release mode.
2733 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2734   dbgs() << "GenericScheduler RegionPolicy: "
2735          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2736          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2737          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2738          << "\n";
2739 #endif
2740 }
2741 
2742 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2743 /// critical path by more cycles than it takes to drain the instruction buffer.
2744 /// We estimate an upper bounds on in-flight instructions as:
2745 ///
2746 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2747 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2748 /// InFlightResources = InFlightIterations * LoopResources
2749 ///
2750 /// TODO: Check execution resources in addition to IssueCount.
2751 void GenericScheduler::checkAcyclicLatency() {
2752   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2753     return;
2754 
2755   // Scaled number of cycles per loop iteration.
2756   unsigned IterCount =
2757     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2758              Rem.RemIssueCount);
2759   // Scaled acyclic critical path.
2760   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2761   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2762   unsigned InFlightCount =
2763     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2764   unsigned BufferLimit =
2765     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2766 
2767   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2768 
2769   LLVM_DEBUG(
2770       dbgs() << "IssueCycles="
2771              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2772              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2773              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
2774              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2775              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2776       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2777 }
2778 
2779 void GenericScheduler::registerRoots() {
2780   Rem.CriticalPath = DAG->ExitSU.getDepth();
2781 
2782   // Some roots may not feed into ExitSU. Check all of them in case.
2783   for (const SUnit *SU : Bot.Available) {
2784     if (SU->getDepth() > Rem.CriticalPath)
2785       Rem.CriticalPath = SU->getDepth();
2786   }
2787   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2788   if (DumpCriticalPathLength) {
2789     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2790   }
2791 
2792   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2793     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2794     checkAcyclicLatency();
2795   }
2796 }
2797 
2798 namespace llvm {
2799 bool tryPressure(const PressureChange &TryP,
2800                  const PressureChange &CandP,
2801                  GenericSchedulerBase::SchedCandidate &TryCand,
2802                  GenericSchedulerBase::SchedCandidate &Cand,
2803                  GenericSchedulerBase::CandReason Reason,
2804                  const TargetRegisterInfo *TRI,
2805                  const MachineFunction &MF) {
2806   // If one candidate decreases and the other increases, go with it.
2807   // Invalid candidates have UnitInc==0.
2808   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2809                  Reason)) {
2810     return true;
2811   }
2812   // Do not compare the magnitude of pressure changes between top and bottom
2813   // boundary.
2814   if (Cand.AtTop != TryCand.AtTop)
2815     return false;
2816 
2817   // If both candidates affect the same set in the same boundary, go with the
2818   // smallest increase.
2819   unsigned TryPSet = TryP.getPSetOrMax();
2820   unsigned CandPSet = CandP.getPSetOrMax();
2821   if (TryPSet == CandPSet) {
2822     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2823                    Reason);
2824   }
2825 
2826   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2827                                  std::numeric_limits<int>::max();
2828 
2829   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2830                                    std::numeric_limits<int>::max();
2831 
2832   // If the candidates are decreasing pressure, reverse priority.
2833   if (TryP.getUnitInc() < 0)
2834     std::swap(TryRank, CandRank);
2835   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2836 }
2837 
2838 unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2839   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2840 }
2841 
2842 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2843 /// their physreg def/use.
2844 ///
2845 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2846 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2847 /// with the operation that produces or consumes the physreg. We'll do this when
2848 /// regalloc has support for parallel copies.
2849 int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2850   const MachineInstr *MI = SU->getInstr();
2851   if (!MI->isCopy())
2852     return 0;
2853 
2854   unsigned ScheduledOper = isTop ? 1 : 0;
2855   unsigned UnscheduledOper = isTop ? 0 : 1;
2856   // If we have already scheduled the physreg produce/consumer, immediately
2857   // schedule the copy.
2858   if (TargetRegisterInfo::isPhysicalRegister(
2859         MI->getOperand(ScheduledOper).getReg()))
2860     return 1;
2861   // If the physreg is at the boundary, defer it. Otherwise schedule it
2862   // immediately to free the dependent. We can hoist the copy later.
2863   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2864   if (TargetRegisterInfo::isPhysicalRegister(
2865         MI->getOperand(UnscheduledOper).getReg()))
2866     return AtBoundary ? -1 : 1;
2867   return 0;
2868 }
2869 } // end namespace llvm
2870 
2871 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2872                                      bool AtTop,
2873                                      const RegPressureTracker &RPTracker,
2874                                      RegPressureTracker &TempTracker) {
2875   Cand.SU = SU;
2876   Cand.AtTop = AtTop;
2877   if (DAG->isTrackingPressure()) {
2878     if (AtTop) {
2879       TempTracker.getMaxDownwardPressureDelta(
2880         Cand.SU->getInstr(),
2881         Cand.RPDelta,
2882         DAG->getRegionCriticalPSets(),
2883         DAG->getRegPressure().MaxSetPressure);
2884     } else {
2885       if (VerifyScheduling) {
2886         TempTracker.getMaxUpwardPressureDelta(
2887           Cand.SU->getInstr(),
2888           &DAG->getPressureDiff(Cand.SU),
2889           Cand.RPDelta,
2890           DAG->getRegionCriticalPSets(),
2891           DAG->getRegPressure().MaxSetPressure);
2892       } else {
2893         RPTracker.getUpwardPressureDelta(
2894           Cand.SU->getInstr(),
2895           DAG->getPressureDiff(Cand.SU),
2896           Cand.RPDelta,
2897           DAG->getRegionCriticalPSets(),
2898           DAG->getRegPressure().MaxSetPressure);
2899       }
2900     }
2901   }
2902   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
2903              << "  Try  SU(" << Cand.SU->NodeNum << ") "
2904              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
2905              << Cand.RPDelta.Excess.getUnitInc() << "\n");
2906 }
2907 
2908 /// Apply a set of heuristics to a new candidate. Heuristics are currently
2909 /// hierarchical. This may be more efficient than a graduated cost model because
2910 /// we don't need to evaluate all aspects of the model for each node in the
2911 /// queue. But it's really done to make the heuristics easier to debug and
2912 /// statistically analyze.
2913 ///
2914 /// \param Cand provides the policy and current best candidate.
2915 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2916 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2917 //              if Cand is from a different zone than TryCand.
2918 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2919                                     SchedCandidate &TryCand,
2920                                     SchedBoundary *Zone) const {
2921   // Initialize the candidate if needed.
2922   if (!Cand.isValid()) {
2923     TryCand.Reason = NodeOrder;
2924     return;
2925   }
2926 
2927   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2928                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2929                  TryCand, Cand, PhysRegCopy))
2930     return;
2931 
2932   // Avoid exceeding the target's limit.
2933   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2934                                                Cand.RPDelta.Excess,
2935                                                TryCand, Cand, RegExcess, TRI,
2936                                                DAG->MF))
2937     return;
2938 
2939   // Avoid increasing the max critical pressure in the scheduled region.
2940   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2941                                                Cand.RPDelta.CriticalMax,
2942                                                TryCand, Cand, RegCritical, TRI,
2943                                                DAG->MF))
2944     return;
2945 
2946   // We only compare a subset of features when comparing nodes between
2947   // Top and Bottom boundary. Some properties are simply incomparable, in many
2948   // other instances we should only override the other boundary if something
2949   // is a clear good pick on one boundary. Skip heuristics that are more
2950   // "tie-breaking" in nature.
2951   bool SameBoundary = Zone != nullptr;
2952   if (SameBoundary) {
2953     // For loops that are acyclic path limited, aggressively schedule for
2954     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2955     // heuristics to take precedence.
2956     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2957         tryLatency(TryCand, Cand, *Zone))
2958       return;
2959 
2960     // Prioritize instructions that read unbuffered resources by stall cycles.
2961     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2962                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2963       return;
2964   }
2965 
2966   // Keep clustered nodes together to encourage downstream peephole
2967   // optimizations which may reduce resource requirements.
2968   //
2969   // This is a best effort to set things up for a post-RA pass. Optimizations
2970   // like generating loads of multiple registers should ideally be done within
2971   // the scheduler pass by combining the loads during DAG postprocessing.
2972   const SUnit *CandNextClusterSU =
2973     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2974   const SUnit *TryCandNextClusterSU =
2975     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2976   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2977                  Cand.SU == CandNextClusterSU,
2978                  TryCand, Cand, Cluster))
2979     return;
2980 
2981   if (SameBoundary) {
2982     // Weak edges are for clustering and other constraints.
2983     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2984                 getWeakLeft(Cand.SU, Cand.AtTop),
2985                 TryCand, Cand, Weak))
2986       return;
2987   }
2988 
2989   // Avoid increasing the max pressure of the entire region.
2990   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2991                                                Cand.RPDelta.CurrentMax,
2992                                                TryCand, Cand, RegMax, TRI,
2993                                                DAG->MF))
2994     return;
2995 
2996   if (SameBoundary) {
2997     // Avoid critical resource consumption and balance the schedule.
2998     TryCand.initResourceDelta(DAG, SchedModel);
2999     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3000                 TryCand, Cand, ResourceReduce))
3001       return;
3002     if (tryGreater(TryCand.ResDelta.DemandedResources,
3003                    Cand.ResDelta.DemandedResources,
3004                    TryCand, Cand, ResourceDemand))
3005       return;
3006 
3007     // Avoid serializing long latency dependence chains.
3008     // For acyclic path limited loops, latency was already checked above.
3009     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
3010         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
3011       return;
3012 
3013     // Fall through to original instruction order.
3014     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
3015         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
3016       TryCand.Reason = NodeOrder;
3017     }
3018   }
3019 }
3020 
3021 /// Pick the best candidate from the queue.
3022 ///
3023 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
3024 /// DAG building. To adjust for the current scheduling location we need to
3025 /// maintain the number of vreg uses remaining to be top-scheduled.
3026 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3027                                          const CandPolicy &ZonePolicy,
3028                                          const RegPressureTracker &RPTracker,
3029                                          SchedCandidate &Cand) {
3030   // getMaxPressureDelta temporarily modifies the tracker.
3031   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3032 
3033   ReadyQueue &Q = Zone.Available;
3034   for (SUnit *SU : Q) {
3035 
3036     SchedCandidate TryCand(ZonePolicy);
3037     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3038     // Pass SchedBoundary only when comparing nodes from the same boundary.
3039     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3040     tryCandidate(Cand, TryCand, ZoneArg);
3041     if (TryCand.Reason != NoCand) {
3042       // Initialize resource delta if needed in case future heuristics query it.
3043       if (TryCand.ResDelta == SchedResourceDelta())
3044         TryCand.initResourceDelta(DAG, SchedModel);
3045       Cand.setBest(TryCand);
3046       LLVM_DEBUG(traceCandidate(Cand));
3047     }
3048   }
3049 }
3050 
3051 /// Pick the best candidate node from either the top or bottom queue.
3052 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3053   // Schedule as far as possible in the direction of no choice. This is most
3054   // efficient, but also provides the best heuristics for CriticalPSets.
3055   if (SUnit *SU = Bot.pickOnlyChoice()) {
3056     IsTopNode = false;
3057     tracePick(Only1, false);
3058     return SU;
3059   }
3060   if (SUnit *SU = Top.pickOnlyChoice()) {
3061     IsTopNode = true;
3062     tracePick(Only1, true);
3063     return SU;
3064   }
3065   // Set the bottom-up policy based on the state of the current bottom zone and
3066   // the instructions outside the zone, including the top zone.
3067   CandPolicy BotPolicy;
3068   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3069   // Set the top-down policy based on the state of the current top zone and
3070   // the instructions outside the zone, including the bottom zone.
3071   CandPolicy TopPolicy;
3072   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3073 
3074   // See if BotCand is still valid (because we previously scheduled from Top).
3075   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
3076   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3077       BotCand.Policy != BotPolicy) {
3078     BotCand.reset(CandPolicy());
3079     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3080     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3081   } else {
3082     LLVM_DEBUG(traceCandidate(BotCand));
3083 #ifndef NDEBUG
3084     if (VerifyScheduling) {
3085       SchedCandidate TCand;
3086       TCand.reset(CandPolicy());
3087       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3088       assert(TCand.SU == BotCand.SU &&
3089              "Last pick result should correspond to re-picking right now");
3090     }
3091 #endif
3092   }
3093 
3094   // Check if the top Q has a better candidate.
3095   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
3096   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3097       TopCand.Policy != TopPolicy) {
3098     TopCand.reset(CandPolicy());
3099     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3100     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3101   } else {
3102     LLVM_DEBUG(traceCandidate(TopCand));
3103 #ifndef NDEBUG
3104     if (VerifyScheduling) {
3105       SchedCandidate TCand;
3106       TCand.reset(CandPolicy());
3107       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3108       assert(TCand.SU == TopCand.SU &&
3109            "Last pick result should correspond to re-picking right now");
3110     }
3111 #endif
3112   }
3113 
3114   // Pick best from BotCand and TopCand.
3115   assert(BotCand.isValid());
3116   assert(TopCand.isValid());
3117   SchedCandidate Cand = BotCand;
3118   TopCand.Reason = NoCand;
3119   tryCandidate(Cand, TopCand, nullptr);
3120   if (TopCand.Reason != NoCand) {
3121     Cand.setBest(TopCand);
3122     LLVM_DEBUG(traceCandidate(Cand));
3123   }
3124 
3125   IsTopNode = Cand.AtTop;
3126   tracePick(Cand);
3127   return Cand.SU;
3128 }
3129 
3130 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3131 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3132   if (DAG->top() == DAG->bottom()) {
3133     assert(Top.Available.empty() && Top.Pending.empty() &&
3134            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3135     return nullptr;
3136   }
3137   SUnit *SU;
3138   do {
3139     if (RegionPolicy.OnlyTopDown) {
3140       SU = Top.pickOnlyChoice();
3141       if (!SU) {
3142         CandPolicy NoPolicy;
3143         TopCand.reset(NoPolicy);
3144         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3145         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3146         tracePick(TopCand);
3147         SU = TopCand.SU;
3148       }
3149       IsTopNode = true;
3150     } else if (RegionPolicy.OnlyBottomUp) {
3151       SU = Bot.pickOnlyChoice();
3152       if (!SU) {
3153         CandPolicy NoPolicy;
3154         BotCand.reset(NoPolicy);
3155         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3156         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3157         tracePick(BotCand);
3158         SU = BotCand.SU;
3159       }
3160       IsTopNode = false;
3161     } else {
3162       SU = pickNodeBidirectional(IsTopNode);
3163     }
3164   } while (SU->isScheduled);
3165 
3166   if (SU->isTopReady())
3167     Top.removeReady(SU);
3168   if (SU->isBottomReady())
3169     Bot.removeReady(SU);
3170 
3171   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3172                     << *SU->getInstr());
3173   return SU;
3174 }
3175 
3176 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3177   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3178   if (!isTop)
3179     ++InsertPos;
3180   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3181 
3182   // Find already scheduled copies with a single physreg dependence and move
3183   // them just above the scheduled instruction.
3184   for (SDep &Dep : Deps) {
3185     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3186       continue;
3187     SUnit *DepSU = Dep.getSUnit();
3188     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3189       continue;
3190     MachineInstr *Copy = DepSU->getInstr();
3191     if (!Copy->isCopy())
3192       continue;
3193     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
3194                DAG->dumpNode(*Dep.getSUnit()));
3195     DAG->moveInstruction(Copy, InsertPos);
3196   }
3197 }
3198 
3199 /// Update the scheduler's state after scheduling a node. This is the same node
3200 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3201 /// update it's state based on the current cycle before MachineSchedStrategy
3202 /// does.
3203 ///
3204 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3205 /// them here. See comments in biasPhysRegCopy.
3206 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3207   if (IsTopNode) {
3208     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3209     Top.bumpNode(SU);
3210     if (SU->hasPhysRegUses)
3211       reschedulePhysRegCopies(SU, true);
3212   } else {
3213     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3214     Bot.bumpNode(SU);
3215     if (SU->hasPhysRegDefs)
3216       reschedulePhysRegCopies(SU, false);
3217   }
3218 }
3219 
3220 /// Create the standard converging machine scheduler. This will be used as the
3221 /// default scheduler if the target does not set a default.
3222 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3223   ScheduleDAGMILive *DAG =
3224       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3225   // Register DAG post-processors.
3226   //
3227   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3228   // data and pass it to later mutations. Have a single mutation that gathers
3229   // the interesting nodes in one pass.
3230   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3231   return DAG;
3232 }
3233 
3234 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3235   return createGenericSchedLive(C);
3236 }
3237 
3238 static MachineSchedRegistry
3239 GenericSchedRegistry("converge", "Standard converging scheduler.",
3240                      createConveringSched);
3241 
3242 //===----------------------------------------------------------------------===//
3243 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3244 //===----------------------------------------------------------------------===//
3245 
3246 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3247   DAG = Dag;
3248   SchedModel = DAG->getSchedModel();
3249   TRI = DAG->TRI;
3250 
3251   Rem.init(DAG, SchedModel);
3252   Top.init(DAG, SchedModel, &Rem);
3253   BotRoots.clear();
3254 
3255   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3256   // or are disabled, then these HazardRecs will be disabled.
3257   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3258   if (!Top.HazardRec) {
3259     Top.HazardRec =
3260         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3261             Itin, DAG);
3262   }
3263 }
3264 
3265 void PostGenericScheduler::registerRoots() {
3266   Rem.CriticalPath = DAG->ExitSU.getDepth();
3267 
3268   // Some roots may not feed into ExitSU. Check all of them in case.
3269   for (const SUnit *SU : BotRoots) {
3270     if (SU->getDepth() > Rem.CriticalPath)
3271       Rem.CriticalPath = SU->getDepth();
3272   }
3273   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3274   if (DumpCriticalPathLength) {
3275     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3276   }
3277 }
3278 
3279 /// Apply a set of heuristics to a new candidate for PostRA scheduling.
3280 ///
3281 /// \param Cand provides the policy and current best candidate.
3282 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3283 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3284                                         SchedCandidate &TryCand) {
3285   // Initialize the candidate if needed.
3286   if (!Cand.isValid()) {
3287     TryCand.Reason = NodeOrder;
3288     return;
3289   }
3290 
3291   // Prioritize instructions that read unbuffered resources by stall cycles.
3292   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3293               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3294     return;
3295 
3296   // Keep clustered nodes together.
3297   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3298                  Cand.SU == DAG->getNextClusterSucc(),
3299                  TryCand, Cand, Cluster))
3300     return;
3301 
3302   // Avoid critical resource consumption and balance the schedule.
3303   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3304               TryCand, Cand, ResourceReduce))
3305     return;
3306   if (tryGreater(TryCand.ResDelta.DemandedResources,
3307                  Cand.ResDelta.DemandedResources,
3308                  TryCand, Cand, ResourceDemand))
3309     return;
3310 
3311   // Avoid serializing long latency dependence chains.
3312   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3313     return;
3314   }
3315 
3316   // Fall through to original instruction order.
3317   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3318     TryCand.Reason = NodeOrder;
3319 }
3320 
3321 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3322   ReadyQueue &Q = Top.Available;
3323   for (SUnit *SU : Q) {
3324     SchedCandidate TryCand(Cand.Policy);
3325     TryCand.SU = SU;
3326     TryCand.AtTop = true;
3327     TryCand.initResourceDelta(DAG, SchedModel);
3328     tryCandidate(Cand, TryCand);
3329     if (TryCand.Reason != NoCand) {
3330       Cand.setBest(TryCand);
3331       LLVM_DEBUG(traceCandidate(Cand));
3332     }
3333   }
3334 }
3335 
3336 /// Pick the next node to schedule.
3337 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3338   if (DAG->top() == DAG->bottom()) {
3339     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3340     return nullptr;
3341   }
3342   SUnit *SU;
3343   do {
3344     SU = Top.pickOnlyChoice();
3345     if (SU) {
3346       tracePick(Only1, true);
3347     } else {
3348       CandPolicy NoPolicy;
3349       SchedCandidate TopCand(NoPolicy);
3350       // Set the top-down policy based on the state of the current top zone and
3351       // the instructions outside the zone, including the bottom zone.
3352       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3353       pickNodeFromQueue(TopCand);
3354       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3355       tracePick(TopCand);
3356       SU = TopCand.SU;
3357     }
3358   } while (SU->isScheduled);
3359 
3360   IsTopNode = true;
3361   Top.removeReady(SU);
3362 
3363   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
3364                     << *SU->getInstr());
3365   return SU;
3366 }
3367 
3368 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3369 /// scheduled/remaining flags in the DAG nodes.
3370 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3371   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3372   Top.bumpNode(SU);
3373 }
3374 
3375 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3376   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3377                            /*RemoveKillFlags=*/true);
3378 }
3379 
3380 //===----------------------------------------------------------------------===//
3381 // ILP Scheduler. Currently for experimental analysis of heuristics.
3382 //===----------------------------------------------------------------------===//
3383 
3384 namespace {
3385 
3386 /// Order nodes by the ILP metric.
3387 struct ILPOrder {
3388   const SchedDFSResult *DFSResult = nullptr;
3389   const BitVector *ScheduledTrees = nullptr;
3390   bool MaximizeILP;
3391 
3392   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3393 
3394   /// Apply a less-than relation on node priority.
3395   ///
3396   /// (Return true if A comes after B in the Q.)
3397   bool operator()(const SUnit *A, const SUnit *B) const {
3398     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3399     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3400     if (SchedTreeA != SchedTreeB) {
3401       // Unscheduled trees have lower priority.
3402       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3403         return ScheduledTrees->test(SchedTreeB);
3404 
3405       // Trees with shallower connections have have lower priority.
3406       if (DFSResult->getSubtreeLevel(SchedTreeA)
3407           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3408         return DFSResult->getSubtreeLevel(SchedTreeA)
3409           < DFSResult->getSubtreeLevel(SchedTreeB);
3410       }
3411     }
3412     if (MaximizeILP)
3413       return DFSResult->getILP(A) < DFSResult->getILP(B);
3414     else
3415       return DFSResult->getILP(A) > DFSResult->getILP(B);
3416   }
3417 };
3418 
3419 /// Schedule based on the ILP metric.
3420 class ILPScheduler : public MachineSchedStrategy {
3421   ScheduleDAGMILive *DAG = nullptr;
3422   ILPOrder Cmp;
3423 
3424   std::vector<SUnit*> ReadyQ;
3425 
3426 public:
3427   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3428 
3429   void initialize(ScheduleDAGMI *dag) override {
3430     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3431     DAG = static_cast<ScheduleDAGMILive*>(dag);
3432     DAG->computeDFSResult();
3433     Cmp.DFSResult = DAG->getDFSResult();
3434     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3435     ReadyQ.clear();
3436   }
3437 
3438   void registerRoots() override {
3439     // Restore the heap in ReadyQ with the updated DFS results.
3440     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3441   }
3442 
3443   /// Implement MachineSchedStrategy interface.
3444   /// -----------------------------------------
3445 
3446   /// Callback to select the highest priority node from the ready Q.
3447   SUnit *pickNode(bool &IsTopNode) override {
3448     if (ReadyQ.empty()) return nullptr;
3449     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3450     SUnit *SU = ReadyQ.back();
3451     ReadyQ.pop_back();
3452     IsTopNode = false;
3453     LLVM_DEBUG(dbgs() << "Pick node "
3454                       << "SU(" << SU->NodeNum << ") "
3455                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
3456                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
3457                       << " @"
3458                       << DAG->getDFSResult()->getSubtreeLevel(
3459                              DAG->getDFSResult()->getSubtreeID(SU))
3460                       << '\n'
3461                       << "Scheduling " << *SU->getInstr());
3462     return SU;
3463   }
3464 
3465   /// Scheduler callback to notify that a new subtree is scheduled.
3466   void scheduleTree(unsigned SubtreeID) override {
3467     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3468   }
3469 
3470   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3471   /// DFSResults, and resort the priority Q.
3472   void schedNode(SUnit *SU, bool IsTopNode) override {
3473     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3474   }
3475 
3476   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3477 
3478   void releaseBottomNode(SUnit *SU) override {
3479     ReadyQ.push_back(SU);
3480     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3481   }
3482 };
3483 
3484 } // end anonymous namespace
3485 
3486 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3487   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3488 }
3489 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3490   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3491 }
3492 
3493 static MachineSchedRegistry ILPMaxRegistry(
3494   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3495 static MachineSchedRegistry ILPMinRegistry(
3496   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3497 
3498 //===----------------------------------------------------------------------===//
3499 // Machine Instruction Shuffler for Correctness Testing
3500 //===----------------------------------------------------------------------===//
3501 
3502 #ifndef NDEBUG
3503 namespace {
3504 
3505 /// Apply a less-than relation on the node order, which corresponds to the
3506 /// instruction order prior to scheduling. IsReverse implements greater-than.
3507 template<bool IsReverse>
3508 struct SUnitOrder {
3509   bool operator()(SUnit *A, SUnit *B) const {
3510     if (IsReverse)
3511       return A->NodeNum > B->NodeNum;
3512     else
3513       return A->NodeNum < B->NodeNum;
3514   }
3515 };
3516 
3517 /// Reorder instructions as much as possible.
3518 class InstructionShuffler : public MachineSchedStrategy {
3519   bool IsAlternating;
3520   bool IsTopDown;
3521 
3522   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3523   // gives nodes with a higher number higher priority causing the latest
3524   // instructions to be scheduled first.
3525   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3526     TopQ;
3527 
3528   // When scheduling bottom-up, use greater-than as the queue priority.
3529   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3530     BottomQ;
3531 
3532 public:
3533   InstructionShuffler(bool alternate, bool topdown)
3534     : IsAlternating(alternate), IsTopDown(topdown) {}
3535 
3536   void initialize(ScheduleDAGMI*) override {
3537     TopQ.clear();
3538     BottomQ.clear();
3539   }
3540 
3541   /// Implement MachineSchedStrategy interface.
3542   /// -----------------------------------------
3543 
3544   SUnit *pickNode(bool &IsTopNode) override {
3545     SUnit *SU;
3546     if (IsTopDown) {
3547       do {
3548         if (TopQ.empty()) return nullptr;
3549         SU = TopQ.top();
3550         TopQ.pop();
3551       } while (SU->isScheduled);
3552       IsTopNode = true;
3553     } else {
3554       do {
3555         if (BottomQ.empty()) return nullptr;
3556         SU = BottomQ.top();
3557         BottomQ.pop();
3558       } while (SU->isScheduled);
3559       IsTopNode = false;
3560     }
3561     if (IsAlternating)
3562       IsTopDown = !IsTopDown;
3563     return SU;
3564   }
3565 
3566   void schedNode(SUnit *SU, bool IsTopNode) override {}
3567 
3568   void releaseTopNode(SUnit *SU) override {
3569     TopQ.push(SU);
3570   }
3571   void releaseBottomNode(SUnit *SU) override {
3572     BottomQ.push(SU);
3573   }
3574 };
3575 
3576 } // end anonymous namespace
3577 
3578 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3579   bool Alternate = !ForceTopDown && !ForceBottomUp;
3580   bool TopDown = !ForceBottomUp;
3581   assert((TopDown || !ForceTopDown) &&
3582          "-misched-topdown incompatible with -misched-bottomup");
3583   return new ScheduleDAGMILive(
3584       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3585 }
3586 
3587 static MachineSchedRegistry ShufflerRegistry(
3588   "shuffle", "Shuffle machine instructions alternating directions",
3589   createInstructionShuffler);
3590 #endif // !NDEBUG
3591 
3592 //===----------------------------------------------------------------------===//
3593 // GraphWriter support for ScheduleDAGMILive.
3594 //===----------------------------------------------------------------------===//
3595 
3596 #ifndef NDEBUG
3597 namespace llvm {
3598 
3599 template<> struct GraphTraits<
3600   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3601 
3602 template<>
3603 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3604   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3605 
3606   static std::string getGraphName(const ScheduleDAG *G) {
3607     return G->MF.getName();
3608   }
3609 
3610   static bool renderGraphFromBottomUp() {
3611     return true;
3612   }
3613 
3614   static bool isNodeHidden(const SUnit *Node) {
3615     if (ViewMISchedCutoff == 0)
3616       return false;
3617     return (Node->Preds.size() > ViewMISchedCutoff
3618          || Node->Succs.size() > ViewMISchedCutoff);
3619   }
3620 
3621   /// If you want to override the dot attributes printed for a particular
3622   /// edge, override this method.
3623   static std::string getEdgeAttributes(const SUnit *Node,
3624                                        SUnitIterator EI,
3625                                        const ScheduleDAG *Graph) {
3626     if (EI.isArtificialDep())
3627       return "color=cyan,style=dashed";
3628     if (EI.isCtrlDep())
3629       return "color=blue,style=dashed";
3630     return "";
3631   }
3632 
3633   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3634     std::string Str;
3635     raw_string_ostream SS(Str);
3636     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3637     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3638       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3639     SS << "SU:" << SU->NodeNum;
3640     if (DFS)
3641       SS << " I:" << DFS->getNumInstrs(SU);
3642     return SS.str();
3643   }
3644 
3645   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3646     return G->getGraphNodeLabel(SU);
3647   }
3648 
3649   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3650     std::string Str("shape=Mrecord");
3651     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3652     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3653       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3654     if (DFS) {
3655       Str += ",style=filled,fillcolor=\"#";
3656       Str += DOT::getColorString(DFS->getSubtreeID(N));
3657       Str += '"';
3658     }
3659     return Str;
3660   }
3661 };
3662 
3663 } // end namespace llvm
3664 #endif // NDEBUG
3665 
3666 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3667 /// rendered using 'dot'.
3668 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3669 #ifndef NDEBUG
3670   ViewGraph(this, Name, false, Title);
3671 #else
3672   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3673          << "systems with Graphviz or gv!\n";
3674 #endif  // NDEBUG
3675 }
3676 
3677 /// Out-of-line implementation with no arguments is handy for gdb.
3678 void ScheduleDAGMI::viewGraph() {
3679   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3680 }
3681