1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/MC/LaneBitmask.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/GraphWriter.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetLowering.h" 57 #include "llvm/Target/TargetRegisterInfo.h" 58 #include "llvm/Target/TargetSubtargetInfo.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() 204 : MachineSchedulerBase(ID) { 205 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 206 } 207 208 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 209 AU.setPreservesCFG(); 210 AU.addRequiredID(MachineDominatorsID); 211 AU.addRequired<MachineLoopInfo>(); 212 AU.addRequired<AAResultsWrapperPass>(); 213 AU.addRequired<TargetPassConfig>(); 214 AU.addRequired<SlotIndexes>(); 215 AU.addPreserved<SlotIndexes>(); 216 AU.addRequired<LiveIntervals>(); 217 AU.addPreserved<LiveIntervals>(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 char PostMachineScheduler::ID = 0; 222 223 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 224 225 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 226 "PostRA Machine Instruction Scheduler", false, false) 227 228 PostMachineScheduler::PostMachineScheduler() 229 : MachineSchedulerBase(ID) { 230 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 231 } 232 233 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 234 AU.setPreservesCFG(); 235 AU.addRequiredID(MachineDominatorsID); 236 AU.addRequired<MachineLoopInfo>(); 237 AU.addRequired<TargetPassConfig>(); 238 MachineFunctionPass::getAnalysisUsage(AU); 239 } 240 241 MachinePassRegistry MachineSchedRegistry::Registry; 242 243 /// A dummy default scheduler factory indicates whether the scheduler 244 /// is overridden on the command line. 245 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 246 return nullptr; 247 } 248 249 /// MachineSchedOpt allows command line selection of the scheduler. 250 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 251 RegisterPassParser<MachineSchedRegistry>> 252 MachineSchedOpt("misched", 253 cl::init(&useDefaultMachineSched), cl::Hidden, 254 cl::desc("Machine instruction scheduler to use")); 255 256 static MachineSchedRegistry 257 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 258 useDefaultMachineSched); 259 260 static cl::opt<bool> EnableMachineSched( 261 "enable-misched", 262 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 263 cl::Hidden); 264 265 static cl::opt<bool> EnablePostRAMachineSched( 266 "enable-post-misched", 267 cl::desc("Enable the post-ra machine instruction scheduling pass."), 268 cl::init(true), cl::Hidden); 269 270 /// Decrement this iterator until reaching the top or a non-debug instr. 271 static MachineBasicBlock::const_iterator 272 priorNonDebug(MachineBasicBlock::const_iterator I, 273 MachineBasicBlock::const_iterator Beg) { 274 assert(I != Beg && "reached the top of the region, cannot decrement"); 275 while (--I != Beg) { 276 if (!I->isDebugValue()) 277 break; 278 } 279 return I; 280 } 281 282 /// Non-const version. 283 static MachineBasicBlock::iterator 284 priorNonDebug(MachineBasicBlock::iterator I, 285 MachineBasicBlock::const_iterator Beg) { 286 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 287 .getNonConstIterator(); 288 } 289 290 /// If this iterator is a debug value, increment until reaching the End or a 291 /// non-debug instruction. 292 static MachineBasicBlock::const_iterator 293 nextIfDebug(MachineBasicBlock::const_iterator I, 294 MachineBasicBlock::const_iterator End) { 295 for(; I != End; ++I) { 296 if (!I->isDebugValue()) 297 break; 298 } 299 return I; 300 } 301 302 /// Non-const version. 303 static MachineBasicBlock::iterator 304 nextIfDebug(MachineBasicBlock::iterator I, 305 MachineBasicBlock::const_iterator End) { 306 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 307 .getNonConstIterator(); 308 } 309 310 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 311 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 312 // Select the scheduler, or set the default. 313 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 314 if (Ctor != useDefaultMachineSched) 315 return Ctor(this); 316 317 // Get the default scheduler set by the target for this function. 318 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 319 if (Scheduler) 320 return Scheduler; 321 322 // Default to GenericScheduler. 323 return createGenericSchedLive(this); 324 } 325 326 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 327 /// the caller. We don't have a command line option to override the postRA 328 /// scheduler. The Target must configure it. 329 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 330 // Get the postRA scheduler set by the target for this function. 331 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 332 if (Scheduler) 333 return Scheduler; 334 335 // Default to GenericScheduler. 336 return createGenericSchedPostRA(this); 337 } 338 339 /// Top-level MachineScheduler pass driver. 340 /// 341 /// Visit blocks in function order. Divide each block into scheduling regions 342 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 343 /// consistent with the DAG builder, which traverses the interior of the 344 /// scheduling regions bottom-up. 345 /// 346 /// This design avoids exposing scheduling boundaries to the DAG builder, 347 /// simplifying the DAG builder's support for "special" target instructions. 348 /// At the same time the design allows target schedulers to operate across 349 /// scheduling boundaries, for example to bundle the boudary instructions 350 /// without reordering them. This creates complexity, because the target 351 /// scheduler must update the RegionBegin and RegionEnd positions cached by 352 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 353 /// design would be to split blocks at scheduling boundaries, but LLVM has a 354 /// general bias against block splitting purely for implementation simplicity. 355 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 356 if (skipFunction(*mf.getFunction())) 357 return false; 358 359 if (EnableMachineSched.getNumOccurrences()) { 360 if (!EnableMachineSched) 361 return false; 362 } else if (!mf.getSubtarget().enableMachineScheduler()) 363 return false; 364 365 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 366 367 // Initialize the context of the pass. 368 MF = &mf; 369 MLI = &getAnalysis<MachineLoopInfo>(); 370 MDT = &getAnalysis<MachineDominatorTree>(); 371 PassConfig = &getAnalysis<TargetPassConfig>(); 372 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 373 374 LIS = &getAnalysis<LiveIntervals>(); 375 376 if (VerifyScheduling) { 377 DEBUG(LIS->dump()); 378 MF->verify(this, "Before machine scheduling."); 379 } 380 RegClassInfo->runOnMachineFunction(*MF); 381 382 // Instantiate the selected scheduler for this target, function, and 383 // optimization level. 384 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 385 scheduleRegions(*Scheduler, false); 386 387 DEBUG(LIS->dump()); 388 if (VerifyScheduling) 389 MF->verify(this, "After machine scheduling."); 390 return true; 391 } 392 393 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 394 if (skipFunction(*mf.getFunction())) 395 return false; 396 397 if (EnablePostRAMachineSched.getNumOccurrences()) { 398 if (!EnablePostRAMachineSched) 399 return false; 400 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 401 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 402 return false; 403 } 404 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 405 406 // Initialize the context of the pass. 407 MF = &mf; 408 PassConfig = &getAnalysis<TargetPassConfig>(); 409 410 if (VerifyScheduling) 411 MF->verify(this, "Before post machine scheduling."); 412 413 // Instantiate the selected scheduler for this target, function, and 414 // optimization level. 415 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 416 scheduleRegions(*Scheduler, true); 417 418 if (VerifyScheduling) 419 MF->verify(this, "After post machine scheduling."); 420 return true; 421 } 422 423 /// Return true of the given instruction should not be included in a scheduling 424 /// region. 425 /// 426 /// MachineScheduler does not currently support scheduling across calls. To 427 /// handle calls, the DAG builder needs to be modified to create register 428 /// anti/output dependencies on the registers clobbered by the call's regmask 429 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 430 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 431 /// the boundary, but there would be no benefit to postRA scheduling across 432 /// calls this late anyway. 433 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 434 MachineBasicBlock *MBB, 435 MachineFunction *MF, 436 const TargetInstrInfo *TII) { 437 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 438 } 439 440 /// Main driver for both MachineScheduler and PostMachineScheduler. 441 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 442 bool FixKillFlags) { 443 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 444 445 // Visit all machine basic blocks. 446 // 447 // TODO: Visit blocks in global postorder or postorder within the bottom-up 448 // loop tree. Then we can optionally compute global RegPressure. 449 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 450 MBB != MBBEnd; ++MBB) { 451 452 Scheduler.startBlock(&*MBB); 453 454 #ifndef NDEBUG 455 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 456 continue; 457 if (SchedOnlyBlock.getNumOccurrences() 458 && (int)SchedOnlyBlock != MBB->getNumber()) 459 continue; 460 #endif 461 462 // Break the block into scheduling regions [I, RegionEnd), and schedule each 463 // region as soon as it is discovered. RegionEnd points the scheduling 464 // boundary at the bottom of the region. The DAG does not include RegionEnd, 465 // but the region does (i.e. the next RegionEnd is above the previous 466 // RegionBegin). If the current block has no terminator then RegionEnd == 467 // MBB->end() for the bottom region. 468 // 469 // The Scheduler may insert instructions during either schedule() or 470 // exitRegion(), even for empty regions. So the local iterators 'I' and 471 // 'RegionEnd' are invalid across these calls. 472 // 473 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 474 // as a single instruction. 475 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 476 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 477 478 // Avoid decrementing RegionEnd for blocks with no terminator. 479 if (RegionEnd != MBB->end() || 480 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 481 --RegionEnd; 482 } 483 484 // The next region starts above the previous region. Look backward in the 485 // instruction stream until we find the nearest boundary. 486 unsigned NumRegionInstrs = 0; 487 MachineBasicBlock::iterator I = RegionEnd; 488 for (; I != MBB->begin(); --I) { 489 MachineInstr &MI = *std::prev(I); 490 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 491 break; 492 if (!MI.isDebugValue()) 493 ++NumRegionInstrs; 494 } 495 // Notify the scheduler of the region, even if we may skip scheduling 496 // it. Perhaps it still needs to be bundled. 497 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 498 499 // Skip empty scheduling regions (0 or 1 schedulable instructions). 500 if (I == RegionEnd || I == std::prev(RegionEnd)) { 501 // Close the current region. Bundle the terminator if needed. 502 // This invalidates 'RegionEnd' and 'I'. 503 Scheduler.exitRegion(); 504 continue; 505 } 506 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 507 DEBUG(dbgs() << MF->getName() 508 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 509 << "\n From: " << *I << " To: "; 510 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 511 else dbgs() << "End"; 512 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 513 if (DumpCriticalPathLength) { 514 errs() << MF->getName(); 515 errs() << ":BB# " << MBB->getNumber(); 516 errs() << " " << MBB->getName() << " \n"; 517 } 518 519 // Schedule a region: possibly reorder instructions. 520 // This invalidates 'RegionEnd' and 'I'. 521 Scheduler.schedule(); 522 523 // Close the current region. 524 Scheduler.exitRegion(); 525 526 // Scheduling has invalidated the current iterator 'I'. Ask the 527 // scheduler for the top of it's scheduled region. 528 RegionEnd = Scheduler.begin(); 529 } 530 Scheduler.finishBlock(); 531 // FIXME: Ideally, no further passes should rely on kill flags. However, 532 // thumb2 size reduction is currently an exception, so the PostMIScheduler 533 // needs to do this. 534 if (FixKillFlags) 535 Scheduler.fixupKills(*MBB); 536 } 537 Scheduler.finalizeSchedule(); 538 } 539 540 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 541 // unimplemented 542 } 543 544 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 545 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 546 dbgs() << "Queue " << Name << ": "; 547 for (const SUnit *SU : Queue) 548 dbgs() << SU->NodeNum << " "; 549 dbgs() << "\n"; 550 } 551 #endif 552 553 //===----------------------------------------------------------------------===// 554 // ScheduleDAGMI - Basic machine instruction scheduling. This is 555 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 556 // virtual registers. 557 // ===----------------------------------------------------------------------===/ 558 559 // Provide a vtable anchor. 560 ScheduleDAGMI::~ScheduleDAGMI() = default; 561 562 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 563 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 564 } 565 566 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 567 if (SuccSU != &ExitSU) { 568 // Do not use WillCreateCycle, it assumes SD scheduling. 569 // If Pred is reachable from Succ, then the edge creates a cycle. 570 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 571 return false; 572 Topo.AddPred(SuccSU, PredDep.getSUnit()); 573 } 574 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 575 // Return true regardless of whether a new edge needed to be inserted. 576 return true; 577 } 578 579 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 580 /// NumPredsLeft reaches zero, release the successor node. 581 /// 582 /// FIXME: Adjust SuccSU height based on MinLatency. 583 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 584 SUnit *SuccSU = SuccEdge->getSUnit(); 585 586 if (SuccEdge->isWeak()) { 587 --SuccSU->WeakPredsLeft; 588 if (SuccEdge->isCluster()) 589 NextClusterSucc = SuccSU; 590 return; 591 } 592 #ifndef NDEBUG 593 if (SuccSU->NumPredsLeft == 0) { 594 dbgs() << "*** Scheduling failed! ***\n"; 595 SuccSU->dump(this); 596 dbgs() << " has been released too many times!\n"; 597 llvm_unreachable(nullptr); 598 } 599 #endif 600 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 601 // CurrCycle may have advanced since then. 602 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 603 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 604 605 --SuccSU->NumPredsLeft; 606 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 607 SchedImpl->releaseTopNode(SuccSU); 608 } 609 610 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 611 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 612 for (SDep &Succ : SU->Succs) 613 releaseSucc(SU, &Succ); 614 } 615 616 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 617 /// NumSuccsLeft reaches zero, release the predecessor node. 618 /// 619 /// FIXME: Adjust PredSU height based on MinLatency. 620 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 621 SUnit *PredSU = PredEdge->getSUnit(); 622 623 if (PredEdge->isWeak()) { 624 --PredSU->WeakSuccsLeft; 625 if (PredEdge->isCluster()) 626 NextClusterPred = PredSU; 627 return; 628 } 629 #ifndef NDEBUG 630 if (PredSU->NumSuccsLeft == 0) { 631 dbgs() << "*** Scheduling failed! ***\n"; 632 PredSU->dump(this); 633 dbgs() << " has been released too many times!\n"; 634 llvm_unreachable(nullptr); 635 } 636 #endif 637 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 638 // CurrCycle may have advanced since then. 639 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 640 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 641 642 --PredSU->NumSuccsLeft; 643 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 644 SchedImpl->releaseBottomNode(PredSU); 645 } 646 647 /// releasePredecessors - Call releasePred on each of SU's predecessors. 648 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 649 for (SDep &Pred : SU->Preds) 650 releasePred(SU, &Pred); 651 } 652 653 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 654 /// crossing a scheduling boundary. [begin, end) includes all instructions in 655 /// the region, including the boundary itself and single-instruction regions 656 /// that don't get scheduled. 657 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 658 MachineBasicBlock::iterator begin, 659 MachineBasicBlock::iterator end, 660 unsigned regioninstrs) 661 { 662 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 663 664 SchedImpl->initPolicy(begin, end, regioninstrs); 665 } 666 667 /// This is normally called from the main scheduler loop but may also be invoked 668 /// by the scheduling strategy to perform additional code motion. 669 void ScheduleDAGMI::moveInstruction( 670 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 671 // Advance RegionBegin if the first instruction moves down. 672 if (&*RegionBegin == MI) 673 ++RegionBegin; 674 675 // Update the instruction stream. 676 BB->splice(InsertPos, BB, MI); 677 678 // Update LiveIntervals 679 if (LIS) 680 LIS->handleMove(*MI, /*UpdateFlags=*/true); 681 682 // Recede RegionBegin if an instruction moves above the first. 683 if (RegionBegin == InsertPos) 684 RegionBegin = MI; 685 } 686 687 bool ScheduleDAGMI::checkSchedLimit() { 688 #ifndef NDEBUG 689 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 690 CurrentTop = CurrentBottom; 691 return false; 692 } 693 ++NumInstrsScheduled; 694 #endif 695 return true; 696 } 697 698 /// Per-region scheduling driver, called back from 699 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 700 /// does not consider liveness or register pressure. It is useful for PostRA 701 /// scheduling and potentially other custom schedulers. 702 void ScheduleDAGMI::schedule() { 703 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 704 DEBUG(SchedImpl->dumpPolicy()); 705 706 // Build the DAG. 707 buildSchedGraph(AA); 708 709 Topo.InitDAGTopologicalSorting(); 710 711 postprocessDAG(); 712 713 SmallVector<SUnit*, 8> TopRoots, BotRoots; 714 findRootsAndBiasEdges(TopRoots, BotRoots); 715 716 // Initialize the strategy before modifying the DAG. 717 // This may initialize a DFSResult to be used for queue priority. 718 SchedImpl->initialize(this); 719 720 DEBUG( 721 if (EntrySU.getInstr() != nullptr) 722 EntrySU.dumpAll(this); 723 for (const SUnit &SU : SUnits) 724 SU.dumpAll(this); 725 if (ExitSU.getInstr() != nullptr) 726 ExitSU.dumpAll(this); 727 ); 728 if (ViewMISchedDAGs) viewGraph(); 729 730 // Initialize ready queues now that the DAG and priority data are finalized. 731 initQueues(TopRoots, BotRoots); 732 733 bool IsTopNode = false; 734 while (true) { 735 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 736 SUnit *SU = SchedImpl->pickNode(IsTopNode); 737 if (!SU) break; 738 739 assert(!SU->isScheduled && "Node already scheduled"); 740 if (!checkSchedLimit()) 741 break; 742 743 MachineInstr *MI = SU->getInstr(); 744 if (IsTopNode) { 745 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 746 if (&*CurrentTop == MI) 747 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 748 else 749 moveInstruction(MI, CurrentTop); 750 } else { 751 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 752 MachineBasicBlock::iterator priorII = 753 priorNonDebug(CurrentBottom, CurrentTop); 754 if (&*priorII == MI) 755 CurrentBottom = priorII; 756 else { 757 if (&*CurrentTop == MI) 758 CurrentTop = nextIfDebug(++CurrentTop, priorII); 759 moveInstruction(MI, CurrentBottom); 760 CurrentBottom = MI; 761 } 762 } 763 // Notify the scheduling strategy before updating the DAG. 764 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 765 // runs, it can then use the accurate ReadyCycle time to determine whether 766 // newly released nodes can move to the readyQ. 767 SchedImpl->schedNode(SU, IsTopNode); 768 769 updateQueues(SU, IsTopNode); 770 } 771 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 772 773 placeDebugValues(); 774 775 DEBUG({ 776 unsigned BBNum = begin()->getParent()->getNumber(); 777 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 778 dumpSchedule(); 779 dbgs() << '\n'; 780 }); 781 } 782 783 /// Apply each ScheduleDAGMutation step in order. 784 void ScheduleDAGMI::postprocessDAG() { 785 for (auto &m : Mutations) 786 m->apply(this); 787 } 788 789 void ScheduleDAGMI:: 790 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 791 SmallVectorImpl<SUnit*> &BotRoots) { 792 for (SUnit &SU : SUnits) { 793 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 794 795 // Order predecessors so DFSResult follows the critical path. 796 SU.biasCriticalPath(); 797 798 // A SUnit is ready to top schedule if it has no predecessors. 799 if (!SU.NumPredsLeft) 800 TopRoots.push_back(&SU); 801 // A SUnit is ready to bottom schedule if it has no successors. 802 if (!SU.NumSuccsLeft) 803 BotRoots.push_back(&SU); 804 } 805 ExitSU.biasCriticalPath(); 806 } 807 808 /// Identify DAG roots and setup scheduler queues. 809 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 810 ArrayRef<SUnit*> BotRoots) { 811 NextClusterSucc = nullptr; 812 NextClusterPred = nullptr; 813 814 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 815 // 816 // Nodes with unreleased weak edges can still be roots. 817 // Release top roots in forward order. 818 for (SUnit *SU : TopRoots) 819 SchedImpl->releaseTopNode(SU); 820 821 // Release bottom roots in reverse order so the higher priority nodes appear 822 // first. This is more natural and slightly more efficient. 823 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 824 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 825 SchedImpl->releaseBottomNode(*I); 826 } 827 828 releaseSuccessors(&EntrySU); 829 releasePredecessors(&ExitSU); 830 831 SchedImpl->registerRoots(); 832 833 // Advance past initial DebugValues. 834 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 835 CurrentBottom = RegionEnd; 836 } 837 838 /// Update scheduler queues after scheduling an instruction. 839 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 840 // Release dependent instructions for scheduling. 841 if (IsTopNode) 842 releaseSuccessors(SU); 843 else 844 releasePredecessors(SU); 845 846 SU->isScheduled = true; 847 } 848 849 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 850 void ScheduleDAGMI::placeDebugValues() { 851 // If first instruction was a DBG_VALUE then put it back. 852 if (FirstDbgValue) { 853 BB->splice(RegionBegin, BB, FirstDbgValue); 854 RegionBegin = FirstDbgValue; 855 } 856 857 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 858 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 859 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 860 MachineInstr *DbgValue = P.first; 861 MachineBasicBlock::iterator OrigPrevMI = P.second; 862 if (&*RegionBegin == DbgValue) 863 ++RegionBegin; 864 BB->splice(++OrigPrevMI, BB, DbgValue); 865 if (OrigPrevMI == std::prev(RegionEnd)) 866 RegionEnd = DbgValue; 867 } 868 DbgValues.clear(); 869 FirstDbgValue = nullptr; 870 } 871 872 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 873 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 874 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 875 if (SUnit *SU = getSUnit(&(*MI))) 876 SU->dump(this); 877 else 878 dbgs() << "Missing SUnit\n"; 879 } 880 } 881 #endif 882 883 //===----------------------------------------------------------------------===// 884 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 885 // preservation. 886 //===----------------------------------------------------------------------===// 887 888 ScheduleDAGMILive::~ScheduleDAGMILive() { 889 delete DFSResult; 890 } 891 892 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 893 const MachineInstr &MI = *SU.getInstr(); 894 for (const MachineOperand &MO : MI.operands()) { 895 if (!MO.isReg()) 896 continue; 897 if (!MO.readsReg()) 898 continue; 899 if (TrackLaneMasks && !MO.isUse()) 900 continue; 901 902 unsigned Reg = MO.getReg(); 903 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 904 continue; 905 906 // Ignore re-defs. 907 if (TrackLaneMasks) { 908 bool FoundDef = false; 909 for (const MachineOperand &MO2 : MI.operands()) { 910 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 911 FoundDef = true; 912 break; 913 } 914 } 915 if (FoundDef) 916 continue; 917 } 918 919 // Record this local VReg use. 920 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 921 for (; UI != VRegUses.end(); ++UI) { 922 if (UI->SU == &SU) 923 break; 924 } 925 if (UI == VRegUses.end()) 926 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 927 } 928 } 929 930 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 931 /// crossing a scheduling boundary. [begin, end) includes all instructions in 932 /// the region, including the boundary itself and single-instruction regions 933 /// that don't get scheduled. 934 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 935 MachineBasicBlock::iterator begin, 936 MachineBasicBlock::iterator end, 937 unsigned regioninstrs) 938 { 939 // ScheduleDAGMI initializes SchedImpl's per-region policy. 940 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 941 942 // For convenience remember the end of the liveness region. 943 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 944 945 SUPressureDiffs.clear(); 946 947 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 948 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 949 950 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 951 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 952 } 953 954 // Setup the register pressure trackers for the top scheduled top and bottom 955 // scheduled regions. 956 void ScheduleDAGMILive::initRegPressure() { 957 VRegUses.clear(); 958 VRegUses.setUniverse(MRI.getNumVirtRegs()); 959 for (SUnit &SU : SUnits) 960 collectVRegUses(SU); 961 962 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 963 ShouldTrackLaneMasks, false); 964 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 965 ShouldTrackLaneMasks, false); 966 967 // Close the RPTracker to finalize live ins. 968 RPTracker.closeRegion(); 969 970 DEBUG(RPTracker.dump()); 971 972 // Initialize the live ins and live outs. 973 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 974 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 975 976 // Close one end of the tracker so we can call 977 // getMaxUpward/DownwardPressureDelta before advancing across any 978 // instructions. This converts currently live regs into live ins/outs. 979 TopRPTracker.closeTop(); 980 BotRPTracker.closeBottom(); 981 982 BotRPTracker.initLiveThru(RPTracker); 983 if (!BotRPTracker.getLiveThru().empty()) { 984 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 985 DEBUG(dbgs() << "Live Thru: "; 986 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 987 }; 988 989 // For each live out vreg reduce the pressure change associated with other 990 // uses of the same vreg below the live-out reaching def. 991 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 992 993 // Account for liveness generated by the region boundary. 994 if (LiveRegionEnd != RegionEnd) { 995 SmallVector<RegisterMaskPair, 8> LiveUses; 996 BotRPTracker.recede(&LiveUses); 997 updatePressureDiffs(LiveUses); 998 } 999 1000 DEBUG( 1001 dbgs() << "Top Pressure:\n"; 1002 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1003 dbgs() << "Bottom Pressure:\n"; 1004 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1005 ); 1006 1007 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 1008 1009 // Cache the list of excess pressure sets in this region. This will also track 1010 // the max pressure in the scheduled code for these sets. 1011 RegionCriticalPSets.clear(); 1012 const std::vector<unsigned> &RegionPressure = 1013 RPTracker.getPressure().MaxSetPressure; 1014 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1015 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1016 if (RegionPressure[i] > Limit) { 1017 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1018 << " Limit " << Limit 1019 << " Actual " << RegionPressure[i] << "\n"); 1020 RegionCriticalPSets.push_back(PressureChange(i)); 1021 } 1022 } 1023 DEBUG(dbgs() << "Excess PSets: "; 1024 for (const PressureChange &RCPS : RegionCriticalPSets) 1025 dbgs() << TRI->getRegPressureSetName( 1026 RCPS.getPSet()) << " "; 1027 dbgs() << "\n"); 1028 } 1029 1030 void ScheduleDAGMILive:: 1031 updateScheduledPressure(const SUnit *SU, 1032 const std::vector<unsigned> &NewMaxPressure) { 1033 const PressureDiff &PDiff = getPressureDiff(SU); 1034 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1035 for (const PressureChange &PC : PDiff) { 1036 if (!PC.isValid()) 1037 break; 1038 unsigned ID = PC.getPSet(); 1039 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1040 ++CritIdx; 1041 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1042 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1043 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1044 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1045 } 1046 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1047 if (NewMaxPressure[ID] >= Limit - 2) { 1048 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1049 << NewMaxPressure[ID] 1050 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1051 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1052 } 1053 } 1054 } 1055 1056 /// Update the PressureDiff array for liveness after scheduling this 1057 /// instruction. 1058 void ScheduleDAGMILive::updatePressureDiffs( 1059 ArrayRef<RegisterMaskPair> LiveUses) { 1060 for (const RegisterMaskPair &P : LiveUses) { 1061 unsigned Reg = P.RegUnit; 1062 /// FIXME: Currently assuming single-use physregs. 1063 if (!TRI->isVirtualRegister(Reg)) 1064 continue; 1065 1066 if (ShouldTrackLaneMasks) { 1067 // If the register has just become live then other uses won't change 1068 // this fact anymore => decrement pressure. 1069 // If the register has just become dead then other uses make it come 1070 // back to life => increment pressure. 1071 bool Decrement = P.LaneMask.any(); 1072 1073 for (const VReg2SUnit &V2SU 1074 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1075 SUnit &SU = *V2SU.SU; 1076 if (SU.isScheduled || &SU == &ExitSU) 1077 continue; 1078 1079 PressureDiff &PDiff = getPressureDiff(&SU); 1080 PDiff.addPressureChange(Reg, Decrement, &MRI); 1081 DEBUG( 1082 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1083 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1084 << ' ' << *SU.getInstr(); 1085 dbgs() << " to "; 1086 PDiff.dump(*TRI); 1087 ); 1088 } 1089 } else { 1090 assert(P.LaneMask.any()); 1091 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1092 // This may be called before CurrentBottom has been initialized. However, 1093 // BotRPTracker must have a valid position. We want the value live into the 1094 // instruction or live out of the block, so ask for the previous 1095 // instruction's live-out. 1096 const LiveInterval &LI = LIS->getInterval(Reg); 1097 VNInfo *VNI; 1098 MachineBasicBlock::const_iterator I = 1099 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1100 if (I == BB->end()) 1101 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1102 else { 1103 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1104 VNI = LRQ.valueIn(); 1105 } 1106 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1107 assert(VNI && "No live value at use."); 1108 for (const VReg2SUnit &V2SU 1109 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1110 SUnit *SU = V2SU.SU; 1111 // If this use comes before the reaching def, it cannot be a last use, 1112 // so decrease its pressure change. 1113 if (!SU->isScheduled && SU != &ExitSU) { 1114 LiveQueryResult LRQ = 1115 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1116 if (LRQ.valueIn() == VNI) { 1117 PressureDiff &PDiff = getPressureDiff(SU); 1118 PDiff.addPressureChange(Reg, true, &MRI); 1119 DEBUG( 1120 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1121 << *SU->getInstr(); 1122 dbgs() << " to "; 1123 PDiff.dump(*TRI); 1124 ); 1125 } 1126 } 1127 } 1128 } 1129 } 1130 } 1131 1132 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1133 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1134 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1135 /// 1136 /// This is a skeletal driver, with all the functionality pushed into helpers, 1137 /// so that it can be easily extended by experimental schedulers. Generally, 1138 /// implementing MachineSchedStrategy should be sufficient to implement a new 1139 /// scheduling algorithm. However, if a scheduler further subclasses 1140 /// ScheduleDAGMILive then it will want to override this virtual method in order 1141 /// to update any specialized state. 1142 void ScheduleDAGMILive::schedule() { 1143 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1144 DEBUG(SchedImpl->dumpPolicy()); 1145 buildDAGWithRegPressure(); 1146 1147 Topo.InitDAGTopologicalSorting(); 1148 1149 postprocessDAG(); 1150 1151 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1152 findRootsAndBiasEdges(TopRoots, BotRoots); 1153 1154 // Initialize the strategy before modifying the DAG. 1155 // This may initialize a DFSResult to be used for queue priority. 1156 SchedImpl->initialize(this); 1157 1158 DEBUG( 1159 if (EntrySU.getInstr() != nullptr) 1160 EntrySU.dumpAll(this); 1161 for (const SUnit &SU : SUnits) { 1162 SU.dumpAll(this); 1163 if (ShouldTrackPressure) { 1164 dbgs() << " Pressure Diff : "; 1165 getPressureDiff(&SU).dump(*TRI); 1166 } 1167 dbgs() << " Single Issue : "; 1168 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1169 SchedModel.mustEndGroup(SU.getInstr())) 1170 dbgs() << "true;"; 1171 else 1172 dbgs() << "false;"; 1173 dbgs() << '\n'; 1174 } 1175 if (ExitSU.getInstr() != nullptr) 1176 ExitSU.dumpAll(this); 1177 ); 1178 if (ViewMISchedDAGs) viewGraph(); 1179 1180 // Initialize ready queues now that the DAG and priority data are finalized. 1181 initQueues(TopRoots, BotRoots); 1182 1183 bool IsTopNode = false; 1184 while (true) { 1185 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1186 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1187 if (!SU) break; 1188 1189 assert(!SU->isScheduled && "Node already scheduled"); 1190 if (!checkSchedLimit()) 1191 break; 1192 1193 scheduleMI(SU, IsTopNode); 1194 1195 if (DFSResult) { 1196 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1197 if (!ScheduledTrees.test(SubtreeID)) { 1198 ScheduledTrees.set(SubtreeID); 1199 DFSResult->scheduleTree(SubtreeID); 1200 SchedImpl->scheduleTree(SubtreeID); 1201 } 1202 } 1203 1204 // Notify the scheduling strategy after updating the DAG. 1205 SchedImpl->schedNode(SU, IsTopNode); 1206 1207 updateQueues(SU, IsTopNode); 1208 } 1209 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1210 1211 placeDebugValues(); 1212 1213 DEBUG({ 1214 unsigned BBNum = begin()->getParent()->getNumber(); 1215 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1216 dumpSchedule(); 1217 dbgs() << '\n'; 1218 }); 1219 } 1220 1221 /// Build the DAG and setup three register pressure trackers. 1222 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1223 if (!ShouldTrackPressure) { 1224 RPTracker.reset(); 1225 RegionCriticalPSets.clear(); 1226 buildSchedGraph(AA); 1227 return; 1228 } 1229 1230 // Initialize the register pressure tracker used by buildSchedGraph. 1231 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1232 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1233 1234 // Account for liveness generate by the region boundary. 1235 if (LiveRegionEnd != RegionEnd) 1236 RPTracker.recede(); 1237 1238 // Build the DAG, and compute current register pressure. 1239 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1240 1241 // Initialize top/bottom trackers after computing region pressure. 1242 initRegPressure(); 1243 } 1244 1245 void ScheduleDAGMILive::computeDFSResult() { 1246 if (!DFSResult) 1247 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1248 DFSResult->clear(); 1249 ScheduledTrees.clear(); 1250 DFSResult->resize(SUnits.size()); 1251 DFSResult->compute(SUnits); 1252 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1253 } 1254 1255 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1256 /// only provides the critical path for single block loops. To handle loops that 1257 /// span blocks, we could use the vreg path latencies provided by 1258 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1259 /// available for use in the scheduler. 1260 /// 1261 /// The cyclic path estimation identifies a def-use pair that crosses the back 1262 /// edge and considers the depth and height of the nodes. For example, consider 1263 /// the following instruction sequence where each instruction has unit latency 1264 /// and defines an epomymous virtual register: 1265 /// 1266 /// a->b(a,c)->c(b)->d(c)->exit 1267 /// 1268 /// The cyclic critical path is a two cycles: b->c->b 1269 /// The acyclic critical path is four cycles: a->b->c->d->exit 1270 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1271 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1272 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1273 /// LiveInDepth = depth(b) = len(a->b) = 1 1274 /// 1275 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1276 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1277 /// CyclicCriticalPath = min(2, 2) = 2 1278 /// 1279 /// This could be relevant to PostRA scheduling, but is currently implemented 1280 /// assuming LiveIntervals. 1281 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1282 // This only applies to single block loop. 1283 if (!BB->isSuccessor(BB)) 1284 return 0; 1285 1286 unsigned MaxCyclicLatency = 0; 1287 // Visit each live out vreg def to find def/use pairs that cross iterations. 1288 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1289 unsigned Reg = P.RegUnit; 1290 if (!TRI->isVirtualRegister(Reg)) 1291 continue; 1292 const LiveInterval &LI = LIS->getInterval(Reg); 1293 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1294 if (!DefVNI) 1295 continue; 1296 1297 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1298 const SUnit *DefSU = getSUnit(DefMI); 1299 if (!DefSU) 1300 continue; 1301 1302 unsigned LiveOutHeight = DefSU->getHeight(); 1303 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1304 // Visit all local users of the vreg def. 1305 for (const VReg2SUnit &V2SU 1306 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1307 SUnit *SU = V2SU.SU; 1308 if (SU == &ExitSU) 1309 continue; 1310 1311 // Only consider uses of the phi. 1312 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1313 if (!LRQ.valueIn()->isPHIDef()) 1314 continue; 1315 1316 // Assume that a path spanning two iterations is a cycle, which could 1317 // overestimate in strange cases. This allows cyclic latency to be 1318 // estimated as the minimum slack of the vreg's depth or height. 1319 unsigned CyclicLatency = 0; 1320 if (LiveOutDepth > SU->getDepth()) 1321 CyclicLatency = LiveOutDepth - SU->getDepth(); 1322 1323 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1324 if (LiveInHeight > LiveOutHeight) { 1325 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1326 CyclicLatency = LiveInHeight - LiveOutHeight; 1327 } else 1328 CyclicLatency = 0; 1329 1330 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1331 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1332 if (CyclicLatency > MaxCyclicLatency) 1333 MaxCyclicLatency = CyclicLatency; 1334 } 1335 } 1336 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1337 return MaxCyclicLatency; 1338 } 1339 1340 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1341 /// the Top RP tracker in case the region beginning has changed. 1342 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1343 ArrayRef<SUnit*> BotRoots) { 1344 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1345 if (ShouldTrackPressure) { 1346 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1347 TopRPTracker.setPos(CurrentTop); 1348 } 1349 } 1350 1351 /// Move an instruction and update register pressure. 1352 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1353 // Move the instruction to its new location in the instruction stream. 1354 MachineInstr *MI = SU->getInstr(); 1355 1356 if (IsTopNode) { 1357 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1358 if (&*CurrentTop == MI) 1359 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1360 else { 1361 moveInstruction(MI, CurrentTop); 1362 TopRPTracker.setPos(MI); 1363 } 1364 1365 if (ShouldTrackPressure) { 1366 // Update top scheduled pressure. 1367 RegisterOperands RegOpers; 1368 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1369 if (ShouldTrackLaneMasks) { 1370 // Adjust liveness and add missing dead+read-undef flags. 1371 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1372 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1373 } else { 1374 // Adjust for missing dead-def flags. 1375 RegOpers.detectDeadDefs(*MI, *LIS); 1376 } 1377 1378 TopRPTracker.advance(RegOpers); 1379 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1380 DEBUG( 1381 dbgs() << "Top Pressure:\n"; 1382 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1383 ); 1384 1385 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1386 } 1387 } else { 1388 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1389 MachineBasicBlock::iterator priorII = 1390 priorNonDebug(CurrentBottom, CurrentTop); 1391 if (&*priorII == MI) 1392 CurrentBottom = priorII; 1393 else { 1394 if (&*CurrentTop == MI) { 1395 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1396 TopRPTracker.setPos(CurrentTop); 1397 } 1398 moveInstruction(MI, CurrentBottom); 1399 CurrentBottom = MI; 1400 } 1401 if (ShouldTrackPressure) { 1402 RegisterOperands RegOpers; 1403 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1404 if (ShouldTrackLaneMasks) { 1405 // Adjust liveness and add missing dead+read-undef flags. 1406 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1407 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1408 } else { 1409 // Adjust for missing dead-def flags. 1410 RegOpers.detectDeadDefs(*MI, *LIS); 1411 } 1412 1413 BotRPTracker.recedeSkipDebugValues(); 1414 SmallVector<RegisterMaskPair, 8> LiveUses; 1415 BotRPTracker.recede(RegOpers, &LiveUses); 1416 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1417 DEBUG( 1418 dbgs() << "Bottom Pressure:\n"; 1419 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1420 ); 1421 1422 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1423 updatePressureDiffs(LiveUses); 1424 } 1425 } 1426 } 1427 1428 //===----------------------------------------------------------------------===// 1429 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1430 //===----------------------------------------------------------------------===// 1431 1432 namespace { 1433 1434 /// \brief Post-process the DAG to create cluster edges between neighboring 1435 /// loads or between neighboring stores. 1436 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1437 struct MemOpInfo { 1438 SUnit *SU; 1439 unsigned BaseReg; 1440 int64_t Offset; 1441 1442 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1443 : SU(su), BaseReg(reg), Offset(ofs) {} 1444 1445 bool operator<(const MemOpInfo&RHS) const { 1446 return std::tie(BaseReg, Offset, SU->NodeNum) < 1447 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1448 } 1449 }; 1450 1451 const TargetInstrInfo *TII; 1452 const TargetRegisterInfo *TRI; 1453 bool IsLoad; 1454 1455 public: 1456 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1457 const TargetRegisterInfo *tri, bool IsLoad) 1458 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1459 1460 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1461 1462 protected: 1463 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1464 }; 1465 1466 class StoreClusterMutation : public BaseMemOpClusterMutation { 1467 public: 1468 StoreClusterMutation(const TargetInstrInfo *tii, 1469 const TargetRegisterInfo *tri) 1470 : BaseMemOpClusterMutation(tii, tri, false) {} 1471 }; 1472 1473 class LoadClusterMutation : public BaseMemOpClusterMutation { 1474 public: 1475 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1476 : BaseMemOpClusterMutation(tii, tri, true) {} 1477 }; 1478 1479 } // end anonymous namespace 1480 1481 namespace llvm { 1482 1483 std::unique_ptr<ScheduleDAGMutation> 1484 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1485 const TargetRegisterInfo *TRI) { 1486 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1487 : nullptr; 1488 } 1489 1490 std::unique_ptr<ScheduleDAGMutation> 1491 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1492 const TargetRegisterInfo *TRI) { 1493 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1494 : nullptr; 1495 } 1496 1497 } // end namespace llvm 1498 1499 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1500 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1501 SmallVector<MemOpInfo, 32> MemOpRecords; 1502 for (SUnit *SU : MemOps) { 1503 unsigned BaseReg; 1504 int64_t Offset; 1505 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1506 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1507 } 1508 if (MemOpRecords.size() < 2) 1509 return; 1510 1511 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1512 unsigned ClusterLength = 1; 1513 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1514 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1515 ClusterLength = 1; 1516 continue; 1517 } 1518 1519 SUnit *SUa = MemOpRecords[Idx].SU; 1520 SUnit *SUb = MemOpRecords[Idx+1].SU; 1521 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1522 ClusterLength) && 1523 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1524 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1525 << SUb->NodeNum << ")\n"); 1526 // Copy successor edges from SUa to SUb. Interleaving computation 1527 // dependent on SUa can prevent load combining due to register reuse. 1528 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1529 // loads should have effectively the same inputs. 1530 for (const SDep &Succ : SUa->Succs) { 1531 if (Succ.getSUnit() == SUb) 1532 continue; 1533 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1534 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1535 } 1536 ++ClusterLength; 1537 } else 1538 ClusterLength = 1; 1539 } 1540 } 1541 1542 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1543 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1544 1545 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1546 1547 // Map DAG NodeNum to store chain ID. 1548 DenseMap<unsigned, unsigned> StoreChainIDs; 1549 // Map each store chain to a set of dependent MemOps. 1550 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1551 for (SUnit &SU : DAG->SUnits) { 1552 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1553 (!IsLoad && !SU.getInstr()->mayStore())) 1554 continue; 1555 1556 unsigned ChainPredID = DAG->SUnits.size(); 1557 for (const SDep &Pred : SU.Preds) { 1558 if (Pred.isCtrl()) { 1559 ChainPredID = Pred.getSUnit()->NodeNum; 1560 break; 1561 } 1562 } 1563 // Check if this chain-like pred has been seen 1564 // before. ChainPredID==MaxNodeID at the top of the schedule. 1565 unsigned NumChains = StoreChainDependents.size(); 1566 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1567 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1568 if (Result.second) 1569 StoreChainDependents.resize(NumChains + 1); 1570 StoreChainDependents[Result.first->second].push_back(&SU); 1571 } 1572 1573 // Iterate over the store chains. 1574 for (auto &SCD : StoreChainDependents) 1575 clusterNeighboringMemOps(SCD, DAG); 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // CopyConstrain - DAG post-processing to encourage copy elimination. 1580 //===----------------------------------------------------------------------===// 1581 1582 namespace { 1583 1584 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1585 /// the one use that defines the copy's source vreg, most likely an induction 1586 /// variable increment. 1587 class CopyConstrain : public ScheduleDAGMutation { 1588 // Transient state. 1589 SlotIndex RegionBeginIdx; 1590 // RegionEndIdx is the slot index of the last non-debug instruction in the 1591 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1592 SlotIndex RegionEndIdx; 1593 1594 public: 1595 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1596 1597 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1598 1599 protected: 1600 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1601 }; 1602 1603 } // end anonymous namespace 1604 1605 namespace llvm { 1606 1607 std::unique_ptr<ScheduleDAGMutation> 1608 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1609 const TargetRegisterInfo *TRI) { 1610 return llvm::make_unique<CopyConstrain>(TII, TRI); 1611 } 1612 1613 } // end namespace llvm 1614 1615 /// constrainLocalCopy handles two possibilities: 1616 /// 1) Local src: 1617 /// I0: = dst 1618 /// I1: src = ... 1619 /// I2: = dst 1620 /// I3: dst = src (copy) 1621 /// (create pred->succ edges I0->I1, I2->I1) 1622 /// 1623 /// 2) Local copy: 1624 /// I0: dst = src (copy) 1625 /// I1: = dst 1626 /// I2: src = ... 1627 /// I3: = dst 1628 /// (create pred->succ edges I1->I2, I3->I2) 1629 /// 1630 /// Although the MachineScheduler is currently constrained to single blocks, 1631 /// this algorithm should handle extended blocks. An EBB is a set of 1632 /// contiguously numbered blocks such that the previous block in the EBB is 1633 /// always the single predecessor. 1634 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1635 LiveIntervals *LIS = DAG->getLIS(); 1636 MachineInstr *Copy = CopySU->getInstr(); 1637 1638 // Check for pure vreg copies. 1639 const MachineOperand &SrcOp = Copy->getOperand(1); 1640 unsigned SrcReg = SrcOp.getReg(); 1641 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1642 return; 1643 1644 const MachineOperand &DstOp = Copy->getOperand(0); 1645 unsigned DstReg = DstOp.getReg(); 1646 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1647 return; 1648 1649 // Check if either the dest or source is local. If it's live across a back 1650 // edge, it's not local. Note that if both vregs are live across the back 1651 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1652 // If both the copy's source and dest are local live intervals, then we 1653 // should treat the dest as the global for the purpose of adding 1654 // constraints. This adds edges from source's other uses to the copy. 1655 unsigned LocalReg = SrcReg; 1656 unsigned GlobalReg = DstReg; 1657 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1658 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1659 LocalReg = DstReg; 1660 GlobalReg = SrcReg; 1661 LocalLI = &LIS->getInterval(LocalReg); 1662 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1663 return; 1664 } 1665 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1666 1667 // Find the global segment after the start of the local LI. 1668 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1669 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1670 // local live range. We could create edges from other global uses to the local 1671 // start, but the coalescer should have already eliminated these cases, so 1672 // don't bother dealing with it. 1673 if (GlobalSegment == GlobalLI->end()) 1674 return; 1675 1676 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1677 // returned the next global segment. But if GlobalSegment overlaps with 1678 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1679 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1680 if (GlobalSegment->contains(LocalLI->beginIndex())) 1681 ++GlobalSegment; 1682 1683 if (GlobalSegment == GlobalLI->end()) 1684 return; 1685 1686 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1687 if (GlobalSegment != GlobalLI->begin()) { 1688 // Two address defs have no hole. 1689 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1690 GlobalSegment->start)) { 1691 return; 1692 } 1693 // If the prior global segment may be defined by the same two-address 1694 // instruction that also defines LocalLI, then can't make a hole here. 1695 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1696 LocalLI->beginIndex())) { 1697 return; 1698 } 1699 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1700 // it would be a disconnected component in the live range. 1701 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1702 "Disconnected LRG within the scheduling region."); 1703 } 1704 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1705 if (!GlobalDef) 1706 return; 1707 1708 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1709 if (!GlobalSU) 1710 return; 1711 1712 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1713 // constraining the uses of the last local def to precede GlobalDef. 1714 SmallVector<SUnit*,8> LocalUses; 1715 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1716 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1717 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1718 for (const SDep &Succ : LastLocalSU->Succs) { 1719 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1720 continue; 1721 if (Succ.getSUnit() == GlobalSU) 1722 continue; 1723 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1724 return; 1725 LocalUses.push_back(Succ.getSUnit()); 1726 } 1727 // Open the top of the GlobalLI hole by constraining any earlier global uses 1728 // to precede the start of LocalLI. 1729 SmallVector<SUnit*,8> GlobalUses; 1730 MachineInstr *FirstLocalDef = 1731 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1732 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1733 for (const SDep &Pred : GlobalSU->Preds) { 1734 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1735 continue; 1736 if (Pred.getSUnit() == FirstLocalSU) 1737 continue; 1738 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1739 return; 1740 GlobalUses.push_back(Pred.getSUnit()); 1741 } 1742 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1743 // Add the weak edges. 1744 for (SmallVectorImpl<SUnit*>::const_iterator 1745 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1746 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1747 << GlobalSU->NodeNum << ")\n"); 1748 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1749 } 1750 for (SmallVectorImpl<SUnit*>::const_iterator 1751 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1752 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1753 << FirstLocalSU->NodeNum << ")\n"); 1754 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1755 } 1756 } 1757 1758 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1759 /// copy elimination. 1760 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1761 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1762 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1763 1764 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1765 if (FirstPos == DAG->end()) 1766 return; 1767 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1768 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1769 *priorNonDebug(DAG->end(), DAG->begin())); 1770 1771 for (SUnit &SU : DAG->SUnits) { 1772 if (!SU.getInstr()->isCopy()) 1773 continue; 1774 1775 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1776 } 1777 } 1778 1779 //===----------------------------------------------------------------------===// 1780 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1781 // and possibly other custom schedulers. 1782 //===----------------------------------------------------------------------===// 1783 1784 static const unsigned InvalidCycle = ~0U; 1785 1786 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1787 1788 void SchedBoundary::reset() { 1789 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1790 // Destroying and reconstructing it is very expensive though. So keep 1791 // invalid, placeholder HazardRecs. 1792 if (HazardRec && HazardRec->isEnabled()) { 1793 delete HazardRec; 1794 HazardRec = nullptr; 1795 } 1796 Available.clear(); 1797 Pending.clear(); 1798 CheckPending = false; 1799 CurrCycle = 0; 1800 CurrMOps = 0; 1801 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1802 ExpectedLatency = 0; 1803 DependentLatency = 0; 1804 RetiredMOps = 0; 1805 MaxExecutedResCount = 0; 1806 ZoneCritResIdx = 0; 1807 IsResourceLimited = false; 1808 ReservedCycles.clear(); 1809 #ifndef NDEBUG 1810 // Track the maximum number of stall cycles that could arise either from the 1811 // latency of a DAG edge or the number of cycles that a processor resource is 1812 // reserved (SchedBoundary::ReservedCycles). 1813 MaxObservedStall = 0; 1814 #endif 1815 // Reserve a zero-count for invalid CritResIdx. 1816 ExecutedResCounts.resize(1); 1817 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1818 } 1819 1820 void SchedRemainder:: 1821 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1822 reset(); 1823 if (!SchedModel->hasInstrSchedModel()) 1824 return; 1825 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1826 for (SUnit &SU : DAG->SUnits) { 1827 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1828 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1829 * SchedModel->getMicroOpFactor(); 1830 for (TargetSchedModel::ProcResIter 1831 PI = SchedModel->getWriteProcResBegin(SC), 1832 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1833 unsigned PIdx = PI->ProcResourceIdx; 1834 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1835 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1836 } 1837 } 1838 } 1839 1840 void SchedBoundary:: 1841 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1842 reset(); 1843 DAG = dag; 1844 SchedModel = smodel; 1845 Rem = rem; 1846 if (SchedModel->hasInstrSchedModel()) { 1847 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1848 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1849 } 1850 } 1851 1852 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1853 /// these "soft stalls" differently than the hard stall cycles based on CPU 1854 /// resources and computed by checkHazard(). A fully in-order model 1855 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1856 /// available for scheduling until they are ready. However, a weaker in-order 1857 /// model may use this for heuristics. For example, if a processor has in-order 1858 /// behavior when reading certain resources, this may come into play. 1859 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1860 if (!SU->isUnbuffered) 1861 return 0; 1862 1863 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1864 if (ReadyCycle > CurrCycle) 1865 return ReadyCycle - CurrCycle; 1866 return 0; 1867 } 1868 1869 /// Compute the next cycle at which the given processor resource can be 1870 /// scheduled. 1871 unsigned SchedBoundary:: 1872 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1873 unsigned NextUnreserved = ReservedCycles[PIdx]; 1874 // If this resource has never been used, always return cycle zero. 1875 if (NextUnreserved == InvalidCycle) 1876 return 0; 1877 // For bottom-up scheduling add the cycles needed for the current operation. 1878 if (!isTop()) 1879 NextUnreserved += Cycles; 1880 return NextUnreserved; 1881 } 1882 1883 /// Does this SU have a hazard within the current instruction group. 1884 /// 1885 /// The scheduler supports two modes of hazard recognition. The first is the 1886 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1887 /// supports highly complicated in-order reservation tables 1888 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1889 /// 1890 /// The second is a streamlined mechanism that checks for hazards based on 1891 /// simple counters that the scheduler itself maintains. It explicitly checks 1892 /// for instruction dispatch limitations, including the number of micro-ops that 1893 /// can dispatch per cycle. 1894 /// 1895 /// TODO: Also check whether the SU must start a new group. 1896 bool SchedBoundary::checkHazard(SUnit *SU) { 1897 if (HazardRec->isEnabled() 1898 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1899 return true; 1900 } 1901 1902 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1903 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1904 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1905 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1906 return true; 1907 } 1908 1909 if (CurrMOps > 0 && 1910 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1911 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1912 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1913 << (isTop()? "begin" : "end") << " group\n"); 1914 return true; 1915 } 1916 1917 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1918 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1919 for (TargetSchedModel::ProcResIter 1920 PI = SchedModel->getWriteProcResBegin(SC), 1921 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1922 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1923 if (NRCycle > CurrCycle) { 1924 #ifndef NDEBUG 1925 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1926 #endif 1927 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1928 << SchedModel->getResourceName(PI->ProcResourceIdx) 1929 << "=" << NRCycle << "c\n"); 1930 return true; 1931 } 1932 } 1933 } 1934 return false; 1935 } 1936 1937 // Find the unscheduled node in ReadySUs with the highest latency. 1938 unsigned SchedBoundary:: 1939 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1940 SUnit *LateSU = nullptr; 1941 unsigned RemLatency = 0; 1942 for (SUnit *SU : ReadySUs) { 1943 unsigned L = getUnscheduledLatency(SU); 1944 if (L > RemLatency) { 1945 RemLatency = L; 1946 LateSU = SU; 1947 } 1948 } 1949 if (LateSU) { 1950 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1951 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1952 } 1953 return RemLatency; 1954 } 1955 1956 // Count resources in this zone and the remaining unscheduled 1957 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1958 // resource index, or zero if the zone is issue limited. 1959 unsigned SchedBoundary:: 1960 getOtherResourceCount(unsigned &OtherCritIdx) { 1961 OtherCritIdx = 0; 1962 if (!SchedModel->hasInstrSchedModel()) 1963 return 0; 1964 1965 unsigned OtherCritCount = Rem->RemIssueCount 1966 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1967 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1968 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1969 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1970 PIdx != PEnd; ++PIdx) { 1971 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1972 if (OtherCount > OtherCritCount) { 1973 OtherCritCount = OtherCount; 1974 OtherCritIdx = PIdx; 1975 } 1976 } 1977 if (OtherCritIdx) { 1978 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1979 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1980 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1981 } 1982 return OtherCritCount; 1983 } 1984 1985 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1986 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1987 1988 #ifndef NDEBUG 1989 // ReadyCycle was been bumped up to the CurrCycle when this node was 1990 // scheduled, but CurrCycle may have been eagerly advanced immediately after 1991 // scheduling, so may now be greater than ReadyCycle. 1992 if (ReadyCycle > CurrCycle) 1993 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 1994 #endif 1995 1996 if (ReadyCycle < MinReadyCycle) 1997 MinReadyCycle = ReadyCycle; 1998 1999 // Check for interlocks first. For the purpose of other heuristics, an 2000 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2001 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2002 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2003 Available.size() >= ReadyListLimit) 2004 Pending.push(SU); 2005 else 2006 Available.push(SU); 2007 } 2008 2009 /// Move the boundary of scheduled code by one cycle. 2010 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2011 if (SchedModel->getMicroOpBufferSize() == 0) { 2012 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2013 "MinReadyCycle uninitialized"); 2014 if (MinReadyCycle > NextCycle) 2015 NextCycle = MinReadyCycle; 2016 } 2017 // Update the current micro-ops, which will issue in the next cycle. 2018 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2019 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2020 2021 // Decrement DependentLatency based on the next cycle. 2022 if ((NextCycle - CurrCycle) > DependentLatency) 2023 DependentLatency = 0; 2024 else 2025 DependentLatency -= (NextCycle - CurrCycle); 2026 2027 if (!HazardRec->isEnabled()) { 2028 // Bypass HazardRec virtual calls. 2029 CurrCycle = NextCycle; 2030 } else { 2031 // Bypass getHazardType calls in case of long latency. 2032 for (; CurrCycle != NextCycle; ++CurrCycle) { 2033 if (isTop()) 2034 HazardRec->AdvanceCycle(); 2035 else 2036 HazardRec->RecedeCycle(); 2037 } 2038 } 2039 CheckPending = true; 2040 unsigned LFactor = SchedModel->getLatencyFactor(); 2041 IsResourceLimited = 2042 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2043 > (int)LFactor; 2044 2045 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2046 } 2047 2048 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2049 ExecutedResCounts[PIdx] += Count; 2050 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2051 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2052 } 2053 2054 /// Add the given processor resource to this scheduled zone. 2055 /// 2056 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2057 /// during which this resource is consumed. 2058 /// 2059 /// \return the next cycle at which the instruction may execute without 2060 /// oversubscribing resources. 2061 unsigned SchedBoundary:: 2062 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2063 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2064 unsigned Count = Factor * Cycles; 2065 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2066 << " +" << Cycles << "x" << Factor << "u\n"); 2067 2068 // Update Executed resources counts. 2069 incExecutedResources(PIdx, Count); 2070 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2071 Rem->RemainingCounts[PIdx] -= Count; 2072 2073 // Check if this resource exceeds the current critical resource. If so, it 2074 // becomes the critical resource. 2075 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2076 ZoneCritResIdx = PIdx; 2077 DEBUG(dbgs() << " *** Critical resource " 2078 << SchedModel->getResourceName(PIdx) << ": " 2079 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2080 } 2081 // For reserved resources, record the highest cycle using the resource. 2082 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2083 if (NextAvailable > CurrCycle) { 2084 DEBUG(dbgs() << " Resource conflict: " 2085 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2086 << NextAvailable << "\n"); 2087 } 2088 return NextAvailable; 2089 } 2090 2091 /// Move the boundary of scheduled code by one SUnit. 2092 void SchedBoundary::bumpNode(SUnit *SU) { 2093 // Update the reservation table. 2094 if (HazardRec->isEnabled()) { 2095 if (!isTop() && SU->isCall) { 2096 // Calls are scheduled with their preceding instructions. For bottom-up 2097 // scheduling, clear the pipeline state before emitting. 2098 HazardRec->Reset(); 2099 } 2100 HazardRec->EmitInstruction(SU); 2101 } 2102 // checkHazard should prevent scheduling multiple instructions per cycle that 2103 // exceed the issue width. 2104 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2105 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2106 assert( 2107 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2108 "Cannot schedule this instruction's MicroOps in the current cycle."); 2109 2110 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2111 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2112 2113 unsigned NextCycle = CurrCycle; 2114 switch (SchedModel->getMicroOpBufferSize()) { 2115 case 0: 2116 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2117 break; 2118 case 1: 2119 if (ReadyCycle > NextCycle) { 2120 NextCycle = ReadyCycle; 2121 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2122 } 2123 break; 2124 default: 2125 // We don't currently model the OOO reorder buffer, so consider all 2126 // scheduled MOps to be "retired". We do loosely model in-order resource 2127 // latency. If this instruction uses an in-order resource, account for any 2128 // likely stall cycles. 2129 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2130 NextCycle = ReadyCycle; 2131 break; 2132 } 2133 RetiredMOps += IncMOps; 2134 2135 // Update resource counts and critical resource. 2136 if (SchedModel->hasInstrSchedModel()) { 2137 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2138 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2139 Rem->RemIssueCount -= DecRemIssue; 2140 if (ZoneCritResIdx) { 2141 // Scale scheduled micro-ops for comparing with the critical resource. 2142 unsigned ScaledMOps = 2143 RetiredMOps * SchedModel->getMicroOpFactor(); 2144 2145 // If scaled micro-ops are now more than the previous critical resource by 2146 // a full cycle, then micro-ops issue becomes critical. 2147 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2148 >= (int)SchedModel->getLatencyFactor()) { 2149 ZoneCritResIdx = 0; 2150 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2151 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2152 } 2153 } 2154 for (TargetSchedModel::ProcResIter 2155 PI = SchedModel->getWriteProcResBegin(SC), 2156 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2157 unsigned RCycle = 2158 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2159 if (RCycle > NextCycle) 2160 NextCycle = RCycle; 2161 } 2162 if (SU->hasReservedResource) { 2163 // For reserved resources, record the highest cycle using the resource. 2164 // For top-down scheduling, this is the cycle in which we schedule this 2165 // instruction plus the number of cycles the operations reserves the 2166 // resource. For bottom-up is it simply the instruction's cycle. 2167 for (TargetSchedModel::ProcResIter 2168 PI = SchedModel->getWriteProcResBegin(SC), 2169 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2170 unsigned PIdx = PI->ProcResourceIdx; 2171 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2172 if (isTop()) { 2173 ReservedCycles[PIdx] = 2174 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2175 } 2176 else 2177 ReservedCycles[PIdx] = NextCycle; 2178 } 2179 } 2180 } 2181 } 2182 // Update ExpectedLatency and DependentLatency. 2183 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2184 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2185 if (SU->getDepth() > TopLatency) { 2186 TopLatency = SU->getDepth(); 2187 DEBUG(dbgs() << " " << Available.getName() 2188 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2189 } 2190 if (SU->getHeight() > BotLatency) { 2191 BotLatency = SU->getHeight(); 2192 DEBUG(dbgs() << " " << Available.getName() 2193 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2194 } 2195 // If we stall for any reason, bump the cycle. 2196 if (NextCycle > CurrCycle) { 2197 bumpCycle(NextCycle); 2198 } else { 2199 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2200 // resource limited. If a stall occurred, bumpCycle does this. 2201 unsigned LFactor = SchedModel->getLatencyFactor(); 2202 IsResourceLimited = 2203 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2204 > (int)LFactor; 2205 } 2206 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2207 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2208 // one cycle. Since we commonly reach the max MOps here, opportunistically 2209 // bump the cycle to avoid uselessly checking everything in the readyQ. 2210 CurrMOps += IncMOps; 2211 2212 // Bump the cycle count for issue group constraints. 2213 // This must be done after NextCycle has been adjust for all other stalls. 2214 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2215 // currCycle to X. 2216 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2217 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2218 DEBUG(dbgs() << " Bump cycle to " 2219 << (isTop() ? "end" : "begin") << " group\n"); 2220 bumpCycle(++NextCycle); 2221 } 2222 2223 while (CurrMOps >= SchedModel->getIssueWidth()) { 2224 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2225 << " at cycle " << CurrCycle << '\n'); 2226 bumpCycle(++NextCycle); 2227 } 2228 DEBUG(dumpScheduledState()); 2229 } 2230 2231 /// Release pending ready nodes in to the available queue. This makes them 2232 /// visible to heuristics. 2233 void SchedBoundary::releasePending() { 2234 // If the available queue is empty, it is safe to reset MinReadyCycle. 2235 if (Available.empty()) 2236 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2237 2238 // Check to see if any of the pending instructions are ready to issue. If 2239 // so, add them to the available queue. 2240 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2241 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2242 SUnit *SU = *(Pending.begin()+i); 2243 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2244 2245 if (ReadyCycle < MinReadyCycle) 2246 MinReadyCycle = ReadyCycle; 2247 2248 if (!IsBuffered && ReadyCycle > CurrCycle) 2249 continue; 2250 2251 if (checkHazard(SU)) 2252 continue; 2253 2254 if (Available.size() >= ReadyListLimit) 2255 break; 2256 2257 Available.push(SU); 2258 Pending.remove(Pending.begin()+i); 2259 --i; --e; 2260 } 2261 CheckPending = false; 2262 } 2263 2264 /// Remove SU from the ready set for this boundary. 2265 void SchedBoundary::removeReady(SUnit *SU) { 2266 if (Available.isInQueue(SU)) 2267 Available.remove(Available.find(SU)); 2268 else { 2269 assert(Pending.isInQueue(SU) && "bad ready count"); 2270 Pending.remove(Pending.find(SU)); 2271 } 2272 } 2273 2274 /// If this queue only has one ready candidate, return it. As a side effect, 2275 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2276 /// one node is ready. If multiple instructions are ready, return NULL. 2277 SUnit *SchedBoundary::pickOnlyChoice() { 2278 if (CheckPending) 2279 releasePending(); 2280 2281 if (CurrMOps > 0) { 2282 // Defer any ready instrs that now have a hazard. 2283 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2284 if (checkHazard(*I)) { 2285 Pending.push(*I); 2286 I = Available.remove(I); 2287 continue; 2288 } 2289 ++I; 2290 } 2291 } 2292 for (unsigned i = 0; Available.empty(); ++i) { 2293 // FIXME: Re-enable assert once PR20057 is resolved. 2294 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2295 // "permanent hazard"); 2296 (void)i; 2297 bumpCycle(CurrCycle + 1); 2298 releasePending(); 2299 } 2300 2301 DEBUG(Pending.dump()); 2302 DEBUG(Available.dump()); 2303 2304 if (Available.size() == 1) 2305 return *Available.begin(); 2306 return nullptr; 2307 } 2308 2309 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2310 // This is useful information to dump after bumpNode. 2311 // Note that the Queue contents are more useful before pickNodeFromQueue. 2312 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2313 unsigned ResFactor; 2314 unsigned ResCount; 2315 if (ZoneCritResIdx) { 2316 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2317 ResCount = getResourceCount(ZoneCritResIdx); 2318 } else { 2319 ResFactor = SchedModel->getMicroOpFactor(); 2320 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2321 } 2322 unsigned LFactor = SchedModel->getLatencyFactor(); 2323 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2324 << " Retired: " << RetiredMOps; 2325 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2326 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2327 << ResCount / ResFactor << " " 2328 << SchedModel->getResourceName(ZoneCritResIdx) 2329 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2330 << (IsResourceLimited ? " - Resource" : " - Latency") 2331 << " limited.\n"; 2332 } 2333 #endif 2334 2335 //===----------------------------------------------------------------------===// 2336 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2337 //===----------------------------------------------------------------------===// 2338 2339 void GenericSchedulerBase::SchedCandidate:: 2340 initResourceDelta(const ScheduleDAGMI *DAG, 2341 const TargetSchedModel *SchedModel) { 2342 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2343 return; 2344 2345 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2346 for (TargetSchedModel::ProcResIter 2347 PI = SchedModel->getWriteProcResBegin(SC), 2348 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2349 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2350 ResDelta.CritResources += PI->Cycles; 2351 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2352 ResDelta.DemandedResources += PI->Cycles; 2353 } 2354 } 2355 2356 /// Set the CandPolicy given a scheduling zone given the current resources and 2357 /// latencies inside and outside the zone. 2358 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2359 SchedBoundary &CurrZone, 2360 SchedBoundary *OtherZone) { 2361 // Apply preemptive heuristics based on the total latency and resources 2362 // inside and outside this zone. Potential stalls should be considered before 2363 // following this policy. 2364 2365 // Compute remaining latency. We need this both to determine whether the 2366 // overall schedule has become latency-limited and whether the instructions 2367 // outside this zone are resource or latency limited. 2368 // 2369 // The "dependent" latency is updated incrementally during scheduling as the 2370 // max height/depth of scheduled nodes minus the cycles since it was 2371 // scheduled: 2372 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2373 // 2374 // The "independent" latency is the max ready queue depth: 2375 // ILat = max N.depth for N in Available|Pending 2376 // 2377 // RemainingLatency is the greater of independent and dependent latency. 2378 unsigned RemLatency = CurrZone.getDependentLatency(); 2379 RemLatency = std::max(RemLatency, 2380 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2381 RemLatency = std::max(RemLatency, 2382 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2383 2384 // Compute the critical resource outside the zone. 2385 unsigned OtherCritIdx = 0; 2386 unsigned OtherCount = 2387 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2388 2389 bool OtherResLimited = false; 2390 if (SchedModel->hasInstrSchedModel()) { 2391 unsigned LFactor = SchedModel->getLatencyFactor(); 2392 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2393 } 2394 // Schedule aggressively for latency in PostRA mode. We don't check for 2395 // acyclic latency during PostRA, and highly out-of-order processors will 2396 // skip PostRA scheduling. 2397 if (!OtherResLimited) { 2398 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2399 Policy.ReduceLatency |= true; 2400 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2401 << " RemainingLatency " << RemLatency << " + " 2402 << CurrZone.getCurrCycle() << "c > CritPath " 2403 << Rem.CriticalPath << "\n"); 2404 } 2405 } 2406 // If the same resource is limiting inside and outside the zone, do nothing. 2407 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2408 return; 2409 2410 DEBUG( 2411 if (CurrZone.isResourceLimited()) { 2412 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2413 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2414 << "\n"; 2415 } 2416 if (OtherResLimited) 2417 dbgs() << " RemainingLimit: " 2418 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2419 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2420 dbgs() << " Latency limited both directions.\n"); 2421 2422 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2423 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2424 2425 if (OtherResLimited) 2426 Policy.DemandResIdx = OtherCritIdx; 2427 } 2428 2429 #ifndef NDEBUG 2430 const char *GenericSchedulerBase::getReasonStr( 2431 GenericSchedulerBase::CandReason Reason) { 2432 switch (Reason) { 2433 case NoCand: return "NOCAND "; 2434 case Only1: return "ONLY1 "; 2435 case PhysRegCopy: return "PREG-COPY "; 2436 case RegExcess: return "REG-EXCESS"; 2437 case RegCritical: return "REG-CRIT "; 2438 case Stall: return "STALL "; 2439 case Cluster: return "CLUSTER "; 2440 case Weak: return "WEAK "; 2441 case RegMax: return "REG-MAX "; 2442 case ResourceReduce: return "RES-REDUCE"; 2443 case ResourceDemand: return "RES-DEMAND"; 2444 case TopDepthReduce: return "TOP-DEPTH "; 2445 case TopPathReduce: return "TOP-PATH "; 2446 case BotHeightReduce:return "BOT-HEIGHT"; 2447 case BotPathReduce: return "BOT-PATH "; 2448 case NextDefUse: return "DEF-USE "; 2449 case NodeOrder: return "ORDER "; 2450 }; 2451 llvm_unreachable("Unknown reason!"); 2452 } 2453 2454 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2455 PressureChange P; 2456 unsigned ResIdx = 0; 2457 unsigned Latency = 0; 2458 switch (Cand.Reason) { 2459 default: 2460 break; 2461 case RegExcess: 2462 P = Cand.RPDelta.Excess; 2463 break; 2464 case RegCritical: 2465 P = Cand.RPDelta.CriticalMax; 2466 break; 2467 case RegMax: 2468 P = Cand.RPDelta.CurrentMax; 2469 break; 2470 case ResourceReduce: 2471 ResIdx = Cand.Policy.ReduceResIdx; 2472 break; 2473 case ResourceDemand: 2474 ResIdx = Cand.Policy.DemandResIdx; 2475 break; 2476 case TopDepthReduce: 2477 Latency = Cand.SU->getDepth(); 2478 break; 2479 case TopPathReduce: 2480 Latency = Cand.SU->getHeight(); 2481 break; 2482 case BotHeightReduce: 2483 Latency = Cand.SU->getHeight(); 2484 break; 2485 case BotPathReduce: 2486 Latency = Cand.SU->getDepth(); 2487 break; 2488 } 2489 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2490 if (P.isValid()) 2491 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2492 << ":" << P.getUnitInc() << " "; 2493 else 2494 dbgs() << " "; 2495 if (ResIdx) 2496 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2497 else 2498 dbgs() << " "; 2499 if (Latency) 2500 dbgs() << " " << Latency << " cycles "; 2501 else 2502 dbgs() << " "; 2503 dbgs() << '\n'; 2504 } 2505 #endif 2506 2507 /// Return true if this heuristic determines order. 2508 static bool tryLess(int TryVal, int CandVal, 2509 GenericSchedulerBase::SchedCandidate &TryCand, 2510 GenericSchedulerBase::SchedCandidate &Cand, 2511 GenericSchedulerBase::CandReason Reason) { 2512 if (TryVal < CandVal) { 2513 TryCand.Reason = Reason; 2514 return true; 2515 } 2516 if (TryVal > CandVal) { 2517 if (Cand.Reason > Reason) 2518 Cand.Reason = Reason; 2519 return true; 2520 } 2521 return false; 2522 } 2523 2524 static bool tryGreater(int TryVal, int CandVal, 2525 GenericSchedulerBase::SchedCandidate &TryCand, 2526 GenericSchedulerBase::SchedCandidate &Cand, 2527 GenericSchedulerBase::CandReason Reason) { 2528 if (TryVal > CandVal) { 2529 TryCand.Reason = Reason; 2530 return true; 2531 } 2532 if (TryVal < CandVal) { 2533 if (Cand.Reason > Reason) 2534 Cand.Reason = Reason; 2535 return true; 2536 } 2537 return false; 2538 } 2539 2540 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2541 GenericSchedulerBase::SchedCandidate &Cand, 2542 SchedBoundary &Zone) { 2543 if (Zone.isTop()) { 2544 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2545 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2546 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2547 return true; 2548 } 2549 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2550 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2551 return true; 2552 } else { 2553 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2554 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2555 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2556 return true; 2557 } 2558 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2559 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2560 return true; 2561 } 2562 return false; 2563 } 2564 2565 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2566 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2567 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2568 } 2569 2570 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2571 tracePick(Cand.Reason, Cand.AtTop); 2572 } 2573 2574 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2575 assert(dag->hasVRegLiveness() && 2576 "(PreRA)GenericScheduler needs vreg liveness"); 2577 DAG = static_cast<ScheduleDAGMILive*>(dag); 2578 SchedModel = DAG->getSchedModel(); 2579 TRI = DAG->TRI; 2580 2581 Rem.init(DAG, SchedModel); 2582 Top.init(DAG, SchedModel, &Rem); 2583 Bot.init(DAG, SchedModel, &Rem); 2584 2585 // Initialize resource counts. 2586 2587 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2588 // are disabled, then these HazardRecs will be disabled. 2589 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2590 if (!Top.HazardRec) { 2591 Top.HazardRec = 2592 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2593 Itin, DAG); 2594 } 2595 if (!Bot.HazardRec) { 2596 Bot.HazardRec = 2597 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2598 Itin, DAG); 2599 } 2600 TopCand.SU = nullptr; 2601 BotCand.SU = nullptr; 2602 } 2603 2604 /// Initialize the per-region scheduling policy. 2605 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2606 MachineBasicBlock::iterator End, 2607 unsigned NumRegionInstrs) { 2608 const MachineFunction &MF = *Begin->getParent()->getParent(); 2609 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2610 2611 // Avoid setting up the register pressure tracker for small regions to save 2612 // compile time. As a rough heuristic, only track pressure when the number of 2613 // schedulable instructions exceeds half the integer register file. 2614 RegionPolicy.ShouldTrackPressure = true; 2615 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2616 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2617 if (TLI->isTypeLegal(LegalIntVT)) { 2618 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2619 TLI->getRegClassFor(LegalIntVT)); 2620 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2621 } 2622 } 2623 2624 // For generic targets, we default to bottom-up, because it's simpler and more 2625 // compile-time optimizations have been implemented in that direction. 2626 RegionPolicy.OnlyBottomUp = true; 2627 2628 // Allow the subtarget to override default policy. 2629 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2630 2631 // After subtarget overrides, apply command line options. 2632 if (!EnableRegPressure) 2633 RegionPolicy.ShouldTrackPressure = false; 2634 2635 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2636 // e.g. -misched-bottomup=false allows scheduling in both directions. 2637 assert((!ForceTopDown || !ForceBottomUp) && 2638 "-misched-topdown incompatible with -misched-bottomup"); 2639 if (ForceBottomUp.getNumOccurrences() > 0) { 2640 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2641 if (RegionPolicy.OnlyBottomUp) 2642 RegionPolicy.OnlyTopDown = false; 2643 } 2644 if (ForceTopDown.getNumOccurrences() > 0) { 2645 RegionPolicy.OnlyTopDown = ForceTopDown; 2646 if (RegionPolicy.OnlyTopDown) 2647 RegionPolicy.OnlyBottomUp = false; 2648 } 2649 } 2650 2651 void GenericScheduler::dumpPolicy() const { 2652 // Cannot completely remove virtual function even in release mode. 2653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2654 dbgs() << "GenericScheduler RegionPolicy: " 2655 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2656 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2657 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2658 << "\n"; 2659 #endif 2660 } 2661 2662 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2663 /// critical path by more cycles than it takes to drain the instruction buffer. 2664 /// We estimate an upper bounds on in-flight instructions as: 2665 /// 2666 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2667 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2668 /// InFlightResources = InFlightIterations * LoopResources 2669 /// 2670 /// TODO: Check execution resources in addition to IssueCount. 2671 void GenericScheduler::checkAcyclicLatency() { 2672 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2673 return; 2674 2675 // Scaled number of cycles per loop iteration. 2676 unsigned IterCount = 2677 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2678 Rem.RemIssueCount); 2679 // Scaled acyclic critical path. 2680 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2681 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2682 unsigned InFlightCount = 2683 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2684 unsigned BufferLimit = 2685 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2686 2687 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2688 2689 DEBUG(dbgs() << "IssueCycles=" 2690 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2691 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2692 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2693 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2694 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2695 if (Rem.IsAcyclicLatencyLimited) 2696 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2697 } 2698 2699 void GenericScheduler::registerRoots() { 2700 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2701 2702 // Some roots may not feed into ExitSU. Check all of them in case. 2703 for (const SUnit *SU : Bot.Available) { 2704 if (SU->getDepth() > Rem.CriticalPath) 2705 Rem.CriticalPath = SU->getDepth(); 2706 } 2707 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2708 if (DumpCriticalPathLength) { 2709 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2710 } 2711 2712 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2713 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2714 checkAcyclicLatency(); 2715 } 2716 } 2717 2718 static bool tryPressure(const PressureChange &TryP, 2719 const PressureChange &CandP, 2720 GenericSchedulerBase::SchedCandidate &TryCand, 2721 GenericSchedulerBase::SchedCandidate &Cand, 2722 GenericSchedulerBase::CandReason Reason, 2723 const TargetRegisterInfo *TRI, 2724 const MachineFunction &MF) { 2725 // If one candidate decreases and the other increases, go with it. 2726 // Invalid candidates have UnitInc==0. 2727 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2728 Reason)) { 2729 return true; 2730 } 2731 // Do not compare the magnitude of pressure changes between top and bottom 2732 // boundary. 2733 if (Cand.AtTop != TryCand.AtTop) 2734 return false; 2735 2736 // If both candidates affect the same set in the same boundary, go with the 2737 // smallest increase. 2738 unsigned TryPSet = TryP.getPSetOrMax(); 2739 unsigned CandPSet = CandP.getPSetOrMax(); 2740 if (TryPSet == CandPSet) { 2741 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2742 Reason); 2743 } 2744 2745 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2746 std::numeric_limits<int>::max(); 2747 2748 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2749 std::numeric_limits<int>::max(); 2750 2751 // If the candidates are decreasing pressure, reverse priority. 2752 if (TryP.getUnitInc() < 0) 2753 std::swap(TryRank, CandRank); 2754 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2755 } 2756 2757 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2758 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2759 } 2760 2761 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2762 /// their physreg def/use. 2763 /// 2764 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2765 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2766 /// with the operation that produces or consumes the physreg. We'll do this when 2767 /// regalloc has support for parallel copies. 2768 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2769 const MachineInstr *MI = SU->getInstr(); 2770 if (!MI->isCopy()) 2771 return 0; 2772 2773 unsigned ScheduledOper = isTop ? 1 : 0; 2774 unsigned UnscheduledOper = isTop ? 0 : 1; 2775 // If we have already scheduled the physreg produce/consumer, immediately 2776 // schedule the copy. 2777 if (TargetRegisterInfo::isPhysicalRegister( 2778 MI->getOperand(ScheduledOper).getReg())) 2779 return 1; 2780 // If the physreg is at the boundary, defer it. Otherwise schedule it 2781 // immediately to free the dependent. We can hoist the copy later. 2782 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2783 if (TargetRegisterInfo::isPhysicalRegister( 2784 MI->getOperand(UnscheduledOper).getReg())) 2785 return AtBoundary ? -1 : 1; 2786 return 0; 2787 } 2788 2789 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2790 bool AtTop, 2791 const RegPressureTracker &RPTracker, 2792 RegPressureTracker &TempTracker) { 2793 Cand.SU = SU; 2794 Cand.AtTop = AtTop; 2795 if (DAG->isTrackingPressure()) { 2796 if (AtTop) { 2797 TempTracker.getMaxDownwardPressureDelta( 2798 Cand.SU->getInstr(), 2799 Cand.RPDelta, 2800 DAG->getRegionCriticalPSets(), 2801 DAG->getRegPressure().MaxSetPressure); 2802 } else { 2803 if (VerifyScheduling) { 2804 TempTracker.getMaxUpwardPressureDelta( 2805 Cand.SU->getInstr(), 2806 &DAG->getPressureDiff(Cand.SU), 2807 Cand.RPDelta, 2808 DAG->getRegionCriticalPSets(), 2809 DAG->getRegPressure().MaxSetPressure); 2810 } else { 2811 RPTracker.getUpwardPressureDelta( 2812 Cand.SU->getInstr(), 2813 DAG->getPressureDiff(Cand.SU), 2814 Cand.RPDelta, 2815 DAG->getRegionCriticalPSets(), 2816 DAG->getRegPressure().MaxSetPressure); 2817 } 2818 } 2819 } 2820 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2821 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2822 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2823 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2824 } 2825 2826 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2827 /// hierarchical. This may be more efficient than a graduated cost model because 2828 /// we don't need to evaluate all aspects of the model for each node in the 2829 /// queue. But it's really done to make the heuristics easier to debug and 2830 /// statistically analyze. 2831 /// 2832 /// \param Cand provides the policy and current best candidate. 2833 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2834 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2835 // if Cand is from a different zone than TryCand. 2836 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2837 SchedCandidate &TryCand, 2838 SchedBoundary *Zone) { 2839 // Initialize the candidate if needed. 2840 if (!Cand.isValid()) { 2841 TryCand.Reason = NodeOrder; 2842 return; 2843 } 2844 2845 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2846 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2847 TryCand, Cand, PhysRegCopy)) 2848 return; 2849 2850 // Avoid exceeding the target's limit. 2851 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2852 Cand.RPDelta.Excess, 2853 TryCand, Cand, RegExcess, TRI, 2854 DAG->MF)) 2855 return; 2856 2857 // Avoid increasing the max critical pressure in the scheduled region. 2858 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2859 Cand.RPDelta.CriticalMax, 2860 TryCand, Cand, RegCritical, TRI, 2861 DAG->MF)) 2862 return; 2863 2864 // We only compare a subset of features when comparing nodes between 2865 // Top and Bottom boundary. Some properties are simply incomparable, in many 2866 // other instances we should only override the other boundary if something 2867 // is a clear good pick on one boundary. Skip heuristics that are more 2868 // "tie-breaking" in nature. 2869 bool SameBoundary = Zone != nullptr; 2870 if (SameBoundary) { 2871 // For loops that are acyclic path limited, aggressively schedule for 2872 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2873 // heuristics to take precedence. 2874 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2875 tryLatency(TryCand, Cand, *Zone)) 2876 return; 2877 2878 // Prioritize instructions that read unbuffered resources by stall cycles. 2879 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2880 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2881 return; 2882 } 2883 2884 // Keep clustered nodes together to encourage downstream peephole 2885 // optimizations which may reduce resource requirements. 2886 // 2887 // This is a best effort to set things up for a post-RA pass. Optimizations 2888 // like generating loads of multiple registers should ideally be done within 2889 // the scheduler pass by combining the loads during DAG postprocessing. 2890 const SUnit *CandNextClusterSU = 2891 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2892 const SUnit *TryCandNextClusterSU = 2893 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2894 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2895 Cand.SU == CandNextClusterSU, 2896 TryCand, Cand, Cluster)) 2897 return; 2898 2899 if (SameBoundary) { 2900 // Weak edges are for clustering and other constraints. 2901 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2902 getWeakLeft(Cand.SU, Cand.AtTop), 2903 TryCand, Cand, Weak)) 2904 return; 2905 } 2906 2907 // Avoid increasing the max pressure of the entire region. 2908 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2909 Cand.RPDelta.CurrentMax, 2910 TryCand, Cand, RegMax, TRI, 2911 DAG->MF)) 2912 return; 2913 2914 if (SameBoundary) { 2915 // Avoid critical resource consumption and balance the schedule. 2916 TryCand.initResourceDelta(DAG, SchedModel); 2917 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2918 TryCand, Cand, ResourceReduce)) 2919 return; 2920 if (tryGreater(TryCand.ResDelta.DemandedResources, 2921 Cand.ResDelta.DemandedResources, 2922 TryCand, Cand, ResourceDemand)) 2923 return; 2924 2925 // Avoid serializing long latency dependence chains. 2926 // For acyclic path limited loops, latency was already checked above. 2927 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2928 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2929 return; 2930 2931 // Fall through to original instruction order. 2932 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2933 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2934 TryCand.Reason = NodeOrder; 2935 } 2936 } 2937 } 2938 2939 /// Pick the best candidate from the queue. 2940 /// 2941 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2942 /// DAG building. To adjust for the current scheduling location we need to 2943 /// maintain the number of vreg uses remaining to be top-scheduled. 2944 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2945 const CandPolicy &ZonePolicy, 2946 const RegPressureTracker &RPTracker, 2947 SchedCandidate &Cand) { 2948 // getMaxPressureDelta temporarily modifies the tracker. 2949 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2950 2951 ReadyQueue &Q = Zone.Available; 2952 for (SUnit *SU : Q) { 2953 2954 SchedCandidate TryCand(ZonePolicy); 2955 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 2956 // Pass SchedBoundary only when comparing nodes from the same boundary. 2957 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2958 tryCandidate(Cand, TryCand, ZoneArg); 2959 if (TryCand.Reason != NoCand) { 2960 // Initialize resource delta if needed in case future heuristics query it. 2961 if (TryCand.ResDelta == SchedResourceDelta()) 2962 TryCand.initResourceDelta(DAG, SchedModel); 2963 Cand.setBest(TryCand); 2964 DEBUG(traceCandidate(Cand)); 2965 } 2966 } 2967 } 2968 2969 /// Pick the best candidate node from either the top or bottom queue. 2970 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2971 // Schedule as far as possible in the direction of no choice. This is most 2972 // efficient, but also provides the best heuristics for CriticalPSets. 2973 if (SUnit *SU = Bot.pickOnlyChoice()) { 2974 IsTopNode = false; 2975 tracePick(Only1, false); 2976 return SU; 2977 } 2978 if (SUnit *SU = Top.pickOnlyChoice()) { 2979 IsTopNode = true; 2980 tracePick(Only1, true); 2981 return SU; 2982 } 2983 // Set the bottom-up policy based on the state of the current bottom zone and 2984 // the instructions outside the zone, including the top zone. 2985 CandPolicy BotPolicy; 2986 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 2987 // Set the top-down policy based on the state of the current top zone and 2988 // the instructions outside the zone, including the bottom zone. 2989 CandPolicy TopPolicy; 2990 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 2991 2992 // See if BotCand is still valid (because we previously scheduled from Top). 2993 DEBUG(dbgs() << "Picking from Bot:\n"); 2994 if (!BotCand.isValid() || BotCand.SU->isScheduled || 2995 BotCand.Policy != BotPolicy) { 2996 BotCand.reset(CandPolicy()); 2997 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 2998 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2999 } else { 3000 DEBUG(traceCandidate(BotCand)); 3001 #ifndef NDEBUG 3002 if (VerifyScheduling) { 3003 SchedCandidate TCand; 3004 TCand.reset(CandPolicy()); 3005 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3006 assert(TCand.SU == BotCand.SU && 3007 "Last pick result should correspond to re-picking right now"); 3008 } 3009 #endif 3010 } 3011 3012 // Check if the top Q has a better candidate. 3013 DEBUG(dbgs() << "Picking from Top:\n"); 3014 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3015 TopCand.Policy != TopPolicy) { 3016 TopCand.reset(CandPolicy()); 3017 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3018 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3019 } else { 3020 DEBUG(traceCandidate(TopCand)); 3021 #ifndef NDEBUG 3022 if (VerifyScheduling) { 3023 SchedCandidate TCand; 3024 TCand.reset(CandPolicy()); 3025 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3026 assert(TCand.SU == TopCand.SU && 3027 "Last pick result should correspond to re-picking right now"); 3028 } 3029 #endif 3030 } 3031 3032 // Pick best from BotCand and TopCand. 3033 assert(BotCand.isValid()); 3034 assert(TopCand.isValid()); 3035 SchedCandidate Cand = BotCand; 3036 TopCand.Reason = NoCand; 3037 tryCandidate(Cand, TopCand, nullptr); 3038 if (TopCand.Reason != NoCand) { 3039 Cand.setBest(TopCand); 3040 DEBUG(traceCandidate(Cand)); 3041 } 3042 3043 IsTopNode = Cand.AtTop; 3044 tracePick(Cand); 3045 return Cand.SU; 3046 } 3047 3048 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3049 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3050 if (DAG->top() == DAG->bottom()) { 3051 assert(Top.Available.empty() && Top.Pending.empty() && 3052 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3053 return nullptr; 3054 } 3055 SUnit *SU; 3056 do { 3057 if (RegionPolicy.OnlyTopDown) { 3058 SU = Top.pickOnlyChoice(); 3059 if (!SU) { 3060 CandPolicy NoPolicy; 3061 TopCand.reset(NoPolicy); 3062 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3063 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3064 tracePick(TopCand); 3065 SU = TopCand.SU; 3066 } 3067 IsTopNode = true; 3068 } else if (RegionPolicy.OnlyBottomUp) { 3069 SU = Bot.pickOnlyChoice(); 3070 if (!SU) { 3071 CandPolicy NoPolicy; 3072 BotCand.reset(NoPolicy); 3073 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3074 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3075 tracePick(BotCand); 3076 SU = BotCand.SU; 3077 } 3078 IsTopNode = false; 3079 } else { 3080 SU = pickNodeBidirectional(IsTopNode); 3081 } 3082 } while (SU->isScheduled); 3083 3084 if (SU->isTopReady()) 3085 Top.removeReady(SU); 3086 if (SU->isBottomReady()) 3087 Bot.removeReady(SU); 3088 3089 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3090 return SU; 3091 } 3092 3093 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3094 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3095 if (!isTop) 3096 ++InsertPos; 3097 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3098 3099 // Find already scheduled copies with a single physreg dependence and move 3100 // them just above the scheduled instruction. 3101 for (SDep &Dep : Deps) { 3102 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3103 continue; 3104 SUnit *DepSU = Dep.getSUnit(); 3105 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3106 continue; 3107 MachineInstr *Copy = DepSU->getInstr(); 3108 if (!Copy->isCopy()) 3109 continue; 3110 DEBUG(dbgs() << " Rescheduling physreg copy "; 3111 Dep.getSUnit()->dump(DAG)); 3112 DAG->moveInstruction(Copy, InsertPos); 3113 } 3114 } 3115 3116 /// Update the scheduler's state after scheduling a node. This is the same node 3117 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3118 /// update it's state based on the current cycle before MachineSchedStrategy 3119 /// does. 3120 /// 3121 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3122 /// them here. See comments in biasPhysRegCopy. 3123 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3124 if (IsTopNode) { 3125 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3126 Top.bumpNode(SU); 3127 if (SU->hasPhysRegUses) 3128 reschedulePhysRegCopies(SU, true); 3129 } else { 3130 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3131 Bot.bumpNode(SU); 3132 if (SU->hasPhysRegDefs) 3133 reschedulePhysRegCopies(SU, false); 3134 } 3135 } 3136 3137 /// Create the standard converging machine scheduler. This will be used as the 3138 /// default scheduler if the target does not set a default. 3139 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3140 ScheduleDAGMILive *DAG = 3141 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3142 // Register DAG post-processors. 3143 // 3144 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3145 // data and pass it to later mutations. Have a single mutation that gathers 3146 // the interesting nodes in one pass. 3147 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3148 return DAG; 3149 } 3150 3151 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3152 return createGenericSchedLive(C); 3153 } 3154 3155 static MachineSchedRegistry 3156 GenericSchedRegistry("converge", "Standard converging scheduler.", 3157 createConveringSched); 3158 3159 //===----------------------------------------------------------------------===// 3160 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3161 //===----------------------------------------------------------------------===// 3162 3163 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3164 DAG = Dag; 3165 SchedModel = DAG->getSchedModel(); 3166 TRI = DAG->TRI; 3167 3168 Rem.init(DAG, SchedModel); 3169 Top.init(DAG, SchedModel, &Rem); 3170 BotRoots.clear(); 3171 3172 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3173 // or are disabled, then these HazardRecs will be disabled. 3174 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3175 if (!Top.HazardRec) { 3176 Top.HazardRec = 3177 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3178 Itin, DAG); 3179 } 3180 } 3181 3182 void PostGenericScheduler::registerRoots() { 3183 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3184 3185 // Some roots may not feed into ExitSU. Check all of them in case. 3186 for (const SUnit *SU : BotRoots) { 3187 if (SU->getDepth() > Rem.CriticalPath) 3188 Rem.CriticalPath = SU->getDepth(); 3189 } 3190 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3191 if (DumpCriticalPathLength) { 3192 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3193 } 3194 } 3195 3196 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3197 /// 3198 /// \param Cand provides the policy and current best candidate. 3199 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3200 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3201 SchedCandidate &TryCand) { 3202 3203 // Initialize the candidate if needed. 3204 if (!Cand.isValid()) { 3205 TryCand.Reason = NodeOrder; 3206 return; 3207 } 3208 3209 // Prioritize instructions that read unbuffered resources by stall cycles. 3210 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3211 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3212 return; 3213 3214 // Keep clustered nodes together. 3215 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3216 Cand.SU == DAG->getNextClusterSucc(), 3217 TryCand, Cand, Cluster)) 3218 return; 3219 3220 // Avoid critical resource consumption and balance the schedule. 3221 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3222 TryCand, Cand, ResourceReduce)) 3223 return; 3224 if (tryGreater(TryCand.ResDelta.DemandedResources, 3225 Cand.ResDelta.DemandedResources, 3226 TryCand, Cand, ResourceDemand)) 3227 return; 3228 3229 // Avoid serializing long latency dependence chains. 3230 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3231 return; 3232 } 3233 3234 // Fall through to original instruction order. 3235 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3236 TryCand.Reason = NodeOrder; 3237 } 3238 3239 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3240 ReadyQueue &Q = Top.Available; 3241 for (SUnit *SU : Q) { 3242 SchedCandidate TryCand(Cand.Policy); 3243 TryCand.SU = SU; 3244 TryCand.AtTop = true; 3245 TryCand.initResourceDelta(DAG, SchedModel); 3246 tryCandidate(Cand, TryCand); 3247 if (TryCand.Reason != NoCand) { 3248 Cand.setBest(TryCand); 3249 DEBUG(traceCandidate(Cand)); 3250 } 3251 } 3252 } 3253 3254 /// Pick the next node to schedule. 3255 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3256 if (DAG->top() == DAG->bottom()) { 3257 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3258 return nullptr; 3259 } 3260 SUnit *SU; 3261 do { 3262 SU = Top.pickOnlyChoice(); 3263 if (SU) { 3264 tracePick(Only1, true); 3265 } else { 3266 CandPolicy NoPolicy; 3267 SchedCandidate TopCand(NoPolicy); 3268 // Set the top-down policy based on the state of the current top zone and 3269 // the instructions outside the zone, including the bottom zone. 3270 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3271 pickNodeFromQueue(TopCand); 3272 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3273 tracePick(TopCand); 3274 SU = TopCand.SU; 3275 } 3276 } while (SU->isScheduled); 3277 3278 IsTopNode = true; 3279 Top.removeReady(SU); 3280 3281 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3282 return SU; 3283 } 3284 3285 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3286 /// scheduled/remaining flags in the DAG nodes. 3287 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3288 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3289 Top.bumpNode(SU); 3290 } 3291 3292 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3293 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3294 /*RemoveKillFlags=*/true); 3295 } 3296 3297 //===----------------------------------------------------------------------===// 3298 // ILP Scheduler. Currently for experimental analysis of heuristics. 3299 //===----------------------------------------------------------------------===// 3300 3301 namespace { 3302 3303 /// \brief Order nodes by the ILP metric. 3304 struct ILPOrder { 3305 const SchedDFSResult *DFSResult = nullptr; 3306 const BitVector *ScheduledTrees = nullptr; 3307 bool MaximizeILP; 3308 3309 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3310 3311 /// \brief Apply a less-than relation on node priority. 3312 /// 3313 /// (Return true if A comes after B in the Q.) 3314 bool operator()(const SUnit *A, const SUnit *B) const { 3315 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3316 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3317 if (SchedTreeA != SchedTreeB) { 3318 // Unscheduled trees have lower priority. 3319 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3320 return ScheduledTrees->test(SchedTreeB); 3321 3322 // Trees with shallower connections have have lower priority. 3323 if (DFSResult->getSubtreeLevel(SchedTreeA) 3324 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3325 return DFSResult->getSubtreeLevel(SchedTreeA) 3326 < DFSResult->getSubtreeLevel(SchedTreeB); 3327 } 3328 } 3329 if (MaximizeILP) 3330 return DFSResult->getILP(A) < DFSResult->getILP(B); 3331 else 3332 return DFSResult->getILP(A) > DFSResult->getILP(B); 3333 } 3334 }; 3335 3336 /// \brief Schedule based on the ILP metric. 3337 class ILPScheduler : public MachineSchedStrategy { 3338 ScheduleDAGMILive *DAG = nullptr; 3339 ILPOrder Cmp; 3340 3341 std::vector<SUnit*> ReadyQ; 3342 3343 public: 3344 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3345 3346 void initialize(ScheduleDAGMI *dag) override { 3347 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3348 DAG = static_cast<ScheduleDAGMILive*>(dag); 3349 DAG->computeDFSResult(); 3350 Cmp.DFSResult = DAG->getDFSResult(); 3351 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3352 ReadyQ.clear(); 3353 } 3354 3355 void registerRoots() override { 3356 // Restore the heap in ReadyQ with the updated DFS results. 3357 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3358 } 3359 3360 /// Implement MachineSchedStrategy interface. 3361 /// ----------------------------------------- 3362 3363 /// Callback to select the highest priority node from the ready Q. 3364 SUnit *pickNode(bool &IsTopNode) override { 3365 if (ReadyQ.empty()) return nullptr; 3366 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3367 SUnit *SU = ReadyQ.back(); 3368 ReadyQ.pop_back(); 3369 IsTopNode = false; 3370 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3371 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3372 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3373 << DAG->getDFSResult()->getSubtreeLevel( 3374 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3375 << "Scheduling " << *SU->getInstr()); 3376 return SU; 3377 } 3378 3379 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3380 void scheduleTree(unsigned SubtreeID) override { 3381 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3382 } 3383 3384 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3385 /// DFSResults, and resort the priority Q. 3386 void schedNode(SUnit *SU, bool IsTopNode) override { 3387 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3388 } 3389 3390 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3391 3392 void releaseBottomNode(SUnit *SU) override { 3393 ReadyQ.push_back(SU); 3394 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3395 } 3396 }; 3397 3398 } // end anonymous namespace 3399 3400 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3401 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3402 } 3403 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3404 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3405 } 3406 3407 static MachineSchedRegistry ILPMaxRegistry( 3408 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3409 static MachineSchedRegistry ILPMinRegistry( 3410 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3411 3412 //===----------------------------------------------------------------------===// 3413 // Machine Instruction Shuffler for Correctness Testing 3414 //===----------------------------------------------------------------------===// 3415 3416 #ifndef NDEBUG 3417 namespace { 3418 3419 /// Apply a less-than relation on the node order, which corresponds to the 3420 /// instruction order prior to scheduling. IsReverse implements greater-than. 3421 template<bool IsReverse> 3422 struct SUnitOrder { 3423 bool operator()(SUnit *A, SUnit *B) const { 3424 if (IsReverse) 3425 return A->NodeNum > B->NodeNum; 3426 else 3427 return A->NodeNum < B->NodeNum; 3428 } 3429 }; 3430 3431 /// Reorder instructions as much as possible. 3432 class InstructionShuffler : public MachineSchedStrategy { 3433 bool IsAlternating; 3434 bool IsTopDown; 3435 3436 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3437 // gives nodes with a higher number higher priority causing the latest 3438 // instructions to be scheduled first. 3439 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3440 TopQ; 3441 // When scheduling bottom-up, use greater-than as the queue priority. 3442 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3443 BottomQ; 3444 3445 public: 3446 InstructionShuffler(bool alternate, bool topdown) 3447 : IsAlternating(alternate), IsTopDown(topdown) {} 3448 3449 void initialize(ScheduleDAGMI*) override { 3450 TopQ.clear(); 3451 BottomQ.clear(); 3452 } 3453 3454 /// Implement MachineSchedStrategy interface. 3455 /// ----------------------------------------- 3456 3457 SUnit *pickNode(bool &IsTopNode) override { 3458 SUnit *SU; 3459 if (IsTopDown) { 3460 do { 3461 if (TopQ.empty()) return nullptr; 3462 SU = TopQ.top(); 3463 TopQ.pop(); 3464 } while (SU->isScheduled); 3465 IsTopNode = true; 3466 } else { 3467 do { 3468 if (BottomQ.empty()) return nullptr; 3469 SU = BottomQ.top(); 3470 BottomQ.pop(); 3471 } while (SU->isScheduled); 3472 IsTopNode = false; 3473 } 3474 if (IsAlternating) 3475 IsTopDown = !IsTopDown; 3476 return SU; 3477 } 3478 3479 void schedNode(SUnit *SU, bool IsTopNode) override {} 3480 3481 void releaseTopNode(SUnit *SU) override { 3482 TopQ.push(SU); 3483 } 3484 void releaseBottomNode(SUnit *SU) override { 3485 BottomQ.push(SU); 3486 } 3487 }; 3488 3489 } // end anonymous namespace 3490 3491 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3492 bool Alternate = !ForceTopDown && !ForceBottomUp; 3493 bool TopDown = !ForceBottomUp; 3494 assert((TopDown || !ForceTopDown) && 3495 "-misched-topdown incompatible with -misched-bottomup"); 3496 return new ScheduleDAGMILive( 3497 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3498 } 3499 3500 static MachineSchedRegistry ShufflerRegistry( 3501 "shuffle", "Shuffle machine instructions alternating directions", 3502 createInstructionShuffler); 3503 #endif // !NDEBUG 3504 3505 //===----------------------------------------------------------------------===// 3506 // GraphWriter support for ScheduleDAGMILive. 3507 //===----------------------------------------------------------------------===// 3508 3509 #ifndef NDEBUG 3510 namespace llvm { 3511 3512 template<> struct GraphTraits< 3513 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3514 3515 template<> 3516 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3517 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3518 3519 static std::string getGraphName(const ScheduleDAG *G) { 3520 return G->MF.getName(); 3521 } 3522 3523 static bool renderGraphFromBottomUp() { 3524 return true; 3525 } 3526 3527 static bool isNodeHidden(const SUnit *Node) { 3528 if (ViewMISchedCutoff == 0) 3529 return false; 3530 return (Node->Preds.size() > ViewMISchedCutoff 3531 || Node->Succs.size() > ViewMISchedCutoff); 3532 } 3533 3534 /// If you want to override the dot attributes printed for a particular 3535 /// edge, override this method. 3536 static std::string getEdgeAttributes(const SUnit *Node, 3537 SUnitIterator EI, 3538 const ScheduleDAG *Graph) { 3539 if (EI.isArtificialDep()) 3540 return "color=cyan,style=dashed"; 3541 if (EI.isCtrlDep()) 3542 return "color=blue,style=dashed"; 3543 return ""; 3544 } 3545 3546 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3547 std::string Str; 3548 raw_string_ostream SS(Str); 3549 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3550 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3551 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3552 SS << "SU:" << SU->NodeNum; 3553 if (DFS) 3554 SS << " I:" << DFS->getNumInstrs(SU); 3555 return SS.str(); 3556 } 3557 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3558 return G->getGraphNodeLabel(SU); 3559 } 3560 3561 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3562 std::string Str("shape=Mrecord"); 3563 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3564 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3565 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3566 if (DFS) { 3567 Str += ",style=filled,fillcolor=\"#"; 3568 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3569 Str += '"'; 3570 } 3571 return Str; 3572 } 3573 }; 3574 3575 } // end namespace llvm 3576 #endif // NDEBUG 3577 3578 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3579 /// rendered using 'dot'. 3580 /// 3581 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3582 #ifndef NDEBUG 3583 ViewGraph(this, Name, false, Title); 3584 #else 3585 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3586 << "systems with Graphviz or gv!\n"; 3587 #endif // NDEBUG 3588 } 3589 3590 /// Out-of-line implementation with no arguments is handy for gdb. 3591 void ScheduleDAGMI::viewGraph() { 3592 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3593 } 3594