xref: /llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp (revision 68ced40a235e15c4b9fabd29866f867e097e82ed)
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachinePassRegistry.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/MachineValueType.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/RegisterPressure.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
41 #include "llvm/CodeGen/ScheduleDAGMutation.h"
42 #include "llvm/CodeGen/ScheduleDFS.h"
43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
44 #include "llvm/CodeGen/SlotIndexes.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetPassConfig.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/MC/LaneBitmask.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/GraphWriter.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <tuple>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "machine-scheduler"
73 
74 namespace llvm {
75 
76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
77                            cl::desc("Force top-down list scheduling"));
78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
79                             cl::desc("Force bottom-up list scheduling"));
80 cl::opt<bool>
81 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
82                        cl::desc("Print critical path length to stdout"));
83 
84 } // end namespace llvm
85 
86 #ifndef NDEBUG
87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
88   cl::desc("Pop up a window to show MISched dags after they are processed"));
89 
90 /// In some situations a few uninteresting nodes depend on nearly all other
91 /// nodes in the graph, provide a cutoff to hide them.
92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
93   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
94 
95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
96   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
97 
98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
99   cl::desc("Only schedule this function"));
100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
101                                         cl::desc("Only schedule this MBB#"));
102 #else
103 static bool ViewMISchedDAGs = false;
104 #endif // NDEBUG
105 
106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the
107 /// size of the ready lists.
108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
109   cl::desc("Limit ready list to N instructions"), cl::init(256));
110 
111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
112   cl::desc("Enable register pressure scheduling."), cl::init(true));
113 
114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
115   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
116 
117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
118                                         cl::desc("Enable memop clustering."),
119                                         cl::init(true));
120 
121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
122   cl::desc("Verify machine instrs before and after machine scheduling"));
123 
124 // DAG subtrees must have at least this many nodes.
125 static const unsigned MinSubtreeSize = 8;
126 
127 // Pin the vtables to this file.
128 void MachineSchedStrategy::anchor() {}
129 
130 void ScheduleDAGMutation::anchor() {}
131 
132 //===----------------------------------------------------------------------===//
133 // Machine Instruction Scheduling Pass and Registry
134 //===----------------------------------------------------------------------===//
135 
136 MachineSchedContext::MachineSchedContext() {
137   RegClassInfo = new RegisterClassInfo();
138 }
139 
140 MachineSchedContext::~MachineSchedContext() {
141   delete RegClassInfo;
142 }
143 
144 namespace {
145 
146 /// Base class for a machine scheduler class that can run at any point.
147 class MachineSchedulerBase : public MachineSchedContext,
148                              public MachineFunctionPass {
149 public:
150   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
151 
152   void print(raw_ostream &O, const Module* = nullptr) const override;
153 
154 protected:
155   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
156 };
157 
158 /// MachineScheduler runs after coalescing and before register allocation.
159 class MachineScheduler : public MachineSchedulerBase {
160 public:
161   MachineScheduler();
162 
163   void getAnalysisUsage(AnalysisUsage &AU) const override;
164 
165   bool runOnMachineFunction(MachineFunction&) override;
166 
167   static char ID; // Class identification, replacement for typeinfo
168 
169 protected:
170   ScheduleDAGInstrs *createMachineScheduler();
171 };
172 
173 /// PostMachineScheduler runs after shortly before code emission.
174 class PostMachineScheduler : public MachineSchedulerBase {
175 public:
176   PostMachineScheduler();
177 
178   void getAnalysisUsage(AnalysisUsage &AU) const override;
179 
180   bool runOnMachineFunction(MachineFunction&) override;
181 
182   static char ID; // Class identification, replacement for typeinfo
183 
184 protected:
185   ScheduleDAGInstrs *createPostMachineScheduler();
186 };
187 
188 } // end anonymous namespace
189 
190 char MachineScheduler::ID = 0;
191 
192 char &llvm::MachineSchedulerID = MachineScheduler::ID;
193 
194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
195                       "Machine Instruction Scheduler", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
201                     "Machine Instruction Scheduler", false, false)
202 
203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
204   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
205 }
206 
207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
208   AU.setPreservesCFG();
209   AU.addRequiredID(MachineDominatorsID);
210   AU.addRequired<MachineLoopInfo>();
211   AU.addRequired<AAResultsWrapperPass>();
212   AU.addRequired<TargetPassConfig>();
213   AU.addRequired<SlotIndexes>();
214   AU.addPreserved<SlotIndexes>();
215   AU.addRequired<LiveIntervals>();
216   AU.addPreserved<LiveIntervals>();
217   MachineFunctionPass::getAnalysisUsage(AU);
218 }
219 
220 char PostMachineScheduler::ID = 0;
221 
222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
223 
224 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
225                 "PostRA Machine Instruction Scheduler", false, false)
226 
227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
228   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
229 }
230 
231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesCFG();
233   AU.addRequiredID(MachineDominatorsID);
234   AU.addRequired<MachineLoopInfo>();
235   AU.addRequired<TargetPassConfig>();
236   MachineFunctionPass::getAnalysisUsage(AU);
237 }
238 
239 MachinePassRegistry MachineSchedRegistry::Registry;
240 
241 /// A dummy default scheduler factory indicates whether the scheduler
242 /// is overridden on the command line.
243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
244   return nullptr;
245 }
246 
247 /// MachineSchedOpt allows command line selection of the scheduler.
248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
249                RegisterPassParser<MachineSchedRegistry>>
250 MachineSchedOpt("misched",
251                 cl::init(&useDefaultMachineSched), cl::Hidden,
252                 cl::desc("Machine instruction scheduler to use"));
253 
254 static MachineSchedRegistry
255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
256                      useDefaultMachineSched);
257 
258 static cl::opt<bool> EnableMachineSched(
259     "enable-misched",
260     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
261     cl::Hidden);
262 
263 static cl::opt<bool> EnablePostRAMachineSched(
264     "enable-post-misched",
265     cl::desc("Enable the post-ra machine instruction scheduling pass."),
266     cl::init(true), cl::Hidden);
267 
268 /// Decrement this iterator until reaching the top or a non-debug instr.
269 static MachineBasicBlock::const_iterator
270 priorNonDebug(MachineBasicBlock::const_iterator I,
271               MachineBasicBlock::const_iterator Beg) {
272   assert(I != Beg && "reached the top of the region, cannot decrement");
273   while (--I != Beg) {
274     if (!I->isDebugValue())
275       break;
276   }
277   return I;
278 }
279 
280 /// Non-const version.
281 static MachineBasicBlock::iterator
282 priorNonDebug(MachineBasicBlock::iterator I,
283               MachineBasicBlock::const_iterator Beg) {
284   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
285       .getNonConstIterator();
286 }
287 
288 /// If this iterator is a debug value, increment until reaching the End or a
289 /// non-debug instruction.
290 static MachineBasicBlock::const_iterator
291 nextIfDebug(MachineBasicBlock::const_iterator I,
292             MachineBasicBlock::const_iterator End) {
293   for(; I != End; ++I) {
294     if (!I->isDebugValue())
295       break;
296   }
297   return I;
298 }
299 
300 /// Non-const version.
301 static MachineBasicBlock::iterator
302 nextIfDebug(MachineBasicBlock::iterator I,
303             MachineBasicBlock::const_iterator End) {
304   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
305       .getNonConstIterator();
306 }
307 
308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
310   // Select the scheduler, or set the default.
311   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
312   if (Ctor != useDefaultMachineSched)
313     return Ctor(this);
314 
315   // Get the default scheduler set by the target for this function.
316   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
317   if (Scheduler)
318     return Scheduler;
319 
320   // Default to GenericScheduler.
321   return createGenericSchedLive(this);
322 }
323 
324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
325 /// the caller. We don't have a command line option to override the postRA
326 /// scheduler. The Target must configure it.
327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
328   // Get the postRA scheduler set by the target for this function.
329   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
330   if (Scheduler)
331     return Scheduler;
332 
333   // Default to GenericScheduler.
334   return createGenericSchedPostRA(this);
335 }
336 
337 /// Top-level MachineScheduler pass driver.
338 ///
339 /// Visit blocks in function order. Divide each block into scheduling regions
340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
341 /// consistent with the DAG builder, which traverses the interior of the
342 /// scheduling regions bottom-up.
343 ///
344 /// This design avoids exposing scheduling boundaries to the DAG builder,
345 /// simplifying the DAG builder's support for "special" target instructions.
346 /// At the same time the design allows target schedulers to operate across
347 /// scheduling boundaries, for example to bundle the boudary instructions
348 /// without reordering them. This creates complexity, because the target
349 /// scheduler must update the RegionBegin and RegionEnd positions cached by
350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
351 /// design would be to split blocks at scheduling boundaries, but LLVM has a
352 /// general bias against block splitting purely for implementation simplicity.
353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
354   if (skipFunction(mf.getFunction()))
355     return false;
356 
357   if (EnableMachineSched.getNumOccurrences()) {
358     if (!EnableMachineSched)
359       return false;
360   } else if (!mf.getSubtarget().enableMachineScheduler())
361     return false;
362 
363   DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
364 
365   // Initialize the context of the pass.
366   MF = &mf;
367   MLI = &getAnalysis<MachineLoopInfo>();
368   MDT = &getAnalysis<MachineDominatorTree>();
369   PassConfig = &getAnalysis<TargetPassConfig>();
370   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
371 
372   LIS = &getAnalysis<LiveIntervals>();
373 
374   if (VerifyScheduling) {
375     DEBUG(LIS->dump());
376     MF->verify(this, "Before machine scheduling.");
377   }
378   RegClassInfo->runOnMachineFunction(*MF);
379 
380   // Instantiate the selected scheduler for this target, function, and
381   // optimization level.
382   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
383   scheduleRegions(*Scheduler, false);
384 
385   DEBUG(LIS->dump());
386   if (VerifyScheduling)
387     MF->verify(this, "After machine scheduling.");
388   return true;
389 }
390 
391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
392   if (skipFunction(mf.getFunction()))
393     return false;
394 
395   if (EnablePostRAMachineSched.getNumOccurrences()) {
396     if (!EnablePostRAMachineSched)
397       return false;
398   } else if (!mf.getSubtarget().enablePostRAScheduler()) {
399     DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
400     return false;
401   }
402   DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
403 
404   // Initialize the context of the pass.
405   MF = &mf;
406   MLI = &getAnalysis<MachineLoopInfo>();
407   PassConfig = &getAnalysis<TargetPassConfig>();
408 
409   if (VerifyScheduling)
410     MF->verify(this, "Before post machine scheduling.");
411 
412   // Instantiate the selected scheduler for this target, function, and
413   // optimization level.
414   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
415   scheduleRegions(*Scheduler, true);
416 
417   if (VerifyScheduling)
418     MF->verify(this, "After post machine scheduling.");
419   return true;
420 }
421 
422 /// Return true of the given instruction should not be included in a scheduling
423 /// region.
424 ///
425 /// MachineScheduler does not currently support scheduling across calls. To
426 /// handle calls, the DAG builder needs to be modified to create register
427 /// anti/output dependencies on the registers clobbered by the call's regmask
428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
430 /// the boundary, but there would be no benefit to postRA scheduling across
431 /// calls this late anyway.
432 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
433                             MachineBasicBlock *MBB,
434                             MachineFunction *MF,
435                             const TargetInstrInfo *TII) {
436   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
437 }
438 
439 /// A region of an MBB for scheduling.
440 namespace {
441 struct SchedRegion {
442   /// RegionBegin is the first instruction in the scheduling region, and
443   /// RegionEnd is either MBB->end() or the scheduling boundary after the
444   /// last instruction in the scheduling region. These iterators cannot refer
445   /// to instructions outside of the identified scheduling region because
446   /// those may be reordered before scheduling this region.
447   MachineBasicBlock::iterator RegionBegin;
448   MachineBasicBlock::iterator RegionEnd;
449   unsigned NumRegionInstrs;
450 
451   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
452               unsigned N) :
453     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
454 };
455 } // end anonymous namespace
456 
457 using MBBRegionsVector = SmallVector<SchedRegion, 16>;
458 
459 static void
460 getSchedRegions(MachineBasicBlock *MBB,
461                 MBBRegionsVector &Regions,
462                 bool RegionsTopDown) {
463   MachineFunction *MF = MBB->getParent();
464   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
465 
466   MachineBasicBlock::iterator I = nullptr;
467   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
468       RegionEnd != MBB->begin(); RegionEnd = I) {
469 
470     // Avoid decrementing RegionEnd for blocks with no terminator.
471     if (RegionEnd != MBB->end() ||
472         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
473       --RegionEnd;
474     }
475 
476     // The next region starts above the previous region. Look backward in the
477     // instruction stream until we find the nearest boundary.
478     unsigned NumRegionInstrs = 0;
479     I = RegionEnd;
480     for (;I != MBB->begin(); --I) {
481       MachineInstr &MI = *std::prev(I);
482       if (isSchedBoundary(&MI, &*MBB, MF, TII))
483         break;
484       if (!MI.isDebugValue())
485         // MBB::size() uses instr_iterator to count. Here we need a bundle to
486         // count as a single instruction.
487         ++NumRegionInstrs;
488     }
489 
490     Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
491   }
492 
493   if (RegionsTopDown)
494     std::reverse(Regions.begin(), Regions.end());
495 }
496 
497 /// Main driver for both MachineScheduler and PostMachineScheduler.
498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
499                                            bool FixKillFlags) {
500   // Visit all machine basic blocks.
501   //
502   // TODO: Visit blocks in global postorder or postorder within the bottom-up
503   // loop tree. Then we can optionally compute global RegPressure.
504   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
505        MBB != MBBEnd; ++MBB) {
506 
507     Scheduler.startBlock(&*MBB);
508 
509 #ifndef NDEBUG
510     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
511       continue;
512     if (SchedOnlyBlock.getNumOccurrences()
513         && (int)SchedOnlyBlock != MBB->getNumber())
514       continue;
515 #endif
516 
517     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
518     // points to the scheduling boundary at the bottom of the region. The DAG
519     // does not include RegionEnd, but the region does (i.e. the next
520     // RegionEnd is above the previous RegionBegin). If the current block has
521     // no terminator then RegionEnd == MBB->end() for the bottom region.
522     //
523     // All the regions of MBB are first found and stored in MBBRegions, which
524     // will be processed (MBB) top-down if initialized with true.
525     //
526     // The Scheduler may insert instructions during either schedule() or
527     // exitRegion(), even for empty regions. So the local iterators 'I' and
528     // 'RegionEnd' are invalid across these calls. Instructions must not be
529     // added to other regions than the current one without updating MBBRegions.
530 
531     MBBRegionsVector MBBRegions;
532     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
533     for (MBBRegionsVector::iterator R = MBBRegions.begin();
534          R != MBBRegions.end(); ++R) {
535       MachineBasicBlock::iterator I = R->RegionBegin;
536       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
537       unsigned NumRegionInstrs = R->NumRegionInstrs;
538 
539       // Notify the scheduler of the region, even if we may skip scheduling
540       // it. Perhaps it still needs to be bundled.
541       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
542 
543       // Skip empty scheduling regions (0 or 1 schedulable instructions).
544       if (I == RegionEnd || I == std::prev(RegionEnd)) {
545         // Close the current region. Bundle the terminator if needed.
546         // This invalidates 'RegionEnd' and 'I'.
547         Scheduler.exitRegion();
548         continue;
549       }
550       DEBUG(dbgs() << "********** MI Scheduling **********\n");
551       DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) << " "
552                    << MBB->getName() << "\n  From: " << *I << "    To: ";
553             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
554             else dbgs() << "End";
555             dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
556       if (DumpCriticalPathLength) {
557         errs() << MF->getName();
558         errs() << ":%bb. " << MBB->getNumber();
559         errs() << " " << MBB->getName() << " \n";
560       }
561 
562       // Schedule a region: possibly reorder instructions.
563       // This invalidates the original region iterators.
564       Scheduler.schedule();
565 
566       // Close the current region.
567       Scheduler.exitRegion();
568     }
569     Scheduler.finishBlock();
570     // FIXME: Ideally, no further passes should rely on kill flags. However,
571     // thumb2 size reduction is currently an exception, so the PostMIScheduler
572     // needs to do this.
573     if (FixKillFlags)
574       Scheduler.fixupKills(*MBB);
575   }
576   Scheduler.finalizeSchedule();
577 }
578 
579 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
580   // unimplemented
581 }
582 
583 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
584 LLVM_DUMP_METHOD void ReadyQueue::dump() const {
585   dbgs() << "Queue " << Name << ": ";
586   for (const SUnit *SU : Queue)
587     dbgs() << SU->NodeNum << " ";
588   dbgs() << "\n";
589 }
590 #endif
591 
592 //===----------------------------------------------------------------------===//
593 // ScheduleDAGMI - Basic machine instruction scheduling. This is
594 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
595 // virtual registers.
596 // ===----------------------------------------------------------------------===/
597 
598 // Provide a vtable anchor.
599 ScheduleDAGMI::~ScheduleDAGMI() = default;
600 
601 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
602   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
603 }
604 
605 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
606   if (SuccSU != &ExitSU) {
607     // Do not use WillCreateCycle, it assumes SD scheduling.
608     // If Pred is reachable from Succ, then the edge creates a cycle.
609     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
610       return false;
611     Topo.AddPred(SuccSU, PredDep.getSUnit());
612   }
613   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
614   // Return true regardless of whether a new edge needed to be inserted.
615   return true;
616 }
617 
618 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
619 /// NumPredsLeft reaches zero, release the successor node.
620 ///
621 /// FIXME: Adjust SuccSU height based on MinLatency.
622 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
623   SUnit *SuccSU = SuccEdge->getSUnit();
624 
625   if (SuccEdge->isWeak()) {
626     --SuccSU->WeakPredsLeft;
627     if (SuccEdge->isCluster())
628       NextClusterSucc = SuccSU;
629     return;
630   }
631 #ifndef NDEBUG
632   if (SuccSU->NumPredsLeft == 0) {
633     dbgs() << "*** Scheduling failed! ***\n";
634     SuccSU->dump(this);
635     dbgs() << " has been released too many times!\n";
636     llvm_unreachable(nullptr);
637   }
638 #endif
639   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
640   // CurrCycle may have advanced since then.
641   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
642     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
643 
644   --SuccSU->NumPredsLeft;
645   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
646     SchedImpl->releaseTopNode(SuccSU);
647 }
648 
649 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
650 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
651   for (SDep &Succ : SU->Succs)
652     releaseSucc(SU, &Succ);
653 }
654 
655 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
656 /// NumSuccsLeft reaches zero, release the predecessor node.
657 ///
658 /// FIXME: Adjust PredSU height based on MinLatency.
659 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
660   SUnit *PredSU = PredEdge->getSUnit();
661 
662   if (PredEdge->isWeak()) {
663     --PredSU->WeakSuccsLeft;
664     if (PredEdge->isCluster())
665       NextClusterPred = PredSU;
666     return;
667   }
668 #ifndef NDEBUG
669   if (PredSU->NumSuccsLeft == 0) {
670     dbgs() << "*** Scheduling failed! ***\n";
671     PredSU->dump(this);
672     dbgs() << " has been released too many times!\n";
673     llvm_unreachable(nullptr);
674   }
675 #endif
676   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
677   // CurrCycle may have advanced since then.
678   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
679     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
680 
681   --PredSU->NumSuccsLeft;
682   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
683     SchedImpl->releaseBottomNode(PredSU);
684 }
685 
686 /// releasePredecessors - Call releasePred on each of SU's predecessors.
687 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
688   for (SDep &Pred : SU->Preds)
689     releasePred(SU, &Pred);
690 }
691 
692 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
693   ScheduleDAGInstrs::startBlock(bb);
694   SchedImpl->enterMBB(bb);
695 }
696 
697 void ScheduleDAGMI::finishBlock() {
698   SchedImpl->leaveMBB();
699   ScheduleDAGInstrs::finishBlock();
700 }
701 
702 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
703 /// crossing a scheduling boundary. [begin, end) includes all instructions in
704 /// the region, including the boundary itself and single-instruction regions
705 /// that don't get scheduled.
706 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
707                                      MachineBasicBlock::iterator begin,
708                                      MachineBasicBlock::iterator end,
709                                      unsigned regioninstrs)
710 {
711   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
712 
713   SchedImpl->initPolicy(begin, end, regioninstrs);
714 }
715 
716 /// This is normally called from the main scheduler loop but may also be invoked
717 /// by the scheduling strategy to perform additional code motion.
718 void ScheduleDAGMI::moveInstruction(
719   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
720   // Advance RegionBegin if the first instruction moves down.
721   if (&*RegionBegin == MI)
722     ++RegionBegin;
723 
724   // Update the instruction stream.
725   BB->splice(InsertPos, BB, MI);
726 
727   // Update LiveIntervals
728   if (LIS)
729     LIS->handleMove(*MI, /*UpdateFlags=*/true);
730 
731   // Recede RegionBegin if an instruction moves above the first.
732   if (RegionBegin == InsertPos)
733     RegionBegin = MI;
734 }
735 
736 bool ScheduleDAGMI::checkSchedLimit() {
737 #ifndef NDEBUG
738   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
739     CurrentTop = CurrentBottom;
740     return false;
741   }
742   ++NumInstrsScheduled;
743 #endif
744   return true;
745 }
746 
747 /// Per-region scheduling driver, called back from
748 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
749 /// does not consider liveness or register pressure. It is useful for PostRA
750 /// scheduling and potentially other custom schedulers.
751 void ScheduleDAGMI::schedule() {
752   DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
753   DEBUG(SchedImpl->dumpPolicy());
754 
755   // Build the DAG.
756   buildSchedGraph(AA);
757 
758   Topo.InitDAGTopologicalSorting();
759 
760   postprocessDAG();
761 
762   SmallVector<SUnit*, 8> TopRoots, BotRoots;
763   findRootsAndBiasEdges(TopRoots, BotRoots);
764 
765   // Initialize the strategy before modifying the DAG.
766   // This may initialize a DFSResult to be used for queue priority.
767   SchedImpl->initialize(this);
768 
769   DEBUG(
770     if (EntrySU.getInstr() != nullptr)
771       EntrySU.dumpAll(this);
772     for (const SUnit &SU : SUnits)
773       SU.dumpAll(this);
774     if (ExitSU.getInstr() != nullptr)
775       ExitSU.dumpAll(this);
776   );
777   if (ViewMISchedDAGs) viewGraph();
778 
779   // Initialize ready queues now that the DAG and priority data are finalized.
780   initQueues(TopRoots, BotRoots);
781 
782   bool IsTopNode = false;
783   while (true) {
784     DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
785     SUnit *SU = SchedImpl->pickNode(IsTopNode);
786     if (!SU) break;
787 
788     assert(!SU->isScheduled && "Node already scheduled");
789     if (!checkSchedLimit())
790       break;
791 
792     MachineInstr *MI = SU->getInstr();
793     if (IsTopNode) {
794       assert(SU->isTopReady() && "node still has unscheduled dependencies");
795       if (&*CurrentTop == MI)
796         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
797       else
798         moveInstruction(MI, CurrentTop);
799     } else {
800       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
801       MachineBasicBlock::iterator priorII =
802         priorNonDebug(CurrentBottom, CurrentTop);
803       if (&*priorII == MI)
804         CurrentBottom = priorII;
805       else {
806         if (&*CurrentTop == MI)
807           CurrentTop = nextIfDebug(++CurrentTop, priorII);
808         moveInstruction(MI, CurrentBottom);
809         CurrentBottom = MI;
810       }
811     }
812     // Notify the scheduling strategy before updating the DAG.
813     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
814     // runs, it can then use the accurate ReadyCycle time to determine whether
815     // newly released nodes can move to the readyQ.
816     SchedImpl->schedNode(SU, IsTopNode);
817 
818     updateQueues(SU, IsTopNode);
819   }
820   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
821 
822   placeDebugValues();
823 
824   DEBUG({
825     dbgs() << "*** Final schedule for "
826            << printMBBReference(*begin()->getParent()) << " ***\n";
827     dumpSchedule();
828     dbgs() << '\n';
829   });
830 }
831 
832 /// Apply each ScheduleDAGMutation step in order.
833 void ScheduleDAGMI::postprocessDAG() {
834   for (auto &m : Mutations)
835     m->apply(this);
836 }
837 
838 void ScheduleDAGMI::
839 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
840                       SmallVectorImpl<SUnit*> &BotRoots) {
841   for (SUnit &SU : SUnits) {
842     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
843 
844     // Order predecessors so DFSResult follows the critical path.
845     SU.biasCriticalPath();
846 
847     // A SUnit is ready to top schedule if it has no predecessors.
848     if (!SU.NumPredsLeft)
849       TopRoots.push_back(&SU);
850     // A SUnit is ready to bottom schedule if it has no successors.
851     if (!SU.NumSuccsLeft)
852       BotRoots.push_back(&SU);
853   }
854   ExitSU.biasCriticalPath();
855 }
856 
857 /// Identify DAG roots and setup scheduler queues.
858 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
859                                ArrayRef<SUnit*> BotRoots) {
860   NextClusterSucc = nullptr;
861   NextClusterPred = nullptr;
862 
863   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
864   //
865   // Nodes with unreleased weak edges can still be roots.
866   // Release top roots in forward order.
867   for (SUnit *SU : TopRoots)
868     SchedImpl->releaseTopNode(SU);
869 
870   // Release bottom roots in reverse order so the higher priority nodes appear
871   // first. This is more natural and slightly more efficient.
872   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
873          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
874     SchedImpl->releaseBottomNode(*I);
875   }
876 
877   releaseSuccessors(&EntrySU);
878   releasePredecessors(&ExitSU);
879 
880   SchedImpl->registerRoots();
881 
882   // Advance past initial DebugValues.
883   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
884   CurrentBottom = RegionEnd;
885 }
886 
887 /// Update scheduler queues after scheduling an instruction.
888 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
889   // Release dependent instructions for scheduling.
890   if (IsTopNode)
891     releaseSuccessors(SU);
892   else
893     releasePredecessors(SU);
894 
895   SU->isScheduled = true;
896 }
897 
898 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
899 void ScheduleDAGMI::placeDebugValues() {
900   // If first instruction was a DBG_VALUE then put it back.
901   if (FirstDbgValue) {
902     BB->splice(RegionBegin, BB, FirstDbgValue);
903     RegionBegin = FirstDbgValue;
904   }
905 
906   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
907          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
908     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
909     MachineInstr *DbgValue = P.first;
910     MachineBasicBlock::iterator OrigPrevMI = P.second;
911     if (&*RegionBegin == DbgValue)
912       ++RegionBegin;
913     BB->splice(++OrigPrevMI, BB, DbgValue);
914     if (OrigPrevMI == std::prev(RegionEnd))
915       RegionEnd = DbgValue;
916   }
917   DbgValues.clear();
918   FirstDbgValue = nullptr;
919 }
920 
921 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
922 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
923   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
924     if (SUnit *SU = getSUnit(&(*MI)))
925       SU->dump(this);
926     else
927       dbgs() << "Missing SUnit\n";
928   }
929 }
930 #endif
931 
932 //===----------------------------------------------------------------------===//
933 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
934 // preservation.
935 //===----------------------------------------------------------------------===//
936 
937 ScheduleDAGMILive::~ScheduleDAGMILive() {
938   delete DFSResult;
939 }
940 
941 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
942   const MachineInstr &MI = *SU.getInstr();
943   for (const MachineOperand &MO : MI.operands()) {
944     if (!MO.isReg())
945       continue;
946     if (!MO.readsReg())
947       continue;
948     if (TrackLaneMasks && !MO.isUse())
949       continue;
950 
951     unsigned Reg = MO.getReg();
952     if (!TargetRegisterInfo::isVirtualRegister(Reg))
953       continue;
954 
955     // Ignore re-defs.
956     if (TrackLaneMasks) {
957       bool FoundDef = false;
958       for (const MachineOperand &MO2 : MI.operands()) {
959         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
960           FoundDef = true;
961           break;
962         }
963       }
964       if (FoundDef)
965         continue;
966     }
967 
968     // Record this local VReg use.
969     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
970     for (; UI != VRegUses.end(); ++UI) {
971       if (UI->SU == &SU)
972         break;
973     }
974     if (UI == VRegUses.end())
975       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
976   }
977 }
978 
979 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
980 /// crossing a scheduling boundary. [begin, end) includes all instructions in
981 /// the region, including the boundary itself and single-instruction regions
982 /// that don't get scheduled.
983 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
984                                 MachineBasicBlock::iterator begin,
985                                 MachineBasicBlock::iterator end,
986                                 unsigned regioninstrs)
987 {
988   // ScheduleDAGMI initializes SchedImpl's per-region policy.
989   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
990 
991   // For convenience remember the end of the liveness region.
992   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
993 
994   SUPressureDiffs.clear();
995 
996   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
997   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
998 
999   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
1000          "ShouldTrackLaneMasks requires ShouldTrackPressure");
1001 }
1002 
1003 // Setup the register pressure trackers for the top scheduled top and bottom
1004 // scheduled regions.
1005 void ScheduleDAGMILive::initRegPressure() {
1006   VRegUses.clear();
1007   VRegUses.setUniverse(MRI.getNumVirtRegs());
1008   for (SUnit &SU : SUnits)
1009     collectVRegUses(SU);
1010 
1011   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
1012                     ShouldTrackLaneMasks, false);
1013   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1014                     ShouldTrackLaneMasks, false);
1015 
1016   // Close the RPTracker to finalize live ins.
1017   RPTracker.closeRegion();
1018 
1019   DEBUG(RPTracker.dump());
1020 
1021   // Initialize the live ins and live outs.
1022   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
1023   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
1024 
1025   // Close one end of the tracker so we can call
1026   // getMaxUpward/DownwardPressureDelta before advancing across any
1027   // instructions. This converts currently live regs into live ins/outs.
1028   TopRPTracker.closeTop();
1029   BotRPTracker.closeBottom();
1030 
1031   BotRPTracker.initLiveThru(RPTracker);
1032   if (!BotRPTracker.getLiveThru().empty()) {
1033     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
1034     DEBUG(dbgs() << "Live Thru: ";
1035           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
1036   };
1037 
1038   // For each live out vreg reduce the pressure change associated with other
1039   // uses of the same vreg below the live-out reaching def.
1040   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
1041 
1042   // Account for liveness generated by the region boundary.
1043   if (LiveRegionEnd != RegionEnd) {
1044     SmallVector<RegisterMaskPair, 8> LiveUses;
1045     BotRPTracker.recede(&LiveUses);
1046     updatePressureDiffs(LiveUses);
1047   }
1048 
1049   DEBUG(
1050     dbgs() << "Top Pressure:\n";
1051     dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1052     dbgs() << "Bottom Pressure:\n";
1053     dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1054   );
1055 
1056   assert((BotRPTracker.getPos() == RegionEnd ||
1057           (RegionEnd->isDebugValue() &&
1058            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
1059          "Can't find the region bottom");
1060 
1061   // Cache the list of excess pressure sets in this region. This will also track
1062   // the max pressure in the scheduled code for these sets.
1063   RegionCriticalPSets.clear();
1064   const std::vector<unsigned> &RegionPressure =
1065     RPTracker.getPressure().MaxSetPressure;
1066   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
1067     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
1068     if (RegionPressure[i] > Limit) {
1069       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
1070             << " Limit " << Limit
1071             << " Actual " << RegionPressure[i] << "\n");
1072       RegionCriticalPSets.push_back(PressureChange(i));
1073     }
1074   }
1075   DEBUG(dbgs() << "Excess PSets: ";
1076         for (const PressureChange &RCPS : RegionCriticalPSets)
1077           dbgs() << TRI->getRegPressureSetName(
1078             RCPS.getPSet()) << " ";
1079         dbgs() << "\n");
1080 }
1081 
1082 void ScheduleDAGMILive::
1083 updateScheduledPressure(const SUnit *SU,
1084                         const std::vector<unsigned> &NewMaxPressure) {
1085   const PressureDiff &PDiff = getPressureDiff(SU);
1086   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
1087   for (const PressureChange &PC : PDiff) {
1088     if (!PC.isValid())
1089       break;
1090     unsigned ID = PC.getPSet();
1091     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
1092       ++CritIdx;
1093     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
1094       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
1095           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
1096         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
1097     }
1098     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
1099     if (NewMaxPressure[ID] >= Limit - 2) {
1100       DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
1101             << NewMaxPressure[ID]
1102             << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
1103             << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
1104     }
1105   }
1106 }
1107 
1108 /// Update the PressureDiff array for liveness after scheduling this
1109 /// instruction.
1110 void ScheduleDAGMILive::updatePressureDiffs(
1111     ArrayRef<RegisterMaskPair> LiveUses) {
1112   for (const RegisterMaskPair &P : LiveUses) {
1113     unsigned Reg = P.RegUnit;
1114     /// FIXME: Currently assuming single-use physregs.
1115     if (!TRI->isVirtualRegister(Reg))
1116       continue;
1117 
1118     if (ShouldTrackLaneMasks) {
1119       // If the register has just become live then other uses won't change
1120       // this fact anymore => decrement pressure.
1121       // If the register has just become dead then other uses make it come
1122       // back to life => increment pressure.
1123       bool Decrement = P.LaneMask.any();
1124 
1125       for (const VReg2SUnit &V2SU
1126            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1127         SUnit &SU = *V2SU.SU;
1128         if (SU.isScheduled || &SU == &ExitSU)
1129           continue;
1130 
1131         PressureDiff &PDiff = getPressureDiff(&SU);
1132         PDiff.addPressureChange(Reg, Decrement, &MRI);
1133         DEBUG(
1134           dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
1135                  << printReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask)
1136                  << ' ' << *SU.getInstr();
1137           dbgs() << "              to ";
1138           PDiff.dump(*TRI);
1139         );
1140       }
1141     } else {
1142       assert(P.LaneMask.any());
1143       DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
1144       // This may be called before CurrentBottom has been initialized. However,
1145       // BotRPTracker must have a valid position. We want the value live into the
1146       // instruction or live out of the block, so ask for the previous
1147       // instruction's live-out.
1148       const LiveInterval &LI = LIS->getInterval(Reg);
1149       VNInfo *VNI;
1150       MachineBasicBlock::const_iterator I =
1151         nextIfDebug(BotRPTracker.getPos(), BB->end());
1152       if (I == BB->end())
1153         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1154       else {
1155         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
1156         VNI = LRQ.valueIn();
1157       }
1158       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
1159       assert(VNI && "No live value at use.");
1160       for (const VReg2SUnit &V2SU
1161            : make_range(VRegUses.find(Reg), VRegUses.end())) {
1162         SUnit *SU = V2SU.SU;
1163         // If this use comes before the reaching def, it cannot be a last use,
1164         // so decrease its pressure change.
1165         if (!SU->isScheduled && SU != &ExitSU) {
1166           LiveQueryResult LRQ =
1167               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1168           if (LRQ.valueIn() == VNI) {
1169             PressureDiff &PDiff = getPressureDiff(SU);
1170             PDiff.addPressureChange(Reg, true, &MRI);
1171             DEBUG(
1172               dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
1173                      << *SU->getInstr();
1174               dbgs() << "              to ";
1175               PDiff.dump(*TRI);
1176             );
1177           }
1178         }
1179       }
1180     }
1181   }
1182 }
1183 
1184 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1185 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1186 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1187 ///
1188 /// This is a skeletal driver, with all the functionality pushed into helpers,
1189 /// so that it can be easily extended by experimental schedulers. Generally,
1190 /// implementing MachineSchedStrategy should be sufficient to implement a new
1191 /// scheduling algorithm. However, if a scheduler further subclasses
1192 /// ScheduleDAGMILive then it will want to override this virtual method in order
1193 /// to update any specialized state.
1194 void ScheduleDAGMILive::schedule() {
1195   DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1196   DEBUG(SchedImpl->dumpPolicy());
1197   buildDAGWithRegPressure();
1198 
1199   Topo.InitDAGTopologicalSorting();
1200 
1201   postprocessDAG();
1202 
1203   SmallVector<SUnit*, 8> TopRoots, BotRoots;
1204   findRootsAndBiasEdges(TopRoots, BotRoots);
1205 
1206   // Initialize the strategy before modifying the DAG.
1207   // This may initialize a DFSResult to be used for queue priority.
1208   SchedImpl->initialize(this);
1209 
1210   DEBUG(
1211     if (EntrySU.getInstr() != nullptr)
1212       EntrySU.dumpAll(this);
1213     for (const SUnit &SU : SUnits) {
1214       SU.dumpAll(this);
1215       if (ShouldTrackPressure) {
1216         dbgs() << "  Pressure Diff      : ";
1217         getPressureDiff(&SU).dump(*TRI);
1218       }
1219       dbgs() << "  Single Issue       : ";
1220       if (SchedModel.mustBeginGroup(SU.getInstr()) &&
1221          SchedModel.mustEndGroup(SU.getInstr()))
1222         dbgs() << "true;";
1223       else
1224         dbgs() << "false;";
1225       dbgs() << '\n';
1226     }
1227     if (ExitSU.getInstr() != nullptr)
1228       ExitSU.dumpAll(this);
1229   );
1230   if (ViewMISchedDAGs) viewGraph();
1231 
1232   // Initialize ready queues now that the DAG and priority data are finalized.
1233   initQueues(TopRoots, BotRoots);
1234 
1235   bool IsTopNode = false;
1236   while (true) {
1237     DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1238     SUnit *SU = SchedImpl->pickNode(IsTopNode);
1239     if (!SU) break;
1240 
1241     assert(!SU->isScheduled && "Node already scheduled");
1242     if (!checkSchedLimit())
1243       break;
1244 
1245     scheduleMI(SU, IsTopNode);
1246 
1247     if (DFSResult) {
1248       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1249       if (!ScheduledTrees.test(SubtreeID)) {
1250         ScheduledTrees.set(SubtreeID);
1251         DFSResult->scheduleTree(SubtreeID);
1252         SchedImpl->scheduleTree(SubtreeID);
1253       }
1254     }
1255 
1256     // Notify the scheduling strategy after updating the DAG.
1257     SchedImpl->schedNode(SU, IsTopNode);
1258 
1259     updateQueues(SU, IsTopNode);
1260   }
1261   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1262 
1263   placeDebugValues();
1264 
1265   DEBUG({
1266     dbgs() << "*** Final schedule for "
1267            << printMBBReference(*begin()->getParent()) << " ***\n";
1268     dumpSchedule();
1269     dbgs() << '\n';
1270   });
1271 }
1272 
1273 /// Build the DAG and setup three register pressure trackers.
1274 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1275   if (!ShouldTrackPressure) {
1276     RPTracker.reset();
1277     RegionCriticalPSets.clear();
1278     buildSchedGraph(AA);
1279     return;
1280   }
1281 
1282   // Initialize the register pressure tracker used by buildSchedGraph.
1283   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1284                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
1285 
1286   // Account for liveness generate by the region boundary.
1287   if (LiveRegionEnd != RegionEnd)
1288     RPTracker.recede();
1289 
1290   // Build the DAG, and compute current register pressure.
1291   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
1292 
1293   // Initialize top/bottom trackers after computing region pressure.
1294   initRegPressure();
1295 }
1296 
1297 void ScheduleDAGMILive::computeDFSResult() {
1298   if (!DFSResult)
1299     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1300   DFSResult->clear();
1301   ScheduledTrees.clear();
1302   DFSResult->resize(SUnits.size());
1303   DFSResult->compute(SUnits);
1304   ScheduledTrees.resize(DFSResult->getNumSubtrees());
1305 }
1306 
1307 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1308 /// only provides the critical path for single block loops. To handle loops that
1309 /// span blocks, we could use the vreg path latencies provided by
1310 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1311 /// available for use in the scheduler.
1312 ///
1313 /// The cyclic path estimation identifies a def-use pair that crosses the back
1314 /// edge and considers the depth and height of the nodes. For example, consider
1315 /// the following instruction sequence where each instruction has unit latency
1316 /// and defines an epomymous virtual register:
1317 ///
1318 /// a->b(a,c)->c(b)->d(c)->exit
1319 ///
1320 /// The cyclic critical path is a two cycles: b->c->b
1321 /// The acyclic critical path is four cycles: a->b->c->d->exit
1322 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1323 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1324 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1325 /// LiveInDepth = depth(b) = len(a->b) = 1
1326 ///
1327 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1328 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1329 /// CyclicCriticalPath = min(2, 2) = 2
1330 ///
1331 /// This could be relevant to PostRA scheduling, but is currently implemented
1332 /// assuming LiveIntervals.
1333 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1334   // This only applies to single block loop.
1335   if (!BB->isSuccessor(BB))
1336     return 0;
1337 
1338   unsigned MaxCyclicLatency = 0;
1339   // Visit each live out vreg def to find def/use pairs that cross iterations.
1340   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
1341     unsigned Reg = P.RegUnit;
1342     if (!TRI->isVirtualRegister(Reg))
1343         continue;
1344     const LiveInterval &LI = LIS->getInterval(Reg);
1345     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1346     if (!DefVNI)
1347       continue;
1348 
1349     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1350     const SUnit *DefSU = getSUnit(DefMI);
1351     if (!DefSU)
1352       continue;
1353 
1354     unsigned LiveOutHeight = DefSU->getHeight();
1355     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1356     // Visit all local users of the vreg def.
1357     for (const VReg2SUnit &V2SU
1358          : make_range(VRegUses.find(Reg), VRegUses.end())) {
1359       SUnit *SU = V2SU.SU;
1360       if (SU == &ExitSU)
1361         continue;
1362 
1363       // Only consider uses of the phi.
1364       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
1365       if (!LRQ.valueIn()->isPHIDef())
1366         continue;
1367 
1368       // Assume that a path spanning two iterations is a cycle, which could
1369       // overestimate in strange cases. This allows cyclic latency to be
1370       // estimated as the minimum slack of the vreg's depth or height.
1371       unsigned CyclicLatency = 0;
1372       if (LiveOutDepth > SU->getDepth())
1373         CyclicLatency = LiveOutDepth - SU->getDepth();
1374 
1375       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1376       if (LiveInHeight > LiveOutHeight) {
1377         if (LiveInHeight - LiveOutHeight < CyclicLatency)
1378           CyclicLatency = LiveInHeight - LiveOutHeight;
1379       } else
1380         CyclicLatency = 0;
1381 
1382       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1383             << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1384       if (CyclicLatency > MaxCyclicLatency)
1385         MaxCyclicLatency = CyclicLatency;
1386     }
1387   }
1388   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1389   return MaxCyclicLatency;
1390 }
1391 
1392 /// Release ExitSU predecessors and setup scheduler queues. Re-position
1393 /// the Top RP tracker in case the region beginning has changed.
1394 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
1395                                    ArrayRef<SUnit*> BotRoots) {
1396   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
1397   if (ShouldTrackPressure) {
1398     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1399     TopRPTracker.setPos(CurrentTop);
1400   }
1401 }
1402 
1403 /// Move an instruction and update register pressure.
1404 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1405   // Move the instruction to its new location in the instruction stream.
1406   MachineInstr *MI = SU->getInstr();
1407 
1408   if (IsTopNode) {
1409     assert(SU->isTopReady() && "node still has unscheduled dependencies");
1410     if (&*CurrentTop == MI)
1411       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1412     else {
1413       moveInstruction(MI, CurrentTop);
1414       TopRPTracker.setPos(MI);
1415     }
1416 
1417     if (ShouldTrackPressure) {
1418       // Update top scheduled pressure.
1419       RegisterOperands RegOpers;
1420       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1421       if (ShouldTrackLaneMasks) {
1422         // Adjust liveness and add missing dead+read-undef flags.
1423         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1424         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1425       } else {
1426         // Adjust for missing dead-def flags.
1427         RegOpers.detectDeadDefs(*MI, *LIS);
1428       }
1429 
1430       TopRPTracker.advance(RegOpers);
1431       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1432       DEBUG(
1433         dbgs() << "Top Pressure:\n";
1434         dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1435       );
1436 
1437       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1438     }
1439   } else {
1440     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1441     MachineBasicBlock::iterator priorII =
1442       priorNonDebug(CurrentBottom, CurrentTop);
1443     if (&*priorII == MI)
1444       CurrentBottom = priorII;
1445     else {
1446       if (&*CurrentTop == MI) {
1447         CurrentTop = nextIfDebug(++CurrentTop, priorII);
1448         TopRPTracker.setPos(CurrentTop);
1449       }
1450       moveInstruction(MI, CurrentBottom);
1451       CurrentBottom = MI;
1452       BotRPTracker.setPos(CurrentBottom);
1453     }
1454     if (ShouldTrackPressure) {
1455       RegisterOperands RegOpers;
1456       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
1457       if (ShouldTrackLaneMasks) {
1458         // Adjust liveness and add missing dead+read-undef flags.
1459         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
1460         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
1461       } else {
1462         // Adjust for missing dead-def flags.
1463         RegOpers.detectDeadDefs(*MI, *LIS);
1464       }
1465 
1466       if (BotRPTracker.getPos() != CurrentBottom)
1467         BotRPTracker.recedeSkipDebugValues();
1468       SmallVector<RegisterMaskPair, 8> LiveUses;
1469       BotRPTracker.recede(RegOpers, &LiveUses);
1470       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1471       DEBUG(
1472         dbgs() << "Bottom Pressure:\n";
1473         dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1474       );
1475 
1476       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1477       updatePressureDiffs(LiveUses);
1478     }
1479   }
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
1484 //===----------------------------------------------------------------------===//
1485 
1486 namespace {
1487 
1488 /// \brief Post-process the DAG to create cluster edges between neighboring
1489 /// loads or between neighboring stores.
1490 class BaseMemOpClusterMutation : public ScheduleDAGMutation {
1491   struct MemOpInfo {
1492     SUnit *SU;
1493     unsigned BaseReg;
1494     int64_t Offset;
1495 
1496     MemOpInfo(SUnit *su, unsigned reg, int64_t ofs)
1497         : SU(su), BaseReg(reg), Offset(ofs) {}
1498 
1499     bool operator<(const MemOpInfo&RHS) const {
1500       return std::tie(BaseReg, Offset, SU->NodeNum) <
1501              std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum);
1502     }
1503   };
1504 
1505   const TargetInstrInfo *TII;
1506   const TargetRegisterInfo *TRI;
1507   bool IsLoad;
1508 
1509 public:
1510   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
1511                            const TargetRegisterInfo *tri, bool IsLoad)
1512       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
1513 
1514   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1515 
1516 protected:
1517   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG);
1518 };
1519 
1520 class StoreClusterMutation : public BaseMemOpClusterMutation {
1521 public:
1522   StoreClusterMutation(const TargetInstrInfo *tii,
1523                        const TargetRegisterInfo *tri)
1524       : BaseMemOpClusterMutation(tii, tri, false) {}
1525 };
1526 
1527 class LoadClusterMutation : public BaseMemOpClusterMutation {
1528 public:
1529   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
1530       : BaseMemOpClusterMutation(tii, tri, true) {}
1531 };
1532 
1533 } // end anonymous namespace
1534 
1535 namespace llvm {
1536 
1537 std::unique_ptr<ScheduleDAGMutation>
1538 createLoadClusterDAGMutation(const TargetInstrInfo *TII,
1539                              const TargetRegisterInfo *TRI) {
1540   return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI)
1541                             : nullptr;
1542 }
1543 
1544 std::unique_ptr<ScheduleDAGMutation>
1545 createStoreClusterDAGMutation(const TargetInstrInfo *TII,
1546                               const TargetRegisterInfo *TRI) {
1547   return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI)
1548                             : nullptr;
1549 }
1550 
1551 } // end namespace llvm
1552 
1553 void BaseMemOpClusterMutation::clusterNeighboringMemOps(
1554     ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) {
1555   SmallVector<MemOpInfo, 32> MemOpRecords;
1556   for (SUnit *SU : MemOps) {
1557     unsigned BaseReg;
1558     int64_t Offset;
1559     if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI))
1560       MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset));
1561   }
1562   if (MemOpRecords.size() < 2)
1563     return;
1564 
1565   std::sort(MemOpRecords.begin(), MemOpRecords.end());
1566   unsigned ClusterLength = 1;
1567   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
1568     SUnit *SUa = MemOpRecords[Idx].SU;
1569     SUnit *SUb = MemOpRecords[Idx+1].SU;
1570     if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg,
1571                                  *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg,
1572                                  ClusterLength) &&
1573         DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1574       DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
1575             << SUb->NodeNum << ")\n");
1576       // Copy successor edges from SUa to SUb. Interleaving computation
1577       // dependent on SUa can prevent load combining due to register reuse.
1578       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1579       // loads should have effectively the same inputs.
1580       for (const SDep &Succ : SUa->Succs) {
1581         if (Succ.getSUnit() == SUb)
1582           continue;
1583         DEBUG(dbgs() << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n");
1584         DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
1585       }
1586       ++ClusterLength;
1587     } else
1588       ClusterLength = 1;
1589   }
1590 }
1591 
1592 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1593 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
1594   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1595 
1596   // Map DAG NodeNum to store chain ID.
1597   DenseMap<unsigned, unsigned> StoreChainIDs;
1598   // Map each store chain to a set of dependent MemOps.
1599   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1600   for (SUnit &SU : DAG->SUnits) {
1601     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
1602         (!IsLoad && !SU.getInstr()->mayStore()))
1603       continue;
1604 
1605     unsigned ChainPredID = DAG->SUnits.size();
1606     for (const SDep &Pred : SU.Preds) {
1607       if (Pred.isCtrl()) {
1608         ChainPredID = Pred.getSUnit()->NodeNum;
1609         break;
1610       }
1611     }
1612     // Check if this chain-like pred has been seen
1613     // before. ChainPredID==MaxNodeID at the top of the schedule.
1614     unsigned NumChains = StoreChainDependents.size();
1615     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1616       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1617     if (Result.second)
1618       StoreChainDependents.resize(NumChains + 1);
1619     StoreChainDependents[Result.first->second].push_back(&SU);
1620   }
1621 
1622   // Iterate over the store chains.
1623   for (auto &SCD : StoreChainDependents)
1624     clusterNeighboringMemOps(SCD, DAG);
1625 }
1626 
1627 //===----------------------------------------------------------------------===//
1628 // CopyConstrain - DAG post-processing to encourage copy elimination.
1629 //===----------------------------------------------------------------------===//
1630 
1631 namespace {
1632 
1633 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1634 /// the one use that defines the copy's source vreg, most likely an induction
1635 /// variable increment.
1636 class CopyConstrain : public ScheduleDAGMutation {
1637   // Transient state.
1638   SlotIndex RegionBeginIdx;
1639 
1640   // RegionEndIdx is the slot index of the last non-debug instruction in the
1641   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1642   SlotIndex RegionEndIdx;
1643 
1644 public:
1645   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1646 
1647   void apply(ScheduleDAGInstrs *DAGInstrs) override;
1648 
1649 protected:
1650   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1651 };
1652 
1653 } // end anonymous namespace
1654 
1655 namespace llvm {
1656 
1657 std::unique_ptr<ScheduleDAGMutation>
1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
1659                                const TargetRegisterInfo *TRI) {
1660   return llvm::make_unique<CopyConstrain>(TII, TRI);
1661 }
1662 
1663 } // end namespace llvm
1664 
1665 /// constrainLocalCopy handles two possibilities:
1666 /// 1) Local src:
1667 /// I0:     = dst
1668 /// I1: src = ...
1669 /// I2:     = dst
1670 /// I3: dst = src (copy)
1671 /// (create pred->succ edges I0->I1, I2->I1)
1672 ///
1673 /// 2) Local copy:
1674 /// I0: dst = src (copy)
1675 /// I1:     = dst
1676 /// I2: src = ...
1677 /// I3:     = dst
1678 /// (create pred->succ edges I1->I2, I3->I2)
1679 ///
1680 /// Although the MachineScheduler is currently constrained to single blocks,
1681 /// this algorithm should handle extended blocks. An EBB is a set of
1682 /// contiguously numbered blocks such that the previous block in the EBB is
1683 /// always the single predecessor.
1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1685   LiveIntervals *LIS = DAG->getLIS();
1686   MachineInstr *Copy = CopySU->getInstr();
1687 
1688   // Check for pure vreg copies.
1689   const MachineOperand &SrcOp = Copy->getOperand(1);
1690   unsigned SrcReg = SrcOp.getReg();
1691   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
1692     return;
1693 
1694   const MachineOperand &DstOp = Copy->getOperand(0);
1695   unsigned DstReg = DstOp.getReg();
1696   if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead())
1697     return;
1698 
1699   // Check if either the dest or source is local. If it's live across a back
1700   // edge, it's not local. Note that if both vregs are live across the back
1701   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1702   // If both the copy's source and dest are local live intervals, then we
1703   // should treat the dest as the global for the purpose of adding
1704   // constraints. This adds edges from source's other uses to the copy.
1705   unsigned LocalReg = SrcReg;
1706   unsigned GlobalReg = DstReg;
1707   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1708   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1709     LocalReg = DstReg;
1710     GlobalReg = SrcReg;
1711     LocalLI = &LIS->getInterval(LocalReg);
1712     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1713       return;
1714   }
1715   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1716 
1717   // Find the global segment after the start of the local LI.
1718   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1719   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1720   // local live range. We could create edges from other global uses to the local
1721   // start, but the coalescer should have already eliminated these cases, so
1722   // don't bother dealing with it.
1723   if (GlobalSegment == GlobalLI->end())
1724     return;
1725 
1726   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1727   // returned the next global segment. But if GlobalSegment overlaps with
1728   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1729   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1730   if (GlobalSegment->contains(LocalLI->beginIndex()))
1731     ++GlobalSegment;
1732 
1733   if (GlobalSegment == GlobalLI->end())
1734     return;
1735 
1736   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1737   if (GlobalSegment != GlobalLI->begin()) {
1738     // Two address defs have no hole.
1739     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1740                                GlobalSegment->start)) {
1741       return;
1742     }
1743     // If the prior global segment may be defined by the same two-address
1744     // instruction that also defines LocalLI, then can't make a hole here.
1745     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1746                                LocalLI->beginIndex())) {
1747       return;
1748     }
1749     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1750     // it would be a disconnected component in the live range.
1751     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1752            "Disconnected LRG within the scheduling region.");
1753   }
1754   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1755   if (!GlobalDef)
1756     return;
1757 
1758   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1759   if (!GlobalSU)
1760     return;
1761 
1762   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1763   // constraining the uses of the last local def to precede GlobalDef.
1764   SmallVector<SUnit*,8> LocalUses;
1765   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1766   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1767   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1768   for (const SDep &Succ : LastLocalSU->Succs) {
1769     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
1770       continue;
1771     if (Succ.getSUnit() == GlobalSU)
1772       continue;
1773     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
1774       return;
1775     LocalUses.push_back(Succ.getSUnit());
1776   }
1777   // Open the top of the GlobalLI hole by constraining any earlier global uses
1778   // to precede the start of LocalLI.
1779   SmallVector<SUnit*,8> GlobalUses;
1780   MachineInstr *FirstLocalDef =
1781     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1782   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1783   for (const SDep &Pred : GlobalSU->Preds) {
1784     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
1785       continue;
1786     if (Pred.getSUnit() == FirstLocalSU)
1787       continue;
1788     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
1789       return;
1790     GlobalUses.push_back(Pred.getSUnit());
1791   }
1792   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1793   // Add the weak edges.
1794   for (SmallVectorImpl<SUnit*>::const_iterator
1795          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1796     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1797           << GlobalSU->NodeNum << ")\n");
1798     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1799   }
1800   for (SmallVectorImpl<SUnit*>::const_iterator
1801          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1802     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1803           << FirstLocalSU->NodeNum << ")\n");
1804     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1805   }
1806 }
1807 
1808 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1809 /// copy elimination.
1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
1811   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
1812   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1813 
1814   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1815   if (FirstPos == DAG->end())
1816     return;
1817   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
1818   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1819       *priorNonDebug(DAG->end(), DAG->begin()));
1820 
1821   for (SUnit &SU : DAG->SUnits) {
1822     if (!SU.getInstr()->isCopy())
1823       continue;
1824 
1825     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
1826   }
1827 }
1828 
1829 //===----------------------------------------------------------------------===//
1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1831 // and possibly other custom schedulers.
1832 //===----------------------------------------------------------------------===//
1833 
1834 static const unsigned InvalidCycle = ~0U;
1835 
1836 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1837 
1838 /// Given a Count of resource usage and a Latency value, return true if a
1839 /// SchedBoundary becomes resource limited.
1840 static bool checkResourceLimit(unsigned LFactor, unsigned Count,
1841                                unsigned Latency) {
1842   return (int)(Count - (Latency * LFactor)) > (int)LFactor;
1843 }
1844 
1845 void SchedBoundary::reset() {
1846   // A new HazardRec is created for each DAG and owned by SchedBoundary.
1847   // Destroying and reconstructing it is very expensive though. So keep
1848   // invalid, placeholder HazardRecs.
1849   if (HazardRec && HazardRec->isEnabled()) {
1850     delete HazardRec;
1851     HazardRec = nullptr;
1852   }
1853   Available.clear();
1854   Pending.clear();
1855   CheckPending = false;
1856   CurrCycle = 0;
1857   CurrMOps = 0;
1858   MinReadyCycle = std::numeric_limits<unsigned>::max();
1859   ExpectedLatency = 0;
1860   DependentLatency = 0;
1861   RetiredMOps = 0;
1862   MaxExecutedResCount = 0;
1863   ZoneCritResIdx = 0;
1864   IsResourceLimited = false;
1865   ReservedCycles.clear();
1866 #ifndef NDEBUG
1867   // Track the maximum number of stall cycles that could arise either from the
1868   // latency of a DAG edge or the number of cycles that a processor resource is
1869   // reserved (SchedBoundary::ReservedCycles).
1870   MaxObservedStall = 0;
1871 #endif
1872   // Reserve a zero-count for invalid CritResIdx.
1873   ExecutedResCounts.resize(1);
1874   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1875 }
1876 
1877 void SchedRemainder::
1878 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1879   reset();
1880   if (!SchedModel->hasInstrSchedModel())
1881     return;
1882   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1883   for (SUnit &SU : DAG->SUnits) {
1884     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
1885     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
1886       * SchedModel->getMicroOpFactor();
1887     for (TargetSchedModel::ProcResIter
1888            PI = SchedModel->getWriteProcResBegin(SC),
1889            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1890       unsigned PIdx = PI->ProcResourceIdx;
1891       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1892       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1893     }
1894   }
1895 }
1896 
1897 void SchedBoundary::
1898 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1899   reset();
1900   DAG = dag;
1901   SchedModel = smodel;
1902   Rem = rem;
1903   if (SchedModel->hasInstrSchedModel()) {
1904     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1905     ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1906   }
1907 }
1908 
1909 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1910 /// these "soft stalls" differently than the hard stall cycles based on CPU
1911 /// resources and computed by checkHazard(). A fully in-order model
1912 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1913 /// available for scheduling until they are ready. However, a weaker in-order
1914 /// model may use this for heuristics. For example, if a processor has in-order
1915 /// behavior when reading certain resources, this may come into play.
1916 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1917   if (!SU->isUnbuffered)
1918     return 0;
1919 
1920   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1921   if (ReadyCycle > CurrCycle)
1922     return ReadyCycle - CurrCycle;
1923   return 0;
1924 }
1925 
1926 /// Compute the next cycle at which the given processor resource can be
1927 /// scheduled.
1928 unsigned SchedBoundary::
1929 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1930   unsigned NextUnreserved = ReservedCycles[PIdx];
1931   // If this resource has never been used, always return cycle zero.
1932   if (NextUnreserved == InvalidCycle)
1933     return 0;
1934   // For bottom-up scheduling add the cycles needed for the current operation.
1935   if (!isTop())
1936     NextUnreserved += Cycles;
1937   return NextUnreserved;
1938 }
1939 
1940 /// Does this SU have a hazard within the current instruction group.
1941 ///
1942 /// The scheduler supports two modes of hazard recognition. The first is the
1943 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1944 /// supports highly complicated in-order reservation tables
1945 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1946 ///
1947 /// The second is a streamlined mechanism that checks for hazards based on
1948 /// simple counters that the scheduler itself maintains. It explicitly checks
1949 /// for instruction dispatch limitations, including the number of micro-ops that
1950 /// can dispatch per cycle.
1951 ///
1952 /// TODO: Also check whether the SU must start a new group.
1953 bool SchedBoundary::checkHazard(SUnit *SU) {
1954   if (HazardRec->isEnabled()
1955       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1956     return true;
1957   }
1958 
1959   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1960   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1961     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1962           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1963     return true;
1964   }
1965 
1966   if (CurrMOps > 0 &&
1967       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
1968        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
1969     DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
1970                  << (isTop()? "begin" : "end") << " group\n");
1971     return true;
1972   }
1973 
1974   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1975     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1976     for (const MCWriteProcResEntry &PE :
1977           make_range(SchedModel->getWriteProcResBegin(SC),
1978                      SchedModel->getWriteProcResEnd(SC))) {
1979       unsigned ResIdx = PE.ProcResourceIdx;
1980       unsigned Cycles = PE.Cycles;
1981       unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles);
1982       if (NRCycle > CurrCycle) {
1983 #ifndef NDEBUG
1984         MaxObservedStall = std::max(Cycles, MaxObservedStall);
1985 #endif
1986         DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1987               << SchedModel->getResourceName(ResIdx)
1988               << "=" << NRCycle << "c\n");
1989         return true;
1990       }
1991     }
1992   }
1993   return false;
1994 }
1995 
1996 // Find the unscheduled node in ReadySUs with the highest latency.
1997 unsigned SchedBoundary::
1998 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1999   SUnit *LateSU = nullptr;
2000   unsigned RemLatency = 0;
2001   for (SUnit *SU : ReadySUs) {
2002     unsigned L = getUnscheduledLatency(SU);
2003     if (L > RemLatency) {
2004       RemLatency = L;
2005       LateSU = SU;
2006     }
2007   }
2008   if (LateSU) {
2009     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
2010           << LateSU->NodeNum << ") " << RemLatency << "c\n");
2011   }
2012   return RemLatency;
2013 }
2014 
2015 // Count resources in this zone and the remaining unscheduled
2016 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
2017 // resource index, or zero if the zone is issue limited.
2018 unsigned SchedBoundary::
2019 getOtherResourceCount(unsigned &OtherCritIdx) {
2020   OtherCritIdx = 0;
2021   if (!SchedModel->hasInstrSchedModel())
2022     return 0;
2023 
2024   unsigned OtherCritCount = Rem->RemIssueCount
2025     + (RetiredMOps * SchedModel->getMicroOpFactor());
2026   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
2027         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
2028   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
2029        PIdx != PEnd; ++PIdx) {
2030     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
2031     if (OtherCount > OtherCritCount) {
2032       OtherCritCount = OtherCount;
2033       OtherCritIdx = PIdx;
2034     }
2035   }
2036   if (OtherCritIdx) {
2037     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
2038           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
2039           << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
2040   }
2041   return OtherCritCount;
2042 }
2043 
2044 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
2045   assert(SU->getInstr() && "Scheduled SUnit must have instr");
2046 
2047 #ifndef NDEBUG
2048   // ReadyCycle was been bumped up to the CurrCycle when this node was
2049   // scheduled, but CurrCycle may have been eagerly advanced immediately after
2050   // scheduling, so may now be greater than ReadyCycle.
2051   if (ReadyCycle > CurrCycle)
2052     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2053 #endif
2054 
2055   if (ReadyCycle < MinReadyCycle)
2056     MinReadyCycle = ReadyCycle;
2057 
2058   // Check for interlocks first. For the purpose of other heuristics, an
2059   // instruction that cannot issue appears as if it's not in the ReadyQueue.
2060   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2061   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) ||
2062       Available.size() >= ReadyListLimit)
2063     Pending.push(SU);
2064   else
2065     Available.push(SU);
2066 }
2067 
2068 /// Move the boundary of scheduled code by one cycle.
2069 void SchedBoundary::bumpCycle(unsigned NextCycle) {
2070   if (SchedModel->getMicroOpBufferSize() == 0) {
2071     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2072            "MinReadyCycle uninitialized");
2073     if (MinReadyCycle > NextCycle)
2074       NextCycle = MinReadyCycle;
2075   }
2076   // Update the current micro-ops, which will issue in the next cycle.
2077   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2078   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2079 
2080   // Decrement DependentLatency based on the next cycle.
2081   if ((NextCycle - CurrCycle) > DependentLatency)
2082     DependentLatency = 0;
2083   else
2084     DependentLatency -= (NextCycle - CurrCycle);
2085 
2086   if (!HazardRec->isEnabled()) {
2087     // Bypass HazardRec virtual calls.
2088     CurrCycle = NextCycle;
2089   } else {
2090     // Bypass getHazardType calls in case of long latency.
2091     for (; CurrCycle != NextCycle; ++CurrCycle) {
2092       if (isTop())
2093         HazardRec->AdvanceCycle();
2094       else
2095         HazardRec->RecedeCycle();
2096     }
2097   }
2098   CheckPending = true;
2099   IsResourceLimited =
2100       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2101                          getScheduledLatency());
2102 
2103   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2104 }
2105 
2106 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
2107   ExecutedResCounts[PIdx] += Count;
2108   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2109     MaxExecutedResCount = ExecutedResCounts[PIdx];
2110 }
2111 
2112 /// Add the given processor resource to this scheduled zone.
2113 ///
2114 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2115 /// during which this resource is consumed.
2116 ///
2117 /// \return the next cycle at which the instruction may execute without
2118 /// oversubscribing resources.
2119 unsigned SchedBoundary::
2120 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
2121   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2122   unsigned Count = Factor * Cycles;
2123   DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
2124         << " +" << Cycles << "x" << Factor << "u\n");
2125 
2126   // Update Executed resources counts.
2127   incExecutedResources(PIdx, Count);
2128   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2129   Rem->RemainingCounts[PIdx] -= Count;
2130 
2131   // Check if this resource exceeds the current critical resource. If so, it
2132   // becomes the critical resource.
2133   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2134     ZoneCritResIdx = PIdx;
2135     DEBUG(dbgs() << "  *** Critical resource "
2136           << SchedModel->getResourceName(PIdx) << ": "
2137           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2138   }
2139   // For reserved resources, record the highest cycle using the resource.
2140   unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
2141   if (NextAvailable > CurrCycle) {
2142     DEBUG(dbgs() << "  Resource conflict: "
2143           << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
2144           << NextAvailable << "\n");
2145   }
2146   return NextAvailable;
2147 }
2148 
2149 /// Move the boundary of scheduled code by one SUnit.
2150 void SchedBoundary::bumpNode(SUnit *SU) {
2151   // Update the reservation table.
2152   if (HazardRec->isEnabled()) {
2153     if (!isTop() && SU->isCall) {
2154       // Calls are scheduled with their preceding instructions. For bottom-up
2155       // scheduling, clear the pipeline state before emitting.
2156       HazardRec->Reset();
2157     }
2158     HazardRec->EmitInstruction(SU);
2159   }
2160   // checkHazard should prevent scheduling multiple instructions per cycle that
2161   // exceed the issue width.
2162   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2163   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2164   assert(
2165       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
2166       "Cannot schedule this instruction's MicroOps in the current cycle.");
2167 
2168   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2169   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2170 
2171   unsigned NextCycle = CurrCycle;
2172   switch (SchedModel->getMicroOpBufferSize()) {
2173   case 0:
2174     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2175     break;
2176   case 1:
2177     if (ReadyCycle > NextCycle) {
2178       NextCycle = ReadyCycle;
2179       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2180     }
2181     break;
2182   default:
2183     // We don't currently model the OOO reorder buffer, so consider all
2184     // scheduled MOps to be "retired". We do loosely model in-order resource
2185     // latency. If this instruction uses an in-order resource, account for any
2186     // likely stall cycles.
2187     if (SU->isUnbuffered && ReadyCycle > NextCycle)
2188       NextCycle = ReadyCycle;
2189     break;
2190   }
2191   RetiredMOps += IncMOps;
2192 
2193   // Update resource counts and critical resource.
2194   if (SchedModel->hasInstrSchedModel()) {
2195     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2196     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2197     Rem->RemIssueCount -= DecRemIssue;
2198     if (ZoneCritResIdx) {
2199       // Scale scheduled micro-ops for comparing with the critical resource.
2200       unsigned ScaledMOps =
2201         RetiredMOps * SchedModel->getMicroOpFactor();
2202 
2203       // If scaled micro-ops are now more than the previous critical resource by
2204       // a full cycle, then micro-ops issue becomes critical.
2205       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2206           >= (int)SchedModel->getLatencyFactor()) {
2207         ZoneCritResIdx = 0;
2208         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2209               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2210       }
2211     }
2212     for (TargetSchedModel::ProcResIter
2213            PI = SchedModel->getWriteProcResBegin(SC),
2214            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2215       unsigned RCycle =
2216         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2217       if (RCycle > NextCycle)
2218         NextCycle = RCycle;
2219     }
2220     if (SU->hasReservedResource) {
2221       // For reserved resources, record the highest cycle using the resource.
2222       // For top-down scheduling, this is the cycle in which we schedule this
2223       // instruction plus the number of cycles the operations reserves the
2224       // resource. For bottom-up is it simply the instruction's cycle.
2225       for (TargetSchedModel::ProcResIter
2226              PI = SchedModel->getWriteProcResBegin(SC),
2227              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2228         unsigned PIdx = PI->ProcResourceIdx;
2229         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2230           if (isTop()) {
2231             ReservedCycles[PIdx] =
2232               std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2233           }
2234           else
2235             ReservedCycles[PIdx] = NextCycle;
2236         }
2237       }
2238     }
2239   }
2240   // Update ExpectedLatency and DependentLatency.
2241   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2242   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2243   if (SU->getDepth() > TopLatency) {
2244     TopLatency = SU->getDepth();
2245     DEBUG(dbgs() << "  " << Available.getName()
2246           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2247   }
2248   if (SU->getHeight() > BotLatency) {
2249     BotLatency = SU->getHeight();
2250     DEBUG(dbgs() << "  " << Available.getName()
2251           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2252   }
2253   // If we stall for any reason, bump the cycle.
2254   if (NextCycle > CurrCycle)
2255     bumpCycle(NextCycle);
2256   else
2257     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2258     // resource limited. If a stall occurred, bumpCycle does this.
2259     IsResourceLimited =
2260         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
2261                            getScheduledLatency());
2262 
2263   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2264   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2265   // one cycle.  Since we commonly reach the max MOps here, opportunistically
2266   // bump the cycle to avoid uselessly checking everything in the readyQ.
2267   CurrMOps += IncMOps;
2268 
2269   // Bump the cycle count for issue group constraints.
2270   // This must be done after NextCycle has been adjust for all other stalls.
2271   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
2272   // currCycle to X.
2273   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
2274       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
2275     DEBUG(dbgs() << "  Bump cycle to "
2276                  << (isTop() ? "end" : "begin") << " group\n");
2277     bumpCycle(++NextCycle);
2278   }
2279 
2280   while (CurrMOps >= SchedModel->getIssueWidth()) {
2281     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2282           << " at cycle " << CurrCycle << '\n');
2283     bumpCycle(++NextCycle);
2284   }
2285   DEBUG(dumpScheduledState());
2286 }
2287 
2288 /// Release pending ready nodes in to the available queue. This makes them
2289 /// visible to heuristics.
2290 void SchedBoundary::releasePending() {
2291   // If the available queue is empty, it is safe to reset MinReadyCycle.
2292   if (Available.empty())
2293     MinReadyCycle = std::numeric_limits<unsigned>::max();
2294 
2295   // Check to see if any of the pending instructions are ready to issue.  If
2296   // so, add them to the available queue.
2297   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2298   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2299     SUnit *SU = *(Pending.begin()+i);
2300     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2301 
2302     if (ReadyCycle < MinReadyCycle)
2303       MinReadyCycle = ReadyCycle;
2304 
2305     if (!IsBuffered && ReadyCycle > CurrCycle)
2306       continue;
2307 
2308     if (checkHazard(SU))
2309       continue;
2310 
2311     if (Available.size() >= ReadyListLimit)
2312       break;
2313 
2314     Available.push(SU);
2315     Pending.remove(Pending.begin()+i);
2316     --i; --e;
2317   }
2318   CheckPending = false;
2319 }
2320 
2321 /// Remove SU from the ready set for this boundary.
2322 void SchedBoundary::removeReady(SUnit *SU) {
2323   if (Available.isInQueue(SU))
2324     Available.remove(Available.find(SU));
2325   else {
2326     assert(Pending.isInQueue(SU) && "bad ready count");
2327     Pending.remove(Pending.find(SU));
2328   }
2329 }
2330 
2331 /// If this queue only has one ready candidate, return it. As a side effect,
2332 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2333 /// one node is ready. If multiple instructions are ready, return NULL.
2334 SUnit *SchedBoundary::pickOnlyChoice() {
2335   if (CheckPending)
2336     releasePending();
2337 
2338   if (CurrMOps > 0) {
2339     // Defer any ready instrs that now have a hazard.
2340     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2341       if (checkHazard(*I)) {
2342         Pending.push(*I);
2343         I = Available.remove(I);
2344         continue;
2345       }
2346       ++I;
2347     }
2348   }
2349   for (unsigned i = 0; Available.empty(); ++i) {
2350 //  FIXME: Re-enable assert once PR20057 is resolved.
2351 //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2352 //           "permanent hazard");
2353     (void)i;
2354     bumpCycle(CurrCycle + 1);
2355     releasePending();
2356   }
2357 
2358   DEBUG(Pending.dump());
2359   DEBUG(Available.dump());
2360 
2361   if (Available.size() == 1)
2362     return *Available.begin();
2363   return nullptr;
2364 }
2365 
2366 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2367 // This is useful information to dump after bumpNode.
2368 // Note that the Queue contents are more useful before pickNodeFromQueue.
2369 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
2370   unsigned ResFactor;
2371   unsigned ResCount;
2372   if (ZoneCritResIdx) {
2373     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2374     ResCount = getResourceCount(ZoneCritResIdx);
2375   } else {
2376     ResFactor = SchedModel->getMicroOpFactor();
2377     ResCount = RetiredMOps * ResFactor;
2378   }
2379   unsigned LFactor = SchedModel->getLatencyFactor();
2380   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2381          << "  Retired: " << RetiredMOps;
2382   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2383   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2384          << ResCount / ResFactor << " "
2385          << SchedModel->getResourceName(ZoneCritResIdx)
2386          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2387          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2388          << " limited.\n";
2389 }
2390 #endif
2391 
2392 //===----------------------------------------------------------------------===//
2393 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2394 //===----------------------------------------------------------------------===//
2395 
2396 void GenericSchedulerBase::SchedCandidate::
2397 initResourceDelta(const ScheduleDAGMI *DAG,
2398                   const TargetSchedModel *SchedModel) {
2399   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2400     return;
2401 
2402   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2403   for (TargetSchedModel::ProcResIter
2404          PI = SchedModel->getWriteProcResBegin(SC),
2405          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2406     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2407       ResDelta.CritResources += PI->Cycles;
2408     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2409       ResDelta.DemandedResources += PI->Cycles;
2410   }
2411 }
2412 
2413 /// Set the CandPolicy given a scheduling zone given the current resources and
2414 /// latencies inside and outside the zone.
2415 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
2416                                      SchedBoundary &CurrZone,
2417                                      SchedBoundary *OtherZone) {
2418   // Apply preemptive heuristics based on the total latency and resources
2419   // inside and outside this zone. Potential stalls should be considered before
2420   // following this policy.
2421 
2422   // Compute remaining latency. We need this both to determine whether the
2423   // overall schedule has become latency-limited and whether the instructions
2424   // outside this zone are resource or latency limited.
2425   //
2426   // The "dependent" latency is updated incrementally during scheduling as the
2427   // max height/depth of scheduled nodes minus the cycles since it was
2428   // scheduled:
2429   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2430   //
2431   // The "independent" latency is the max ready queue depth:
2432   //   ILat = max N.depth for N in Available|Pending
2433   //
2434   // RemainingLatency is the greater of independent and dependent latency.
2435   unsigned RemLatency = CurrZone.getDependentLatency();
2436   RemLatency = std::max(RemLatency,
2437                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
2438   RemLatency = std::max(RemLatency,
2439                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2440 
2441   // Compute the critical resource outside the zone.
2442   unsigned OtherCritIdx = 0;
2443   unsigned OtherCount =
2444     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2445 
2446   bool OtherResLimited = false;
2447   if (SchedModel->hasInstrSchedModel())
2448     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
2449                                          OtherCount, RemLatency);
2450 
2451   // Schedule aggressively for latency in PostRA mode. We don't check for
2452   // acyclic latency during PostRA, and highly out-of-order processors will
2453   // skip PostRA scheduling.
2454   if (!OtherResLimited) {
2455     if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2456       Policy.ReduceLatency |= true;
2457       DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2458             << " RemainingLatency " << RemLatency << " + "
2459             << CurrZone.getCurrCycle() << "c > CritPath "
2460             << Rem.CriticalPath << "\n");
2461     }
2462   }
2463   // If the same resource is limiting inside and outside the zone, do nothing.
2464   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2465     return;
2466 
2467   DEBUG(
2468     if (CurrZone.isResourceLimited()) {
2469       dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2470              << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2471              << "\n";
2472     }
2473     if (OtherResLimited)
2474       dbgs() << "  RemainingLimit: "
2475              << SchedModel->getResourceName(OtherCritIdx) << "\n";
2476     if (!CurrZone.isResourceLimited() && !OtherResLimited)
2477       dbgs() << "  Latency limited both directions.\n");
2478 
2479   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2480     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2481 
2482   if (OtherResLimited)
2483     Policy.DemandResIdx = OtherCritIdx;
2484 }
2485 
2486 #ifndef NDEBUG
2487 const char *GenericSchedulerBase::getReasonStr(
2488   GenericSchedulerBase::CandReason Reason) {
2489   switch (Reason) {
2490   case NoCand:         return "NOCAND    ";
2491   case Only1:          return "ONLY1     ";
2492   case PhysRegCopy:    return "PREG-COPY ";
2493   case RegExcess:      return "REG-EXCESS";
2494   case RegCritical:    return "REG-CRIT  ";
2495   case Stall:          return "STALL     ";
2496   case Cluster:        return "CLUSTER   ";
2497   case Weak:           return "WEAK      ";
2498   case RegMax:         return "REG-MAX   ";
2499   case ResourceReduce: return "RES-REDUCE";
2500   case ResourceDemand: return "RES-DEMAND";
2501   case TopDepthReduce: return "TOP-DEPTH ";
2502   case TopPathReduce:  return "TOP-PATH  ";
2503   case BotHeightReduce:return "BOT-HEIGHT";
2504   case BotPathReduce:  return "BOT-PATH  ";
2505   case NextDefUse:     return "DEF-USE   ";
2506   case NodeOrder:      return "ORDER     ";
2507   };
2508   llvm_unreachable("Unknown reason!");
2509 }
2510 
2511 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2512   PressureChange P;
2513   unsigned ResIdx = 0;
2514   unsigned Latency = 0;
2515   switch (Cand.Reason) {
2516   default:
2517     break;
2518   case RegExcess:
2519     P = Cand.RPDelta.Excess;
2520     break;
2521   case RegCritical:
2522     P = Cand.RPDelta.CriticalMax;
2523     break;
2524   case RegMax:
2525     P = Cand.RPDelta.CurrentMax;
2526     break;
2527   case ResourceReduce:
2528     ResIdx = Cand.Policy.ReduceResIdx;
2529     break;
2530   case ResourceDemand:
2531     ResIdx = Cand.Policy.DemandResIdx;
2532     break;
2533   case TopDepthReduce:
2534     Latency = Cand.SU->getDepth();
2535     break;
2536   case TopPathReduce:
2537     Latency = Cand.SU->getHeight();
2538     break;
2539   case BotHeightReduce:
2540     Latency = Cand.SU->getHeight();
2541     break;
2542   case BotPathReduce:
2543     Latency = Cand.SU->getDepth();
2544     break;
2545   }
2546   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2547   if (P.isValid())
2548     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2549            << ":" << P.getUnitInc() << " ";
2550   else
2551     dbgs() << "      ";
2552   if (ResIdx)
2553     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2554   else
2555     dbgs() << "         ";
2556   if (Latency)
2557     dbgs() << " " << Latency << " cycles ";
2558   else
2559     dbgs() << "          ";
2560   dbgs() << '\n';
2561 }
2562 #endif
2563 
2564 /// Return true if this heuristic determines order.
2565 static bool tryLess(int TryVal, int CandVal,
2566                     GenericSchedulerBase::SchedCandidate &TryCand,
2567                     GenericSchedulerBase::SchedCandidate &Cand,
2568                     GenericSchedulerBase::CandReason Reason) {
2569   if (TryVal < CandVal) {
2570     TryCand.Reason = Reason;
2571     return true;
2572   }
2573   if (TryVal > CandVal) {
2574     if (Cand.Reason > Reason)
2575       Cand.Reason = Reason;
2576     return true;
2577   }
2578   return false;
2579 }
2580 
2581 static bool tryGreater(int TryVal, int CandVal,
2582                        GenericSchedulerBase::SchedCandidate &TryCand,
2583                        GenericSchedulerBase::SchedCandidate &Cand,
2584                        GenericSchedulerBase::CandReason Reason) {
2585   if (TryVal > CandVal) {
2586     TryCand.Reason = Reason;
2587     return true;
2588   }
2589   if (TryVal < CandVal) {
2590     if (Cand.Reason > Reason)
2591       Cand.Reason = Reason;
2592     return true;
2593   }
2594   return false;
2595 }
2596 
2597 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2598                        GenericSchedulerBase::SchedCandidate &Cand,
2599                        SchedBoundary &Zone) {
2600   if (Zone.isTop()) {
2601     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2602       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2603                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2604         return true;
2605     }
2606     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2607                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2608       return true;
2609   } else {
2610     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2611       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2612                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2613         return true;
2614     }
2615     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2616                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2617       return true;
2618   }
2619   return false;
2620 }
2621 
2622 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
2623   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2624         << GenericSchedulerBase::getReasonStr(Reason) << '\n');
2625 }
2626 
2627 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
2628   tracePick(Cand.Reason, Cand.AtTop);
2629 }
2630 
2631 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2632   assert(dag->hasVRegLiveness() &&
2633          "(PreRA)GenericScheduler needs vreg liveness");
2634   DAG = static_cast<ScheduleDAGMILive*>(dag);
2635   SchedModel = DAG->getSchedModel();
2636   TRI = DAG->TRI;
2637 
2638   Rem.init(DAG, SchedModel);
2639   Top.init(DAG, SchedModel, &Rem);
2640   Bot.init(DAG, SchedModel, &Rem);
2641 
2642   // Initialize resource counts.
2643 
2644   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2645   // are disabled, then these HazardRecs will be disabled.
2646   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2647   if (!Top.HazardRec) {
2648     Top.HazardRec =
2649         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2650             Itin, DAG);
2651   }
2652   if (!Bot.HazardRec) {
2653     Bot.HazardRec =
2654         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2655             Itin, DAG);
2656   }
2657   TopCand.SU = nullptr;
2658   BotCand.SU = nullptr;
2659 }
2660 
2661 /// Initialize the per-region scheduling policy.
2662 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2663                                   MachineBasicBlock::iterator End,
2664                                   unsigned NumRegionInstrs) {
2665   const MachineFunction &MF = *Begin->getMF();
2666   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2667 
2668   // Avoid setting up the register pressure tracker for small regions to save
2669   // compile time. As a rough heuristic, only track pressure when the number of
2670   // schedulable instructions exceeds half the integer register file.
2671   RegionPolicy.ShouldTrackPressure = true;
2672   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2673     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2674     if (TLI->isTypeLegal(LegalIntVT)) {
2675       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2676         TLI->getRegClassFor(LegalIntVT));
2677       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2678     }
2679   }
2680 
2681   // For generic targets, we default to bottom-up, because it's simpler and more
2682   // compile-time optimizations have been implemented in that direction.
2683   RegionPolicy.OnlyBottomUp = true;
2684 
2685   // Allow the subtarget to override default policy.
2686   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
2687 
2688   // After subtarget overrides, apply command line options.
2689   if (!EnableRegPressure)
2690     RegionPolicy.ShouldTrackPressure = false;
2691 
2692   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2693   // e.g. -misched-bottomup=false allows scheduling in both directions.
2694   assert((!ForceTopDown || !ForceBottomUp) &&
2695          "-misched-topdown incompatible with -misched-bottomup");
2696   if (ForceBottomUp.getNumOccurrences() > 0) {
2697     RegionPolicy.OnlyBottomUp = ForceBottomUp;
2698     if (RegionPolicy.OnlyBottomUp)
2699       RegionPolicy.OnlyTopDown = false;
2700   }
2701   if (ForceTopDown.getNumOccurrences() > 0) {
2702     RegionPolicy.OnlyTopDown = ForceTopDown;
2703     if (RegionPolicy.OnlyTopDown)
2704       RegionPolicy.OnlyBottomUp = false;
2705   }
2706 }
2707 
2708 void GenericScheduler::dumpPolicy() const {
2709   // Cannot completely remove virtual function even in release mode.
2710 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2711   dbgs() << "GenericScheduler RegionPolicy: "
2712          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2713          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2714          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2715          << "\n";
2716 #endif
2717 }
2718 
2719 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2720 /// critical path by more cycles than it takes to drain the instruction buffer.
2721 /// We estimate an upper bounds on in-flight instructions as:
2722 ///
2723 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2724 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2725 /// InFlightResources = InFlightIterations * LoopResources
2726 ///
2727 /// TODO: Check execution resources in addition to IssueCount.
2728 void GenericScheduler::checkAcyclicLatency() {
2729   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2730     return;
2731 
2732   // Scaled number of cycles per loop iteration.
2733   unsigned IterCount =
2734     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2735              Rem.RemIssueCount);
2736   // Scaled acyclic critical path.
2737   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2738   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2739   unsigned InFlightCount =
2740     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2741   unsigned BufferLimit =
2742     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2743 
2744   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2745 
2746   DEBUG(dbgs() << "IssueCycles="
2747         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2748         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2749         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2750         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2751         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2752         if (Rem.IsAcyclicLatencyLimited)
2753           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2754 }
2755 
2756 void GenericScheduler::registerRoots() {
2757   Rem.CriticalPath = DAG->ExitSU.getDepth();
2758 
2759   // Some roots may not feed into ExitSU. Check all of them in case.
2760   for (const SUnit *SU : Bot.Available) {
2761     if (SU->getDepth() > Rem.CriticalPath)
2762       Rem.CriticalPath = SU->getDepth();
2763   }
2764   DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2765   if (DumpCriticalPathLength) {
2766     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2767   }
2768 
2769   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
2770     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2771     checkAcyclicLatency();
2772   }
2773 }
2774 
2775 static bool tryPressure(const PressureChange &TryP,
2776                         const PressureChange &CandP,
2777                         GenericSchedulerBase::SchedCandidate &TryCand,
2778                         GenericSchedulerBase::SchedCandidate &Cand,
2779                         GenericSchedulerBase::CandReason Reason,
2780                         const TargetRegisterInfo *TRI,
2781                         const MachineFunction &MF) {
2782   // If one candidate decreases and the other increases, go with it.
2783   // Invalid candidates have UnitInc==0.
2784   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2785                  Reason)) {
2786     return true;
2787   }
2788   // Do not compare the magnitude of pressure changes between top and bottom
2789   // boundary.
2790   if (Cand.AtTop != TryCand.AtTop)
2791     return false;
2792 
2793   // If both candidates affect the same set in the same boundary, go with the
2794   // smallest increase.
2795   unsigned TryPSet = TryP.getPSetOrMax();
2796   unsigned CandPSet = CandP.getPSetOrMax();
2797   if (TryPSet == CandPSet) {
2798     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2799                    Reason);
2800   }
2801 
2802   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2803                                  std::numeric_limits<int>::max();
2804 
2805   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2806                                    std::numeric_limits<int>::max();
2807 
2808   // If the candidates are decreasing pressure, reverse priority.
2809   if (TryP.getUnitInc() < 0)
2810     std::swap(TryRank, CandRank);
2811   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2812 }
2813 
2814 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2815   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2816 }
2817 
2818 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2819 /// their physreg def/use.
2820 ///
2821 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2822 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2823 /// with the operation that produces or consumes the physreg. We'll do this when
2824 /// regalloc has support for parallel copies.
2825 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2826   const MachineInstr *MI = SU->getInstr();
2827   if (!MI->isCopy())
2828     return 0;
2829 
2830   unsigned ScheduledOper = isTop ? 1 : 0;
2831   unsigned UnscheduledOper = isTop ? 0 : 1;
2832   // If we have already scheduled the physreg produce/consumer, immediately
2833   // schedule the copy.
2834   if (TargetRegisterInfo::isPhysicalRegister(
2835         MI->getOperand(ScheduledOper).getReg()))
2836     return 1;
2837   // If the physreg is at the boundary, defer it. Otherwise schedule it
2838   // immediately to free the dependent. We can hoist the copy later.
2839   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2840   if (TargetRegisterInfo::isPhysicalRegister(
2841         MI->getOperand(UnscheduledOper).getReg()))
2842     return AtBoundary ? -1 : 1;
2843   return 0;
2844 }
2845 
2846 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
2847                                      bool AtTop,
2848                                      const RegPressureTracker &RPTracker,
2849                                      RegPressureTracker &TempTracker) {
2850   Cand.SU = SU;
2851   Cand.AtTop = AtTop;
2852   if (DAG->isTrackingPressure()) {
2853     if (AtTop) {
2854       TempTracker.getMaxDownwardPressureDelta(
2855         Cand.SU->getInstr(),
2856         Cand.RPDelta,
2857         DAG->getRegionCriticalPSets(),
2858         DAG->getRegPressure().MaxSetPressure);
2859     } else {
2860       if (VerifyScheduling) {
2861         TempTracker.getMaxUpwardPressureDelta(
2862           Cand.SU->getInstr(),
2863           &DAG->getPressureDiff(Cand.SU),
2864           Cand.RPDelta,
2865           DAG->getRegionCriticalPSets(),
2866           DAG->getRegPressure().MaxSetPressure);
2867       } else {
2868         RPTracker.getUpwardPressureDelta(
2869           Cand.SU->getInstr(),
2870           DAG->getPressureDiff(Cand.SU),
2871           Cand.RPDelta,
2872           DAG->getRegionCriticalPSets(),
2873           DAG->getRegPressure().MaxSetPressure);
2874       }
2875     }
2876   }
2877   DEBUG(if (Cand.RPDelta.Excess.isValid())
2878           dbgs() << "  Try  SU(" << Cand.SU->NodeNum << ") "
2879                  << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet())
2880                  << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n");
2881 }
2882 
2883 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2884 /// hierarchical. This may be more efficient than a graduated cost model because
2885 /// we don't need to evaluate all aspects of the model for each node in the
2886 /// queue. But it's really done to make the heuristics easier to debug and
2887 /// statistically analyze.
2888 ///
2889 /// \param Cand provides the policy and current best candidate.
2890 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2891 /// \param Zone describes the scheduled zone that we are extending, or nullptr
2892 //              if Cand is from a different zone than TryCand.
2893 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2894                                     SchedCandidate &TryCand,
2895                                     SchedBoundary *Zone) {
2896   // Initialize the candidate if needed.
2897   if (!Cand.isValid()) {
2898     TryCand.Reason = NodeOrder;
2899     return;
2900   }
2901 
2902   if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop),
2903                  biasPhysRegCopy(Cand.SU, Cand.AtTop),
2904                  TryCand, Cand, PhysRegCopy))
2905     return;
2906 
2907   // Avoid exceeding the target's limit.
2908   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2909                                                Cand.RPDelta.Excess,
2910                                                TryCand, Cand, RegExcess, TRI,
2911                                                DAG->MF))
2912     return;
2913 
2914   // Avoid increasing the max critical pressure in the scheduled region.
2915   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2916                                                Cand.RPDelta.CriticalMax,
2917                                                TryCand, Cand, RegCritical, TRI,
2918                                                DAG->MF))
2919     return;
2920 
2921   // We only compare a subset of features when comparing nodes between
2922   // Top and Bottom boundary. Some properties are simply incomparable, in many
2923   // other instances we should only override the other boundary if something
2924   // is a clear good pick on one boundary. Skip heuristics that are more
2925   // "tie-breaking" in nature.
2926   bool SameBoundary = Zone != nullptr;
2927   if (SameBoundary) {
2928     // For loops that are acyclic path limited, aggressively schedule for
2929     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
2930     // heuristics to take precedence.
2931     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
2932         tryLatency(TryCand, Cand, *Zone))
2933       return;
2934 
2935     // Prioritize instructions that read unbuffered resources by stall cycles.
2936     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
2937                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2938       return;
2939   }
2940 
2941   // Keep clustered nodes together to encourage downstream peephole
2942   // optimizations which may reduce resource requirements.
2943   //
2944   // This is a best effort to set things up for a post-RA pass. Optimizations
2945   // like generating loads of multiple registers should ideally be done within
2946   // the scheduler pass by combining the loads during DAG postprocessing.
2947   const SUnit *CandNextClusterSU =
2948     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2949   const SUnit *TryCandNextClusterSU =
2950     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2951   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
2952                  Cand.SU == CandNextClusterSU,
2953                  TryCand, Cand, Cluster))
2954     return;
2955 
2956   if (SameBoundary) {
2957     // Weak edges are for clustering and other constraints.
2958     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
2959                 getWeakLeft(Cand.SU, Cand.AtTop),
2960                 TryCand, Cand, Weak))
2961       return;
2962   }
2963 
2964   // Avoid increasing the max pressure of the entire region.
2965   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2966                                                Cand.RPDelta.CurrentMax,
2967                                                TryCand, Cand, RegMax, TRI,
2968                                                DAG->MF))
2969     return;
2970 
2971   if (SameBoundary) {
2972     // Avoid critical resource consumption and balance the schedule.
2973     TryCand.initResourceDelta(DAG, SchedModel);
2974     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2975                 TryCand, Cand, ResourceReduce))
2976       return;
2977     if (tryGreater(TryCand.ResDelta.DemandedResources,
2978                    Cand.ResDelta.DemandedResources,
2979                    TryCand, Cand, ResourceDemand))
2980       return;
2981 
2982     // Avoid serializing long latency dependence chains.
2983     // For acyclic path limited loops, latency was already checked above.
2984     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
2985         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
2986       return;
2987 
2988     // Fall through to original instruction order.
2989     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2990         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2991       TryCand.Reason = NodeOrder;
2992     }
2993   }
2994 }
2995 
2996 /// Pick the best candidate from the queue.
2997 ///
2998 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2999 /// DAG building. To adjust for the current scheduling location we need to
3000 /// maintain the number of vreg uses remaining to be top-scheduled.
3001 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
3002                                          const CandPolicy &ZonePolicy,
3003                                          const RegPressureTracker &RPTracker,
3004                                          SchedCandidate &Cand) {
3005   // getMaxPressureDelta temporarily modifies the tracker.
3006   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
3007 
3008   ReadyQueue &Q = Zone.Available;
3009   for (SUnit *SU : Q) {
3010 
3011     SchedCandidate TryCand(ZonePolicy);
3012     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
3013     // Pass SchedBoundary only when comparing nodes from the same boundary.
3014     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
3015     tryCandidate(Cand, TryCand, ZoneArg);
3016     if (TryCand.Reason != NoCand) {
3017       // Initialize resource delta if needed in case future heuristics query it.
3018       if (TryCand.ResDelta == SchedResourceDelta())
3019         TryCand.initResourceDelta(DAG, SchedModel);
3020       Cand.setBest(TryCand);
3021       DEBUG(traceCandidate(Cand));
3022     }
3023   }
3024 }
3025 
3026 /// Pick the best candidate node from either the top or bottom queue.
3027 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
3028   // Schedule as far as possible in the direction of no choice. This is most
3029   // efficient, but also provides the best heuristics for CriticalPSets.
3030   if (SUnit *SU = Bot.pickOnlyChoice()) {
3031     IsTopNode = false;
3032     tracePick(Only1, false);
3033     return SU;
3034   }
3035   if (SUnit *SU = Top.pickOnlyChoice()) {
3036     IsTopNode = true;
3037     tracePick(Only1, true);
3038     return SU;
3039   }
3040   // Set the bottom-up policy based on the state of the current bottom zone and
3041   // the instructions outside the zone, including the top zone.
3042   CandPolicy BotPolicy;
3043   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
3044   // Set the top-down policy based on the state of the current top zone and
3045   // the instructions outside the zone, including the bottom zone.
3046   CandPolicy TopPolicy;
3047   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
3048 
3049   // See if BotCand is still valid (because we previously scheduled from Top).
3050   DEBUG(dbgs() << "Picking from Bot:\n");
3051   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
3052       BotCand.Policy != BotPolicy) {
3053     BotCand.reset(CandPolicy());
3054     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
3055     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
3056   } else {
3057     DEBUG(traceCandidate(BotCand));
3058 #ifndef NDEBUG
3059     if (VerifyScheduling) {
3060       SchedCandidate TCand;
3061       TCand.reset(CandPolicy());
3062       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
3063       assert(TCand.SU == BotCand.SU &&
3064              "Last pick result should correspond to re-picking right now");
3065     }
3066 #endif
3067   }
3068 
3069   // Check if the top Q has a better candidate.
3070   DEBUG(dbgs() << "Picking from Top:\n");
3071   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
3072       TopCand.Policy != TopPolicy) {
3073     TopCand.reset(CandPolicy());
3074     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
3075     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
3076   } else {
3077     DEBUG(traceCandidate(TopCand));
3078 #ifndef NDEBUG
3079     if (VerifyScheduling) {
3080       SchedCandidate TCand;
3081       TCand.reset(CandPolicy());
3082       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
3083       assert(TCand.SU == TopCand.SU &&
3084            "Last pick result should correspond to re-picking right now");
3085     }
3086 #endif
3087   }
3088 
3089   // Pick best from BotCand and TopCand.
3090   assert(BotCand.isValid());
3091   assert(TopCand.isValid());
3092   SchedCandidate Cand = BotCand;
3093   TopCand.Reason = NoCand;
3094   tryCandidate(Cand, TopCand, nullptr);
3095   if (TopCand.Reason != NoCand) {
3096     Cand.setBest(TopCand);
3097     DEBUG(traceCandidate(Cand));
3098   }
3099 
3100   IsTopNode = Cand.AtTop;
3101   tracePick(Cand);
3102   return Cand.SU;
3103 }
3104 
3105 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
3106 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
3107   if (DAG->top() == DAG->bottom()) {
3108     assert(Top.Available.empty() && Top.Pending.empty() &&
3109            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
3110     return nullptr;
3111   }
3112   SUnit *SU;
3113   do {
3114     if (RegionPolicy.OnlyTopDown) {
3115       SU = Top.pickOnlyChoice();
3116       if (!SU) {
3117         CandPolicy NoPolicy;
3118         TopCand.reset(NoPolicy);
3119         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
3120         assert(TopCand.Reason != NoCand && "failed to find a candidate");
3121         tracePick(TopCand);
3122         SU = TopCand.SU;
3123       }
3124       IsTopNode = true;
3125     } else if (RegionPolicy.OnlyBottomUp) {
3126       SU = Bot.pickOnlyChoice();
3127       if (!SU) {
3128         CandPolicy NoPolicy;
3129         BotCand.reset(NoPolicy);
3130         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
3131         assert(BotCand.Reason != NoCand && "failed to find a candidate");
3132         tracePick(BotCand);
3133         SU = BotCand.SU;
3134       }
3135       IsTopNode = false;
3136     } else {
3137       SU = pickNodeBidirectional(IsTopNode);
3138     }
3139   } while (SU->isScheduled);
3140 
3141   if (SU->isTopReady())
3142     Top.removeReady(SU);
3143   if (SU->isBottomReady())
3144     Bot.removeReady(SU);
3145 
3146   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3147   return SU;
3148 }
3149 
3150 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
3151   MachineBasicBlock::iterator InsertPos = SU->getInstr();
3152   if (!isTop)
3153     ++InsertPos;
3154   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
3155 
3156   // Find already scheduled copies with a single physreg dependence and move
3157   // them just above the scheduled instruction.
3158   for (SDep &Dep : Deps) {
3159     if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg()))
3160       continue;
3161     SUnit *DepSU = Dep.getSUnit();
3162     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
3163       continue;
3164     MachineInstr *Copy = DepSU->getInstr();
3165     if (!Copy->isCopy())
3166       continue;
3167     DEBUG(dbgs() << "  Rescheduling physreg copy ";
3168           Dep.getSUnit()->dump(DAG));
3169     DAG->moveInstruction(Copy, InsertPos);
3170   }
3171 }
3172 
3173 /// Update the scheduler's state after scheduling a node. This is the same node
3174 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
3175 /// update it's state based on the current cycle before MachineSchedStrategy
3176 /// does.
3177 ///
3178 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
3179 /// them here. See comments in biasPhysRegCopy.
3180 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3181   if (IsTopNode) {
3182     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3183     Top.bumpNode(SU);
3184     if (SU->hasPhysRegUses)
3185       reschedulePhysRegCopies(SU, true);
3186   } else {
3187     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
3188     Bot.bumpNode(SU);
3189     if (SU->hasPhysRegDefs)
3190       reschedulePhysRegCopies(SU, false);
3191   }
3192 }
3193 
3194 /// Create the standard converging machine scheduler. This will be used as the
3195 /// default scheduler if the target does not set a default.
3196 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
3197   ScheduleDAGMILive *DAG =
3198       new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C));
3199   // Register DAG post-processors.
3200   //
3201   // FIXME: extend the mutation API to allow earlier mutations to instantiate
3202   // data and pass it to later mutations. Have a single mutation that gathers
3203   // the interesting nodes in one pass.
3204   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
3205   return DAG;
3206 }
3207 
3208 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
3209   return createGenericSchedLive(C);
3210 }
3211 
3212 static MachineSchedRegistry
3213 GenericSchedRegistry("converge", "Standard converging scheduler.",
3214                      createConveringSched);
3215 
3216 //===----------------------------------------------------------------------===//
3217 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
3218 //===----------------------------------------------------------------------===//
3219 
3220 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
3221   DAG = Dag;
3222   SchedModel = DAG->getSchedModel();
3223   TRI = DAG->TRI;
3224 
3225   Rem.init(DAG, SchedModel);
3226   Top.init(DAG, SchedModel, &Rem);
3227   BotRoots.clear();
3228 
3229   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3230   // or are disabled, then these HazardRecs will be disabled.
3231   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3232   if (!Top.HazardRec) {
3233     Top.HazardRec =
3234         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3235             Itin, DAG);
3236   }
3237 }
3238 
3239 void PostGenericScheduler::registerRoots() {
3240   Rem.CriticalPath = DAG->ExitSU.getDepth();
3241 
3242   // Some roots may not feed into ExitSU. Check all of them in case.
3243   for (const SUnit *SU : BotRoots) {
3244     if (SU->getDepth() > Rem.CriticalPath)
3245       Rem.CriticalPath = SU->getDepth();
3246   }
3247   DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3248   if (DumpCriticalPathLength) {
3249     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3250   }
3251 }
3252 
3253 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3254 ///
3255 /// \param Cand provides the policy and current best candidate.
3256 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
3257 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3258                                         SchedCandidate &TryCand) {
3259   // Initialize the candidate if needed.
3260   if (!Cand.isValid()) {
3261     TryCand.Reason = NodeOrder;
3262     return;
3263   }
3264 
3265   // Prioritize instructions that read unbuffered resources by stall cycles.
3266   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3267               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3268     return;
3269 
3270   // Keep clustered nodes together.
3271   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
3272                  Cand.SU == DAG->getNextClusterSucc(),
3273                  TryCand, Cand, Cluster))
3274     return;
3275 
3276   // Avoid critical resource consumption and balance the schedule.
3277   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3278               TryCand, Cand, ResourceReduce))
3279     return;
3280   if (tryGreater(TryCand.ResDelta.DemandedResources,
3281                  Cand.ResDelta.DemandedResources,
3282                  TryCand, Cand, ResourceDemand))
3283     return;
3284 
3285   // Avoid serializing long latency dependence chains.
3286   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3287     return;
3288   }
3289 
3290   // Fall through to original instruction order.
3291   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3292     TryCand.Reason = NodeOrder;
3293 }
3294 
3295 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3296   ReadyQueue &Q = Top.Available;
3297   for (SUnit *SU : Q) {
3298     SchedCandidate TryCand(Cand.Policy);
3299     TryCand.SU = SU;
3300     TryCand.AtTop = true;
3301     TryCand.initResourceDelta(DAG, SchedModel);
3302     tryCandidate(Cand, TryCand);
3303     if (TryCand.Reason != NoCand) {
3304       Cand.setBest(TryCand);
3305       DEBUG(traceCandidate(Cand));
3306     }
3307   }
3308 }
3309 
3310 /// Pick the next node to schedule.
3311 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3312   if (DAG->top() == DAG->bottom()) {
3313     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3314     return nullptr;
3315   }
3316   SUnit *SU;
3317   do {
3318     SU = Top.pickOnlyChoice();
3319     if (SU) {
3320       tracePick(Only1, true);
3321     } else {
3322       CandPolicy NoPolicy;
3323       SchedCandidate TopCand(NoPolicy);
3324       // Set the top-down policy based on the state of the current top zone and
3325       // the instructions outside the zone, including the bottom zone.
3326       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3327       pickNodeFromQueue(TopCand);
3328       assert(TopCand.Reason != NoCand && "failed to find a candidate");
3329       tracePick(TopCand);
3330       SU = TopCand.SU;
3331     }
3332   } while (SU->isScheduled);
3333 
3334   IsTopNode = true;
3335   Top.removeReady(SU);
3336 
3337   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3338   return SU;
3339 }
3340 
3341 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3342 /// scheduled/remaining flags in the DAG nodes.
3343 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3344   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3345   Top.bumpNode(SU);
3346 }
3347 
3348 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
3349   return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C),
3350                            /*RemoveKillFlags=*/true);
3351 }
3352 
3353 //===----------------------------------------------------------------------===//
3354 // ILP Scheduler. Currently for experimental analysis of heuristics.
3355 //===----------------------------------------------------------------------===//
3356 
3357 namespace {
3358 
3359 /// \brief Order nodes by the ILP metric.
3360 struct ILPOrder {
3361   const SchedDFSResult *DFSResult = nullptr;
3362   const BitVector *ScheduledTrees = nullptr;
3363   bool MaximizeILP;
3364 
3365   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
3366 
3367   /// \brief Apply a less-than relation on node priority.
3368   ///
3369   /// (Return true if A comes after B in the Q.)
3370   bool operator()(const SUnit *A, const SUnit *B) const {
3371     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3372     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3373     if (SchedTreeA != SchedTreeB) {
3374       // Unscheduled trees have lower priority.
3375       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3376         return ScheduledTrees->test(SchedTreeB);
3377 
3378       // Trees with shallower connections have have lower priority.
3379       if (DFSResult->getSubtreeLevel(SchedTreeA)
3380           != DFSResult->getSubtreeLevel(SchedTreeB)) {
3381         return DFSResult->getSubtreeLevel(SchedTreeA)
3382           < DFSResult->getSubtreeLevel(SchedTreeB);
3383       }
3384     }
3385     if (MaximizeILP)
3386       return DFSResult->getILP(A) < DFSResult->getILP(B);
3387     else
3388       return DFSResult->getILP(A) > DFSResult->getILP(B);
3389   }
3390 };
3391 
3392 /// \brief Schedule based on the ILP metric.
3393 class ILPScheduler : public MachineSchedStrategy {
3394   ScheduleDAGMILive *DAG = nullptr;
3395   ILPOrder Cmp;
3396 
3397   std::vector<SUnit*> ReadyQ;
3398 
3399 public:
3400   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
3401 
3402   void initialize(ScheduleDAGMI *dag) override {
3403     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3404     DAG = static_cast<ScheduleDAGMILive*>(dag);
3405     DAG->computeDFSResult();
3406     Cmp.DFSResult = DAG->getDFSResult();
3407     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3408     ReadyQ.clear();
3409   }
3410 
3411   void registerRoots() override {
3412     // Restore the heap in ReadyQ with the updated DFS results.
3413     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3414   }
3415 
3416   /// Implement MachineSchedStrategy interface.
3417   /// -----------------------------------------
3418 
3419   /// Callback to select the highest priority node from the ready Q.
3420   SUnit *pickNode(bool &IsTopNode) override {
3421     if (ReadyQ.empty()) return nullptr;
3422     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3423     SUnit *SU = ReadyQ.back();
3424     ReadyQ.pop_back();
3425     IsTopNode = false;
3426     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3427           << " ILP: " << DAG->getDFSResult()->getILP(SU)
3428           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3429           << DAG->getDFSResult()->getSubtreeLevel(
3430             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3431           << "Scheduling " << *SU->getInstr());
3432     return SU;
3433   }
3434 
3435   /// \brief Scheduler callback to notify that a new subtree is scheduled.
3436   void scheduleTree(unsigned SubtreeID) override {
3437     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3438   }
3439 
3440   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3441   /// DFSResults, and resort the priority Q.
3442   void schedNode(SUnit *SU, bool IsTopNode) override {
3443     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3444   }
3445 
3446   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3447 
3448   void releaseBottomNode(SUnit *SU) override {
3449     ReadyQ.push_back(SU);
3450     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3451   }
3452 };
3453 
3454 } // end anonymous namespace
3455 
3456 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3457   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true));
3458 }
3459 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3460   return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false));
3461 }
3462 
3463 static MachineSchedRegistry ILPMaxRegistry(
3464   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3465 static MachineSchedRegistry ILPMinRegistry(
3466   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3467 
3468 //===----------------------------------------------------------------------===//
3469 // Machine Instruction Shuffler for Correctness Testing
3470 //===----------------------------------------------------------------------===//
3471 
3472 #ifndef NDEBUG
3473 namespace {
3474 
3475 /// Apply a less-than relation on the node order, which corresponds to the
3476 /// instruction order prior to scheduling. IsReverse implements greater-than.
3477 template<bool IsReverse>
3478 struct SUnitOrder {
3479   bool operator()(SUnit *A, SUnit *B) const {
3480     if (IsReverse)
3481       return A->NodeNum > B->NodeNum;
3482     else
3483       return A->NodeNum < B->NodeNum;
3484   }
3485 };
3486 
3487 /// Reorder instructions as much as possible.
3488 class InstructionShuffler : public MachineSchedStrategy {
3489   bool IsAlternating;
3490   bool IsTopDown;
3491 
3492   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3493   // gives nodes with a higher number higher priority causing the latest
3494   // instructions to be scheduled first.
3495   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
3496     TopQ;
3497 
3498   // When scheduling bottom-up, use greater-than as the queue priority.
3499   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
3500     BottomQ;
3501 
3502 public:
3503   InstructionShuffler(bool alternate, bool topdown)
3504     : IsAlternating(alternate), IsTopDown(topdown) {}
3505 
3506   void initialize(ScheduleDAGMI*) override {
3507     TopQ.clear();
3508     BottomQ.clear();
3509   }
3510 
3511   /// Implement MachineSchedStrategy interface.
3512   /// -----------------------------------------
3513 
3514   SUnit *pickNode(bool &IsTopNode) override {
3515     SUnit *SU;
3516     if (IsTopDown) {
3517       do {
3518         if (TopQ.empty()) return nullptr;
3519         SU = TopQ.top();
3520         TopQ.pop();
3521       } while (SU->isScheduled);
3522       IsTopNode = true;
3523     } else {
3524       do {
3525         if (BottomQ.empty()) return nullptr;
3526         SU = BottomQ.top();
3527         BottomQ.pop();
3528       } while (SU->isScheduled);
3529       IsTopNode = false;
3530     }
3531     if (IsAlternating)
3532       IsTopDown = !IsTopDown;
3533     return SU;
3534   }
3535 
3536   void schedNode(SUnit *SU, bool IsTopNode) override {}
3537 
3538   void releaseTopNode(SUnit *SU) override {
3539     TopQ.push(SU);
3540   }
3541   void releaseBottomNode(SUnit *SU) override {
3542     BottomQ.push(SU);
3543   }
3544 };
3545 
3546 } // end anonymous namespace
3547 
3548 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3549   bool Alternate = !ForceTopDown && !ForceBottomUp;
3550   bool TopDown = !ForceBottomUp;
3551   assert((TopDown || !ForceTopDown) &&
3552          "-misched-topdown incompatible with -misched-bottomup");
3553   return new ScheduleDAGMILive(
3554       C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown));
3555 }
3556 
3557 static MachineSchedRegistry ShufflerRegistry(
3558   "shuffle", "Shuffle machine instructions alternating directions",
3559   createInstructionShuffler);
3560 #endif // !NDEBUG
3561 
3562 //===----------------------------------------------------------------------===//
3563 // GraphWriter support for ScheduleDAGMILive.
3564 //===----------------------------------------------------------------------===//
3565 
3566 #ifndef NDEBUG
3567 namespace llvm {
3568 
3569 template<> struct GraphTraits<
3570   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3571 
3572 template<>
3573 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3574   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
3575 
3576   static std::string getGraphName(const ScheduleDAG *G) {
3577     return G->MF.getName();
3578   }
3579 
3580   static bool renderGraphFromBottomUp() {
3581     return true;
3582   }
3583 
3584   static bool isNodeHidden(const SUnit *Node) {
3585     if (ViewMISchedCutoff == 0)
3586       return false;
3587     return (Node->Preds.size() > ViewMISchedCutoff
3588          || Node->Succs.size() > ViewMISchedCutoff);
3589   }
3590 
3591   /// If you want to override the dot attributes printed for a particular
3592   /// edge, override this method.
3593   static std::string getEdgeAttributes(const SUnit *Node,
3594                                        SUnitIterator EI,
3595                                        const ScheduleDAG *Graph) {
3596     if (EI.isArtificialDep())
3597       return "color=cyan,style=dashed";
3598     if (EI.isCtrlDep())
3599       return "color=blue,style=dashed";
3600     return "";
3601   }
3602 
3603   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3604     std::string Str;
3605     raw_string_ostream SS(Str);
3606     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3607     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3608       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3609     SS << "SU:" << SU->NodeNum;
3610     if (DFS)
3611       SS << " I:" << DFS->getNumInstrs(SU);
3612     return SS.str();
3613   }
3614 
3615   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3616     return G->getGraphNodeLabel(SU);
3617   }
3618 
3619   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3620     std::string Str("shape=Mrecord");
3621     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3622     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3623       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3624     if (DFS) {
3625       Str += ",style=filled,fillcolor=\"#";
3626       Str += DOT::getColorString(DFS->getSubtreeID(N));
3627       Str += '"';
3628     }
3629     return Str;
3630   }
3631 };
3632 
3633 } // end namespace llvm
3634 #endif // NDEBUG
3635 
3636 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3637 /// rendered using 'dot'.
3638 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3639 #ifndef NDEBUG
3640   ViewGraph(this, Name, false, Title);
3641 #else
3642   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3643          << "systems with Graphviz or gv!\n";
3644 #endif  // NDEBUG
3645 }
3646 
3647 /// Out-of-line implementation with no arguments is handy for gdb.
3648 void ScheduleDAGMI::viewGraph() {
3649   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3650 }
3651