1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // MachineScheduler schedules machine instructions after phi elimination. It 10 // preserves LiveIntervals so it can be invoked before register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineScheduler.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/RegisterClassInfo.h" 36 #include "llvm/CodeGen/RegisterPressure.h" 37 #include "llvm/CodeGen/ScheduleDAG.h" 38 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 39 #include "llvm/CodeGen/ScheduleDAGMutation.h" 40 #include "llvm/CodeGen/ScheduleDFS.h" 41 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetFrameLowering.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/TargetSchedule.h" 49 #include "llvm/CodeGen/TargetSubtargetInfo.h" 50 #include "llvm/CodeGenTypes/MachineValueType.h" 51 #include "llvm/Config/llvm-config.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/GraphWriter.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <limits> 66 #include <memory> 67 #include <string> 68 #include <tuple> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "machine-scheduler" 75 76 STATISTIC(NumClustered, "Number of load/store pairs clustered"); 77 78 namespace llvm { 79 80 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 81 cl::desc("Force top-down list scheduling")); 82 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 83 cl::desc("Force bottom-up list scheduling")); 84 namespace MISchedPostRASched { 85 enum Direction { 86 TopDown, 87 BottomUp, 88 Bidirectional, 89 }; 90 } // end namespace MISchedPostRASched 91 cl::opt<MISchedPostRASched::Direction> PostRADirection( 92 "misched-postra-direction", cl::Hidden, 93 cl::desc("Post reg-alloc list scheduling direction"), 94 // Default to top-down because it was implemented first and existing targets 95 // expect that behavior by default. 96 cl::init(MISchedPostRASched::TopDown), 97 cl::values( 98 clEnumValN(MISchedPostRASched::TopDown, "topdown", 99 "Force top-down post reg-alloc list scheduling"), 100 clEnumValN(MISchedPostRASched::BottomUp, "bottomup", 101 "Force bottom-up post reg-alloc list scheduling"), 102 clEnumValN(MISchedPostRASched::Bidirectional, "bidirectional", 103 "Force bidirectional post reg-alloc list scheduling"))); 104 cl::opt<bool> 105 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 106 cl::desc("Print critical path length to stdout")); 107 108 cl::opt<bool> VerifyScheduling( 109 "verify-misched", cl::Hidden, 110 cl::desc("Verify machine instrs before and after machine scheduling")); 111 112 #ifndef NDEBUG 113 cl::opt<bool> ViewMISchedDAGs( 114 "view-misched-dags", cl::Hidden, 115 cl::desc("Pop up a window to show MISched dags after they are processed")); 116 cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, 117 cl::desc("Print schedule DAGs")); 118 cl::opt<bool> MISchedDumpReservedCycles( 119 "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), 120 cl::desc("Dump resource usage at schedule boundary.")); 121 cl::opt<bool> MischedDetailResourceBooking( 122 "misched-detail-resource-booking", cl::Hidden, cl::init(false), 123 cl::desc("Show details of invoking getNextResoufceCycle.")); 124 #else 125 const bool ViewMISchedDAGs = false; 126 const bool PrintDAGs = false; 127 const bool MischedDetailResourceBooking = false; 128 #ifdef LLVM_ENABLE_DUMP 129 const bool MISchedDumpReservedCycles = false; 130 #endif // LLVM_ENABLE_DUMP 131 #endif // NDEBUG 132 133 } // end namespace llvm 134 135 #ifndef NDEBUG 136 /// In some situations a few uninteresting nodes depend on nearly all other 137 /// nodes in the graph, provide a cutoff to hide them. 138 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 139 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 140 141 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 142 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 143 144 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 145 cl::desc("Only schedule this function")); 146 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 147 cl::desc("Only schedule this MBB#")); 148 #endif // NDEBUG 149 150 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 151 /// size of the ready lists. 152 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 153 cl::desc("Limit ready list to N instructions"), cl::init(256)); 154 155 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 156 cl::desc("Enable register pressure scheduling."), cl::init(true)); 157 158 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 159 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 160 161 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 162 cl::desc("Enable memop clustering."), 163 cl::init(true)); 164 static cl::opt<bool> 165 ForceFastCluster("force-fast-cluster", cl::Hidden, 166 cl::desc("Switch to fast cluster algorithm with the lost " 167 "of some fusion opportunities"), 168 cl::init(false)); 169 static cl::opt<unsigned> 170 FastClusterThreshold("fast-cluster-threshold", cl::Hidden, 171 cl::desc("The threshold for fast cluster"), 172 cl::init(1000)); 173 174 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 175 static cl::opt<bool> MISchedDumpScheduleTrace( 176 "misched-dump-schedule-trace", cl::Hidden, cl::init(false), 177 cl::desc("Dump resource usage at schedule boundary.")); 178 static cl::opt<unsigned> 179 HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, 180 cl::desc("Set width of the columns with " 181 "the resources and schedule units"), 182 cl::init(19)); 183 static cl::opt<unsigned> 184 ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, 185 cl::desc("Set width of the columns showing resource booking."), 186 cl::init(5)); 187 static cl::opt<bool> MISchedSortResourcesInTrace( 188 "misched-sort-resources-in-trace", cl::Hidden, cl::init(true), 189 cl::desc("Sort the resources printed in the dump trace")); 190 #endif 191 192 static cl::opt<unsigned> 193 MIResourceCutOff("misched-resource-cutoff", cl::Hidden, 194 cl::desc("Number of intervals to track"), cl::init(10)); 195 196 // DAG subtrees must have at least this many nodes. 197 static const unsigned MinSubtreeSize = 8; 198 199 // Pin the vtables to this file. 200 void MachineSchedStrategy::anchor() {} 201 202 void ScheduleDAGMutation::anchor() {} 203 204 //===----------------------------------------------------------------------===// 205 // Machine Instruction Scheduling Pass and Registry 206 //===----------------------------------------------------------------------===// 207 208 MachineSchedContext::MachineSchedContext() { 209 RegClassInfo = new RegisterClassInfo(); 210 } 211 212 MachineSchedContext::~MachineSchedContext() { 213 delete RegClassInfo; 214 } 215 216 namespace { 217 218 /// Base class for a machine scheduler class that can run at any point. 219 class MachineSchedulerBase : public MachineSchedContext, 220 public MachineFunctionPass { 221 public: 222 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 223 224 void print(raw_ostream &O, const Module* = nullptr) const override; 225 226 protected: 227 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 228 }; 229 230 /// MachineScheduler runs after coalescing and before register allocation. 231 class MachineScheduler : public MachineSchedulerBase { 232 public: 233 MachineScheduler(); 234 235 void getAnalysisUsage(AnalysisUsage &AU) const override; 236 237 bool runOnMachineFunction(MachineFunction&) override; 238 239 static char ID; // Class identification, replacement for typeinfo 240 241 protected: 242 ScheduleDAGInstrs *createMachineScheduler(); 243 }; 244 245 /// PostMachineScheduler runs after shortly before code emission. 246 class PostMachineScheduler : public MachineSchedulerBase { 247 public: 248 PostMachineScheduler(); 249 250 void getAnalysisUsage(AnalysisUsage &AU) const override; 251 252 bool runOnMachineFunction(MachineFunction&) override; 253 254 static char ID; // Class identification, replacement for typeinfo 255 256 protected: 257 ScheduleDAGInstrs *createPostMachineScheduler(); 258 }; 259 260 } // end anonymous namespace 261 262 char MachineScheduler::ID = 0; 263 264 char &llvm::MachineSchedulerID = MachineScheduler::ID; 265 266 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 267 "Machine Instruction Scheduler", false, false) 268 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 269 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 270 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 271 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 272 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 273 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 274 "Machine Instruction Scheduler", false, false) 275 276 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 277 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 278 } 279 280 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 281 AU.setPreservesCFG(); 282 AU.addRequired<MachineDominatorTreeWrapperPass>(); 283 AU.addRequired<MachineLoopInfoWrapperPass>(); 284 AU.addRequired<AAResultsWrapperPass>(); 285 AU.addRequired<TargetPassConfig>(); 286 AU.addRequired<SlotIndexesWrapperPass>(); 287 AU.addPreserved<SlotIndexesWrapperPass>(); 288 AU.addRequired<LiveIntervalsWrapperPass>(); 289 AU.addPreserved<LiveIntervalsWrapperPass>(); 290 MachineFunctionPass::getAnalysisUsage(AU); 291 } 292 293 char PostMachineScheduler::ID = 0; 294 295 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 296 297 INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", 298 "PostRA Machine Instruction Scheduler", false, false) 299 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 302 INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", 303 "PostRA Machine Instruction Scheduler", false, false) 304 305 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 306 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 307 } 308 309 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 310 AU.setPreservesCFG(); 311 AU.addRequired<MachineDominatorTreeWrapperPass>(); 312 AU.addRequired<MachineLoopInfoWrapperPass>(); 313 AU.addRequired<AAResultsWrapperPass>(); 314 AU.addRequired<TargetPassConfig>(); 315 MachineFunctionPass::getAnalysisUsage(AU); 316 } 317 318 MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> 319 MachineSchedRegistry::Registry; 320 321 /// A dummy default scheduler factory indicates whether the scheduler 322 /// is overridden on the command line. 323 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 324 return nullptr; 325 } 326 327 /// MachineSchedOpt allows command line selection of the scheduler. 328 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 329 RegisterPassParser<MachineSchedRegistry>> 330 MachineSchedOpt("misched", 331 cl::init(&useDefaultMachineSched), cl::Hidden, 332 cl::desc("Machine instruction scheduler to use")); 333 334 static MachineSchedRegistry 335 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 336 useDefaultMachineSched); 337 338 static cl::opt<bool> EnableMachineSched( 339 "enable-misched", 340 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 341 cl::Hidden); 342 343 static cl::opt<bool> EnablePostRAMachineSched( 344 "enable-post-misched", 345 cl::desc("Enable the post-ra machine instruction scheduling pass."), 346 cl::init(true), cl::Hidden); 347 348 /// Decrement this iterator until reaching the top or a non-debug instr. 349 static MachineBasicBlock::const_iterator 350 priorNonDebug(MachineBasicBlock::const_iterator I, 351 MachineBasicBlock::const_iterator Beg) { 352 assert(I != Beg && "reached the top of the region, cannot decrement"); 353 while (--I != Beg) { 354 if (!I->isDebugOrPseudoInstr()) 355 break; 356 } 357 return I; 358 } 359 360 /// Non-const version. 361 static MachineBasicBlock::iterator 362 priorNonDebug(MachineBasicBlock::iterator I, 363 MachineBasicBlock::const_iterator Beg) { 364 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 365 .getNonConstIterator(); 366 } 367 368 /// If this iterator is a debug value, increment until reaching the End or a 369 /// non-debug instruction. 370 static MachineBasicBlock::const_iterator 371 nextIfDebug(MachineBasicBlock::const_iterator I, 372 MachineBasicBlock::const_iterator End) { 373 for(; I != End; ++I) { 374 if (!I->isDebugOrPseudoInstr()) 375 break; 376 } 377 return I; 378 } 379 380 /// Non-const version. 381 static MachineBasicBlock::iterator 382 nextIfDebug(MachineBasicBlock::iterator I, 383 MachineBasicBlock::const_iterator End) { 384 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 385 .getNonConstIterator(); 386 } 387 388 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 389 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 390 // Select the scheduler, or set the default. 391 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 392 if (Ctor != useDefaultMachineSched) 393 return Ctor(this); 394 395 // Get the default scheduler set by the target for this function. 396 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 397 if (Scheduler) 398 return Scheduler; 399 400 // Default to GenericScheduler. 401 return createGenericSchedLive(this); 402 } 403 404 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 405 /// the caller. We don't have a command line option to override the postRA 406 /// scheduler. The Target must configure it. 407 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 408 // Get the postRA scheduler set by the target for this function. 409 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 410 if (Scheduler) 411 return Scheduler; 412 413 // Default to GenericScheduler. 414 return createGenericSchedPostRA(this); 415 } 416 417 /// Top-level MachineScheduler pass driver. 418 /// 419 /// Visit blocks in function order. Divide each block into scheduling regions 420 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 421 /// consistent with the DAG builder, which traverses the interior of the 422 /// scheduling regions bottom-up. 423 /// 424 /// This design avoids exposing scheduling boundaries to the DAG builder, 425 /// simplifying the DAG builder's support for "special" target instructions. 426 /// At the same time the design allows target schedulers to operate across 427 /// scheduling boundaries, for example to bundle the boundary instructions 428 /// without reordering them. This creates complexity, because the target 429 /// scheduler must update the RegionBegin and RegionEnd positions cached by 430 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 431 /// design would be to split blocks at scheduling boundaries, but LLVM has a 432 /// general bias against block splitting purely for implementation simplicity. 433 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 434 if (skipFunction(mf.getFunction())) 435 return false; 436 437 if (EnableMachineSched.getNumOccurrences()) { 438 if (!EnableMachineSched) 439 return false; 440 } else if (!mf.getSubtarget().enableMachineScheduler()) 441 return false; 442 443 LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 444 445 // Initialize the context of the pass. 446 MF = &mf; 447 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 448 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 449 PassConfig = &getAnalysis<TargetPassConfig>(); 450 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 451 452 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 453 454 if (VerifyScheduling) { 455 LLVM_DEBUG(LIS->dump()); 456 MF->verify(this, "Before machine scheduling.", &errs()); 457 } 458 RegClassInfo->runOnMachineFunction(*MF); 459 460 // Instantiate the selected scheduler for this target, function, and 461 // optimization level. 462 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 463 ScheduleDAGMI::DumpDirection D; 464 if (ForceTopDown) 465 D = ScheduleDAGMI::DumpDirection::TopDown; 466 else if (ForceBottomUp) 467 D = ScheduleDAGMI::DumpDirection::BottomUp; 468 else 469 D = ScheduleDAGMI::DumpDirection::Bidirectional; 470 Scheduler->setDumpDirection(D); 471 scheduleRegions(*Scheduler, false); 472 473 LLVM_DEBUG(LIS->dump()); 474 if (VerifyScheduling) 475 MF->verify(this, "After machine scheduling.", &errs()); 476 return true; 477 } 478 479 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 480 if (skipFunction(mf.getFunction())) 481 return false; 482 483 if (EnablePostRAMachineSched.getNumOccurrences()) { 484 if (!EnablePostRAMachineSched) 485 return false; 486 } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { 487 LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 488 return false; 489 } 490 LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 491 492 // Initialize the context of the pass. 493 MF = &mf; 494 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 495 PassConfig = &getAnalysis<TargetPassConfig>(); 496 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 497 498 if (VerifyScheduling) 499 MF->verify(this, "Before post machine scheduling.", &errs()); 500 501 // Instantiate the selected scheduler for this target, function, and 502 // optimization level. 503 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 504 ScheduleDAGMI::DumpDirection D; 505 if (PostRADirection == MISchedPostRASched::TopDown) 506 D = ScheduleDAGMI::DumpDirection::TopDown; 507 else if (PostRADirection == MISchedPostRASched::BottomUp) 508 D = ScheduleDAGMI::DumpDirection::BottomUp; 509 else 510 D = ScheduleDAGMI::DumpDirection::Bidirectional; 511 Scheduler->setDumpDirection(D); 512 scheduleRegions(*Scheduler, true); 513 514 if (VerifyScheduling) 515 MF->verify(this, "After post machine scheduling.", &errs()); 516 return true; 517 } 518 519 /// Return true of the given instruction should not be included in a scheduling 520 /// region. 521 /// 522 /// MachineScheduler does not currently support scheduling across calls. To 523 /// handle calls, the DAG builder needs to be modified to create register 524 /// anti/output dependencies on the registers clobbered by the call's regmask 525 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 526 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 527 /// the boundary, but there would be no benefit to postRA scheduling across 528 /// calls this late anyway. 529 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 530 MachineBasicBlock *MBB, 531 MachineFunction *MF, 532 const TargetInstrInfo *TII) { 533 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF) || 534 MI->isFakeUse(); 535 } 536 537 /// A region of an MBB for scheduling. 538 namespace { 539 struct SchedRegion { 540 /// RegionBegin is the first instruction in the scheduling region, and 541 /// RegionEnd is either MBB->end() or the scheduling boundary after the 542 /// last instruction in the scheduling region. These iterators cannot refer 543 /// to instructions outside of the identified scheduling region because 544 /// those may be reordered before scheduling this region. 545 MachineBasicBlock::iterator RegionBegin; 546 MachineBasicBlock::iterator RegionEnd; 547 unsigned NumRegionInstrs; 548 549 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 550 unsigned N) : 551 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 552 }; 553 } // end anonymous namespace 554 555 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 556 557 static void 558 getSchedRegions(MachineBasicBlock *MBB, 559 MBBRegionsVector &Regions, 560 bool RegionsTopDown) { 561 MachineFunction *MF = MBB->getParent(); 562 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 563 564 MachineBasicBlock::iterator I = nullptr; 565 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 566 RegionEnd != MBB->begin(); RegionEnd = I) { 567 568 // Avoid decrementing RegionEnd for blocks with no terminator. 569 if (RegionEnd != MBB->end() || 570 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 571 --RegionEnd; 572 } 573 574 // The next region starts above the previous region. Look backward in the 575 // instruction stream until we find the nearest boundary. 576 unsigned NumRegionInstrs = 0; 577 I = RegionEnd; 578 for (;I != MBB->begin(); --I) { 579 MachineInstr &MI = *std::prev(I); 580 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 581 break; 582 if (!MI.isDebugOrPseudoInstr()) { 583 // MBB::size() uses instr_iterator to count. Here we need a bundle to 584 // count as a single instruction. 585 ++NumRegionInstrs; 586 } 587 } 588 589 // It's possible we found a scheduling region that only has debug 590 // instructions. Don't bother scheduling these. 591 if (NumRegionInstrs != 0) 592 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 593 } 594 595 if (RegionsTopDown) 596 std::reverse(Regions.begin(), Regions.end()); 597 } 598 599 /// Main driver for both MachineScheduler and PostMachineScheduler. 600 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 601 bool FixKillFlags) { 602 // Visit all machine basic blocks. 603 // 604 // TODO: Visit blocks in global postorder or postorder within the bottom-up 605 // loop tree. Then we can optionally compute global RegPressure. 606 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 607 MBB != MBBEnd; ++MBB) { 608 609 Scheduler.startBlock(&*MBB); 610 611 #ifndef NDEBUG 612 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 613 continue; 614 if (SchedOnlyBlock.getNumOccurrences() 615 && (int)SchedOnlyBlock != MBB->getNumber()) 616 continue; 617 #endif 618 619 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 620 // points to the scheduling boundary at the bottom of the region. The DAG 621 // does not include RegionEnd, but the region does (i.e. the next 622 // RegionEnd is above the previous RegionBegin). If the current block has 623 // no terminator then RegionEnd == MBB->end() for the bottom region. 624 // 625 // All the regions of MBB are first found and stored in MBBRegions, which 626 // will be processed (MBB) top-down if initialized with true. 627 // 628 // The Scheduler may insert instructions during either schedule() or 629 // exitRegion(), even for empty regions. So the local iterators 'I' and 630 // 'RegionEnd' are invalid across these calls. Instructions must not be 631 // added to other regions than the current one without updating MBBRegions. 632 633 MBBRegionsVector MBBRegions; 634 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 635 for (const SchedRegion &R : MBBRegions) { 636 MachineBasicBlock::iterator I = R.RegionBegin; 637 MachineBasicBlock::iterator RegionEnd = R.RegionEnd; 638 unsigned NumRegionInstrs = R.NumRegionInstrs; 639 640 // Notify the scheduler of the region, even if we may skip scheduling 641 // it. Perhaps it still needs to be bundled. 642 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 643 644 // Skip empty scheduling regions (0 or 1 schedulable instructions). 645 if (I == RegionEnd || I == std::prev(RegionEnd)) { 646 // Close the current region. Bundle the terminator if needed. 647 // This invalidates 'RegionEnd' and 'I'. 648 Scheduler.exitRegion(); 649 continue; 650 } 651 LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); 652 LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) 653 << " " << MBB->getName() << "\n From: " << *I 654 << " To: "; 655 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 656 else dbgs() << "End\n"; 657 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 658 if (DumpCriticalPathLength) { 659 errs() << MF->getName(); 660 errs() << ":%bb. " << MBB->getNumber(); 661 errs() << " " << MBB->getName() << " \n"; 662 } 663 664 // Schedule a region: possibly reorder instructions. 665 // This invalidates the original region iterators. 666 Scheduler.schedule(); 667 668 // Close the current region. 669 Scheduler.exitRegion(); 670 } 671 Scheduler.finishBlock(); 672 // FIXME: Ideally, no further passes should rely on kill flags. However, 673 // thumb2 size reduction is currently an exception, so the PostMIScheduler 674 // needs to do this. 675 if (FixKillFlags) 676 Scheduler.fixupKills(*MBB); 677 } 678 Scheduler.finalizeSchedule(); 679 } 680 681 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 682 // unimplemented 683 } 684 685 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 686 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 687 dbgs() << "Queue " << Name << ": "; 688 for (const SUnit *SU : Queue) 689 dbgs() << SU->NodeNum << " "; 690 dbgs() << "\n"; 691 } 692 #endif 693 694 //===----------------------------------------------------------------------===// 695 // ScheduleDAGMI - Basic machine instruction scheduling. This is 696 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 697 // virtual registers. 698 // ===----------------------------------------------------------------------===/ 699 700 // Provide a vtable anchor. 701 ScheduleDAGMI::~ScheduleDAGMI() = default; 702 703 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 704 /// NumPredsLeft reaches zero, release the successor node. 705 /// 706 /// FIXME: Adjust SuccSU height based on MinLatency. 707 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 708 SUnit *SuccSU = SuccEdge->getSUnit(); 709 710 if (SuccEdge->isWeak()) { 711 --SuccSU->WeakPredsLeft; 712 if (SuccEdge->isCluster()) 713 NextClusterSucc = SuccSU; 714 return; 715 } 716 #ifndef NDEBUG 717 if (SuccSU->NumPredsLeft == 0) { 718 dbgs() << "*** Scheduling failed! ***\n"; 719 dumpNode(*SuccSU); 720 dbgs() << " has been released too many times!\n"; 721 llvm_unreachable(nullptr); 722 } 723 #endif 724 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 725 // CurrCycle may have advanced since then. 726 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 727 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 728 729 --SuccSU->NumPredsLeft; 730 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 731 SchedImpl->releaseTopNode(SuccSU); 732 } 733 734 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 735 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 736 for (SDep &Succ : SU->Succs) 737 releaseSucc(SU, &Succ); 738 } 739 740 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 741 /// NumSuccsLeft reaches zero, release the predecessor node. 742 /// 743 /// FIXME: Adjust PredSU height based on MinLatency. 744 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 745 SUnit *PredSU = PredEdge->getSUnit(); 746 747 if (PredEdge->isWeak()) { 748 --PredSU->WeakSuccsLeft; 749 if (PredEdge->isCluster()) 750 NextClusterPred = PredSU; 751 return; 752 } 753 #ifndef NDEBUG 754 if (PredSU->NumSuccsLeft == 0) { 755 dbgs() << "*** Scheduling failed! ***\n"; 756 dumpNode(*PredSU); 757 dbgs() << " has been released too many times!\n"; 758 llvm_unreachable(nullptr); 759 } 760 #endif 761 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 762 // CurrCycle may have advanced since then. 763 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 764 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 765 766 --PredSU->NumSuccsLeft; 767 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 768 SchedImpl->releaseBottomNode(PredSU); 769 } 770 771 /// releasePredecessors - Call releasePred on each of SU's predecessors. 772 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 773 for (SDep &Pred : SU->Preds) 774 releasePred(SU, &Pred); 775 } 776 777 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 778 ScheduleDAGInstrs::startBlock(bb); 779 SchedImpl->enterMBB(bb); 780 } 781 782 void ScheduleDAGMI::finishBlock() { 783 SchedImpl->leaveMBB(); 784 ScheduleDAGInstrs::finishBlock(); 785 } 786 787 /// enterRegion - Called back from PostMachineScheduler::runOnMachineFunction 788 /// after crossing a scheduling boundary. [begin, end) includes all instructions 789 /// in the region, including the boundary itself and single-instruction regions 790 /// that don't get scheduled. 791 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 792 MachineBasicBlock::iterator begin, 793 MachineBasicBlock::iterator end, 794 unsigned regioninstrs) 795 { 796 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 797 798 SchedImpl->initPolicy(begin, end, regioninstrs); 799 } 800 801 /// This is normally called from the main scheduler loop but may also be invoked 802 /// by the scheduling strategy to perform additional code motion. 803 void ScheduleDAGMI::moveInstruction( 804 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 805 // Advance RegionBegin if the first instruction moves down. 806 if (&*RegionBegin == MI) 807 ++RegionBegin; 808 809 // Update the instruction stream. 810 BB->splice(InsertPos, BB, MI); 811 812 // Update LiveIntervals 813 if (LIS) 814 LIS->handleMove(*MI, /*UpdateFlags=*/true); 815 816 // Recede RegionBegin if an instruction moves above the first. 817 if (RegionBegin == InsertPos) 818 RegionBegin = MI; 819 } 820 821 bool ScheduleDAGMI::checkSchedLimit() { 822 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) 823 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 824 CurrentTop = CurrentBottom; 825 return false; 826 } 827 ++NumInstrsScheduled; 828 #endif 829 return true; 830 } 831 832 /// Per-region scheduling driver, called back from 833 /// PostMachineScheduler::runOnMachineFunction. This is a simplified driver 834 /// that does not consider liveness or register pressure. It is useful for 835 /// PostRA scheduling and potentially other custom schedulers. 836 void ScheduleDAGMI::schedule() { 837 LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 838 LLVM_DEBUG(SchedImpl->dumpPolicy()); 839 840 // Build the DAG. 841 buildSchedGraph(AA); 842 843 postProcessDAG(); 844 845 SmallVector<SUnit*, 8> TopRoots, BotRoots; 846 findRootsAndBiasEdges(TopRoots, BotRoots); 847 848 LLVM_DEBUG(dump()); 849 if (PrintDAGs) dump(); 850 if (ViewMISchedDAGs) viewGraph(); 851 852 // Initialize the strategy before modifying the DAG. 853 // This may initialize a DFSResult to be used for queue priority. 854 SchedImpl->initialize(this); 855 856 // Initialize ready queues now that the DAG and priority data are finalized. 857 initQueues(TopRoots, BotRoots); 858 859 bool IsTopNode = false; 860 while (true) { 861 LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 862 SUnit *SU = SchedImpl->pickNode(IsTopNode); 863 if (!SU) break; 864 865 assert(!SU->isScheduled && "Node already scheduled"); 866 if (!checkSchedLimit()) 867 break; 868 869 MachineInstr *MI = SU->getInstr(); 870 if (IsTopNode) { 871 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 872 if (&*CurrentTop == MI) 873 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 874 else 875 moveInstruction(MI, CurrentTop); 876 } else { 877 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 878 MachineBasicBlock::iterator priorII = 879 priorNonDebug(CurrentBottom, CurrentTop); 880 if (&*priorII == MI) 881 CurrentBottom = priorII; 882 else { 883 if (&*CurrentTop == MI) 884 CurrentTop = nextIfDebug(++CurrentTop, priorII); 885 moveInstruction(MI, CurrentBottom); 886 CurrentBottom = MI; 887 } 888 } 889 // Notify the scheduling strategy before updating the DAG. 890 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 891 // runs, it can then use the accurate ReadyCycle time to determine whether 892 // newly released nodes can move to the readyQ. 893 SchedImpl->schedNode(SU, IsTopNode); 894 895 updateQueues(SU, IsTopNode); 896 } 897 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 898 899 placeDebugValues(); 900 901 LLVM_DEBUG({ 902 dbgs() << "*** Final schedule for " 903 << printMBBReference(*begin()->getParent()) << " ***\n"; 904 dumpSchedule(); 905 dbgs() << '\n'; 906 }); 907 } 908 909 /// Apply each ScheduleDAGMutation step in order. 910 void ScheduleDAGMI::postProcessDAG() { 911 for (auto &m : Mutations) 912 m->apply(this); 913 } 914 915 void ScheduleDAGMI:: 916 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 917 SmallVectorImpl<SUnit*> &BotRoots) { 918 for (SUnit &SU : SUnits) { 919 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 920 921 // Order predecessors so DFSResult follows the critical path. 922 SU.biasCriticalPath(); 923 924 // A SUnit is ready to top schedule if it has no predecessors. 925 if (!SU.NumPredsLeft) 926 TopRoots.push_back(&SU); 927 // A SUnit is ready to bottom schedule if it has no successors. 928 if (!SU.NumSuccsLeft) 929 BotRoots.push_back(&SU); 930 } 931 ExitSU.biasCriticalPath(); 932 } 933 934 /// Identify DAG roots and setup scheduler queues. 935 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 936 ArrayRef<SUnit*> BotRoots) { 937 NextClusterSucc = nullptr; 938 NextClusterPred = nullptr; 939 940 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 941 // 942 // Nodes with unreleased weak edges can still be roots. 943 // Release top roots in forward order. 944 for (SUnit *SU : TopRoots) 945 SchedImpl->releaseTopNode(SU); 946 947 // Release bottom roots in reverse order so the higher priority nodes appear 948 // first. This is more natural and slightly more efficient. 949 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 950 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 951 SchedImpl->releaseBottomNode(*I); 952 } 953 954 releaseSuccessors(&EntrySU); 955 releasePredecessors(&ExitSU); 956 957 SchedImpl->registerRoots(); 958 959 // Advance past initial DebugValues. 960 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 961 CurrentBottom = RegionEnd; 962 } 963 964 /// Update scheduler queues after scheduling an instruction. 965 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 966 // Release dependent instructions for scheduling. 967 if (IsTopNode) 968 releaseSuccessors(SU); 969 else 970 releasePredecessors(SU); 971 972 SU->isScheduled = true; 973 } 974 975 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 976 void ScheduleDAGMI::placeDebugValues() { 977 // If first instruction was a DBG_VALUE then put it back. 978 if (FirstDbgValue) { 979 BB->splice(RegionBegin, BB, FirstDbgValue); 980 RegionBegin = FirstDbgValue; 981 } 982 983 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 984 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 985 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 986 MachineInstr *DbgValue = P.first; 987 MachineBasicBlock::iterator OrigPrevMI = P.second; 988 if (&*RegionBegin == DbgValue) 989 ++RegionBegin; 990 BB->splice(std::next(OrigPrevMI), BB, DbgValue); 991 if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) 992 RegionEnd = DbgValue; 993 } 994 } 995 996 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 997 static const char *scheduleTableLegend = " i: issue\n x: resource booked"; 998 999 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceTopDown() const { 1000 // Bail off when there is no schedule model to query. 1001 if (!SchedModel.hasInstrSchedModel()) 1002 return; 1003 1004 // Nothing to show if there is no or just one instruction. 1005 if (BB->size() < 2) 1006 return; 1007 1008 dbgs() << " * Schedule table (TopDown):\n"; 1009 dbgs() << scheduleTableLegend << "\n"; 1010 const unsigned FirstCycle = getSUnit(&*(std::begin(*this)))->TopReadyCycle; 1011 unsigned LastCycle = getSUnit(&*(std::prev(std::end(*this))))->TopReadyCycle; 1012 for (MachineInstr &MI : *this) { 1013 SUnit *SU = getSUnit(&MI); 1014 if (!SU) 1015 continue; 1016 const MCSchedClassDesc *SC = getSchedClass(SU); 1017 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1018 PE = SchedModel.getWriteProcResEnd(SC); 1019 PI != PE; ++PI) { 1020 if (SU->TopReadyCycle + PI->ReleaseAtCycle - 1 > LastCycle) 1021 LastCycle = SU->TopReadyCycle + PI->ReleaseAtCycle - 1; 1022 } 1023 } 1024 // Print the header with the cycles 1025 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1026 for (unsigned C = FirstCycle; C <= LastCycle; ++C) 1027 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1028 dbgs() << "|\n"; 1029 1030 for (MachineInstr &MI : *this) { 1031 SUnit *SU = getSUnit(&MI); 1032 if (!SU) { 1033 dbgs() << "Missing SUnit\n"; 1034 continue; 1035 } 1036 std::string NodeName("SU("); 1037 NodeName += std::to_string(SU->NodeNum) + ")"; 1038 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1039 unsigned C = FirstCycle; 1040 for (; C <= LastCycle; ++C) { 1041 if (C == SU->TopReadyCycle) 1042 dbgs() << llvm::left_justify("| i", ColWidth); 1043 else 1044 dbgs() << llvm::left_justify("|", ColWidth); 1045 } 1046 dbgs() << "|\n"; 1047 const MCSchedClassDesc *SC = getSchedClass(SU); 1048 1049 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1050 make_range(SchedModel.getWriteProcResBegin(SC), 1051 SchedModel.getWriteProcResEnd(SC))); 1052 1053 if (MISchedSortResourcesInTrace) 1054 llvm::stable_sort(ResourcesIt, 1055 [](const MCWriteProcResEntry &LHS, 1056 const MCWriteProcResEntry &RHS) -> bool { 1057 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1058 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1059 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1060 }); 1061 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1062 C = FirstCycle; 1063 const std::string ResName = 1064 SchedModel.getResourceName(PI.ProcResourceIdx); 1065 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1066 for (; C < SU->TopReadyCycle + PI.AcquireAtCycle; ++C) { 1067 dbgs() << llvm::left_justify("|", ColWidth); 1068 } 1069 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1070 ++I, ++C) 1071 dbgs() << llvm::left_justify("| x", ColWidth); 1072 while (C++ <= LastCycle) 1073 dbgs() << llvm::left_justify("|", ColWidth); 1074 // Place end char 1075 dbgs() << "| \n"; 1076 } 1077 } 1078 } 1079 1080 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpScheduleTraceBottomUp() const { 1081 // Bail off when there is no schedule model to query. 1082 if (!SchedModel.hasInstrSchedModel()) 1083 return; 1084 1085 // Nothing to show if there is no or just one instruction. 1086 if (BB->size() < 2) 1087 return; 1088 1089 dbgs() << " * Schedule table (BottomUp):\n"; 1090 dbgs() << scheduleTableLegend << "\n"; 1091 1092 const int FirstCycle = getSUnit(&*(std::begin(*this)))->BotReadyCycle; 1093 int LastCycle = getSUnit(&*(std::prev(std::end(*this))))->BotReadyCycle; 1094 for (MachineInstr &MI : *this) { 1095 SUnit *SU = getSUnit(&MI); 1096 if (!SU) 1097 continue; 1098 const MCSchedClassDesc *SC = getSchedClass(SU); 1099 for (TargetSchedModel::ProcResIter PI = SchedModel.getWriteProcResBegin(SC), 1100 PE = SchedModel.getWriteProcResEnd(SC); 1101 PI != PE; ++PI) { 1102 if ((int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle) 1103 LastCycle = (int)SU->BotReadyCycle - PI->ReleaseAtCycle + 1; 1104 } 1105 } 1106 // Print the header with the cycles 1107 dbgs() << llvm::left_justify("Cycle", HeaderColWidth); 1108 for (int C = FirstCycle; C >= LastCycle; --C) 1109 dbgs() << llvm::left_justify("| " + std::to_string(C), ColWidth); 1110 dbgs() << "|\n"; 1111 1112 for (MachineInstr &MI : *this) { 1113 SUnit *SU = getSUnit(&MI); 1114 if (!SU) { 1115 dbgs() << "Missing SUnit\n"; 1116 continue; 1117 } 1118 std::string NodeName("SU("); 1119 NodeName += std::to_string(SU->NodeNum) + ")"; 1120 dbgs() << llvm::left_justify(NodeName, HeaderColWidth); 1121 int C = FirstCycle; 1122 for (; C >= LastCycle; --C) { 1123 if (C == (int)SU->BotReadyCycle) 1124 dbgs() << llvm::left_justify("| i", ColWidth); 1125 else 1126 dbgs() << llvm::left_justify("|", ColWidth); 1127 } 1128 dbgs() << "|\n"; 1129 const MCSchedClassDesc *SC = getSchedClass(SU); 1130 SmallVector<MCWriteProcResEntry, 4> ResourcesIt( 1131 make_range(SchedModel.getWriteProcResBegin(SC), 1132 SchedModel.getWriteProcResEnd(SC))); 1133 1134 if (MISchedSortResourcesInTrace) 1135 llvm::stable_sort(ResourcesIt, 1136 [](const MCWriteProcResEntry &LHS, 1137 const MCWriteProcResEntry &RHS) -> bool { 1138 return LHS.AcquireAtCycle < RHS.AcquireAtCycle || 1139 (LHS.AcquireAtCycle == RHS.AcquireAtCycle && 1140 LHS.ReleaseAtCycle < RHS.ReleaseAtCycle); 1141 }); 1142 for (const MCWriteProcResEntry &PI : ResourcesIt) { 1143 C = FirstCycle; 1144 const std::string ResName = 1145 SchedModel.getResourceName(PI.ProcResourceIdx); 1146 dbgs() << llvm::right_justify(ResName + " ", HeaderColWidth); 1147 for (; C > ((int)SU->BotReadyCycle - (int)PI.AcquireAtCycle); --C) { 1148 dbgs() << llvm::left_justify("|", ColWidth); 1149 } 1150 for (unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle; I != E; 1151 ++I, --C) 1152 dbgs() << llvm::left_justify("| x", ColWidth); 1153 while (C-- >= LastCycle) 1154 dbgs() << llvm::left_justify("|", ColWidth); 1155 // Place end char 1156 dbgs() << "| \n"; 1157 } 1158 } 1159 } 1160 #endif 1161 1162 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1163 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 1164 if (MISchedDumpScheduleTrace) { 1165 if (DumpDir == DumpDirection::TopDown) 1166 dumpScheduleTraceTopDown(); 1167 else if (DumpDir == DumpDirection::BottomUp) 1168 dumpScheduleTraceBottomUp(); 1169 else if (DumpDir == DumpDirection::Bidirectional) { 1170 dbgs() << "* Schedule table (Bidirectional): not implemented\n"; 1171 } else { 1172 dbgs() << "* Schedule table: DumpDirection not set.\n"; 1173 } 1174 } 1175 1176 for (MachineInstr &MI : *this) { 1177 if (SUnit *SU = getSUnit(&MI)) 1178 dumpNode(*SU); 1179 else 1180 dbgs() << "Missing SUnit\n"; 1181 } 1182 } 1183 #endif 1184 1185 //===----------------------------------------------------------------------===// 1186 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 1187 // preservation. 1188 //===----------------------------------------------------------------------===// 1189 1190 ScheduleDAGMILive::~ScheduleDAGMILive() { 1191 delete DFSResult; 1192 } 1193 1194 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 1195 const MachineInstr &MI = *SU.getInstr(); 1196 for (const MachineOperand &MO : MI.operands()) { 1197 if (!MO.isReg()) 1198 continue; 1199 if (!MO.readsReg()) 1200 continue; 1201 if (TrackLaneMasks && !MO.isUse()) 1202 continue; 1203 1204 Register Reg = MO.getReg(); 1205 if (!Reg.isVirtual()) 1206 continue; 1207 1208 // Ignore re-defs. 1209 if (TrackLaneMasks) { 1210 bool FoundDef = false; 1211 for (const MachineOperand &MO2 : MI.all_defs()) { 1212 if (MO2.getReg() == Reg && !MO2.isDead()) { 1213 FoundDef = true; 1214 break; 1215 } 1216 } 1217 if (FoundDef) 1218 continue; 1219 } 1220 1221 // Record this local VReg use. 1222 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 1223 for (; UI != VRegUses.end(); ++UI) { 1224 if (UI->SU == &SU) 1225 break; 1226 } 1227 if (UI == VRegUses.end()) 1228 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 1229 } 1230 } 1231 1232 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 1233 /// crossing a scheduling boundary. [begin, end) includes all instructions in 1234 /// the region, including the boundary itself and single-instruction regions 1235 /// that don't get scheduled. 1236 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 1237 MachineBasicBlock::iterator begin, 1238 MachineBasicBlock::iterator end, 1239 unsigned regioninstrs) 1240 { 1241 // ScheduleDAGMI initializes SchedImpl's per-region policy. 1242 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 1243 1244 // For convenience remember the end of the liveness region. 1245 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 1246 1247 SUPressureDiffs.clear(); 1248 1249 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 1250 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 1251 1252 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1253 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1254 } 1255 1256 // Setup the register pressure trackers for the top scheduled and bottom 1257 // scheduled regions. 1258 void ScheduleDAGMILive::initRegPressure() { 1259 VRegUses.clear(); 1260 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1261 for (SUnit &SU : SUnits) 1262 collectVRegUses(SU); 1263 1264 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1265 ShouldTrackLaneMasks, false); 1266 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1267 ShouldTrackLaneMasks, false); 1268 1269 // Close the RPTracker to finalize live ins. 1270 RPTracker.closeRegion(); 1271 1272 LLVM_DEBUG(RPTracker.dump()); 1273 1274 // Initialize the live ins and live outs. 1275 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1276 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1277 1278 // Close one end of the tracker so we can call 1279 // getMaxUpward/DownwardPressureDelta before advancing across any 1280 // instructions. This converts currently live regs into live ins/outs. 1281 TopRPTracker.closeTop(); 1282 BotRPTracker.closeBottom(); 1283 1284 BotRPTracker.initLiveThru(RPTracker); 1285 if (!BotRPTracker.getLiveThru().empty()) { 1286 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1287 LLVM_DEBUG(dbgs() << "Live Thru: "; 1288 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1289 }; 1290 1291 // For each live out vreg reduce the pressure change associated with other 1292 // uses of the same vreg below the live-out reaching def. 1293 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1294 1295 // Account for liveness generated by the region boundary. 1296 if (LiveRegionEnd != RegionEnd) { 1297 SmallVector<RegisterMaskPair, 8> LiveUses; 1298 BotRPTracker.recede(&LiveUses); 1299 updatePressureDiffs(LiveUses); 1300 } 1301 1302 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; 1303 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1304 dbgs() << "Bottom Pressure:\n"; 1305 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); 1306 1307 assert((BotRPTracker.getPos() == RegionEnd || 1308 (RegionEnd->isDebugInstr() && 1309 BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && 1310 "Can't find the region bottom"); 1311 1312 // Cache the list of excess pressure sets in this region. This will also track 1313 // the max pressure in the scheduled code for these sets. 1314 RegionCriticalPSets.clear(); 1315 const std::vector<unsigned> &RegionPressure = 1316 RPTracker.getPressure().MaxSetPressure; 1317 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1318 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1319 if (RegionPressure[i] > Limit) { 1320 LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit 1321 << " Actual " << RegionPressure[i] << "\n"); 1322 RegionCriticalPSets.push_back(PressureChange(i)); 1323 } 1324 } 1325 LLVM_DEBUG(dbgs() << "Excess PSets: "; 1326 for (const PressureChange &RCPS 1327 : RegionCriticalPSets) dbgs() 1328 << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; 1329 dbgs() << "\n"); 1330 } 1331 1332 void ScheduleDAGMILive:: 1333 updateScheduledPressure(const SUnit *SU, 1334 const std::vector<unsigned> &NewMaxPressure) { 1335 const PressureDiff &PDiff = getPressureDiff(SU); 1336 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1337 for (const PressureChange &PC : PDiff) { 1338 if (!PC.isValid()) 1339 break; 1340 unsigned ID = PC.getPSet(); 1341 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1342 ++CritIdx; 1343 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1344 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1345 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1346 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1347 } 1348 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1349 if (NewMaxPressure[ID] >= Limit - 2) { 1350 LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1351 << NewMaxPressure[ID] 1352 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") 1353 << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] 1354 << " livethru)\n"); 1355 } 1356 } 1357 } 1358 1359 /// Update the PressureDiff array for liveness after scheduling this 1360 /// instruction. 1361 void ScheduleDAGMILive::updatePressureDiffs( 1362 ArrayRef<RegisterMaskPair> LiveUses) { 1363 for (const RegisterMaskPair &P : LiveUses) { 1364 Register Reg = P.RegUnit; 1365 /// FIXME: Currently assuming single-use physregs. 1366 if (!Reg.isVirtual()) 1367 continue; 1368 1369 if (ShouldTrackLaneMasks) { 1370 // If the register has just become live then other uses won't change 1371 // this fact anymore => decrement pressure. 1372 // If the register has just become dead then other uses make it come 1373 // back to life => increment pressure. 1374 bool Decrement = P.LaneMask.any(); 1375 1376 for (const VReg2SUnit &V2SU 1377 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1378 SUnit &SU = *V2SU.SU; 1379 if (SU.isScheduled || &SU == &ExitSU) 1380 continue; 1381 1382 PressureDiff &PDiff = getPressureDiff(&SU); 1383 PDiff.addPressureChange(Reg, Decrement, &MRI); 1384 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1385 << printReg(Reg, TRI) << ':' 1386 << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); 1387 dbgs() << " to "; PDiff.dump(*TRI);); 1388 } 1389 } else { 1390 assert(P.LaneMask.any()); 1391 LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); 1392 // This may be called before CurrentBottom has been initialized. However, 1393 // BotRPTracker must have a valid position. We want the value live into the 1394 // instruction or live out of the block, so ask for the previous 1395 // instruction's live-out. 1396 const LiveInterval &LI = LIS->getInterval(Reg); 1397 VNInfo *VNI; 1398 MachineBasicBlock::const_iterator I = 1399 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1400 if (I == BB->end()) 1401 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1402 else { 1403 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1404 VNI = LRQ.valueIn(); 1405 } 1406 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1407 assert(VNI && "No live value at use."); 1408 for (const VReg2SUnit &V2SU 1409 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1410 SUnit *SU = V2SU.SU; 1411 // If this use comes before the reaching def, it cannot be a last use, 1412 // so decrease its pressure change. 1413 if (!SU->isScheduled && SU != &ExitSU) { 1414 LiveQueryResult LRQ = 1415 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1416 if (LRQ.valueIn() == VNI) { 1417 PressureDiff &PDiff = getPressureDiff(SU); 1418 PDiff.addPressureChange(Reg, true, &MRI); 1419 LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1420 << *SU->getInstr(); 1421 dbgs() << " to "; PDiff.dump(*TRI);); 1422 } 1423 } 1424 } 1425 } 1426 } 1427 } 1428 1429 void ScheduleDAGMILive::dump() const { 1430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1431 if (EntrySU.getInstr() != nullptr) 1432 dumpNodeAll(EntrySU); 1433 for (const SUnit &SU : SUnits) { 1434 dumpNodeAll(SU); 1435 if (ShouldTrackPressure) { 1436 dbgs() << " Pressure Diff : "; 1437 getPressureDiff(&SU).dump(*TRI); 1438 } 1439 dbgs() << " Single Issue : "; 1440 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1441 SchedModel.mustEndGroup(SU.getInstr())) 1442 dbgs() << "true;"; 1443 else 1444 dbgs() << "false;"; 1445 dbgs() << '\n'; 1446 } 1447 if (ExitSU.getInstr() != nullptr) 1448 dumpNodeAll(ExitSU); 1449 #endif 1450 } 1451 1452 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1453 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1454 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1455 /// 1456 /// This is a skeletal driver, with all the functionality pushed into helpers, 1457 /// so that it can be easily extended by experimental schedulers. Generally, 1458 /// implementing MachineSchedStrategy should be sufficient to implement a new 1459 /// scheduling algorithm. However, if a scheduler further subclasses 1460 /// ScheduleDAGMILive then it will want to override this virtual method in order 1461 /// to update any specialized state. 1462 void ScheduleDAGMILive::schedule() { 1463 LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1464 LLVM_DEBUG(SchedImpl->dumpPolicy()); 1465 buildDAGWithRegPressure(); 1466 1467 postProcessDAG(); 1468 1469 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1470 findRootsAndBiasEdges(TopRoots, BotRoots); 1471 1472 // Initialize the strategy before modifying the DAG. 1473 // This may initialize a DFSResult to be used for queue priority. 1474 SchedImpl->initialize(this); 1475 1476 LLVM_DEBUG(dump()); 1477 if (PrintDAGs) dump(); 1478 if (ViewMISchedDAGs) viewGraph(); 1479 1480 // Initialize ready queues now that the DAG and priority data are finalized. 1481 initQueues(TopRoots, BotRoots); 1482 1483 bool IsTopNode = false; 1484 while (true) { 1485 LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1486 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1487 if (!SU) break; 1488 1489 assert(!SU->isScheduled && "Node already scheduled"); 1490 if (!checkSchedLimit()) 1491 break; 1492 1493 scheduleMI(SU, IsTopNode); 1494 1495 if (DFSResult) { 1496 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1497 if (!ScheduledTrees.test(SubtreeID)) { 1498 ScheduledTrees.set(SubtreeID); 1499 DFSResult->scheduleTree(SubtreeID); 1500 SchedImpl->scheduleTree(SubtreeID); 1501 } 1502 } 1503 1504 // Notify the scheduling strategy after updating the DAG. 1505 SchedImpl->schedNode(SU, IsTopNode); 1506 1507 updateQueues(SU, IsTopNode); 1508 } 1509 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1510 1511 placeDebugValues(); 1512 1513 LLVM_DEBUG({ 1514 dbgs() << "*** Final schedule for " 1515 << printMBBReference(*begin()->getParent()) << " ***\n"; 1516 dumpSchedule(); 1517 dbgs() << '\n'; 1518 }); 1519 } 1520 1521 /// Build the DAG and setup three register pressure trackers. 1522 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1523 if (!ShouldTrackPressure) { 1524 RPTracker.reset(); 1525 RegionCriticalPSets.clear(); 1526 buildSchedGraph(AA); 1527 return; 1528 } 1529 1530 // Initialize the register pressure tracker used by buildSchedGraph. 1531 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1532 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1533 1534 // Account for liveness generate by the region boundary. 1535 if (LiveRegionEnd != RegionEnd) 1536 RPTracker.recede(); 1537 1538 // Build the DAG, and compute current register pressure. 1539 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1540 1541 // Initialize top/bottom trackers after computing region pressure. 1542 initRegPressure(); 1543 } 1544 1545 void ScheduleDAGMILive::computeDFSResult() { 1546 if (!DFSResult) 1547 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1548 DFSResult->clear(); 1549 ScheduledTrees.clear(); 1550 DFSResult->resize(SUnits.size()); 1551 DFSResult->compute(SUnits); 1552 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1553 } 1554 1555 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1556 /// only provides the critical path for single block loops. To handle loops that 1557 /// span blocks, we could use the vreg path latencies provided by 1558 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1559 /// available for use in the scheduler. 1560 /// 1561 /// The cyclic path estimation identifies a def-use pair that crosses the back 1562 /// edge and considers the depth and height of the nodes. For example, consider 1563 /// the following instruction sequence where each instruction has unit latency 1564 /// and defines an eponymous virtual register: 1565 /// 1566 /// a->b(a,c)->c(b)->d(c)->exit 1567 /// 1568 /// The cyclic critical path is a two cycles: b->c->b 1569 /// The acyclic critical path is four cycles: a->b->c->d->exit 1570 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1571 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1572 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1573 /// LiveInDepth = depth(b) = len(a->b) = 1 1574 /// 1575 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1576 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1577 /// CyclicCriticalPath = min(2, 2) = 2 1578 /// 1579 /// This could be relevant to PostRA scheduling, but is currently implemented 1580 /// assuming LiveIntervals. 1581 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1582 // This only applies to single block loop. 1583 if (!BB->isSuccessor(BB)) 1584 return 0; 1585 1586 unsigned MaxCyclicLatency = 0; 1587 // Visit each live out vreg def to find def/use pairs that cross iterations. 1588 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1589 Register Reg = P.RegUnit; 1590 if (!Reg.isVirtual()) 1591 continue; 1592 const LiveInterval &LI = LIS->getInterval(Reg); 1593 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1594 if (!DefVNI) 1595 continue; 1596 1597 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1598 const SUnit *DefSU = getSUnit(DefMI); 1599 if (!DefSU) 1600 continue; 1601 1602 unsigned LiveOutHeight = DefSU->getHeight(); 1603 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1604 // Visit all local users of the vreg def. 1605 for (const VReg2SUnit &V2SU 1606 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1607 SUnit *SU = V2SU.SU; 1608 if (SU == &ExitSU) 1609 continue; 1610 1611 // Only consider uses of the phi. 1612 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1613 if (!LRQ.valueIn()->isPHIDef()) 1614 continue; 1615 1616 // Assume that a path spanning two iterations is a cycle, which could 1617 // overestimate in strange cases. This allows cyclic latency to be 1618 // estimated as the minimum slack of the vreg's depth or height. 1619 unsigned CyclicLatency = 0; 1620 if (LiveOutDepth > SU->getDepth()) 1621 CyclicLatency = LiveOutDepth - SU->getDepth(); 1622 1623 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1624 if (LiveInHeight > LiveOutHeight) { 1625 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1626 CyclicLatency = LiveInHeight - LiveOutHeight; 1627 } else 1628 CyclicLatency = 0; 1629 1630 LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1631 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1632 if (CyclicLatency > MaxCyclicLatency) 1633 MaxCyclicLatency = CyclicLatency; 1634 } 1635 } 1636 LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1637 return MaxCyclicLatency; 1638 } 1639 1640 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1641 /// the Top RP tracker in case the region beginning has changed. 1642 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1643 ArrayRef<SUnit*> BotRoots) { 1644 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1645 if (ShouldTrackPressure) { 1646 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1647 TopRPTracker.setPos(CurrentTop); 1648 } 1649 } 1650 1651 /// Move an instruction and update register pressure. 1652 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1653 // Move the instruction to its new location in the instruction stream. 1654 MachineInstr *MI = SU->getInstr(); 1655 1656 if (IsTopNode) { 1657 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1658 if (&*CurrentTop == MI) 1659 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1660 else { 1661 moveInstruction(MI, CurrentTop); 1662 TopRPTracker.setPos(MI); 1663 } 1664 1665 if (ShouldTrackPressure) { 1666 // Update top scheduled pressure. 1667 RegisterOperands RegOpers; 1668 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1669 /*IgnoreDead=*/false); 1670 if (ShouldTrackLaneMasks) { 1671 // Adjust liveness and add missing dead+read-undef flags. 1672 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1673 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1674 } else { 1675 // Adjust for missing dead-def flags. 1676 RegOpers.detectDeadDefs(*MI, *LIS); 1677 } 1678 1679 TopRPTracker.advance(RegOpers); 1680 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1681 LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( 1682 TopRPTracker.getRegSetPressureAtPos(), TRI);); 1683 1684 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1685 } 1686 } else { 1687 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1688 MachineBasicBlock::iterator priorII = 1689 priorNonDebug(CurrentBottom, CurrentTop); 1690 if (&*priorII == MI) 1691 CurrentBottom = priorII; 1692 else { 1693 if (&*CurrentTop == MI) { 1694 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1695 TopRPTracker.setPos(CurrentTop); 1696 } 1697 moveInstruction(MI, CurrentBottom); 1698 CurrentBottom = MI; 1699 BotRPTracker.setPos(CurrentBottom); 1700 } 1701 if (ShouldTrackPressure) { 1702 RegisterOperands RegOpers; 1703 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, 1704 /*IgnoreDead=*/false); 1705 if (ShouldTrackLaneMasks) { 1706 // Adjust liveness and add missing dead+read-undef flags. 1707 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1708 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1709 } else { 1710 // Adjust for missing dead-def flags. 1711 RegOpers.detectDeadDefs(*MI, *LIS); 1712 } 1713 1714 if (BotRPTracker.getPos() != CurrentBottom) 1715 BotRPTracker.recedeSkipDebugValues(); 1716 SmallVector<RegisterMaskPair, 8> LiveUses; 1717 BotRPTracker.recede(RegOpers, &LiveUses); 1718 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1719 LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( 1720 BotRPTracker.getRegSetPressureAtPos(), TRI);); 1721 1722 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1723 updatePressureDiffs(LiveUses); 1724 } 1725 } 1726 } 1727 1728 //===----------------------------------------------------------------------===// 1729 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1730 //===----------------------------------------------------------------------===// 1731 1732 namespace { 1733 1734 /// Post-process the DAG to create cluster edges between neighboring 1735 /// loads or between neighboring stores. 1736 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1737 struct MemOpInfo { 1738 SUnit *SU; 1739 SmallVector<const MachineOperand *, 4> BaseOps; 1740 int64_t Offset; 1741 LocationSize Width; 1742 bool OffsetIsScalable; 1743 1744 MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, 1745 int64_t Offset, bool OffsetIsScalable, LocationSize Width) 1746 : SU(SU), BaseOps(BaseOps), Offset(Offset), Width(Width), 1747 OffsetIsScalable(OffsetIsScalable) {} 1748 1749 static bool Compare(const MachineOperand *const &A, 1750 const MachineOperand *const &B) { 1751 if (A->getType() != B->getType()) 1752 return A->getType() < B->getType(); 1753 if (A->isReg()) 1754 return A->getReg() < B->getReg(); 1755 if (A->isFI()) { 1756 const MachineFunction &MF = *A->getParent()->getParent()->getParent(); 1757 const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); 1758 bool StackGrowsDown = TFI.getStackGrowthDirection() == 1759 TargetFrameLowering::StackGrowsDown; 1760 return StackGrowsDown ? A->getIndex() > B->getIndex() 1761 : A->getIndex() < B->getIndex(); 1762 } 1763 1764 llvm_unreachable("MemOpClusterMutation only supports register or frame " 1765 "index bases."); 1766 } 1767 1768 bool operator<(const MemOpInfo &RHS) const { 1769 // FIXME: Don't compare everything twice. Maybe use C++20 three way 1770 // comparison instead when it's available. 1771 if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), 1772 RHS.BaseOps.begin(), RHS.BaseOps.end(), 1773 Compare)) 1774 return true; 1775 if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), 1776 BaseOps.begin(), BaseOps.end(), Compare)) 1777 return false; 1778 if (Offset != RHS.Offset) 1779 return Offset < RHS.Offset; 1780 return SU->NodeNum < RHS.SU->NodeNum; 1781 } 1782 }; 1783 1784 const TargetInstrInfo *TII; 1785 const TargetRegisterInfo *TRI; 1786 bool IsLoad; 1787 bool ReorderWhileClustering; 1788 1789 public: 1790 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1791 const TargetRegisterInfo *tri, bool IsLoad, 1792 bool ReorderWhileClustering) 1793 : TII(tii), TRI(tri), IsLoad(IsLoad), 1794 ReorderWhileClustering(ReorderWhileClustering) {} 1795 1796 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1797 1798 protected: 1799 void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, 1800 ScheduleDAGInstrs *DAG); 1801 void collectMemOpRecords(std::vector<SUnit> &SUnits, 1802 SmallVectorImpl<MemOpInfo> &MemOpRecords); 1803 bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1804 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); 1805 }; 1806 1807 class StoreClusterMutation : public BaseMemOpClusterMutation { 1808 public: 1809 StoreClusterMutation(const TargetInstrInfo *tii, 1810 const TargetRegisterInfo *tri, 1811 bool ReorderWhileClustering) 1812 : BaseMemOpClusterMutation(tii, tri, false, ReorderWhileClustering) {} 1813 }; 1814 1815 class LoadClusterMutation : public BaseMemOpClusterMutation { 1816 public: 1817 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri, 1818 bool ReorderWhileClustering) 1819 : BaseMemOpClusterMutation(tii, tri, true, ReorderWhileClustering) {} 1820 }; 1821 1822 } // end anonymous namespace 1823 1824 namespace llvm { 1825 1826 std::unique_ptr<ScheduleDAGMutation> 1827 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1828 const TargetRegisterInfo *TRI, 1829 bool ReorderWhileClustering) { 1830 return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>( 1831 TII, TRI, ReorderWhileClustering) 1832 : nullptr; 1833 } 1834 1835 std::unique_ptr<ScheduleDAGMutation> 1836 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1837 const TargetRegisterInfo *TRI, 1838 bool ReorderWhileClustering) { 1839 return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>( 1840 TII, TRI, ReorderWhileClustering) 1841 : nullptr; 1842 } 1843 1844 } // end namespace llvm 1845 1846 // Sorting all the loads/stores first, then for each load/store, checking the 1847 // following load/store one by one, until reach the first non-dependent one and 1848 // call target hook to see if they can cluster. 1849 // If FastCluster is enabled, we assume that, all the loads/stores have been 1850 // preprocessed and now, they didn't have dependencies on each other. 1851 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1852 ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, 1853 ScheduleDAGInstrs *DAG) { 1854 // Keep track of the current cluster length and bytes for each SUnit. 1855 DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; 1856 1857 // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to 1858 // cluster mem ops collected within `MemOpRecords` array. 1859 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1860 // Decision to cluster mem ops is taken based on target dependent logic 1861 auto MemOpa = MemOpRecords[Idx]; 1862 1863 // Seek for the next load/store to do the cluster. 1864 unsigned NextIdx = Idx + 1; 1865 for (; NextIdx < End; ++NextIdx) 1866 // Skip if MemOpb has been clustered already or has dependency with 1867 // MemOpa. 1868 if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && 1869 (FastCluster || 1870 (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && 1871 !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) 1872 break; 1873 if (NextIdx == End) 1874 continue; 1875 1876 auto MemOpb = MemOpRecords[NextIdx]; 1877 unsigned ClusterLength = 2; 1878 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() + 1879 MemOpb.Width.getValue().getKnownMinValue(); 1880 if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { 1881 ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; 1882 CurrentClusterBytes = SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + 1883 MemOpb.Width.getValue().getKnownMinValue(); 1884 } 1885 1886 if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset, 1887 MemOpa.OffsetIsScalable, MemOpb.BaseOps, 1888 MemOpb.Offset, MemOpb.OffsetIsScalable, 1889 ClusterLength, CurrentClusterBytes)) 1890 continue; 1891 1892 SUnit *SUa = MemOpa.SU; 1893 SUnit *SUb = MemOpb.SU; 1894 if (!ReorderWhileClustering && SUa->NodeNum > SUb->NodeNum) 1895 std::swap(SUa, SUb); 1896 1897 // FIXME: Is this check really required? 1898 if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) 1899 continue; 1900 1901 LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1902 << SUb->NodeNum << ")\n"); 1903 ++NumClustered; 1904 1905 if (IsLoad) { 1906 // Copy successor edges from SUa to SUb. Interleaving computation 1907 // dependent on SUa can prevent load combining due to register reuse. 1908 // Predecessor edges do not need to be copied from SUb to SUa since 1909 // nearby loads should have effectively the same inputs. 1910 for (const SDep &Succ : SUa->Succs) { 1911 if (Succ.getSUnit() == SUb) 1912 continue; 1913 LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum 1914 << ")\n"); 1915 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1916 } 1917 } else { 1918 // Copy predecessor edges from SUb to SUa to avoid the SUnits that 1919 // SUb dependent on scheduled in-between SUb and SUa. Successor edges 1920 // do not need to be copied from SUa to SUb since no one will depend 1921 // on stores. 1922 // Notice that, we don't need to care about the memory dependency as 1923 // we won't try to cluster them if they have any memory dependency. 1924 for (const SDep &Pred : SUb->Preds) { 1925 if (Pred.getSUnit() == SUa) 1926 continue; 1927 LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum 1928 << ")\n"); 1929 DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); 1930 } 1931 } 1932 1933 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, 1934 CurrentClusterBytes}; 1935 1936 LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength 1937 << ", Curr cluster bytes: " << CurrentClusterBytes 1938 << "\n"); 1939 } 1940 } 1941 1942 void BaseMemOpClusterMutation::collectMemOpRecords( 1943 std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { 1944 for (auto &SU : SUnits) { 1945 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1946 (!IsLoad && !SU.getInstr()->mayStore())) 1947 continue; 1948 1949 const MachineInstr &MI = *SU.getInstr(); 1950 SmallVector<const MachineOperand *, 4> BaseOps; 1951 int64_t Offset; 1952 bool OffsetIsScalable; 1953 LocationSize Width = 0; 1954 if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, 1955 OffsetIsScalable, Width, TRI)) { 1956 MemOpRecords.push_back( 1957 MemOpInfo(&SU, BaseOps, Offset, OffsetIsScalable, Width)); 1958 1959 LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " 1960 << Offset << ", OffsetIsScalable: " << OffsetIsScalable 1961 << ", Width: " << Width << "\n"); 1962 } 1963 #ifndef NDEBUG 1964 for (const auto *Op : BaseOps) 1965 assert(Op); 1966 #endif 1967 } 1968 } 1969 1970 bool BaseMemOpClusterMutation::groupMemOps( 1971 ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, 1972 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { 1973 bool FastCluster = 1974 ForceFastCluster || 1975 MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; 1976 1977 for (const auto &MemOp : MemOps) { 1978 unsigned ChainPredID = DAG->SUnits.size(); 1979 if (FastCluster) { 1980 for (const SDep &Pred : MemOp.SU->Preds) { 1981 // We only want to cluster the mem ops that have the same ctrl(non-data) 1982 // pred so that they didn't have ctrl dependency for each other. But for 1983 // store instrs, we can still cluster them if the pred is load instr. 1984 if ((Pred.isCtrl() && 1985 (IsLoad || 1986 (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && 1987 !Pred.isArtificial()) { 1988 ChainPredID = Pred.getSUnit()->NodeNum; 1989 break; 1990 } 1991 } 1992 } else 1993 ChainPredID = 0; 1994 1995 Groups[ChainPredID].push_back(MemOp); 1996 } 1997 return FastCluster; 1998 } 1999 2000 /// Callback from DAG postProcessing to create cluster edges for loads/stores. 2001 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { 2002 // Collect all the clusterable loads/stores 2003 SmallVector<MemOpInfo, 32> MemOpRecords; 2004 collectMemOpRecords(DAG->SUnits, MemOpRecords); 2005 2006 if (MemOpRecords.size() < 2) 2007 return; 2008 2009 // Put the loads/stores without dependency into the same group with some 2010 // heuristic if the DAG is too complex to avoid compiling time blow up. 2011 // Notice that, some fusion pair could be lost with this. 2012 DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; 2013 bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); 2014 2015 for (auto &Group : Groups) { 2016 // Sorting the loads/stores, so that, we can stop the cluster as early as 2017 // possible. 2018 llvm::sort(Group.second); 2019 2020 // Trying to cluster all the neighboring loads/stores. 2021 clusterNeighboringMemOps(Group.second, FastCluster, DAG); 2022 } 2023 } 2024 2025 //===----------------------------------------------------------------------===// 2026 // CopyConstrain - DAG post-processing to encourage copy elimination. 2027 //===----------------------------------------------------------------------===// 2028 2029 namespace { 2030 2031 /// Post-process the DAG to create weak edges from all uses of a copy to 2032 /// the one use that defines the copy's source vreg, most likely an induction 2033 /// variable increment. 2034 class CopyConstrain : public ScheduleDAGMutation { 2035 // Transient state. 2036 SlotIndex RegionBeginIdx; 2037 2038 // RegionEndIdx is the slot index of the last non-debug instruction in the 2039 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 2040 SlotIndex RegionEndIdx; 2041 2042 public: 2043 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 2044 2045 void apply(ScheduleDAGInstrs *DAGInstrs) override; 2046 2047 protected: 2048 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 2049 }; 2050 2051 } // end anonymous namespace 2052 2053 namespace llvm { 2054 2055 std::unique_ptr<ScheduleDAGMutation> 2056 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 2057 const TargetRegisterInfo *TRI) { 2058 return std::make_unique<CopyConstrain>(TII, TRI); 2059 } 2060 2061 } // end namespace llvm 2062 2063 /// constrainLocalCopy handles two possibilities: 2064 /// 1) Local src: 2065 /// I0: = dst 2066 /// I1: src = ... 2067 /// I2: = dst 2068 /// I3: dst = src (copy) 2069 /// (create pred->succ edges I0->I1, I2->I1) 2070 /// 2071 /// 2) Local copy: 2072 /// I0: dst = src (copy) 2073 /// I1: = dst 2074 /// I2: src = ... 2075 /// I3: = dst 2076 /// (create pred->succ edges I1->I2, I3->I2) 2077 /// 2078 /// Although the MachineScheduler is currently constrained to single blocks, 2079 /// this algorithm should handle extended blocks. An EBB is a set of 2080 /// contiguously numbered blocks such that the previous block in the EBB is 2081 /// always the single predecessor. 2082 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 2083 LiveIntervals *LIS = DAG->getLIS(); 2084 MachineInstr *Copy = CopySU->getInstr(); 2085 2086 // Check for pure vreg copies. 2087 const MachineOperand &SrcOp = Copy->getOperand(1); 2088 Register SrcReg = SrcOp.getReg(); 2089 if (!SrcReg.isVirtual() || !SrcOp.readsReg()) 2090 return; 2091 2092 const MachineOperand &DstOp = Copy->getOperand(0); 2093 Register DstReg = DstOp.getReg(); 2094 if (!DstReg.isVirtual() || DstOp.isDead()) 2095 return; 2096 2097 // Check if either the dest or source is local. If it's live across a back 2098 // edge, it's not local. Note that if both vregs are live across the back 2099 // edge, we cannot successfully contrain the copy without cyclic scheduling. 2100 // If both the copy's source and dest are local live intervals, then we 2101 // should treat the dest as the global for the purpose of adding 2102 // constraints. This adds edges from source's other uses to the copy. 2103 unsigned LocalReg = SrcReg; 2104 unsigned GlobalReg = DstReg; 2105 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 2106 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 2107 LocalReg = DstReg; 2108 GlobalReg = SrcReg; 2109 LocalLI = &LIS->getInterval(LocalReg); 2110 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 2111 return; 2112 } 2113 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 2114 2115 // Find the global segment after the start of the local LI. 2116 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 2117 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 2118 // local live range. We could create edges from other global uses to the local 2119 // start, but the coalescer should have already eliminated these cases, so 2120 // don't bother dealing with it. 2121 if (GlobalSegment == GlobalLI->end()) 2122 return; 2123 2124 // If GlobalSegment is killed at the LocalLI->start, the call to find() 2125 // returned the next global segment. But if GlobalSegment overlaps with 2126 // LocalLI->start, then advance to the next segment. If a hole in GlobalLI 2127 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 2128 if (GlobalSegment->contains(LocalLI->beginIndex())) 2129 ++GlobalSegment; 2130 2131 if (GlobalSegment == GlobalLI->end()) 2132 return; 2133 2134 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 2135 if (GlobalSegment != GlobalLI->begin()) { 2136 // Two address defs have no hole. 2137 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 2138 GlobalSegment->start)) { 2139 return; 2140 } 2141 // If the prior global segment may be defined by the same two-address 2142 // instruction that also defines LocalLI, then can't make a hole here. 2143 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 2144 LocalLI->beginIndex())) { 2145 return; 2146 } 2147 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 2148 // it would be a disconnected component in the live range. 2149 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 2150 "Disconnected LRG within the scheduling region."); 2151 } 2152 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 2153 if (!GlobalDef) 2154 return; 2155 2156 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 2157 if (!GlobalSU) 2158 return; 2159 2160 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 2161 // constraining the uses of the last local def to precede GlobalDef. 2162 SmallVector<SUnit*,8> LocalUses; 2163 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 2164 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 2165 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 2166 for (const SDep &Succ : LastLocalSU->Succs) { 2167 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 2168 continue; 2169 if (Succ.getSUnit() == GlobalSU) 2170 continue; 2171 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 2172 return; 2173 LocalUses.push_back(Succ.getSUnit()); 2174 } 2175 // Open the top of the GlobalLI hole by constraining any earlier global uses 2176 // to precede the start of LocalLI. 2177 SmallVector<SUnit*,8> GlobalUses; 2178 MachineInstr *FirstLocalDef = 2179 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 2180 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 2181 for (const SDep &Pred : GlobalSU->Preds) { 2182 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 2183 continue; 2184 if (Pred.getSUnit() == FirstLocalSU) 2185 continue; 2186 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 2187 return; 2188 GlobalUses.push_back(Pred.getSUnit()); 2189 } 2190 LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 2191 // Add the weak edges. 2192 for (SUnit *LU : LocalUses) { 2193 LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" 2194 << GlobalSU->NodeNum << ")\n"); 2195 DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); 2196 } 2197 for (SUnit *GU : GlobalUses) { 2198 LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" 2199 << FirstLocalSU->NodeNum << ")\n"); 2200 DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); 2201 } 2202 } 2203 2204 /// Callback from DAG postProcessing to create weak edges to encourage 2205 /// copy elimination. 2206 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 2207 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 2208 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 2209 2210 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 2211 if (FirstPos == DAG->end()) 2212 return; 2213 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 2214 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 2215 *priorNonDebug(DAG->end(), DAG->begin())); 2216 2217 for (SUnit &SU : DAG->SUnits) { 2218 if (!SU.getInstr()->isCopy()) 2219 continue; 2220 2221 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 2222 } 2223 } 2224 2225 //===----------------------------------------------------------------------===// 2226 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 2227 // and possibly other custom schedulers. 2228 //===----------------------------------------------------------------------===// 2229 2230 static const unsigned InvalidCycle = ~0U; 2231 2232 SchedBoundary::~SchedBoundary() { delete HazardRec; } 2233 2234 /// Given a Count of resource usage and a Latency value, return true if a 2235 /// SchedBoundary becomes resource limited. 2236 /// If we are checking after scheduling a node, we should return true when 2237 /// we just reach the resource limit. 2238 static bool checkResourceLimit(unsigned LFactor, unsigned Count, 2239 unsigned Latency, bool AfterSchedNode) { 2240 int ResCntFactor = (int)(Count - (Latency * LFactor)); 2241 if (AfterSchedNode) 2242 return ResCntFactor >= (int)LFactor; 2243 else 2244 return ResCntFactor > (int)LFactor; 2245 } 2246 2247 void SchedBoundary::reset() { 2248 // A new HazardRec is created for each DAG and owned by SchedBoundary. 2249 // Destroying and reconstructing it is very expensive though. So keep 2250 // invalid, placeholder HazardRecs. 2251 if (HazardRec && HazardRec->isEnabled()) { 2252 delete HazardRec; 2253 HazardRec = nullptr; 2254 } 2255 Available.clear(); 2256 Pending.clear(); 2257 CheckPending = false; 2258 CurrCycle = 0; 2259 CurrMOps = 0; 2260 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2261 ExpectedLatency = 0; 2262 DependentLatency = 0; 2263 RetiredMOps = 0; 2264 MaxExecutedResCount = 0; 2265 ZoneCritResIdx = 0; 2266 IsResourceLimited = false; 2267 ReservedCycles.clear(); 2268 ReservedResourceSegments.clear(); 2269 ReservedCyclesIndex.clear(); 2270 ResourceGroupSubUnitMasks.clear(); 2271 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2272 // Track the maximum number of stall cycles that could arise either from the 2273 // latency of a DAG edge or the number of cycles that a processor resource is 2274 // reserved (SchedBoundary::ReservedCycles). 2275 MaxObservedStall = 0; 2276 #endif 2277 // Reserve a zero-count for invalid CritResIdx. 2278 ExecutedResCounts.resize(1); 2279 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 2280 } 2281 2282 void SchedRemainder:: 2283 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 2284 reset(); 2285 if (!SchedModel->hasInstrSchedModel()) 2286 return; 2287 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 2288 for (SUnit &SU : DAG->SUnits) { 2289 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 2290 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 2291 * SchedModel->getMicroOpFactor(); 2292 for (TargetSchedModel::ProcResIter 2293 PI = SchedModel->getWriteProcResBegin(SC), 2294 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2295 unsigned PIdx = PI->ProcResourceIdx; 2296 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2297 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle); 2298 RemainingCounts[PIdx] += 2299 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle)); 2300 } 2301 } 2302 } 2303 2304 void SchedBoundary:: 2305 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 2306 reset(); 2307 DAG = dag; 2308 SchedModel = smodel; 2309 Rem = rem; 2310 if (SchedModel->hasInstrSchedModel()) { 2311 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2312 ReservedCyclesIndex.resize(ResourceCount); 2313 ExecutedResCounts.resize(ResourceCount); 2314 ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); 2315 unsigned NumUnits = 0; 2316 2317 for (unsigned i = 0; i < ResourceCount; ++i) { 2318 ReservedCyclesIndex[i] = NumUnits; 2319 NumUnits += SchedModel->getProcResource(i)->NumUnits; 2320 if (isUnbufferedGroup(i)) { 2321 auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; 2322 for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; 2323 U != UE; ++U) 2324 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); 2325 } 2326 } 2327 2328 ReservedCycles.resize(NumUnits, InvalidCycle); 2329 } 2330 } 2331 2332 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 2333 /// these "soft stalls" differently than the hard stall cycles based on CPU 2334 /// resources and computed by checkHazard(). A fully in-order model 2335 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 2336 /// available for scheduling until they are ready. However, a weaker in-order 2337 /// model may use this for heuristics. For example, if a processor has in-order 2338 /// behavior when reading certain resources, this may come into play. 2339 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 2340 if (!SU->isUnbuffered) 2341 return 0; 2342 2343 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2344 if (ReadyCycle > CurrCycle) 2345 return ReadyCycle - CurrCycle; 2346 return 0; 2347 } 2348 2349 /// Compute the next cycle at which the given processor resource unit 2350 /// can be scheduled. 2351 unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, 2352 unsigned ReleaseAtCycle, 2353 unsigned AcquireAtCycle) { 2354 if (SchedModel && SchedModel->enableIntervals()) { 2355 if (isTop()) 2356 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop( 2357 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2358 2359 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom( 2360 CurrCycle, AcquireAtCycle, ReleaseAtCycle); 2361 } 2362 2363 unsigned NextUnreserved = ReservedCycles[InstanceIdx]; 2364 // If this resource has never been used, always return cycle zero. 2365 if (NextUnreserved == InvalidCycle) 2366 return CurrCycle; 2367 // For bottom-up scheduling add the cycles needed for the current operation. 2368 if (!isTop()) 2369 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle); 2370 return NextUnreserved; 2371 } 2372 2373 /// Compute the next cycle at which the given processor resource can be 2374 /// scheduled. Returns the next cycle and the index of the processor resource 2375 /// instance in the reserved cycles vector. 2376 std::pair<unsigned, unsigned> 2377 SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, 2378 unsigned ReleaseAtCycle, 2379 unsigned AcquireAtCycle) { 2380 if (MischedDetailResourceBooking) { 2381 LLVM_DEBUG(dbgs() << " Resource booking (@" << CurrCycle << "c): \n"); 2382 LLVM_DEBUG(dumpReservedCycles()); 2383 LLVM_DEBUG(dbgs() << " getNextResourceCycle (@" << CurrCycle << "c): \n"); 2384 } 2385 unsigned MinNextUnreserved = InvalidCycle; 2386 unsigned InstanceIdx = 0; 2387 unsigned StartIndex = ReservedCyclesIndex[PIdx]; 2388 unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; 2389 assert(NumberOfInstances > 0 && 2390 "Cannot have zero instances of a ProcResource"); 2391 2392 if (isUnbufferedGroup(PIdx)) { 2393 // If any subunits are used by the instruction, report that the 2394 // subunits of the resource group are available at the first cycle 2395 // in which the unit is available, effectively removing the group 2396 // record from hazarding and basing the hazarding decisions on the 2397 // subunit records. Otherwise, choose the first available instance 2398 // from among the subunits. Specifications which assign cycles to 2399 // both the subunits and the group or which use an unbuffered 2400 // group with buffered subunits will appear to schedule 2401 // strangely. In the first case, the additional cycles for the 2402 // group will be ignored. In the second, the group will be 2403 // ignored entirely. 2404 for (const MCWriteProcResEntry &PE : 2405 make_range(SchedModel->getWriteProcResBegin(SC), 2406 SchedModel->getWriteProcResEnd(SC))) 2407 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) 2408 return std::make_pair(getNextResourceCycleByInstance( 2409 StartIndex, ReleaseAtCycle, AcquireAtCycle), 2410 StartIndex); 2411 2412 auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; 2413 for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { 2414 unsigned NextUnreserved, NextInstanceIdx; 2415 std::tie(NextUnreserved, NextInstanceIdx) = 2416 getNextResourceCycle(SC, SubUnits[I], ReleaseAtCycle, AcquireAtCycle); 2417 if (MinNextUnreserved > NextUnreserved) { 2418 InstanceIdx = NextInstanceIdx; 2419 MinNextUnreserved = NextUnreserved; 2420 } 2421 } 2422 return std::make_pair(MinNextUnreserved, InstanceIdx); 2423 } 2424 2425 for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; 2426 ++I) { 2427 unsigned NextUnreserved = 2428 getNextResourceCycleByInstance(I, ReleaseAtCycle, AcquireAtCycle); 2429 if (MischedDetailResourceBooking) 2430 LLVM_DEBUG(dbgs() << " Instance " << I - StartIndex << " available @" 2431 << NextUnreserved << "c\n"); 2432 if (MinNextUnreserved > NextUnreserved) { 2433 InstanceIdx = I; 2434 MinNextUnreserved = NextUnreserved; 2435 } 2436 } 2437 if (MischedDetailResourceBooking) 2438 LLVM_DEBUG(dbgs() << " selecting " << SchedModel->getResourceName(PIdx) 2439 << "[" << InstanceIdx - StartIndex << "]" 2440 << " available @" << MinNextUnreserved << "c" 2441 << "\n"); 2442 return std::make_pair(MinNextUnreserved, InstanceIdx); 2443 } 2444 2445 /// Does this SU have a hazard within the current instruction group. 2446 /// 2447 /// The scheduler supports two modes of hazard recognition. The first is the 2448 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 2449 /// supports highly complicated in-order reservation tables 2450 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 2451 /// 2452 /// The second is a streamlined mechanism that checks for hazards based on 2453 /// simple counters that the scheduler itself maintains. It explicitly checks 2454 /// for instruction dispatch limitations, including the number of micro-ops that 2455 /// can dispatch per cycle. 2456 /// 2457 /// TODO: Also check whether the SU must start a new group. 2458 bool SchedBoundary::checkHazard(SUnit *SU) { 2459 if (HazardRec->isEnabled() 2460 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 2461 return true; 2462 } 2463 2464 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 2465 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 2466 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 2467 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 2468 return true; 2469 } 2470 2471 if (CurrMOps > 0 && 2472 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 2473 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 2474 LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 2475 << (isTop() ? "begin" : "end") << " group\n"); 2476 return true; 2477 } 2478 2479 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 2480 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2481 for (const MCWriteProcResEntry &PE : 2482 make_range(SchedModel->getWriteProcResBegin(SC), 2483 SchedModel->getWriteProcResEnd(SC))) { 2484 unsigned ResIdx = PE.ProcResourceIdx; 2485 unsigned ReleaseAtCycle = PE.ReleaseAtCycle; 2486 unsigned AcquireAtCycle = PE.AcquireAtCycle; 2487 unsigned NRCycle, InstanceIdx; 2488 std::tie(NRCycle, InstanceIdx) = 2489 getNextResourceCycle(SC, ResIdx, ReleaseAtCycle, AcquireAtCycle); 2490 if (NRCycle > CurrCycle) { 2491 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2492 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall); 2493 #endif 2494 LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 2495 << SchedModel->getResourceName(ResIdx) 2496 << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' 2497 << "=" << NRCycle << "c\n"); 2498 return true; 2499 } 2500 } 2501 } 2502 return false; 2503 } 2504 2505 // Find the unscheduled node in ReadySUs with the highest latency. 2506 unsigned SchedBoundary:: 2507 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 2508 SUnit *LateSU = nullptr; 2509 unsigned RemLatency = 0; 2510 for (SUnit *SU : ReadySUs) { 2511 unsigned L = getUnscheduledLatency(SU); 2512 if (L > RemLatency) { 2513 RemLatency = L; 2514 LateSU = SU; 2515 } 2516 } 2517 if (LateSU) { 2518 LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2519 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2520 } 2521 return RemLatency; 2522 } 2523 2524 // Count resources in this zone and the remaining unscheduled 2525 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2526 // resource index, or zero if the zone is issue limited. 2527 unsigned SchedBoundary:: 2528 getOtherResourceCount(unsigned &OtherCritIdx) { 2529 OtherCritIdx = 0; 2530 if (!SchedModel->hasInstrSchedModel()) 2531 return 0; 2532 2533 unsigned OtherCritCount = Rem->RemIssueCount 2534 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2535 LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2536 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2537 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2538 PIdx != PEnd; ++PIdx) { 2539 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2540 if (OtherCount > OtherCritCount) { 2541 OtherCritCount = OtherCount; 2542 OtherCritIdx = PIdx; 2543 } 2544 } 2545 if (OtherCritIdx) { 2546 LLVM_DEBUG( 2547 dbgs() << " " << Available.getName() << " + Remain CritRes: " 2548 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2549 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2550 } 2551 return OtherCritCount; 2552 } 2553 2554 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, 2555 unsigned Idx) { 2556 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2557 2558 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 2559 // ReadyCycle was been bumped up to the CurrCycle when this node was 2560 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2561 // scheduling, so may now be greater than ReadyCycle. 2562 if (ReadyCycle > CurrCycle) 2563 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2564 #endif 2565 2566 if (ReadyCycle < MinReadyCycle) 2567 MinReadyCycle = ReadyCycle; 2568 2569 // Check for interlocks first. For the purpose of other heuristics, an 2570 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2571 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2572 bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || 2573 checkHazard(SU) || (Available.size() >= ReadyListLimit); 2574 2575 if (!HazardDetected) { 2576 Available.push(SU); 2577 2578 if (InPQueue) 2579 Pending.remove(Pending.begin() + Idx); 2580 return; 2581 } 2582 2583 if (!InPQueue) 2584 Pending.push(SU); 2585 } 2586 2587 /// Move the boundary of scheduled code by one cycle. 2588 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2589 if (SchedModel->getMicroOpBufferSize() == 0) { 2590 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2591 "MinReadyCycle uninitialized"); 2592 if (MinReadyCycle > NextCycle) 2593 NextCycle = MinReadyCycle; 2594 } 2595 // Update the current micro-ops, which will issue in the next cycle. 2596 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2597 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2598 2599 // Decrement DependentLatency based on the next cycle. 2600 if ((NextCycle - CurrCycle) > DependentLatency) 2601 DependentLatency = 0; 2602 else 2603 DependentLatency -= (NextCycle - CurrCycle); 2604 2605 if (!HazardRec->isEnabled()) { 2606 // Bypass HazardRec virtual calls. 2607 CurrCycle = NextCycle; 2608 } else { 2609 // Bypass getHazardType calls in case of long latency. 2610 for (; CurrCycle != NextCycle; ++CurrCycle) { 2611 if (isTop()) 2612 HazardRec->AdvanceCycle(); 2613 else 2614 HazardRec->RecedeCycle(); 2615 } 2616 } 2617 CheckPending = true; 2618 IsResourceLimited = 2619 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2620 getScheduledLatency(), true); 2621 2622 LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() 2623 << '\n'); 2624 } 2625 2626 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2627 ExecutedResCounts[PIdx] += Count; 2628 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2629 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2630 } 2631 2632 /// Add the given processor resource to this scheduled zone. 2633 /// 2634 /// \param ReleaseAtCycle indicates the number of consecutive (non-pipelined) 2635 /// cycles during which this resource is released. 2636 /// 2637 /// \param AcquireAtCycle indicates the number of consecutive (non-pipelined) 2638 /// cycles at which the resource is aquired after issue (assuming no stalls). 2639 /// 2640 /// \return the next cycle at which the instruction may execute without 2641 /// oversubscribing resources. 2642 unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, 2643 unsigned ReleaseAtCycle, 2644 unsigned NextCycle, 2645 unsigned AcquireAtCycle) { 2646 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2647 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle); 2648 LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" 2649 << ReleaseAtCycle << "x" << Factor << "u\n"); 2650 2651 // Update Executed resources counts. 2652 incExecutedResources(PIdx, Count); 2653 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2654 Rem->RemainingCounts[PIdx] -= Count; 2655 2656 // Check if this resource exceeds the current critical resource. If so, it 2657 // becomes the critical resource. 2658 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2659 ZoneCritResIdx = PIdx; 2660 LLVM_DEBUG(dbgs() << " *** Critical resource " 2661 << SchedModel->getResourceName(PIdx) << ": " 2662 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() 2663 << "c\n"); 2664 } 2665 // For reserved resources, record the highest cycle using the resource. 2666 unsigned NextAvailable, InstanceIdx; 2667 std::tie(NextAvailable, InstanceIdx) = 2668 getNextResourceCycle(SC, PIdx, ReleaseAtCycle, AcquireAtCycle); 2669 if (NextAvailable > CurrCycle) { 2670 LLVM_DEBUG(dbgs() << " Resource conflict: " 2671 << SchedModel->getResourceName(PIdx) 2672 << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' 2673 << " reserved until @" << NextAvailable << "\n"); 2674 } 2675 return NextAvailable; 2676 } 2677 2678 /// Move the boundary of scheduled code by one SUnit. 2679 void SchedBoundary::bumpNode(SUnit *SU) { 2680 // Update the reservation table. 2681 if (HazardRec->isEnabled()) { 2682 if (!isTop() && SU->isCall) { 2683 // Calls are scheduled with their preceding instructions. For bottom-up 2684 // scheduling, clear the pipeline state before emitting. 2685 HazardRec->Reset(); 2686 } 2687 HazardRec->EmitInstruction(SU); 2688 // Scheduling an instruction may have made pending instructions available. 2689 CheckPending = true; 2690 } 2691 // checkHazard should prevent scheduling multiple instructions per cycle that 2692 // exceed the issue width. 2693 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2694 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2695 assert( 2696 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2697 "Cannot schedule this instruction's MicroOps in the current cycle."); 2698 2699 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2700 LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2701 2702 unsigned NextCycle = CurrCycle; 2703 switch (SchedModel->getMicroOpBufferSize()) { 2704 case 0: 2705 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2706 break; 2707 case 1: 2708 if (ReadyCycle > NextCycle) { 2709 NextCycle = ReadyCycle; 2710 LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2711 } 2712 break; 2713 default: 2714 // We don't currently model the OOO reorder buffer, so consider all 2715 // scheduled MOps to be "retired". We do loosely model in-order resource 2716 // latency. If this instruction uses an in-order resource, account for any 2717 // likely stall cycles. 2718 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2719 NextCycle = ReadyCycle; 2720 break; 2721 } 2722 RetiredMOps += IncMOps; 2723 2724 // Update resource counts and critical resource. 2725 if (SchedModel->hasInstrSchedModel()) { 2726 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2727 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2728 Rem->RemIssueCount -= DecRemIssue; 2729 if (ZoneCritResIdx) { 2730 // Scale scheduled micro-ops for comparing with the critical resource. 2731 unsigned ScaledMOps = 2732 RetiredMOps * SchedModel->getMicroOpFactor(); 2733 2734 // If scaled micro-ops are now more than the previous critical resource by 2735 // a full cycle, then micro-ops issue becomes critical. 2736 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2737 >= (int)SchedModel->getLatencyFactor()) { 2738 ZoneCritResIdx = 0; 2739 LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2740 << ScaledMOps / SchedModel->getLatencyFactor() 2741 << "c\n"); 2742 } 2743 } 2744 for (TargetSchedModel::ProcResIter 2745 PI = SchedModel->getWriteProcResBegin(SC), 2746 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2747 unsigned RCycle = 2748 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle, 2749 PI->AcquireAtCycle); 2750 if (RCycle > NextCycle) 2751 NextCycle = RCycle; 2752 } 2753 if (SU->hasReservedResource) { 2754 // For reserved resources, record the highest cycle using the resource. 2755 // For top-down scheduling, this is the cycle in which we schedule this 2756 // instruction plus the number of cycles the operations reserves the 2757 // resource. For bottom-up is it simply the instruction's cycle. 2758 for (TargetSchedModel::ProcResIter 2759 PI = SchedModel->getWriteProcResBegin(SC), 2760 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2761 unsigned PIdx = PI->ProcResourceIdx; 2762 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2763 2764 if (SchedModel && SchedModel->enableIntervals()) { 2765 unsigned ReservedUntil, InstanceIdx; 2766 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2767 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2768 if (isTop()) { 2769 ReservedResourceSegments[InstanceIdx].add( 2770 ResourceSegments::getResourceIntervalTop( 2771 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2772 MIResourceCutOff); 2773 } else { 2774 ReservedResourceSegments[InstanceIdx].add( 2775 ResourceSegments::getResourceIntervalBottom( 2776 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle), 2777 MIResourceCutOff); 2778 } 2779 } else { 2780 2781 unsigned ReservedUntil, InstanceIdx; 2782 std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle( 2783 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle); 2784 if (isTop()) { 2785 ReservedCycles[InstanceIdx] = 2786 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle); 2787 } else 2788 ReservedCycles[InstanceIdx] = NextCycle; 2789 } 2790 } 2791 } 2792 } 2793 } 2794 // Update ExpectedLatency and DependentLatency. 2795 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2796 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2797 if (SU->getDepth() > TopLatency) { 2798 TopLatency = SU->getDepth(); 2799 LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" 2800 << SU->NodeNum << ") " << TopLatency << "c\n"); 2801 } 2802 if (SU->getHeight() > BotLatency) { 2803 BotLatency = SU->getHeight(); 2804 LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" 2805 << SU->NodeNum << ") " << BotLatency << "c\n"); 2806 } 2807 // If we stall for any reason, bump the cycle. 2808 if (NextCycle > CurrCycle) 2809 bumpCycle(NextCycle); 2810 else 2811 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2812 // resource limited. If a stall occurred, bumpCycle does this. 2813 IsResourceLimited = 2814 checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), 2815 getScheduledLatency(), true); 2816 2817 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2818 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2819 // one cycle. Since we commonly reach the max MOps here, opportunistically 2820 // bump the cycle to avoid uselessly checking everything in the readyQ. 2821 CurrMOps += IncMOps; 2822 2823 // Bump the cycle count for issue group constraints. 2824 // This must be done after NextCycle has been adjust for all other stalls. 2825 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2826 // currCycle to X. 2827 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2828 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2829 LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") 2830 << " group\n"); 2831 bumpCycle(++NextCycle); 2832 } 2833 2834 while (CurrMOps >= SchedModel->getIssueWidth()) { 2835 LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " 2836 << CurrCycle << '\n'); 2837 bumpCycle(++NextCycle); 2838 } 2839 LLVM_DEBUG(dumpScheduledState()); 2840 } 2841 2842 /// Release pending ready nodes in to the available queue. This makes them 2843 /// visible to heuristics. 2844 void SchedBoundary::releasePending() { 2845 // If the available queue is empty, it is safe to reset MinReadyCycle. 2846 if (Available.empty()) 2847 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2848 2849 // Check to see if any of the pending instructions are ready to issue. If 2850 // so, add them to the available queue. 2851 for (unsigned I = 0, E = Pending.size(); I < E; ++I) { 2852 SUnit *SU = *(Pending.begin() + I); 2853 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2854 2855 if (ReadyCycle < MinReadyCycle) 2856 MinReadyCycle = ReadyCycle; 2857 2858 if (Available.size() >= ReadyListLimit) 2859 break; 2860 2861 releaseNode(SU, ReadyCycle, true, I); 2862 if (E != Pending.size()) { 2863 --I; 2864 --E; 2865 } 2866 } 2867 CheckPending = false; 2868 } 2869 2870 /// Remove SU from the ready set for this boundary. 2871 void SchedBoundary::removeReady(SUnit *SU) { 2872 if (Available.isInQueue(SU)) 2873 Available.remove(Available.find(SU)); 2874 else { 2875 assert(Pending.isInQueue(SU) && "bad ready count"); 2876 Pending.remove(Pending.find(SU)); 2877 } 2878 } 2879 2880 /// If this queue only has one ready candidate, return it. As a side effect, 2881 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2882 /// one node is ready. If multiple instructions are ready, return NULL. 2883 SUnit *SchedBoundary::pickOnlyChoice() { 2884 if (CheckPending) 2885 releasePending(); 2886 2887 // Defer any ready instrs that now have a hazard. 2888 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2889 if (checkHazard(*I)) { 2890 Pending.push(*I); 2891 I = Available.remove(I); 2892 continue; 2893 } 2894 ++I; 2895 } 2896 for (unsigned i = 0; Available.empty(); ++i) { 2897 // FIXME: Re-enable assert once PR20057 is resolved. 2898 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2899 // "permanent hazard"); 2900 (void)i; 2901 bumpCycle(CurrCycle + 1); 2902 releasePending(); 2903 } 2904 2905 LLVM_DEBUG(Pending.dump()); 2906 LLVM_DEBUG(Available.dump()); 2907 2908 if (Available.size() == 1) 2909 return *Available.begin(); 2910 return nullptr; 2911 } 2912 2913 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2914 2915 /// Dump the content of the \ref ReservedCycles vector for the 2916 /// resources that are used in the basic block. 2917 /// 2918 LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { 2919 if (!SchedModel->hasInstrSchedModel()) 2920 return; 2921 2922 unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); 2923 unsigned StartIdx = 0; 2924 2925 for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { 2926 const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; 2927 std::string ResName = SchedModel->getResourceName(ResIdx); 2928 for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { 2929 dbgs() << ResName << "(" << UnitIdx << ") = "; 2930 if (SchedModel && SchedModel->enableIntervals()) { 2931 if (ReservedResourceSegments.count(StartIdx + UnitIdx)) 2932 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx); 2933 else 2934 dbgs() << "{ }\n"; 2935 } else 2936 dbgs() << ReservedCycles[StartIdx + UnitIdx] << "\n"; 2937 } 2938 StartIdx += NumUnits; 2939 } 2940 } 2941 2942 // This is useful information to dump after bumpNode. 2943 // Note that the Queue contents are more useful before pickNodeFromQueue. 2944 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2945 unsigned ResFactor; 2946 unsigned ResCount; 2947 if (ZoneCritResIdx) { 2948 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2949 ResCount = getResourceCount(ZoneCritResIdx); 2950 } else { 2951 ResFactor = SchedModel->getMicroOpFactor(); 2952 ResCount = RetiredMOps * ResFactor; 2953 } 2954 unsigned LFactor = SchedModel->getLatencyFactor(); 2955 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2956 << " Retired: " << RetiredMOps; 2957 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2958 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2959 << ResCount / ResFactor << " " 2960 << SchedModel->getResourceName(ZoneCritResIdx) 2961 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2962 << (IsResourceLimited ? " - Resource" : " - Latency") 2963 << " limited.\n"; 2964 if (MISchedDumpReservedCycles) 2965 dumpReservedCycles(); 2966 } 2967 #endif 2968 2969 //===----------------------------------------------------------------------===// 2970 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2971 //===----------------------------------------------------------------------===// 2972 2973 void GenericSchedulerBase::SchedCandidate:: 2974 initResourceDelta(const ScheduleDAGMI *DAG, 2975 const TargetSchedModel *SchedModel) { 2976 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2977 return; 2978 2979 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2980 for (TargetSchedModel::ProcResIter 2981 PI = SchedModel->getWriteProcResBegin(SC), 2982 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2983 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2984 ResDelta.CritResources += PI->ReleaseAtCycle; 2985 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2986 ResDelta.DemandedResources += PI->ReleaseAtCycle; 2987 } 2988 } 2989 2990 /// Compute remaining latency. We need this both to determine whether the 2991 /// overall schedule has become latency-limited and whether the instructions 2992 /// outside this zone are resource or latency limited. 2993 /// 2994 /// The "dependent" latency is updated incrementally during scheduling as the 2995 /// max height/depth of scheduled nodes minus the cycles since it was 2996 /// scheduled: 2997 /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2998 /// 2999 /// The "independent" latency is the max ready queue depth: 3000 /// ILat = max N.depth for N in Available|Pending 3001 /// 3002 /// RemainingLatency is the greater of independent and dependent latency. 3003 /// 3004 /// These computations are expensive, especially in DAGs with many edges, so 3005 /// only do them if necessary. 3006 static unsigned computeRemLatency(SchedBoundary &CurrZone) { 3007 unsigned RemLatency = CurrZone.getDependentLatency(); 3008 RemLatency = std::max(RemLatency, 3009 CurrZone.findMaxLatency(CurrZone.Available.elements())); 3010 RemLatency = std::max(RemLatency, 3011 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 3012 return RemLatency; 3013 } 3014 3015 /// Returns true if the current cycle plus remaning latency is greater than 3016 /// the critical path in the scheduling region. 3017 bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, 3018 SchedBoundary &CurrZone, 3019 bool ComputeRemLatency, 3020 unsigned &RemLatency) const { 3021 // The current cycle is already greater than the critical path, so we are 3022 // already latency limited and don't need to compute the remaining latency. 3023 if (CurrZone.getCurrCycle() > Rem.CriticalPath) 3024 return true; 3025 3026 // If we haven't scheduled anything yet, then we aren't latency limited. 3027 if (CurrZone.getCurrCycle() == 0) 3028 return false; 3029 3030 if (ComputeRemLatency) 3031 RemLatency = computeRemLatency(CurrZone); 3032 3033 return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; 3034 } 3035 3036 /// Set the CandPolicy given a scheduling zone given the current resources and 3037 /// latencies inside and outside the zone. 3038 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 3039 SchedBoundary &CurrZone, 3040 SchedBoundary *OtherZone) { 3041 // Apply preemptive heuristics based on the total latency and resources 3042 // inside and outside this zone. Potential stalls should be considered before 3043 // following this policy. 3044 3045 // Compute the critical resource outside the zone. 3046 unsigned OtherCritIdx = 0; 3047 unsigned OtherCount = 3048 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 3049 3050 bool OtherResLimited = false; 3051 unsigned RemLatency = 0; 3052 bool RemLatencyComputed = false; 3053 if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { 3054 RemLatency = computeRemLatency(CurrZone); 3055 RemLatencyComputed = true; 3056 OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), 3057 OtherCount, RemLatency, false); 3058 } 3059 3060 // Schedule aggressively for latency in PostRA mode. We don't check for 3061 // acyclic latency during PostRA, and highly out-of-order processors will 3062 // skip PostRA scheduling. 3063 if (!OtherResLimited && 3064 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, 3065 RemLatency))) { 3066 Policy.ReduceLatency |= true; 3067 LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() 3068 << " RemainingLatency " << RemLatency << " + " 3069 << CurrZone.getCurrCycle() << "c > CritPath " 3070 << Rem.CriticalPath << "\n"); 3071 } 3072 // If the same resource is limiting inside and outside the zone, do nothing. 3073 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 3074 return; 3075 3076 LLVM_DEBUG(if (CurrZone.isResourceLimited()) { 3077 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 3078 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; 3079 } if (OtherResLimited) dbgs() 3080 << " RemainingLimit: " 3081 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 3082 if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() 3083 << " Latency limited both directions.\n"); 3084 3085 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 3086 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 3087 3088 if (OtherResLimited) 3089 Policy.DemandResIdx = OtherCritIdx; 3090 } 3091 3092 #ifndef NDEBUG 3093 const char *GenericSchedulerBase::getReasonStr( 3094 GenericSchedulerBase::CandReason Reason) { 3095 switch (Reason) { 3096 case NoCand: return "NOCAND "; 3097 case Only1: return "ONLY1 "; 3098 case PhysReg: return "PHYS-REG "; 3099 case RegExcess: return "REG-EXCESS"; 3100 case RegCritical: return "REG-CRIT "; 3101 case Stall: return "STALL "; 3102 case Cluster: return "CLUSTER "; 3103 case Weak: return "WEAK "; 3104 case RegMax: return "REG-MAX "; 3105 case ResourceReduce: return "RES-REDUCE"; 3106 case ResourceDemand: return "RES-DEMAND"; 3107 case TopDepthReduce: return "TOP-DEPTH "; 3108 case TopPathReduce: return "TOP-PATH "; 3109 case BotHeightReduce:return "BOT-HEIGHT"; 3110 case BotPathReduce: return "BOT-PATH "; 3111 case NextDefUse: return "DEF-USE "; 3112 case NodeOrder: return "ORDER "; 3113 }; 3114 llvm_unreachable("Unknown reason!"); 3115 } 3116 3117 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 3118 PressureChange P; 3119 unsigned ResIdx = 0; 3120 unsigned Latency = 0; 3121 switch (Cand.Reason) { 3122 default: 3123 break; 3124 case RegExcess: 3125 P = Cand.RPDelta.Excess; 3126 break; 3127 case RegCritical: 3128 P = Cand.RPDelta.CriticalMax; 3129 break; 3130 case RegMax: 3131 P = Cand.RPDelta.CurrentMax; 3132 break; 3133 case ResourceReduce: 3134 ResIdx = Cand.Policy.ReduceResIdx; 3135 break; 3136 case ResourceDemand: 3137 ResIdx = Cand.Policy.DemandResIdx; 3138 break; 3139 case TopDepthReduce: 3140 Latency = Cand.SU->getDepth(); 3141 break; 3142 case TopPathReduce: 3143 Latency = Cand.SU->getHeight(); 3144 break; 3145 case BotHeightReduce: 3146 Latency = Cand.SU->getHeight(); 3147 break; 3148 case BotPathReduce: 3149 Latency = Cand.SU->getDepth(); 3150 break; 3151 } 3152 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 3153 if (P.isValid()) 3154 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 3155 << ":" << P.getUnitInc() << " "; 3156 else 3157 dbgs() << " "; 3158 if (ResIdx) 3159 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 3160 else 3161 dbgs() << " "; 3162 if (Latency) 3163 dbgs() << " " << Latency << " cycles "; 3164 else 3165 dbgs() << " "; 3166 dbgs() << '\n'; 3167 } 3168 #endif 3169 3170 namespace llvm { 3171 /// Return true if this heuristic determines order. 3172 /// TODO: Consider refactor return type of these functions as integer or enum, 3173 /// as we may need to differentiate whether TryCand is better than Cand. 3174 bool tryLess(int TryVal, int CandVal, 3175 GenericSchedulerBase::SchedCandidate &TryCand, 3176 GenericSchedulerBase::SchedCandidate &Cand, 3177 GenericSchedulerBase::CandReason Reason) { 3178 if (TryVal < CandVal) { 3179 TryCand.Reason = Reason; 3180 return true; 3181 } 3182 if (TryVal > CandVal) { 3183 if (Cand.Reason > Reason) 3184 Cand.Reason = Reason; 3185 return true; 3186 } 3187 return false; 3188 } 3189 3190 bool tryGreater(int TryVal, int CandVal, 3191 GenericSchedulerBase::SchedCandidate &TryCand, 3192 GenericSchedulerBase::SchedCandidate &Cand, 3193 GenericSchedulerBase::CandReason Reason) { 3194 if (TryVal > CandVal) { 3195 TryCand.Reason = Reason; 3196 return true; 3197 } 3198 if (TryVal < CandVal) { 3199 if (Cand.Reason > Reason) 3200 Cand.Reason = Reason; 3201 return true; 3202 } 3203 return false; 3204 } 3205 3206 bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 3207 GenericSchedulerBase::SchedCandidate &Cand, 3208 SchedBoundary &Zone) { 3209 if (Zone.isTop()) { 3210 // Prefer the candidate with the lesser depth, but only if one of them has 3211 // depth greater than the total latency scheduled so far, otherwise either 3212 // of them could be scheduled now with no stall. 3213 if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > 3214 Zone.getScheduledLatency()) { 3215 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3216 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 3217 return true; 3218 } 3219 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3220 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 3221 return true; 3222 } else { 3223 // Prefer the candidate with the lesser height, but only if one of them has 3224 // height greater than the total latency scheduled so far, otherwise either 3225 // of them could be scheduled now with no stall. 3226 if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > 3227 Zone.getScheduledLatency()) { 3228 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 3229 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 3230 return true; 3231 } 3232 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 3233 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 3234 return true; 3235 } 3236 return false; 3237 } 3238 } // end namespace llvm 3239 3240 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 3241 LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 3242 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 3243 } 3244 3245 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 3246 tracePick(Cand.Reason, Cand.AtTop); 3247 } 3248 3249 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 3250 assert(dag->hasVRegLiveness() && 3251 "(PreRA)GenericScheduler needs vreg liveness"); 3252 DAG = static_cast<ScheduleDAGMILive*>(dag); 3253 SchedModel = DAG->getSchedModel(); 3254 TRI = DAG->TRI; 3255 3256 if (RegionPolicy.ComputeDFSResult) 3257 DAG->computeDFSResult(); 3258 3259 Rem.init(DAG, SchedModel); 3260 Top.init(DAG, SchedModel, &Rem); 3261 Bot.init(DAG, SchedModel, &Rem); 3262 3263 // Initialize resource counts. 3264 3265 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 3266 // are disabled, then these HazardRecs will be disabled. 3267 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3268 if (!Top.HazardRec) { 3269 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3270 } 3271 if (!Bot.HazardRec) { 3272 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3273 } 3274 TopCand.SU = nullptr; 3275 BotCand.SU = nullptr; 3276 } 3277 3278 /// Initialize the per-region scheduling policy. 3279 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3280 MachineBasicBlock::iterator End, 3281 unsigned NumRegionInstrs) { 3282 const MachineFunction &MF = *Begin->getMF(); 3283 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 3284 3285 // Avoid setting up the register pressure tracker for small regions to save 3286 // compile time. As a rough heuristic, only track pressure when the number of 3287 // schedulable instructions exceeds half the allocatable integer register file 3288 // that is the largest legal integer regiser type. 3289 RegionPolicy.ShouldTrackPressure = true; 3290 for (unsigned VT = MVT::i64; VT > (unsigned)MVT::i1; --VT) { 3291 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 3292 if (TLI->isTypeLegal(LegalIntVT)) { 3293 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 3294 TLI->getRegClassFor(LegalIntVT)); 3295 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 3296 break; 3297 } 3298 } 3299 3300 // For generic targets, we default to bottom-up, because it's simpler and more 3301 // compile-time optimizations have been implemented in that direction. 3302 RegionPolicy.OnlyBottomUp = true; 3303 3304 // Allow the subtarget to override default policy. 3305 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 3306 3307 // After subtarget overrides, apply command line options. 3308 if (!EnableRegPressure) { 3309 RegionPolicy.ShouldTrackPressure = false; 3310 RegionPolicy.ShouldTrackLaneMasks = false; 3311 } 3312 3313 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 3314 // e.g. -misched-bottomup=false allows scheduling in both directions. 3315 assert((!ForceTopDown || !ForceBottomUp) && 3316 "-misched-topdown incompatible with -misched-bottomup"); 3317 if (ForceBottomUp.getNumOccurrences() > 0) { 3318 RegionPolicy.OnlyBottomUp = ForceBottomUp; 3319 if (RegionPolicy.OnlyBottomUp) 3320 RegionPolicy.OnlyTopDown = false; 3321 } 3322 if (ForceTopDown.getNumOccurrences() > 0) { 3323 RegionPolicy.OnlyTopDown = ForceTopDown; 3324 if (RegionPolicy.OnlyTopDown) 3325 RegionPolicy.OnlyBottomUp = false; 3326 } 3327 } 3328 3329 void GenericScheduler::dumpPolicy() const { 3330 // Cannot completely remove virtual function even in release mode. 3331 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3332 dbgs() << "GenericScheduler RegionPolicy: " 3333 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 3334 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 3335 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 3336 << "\n"; 3337 #endif 3338 } 3339 3340 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 3341 /// critical path by more cycles than it takes to drain the instruction buffer. 3342 /// We estimate an upper bounds on in-flight instructions as: 3343 /// 3344 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 3345 /// InFlightIterations = AcyclicPath / CyclesPerIteration 3346 /// InFlightResources = InFlightIterations * LoopResources 3347 /// 3348 /// TODO: Check execution resources in addition to IssueCount. 3349 void GenericScheduler::checkAcyclicLatency() { 3350 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 3351 return; 3352 3353 // Scaled number of cycles per loop iteration. 3354 unsigned IterCount = 3355 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 3356 Rem.RemIssueCount); 3357 // Scaled acyclic critical path. 3358 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 3359 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 3360 unsigned InFlightCount = 3361 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 3362 unsigned BufferLimit = 3363 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 3364 3365 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 3366 3367 LLVM_DEBUG( 3368 dbgs() << "IssueCycles=" 3369 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 3370 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 3371 << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount 3372 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 3373 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 3374 if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); 3375 } 3376 3377 void GenericScheduler::registerRoots() { 3378 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3379 3380 // Some roots may not feed into ExitSU. Check all of them in case. 3381 for (const SUnit *SU : Bot.Available) { 3382 if (SU->getDepth() > Rem.CriticalPath) 3383 Rem.CriticalPath = SU->getDepth(); 3384 } 3385 LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 3386 if (DumpCriticalPathLength) { 3387 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 3388 } 3389 3390 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 3391 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 3392 checkAcyclicLatency(); 3393 } 3394 } 3395 3396 namespace llvm { 3397 bool tryPressure(const PressureChange &TryP, 3398 const PressureChange &CandP, 3399 GenericSchedulerBase::SchedCandidate &TryCand, 3400 GenericSchedulerBase::SchedCandidate &Cand, 3401 GenericSchedulerBase::CandReason Reason, 3402 const TargetRegisterInfo *TRI, 3403 const MachineFunction &MF) { 3404 // If one candidate decreases and the other increases, go with it. 3405 // Invalid candidates have UnitInc==0. 3406 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 3407 Reason)) { 3408 return true; 3409 } 3410 // Do not compare the magnitude of pressure changes between top and bottom 3411 // boundary. 3412 if (Cand.AtTop != TryCand.AtTop) 3413 return false; 3414 3415 // If both candidates affect the same set in the same boundary, go with the 3416 // smallest increase. 3417 unsigned TryPSet = TryP.getPSetOrMax(); 3418 unsigned CandPSet = CandP.getPSetOrMax(); 3419 if (TryPSet == CandPSet) { 3420 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 3421 Reason); 3422 } 3423 3424 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 3425 std::numeric_limits<int>::max(); 3426 3427 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 3428 std::numeric_limits<int>::max(); 3429 3430 // If the candidates are decreasing pressure, reverse priority. 3431 if (TryP.getUnitInc() < 0) 3432 std::swap(TryRank, CandRank); 3433 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 3434 } 3435 3436 unsigned getWeakLeft(const SUnit *SU, bool isTop) { 3437 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 3438 } 3439 3440 /// Minimize physical register live ranges. Regalloc wants them adjacent to 3441 /// their physreg def/use. 3442 /// 3443 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 3444 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 3445 /// with the operation that produces or consumes the physreg. We'll do this when 3446 /// regalloc has support for parallel copies. 3447 int biasPhysReg(const SUnit *SU, bool isTop) { 3448 const MachineInstr *MI = SU->getInstr(); 3449 3450 if (MI->isCopy()) { 3451 unsigned ScheduledOper = isTop ? 1 : 0; 3452 unsigned UnscheduledOper = isTop ? 0 : 1; 3453 // If we have already scheduled the physreg produce/consumer, immediately 3454 // schedule the copy. 3455 if (MI->getOperand(ScheduledOper).getReg().isPhysical()) 3456 return 1; 3457 // If the physreg is at the boundary, defer it. Otherwise schedule it 3458 // immediately to free the dependent. We can hoist the copy later. 3459 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 3460 if (MI->getOperand(UnscheduledOper).getReg().isPhysical()) 3461 return AtBoundary ? -1 : 1; 3462 } 3463 3464 if (MI->isMoveImmediate()) { 3465 // If we have a move immediate and all successors have been assigned, bias 3466 // towards scheduling this later. Make sure all register defs are to 3467 // physical registers. 3468 bool DoBias = true; 3469 for (const MachineOperand &Op : MI->defs()) { 3470 if (Op.isReg() && !Op.getReg().isPhysical()) { 3471 DoBias = false; 3472 break; 3473 } 3474 } 3475 3476 if (DoBias) 3477 return isTop ? -1 : 1; 3478 } 3479 3480 return 0; 3481 } 3482 } // end namespace llvm 3483 3484 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 3485 bool AtTop, 3486 const RegPressureTracker &RPTracker, 3487 RegPressureTracker &TempTracker) { 3488 Cand.SU = SU; 3489 Cand.AtTop = AtTop; 3490 if (DAG->isTrackingPressure()) { 3491 if (AtTop) { 3492 TempTracker.getMaxDownwardPressureDelta( 3493 Cand.SU->getInstr(), 3494 Cand.RPDelta, 3495 DAG->getRegionCriticalPSets(), 3496 DAG->getRegPressure().MaxSetPressure); 3497 } else { 3498 if (VerifyScheduling) { 3499 TempTracker.getMaxUpwardPressureDelta( 3500 Cand.SU->getInstr(), 3501 &DAG->getPressureDiff(Cand.SU), 3502 Cand.RPDelta, 3503 DAG->getRegionCriticalPSets(), 3504 DAG->getRegPressure().MaxSetPressure); 3505 } else { 3506 RPTracker.getUpwardPressureDelta( 3507 Cand.SU->getInstr(), 3508 DAG->getPressureDiff(Cand.SU), 3509 Cand.RPDelta, 3510 DAG->getRegionCriticalPSets(), 3511 DAG->getRegPressure().MaxSetPressure); 3512 } 3513 } 3514 } 3515 LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() 3516 << " Try SU(" << Cand.SU->NodeNum << ") " 3517 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" 3518 << Cand.RPDelta.Excess.getUnitInc() << "\n"); 3519 } 3520 3521 /// Apply a set of heuristics to a new candidate. Heuristics are currently 3522 /// hierarchical. This may be more efficient than a graduated cost model because 3523 /// we don't need to evaluate all aspects of the model for each node in the 3524 /// queue. But it's really done to make the heuristics easier to debug and 3525 /// statistically analyze. 3526 /// 3527 /// \param Cand provides the policy and current best candidate. 3528 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3529 /// \param Zone describes the scheduled zone that we are extending, or nullptr 3530 /// if Cand is from a different zone than TryCand. 3531 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3532 bool GenericScheduler::tryCandidate(SchedCandidate &Cand, 3533 SchedCandidate &TryCand, 3534 SchedBoundary *Zone) const { 3535 // Initialize the candidate if needed. 3536 if (!Cand.isValid()) { 3537 TryCand.Reason = NodeOrder; 3538 return true; 3539 } 3540 3541 // Bias PhysReg Defs and copies to their uses and defined respectively. 3542 if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), 3543 biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) 3544 return TryCand.Reason != NoCand; 3545 3546 // Avoid exceeding the target's limit. 3547 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 3548 Cand.RPDelta.Excess, 3549 TryCand, Cand, RegExcess, TRI, 3550 DAG->MF)) 3551 return TryCand.Reason != NoCand; 3552 3553 // Avoid increasing the max critical pressure in the scheduled region. 3554 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 3555 Cand.RPDelta.CriticalMax, 3556 TryCand, Cand, RegCritical, TRI, 3557 DAG->MF)) 3558 return TryCand.Reason != NoCand; 3559 3560 // We only compare a subset of features when comparing nodes between 3561 // Top and Bottom boundary. Some properties are simply incomparable, in many 3562 // other instances we should only override the other boundary if something 3563 // is a clear good pick on one boundary. Skip heuristics that are more 3564 // "tie-breaking" in nature. 3565 bool SameBoundary = Zone != nullptr; 3566 if (SameBoundary) { 3567 // For loops that are acyclic path limited, aggressively schedule for 3568 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 3569 // heuristics to take precedence. 3570 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 3571 tryLatency(TryCand, Cand, *Zone)) 3572 return TryCand.Reason != NoCand; 3573 3574 // Prioritize instructions that read unbuffered resources by stall cycles. 3575 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 3576 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3577 return TryCand.Reason != NoCand; 3578 } 3579 3580 // Keep clustered nodes together to encourage downstream peephole 3581 // optimizations which may reduce resource requirements. 3582 // 3583 // This is a best effort to set things up for a post-RA pass. Optimizations 3584 // like generating loads of multiple registers should ideally be done within 3585 // the scheduler pass by combining the loads during DAG postprocessing. 3586 const SUnit *CandNextClusterSU = 3587 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3588 const SUnit *TryCandNextClusterSU = 3589 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 3590 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 3591 Cand.SU == CandNextClusterSU, 3592 TryCand, Cand, Cluster)) 3593 return TryCand.Reason != NoCand; 3594 3595 if (SameBoundary) { 3596 // Weak edges are for clustering and other constraints. 3597 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 3598 getWeakLeft(Cand.SU, Cand.AtTop), 3599 TryCand, Cand, Weak)) 3600 return TryCand.Reason != NoCand; 3601 } 3602 3603 // Avoid increasing the max pressure of the entire region. 3604 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 3605 Cand.RPDelta.CurrentMax, 3606 TryCand, Cand, RegMax, TRI, 3607 DAG->MF)) 3608 return TryCand.Reason != NoCand; 3609 3610 if (SameBoundary) { 3611 // Avoid critical resource consumption and balance the schedule. 3612 TryCand.initResourceDelta(DAG, SchedModel); 3613 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3614 TryCand, Cand, ResourceReduce)) 3615 return TryCand.Reason != NoCand; 3616 if (tryGreater(TryCand.ResDelta.DemandedResources, 3617 Cand.ResDelta.DemandedResources, 3618 TryCand, Cand, ResourceDemand)) 3619 return TryCand.Reason != NoCand; 3620 3621 // Avoid serializing long latency dependence chains. 3622 // For acyclic path limited loops, latency was already checked above. 3623 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 3624 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 3625 return TryCand.Reason != NoCand; 3626 3627 // Fall through to original instruction order. 3628 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 3629 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 3630 TryCand.Reason = NodeOrder; 3631 return true; 3632 } 3633 } 3634 3635 return false; 3636 } 3637 3638 /// Pick the best candidate from the queue. 3639 /// 3640 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 3641 /// DAG building. To adjust for the current scheduling location we need to 3642 /// maintain the number of vreg uses remaining to be top-scheduled. 3643 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3644 const CandPolicy &ZonePolicy, 3645 const RegPressureTracker &RPTracker, 3646 SchedCandidate &Cand) { 3647 // getMaxPressureDelta temporarily modifies the tracker. 3648 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3649 3650 ReadyQueue &Q = Zone.Available; 3651 for (SUnit *SU : Q) { 3652 3653 SchedCandidate TryCand(ZonePolicy); 3654 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3655 // Pass SchedBoundary only when comparing nodes from the same boundary. 3656 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3657 if (tryCandidate(Cand, TryCand, ZoneArg)) { 3658 // Initialize resource delta if needed in case future heuristics query it. 3659 if (TryCand.ResDelta == SchedResourceDelta()) 3660 TryCand.initResourceDelta(DAG, SchedModel); 3661 Cand.setBest(TryCand); 3662 LLVM_DEBUG(traceCandidate(Cand)); 3663 } 3664 } 3665 } 3666 3667 /// Pick the best candidate node from either the top or bottom queue. 3668 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3669 // Schedule as far as possible in the direction of no choice. This is most 3670 // efficient, but also provides the best heuristics for CriticalPSets. 3671 if (SUnit *SU = Bot.pickOnlyChoice()) { 3672 IsTopNode = false; 3673 tracePick(Only1, false); 3674 return SU; 3675 } 3676 if (SUnit *SU = Top.pickOnlyChoice()) { 3677 IsTopNode = true; 3678 tracePick(Only1, true); 3679 return SU; 3680 } 3681 // Set the bottom-up policy based on the state of the current bottom zone and 3682 // the instructions outside the zone, including the top zone. 3683 CandPolicy BotPolicy; 3684 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3685 // Set the top-down policy based on the state of the current top zone and 3686 // the instructions outside the zone, including the bottom zone. 3687 CandPolicy TopPolicy; 3688 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3689 3690 // See if BotCand is still valid (because we previously scheduled from Top). 3691 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 3692 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3693 BotCand.Policy != BotPolicy) { 3694 BotCand.reset(CandPolicy()); 3695 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3696 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3697 } else { 3698 LLVM_DEBUG(traceCandidate(BotCand)); 3699 #ifndef NDEBUG 3700 if (VerifyScheduling) { 3701 SchedCandidate TCand; 3702 TCand.reset(CandPolicy()); 3703 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3704 assert(TCand.SU == BotCand.SU && 3705 "Last pick result should correspond to re-picking right now"); 3706 } 3707 #endif 3708 } 3709 3710 // Check if the top Q has a better candidate. 3711 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 3712 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3713 TopCand.Policy != TopPolicy) { 3714 TopCand.reset(CandPolicy()); 3715 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3716 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3717 } else { 3718 LLVM_DEBUG(traceCandidate(TopCand)); 3719 #ifndef NDEBUG 3720 if (VerifyScheduling) { 3721 SchedCandidate TCand; 3722 TCand.reset(CandPolicy()); 3723 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3724 assert(TCand.SU == TopCand.SU && 3725 "Last pick result should correspond to re-picking right now"); 3726 } 3727 #endif 3728 } 3729 3730 // Pick best from BotCand and TopCand. 3731 assert(BotCand.isValid()); 3732 assert(TopCand.isValid()); 3733 SchedCandidate Cand = BotCand; 3734 TopCand.Reason = NoCand; 3735 if (tryCandidate(Cand, TopCand, nullptr)) { 3736 Cand.setBest(TopCand); 3737 LLVM_DEBUG(traceCandidate(Cand)); 3738 } 3739 3740 IsTopNode = Cand.AtTop; 3741 tracePick(Cand); 3742 return Cand.SU; 3743 } 3744 3745 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3746 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3747 if (DAG->top() == DAG->bottom()) { 3748 assert(Top.Available.empty() && Top.Pending.empty() && 3749 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3750 return nullptr; 3751 } 3752 SUnit *SU; 3753 do { 3754 if (RegionPolicy.OnlyTopDown) { 3755 SU = Top.pickOnlyChoice(); 3756 if (!SU) { 3757 CandPolicy NoPolicy; 3758 TopCand.reset(NoPolicy); 3759 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3760 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3761 tracePick(TopCand); 3762 SU = TopCand.SU; 3763 } 3764 IsTopNode = true; 3765 } else if (RegionPolicy.OnlyBottomUp) { 3766 SU = Bot.pickOnlyChoice(); 3767 if (!SU) { 3768 CandPolicy NoPolicy; 3769 BotCand.reset(NoPolicy); 3770 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3771 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3772 tracePick(BotCand); 3773 SU = BotCand.SU; 3774 } 3775 IsTopNode = false; 3776 } else { 3777 SU = pickNodeBidirectional(IsTopNode); 3778 } 3779 } while (SU->isScheduled); 3780 3781 // If IsTopNode, then SU is in Top.Available and must be removed. Otherwise, 3782 // if isTopReady(), then SU is in either Top.Available or Top.Pending. 3783 // If !IsTopNode, then SU is in Bot.Available and must be removed. Otherwise, 3784 // if isBottomReady(), then SU is in either Bot.Available or Bot.Pending. 3785 // 3786 // It is coincidental when !IsTopNode && isTopReady or when IsTopNode && 3787 // isBottomReady. That is, it didn't factor into the decision to choose SU 3788 // because it isTopReady or isBottomReady, respectively. In fact, if the 3789 // RegionPolicy is OnlyTopDown or OnlyBottomUp, then the Bot queues and Top 3790 // queues respectivley contain the original roots and don't get updated when 3791 // picking a node. So if SU isTopReady on a OnlyBottomUp pick, then it was 3792 // because we schduled everything but the top roots. Conversley, if SU 3793 // isBottomReady on OnlyTopDown, then it was because we scheduled everything 3794 // but the bottom roots. If its in a queue even coincidentally, it should be 3795 // removed so it does not get re-picked in a subsequent pickNode call. 3796 if (SU->isTopReady()) 3797 Top.removeReady(SU); 3798 if (SU->isBottomReady()) 3799 Bot.removeReady(SU); 3800 3801 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 3802 << *SU->getInstr()); 3803 return SU; 3804 } 3805 3806 void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { 3807 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3808 if (!isTop) 3809 ++InsertPos; 3810 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3811 3812 // Find already scheduled copies with a single physreg dependence and move 3813 // them just above the scheduled instruction. 3814 for (SDep &Dep : Deps) { 3815 if (Dep.getKind() != SDep::Data || 3816 !Register::isPhysicalRegister(Dep.getReg())) 3817 continue; 3818 SUnit *DepSU = Dep.getSUnit(); 3819 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3820 continue; 3821 MachineInstr *Copy = DepSU->getInstr(); 3822 if (!Copy->isCopy() && !Copy->isMoveImmediate()) 3823 continue; 3824 LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; 3825 DAG->dumpNode(*Dep.getSUnit())); 3826 DAG->moveInstruction(Copy, InsertPos); 3827 } 3828 } 3829 3830 /// Update the scheduler's state after scheduling a node. This is the same node 3831 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3832 /// update it's state based on the current cycle before MachineSchedStrategy 3833 /// does. 3834 /// 3835 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3836 /// them here. See comments in biasPhysReg. 3837 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3838 if (IsTopNode) { 3839 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3840 Top.bumpNode(SU); 3841 if (SU->hasPhysRegUses) 3842 reschedulePhysReg(SU, true); 3843 } else { 3844 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3845 Bot.bumpNode(SU); 3846 if (SU->hasPhysRegDefs) 3847 reschedulePhysReg(SU, false); 3848 } 3849 } 3850 3851 /// Create the standard converging machine scheduler. This will be used as the 3852 /// default scheduler if the target does not set a default. 3853 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3854 ScheduleDAGMILive *DAG = 3855 new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); 3856 // Register DAG post-processors. 3857 // 3858 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3859 // data and pass it to later mutations. Have a single mutation that gathers 3860 // the interesting nodes in one pass. 3861 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3862 3863 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 3864 // Add MacroFusion mutation if fusions are not empty. 3865 const auto &MacroFusions = STI.getMacroFusions(); 3866 if (!MacroFusions.empty()) 3867 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 3868 return DAG; 3869 } 3870 3871 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 3872 return createGenericSchedLive(C); 3873 } 3874 3875 static MachineSchedRegistry 3876 GenericSchedRegistry("converge", "Standard converging scheduler.", 3877 createConvergingSched); 3878 3879 //===----------------------------------------------------------------------===// 3880 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3881 //===----------------------------------------------------------------------===// 3882 3883 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3884 DAG = Dag; 3885 SchedModel = DAG->getSchedModel(); 3886 TRI = DAG->TRI; 3887 3888 Rem.init(DAG, SchedModel); 3889 Top.init(DAG, SchedModel, &Rem); 3890 Bot.init(DAG, SchedModel, &Rem); 3891 3892 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3893 // or are disabled, then these HazardRecs will be disabled. 3894 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3895 if (!Top.HazardRec) { 3896 Top.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3897 } 3898 if (!Bot.HazardRec) { 3899 Bot.HazardRec = DAG->TII->CreateTargetMIHazardRecognizer(Itin, DAG); 3900 } 3901 } 3902 3903 void PostGenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 3904 MachineBasicBlock::iterator End, 3905 unsigned NumRegionInstrs) { 3906 if (PostRADirection == MISchedPostRASched::TopDown) { 3907 RegionPolicy.OnlyTopDown = true; 3908 RegionPolicy.OnlyBottomUp = false; 3909 } else if (PostRADirection == MISchedPostRASched::BottomUp) { 3910 RegionPolicy.OnlyTopDown = false; 3911 RegionPolicy.OnlyBottomUp = true; 3912 } else if (PostRADirection == MISchedPostRASched::Bidirectional) { 3913 RegionPolicy.OnlyBottomUp = false; 3914 RegionPolicy.OnlyTopDown = false; 3915 } 3916 } 3917 3918 void PostGenericScheduler::registerRoots() { 3919 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3920 3921 // Some roots may not feed into ExitSU. Check all of them in case. 3922 for (const SUnit *SU : Bot.Available) { 3923 if (SU->getDepth() > Rem.CriticalPath) 3924 Rem.CriticalPath = SU->getDepth(); 3925 } 3926 LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3927 if (DumpCriticalPathLength) { 3928 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3929 } 3930 } 3931 3932 /// Apply a set of heuristics to a new candidate for PostRA scheduling. 3933 /// 3934 /// \param Cand provides the policy and current best candidate. 3935 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3936 /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) 3937 bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3938 SchedCandidate &TryCand) { 3939 // Initialize the candidate if needed. 3940 if (!Cand.isValid()) { 3941 TryCand.Reason = NodeOrder; 3942 return true; 3943 } 3944 3945 // Prioritize instructions that read unbuffered resources by stall cycles. 3946 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3947 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3948 return TryCand.Reason != NoCand; 3949 3950 // Keep clustered nodes together. 3951 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3952 Cand.SU == DAG->getNextClusterSucc(), 3953 TryCand, Cand, Cluster)) 3954 return TryCand.Reason != NoCand; 3955 3956 // Avoid critical resource consumption and balance the schedule. 3957 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3958 TryCand, Cand, ResourceReduce)) 3959 return TryCand.Reason != NoCand; 3960 if (tryGreater(TryCand.ResDelta.DemandedResources, 3961 Cand.ResDelta.DemandedResources, 3962 TryCand, Cand, ResourceDemand)) 3963 return TryCand.Reason != NoCand; 3964 3965 // Avoid serializing long latency dependence chains. 3966 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3967 return TryCand.Reason != NoCand; 3968 } 3969 3970 // Fall through to original instruction order. 3971 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 3972 TryCand.Reason = NodeOrder; 3973 return true; 3974 } 3975 3976 return false; 3977 } 3978 3979 void PostGenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 3980 SchedCandidate &Cand) { 3981 ReadyQueue &Q = Zone.Available; 3982 for (SUnit *SU : Q) { 3983 SchedCandidate TryCand(Cand.Policy); 3984 TryCand.SU = SU; 3985 TryCand.AtTop = Zone.isTop(); 3986 TryCand.initResourceDelta(DAG, SchedModel); 3987 if (tryCandidate(Cand, TryCand)) { 3988 Cand.setBest(TryCand); 3989 LLVM_DEBUG(traceCandidate(Cand)); 3990 } 3991 } 3992 } 3993 3994 /// Pick the best candidate node from either the top or bottom queue. 3995 SUnit *PostGenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3996 // FIXME: This is similiar to GenericScheduler::pickNodeBidirectional. Factor 3997 // out common parts. 3998 3999 // Schedule as far as possible in the direction of no choice. This is most 4000 // efficient, but also provides the best heuristics for CriticalPSets. 4001 if (SUnit *SU = Bot.pickOnlyChoice()) { 4002 IsTopNode = false; 4003 tracePick(Only1, false); 4004 return SU; 4005 } 4006 if (SUnit *SU = Top.pickOnlyChoice()) { 4007 IsTopNode = true; 4008 tracePick(Only1, true); 4009 return SU; 4010 } 4011 // Set the bottom-up policy based on the state of the current bottom zone and 4012 // the instructions outside the zone, including the top zone. 4013 CandPolicy BotPolicy; 4014 setPolicy(BotPolicy, /*IsPostRA=*/true, Bot, &Top); 4015 // Set the top-down policy based on the state of the current top zone and 4016 // the instructions outside the zone, including the bottom zone. 4017 CandPolicy TopPolicy; 4018 setPolicy(TopPolicy, /*IsPostRA=*/true, Top, &Bot); 4019 4020 // See if BotCand is still valid (because we previously scheduled from Top). 4021 LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); 4022 if (!BotCand.isValid() || BotCand.SU->isScheduled || 4023 BotCand.Policy != BotPolicy) { 4024 BotCand.reset(CandPolicy()); 4025 pickNodeFromQueue(Bot, BotCand); 4026 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 4027 } else { 4028 LLVM_DEBUG(traceCandidate(BotCand)); 4029 #ifndef NDEBUG 4030 if (VerifyScheduling) { 4031 SchedCandidate TCand; 4032 TCand.reset(CandPolicy()); 4033 pickNodeFromQueue(Bot, BotCand); 4034 assert(TCand.SU == BotCand.SU && 4035 "Last pick result should correspond to re-picking right now"); 4036 } 4037 #endif 4038 } 4039 4040 // Check if the top Q has a better candidate. 4041 LLVM_DEBUG(dbgs() << "Picking from Top:\n"); 4042 if (!TopCand.isValid() || TopCand.SU->isScheduled || 4043 TopCand.Policy != TopPolicy) { 4044 TopCand.reset(CandPolicy()); 4045 pickNodeFromQueue(Top, TopCand); 4046 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 4047 } else { 4048 LLVM_DEBUG(traceCandidate(TopCand)); 4049 #ifndef NDEBUG 4050 if (VerifyScheduling) { 4051 SchedCandidate TCand; 4052 TCand.reset(CandPolicy()); 4053 pickNodeFromQueue(Top, TopCand); 4054 assert(TCand.SU == TopCand.SU && 4055 "Last pick result should correspond to re-picking right now"); 4056 } 4057 #endif 4058 } 4059 4060 // Pick best from BotCand and TopCand. 4061 assert(BotCand.isValid()); 4062 assert(TopCand.isValid()); 4063 SchedCandidate Cand = BotCand; 4064 TopCand.Reason = NoCand; 4065 if (tryCandidate(Cand, TopCand)) { 4066 Cand.setBest(TopCand); 4067 LLVM_DEBUG(traceCandidate(Cand)); 4068 } 4069 4070 IsTopNode = Cand.AtTop; 4071 tracePick(Cand); 4072 return Cand.SU; 4073 } 4074 4075 /// Pick the next node to schedule. 4076 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 4077 if (DAG->top() == DAG->bottom()) { 4078 assert(Top.Available.empty() && Top.Pending.empty() && 4079 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 4080 return nullptr; 4081 } 4082 SUnit *SU; 4083 do { 4084 if (RegionPolicy.OnlyBottomUp) { 4085 SU = Bot.pickOnlyChoice(); 4086 if (SU) { 4087 tracePick(Only1, true); 4088 } else { 4089 CandPolicy NoPolicy; 4090 BotCand.reset(NoPolicy); 4091 // Set the bottom-up policy based on the state of the current bottom 4092 // zone and the instructions outside the zone, including the top zone. 4093 setPolicy(BotCand.Policy, /*IsPostRA=*/true, Bot, nullptr); 4094 pickNodeFromQueue(Bot, BotCand); 4095 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 4096 tracePick(BotCand); 4097 SU = BotCand.SU; 4098 } 4099 IsTopNode = false; 4100 } else if (RegionPolicy.OnlyTopDown) { 4101 SU = Top.pickOnlyChoice(); 4102 if (SU) { 4103 tracePick(Only1, true); 4104 } else { 4105 CandPolicy NoPolicy; 4106 TopCand.reset(NoPolicy); 4107 // Set the top-down policy based on the state of the current top zone 4108 // and the instructions outside the zone, including the bottom zone. 4109 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 4110 pickNodeFromQueue(Top, TopCand); 4111 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 4112 tracePick(TopCand); 4113 SU = TopCand.SU; 4114 } 4115 IsTopNode = true; 4116 } else { 4117 SU = pickNodeBidirectional(IsTopNode); 4118 } 4119 } while (SU->isScheduled); 4120 4121 if (SU->isTopReady()) 4122 Top.removeReady(SU); 4123 if (SU->isBottomReady()) 4124 Bot.removeReady(SU); 4125 4126 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 4127 << *SU->getInstr()); 4128 return SU; 4129 } 4130 4131 /// Called after ScheduleDAGMI has scheduled an instruction and updated 4132 /// scheduled/remaining flags in the DAG nodes. 4133 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 4134 if (IsTopNode) { 4135 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 4136 Top.bumpNode(SU); 4137 } else { 4138 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 4139 Bot.bumpNode(SU); 4140 } 4141 } 4142 4143 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 4144 ScheduleDAGMI *DAG = 4145 new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), 4146 /*RemoveKillFlags=*/true); 4147 const TargetSubtargetInfo &STI = C->MF->getSubtarget(); 4148 // Add MacroFusion mutation if fusions are not empty. 4149 const auto &MacroFusions = STI.getMacroFusions(); 4150 if (!MacroFusions.empty()) 4151 DAG->addMutation(createMacroFusionDAGMutation(MacroFusions)); 4152 return DAG; 4153 } 4154 4155 //===----------------------------------------------------------------------===// 4156 // ILP Scheduler. Currently for experimental analysis of heuristics. 4157 //===----------------------------------------------------------------------===// 4158 4159 namespace { 4160 4161 /// Order nodes by the ILP metric. 4162 struct ILPOrder { 4163 const SchedDFSResult *DFSResult = nullptr; 4164 const BitVector *ScheduledTrees = nullptr; 4165 bool MaximizeILP; 4166 4167 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 4168 4169 /// Apply a less-than relation on node priority. 4170 /// 4171 /// (Return true if A comes after B in the Q.) 4172 bool operator()(const SUnit *A, const SUnit *B) const { 4173 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 4174 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 4175 if (SchedTreeA != SchedTreeB) { 4176 // Unscheduled trees have lower priority. 4177 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 4178 return ScheduledTrees->test(SchedTreeB); 4179 4180 // Trees with shallower connections have lower priority. 4181 if (DFSResult->getSubtreeLevel(SchedTreeA) 4182 != DFSResult->getSubtreeLevel(SchedTreeB)) { 4183 return DFSResult->getSubtreeLevel(SchedTreeA) 4184 < DFSResult->getSubtreeLevel(SchedTreeB); 4185 } 4186 } 4187 if (MaximizeILP) 4188 return DFSResult->getILP(A) < DFSResult->getILP(B); 4189 else 4190 return DFSResult->getILP(A) > DFSResult->getILP(B); 4191 } 4192 }; 4193 4194 /// Schedule based on the ILP metric. 4195 class ILPScheduler : public MachineSchedStrategy { 4196 ScheduleDAGMILive *DAG = nullptr; 4197 ILPOrder Cmp; 4198 4199 std::vector<SUnit*> ReadyQ; 4200 4201 public: 4202 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 4203 4204 void initialize(ScheduleDAGMI *dag) override { 4205 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 4206 DAG = static_cast<ScheduleDAGMILive*>(dag); 4207 DAG->computeDFSResult(); 4208 Cmp.DFSResult = DAG->getDFSResult(); 4209 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 4210 ReadyQ.clear(); 4211 } 4212 4213 void registerRoots() override { 4214 // Restore the heap in ReadyQ with the updated DFS results. 4215 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4216 } 4217 4218 /// Implement MachineSchedStrategy interface. 4219 /// ----------------------------------------- 4220 4221 /// Callback to select the highest priority node from the ready Q. 4222 SUnit *pickNode(bool &IsTopNode) override { 4223 if (ReadyQ.empty()) return nullptr; 4224 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4225 SUnit *SU = ReadyQ.back(); 4226 ReadyQ.pop_back(); 4227 IsTopNode = false; 4228 LLVM_DEBUG(dbgs() << "Pick node " 4229 << "SU(" << SU->NodeNum << ") " 4230 << " ILP: " << DAG->getDFSResult()->getILP(SU) 4231 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) 4232 << " @" 4233 << DAG->getDFSResult()->getSubtreeLevel( 4234 DAG->getDFSResult()->getSubtreeID(SU)) 4235 << '\n' 4236 << "Scheduling " << *SU->getInstr()); 4237 return SU; 4238 } 4239 4240 /// Scheduler callback to notify that a new subtree is scheduled. 4241 void scheduleTree(unsigned SubtreeID) override { 4242 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4243 } 4244 4245 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 4246 /// DFSResults, and resort the priority Q. 4247 void schedNode(SUnit *SU, bool IsTopNode) override { 4248 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 4249 } 4250 4251 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 4252 4253 void releaseBottomNode(SUnit *SU) override { 4254 ReadyQ.push_back(SU); 4255 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 4256 } 4257 }; 4258 4259 } // end anonymous namespace 4260 4261 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 4262 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); 4263 } 4264 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 4265 return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); 4266 } 4267 4268 static MachineSchedRegistry ILPMaxRegistry( 4269 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 4270 static MachineSchedRegistry ILPMinRegistry( 4271 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 4272 4273 //===----------------------------------------------------------------------===// 4274 // Machine Instruction Shuffler for Correctness Testing 4275 //===----------------------------------------------------------------------===// 4276 4277 #ifndef NDEBUG 4278 namespace { 4279 4280 /// Apply a less-than relation on the node order, which corresponds to the 4281 /// instruction order prior to scheduling. IsReverse implements greater-than. 4282 template<bool IsReverse> 4283 struct SUnitOrder { 4284 bool operator()(SUnit *A, SUnit *B) const { 4285 if (IsReverse) 4286 return A->NodeNum > B->NodeNum; 4287 else 4288 return A->NodeNum < B->NodeNum; 4289 } 4290 }; 4291 4292 /// Reorder instructions as much as possible. 4293 class InstructionShuffler : public MachineSchedStrategy { 4294 bool IsAlternating; 4295 bool IsTopDown; 4296 4297 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 4298 // gives nodes with a higher number higher priority causing the latest 4299 // instructions to be scheduled first. 4300 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 4301 TopQ; 4302 4303 // When scheduling bottom-up, use greater-than as the queue priority. 4304 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 4305 BottomQ; 4306 4307 public: 4308 InstructionShuffler(bool alternate, bool topdown) 4309 : IsAlternating(alternate), IsTopDown(topdown) {} 4310 4311 void initialize(ScheduleDAGMI*) override { 4312 TopQ.clear(); 4313 BottomQ.clear(); 4314 } 4315 4316 /// Implement MachineSchedStrategy interface. 4317 /// ----------------------------------------- 4318 4319 SUnit *pickNode(bool &IsTopNode) override { 4320 SUnit *SU; 4321 if (IsTopDown) { 4322 do { 4323 if (TopQ.empty()) return nullptr; 4324 SU = TopQ.top(); 4325 TopQ.pop(); 4326 } while (SU->isScheduled); 4327 IsTopNode = true; 4328 } else { 4329 do { 4330 if (BottomQ.empty()) return nullptr; 4331 SU = BottomQ.top(); 4332 BottomQ.pop(); 4333 } while (SU->isScheduled); 4334 IsTopNode = false; 4335 } 4336 if (IsAlternating) 4337 IsTopDown = !IsTopDown; 4338 return SU; 4339 } 4340 4341 void schedNode(SUnit *SU, bool IsTopNode) override {} 4342 4343 void releaseTopNode(SUnit *SU) override { 4344 TopQ.push(SU); 4345 } 4346 void releaseBottomNode(SUnit *SU) override { 4347 BottomQ.push(SU); 4348 } 4349 }; 4350 4351 } // end anonymous namespace 4352 4353 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 4354 bool Alternate = !ForceTopDown && !ForceBottomUp; 4355 bool TopDown = !ForceBottomUp; 4356 assert((TopDown || !ForceTopDown) && 4357 "-misched-topdown incompatible with -misched-bottomup"); 4358 return new ScheduleDAGMILive( 4359 C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); 4360 } 4361 4362 static MachineSchedRegistry ShufflerRegistry( 4363 "shuffle", "Shuffle machine instructions alternating directions", 4364 createInstructionShuffler); 4365 #endif // !NDEBUG 4366 4367 //===----------------------------------------------------------------------===// 4368 // GraphWriter support for ScheduleDAGMILive. 4369 //===----------------------------------------------------------------------===// 4370 4371 #ifndef NDEBUG 4372 namespace llvm { 4373 4374 template<> struct GraphTraits< 4375 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 4376 4377 template<> 4378 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 4379 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 4380 4381 static std::string getGraphName(const ScheduleDAG *G) { 4382 return std::string(G->MF.getName()); 4383 } 4384 4385 static bool renderGraphFromBottomUp() { 4386 return true; 4387 } 4388 4389 static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { 4390 if (ViewMISchedCutoff == 0) 4391 return false; 4392 return (Node->Preds.size() > ViewMISchedCutoff 4393 || Node->Succs.size() > ViewMISchedCutoff); 4394 } 4395 4396 /// If you want to override the dot attributes printed for a particular 4397 /// edge, override this method. 4398 static std::string getEdgeAttributes(const SUnit *Node, 4399 SUnitIterator EI, 4400 const ScheduleDAG *Graph) { 4401 if (EI.isArtificialDep()) 4402 return "color=cyan,style=dashed"; 4403 if (EI.isCtrlDep()) 4404 return "color=blue,style=dashed"; 4405 return ""; 4406 } 4407 4408 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 4409 std::string Str; 4410 raw_string_ostream SS(Str); 4411 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4412 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4413 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4414 SS << "SU:" << SU->NodeNum; 4415 if (DFS) 4416 SS << " I:" << DFS->getNumInstrs(SU); 4417 return Str; 4418 } 4419 4420 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 4421 return G->getGraphNodeLabel(SU); 4422 } 4423 4424 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 4425 std::string Str("shape=Mrecord"); 4426 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 4427 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 4428 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 4429 if (DFS) { 4430 Str += ",style=filled,fillcolor=\"#"; 4431 Str += DOT::getColorString(DFS->getSubtreeID(N)); 4432 Str += '"'; 4433 } 4434 return Str; 4435 } 4436 }; 4437 4438 } // end namespace llvm 4439 #endif // NDEBUG 4440 4441 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 4442 /// rendered using 'dot'. 4443 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 4444 #ifndef NDEBUG 4445 ViewGraph(this, Name, false, Title); 4446 #else 4447 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 4448 << "systems with Graphviz or gv!\n"; 4449 #endif // NDEBUG 4450 } 4451 4452 /// Out-of-line implementation with no arguments is handy for gdb. 4453 void ScheduleDAGMI::viewGraph() { 4454 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 4455 } 4456 4457 /// Sort predicate for the intervals stored in an instance of 4458 /// ResourceSegments. Intervals are always disjoint (no intersection 4459 /// for any pairs of intervals), therefore we can sort the totality of 4460 /// the intervals by looking only at the left boundary. 4461 static bool sortIntervals(const ResourceSegments::IntervalTy &A, 4462 const ResourceSegments::IntervalTy &B) { 4463 return A.first < B.first; 4464 } 4465 4466 unsigned ResourceSegments::getFirstAvailableAt( 4467 unsigned CurrCycle, unsigned AcquireAtCycle, unsigned ReleaseAtCycle, 4468 std::function<ResourceSegments::IntervalTy(unsigned, unsigned, unsigned)> 4469 IntervalBuilder) const { 4470 assert(std::is_sorted(std::begin(_Intervals), std::end(_Intervals), 4471 sortIntervals) && 4472 "Cannot execute on an un-sorted set of intervals."); 4473 4474 // Zero resource usage is allowed by TargetSchedule.td but we do not construct 4475 // a ResourceSegment interval for that situation. 4476 if (AcquireAtCycle == ReleaseAtCycle) 4477 return CurrCycle; 4478 4479 unsigned RetCycle = CurrCycle; 4480 ResourceSegments::IntervalTy NewInterval = 4481 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4482 for (auto &Interval : _Intervals) { 4483 if (!intersects(NewInterval, Interval)) 4484 continue; 4485 4486 // Move the interval right next to the top of the one it 4487 // intersects. 4488 assert(Interval.second > NewInterval.first && 4489 "Invalid intervals configuration."); 4490 RetCycle += (unsigned)Interval.second - (unsigned)NewInterval.first; 4491 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle); 4492 } 4493 return RetCycle; 4494 } 4495 4496 void ResourceSegments::add(ResourceSegments::IntervalTy A, 4497 const unsigned CutOff) { 4498 assert(A.first <= A.second && "Cannot add negative resource usage"); 4499 assert(CutOff > 0 && "0-size interval history has no use."); 4500 // Zero resource usage is allowed by TargetSchedule.td, in the case that the 4501 // instruction needed the resource to be available but does not use it. 4502 // However, ResourceSegment represents an interval that is closed on the left 4503 // and open on the right. It is impossible to represent an empty interval when 4504 // the left is closed. Do not add it to Intervals. 4505 if (A.first == A.second) 4506 return; 4507 4508 assert(all_of(_Intervals, 4509 [&A](const ResourceSegments::IntervalTy &Interval) -> bool { 4510 return !intersects(A, Interval); 4511 }) && 4512 "A resource is being overwritten"); 4513 _Intervals.push_back(A); 4514 4515 sortAndMerge(); 4516 4517 // Do not keep the full history of the intervals, just the 4518 // latest #CutOff. 4519 while (_Intervals.size() > CutOff) 4520 _Intervals.pop_front(); 4521 } 4522 4523 bool ResourceSegments::intersects(ResourceSegments::IntervalTy A, 4524 ResourceSegments::IntervalTy B) { 4525 assert(A.first <= A.second && "Invalid interval"); 4526 assert(B.first <= B.second && "Invalid interval"); 4527 4528 // Share one boundary. 4529 if ((A.first == B.first) || (A.second == B.second)) 4530 return true; 4531 4532 // full intersersect: [ *** ) B 4533 // [***) A 4534 if ((A.first > B.first) && (A.second < B.second)) 4535 return true; 4536 4537 // right intersect: [ ***) B 4538 // [*** ) A 4539 if ((A.first > B.first) && (A.first < B.second) && (A.second > B.second)) 4540 return true; 4541 4542 // left intersect: [*** ) B 4543 // [ ***) A 4544 if ((A.first < B.first) && (B.first < A.second) && (B.second > B.first)) 4545 return true; 4546 4547 return false; 4548 } 4549 4550 void ResourceSegments::sortAndMerge() { 4551 if (_Intervals.size() <= 1) 4552 return; 4553 4554 // First sort the collection. 4555 _Intervals.sort(sortIntervals); 4556 4557 // can use next because I have at least 2 elements in the list 4558 auto next = std::next(std::begin(_Intervals)); 4559 auto E = std::end(_Intervals); 4560 for (; next != E; ++next) { 4561 if (std::prev(next)->second >= next->first) { 4562 next->first = std::prev(next)->first; 4563 _Intervals.erase(std::prev(next)); 4564 continue; 4565 } 4566 } 4567 } 4568