1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/PriorityQueue.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/GraphWriter.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "misched" 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 cl::opt<bool> 44 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 45 cl::desc("Print critical path length to stdout")); 46 } 47 48 #ifndef NDEBUG 49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 50 cl::desc("Pop up a window to show MISched dags after they are processed")); 51 52 /// In some situations a few uninteresting nodes depend on nearly all other 53 /// nodes in the graph, provide a cutoff to hide them. 54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 55 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 56 57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 59 60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 61 cl::desc("Only schedule this function")); 62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 63 cl::desc("Only schedule this MBB#")); 64 #else 65 static bool ViewMISchedDAGs = false; 66 #endif // NDEBUG 67 68 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 69 /// size of the ready lists. 70 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 71 cl::desc("Limit ready list to N instructions"), cl::init(256)); 72 73 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 74 cl::desc("Enable register pressure scheduling."), cl::init(true)); 75 76 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 77 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 78 79 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 80 cl::desc("Enable memop clustering."), 81 cl::init(true)); 82 83 // Experimental heuristics 84 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 85 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 86 87 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 88 cl::desc("Verify machine instrs before and after machine scheduling")); 89 90 // DAG subtrees must have at least this many nodes. 91 static const unsigned MinSubtreeSize = 8; 92 93 // Pin the vtables to this file. 94 void MachineSchedStrategy::anchor() {} 95 void ScheduleDAGMutation::anchor() {} 96 97 //===----------------------------------------------------------------------===// 98 // Machine Instruction Scheduling Pass and Registry 99 //===----------------------------------------------------------------------===// 100 101 MachineSchedContext::MachineSchedContext(): 102 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) { 103 RegClassInfo = new RegisterClassInfo(); 104 } 105 106 MachineSchedContext::~MachineSchedContext() { 107 delete RegClassInfo; 108 } 109 110 namespace { 111 /// Base class for a machine scheduler class that can run at any point. 112 class MachineSchedulerBase : public MachineSchedContext, 113 public MachineFunctionPass { 114 public: 115 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 116 117 void print(raw_ostream &O, const Module* = nullptr) const override; 118 119 protected: 120 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 121 }; 122 123 /// MachineScheduler runs after coalescing and before register allocation. 124 class MachineScheduler : public MachineSchedulerBase { 125 public: 126 MachineScheduler(); 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override; 129 130 bool runOnMachineFunction(MachineFunction&) override; 131 132 static char ID; // Class identification, replacement for typeinfo 133 134 protected: 135 ScheduleDAGInstrs *createMachineScheduler(); 136 }; 137 138 /// PostMachineScheduler runs after shortly before code emission. 139 class PostMachineScheduler : public MachineSchedulerBase { 140 public: 141 PostMachineScheduler(); 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override; 144 145 bool runOnMachineFunction(MachineFunction&) override; 146 147 static char ID; // Class identification, replacement for typeinfo 148 149 protected: 150 ScheduleDAGInstrs *createPostMachineScheduler(); 151 }; 152 } // namespace 153 154 char MachineScheduler::ID = 0; 155 156 char &llvm::MachineSchedulerID = MachineScheduler::ID; 157 158 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler", 159 "Machine Instruction Scheduler", false, false) 160 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 162 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 163 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler", 164 "Machine Instruction Scheduler", false, false) 165 166 MachineScheduler::MachineScheduler() 167 : MachineSchedulerBase(ID) { 168 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.setPreservesCFG(); 173 AU.addRequiredID(MachineDominatorsID); 174 AU.addRequired<MachineLoopInfo>(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addRequired<TargetPassConfig>(); 177 AU.addRequired<SlotIndexes>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveIntervals>(); 180 AU.addPreserved<LiveIntervals>(); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 char PostMachineScheduler::ID = 0; 185 186 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 187 188 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 189 "PostRA Machine Instruction Scheduler", false, false) 190 191 PostMachineScheduler::PostMachineScheduler() 192 : MachineSchedulerBase(ID) { 193 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 194 } 195 196 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequiredID(MachineDominatorsID); 199 AU.addRequired<MachineLoopInfo>(); 200 AU.addRequired<TargetPassConfig>(); 201 MachineFunctionPass::getAnalysisUsage(AU); 202 } 203 204 MachinePassRegistry MachineSchedRegistry::Registry; 205 206 /// A dummy default scheduler factory indicates whether the scheduler 207 /// is overridden on the command line. 208 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 209 return nullptr; 210 } 211 212 /// MachineSchedOpt allows command line selection of the scheduler. 213 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 214 RegisterPassParser<MachineSchedRegistry> > 215 MachineSchedOpt("misched", 216 cl::init(&useDefaultMachineSched), cl::Hidden, 217 cl::desc("Machine instruction scheduler to use")); 218 219 static MachineSchedRegistry 220 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 221 useDefaultMachineSched); 222 223 static cl::opt<bool> EnableMachineSched( 224 "enable-misched", 225 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 226 cl::Hidden); 227 228 static cl::opt<bool> EnablePostRAMachineSched( 229 "enable-post-misched", 230 cl::desc("Enable the post-ra machine instruction scheduling pass."), 231 cl::init(true), cl::Hidden); 232 233 /// Forward declare the standard machine scheduler. This will be used as the 234 /// default scheduler if the target does not set a default. 235 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 236 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 237 238 /// Decrement this iterator until reaching the top or a non-debug instr. 239 static MachineBasicBlock::const_iterator 240 priorNonDebug(MachineBasicBlock::const_iterator I, 241 MachineBasicBlock::const_iterator Beg) { 242 assert(I != Beg && "reached the top of the region, cannot decrement"); 243 while (--I != Beg) { 244 if (!I->isDebugValue()) 245 break; 246 } 247 return I; 248 } 249 250 /// Non-const version. 251 static MachineBasicBlock::iterator 252 priorNonDebug(MachineBasicBlock::iterator I, 253 MachineBasicBlock::const_iterator Beg) { 254 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 255 .getNonConstIterator(); 256 } 257 258 /// If this iterator is a debug value, increment until reaching the End or a 259 /// non-debug instruction. 260 static MachineBasicBlock::const_iterator 261 nextIfDebug(MachineBasicBlock::const_iterator I, 262 MachineBasicBlock::const_iterator End) { 263 for(; I != End; ++I) { 264 if (!I->isDebugValue()) 265 break; 266 } 267 return I; 268 } 269 270 /// Non-const version. 271 static MachineBasicBlock::iterator 272 nextIfDebug(MachineBasicBlock::iterator I, 273 MachineBasicBlock::const_iterator End) { 274 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 275 .getNonConstIterator(); 276 } 277 278 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 279 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 280 // Select the scheduler, or set the default. 281 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 282 if (Ctor != useDefaultMachineSched) 283 return Ctor(this); 284 285 // Get the default scheduler set by the target for this function. 286 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 287 if (Scheduler) 288 return Scheduler; 289 290 // Default to GenericScheduler. 291 return createGenericSchedLive(this); 292 } 293 294 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 295 /// the caller. We don't have a command line option to override the postRA 296 /// scheduler. The Target must configure it. 297 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 298 // Get the postRA scheduler set by the target for this function. 299 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 300 if (Scheduler) 301 return Scheduler; 302 303 // Default to GenericScheduler. 304 return createGenericSchedPostRA(this); 305 } 306 307 /// Top-level MachineScheduler pass driver. 308 /// 309 /// Visit blocks in function order. Divide each block into scheduling regions 310 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 311 /// consistent with the DAG builder, which traverses the interior of the 312 /// scheduling regions bottom-up. 313 /// 314 /// This design avoids exposing scheduling boundaries to the DAG builder, 315 /// simplifying the DAG builder's support for "special" target instructions. 316 /// At the same time the design allows target schedulers to operate across 317 /// scheduling boundaries, for example to bundle the boudary instructions 318 /// without reordering them. This creates complexity, because the target 319 /// scheduler must update the RegionBegin and RegionEnd positions cached by 320 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 321 /// design would be to split blocks at scheduling boundaries, but LLVM has a 322 /// general bias against block splitting purely for implementation simplicity. 323 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 324 if (skipFunction(*mf.getFunction())) 325 return false; 326 327 if (EnableMachineSched.getNumOccurrences()) { 328 if (!EnableMachineSched) 329 return false; 330 } else if (!mf.getSubtarget().enableMachineScheduler()) 331 return false; 332 333 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 334 335 // Initialize the context of the pass. 336 MF = &mf; 337 MLI = &getAnalysis<MachineLoopInfo>(); 338 MDT = &getAnalysis<MachineDominatorTree>(); 339 PassConfig = &getAnalysis<TargetPassConfig>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 LIS = &getAnalysis<LiveIntervals>(); 343 344 if (VerifyScheduling) { 345 DEBUG(LIS->dump()); 346 MF->verify(this, "Before machine scheduling."); 347 } 348 RegClassInfo->runOnMachineFunction(*MF); 349 350 // Instantiate the selected scheduler for this target, function, and 351 // optimization level. 352 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 353 scheduleRegions(*Scheduler, false); 354 355 DEBUG(LIS->dump()); 356 if (VerifyScheduling) 357 MF->verify(this, "After machine scheduling."); 358 return true; 359 } 360 361 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 362 if (skipFunction(*mf.getFunction())) 363 return false; 364 365 if (EnablePostRAMachineSched.getNumOccurrences()) { 366 if (!EnablePostRAMachineSched) 367 return false; 368 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 369 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 370 return false; 371 } 372 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 373 374 // Initialize the context of the pass. 375 MF = &mf; 376 PassConfig = &getAnalysis<TargetPassConfig>(); 377 378 if (VerifyScheduling) 379 MF->verify(this, "Before post machine scheduling."); 380 381 // Instantiate the selected scheduler for this target, function, and 382 // optimization level. 383 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 384 scheduleRegions(*Scheduler, true); 385 386 if (VerifyScheduling) 387 MF->verify(this, "After post machine scheduling."); 388 return true; 389 } 390 391 /// Return true of the given instruction should not be included in a scheduling 392 /// region. 393 /// 394 /// MachineScheduler does not currently support scheduling across calls. To 395 /// handle calls, the DAG builder needs to be modified to create register 396 /// anti/output dependencies on the registers clobbered by the call's regmask 397 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 398 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 399 /// the boundary, but there would be no benefit to postRA scheduling across 400 /// calls this late anyway. 401 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 402 MachineBasicBlock *MBB, 403 MachineFunction *MF, 404 const TargetInstrInfo *TII) { 405 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 406 } 407 408 /// Main driver for both MachineScheduler and PostMachineScheduler. 409 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 410 bool FixKillFlags) { 411 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 412 413 // Visit all machine basic blocks. 414 // 415 // TODO: Visit blocks in global postorder or postorder within the bottom-up 416 // loop tree. Then we can optionally compute global RegPressure. 417 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 418 MBB != MBBEnd; ++MBB) { 419 420 Scheduler.startBlock(&*MBB); 421 422 #ifndef NDEBUG 423 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 424 continue; 425 if (SchedOnlyBlock.getNumOccurrences() 426 && (int)SchedOnlyBlock != MBB->getNumber()) 427 continue; 428 #endif 429 430 // Break the block into scheduling regions [I, RegionEnd), and schedule each 431 // region as soon as it is discovered. RegionEnd points the scheduling 432 // boundary at the bottom of the region. The DAG does not include RegionEnd, 433 // but the region does (i.e. the next RegionEnd is above the previous 434 // RegionBegin). If the current block has no terminator then RegionEnd == 435 // MBB->end() for the bottom region. 436 // 437 // The Scheduler may insert instructions during either schedule() or 438 // exitRegion(), even for empty regions. So the local iterators 'I' and 439 // 'RegionEnd' are invalid across these calls. 440 // 441 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 442 // as a single instruction. 443 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 444 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 445 446 // Avoid decrementing RegionEnd for blocks with no terminator. 447 if (RegionEnd != MBB->end() || 448 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 449 --RegionEnd; 450 } 451 452 // The next region starts above the previous region. Look backward in the 453 // instruction stream until we find the nearest boundary. 454 unsigned NumRegionInstrs = 0; 455 MachineBasicBlock::iterator I = RegionEnd; 456 for (;I != MBB->begin(); --I) { 457 MachineInstr &MI = *std::prev(I); 458 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 459 break; 460 if (!MI.isDebugValue()) 461 ++NumRegionInstrs; 462 } 463 // Notify the scheduler of the region, even if we may skip scheduling 464 // it. Perhaps it still needs to be bundled. 465 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 466 467 // Skip empty scheduling regions (0 or 1 schedulable instructions). 468 if (I == RegionEnd || I == std::prev(RegionEnd)) { 469 // Close the current region. Bundle the terminator if needed. 470 // This invalidates 'RegionEnd' and 'I'. 471 Scheduler.exitRegion(); 472 continue; 473 } 474 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 475 DEBUG(dbgs() << MF->getName() 476 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 477 << "\n From: " << *I << " To: "; 478 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 479 else dbgs() << "End"; 480 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 481 if (DumpCriticalPathLength) { 482 errs() << MF->getName(); 483 errs() << ":BB# " << MBB->getNumber(); 484 errs() << " " << MBB->getName() << " \n"; 485 } 486 487 // Schedule a region: possibly reorder instructions. 488 // This invalidates 'RegionEnd' and 'I'. 489 Scheduler.schedule(); 490 491 // Close the current region. 492 Scheduler.exitRegion(); 493 494 // Scheduling has invalidated the current iterator 'I'. Ask the 495 // scheduler for the top of it's scheduled region. 496 RegionEnd = Scheduler.begin(); 497 } 498 Scheduler.finishBlock(); 499 // FIXME: Ideally, no further passes should rely on kill flags. However, 500 // thumb2 size reduction is currently an exception, so the PostMIScheduler 501 // needs to do this. 502 if (FixKillFlags) 503 Scheduler.fixupKills(&*MBB); 504 } 505 Scheduler.finalizeSchedule(); 506 } 507 508 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 509 // unimplemented 510 } 511 512 LLVM_DUMP_METHOD 513 void ReadyQueue::dump() { 514 dbgs() << "Queue " << Name << ": "; 515 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 516 dbgs() << Queue[i]->NodeNum << " "; 517 dbgs() << "\n"; 518 } 519 520 //===----------------------------------------------------------------------===// 521 // ScheduleDAGMI - Basic machine instruction scheduling. This is 522 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 523 // virtual registers. 524 // ===----------------------------------------------------------------------===/ 525 526 // Provide a vtable anchor. 527 ScheduleDAGMI::~ScheduleDAGMI() { 528 } 529 530 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 531 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 532 } 533 534 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 535 if (SuccSU != &ExitSU) { 536 // Do not use WillCreateCycle, it assumes SD scheduling. 537 // If Pred is reachable from Succ, then the edge creates a cycle. 538 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 539 return false; 540 Topo.AddPred(SuccSU, PredDep.getSUnit()); 541 } 542 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 543 // Return true regardless of whether a new edge needed to be inserted. 544 return true; 545 } 546 547 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 548 /// NumPredsLeft reaches zero, release the successor node. 549 /// 550 /// FIXME: Adjust SuccSU height based on MinLatency. 551 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 552 SUnit *SuccSU = SuccEdge->getSUnit(); 553 554 if (SuccEdge->isWeak()) { 555 --SuccSU->WeakPredsLeft; 556 if (SuccEdge->isCluster()) 557 NextClusterSucc = SuccSU; 558 return; 559 } 560 #ifndef NDEBUG 561 if (SuccSU->NumPredsLeft == 0) { 562 dbgs() << "*** Scheduling failed! ***\n"; 563 SuccSU->dump(this); 564 dbgs() << " has been released too many times!\n"; 565 llvm_unreachable(nullptr); 566 } 567 #endif 568 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 569 // CurrCycle may have advanced since then. 570 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 571 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 572 573 --SuccSU->NumPredsLeft; 574 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 575 SchedImpl->releaseTopNode(SuccSU); 576 } 577 578 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 579 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 580 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 581 I != E; ++I) { 582 releaseSucc(SU, &*I); 583 } 584 } 585 586 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 587 /// NumSuccsLeft reaches zero, release the predecessor node. 588 /// 589 /// FIXME: Adjust PredSU height based on MinLatency. 590 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 591 SUnit *PredSU = PredEdge->getSUnit(); 592 593 if (PredEdge->isWeak()) { 594 --PredSU->WeakSuccsLeft; 595 if (PredEdge->isCluster()) 596 NextClusterPred = PredSU; 597 return; 598 } 599 #ifndef NDEBUG 600 if (PredSU->NumSuccsLeft == 0) { 601 dbgs() << "*** Scheduling failed! ***\n"; 602 PredSU->dump(this); 603 dbgs() << " has been released too many times!\n"; 604 llvm_unreachable(nullptr); 605 } 606 #endif 607 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 608 // CurrCycle may have advanced since then. 609 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 610 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 611 612 --PredSU->NumSuccsLeft; 613 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 614 SchedImpl->releaseBottomNode(PredSU); 615 } 616 617 /// releasePredecessors - Call releasePred on each of SU's predecessors. 618 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 619 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 620 I != E; ++I) { 621 releasePred(SU, &*I); 622 } 623 } 624 625 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 626 /// crossing a scheduling boundary. [begin, end) includes all instructions in 627 /// the region, including the boundary itself and single-instruction regions 628 /// that don't get scheduled. 629 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 630 MachineBasicBlock::iterator begin, 631 MachineBasicBlock::iterator end, 632 unsigned regioninstrs) 633 { 634 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 635 636 SchedImpl->initPolicy(begin, end, regioninstrs); 637 } 638 639 /// This is normally called from the main scheduler loop but may also be invoked 640 /// by the scheduling strategy to perform additional code motion. 641 void ScheduleDAGMI::moveInstruction( 642 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 643 // Advance RegionBegin if the first instruction moves down. 644 if (&*RegionBegin == MI) 645 ++RegionBegin; 646 647 // Update the instruction stream. 648 BB->splice(InsertPos, BB, MI); 649 650 // Update LiveIntervals 651 if (LIS) 652 LIS->handleMove(*MI, /*UpdateFlags=*/true); 653 654 // Recede RegionBegin if an instruction moves above the first. 655 if (RegionBegin == InsertPos) 656 RegionBegin = MI; 657 } 658 659 bool ScheduleDAGMI::checkSchedLimit() { 660 #ifndef NDEBUG 661 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 662 CurrentTop = CurrentBottom; 663 return false; 664 } 665 ++NumInstrsScheduled; 666 #endif 667 return true; 668 } 669 670 /// Per-region scheduling driver, called back from 671 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 672 /// does not consider liveness or register pressure. It is useful for PostRA 673 /// scheduling and potentially other custom schedulers. 674 void ScheduleDAGMI::schedule() { 675 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 676 DEBUG(SchedImpl->dumpPolicy()); 677 678 // Build the DAG. 679 buildSchedGraph(AA); 680 681 Topo.InitDAGTopologicalSorting(); 682 683 postprocessDAG(); 684 685 SmallVector<SUnit*, 8> TopRoots, BotRoots; 686 findRootsAndBiasEdges(TopRoots, BotRoots); 687 688 // Initialize the strategy before modifying the DAG. 689 // This may initialize a DFSResult to be used for queue priority. 690 SchedImpl->initialize(this); 691 692 DEBUG( 693 if (EntrySU.getInstr() != nullptr) 694 EntrySU.dumpAll(this); 695 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 696 SUnits[su].dumpAll(this); 697 if (ExitSU.getInstr() != nullptr) 698 ExitSU.dumpAll(this); 699 ); 700 if (ViewMISchedDAGs) viewGraph(); 701 702 // Initialize ready queues now that the DAG and priority data are finalized. 703 initQueues(TopRoots, BotRoots); 704 705 bool IsTopNode = false; 706 while (true) { 707 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 708 SUnit *SU = SchedImpl->pickNode(IsTopNode); 709 if (!SU) break; 710 assert(!SU->skip); 711 712 assert(!SU->isScheduled && "Node already scheduled"); 713 if (!checkSchedLimit()) 714 break; 715 716 MachineInstr *MI = SU->getInstr(); 717 if (IsTopNode) { 718 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 719 if (&*CurrentTop == MI) 720 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 721 else 722 moveInstruction(MI, CurrentTop); 723 } else { 724 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 725 MachineBasicBlock::iterator priorII = 726 priorNonDebug(CurrentBottom, CurrentTop); 727 if (&*priorII == MI) 728 CurrentBottom = priorII; 729 else { 730 if (&*CurrentTop == MI) 731 CurrentTop = nextIfDebug(++CurrentTop, priorII); 732 moveInstruction(MI, CurrentBottom); 733 CurrentBottom = MI; 734 } 735 } 736 // Notify the scheduling strategy before updating the DAG. 737 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 738 // runs, it can then use the accurate ReadyCycle time to determine whether 739 // newly released nodes can move to the readyQ. 740 SchedImpl->schedNode(SU, IsTopNode); 741 742 updateQueues(SU, IsTopNode); 743 } 744 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 745 746 placeDebugValues(); 747 748 DEBUG({ 749 unsigned BBNum = begin()->getParent()->getNumber(); 750 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 751 dumpSchedule(); 752 dbgs() << '\n'; 753 }); 754 } 755 756 /// Apply each ScheduleDAGMutation step in order. 757 void ScheduleDAGMI::postprocessDAG() { 758 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 759 Mutations[i]->apply(this); 760 } 761 } 762 763 void ScheduleDAGMI:: 764 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 765 SmallVectorImpl<SUnit*> &BotRoots) { 766 for (std::vector<SUnit>::iterator 767 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 768 if (I->skip) 769 continue; 770 SUnit *SU = &(*I); 771 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 772 773 // Order predecessors so DFSResult follows the critical path. 774 SU->biasCriticalPath(); 775 776 // A SUnit is ready to top schedule if it has no predecessors. 777 if (!I->NumPredsLeft) 778 TopRoots.push_back(SU); 779 // A SUnit is ready to bottom schedule if it has no successors. 780 if (!I->NumSuccsLeft) 781 BotRoots.push_back(SU); 782 } 783 ExitSU.biasCriticalPath(); 784 } 785 786 /// Identify DAG roots and setup scheduler queues. 787 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 788 ArrayRef<SUnit*> BotRoots) { 789 NextClusterSucc = nullptr; 790 NextClusterPred = nullptr; 791 792 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 793 // 794 // Nodes with unreleased weak edges can still be roots. 795 // Release top roots in forward order. 796 for (SmallVectorImpl<SUnit*>::const_iterator 797 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 798 SchedImpl->releaseTopNode(*I); 799 } 800 // Release bottom roots in reverse order so the higher priority nodes appear 801 // first. This is more natural and slightly more efficient. 802 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 803 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 804 SchedImpl->releaseBottomNode(*I); 805 } 806 807 releaseSuccessors(&EntrySU); 808 releasePredecessors(&ExitSU); 809 810 SchedImpl->registerRoots(); 811 812 // Advance past initial DebugValues. 813 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 814 CurrentBottom = RegionEnd; 815 } 816 817 /// Update scheduler queues after scheduling an instruction. 818 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 819 // Release dependent instructions for scheduling. 820 if (IsTopNode) 821 releaseSuccessors(SU); 822 else 823 releasePredecessors(SU); 824 825 SU->isScheduled = true; 826 } 827 828 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 829 void ScheduleDAGMI::placeDebugValues() { 830 // If first instruction was a DBG_VALUE then put it back. 831 if (FirstDbgValue) { 832 BB->splice(RegionBegin, BB, FirstDbgValue); 833 RegionBegin = FirstDbgValue; 834 } 835 836 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 837 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 838 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 839 MachineInstr *DbgValue = P.first; 840 MachineBasicBlock::iterator OrigPrevMI = P.second; 841 if (&*RegionBegin == DbgValue) 842 ++RegionBegin; 843 BB->splice(++OrigPrevMI, BB, DbgValue); 844 if (OrigPrevMI == std::prev(RegionEnd)) 845 RegionEnd = DbgValue; 846 } 847 DbgValues.clear(); 848 FirstDbgValue = nullptr; 849 } 850 851 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 852 void ScheduleDAGMI::dumpSchedule() const { 853 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 854 if (SUnit *SU = getSUnit(&(*MI))) 855 SU->dump(this); 856 else 857 dbgs() << "Missing SUnit\n"; 858 } 859 } 860 #endif 861 862 //===----------------------------------------------------------------------===// 863 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 864 // preservation. 865 //===----------------------------------------------------------------------===// 866 867 ScheduleDAGMILive::~ScheduleDAGMILive() { 868 delete DFSResult; 869 } 870 871 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 872 const MachineInstr &MI = *SU.getInstr(); 873 for (const MachineOperand &MO : MI.operands()) { 874 if (!MO.isReg()) 875 continue; 876 if (!MO.readsReg()) 877 continue; 878 if (TrackLaneMasks && !MO.isUse()) 879 continue; 880 881 unsigned Reg = MO.getReg(); 882 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 883 continue; 884 885 // Ignore re-defs. 886 if (TrackLaneMasks) { 887 bool FoundDef = false; 888 for (const MachineOperand &MO2 : MI.operands()) { 889 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 890 FoundDef = true; 891 break; 892 } 893 } 894 if (FoundDef) 895 continue; 896 } 897 898 // Record this local VReg use. 899 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 900 for (; UI != VRegUses.end(); ++UI) { 901 if (UI->SU == &SU) 902 break; 903 } 904 if (UI == VRegUses.end()) 905 VRegUses.insert(VReg2SUnit(Reg, 0, &SU)); 906 } 907 } 908 909 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 910 /// crossing a scheduling boundary. [begin, end) includes all instructions in 911 /// the region, including the boundary itself and single-instruction regions 912 /// that don't get scheduled. 913 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 914 MachineBasicBlock::iterator begin, 915 MachineBasicBlock::iterator end, 916 unsigned regioninstrs) 917 { 918 // ScheduleDAGMI initializes SchedImpl's per-region policy. 919 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 920 921 // For convenience remember the end of the liveness region. 922 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 923 924 SUPressureDiffs.clear(); 925 926 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 927 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 928 929 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 930 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 931 } 932 933 // Setup the register pressure trackers for the top scheduled top and bottom 934 // scheduled regions. 935 void ScheduleDAGMILive::initRegPressure() { 936 VRegUses.clear(); 937 VRegUses.setUniverse(MRI.getNumVirtRegs()); 938 for (SUnit &SU : SUnits) 939 collectVRegUses(SU); 940 941 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 942 ShouldTrackLaneMasks, false); 943 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 944 ShouldTrackLaneMasks, false); 945 946 // Close the RPTracker to finalize live ins. 947 RPTracker.closeRegion(); 948 949 DEBUG(RPTracker.dump()); 950 951 // Initialize the live ins and live outs. 952 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 953 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 954 955 // Close one end of the tracker so we can call 956 // getMaxUpward/DownwardPressureDelta before advancing across any 957 // instructions. This converts currently live regs into live ins/outs. 958 TopRPTracker.closeTop(); 959 BotRPTracker.closeBottom(); 960 961 BotRPTracker.initLiveThru(RPTracker); 962 if (!BotRPTracker.getLiveThru().empty()) { 963 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 964 DEBUG(dbgs() << "Live Thru: "; 965 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 966 }; 967 968 // For each live out vreg reduce the pressure change associated with other 969 // uses of the same vreg below the live-out reaching def. 970 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 971 972 // Account for liveness generated by the region boundary. 973 if (LiveRegionEnd != RegionEnd) { 974 SmallVector<RegisterMaskPair, 8> LiveUses; 975 BotRPTracker.recede(&LiveUses); 976 updatePressureDiffs(LiveUses); 977 } 978 979 DEBUG( 980 dbgs() << "Top Pressure:\n"; 981 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 982 dbgs() << "Bottom Pressure:\n"; 983 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 984 ); 985 986 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 987 988 // Cache the list of excess pressure sets in this region. This will also track 989 // the max pressure in the scheduled code for these sets. 990 RegionCriticalPSets.clear(); 991 const std::vector<unsigned> &RegionPressure = 992 RPTracker.getPressure().MaxSetPressure; 993 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 994 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 995 if (RegionPressure[i] > Limit) { 996 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 997 << " Limit " << Limit 998 << " Actual " << RegionPressure[i] << "\n"); 999 RegionCriticalPSets.push_back(PressureChange(i)); 1000 } 1001 } 1002 DEBUG(dbgs() << "Excess PSets: "; 1003 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 1004 dbgs() << TRI->getRegPressureSetName( 1005 RegionCriticalPSets[i].getPSet()) << " "; 1006 dbgs() << "\n"); 1007 } 1008 1009 void ScheduleDAGMILive:: 1010 updateScheduledPressure(const SUnit *SU, 1011 const std::vector<unsigned> &NewMaxPressure) { 1012 const PressureDiff &PDiff = getPressureDiff(SU); 1013 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1014 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 1015 I != E; ++I) { 1016 if (!I->isValid()) 1017 break; 1018 unsigned ID = I->getPSet(); 1019 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1020 ++CritIdx; 1021 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1022 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1023 && NewMaxPressure[ID] <= INT16_MAX) 1024 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1025 } 1026 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1027 if (NewMaxPressure[ID] >= Limit - 2) { 1028 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1029 << NewMaxPressure[ID] 1030 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1031 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1032 } 1033 } 1034 } 1035 1036 /// Update the PressureDiff array for liveness after scheduling this 1037 /// instruction. 1038 void ScheduleDAGMILive::updatePressureDiffs( 1039 ArrayRef<RegisterMaskPair> LiveUses) { 1040 for (const RegisterMaskPair &P : LiveUses) { 1041 unsigned Reg = P.RegUnit; 1042 /// FIXME: Currently assuming single-use physregs. 1043 if (!TRI->isVirtualRegister(Reg)) 1044 continue; 1045 1046 if (ShouldTrackLaneMasks) { 1047 // If the register has just become live then other uses won't change 1048 // this fact anymore => decrement pressure. 1049 // If the register has just become dead then other uses make it come 1050 // back to life => increment pressure. 1051 bool Decrement = P.LaneMask != 0; 1052 1053 for (const VReg2SUnit &V2SU 1054 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1055 SUnit &SU = *V2SU.SU; 1056 if (SU.isScheduled || &SU == &ExitSU) 1057 continue; 1058 1059 PressureDiff &PDiff = getPressureDiff(&SU); 1060 PDiff.addPressureChange(Reg, Decrement, &MRI); 1061 DEBUG( 1062 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1063 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1064 << ' ' << *SU.getInstr(); 1065 dbgs() << " to "; 1066 PDiff.dump(*TRI); 1067 ); 1068 } 1069 } else { 1070 assert(P.LaneMask != 0); 1071 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1072 // This may be called before CurrentBottom has been initialized. However, 1073 // BotRPTracker must have a valid position. We want the value live into the 1074 // instruction or live out of the block, so ask for the previous 1075 // instruction's live-out. 1076 const LiveInterval &LI = LIS->getInterval(Reg); 1077 VNInfo *VNI; 1078 MachineBasicBlock::const_iterator I = 1079 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1080 if (I == BB->end()) 1081 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1082 else { 1083 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1084 VNI = LRQ.valueIn(); 1085 } 1086 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1087 assert(VNI && "No live value at use."); 1088 for (const VReg2SUnit &V2SU 1089 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1090 SUnit *SU = V2SU.SU; 1091 // If this use comes before the reaching def, it cannot be a last use, 1092 // so decrease its pressure change. 1093 if (!SU->isScheduled && SU != &ExitSU) { 1094 LiveQueryResult LRQ = 1095 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1096 if (LRQ.valueIn() == VNI) { 1097 PressureDiff &PDiff = getPressureDiff(SU); 1098 PDiff.addPressureChange(Reg, true, &MRI); 1099 DEBUG( 1100 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1101 << *SU->getInstr(); 1102 dbgs() << " to "; 1103 PDiff.dump(*TRI); 1104 ); 1105 } 1106 } 1107 } 1108 } 1109 } 1110 } 1111 1112 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1113 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1114 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1115 /// 1116 /// This is a skeletal driver, with all the functionality pushed into helpers, 1117 /// so that it can be easily extended by experimental schedulers. Generally, 1118 /// implementing MachineSchedStrategy should be sufficient to implement a new 1119 /// scheduling algorithm. However, if a scheduler further subclasses 1120 /// ScheduleDAGMILive then it will want to override this virtual method in order 1121 /// to update any specialized state. 1122 void ScheduleDAGMILive::schedule() { 1123 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1124 DEBUG(SchedImpl->dumpPolicy()); 1125 buildDAGWithRegPressure(); 1126 1127 Topo.InitDAGTopologicalSorting(); 1128 1129 postprocessDAG(); 1130 1131 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1132 findRootsAndBiasEdges(TopRoots, BotRoots); 1133 1134 // Initialize the strategy before modifying the DAG. 1135 // This may initialize a DFSResult to be used for queue priority. 1136 SchedImpl->initialize(this); 1137 1138 DEBUG( 1139 if (EntrySU.getInstr() != nullptr) 1140 EntrySU.dumpAll(this); 1141 for (const SUnit &SU : SUnits) { 1142 SU.dumpAll(this); 1143 if (ShouldTrackPressure) { 1144 dbgs() << " Pressure Diff : "; 1145 getPressureDiff(&SU).dump(*TRI); 1146 } 1147 dbgs() << '\n'; 1148 } 1149 if (ExitSU.getInstr() != nullptr) 1150 ExitSU.dumpAll(this); 1151 ); 1152 if (ViewMISchedDAGs) viewGraph(); 1153 1154 // Initialize ready queues now that the DAG and priority data are finalized. 1155 initQueues(TopRoots, BotRoots); 1156 1157 bool IsTopNode = false; 1158 while (true) { 1159 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1160 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1161 if (!SU) break; 1162 1163 assert(!SU->isScheduled && "Node already scheduled"); 1164 if (!checkSchedLimit()) 1165 break; 1166 1167 scheduleMI(SU, IsTopNode); 1168 1169 if (DFSResult) { 1170 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1171 if (!ScheduledTrees.test(SubtreeID)) { 1172 ScheduledTrees.set(SubtreeID); 1173 DFSResult->scheduleTree(SubtreeID); 1174 SchedImpl->scheduleTree(SubtreeID); 1175 } 1176 } 1177 1178 // Notify the scheduling strategy after updating the DAG. 1179 SchedImpl->schedNode(SU, IsTopNode); 1180 1181 updateQueues(SU, IsTopNode); 1182 } 1183 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1184 1185 placeDebugValues(); 1186 1187 DEBUG({ 1188 unsigned BBNum = begin()->getParent()->getNumber(); 1189 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1190 dumpSchedule(); 1191 dbgs() << '\n'; 1192 }); 1193 } 1194 1195 /// Build the DAG and setup three register pressure trackers. 1196 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1197 if (!ShouldTrackPressure) { 1198 RPTracker.reset(); 1199 RegionCriticalPSets.clear(); 1200 buildSchedGraph(AA); 1201 return; 1202 } 1203 1204 // Initialize the register pressure tracker used by buildSchedGraph. 1205 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1206 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1207 1208 // Account for liveness generate by the region boundary. 1209 if (LiveRegionEnd != RegionEnd) 1210 RPTracker.recede(); 1211 1212 // Build the DAG, and compute current register pressure. 1213 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1214 1215 // Initialize top/bottom trackers after computing region pressure. 1216 initRegPressure(); 1217 } 1218 1219 void ScheduleDAGMILive::computeDFSResult() { 1220 if (!DFSResult) 1221 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1222 DFSResult->clear(); 1223 ScheduledTrees.clear(); 1224 DFSResult->resize(SUnits.size()); 1225 DFSResult->compute(SUnits); 1226 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1227 } 1228 1229 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1230 /// only provides the critical path for single block loops. To handle loops that 1231 /// span blocks, we could use the vreg path latencies provided by 1232 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1233 /// available for use in the scheduler. 1234 /// 1235 /// The cyclic path estimation identifies a def-use pair that crosses the back 1236 /// edge and considers the depth and height of the nodes. For example, consider 1237 /// the following instruction sequence where each instruction has unit latency 1238 /// and defines an epomymous virtual register: 1239 /// 1240 /// a->b(a,c)->c(b)->d(c)->exit 1241 /// 1242 /// The cyclic critical path is a two cycles: b->c->b 1243 /// The acyclic critical path is four cycles: a->b->c->d->exit 1244 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1245 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1246 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1247 /// LiveInDepth = depth(b) = len(a->b) = 1 1248 /// 1249 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1250 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1251 /// CyclicCriticalPath = min(2, 2) = 2 1252 /// 1253 /// This could be relevant to PostRA scheduling, but is currently implemented 1254 /// assuming LiveIntervals. 1255 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1256 // This only applies to single block loop. 1257 if (!BB->isSuccessor(BB)) 1258 return 0; 1259 1260 unsigned MaxCyclicLatency = 0; 1261 // Visit each live out vreg def to find def/use pairs that cross iterations. 1262 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1263 unsigned Reg = P.RegUnit; 1264 if (!TRI->isVirtualRegister(Reg)) 1265 continue; 1266 const LiveInterval &LI = LIS->getInterval(Reg); 1267 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1268 if (!DefVNI) 1269 continue; 1270 1271 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1272 const SUnit *DefSU = getSUnit(DefMI); 1273 if (!DefSU) 1274 continue; 1275 1276 unsigned LiveOutHeight = DefSU->getHeight(); 1277 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1278 // Visit all local users of the vreg def. 1279 for (const VReg2SUnit &V2SU 1280 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1281 SUnit *SU = V2SU.SU; 1282 if (SU == &ExitSU) 1283 continue; 1284 1285 // Only consider uses of the phi. 1286 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1287 if (!LRQ.valueIn()->isPHIDef()) 1288 continue; 1289 1290 // Assume that a path spanning two iterations is a cycle, which could 1291 // overestimate in strange cases. This allows cyclic latency to be 1292 // estimated as the minimum slack of the vreg's depth or height. 1293 unsigned CyclicLatency = 0; 1294 if (LiveOutDepth > SU->getDepth()) 1295 CyclicLatency = LiveOutDepth - SU->getDepth(); 1296 1297 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1298 if (LiveInHeight > LiveOutHeight) { 1299 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1300 CyclicLatency = LiveInHeight - LiveOutHeight; 1301 } else 1302 CyclicLatency = 0; 1303 1304 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1305 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1306 if (CyclicLatency > MaxCyclicLatency) 1307 MaxCyclicLatency = CyclicLatency; 1308 } 1309 } 1310 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1311 return MaxCyclicLatency; 1312 } 1313 1314 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1315 /// the Top RP tracker in case the region beginning has changed. 1316 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1317 ArrayRef<SUnit*> BotRoots) { 1318 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1319 if (ShouldTrackPressure) { 1320 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1321 TopRPTracker.setPos(CurrentTop); 1322 } 1323 } 1324 1325 /// Move an instruction and update register pressure. 1326 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1327 // Move the instruction to its new location in the instruction stream. 1328 MachineInstr *MI = SU->getInstr(); 1329 1330 if (IsTopNode) { 1331 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1332 if (&*CurrentTop == MI) 1333 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1334 else { 1335 moveInstruction(MI, CurrentTop); 1336 TopRPTracker.setPos(MI); 1337 } 1338 1339 if (ShouldTrackPressure) { 1340 // Update top scheduled pressure. 1341 RegisterOperands RegOpers; 1342 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1343 if (ShouldTrackLaneMasks) { 1344 // Adjust liveness and add missing dead+read-undef flags. 1345 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1346 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1347 } else { 1348 // Adjust for missing dead-def flags. 1349 RegOpers.detectDeadDefs(*MI, *LIS); 1350 } 1351 1352 TopRPTracker.advance(RegOpers); 1353 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1354 DEBUG( 1355 dbgs() << "Top Pressure:\n"; 1356 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1357 ); 1358 1359 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1360 } 1361 } else { 1362 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1363 MachineBasicBlock::iterator priorII = 1364 priorNonDebug(CurrentBottom, CurrentTop); 1365 if (&*priorII == MI) 1366 CurrentBottom = priorII; 1367 else { 1368 if (&*CurrentTop == MI) { 1369 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1370 TopRPTracker.setPos(CurrentTop); 1371 } 1372 moveInstruction(MI, CurrentBottom); 1373 CurrentBottom = MI; 1374 } 1375 if (ShouldTrackPressure) { 1376 RegisterOperands RegOpers; 1377 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1378 if (ShouldTrackLaneMasks) { 1379 // Adjust liveness and add missing dead+read-undef flags. 1380 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1381 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1382 } else { 1383 // Adjust for missing dead-def flags. 1384 RegOpers.detectDeadDefs(*MI, *LIS); 1385 } 1386 1387 BotRPTracker.recedeSkipDebugValues(); 1388 SmallVector<RegisterMaskPair, 8> LiveUses; 1389 BotRPTracker.recede(RegOpers, &LiveUses); 1390 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1391 DEBUG( 1392 dbgs() << "Bottom Pressure:\n"; 1393 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1394 ); 1395 1396 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1397 updatePressureDiffs(LiveUses); 1398 } 1399 } 1400 } 1401 1402 //===----------------------------------------------------------------------===// 1403 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1404 //===----------------------------------------------------------------------===// 1405 1406 namespace { 1407 /// \brief Post-process the DAG to create cluster edges between neighboring 1408 /// loads or between neighboring stores. 1409 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1410 struct MemOpInfo { 1411 SUnit *SU; 1412 unsigned BaseReg; 1413 int64_t Offset; 1414 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1415 : SU(su), BaseReg(reg), Offset(ofs) {} 1416 1417 bool operator<(const MemOpInfo&RHS) const { 1418 return std::tie(BaseReg, Offset, SU->NodeNum) < 1419 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1420 } 1421 }; 1422 1423 const TargetInstrInfo *TII; 1424 const TargetRegisterInfo *TRI; 1425 bool IsLoad; 1426 1427 public: 1428 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1429 const TargetRegisterInfo *tri, bool IsLoad) 1430 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1431 1432 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1433 1434 protected: 1435 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1436 }; 1437 1438 class StoreClusterMutation : public BaseMemOpClusterMutation { 1439 public: 1440 StoreClusterMutation(const TargetInstrInfo *tii, 1441 const TargetRegisterInfo *tri) 1442 : BaseMemOpClusterMutation(tii, tri, false) {} 1443 }; 1444 1445 class LoadClusterMutation : public BaseMemOpClusterMutation { 1446 public: 1447 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1448 : BaseMemOpClusterMutation(tii, tri, true) {} 1449 }; 1450 } // anonymous 1451 1452 namespace llvm { 1453 1454 std::unique_ptr<ScheduleDAGMutation> 1455 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1456 const TargetRegisterInfo *TRI) { 1457 return make_unique<LoadClusterMutation>(TII, TRI); 1458 } 1459 1460 std::unique_ptr<ScheduleDAGMutation> 1461 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1462 const TargetRegisterInfo *TRI) { 1463 return make_unique<StoreClusterMutation>(TII, TRI); 1464 } 1465 1466 } // namespace llvm 1467 1468 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1469 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1470 SmallVector<MemOpInfo, 32> MemOpRecords; 1471 for (unsigned Idx = 0, End = MemOps.size(); Idx != End; ++Idx) { 1472 SUnit *SU = MemOps[Idx]; 1473 unsigned BaseReg; 1474 int64_t Offset; 1475 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1476 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1477 } 1478 if (MemOpRecords.size() < 2) 1479 return; 1480 1481 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1482 unsigned ClusterLength = 1; 1483 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1484 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1485 ClusterLength = 1; 1486 continue; 1487 } 1488 1489 SUnit *SUa = MemOpRecords[Idx].SU; 1490 SUnit *SUb = MemOpRecords[Idx+1].SU; 1491 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1492 ClusterLength) && 1493 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1494 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1495 << SUb->NodeNum << ")\n"); 1496 // Copy successor edges from SUa to SUb. Interleaving computation 1497 // dependent on SUa can prevent load combining due to register reuse. 1498 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1499 // loads should have effectively the same inputs. 1500 for (SUnit::const_succ_iterator 1501 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1502 if (SI->getSUnit() == SUb) 1503 continue; 1504 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1505 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1506 } 1507 ++ClusterLength; 1508 } else 1509 ClusterLength = 1; 1510 } 1511 } 1512 1513 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1514 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1515 1516 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1517 1518 // Map DAG NodeNum to store chain ID. 1519 DenseMap<unsigned, unsigned> StoreChainIDs; 1520 // Map each store chain to a set of dependent MemOps. 1521 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1522 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1523 SUnit *SU = &DAG->SUnits[Idx]; 1524 if (SU->skip) 1525 continue; 1526 if ((IsLoad && !SU->getInstr()->mayLoad()) || 1527 (!IsLoad && !SU->getInstr()->mayStore())) 1528 continue; 1529 1530 unsigned ChainPredID = DAG->SUnits.size(); 1531 for (SUnit::const_pred_iterator 1532 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1533 if (PI->isCtrl()) { 1534 ChainPredID = PI->getSUnit()->NodeNum; 1535 break; 1536 } 1537 } 1538 // Check if this chain-like pred has been seen 1539 // before. ChainPredID==MaxNodeID at the top of the schedule. 1540 unsigned NumChains = StoreChainDependents.size(); 1541 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1542 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1543 if (Result.second) 1544 StoreChainDependents.resize(NumChains + 1); 1545 StoreChainDependents[Result.first->second].push_back(SU); 1546 } 1547 1548 // Iterate over the store chains. 1549 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1550 clusterNeighboringMemOps(StoreChainDependents[Idx], DAG); 1551 } 1552 1553 //===----------------------------------------------------------------------===// 1554 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1555 //===----------------------------------------------------------------------===// 1556 1557 namespace { 1558 /// \brief Post-process the DAG to create cluster edges between instructions 1559 /// that may be fused by the processor into a single operation. 1560 class MacroFusion : public ScheduleDAGMutation { 1561 const TargetInstrInfo &TII; 1562 public: 1563 MacroFusion(const TargetInstrInfo &TII) 1564 : TII(TII) {} 1565 1566 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1567 }; 1568 } // anonymous 1569 1570 namespace llvm { 1571 1572 std::unique_ptr<ScheduleDAGMutation> 1573 createMacroFusionDAGMutation(const TargetInstrInfo *TII) { 1574 return make_unique<MacroFusion>(*TII); 1575 } 1576 1577 } // namespace llvm 1578 1579 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1580 /// fused operations. 1581 void MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) { 1582 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1583 1584 // For now, assume targets can only fuse with the branch. 1585 SUnit &ExitSU = DAG->ExitSU; 1586 MachineInstr *Branch = ExitSU.getInstr(); 1587 if (!Branch) 1588 return; 1589 1590 for (SDep &PredDep : ExitSU.Preds) { 1591 if (PredDep.isWeak()) 1592 continue; 1593 SUnit &SU = *PredDep.getSUnit(); 1594 MachineInstr &Pred = *SU.getInstr(); 1595 if (!TII.shouldScheduleAdjacent(Pred, *Branch)) 1596 continue; 1597 1598 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1599 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1600 // need to copy predecessor edges from ExitSU to SU, since top-down 1601 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1602 // of SU, we could create an artificial edge from the deepest root, but it 1603 // hasn't been needed yet. 1604 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster)); 1605 (void)Success; 1606 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1607 1608 // Adjust latency of data deps between the nodes. 1609 for (SDep &PredDep : ExitSU.Preds) { 1610 if (PredDep.getSUnit() == &SU) 1611 PredDep.setLatency(0); 1612 } 1613 for (SDep &SuccDep : SU.Succs) { 1614 if (SuccDep.getSUnit() == &ExitSU) 1615 SuccDep.setLatency(0); 1616 } 1617 1618 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n"); 1619 break; 1620 } 1621 } 1622 1623 //===----------------------------------------------------------------------===// 1624 // CopyConstrain - DAG post-processing to encourage copy elimination. 1625 //===----------------------------------------------------------------------===// 1626 1627 namespace { 1628 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1629 /// the one use that defines the copy's source vreg, most likely an induction 1630 /// variable increment. 1631 class CopyConstrain : public ScheduleDAGMutation { 1632 // Transient state. 1633 SlotIndex RegionBeginIdx; 1634 // RegionEndIdx is the slot index of the last non-debug instruction in the 1635 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1636 SlotIndex RegionEndIdx; 1637 public: 1638 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1639 1640 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1641 1642 protected: 1643 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1644 }; 1645 } // anonymous 1646 1647 namespace llvm { 1648 1649 std::unique_ptr<ScheduleDAGMutation> 1650 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1651 const TargetRegisterInfo *TRI) { 1652 return make_unique<CopyConstrain>(TII, TRI); 1653 } 1654 1655 } // namespace llvm 1656 1657 /// constrainLocalCopy handles two possibilities: 1658 /// 1) Local src: 1659 /// I0: = dst 1660 /// I1: src = ... 1661 /// I2: = dst 1662 /// I3: dst = src (copy) 1663 /// (create pred->succ edges I0->I1, I2->I1) 1664 /// 1665 /// 2) Local copy: 1666 /// I0: dst = src (copy) 1667 /// I1: = dst 1668 /// I2: src = ... 1669 /// I3: = dst 1670 /// (create pred->succ edges I1->I2, I3->I2) 1671 /// 1672 /// Although the MachineScheduler is currently constrained to single blocks, 1673 /// this algorithm should handle extended blocks. An EBB is a set of 1674 /// contiguously numbered blocks such that the previous block in the EBB is 1675 /// always the single predecessor. 1676 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1677 LiveIntervals *LIS = DAG->getLIS(); 1678 MachineInstr *Copy = CopySU->getInstr(); 1679 1680 // Check for pure vreg copies. 1681 const MachineOperand &SrcOp = Copy->getOperand(1); 1682 unsigned SrcReg = SrcOp.getReg(); 1683 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1684 return; 1685 1686 const MachineOperand &DstOp = Copy->getOperand(0); 1687 unsigned DstReg = DstOp.getReg(); 1688 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1689 return; 1690 1691 // Check if either the dest or source is local. If it's live across a back 1692 // edge, it's not local. Note that if both vregs are live across the back 1693 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1694 // If both the copy's source and dest are local live intervals, then we 1695 // should treat the dest as the global for the purpose of adding 1696 // constraints. This adds edges from source's other uses to the copy. 1697 unsigned LocalReg = SrcReg; 1698 unsigned GlobalReg = DstReg; 1699 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1700 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1701 LocalReg = DstReg; 1702 GlobalReg = SrcReg; 1703 LocalLI = &LIS->getInterval(LocalReg); 1704 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1705 return; 1706 } 1707 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1708 1709 // Find the global segment after the start of the local LI. 1710 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1711 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1712 // local live range. We could create edges from other global uses to the local 1713 // start, but the coalescer should have already eliminated these cases, so 1714 // don't bother dealing with it. 1715 if (GlobalSegment == GlobalLI->end()) 1716 return; 1717 1718 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1719 // returned the next global segment. But if GlobalSegment overlaps with 1720 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1721 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1722 if (GlobalSegment->contains(LocalLI->beginIndex())) 1723 ++GlobalSegment; 1724 1725 if (GlobalSegment == GlobalLI->end()) 1726 return; 1727 1728 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1729 if (GlobalSegment != GlobalLI->begin()) { 1730 // Two address defs have no hole. 1731 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1732 GlobalSegment->start)) { 1733 return; 1734 } 1735 // If the prior global segment may be defined by the same two-address 1736 // instruction that also defines LocalLI, then can't make a hole here. 1737 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1738 LocalLI->beginIndex())) { 1739 return; 1740 } 1741 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1742 // it would be a disconnected component in the live range. 1743 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1744 "Disconnected LRG within the scheduling region."); 1745 } 1746 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1747 if (!GlobalDef) 1748 return; 1749 1750 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1751 if (!GlobalSU) 1752 return; 1753 1754 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1755 // constraining the uses of the last local def to precede GlobalDef. 1756 SmallVector<SUnit*,8> LocalUses; 1757 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1758 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1759 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1760 for (SUnit::const_succ_iterator 1761 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1762 I != E; ++I) { 1763 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1764 continue; 1765 if (I->getSUnit() == GlobalSU) 1766 continue; 1767 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1768 return; 1769 LocalUses.push_back(I->getSUnit()); 1770 } 1771 // Open the top of the GlobalLI hole by constraining any earlier global uses 1772 // to precede the start of LocalLI. 1773 SmallVector<SUnit*,8> GlobalUses; 1774 MachineInstr *FirstLocalDef = 1775 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1776 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1777 for (SUnit::const_pred_iterator 1778 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1779 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1780 continue; 1781 if (I->getSUnit() == FirstLocalSU) 1782 continue; 1783 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1784 return; 1785 GlobalUses.push_back(I->getSUnit()); 1786 } 1787 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1788 // Add the weak edges. 1789 for (SmallVectorImpl<SUnit*>::const_iterator 1790 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1791 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1792 << GlobalSU->NodeNum << ")\n"); 1793 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1794 } 1795 for (SmallVectorImpl<SUnit*>::const_iterator 1796 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1797 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1798 << FirstLocalSU->NodeNum << ")\n"); 1799 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1800 } 1801 } 1802 1803 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1804 /// copy elimination. 1805 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1806 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1807 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1808 1809 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1810 if (FirstPos == DAG->end()) 1811 return; 1812 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1813 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1814 *priorNonDebug(DAG->end(), DAG->begin())); 1815 1816 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1817 SUnit *SU = &DAG->SUnits[Idx]; 1818 if (SU->skip) 1819 continue; 1820 if (!SU->getInstr()->isCopy()) 1821 continue; 1822 1823 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1824 } 1825 } 1826 1827 //===----------------------------------------------------------------------===// 1828 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1829 // and possibly other custom schedulers. 1830 //===----------------------------------------------------------------------===// 1831 1832 static const unsigned InvalidCycle = ~0U; 1833 1834 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1835 1836 void SchedBoundary::reset() { 1837 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1838 // Destroying and reconstructing it is very expensive though. So keep 1839 // invalid, placeholder HazardRecs. 1840 if (HazardRec && HazardRec->isEnabled()) { 1841 delete HazardRec; 1842 HazardRec = nullptr; 1843 } 1844 Available.clear(); 1845 Pending.clear(); 1846 CheckPending = false; 1847 CurrCycle = 0; 1848 CurrMOps = 0; 1849 MinReadyCycle = UINT_MAX; 1850 ExpectedLatency = 0; 1851 DependentLatency = 0; 1852 RetiredMOps = 0; 1853 MaxExecutedResCount = 0; 1854 ZoneCritResIdx = 0; 1855 IsResourceLimited = false; 1856 ReservedCycles.clear(); 1857 #ifndef NDEBUG 1858 // Track the maximum number of stall cycles that could arise either from the 1859 // latency of a DAG edge or the number of cycles that a processor resource is 1860 // reserved (SchedBoundary::ReservedCycles). 1861 MaxObservedStall = 0; 1862 #endif 1863 // Reserve a zero-count for invalid CritResIdx. 1864 ExecutedResCounts.resize(1); 1865 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1866 } 1867 1868 void SchedRemainder:: 1869 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1870 reset(); 1871 if (!SchedModel->hasInstrSchedModel()) 1872 return; 1873 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1874 for (std::vector<SUnit>::iterator 1875 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1876 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1877 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1878 * SchedModel->getMicroOpFactor(); 1879 for (TargetSchedModel::ProcResIter 1880 PI = SchedModel->getWriteProcResBegin(SC), 1881 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1882 unsigned PIdx = PI->ProcResourceIdx; 1883 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1884 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1885 } 1886 } 1887 } 1888 1889 void SchedBoundary:: 1890 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1891 reset(); 1892 DAG = dag; 1893 SchedModel = smodel; 1894 Rem = rem; 1895 if (SchedModel->hasInstrSchedModel()) { 1896 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1897 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1898 } 1899 } 1900 1901 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1902 /// these "soft stalls" differently than the hard stall cycles based on CPU 1903 /// resources and computed by checkHazard(). A fully in-order model 1904 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1905 /// available for scheduling until they are ready. However, a weaker in-order 1906 /// model may use this for heuristics. For example, if a processor has in-order 1907 /// behavior when reading certain resources, this may come into play. 1908 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1909 if (!SU->isUnbuffered) 1910 return 0; 1911 1912 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1913 if (ReadyCycle > CurrCycle) 1914 return ReadyCycle - CurrCycle; 1915 return 0; 1916 } 1917 1918 /// Compute the next cycle at which the given processor resource can be 1919 /// scheduled. 1920 unsigned SchedBoundary:: 1921 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1922 unsigned NextUnreserved = ReservedCycles[PIdx]; 1923 // If this resource has never been used, always return cycle zero. 1924 if (NextUnreserved == InvalidCycle) 1925 return 0; 1926 // For bottom-up scheduling add the cycles needed for the current operation. 1927 if (!isTop()) 1928 NextUnreserved += Cycles; 1929 return NextUnreserved; 1930 } 1931 1932 /// Does this SU have a hazard within the current instruction group. 1933 /// 1934 /// The scheduler supports two modes of hazard recognition. The first is the 1935 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1936 /// supports highly complicated in-order reservation tables 1937 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1938 /// 1939 /// The second is a streamlined mechanism that checks for hazards based on 1940 /// simple counters that the scheduler itself maintains. It explicitly checks 1941 /// for instruction dispatch limitations, including the number of micro-ops that 1942 /// can dispatch per cycle. 1943 /// 1944 /// TODO: Also check whether the SU must start a new group. 1945 bool SchedBoundary::checkHazard(SUnit *SU) { 1946 if (HazardRec->isEnabled() 1947 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1948 return true; 1949 } 1950 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1951 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1952 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1953 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1954 return true; 1955 } 1956 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1957 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1958 for (TargetSchedModel::ProcResIter 1959 PI = SchedModel->getWriteProcResBegin(SC), 1960 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1961 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1962 if (NRCycle > CurrCycle) { 1963 #ifndef NDEBUG 1964 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1965 #endif 1966 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1967 << SchedModel->getResourceName(PI->ProcResourceIdx) 1968 << "=" << NRCycle << "c\n"); 1969 return true; 1970 } 1971 } 1972 } 1973 return false; 1974 } 1975 1976 // Find the unscheduled node in ReadySUs with the highest latency. 1977 unsigned SchedBoundary:: 1978 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1979 SUnit *LateSU = nullptr; 1980 unsigned RemLatency = 0; 1981 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1982 I != E; ++I) { 1983 unsigned L = getUnscheduledLatency(*I); 1984 if (L > RemLatency) { 1985 RemLatency = L; 1986 LateSU = *I; 1987 } 1988 } 1989 if (LateSU) { 1990 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1991 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1992 } 1993 return RemLatency; 1994 } 1995 1996 // Count resources in this zone and the remaining unscheduled 1997 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1998 // resource index, or zero if the zone is issue limited. 1999 unsigned SchedBoundary:: 2000 getOtherResourceCount(unsigned &OtherCritIdx) { 2001 OtherCritIdx = 0; 2002 if (!SchedModel->hasInstrSchedModel()) 2003 return 0; 2004 2005 unsigned OtherCritCount = Rem->RemIssueCount 2006 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2007 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2008 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2009 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2010 PIdx != PEnd; ++PIdx) { 2011 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2012 if (OtherCount > OtherCritCount) { 2013 OtherCritCount = OtherCount; 2014 OtherCritIdx = PIdx; 2015 } 2016 } 2017 if (OtherCritIdx) { 2018 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2019 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2020 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2021 } 2022 return OtherCritCount; 2023 } 2024 2025 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2026 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2027 2028 #ifndef NDEBUG 2029 // ReadyCycle was been bumped up to the CurrCycle when this node was 2030 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2031 // scheduling, so may now be greater than ReadyCycle. 2032 if (ReadyCycle > CurrCycle) 2033 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2034 #endif 2035 2036 if (ReadyCycle < MinReadyCycle) 2037 MinReadyCycle = ReadyCycle; 2038 2039 // Check for interlocks first. For the purpose of other heuristics, an 2040 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2041 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2042 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2043 Available.size() >= ReadyListLimit) 2044 Pending.push(SU); 2045 else 2046 Available.push(SU); 2047 } 2048 2049 /// Move the boundary of scheduled code by one cycle. 2050 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2051 if (SchedModel->getMicroOpBufferSize() == 0) { 2052 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 2053 if (MinReadyCycle > NextCycle) 2054 NextCycle = MinReadyCycle; 2055 } 2056 // Update the current micro-ops, which will issue in the next cycle. 2057 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2058 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2059 2060 // Decrement DependentLatency based on the next cycle. 2061 if ((NextCycle - CurrCycle) > DependentLatency) 2062 DependentLatency = 0; 2063 else 2064 DependentLatency -= (NextCycle - CurrCycle); 2065 2066 if (!HazardRec->isEnabled()) { 2067 // Bypass HazardRec virtual calls. 2068 CurrCycle = NextCycle; 2069 } else { 2070 // Bypass getHazardType calls in case of long latency. 2071 for (; CurrCycle != NextCycle; ++CurrCycle) { 2072 if (isTop()) 2073 HazardRec->AdvanceCycle(); 2074 else 2075 HazardRec->RecedeCycle(); 2076 } 2077 } 2078 CheckPending = true; 2079 unsigned LFactor = SchedModel->getLatencyFactor(); 2080 IsResourceLimited = 2081 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2082 > (int)LFactor; 2083 2084 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2085 } 2086 2087 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2088 ExecutedResCounts[PIdx] += Count; 2089 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2090 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2091 } 2092 2093 /// Add the given processor resource to this scheduled zone. 2094 /// 2095 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2096 /// during which this resource is consumed. 2097 /// 2098 /// \return the next cycle at which the instruction may execute without 2099 /// oversubscribing resources. 2100 unsigned SchedBoundary:: 2101 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2102 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2103 unsigned Count = Factor * Cycles; 2104 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2105 << " +" << Cycles << "x" << Factor << "u\n"); 2106 2107 // Update Executed resources counts. 2108 incExecutedResources(PIdx, Count); 2109 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2110 Rem->RemainingCounts[PIdx] -= Count; 2111 2112 // Check if this resource exceeds the current critical resource. If so, it 2113 // becomes the critical resource. 2114 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2115 ZoneCritResIdx = PIdx; 2116 DEBUG(dbgs() << " *** Critical resource " 2117 << SchedModel->getResourceName(PIdx) << ": " 2118 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2119 } 2120 // For reserved resources, record the highest cycle using the resource. 2121 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2122 if (NextAvailable > CurrCycle) { 2123 DEBUG(dbgs() << " Resource conflict: " 2124 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2125 << NextAvailable << "\n"); 2126 } 2127 return NextAvailable; 2128 } 2129 2130 /// Move the boundary of scheduled code by one SUnit. 2131 void SchedBoundary::bumpNode(SUnit *SU) { 2132 // Update the reservation table. 2133 if (HazardRec->isEnabled()) { 2134 if (!isTop() && SU->isCall) { 2135 // Calls are scheduled with their preceding instructions. For bottom-up 2136 // scheduling, clear the pipeline state before emitting. 2137 HazardRec->Reset(); 2138 } 2139 HazardRec->EmitInstruction(SU); 2140 } 2141 // checkHazard should prevent scheduling multiple instructions per cycle that 2142 // exceed the issue width. 2143 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2144 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2145 assert( 2146 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2147 "Cannot schedule this instruction's MicroOps in the current cycle."); 2148 2149 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2150 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2151 2152 unsigned NextCycle = CurrCycle; 2153 switch (SchedModel->getMicroOpBufferSize()) { 2154 case 0: 2155 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2156 break; 2157 case 1: 2158 if (ReadyCycle > NextCycle) { 2159 NextCycle = ReadyCycle; 2160 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2161 } 2162 break; 2163 default: 2164 // We don't currently model the OOO reorder buffer, so consider all 2165 // scheduled MOps to be "retired". We do loosely model in-order resource 2166 // latency. If this instruction uses an in-order resource, account for any 2167 // likely stall cycles. 2168 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2169 NextCycle = ReadyCycle; 2170 break; 2171 } 2172 RetiredMOps += IncMOps; 2173 2174 // Update resource counts and critical resource. 2175 if (SchedModel->hasInstrSchedModel()) { 2176 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2177 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2178 Rem->RemIssueCount -= DecRemIssue; 2179 if (ZoneCritResIdx) { 2180 // Scale scheduled micro-ops for comparing with the critical resource. 2181 unsigned ScaledMOps = 2182 RetiredMOps * SchedModel->getMicroOpFactor(); 2183 2184 // If scaled micro-ops are now more than the previous critical resource by 2185 // a full cycle, then micro-ops issue becomes critical. 2186 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2187 >= (int)SchedModel->getLatencyFactor()) { 2188 ZoneCritResIdx = 0; 2189 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2190 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2191 } 2192 } 2193 for (TargetSchedModel::ProcResIter 2194 PI = SchedModel->getWriteProcResBegin(SC), 2195 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2196 unsigned RCycle = 2197 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2198 if (RCycle > NextCycle) 2199 NextCycle = RCycle; 2200 } 2201 if (SU->hasReservedResource) { 2202 // For reserved resources, record the highest cycle using the resource. 2203 // For top-down scheduling, this is the cycle in which we schedule this 2204 // instruction plus the number of cycles the operations reserves the 2205 // resource. For bottom-up is it simply the instruction's cycle. 2206 for (TargetSchedModel::ProcResIter 2207 PI = SchedModel->getWriteProcResBegin(SC), 2208 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2209 unsigned PIdx = PI->ProcResourceIdx; 2210 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2211 if (isTop()) { 2212 ReservedCycles[PIdx] = 2213 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2214 } 2215 else 2216 ReservedCycles[PIdx] = NextCycle; 2217 } 2218 } 2219 } 2220 } 2221 // Update ExpectedLatency and DependentLatency. 2222 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2223 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2224 if (SU->getDepth() > TopLatency) { 2225 TopLatency = SU->getDepth(); 2226 DEBUG(dbgs() << " " << Available.getName() 2227 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2228 } 2229 if (SU->getHeight() > BotLatency) { 2230 BotLatency = SU->getHeight(); 2231 DEBUG(dbgs() << " " << Available.getName() 2232 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2233 } 2234 // If we stall for any reason, bump the cycle. 2235 if (NextCycle > CurrCycle) { 2236 bumpCycle(NextCycle); 2237 } else { 2238 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2239 // resource limited. If a stall occurred, bumpCycle does this. 2240 unsigned LFactor = SchedModel->getLatencyFactor(); 2241 IsResourceLimited = 2242 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2243 > (int)LFactor; 2244 } 2245 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2246 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2247 // one cycle. Since we commonly reach the max MOps here, opportunistically 2248 // bump the cycle to avoid uselessly checking everything in the readyQ. 2249 CurrMOps += IncMOps; 2250 while (CurrMOps >= SchedModel->getIssueWidth()) { 2251 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2252 << " at cycle " << CurrCycle << '\n'); 2253 bumpCycle(++NextCycle); 2254 } 2255 DEBUG(dumpScheduledState()); 2256 } 2257 2258 /// Release pending ready nodes in to the available queue. This makes them 2259 /// visible to heuristics. 2260 void SchedBoundary::releasePending() { 2261 // If the available queue is empty, it is safe to reset MinReadyCycle. 2262 if (Available.empty()) 2263 MinReadyCycle = UINT_MAX; 2264 2265 // Check to see if any of the pending instructions are ready to issue. If 2266 // so, add them to the available queue. 2267 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2268 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2269 SUnit *SU = *(Pending.begin()+i); 2270 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2271 2272 if (ReadyCycle < MinReadyCycle) 2273 MinReadyCycle = ReadyCycle; 2274 2275 if (!IsBuffered && ReadyCycle > CurrCycle) 2276 continue; 2277 2278 if (checkHazard(SU)) 2279 continue; 2280 2281 if (Available.size() >= ReadyListLimit) 2282 break; 2283 2284 Available.push(SU); 2285 Pending.remove(Pending.begin()+i); 2286 --i; --e; 2287 } 2288 CheckPending = false; 2289 } 2290 2291 /// Remove SU from the ready set for this boundary. 2292 void SchedBoundary::removeReady(SUnit *SU) { 2293 if (Available.isInQueue(SU)) 2294 Available.remove(Available.find(SU)); 2295 else { 2296 assert(Pending.isInQueue(SU) && "bad ready count"); 2297 Pending.remove(Pending.find(SU)); 2298 } 2299 } 2300 2301 /// If this queue only has one ready candidate, return it. As a side effect, 2302 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2303 /// one node is ready. If multiple instructions are ready, return NULL. 2304 SUnit *SchedBoundary::pickOnlyChoice() { 2305 if (CheckPending) 2306 releasePending(); 2307 2308 if (CurrMOps > 0) { 2309 // Defer any ready instrs that now have a hazard. 2310 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2311 if (checkHazard(*I)) { 2312 Pending.push(*I); 2313 I = Available.remove(I); 2314 continue; 2315 } 2316 ++I; 2317 } 2318 } 2319 for (unsigned i = 0; Available.empty(); ++i) { 2320 // FIXME: Re-enable assert once PR20057 is resolved. 2321 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2322 // "permanent hazard"); 2323 (void)i; 2324 bumpCycle(CurrCycle + 1); 2325 releasePending(); 2326 } 2327 2328 DEBUG(Pending.dump()); 2329 DEBUG(Available.dump()); 2330 2331 if (Available.size() == 1) 2332 return *Available.begin(); 2333 return nullptr; 2334 } 2335 2336 #ifndef NDEBUG 2337 // This is useful information to dump after bumpNode. 2338 // Note that the Queue contents are more useful before pickNodeFromQueue. 2339 void SchedBoundary::dumpScheduledState() { 2340 unsigned ResFactor; 2341 unsigned ResCount; 2342 if (ZoneCritResIdx) { 2343 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2344 ResCount = getResourceCount(ZoneCritResIdx); 2345 } else { 2346 ResFactor = SchedModel->getMicroOpFactor(); 2347 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2348 } 2349 unsigned LFactor = SchedModel->getLatencyFactor(); 2350 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2351 << " Retired: " << RetiredMOps; 2352 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2353 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2354 << ResCount / ResFactor << " " 2355 << SchedModel->getResourceName(ZoneCritResIdx) 2356 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2357 << (IsResourceLimited ? " - Resource" : " - Latency") 2358 << " limited.\n"; 2359 } 2360 #endif 2361 2362 //===----------------------------------------------------------------------===// 2363 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2364 //===----------------------------------------------------------------------===// 2365 2366 void GenericSchedulerBase::SchedCandidate:: 2367 initResourceDelta(const ScheduleDAGMI *DAG, 2368 const TargetSchedModel *SchedModel) { 2369 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2370 return; 2371 2372 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2373 for (TargetSchedModel::ProcResIter 2374 PI = SchedModel->getWriteProcResBegin(SC), 2375 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2376 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2377 ResDelta.CritResources += PI->Cycles; 2378 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2379 ResDelta.DemandedResources += PI->Cycles; 2380 } 2381 } 2382 2383 /// Set the CandPolicy given a scheduling zone given the current resources and 2384 /// latencies inside and outside the zone. 2385 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2386 SchedBoundary &CurrZone, 2387 SchedBoundary *OtherZone) { 2388 // Apply preemptive heuristics based on the total latency and resources 2389 // inside and outside this zone. Potential stalls should be considered before 2390 // following this policy. 2391 2392 // Compute remaining latency. We need this both to determine whether the 2393 // overall schedule has become latency-limited and whether the instructions 2394 // outside this zone are resource or latency limited. 2395 // 2396 // The "dependent" latency is updated incrementally during scheduling as the 2397 // max height/depth of scheduled nodes minus the cycles since it was 2398 // scheduled: 2399 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2400 // 2401 // The "independent" latency is the max ready queue depth: 2402 // ILat = max N.depth for N in Available|Pending 2403 // 2404 // RemainingLatency is the greater of independent and dependent latency. 2405 unsigned RemLatency = CurrZone.getDependentLatency(); 2406 RemLatency = std::max(RemLatency, 2407 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2408 RemLatency = std::max(RemLatency, 2409 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2410 2411 // Compute the critical resource outside the zone. 2412 unsigned OtherCritIdx = 0; 2413 unsigned OtherCount = 2414 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2415 2416 bool OtherResLimited = false; 2417 if (SchedModel->hasInstrSchedModel()) { 2418 unsigned LFactor = SchedModel->getLatencyFactor(); 2419 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2420 } 2421 // Schedule aggressively for latency in PostRA mode. We don't check for 2422 // acyclic latency during PostRA, and highly out-of-order processors will 2423 // skip PostRA scheduling. 2424 if (!OtherResLimited) { 2425 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2426 Policy.ReduceLatency |= true; 2427 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2428 << " RemainingLatency " << RemLatency << " + " 2429 << CurrZone.getCurrCycle() << "c > CritPath " 2430 << Rem.CriticalPath << "\n"); 2431 } 2432 } 2433 // If the same resource is limiting inside and outside the zone, do nothing. 2434 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2435 return; 2436 2437 DEBUG( 2438 if (CurrZone.isResourceLimited()) { 2439 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2440 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2441 << "\n"; 2442 } 2443 if (OtherResLimited) 2444 dbgs() << " RemainingLimit: " 2445 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2446 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2447 dbgs() << " Latency limited both directions.\n"); 2448 2449 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2450 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2451 2452 if (OtherResLimited) 2453 Policy.DemandResIdx = OtherCritIdx; 2454 } 2455 2456 #ifndef NDEBUG 2457 const char *GenericSchedulerBase::getReasonStr( 2458 GenericSchedulerBase::CandReason Reason) { 2459 switch (Reason) { 2460 case NoCand: return "NOCAND "; 2461 case Only1: return "ONLY1 "; 2462 case PhysRegCopy: return "PREG-COPY "; 2463 case RegExcess: return "REG-EXCESS"; 2464 case RegCritical: return "REG-CRIT "; 2465 case Stall: return "STALL "; 2466 case Cluster: return "CLUSTER "; 2467 case Weak: return "WEAK "; 2468 case RegMax: return "REG-MAX "; 2469 case ResourceReduce: return "RES-REDUCE"; 2470 case ResourceDemand: return "RES-DEMAND"; 2471 case TopDepthReduce: return "TOP-DEPTH "; 2472 case TopPathReduce: return "TOP-PATH "; 2473 case BotHeightReduce:return "BOT-HEIGHT"; 2474 case BotPathReduce: return "BOT-PATH "; 2475 case NextDefUse: return "DEF-USE "; 2476 case NodeOrder: return "ORDER "; 2477 }; 2478 llvm_unreachable("Unknown reason!"); 2479 } 2480 2481 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2482 PressureChange P; 2483 unsigned ResIdx = 0; 2484 unsigned Latency = 0; 2485 switch (Cand.Reason) { 2486 default: 2487 break; 2488 case RegExcess: 2489 P = Cand.RPDelta.Excess; 2490 break; 2491 case RegCritical: 2492 P = Cand.RPDelta.CriticalMax; 2493 break; 2494 case RegMax: 2495 P = Cand.RPDelta.CurrentMax; 2496 break; 2497 case ResourceReduce: 2498 ResIdx = Cand.Policy.ReduceResIdx; 2499 break; 2500 case ResourceDemand: 2501 ResIdx = Cand.Policy.DemandResIdx; 2502 break; 2503 case TopDepthReduce: 2504 Latency = Cand.SU->getDepth(); 2505 break; 2506 case TopPathReduce: 2507 Latency = Cand.SU->getHeight(); 2508 break; 2509 case BotHeightReduce: 2510 Latency = Cand.SU->getHeight(); 2511 break; 2512 case BotPathReduce: 2513 Latency = Cand.SU->getDepth(); 2514 break; 2515 } 2516 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2517 if (P.isValid()) 2518 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2519 << ":" << P.getUnitInc() << " "; 2520 else 2521 dbgs() << " "; 2522 if (ResIdx) 2523 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2524 else 2525 dbgs() << " "; 2526 if (Latency) 2527 dbgs() << " " << Latency << " cycles "; 2528 else 2529 dbgs() << " "; 2530 dbgs() << '\n'; 2531 } 2532 #endif 2533 2534 /// Return true if this heuristic determines order. 2535 static bool tryLess(int TryVal, int CandVal, 2536 GenericSchedulerBase::SchedCandidate &TryCand, 2537 GenericSchedulerBase::SchedCandidate &Cand, 2538 GenericSchedulerBase::CandReason Reason) { 2539 if (TryVal < CandVal) { 2540 TryCand.Reason = Reason; 2541 return true; 2542 } 2543 if (TryVal > CandVal) { 2544 if (Cand.Reason > Reason) 2545 Cand.Reason = Reason; 2546 return true; 2547 } 2548 return false; 2549 } 2550 2551 static bool tryGreater(int TryVal, int CandVal, 2552 GenericSchedulerBase::SchedCandidate &TryCand, 2553 GenericSchedulerBase::SchedCandidate &Cand, 2554 GenericSchedulerBase::CandReason Reason) { 2555 if (TryVal > CandVal) { 2556 TryCand.Reason = Reason; 2557 return true; 2558 } 2559 if (TryVal < CandVal) { 2560 if (Cand.Reason > Reason) 2561 Cand.Reason = Reason; 2562 return true; 2563 } 2564 return false; 2565 } 2566 2567 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2568 GenericSchedulerBase::SchedCandidate &Cand, 2569 SchedBoundary &Zone) { 2570 if (Zone.isTop()) { 2571 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2572 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2573 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2574 return true; 2575 } 2576 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2577 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2578 return true; 2579 } else { 2580 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2581 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2582 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2583 return true; 2584 } 2585 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2586 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2587 return true; 2588 } 2589 return false; 2590 } 2591 2592 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2593 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2594 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2595 } 2596 2597 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2598 tracePick(Cand.Reason, Cand.AtTop); 2599 } 2600 2601 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2602 assert(dag->hasVRegLiveness() && 2603 "(PreRA)GenericScheduler needs vreg liveness"); 2604 DAG = static_cast<ScheduleDAGMILive*>(dag); 2605 SchedModel = DAG->getSchedModel(); 2606 TRI = DAG->TRI; 2607 2608 Rem.init(DAG, SchedModel); 2609 Top.init(DAG, SchedModel, &Rem); 2610 Bot.init(DAG, SchedModel, &Rem); 2611 2612 // Initialize resource counts. 2613 2614 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2615 // are disabled, then these HazardRecs will be disabled. 2616 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2617 if (!Top.HazardRec) { 2618 Top.HazardRec = 2619 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2620 Itin, DAG); 2621 } 2622 if (!Bot.HazardRec) { 2623 Bot.HazardRec = 2624 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2625 Itin, DAG); 2626 } 2627 TopCand.SU = nullptr; 2628 BotCand.SU = nullptr; 2629 } 2630 2631 /// Initialize the per-region scheduling policy. 2632 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2633 MachineBasicBlock::iterator End, 2634 unsigned NumRegionInstrs) { 2635 const MachineFunction &MF = *Begin->getParent()->getParent(); 2636 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2637 2638 // Avoid setting up the register pressure tracker for small regions to save 2639 // compile time. As a rough heuristic, only track pressure when the number of 2640 // schedulable instructions exceeds half the integer register file. 2641 RegionPolicy.ShouldTrackPressure = true; 2642 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2643 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2644 if (TLI->isTypeLegal(LegalIntVT)) { 2645 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2646 TLI->getRegClassFor(LegalIntVT)); 2647 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2648 } 2649 } 2650 2651 // For generic targets, we default to bottom-up, because it's simpler and more 2652 // compile-time optimizations have been implemented in that direction. 2653 RegionPolicy.OnlyBottomUp = true; 2654 2655 // Allow the subtarget to override default policy. 2656 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2657 2658 // After subtarget overrides, apply command line options. 2659 if (!EnableRegPressure) 2660 RegionPolicy.ShouldTrackPressure = false; 2661 2662 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2663 // e.g. -misched-bottomup=false allows scheduling in both directions. 2664 assert((!ForceTopDown || !ForceBottomUp) && 2665 "-misched-topdown incompatible with -misched-bottomup"); 2666 if (ForceBottomUp.getNumOccurrences() > 0) { 2667 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2668 if (RegionPolicy.OnlyBottomUp) 2669 RegionPolicy.OnlyTopDown = false; 2670 } 2671 if (ForceTopDown.getNumOccurrences() > 0) { 2672 RegionPolicy.OnlyTopDown = ForceTopDown; 2673 if (RegionPolicy.OnlyTopDown) 2674 RegionPolicy.OnlyBottomUp = false; 2675 } 2676 } 2677 2678 void GenericScheduler::dumpPolicy() { 2679 dbgs() << "GenericScheduler RegionPolicy: " 2680 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2681 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2682 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2683 << "\n"; 2684 } 2685 2686 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2687 /// critical path by more cycles than it takes to drain the instruction buffer. 2688 /// We estimate an upper bounds on in-flight instructions as: 2689 /// 2690 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2691 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2692 /// InFlightResources = InFlightIterations * LoopResources 2693 /// 2694 /// TODO: Check execution resources in addition to IssueCount. 2695 void GenericScheduler::checkAcyclicLatency() { 2696 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2697 return; 2698 2699 // Scaled number of cycles per loop iteration. 2700 unsigned IterCount = 2701 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2702 Rem.RemIssueCount); 2703 // Scaled acyclic critical path. 2704 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2705 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2706 unsigned InFlightCount = 2707 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2708 unsigned BufferLimit = 2709 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2710 2711 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2712 2713 DEBUG(dbgs() << "IssueCycles=" 2714 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2715 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2716 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2717 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2718 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2719 if (Rem.IsAcyclicLatencyLimited) 2720 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2721 } 2722 2723 void GenericScheduler::registerRoots() { 2724 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2725 2726 // Some roots may not feed into ExitSU. Check all of them in case. 2727 for (std::vector<SUnit*>::const_iterator 2728 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2729 if ((*I)->getDepth() > Rem.CriticalPath) 2730 Rem.CriticalPath = (*I)->getDepth(); 2731 } 2732 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2733 if (DumpCriticalPathLength) { 2734 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2735 } 2736 2737 if (EnableCyclicPath) { 2738 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2739 checkAcyclicLatency(); 2740 } 2741 } 2742 2743 static bool tryPressure(const PressureChange &TryP, 2744 const PressureChange &CandP, 2745 GenericSchedulerBase::SchedCandidate &TryCand, 2746 GenericSchedulerBase::SchedCandidate &Cand, 2747 GenericSchedulerBase::CandReason Reason, 2748 const TargetRegisterInfo *TRI, 2749 const MachineFunction &MF) { 2750 // If one candidate decreases and the other increases, go with it. 2751 // Invalid candidates have UnitInc==0. 2752 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2753 Reason)) { 2754 return true; 2755 } 2756 // Do not compare the magnitude of pressure changes between top and bottom 2757 // boundary. 2758 if (Cand.AtTop != TryCand.AtTop) 2759 return false; 2760 2761 // If both candidates affect the same set in the same boundary, go with the 2762 // smallest increase. 2763 unsigned TryPSet = TryP.getPSetOrMax(); 2764 unsigned CandPSet = CandP.getPSetOrMax(); 2765 if (TryPSet == CandPSet) { 2766 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2767 Reason); 2768 } 2769 2770 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2771 std::numeric_limits<int>::max(); 2772 2773 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2774 std::numeric_limits<int>::max(); 2775 2776 // If the candidates are decreasing pressure, reverse priority. 2777 if (TryP.getUnitInc() < 0) 2778 std::swap(TryRank, CandRank); 2779 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2780 } 2781 2782 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2783 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2784 } 2785 2786 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2787 /// their physreg def/use. 2788 /// 2789 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2790 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2791 /// with the operation that produces or consumes the physreg. We'll do this when 2792 /// regalloc has support for parallel copies. 2793 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2794 const MachineInstr *MI = SU->getInstr(); 2795 if (!MI->isCopy()) 2796 return 0; 2797 2798 unsigned ScheduledOper = isTop ? 1 : 0; 2799 unsigned UnscheduledOper = isTop ? 0 : 1; 2800 // If we have already scheduled the physreg produce/consumer, immediately 2801 // schedule the copy. 2802 if (TargetRegisterInfo::isPhysicalRegister( 2803 MI->getOperand(ScheduledOper).getReg())) 2804 return 1; 2805 // If the physreg is at the boundary, defer it. Otherwise schedule it 2806 // immediately to free the dependent. We can hoist the copy later. 2807 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2808 if (TargetRegisterInfo::isPhysicalRegister( 2809 MI->getOperand(UnscheduledOper).getReg())) 2810 return AtBoundary ? -1 : 1; 2811 return 0; 2812 } 2813 2814 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2815 bool AtTop, 2816 const RegPressureTracker &RPTracker, 2817 RegPressureTracker &TempTracker) { 2818 Cand.SU = SU; 2819 Cand.AtTop = AtTop; 2820 if (DAG->isTrackingPressure()) { 2821 if (AtTop) { 2822 TempTracker.getMaxDownwardPressureDelta( 2823 Cand.SU->getInstr(), 2824 Cand.RPDelta, 2825 DAG->getRegionCriticalPSets(), 2826 DAG->getRegPressure().MaxSetPressure); 2827 } else { 2828 if (VerifyScheduling) { 2829 TempTracker.getMaxUpwardPressureDelta( 2830 Cand.SU->getInstr(), 2831 &DAG->getPressureDiff(Cand.SU), 2832 Cand.RPDelta, 2833 DAG->getRegionCriticalPSets(), 2834 DAG->getRegPressure().MaxSetPressure); 2835 } else { 2836 RPTracker.getUpwardPressureDelta( 2837 Cand.SU->getInstr(), 2838 DAG->getPressureDiff(Cand.SU), 2839 Cand.RPDelta, 2840 DAG->getRegionCriticalPSets(), 2841 DAG->getRegPressure().MaxSetPressure); 2842 } 2843 } 2844 } 2845 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2846 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2847 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2848 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2849 } 2850 2851 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2852 /// hierarchical. This may be more efficient than a graduated cost model because 2853 /// we don't need to evaluate all aspects of the model for each node in the 2854 /// queue. But it's really done to make the heuristics easier to debug and 2855 /// statistically analyze. 2856 /// 2857 /// \param Cand provides the policy and current best candidate. 2858 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2859 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2860 // if Cand is from a different zone than TryCand. 2861 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2862 SchedCandidate &TryCand, 2863 SchedBoundary *Zone) { 2864 // Initialize the candidate if needed. 2865 if (!Cand.isValid()) { 2866 TryCand.Reason = NodeOrder; 2867 return; 2868 } 2869 2870 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2871 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2872 TryCand, Cand, PhysRegCopy)) 2873 return; 2874 2875 // Avoid exceeding the target's limit. 2876 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2877 Cand.RPDelta.Excess, 2878 TryCand, Cand, RegExcess, TRI, 2879 DAG->MF)) 2880 return; 2881 2882 // Avoid increasing the max critical pressure in the scheduled region. 2883 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2884 Cand.RPDelta.CriticalMax, 2885 TryCand, Cand, RegCritical, TRI, 2886 DAG->MF)) 2887 return; 2888 2889 // We only compare a subset of features when comparing nodes between 2890 // Top and Bottom boundary. Some properties are simply incomparable, in many 2891 // other instances we should only override the other boundary if something 2892 // is a clear good pick on one boundary. Skip heuristics that are more 2893 // "tie-breaking" in nature. 2894 bool SameBoundary = Zone != nullptr; 2895 if (SameBoundary) { 2896 // For loops that are acyclic path limited, aggressively schedule for 2897 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2898 // heuristics to take precedence. 2899 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2900 tryLatency(TryCand, Cand, *Zone)) 2901 return; 2902 2903 // Prioritize instructions that read unbuffered resources by stall cycles. 2904 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2905 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2906 return; 2907 } 2908 2909 // Keep clustered nodes together to encourage downstream peephole 2910 // optimizations which may reduce resource requirements. 2911 // 2912 // This is a best effort to set things up for a post-RA pass. Optimizations 2913 // like generating loads of multiple registers should ideally be done within 2914 // the scheduler pass by combining the loads during DAG postprocessing. 2915 const SUnit *CandNextClusterSU = 2916 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2917 const SUnit *TryCandNextClusterSU = 2918 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2919 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2920 Cand.SU == CandNextClusterSU, 2921 TryCand, Cand, Cluster)) 2922 return; 2923 2924 if (SameBoundary) { 2925 // Weak edges are for clustering and other constraints. 2926 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2927 getWeakLeft(Cand.SU, Cand.AtTop), 2928 TryCand, Cand, Weak)) 2929 return; 2930 } 2931 2932 // Avoid increasing the max pressure of the entire region. 2933 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2934 Cand.RPDelta.CurrentMax, 2935 TryCand, Cand, RegMax, TRI, 2936 DAG->MF)) 2937 return; 2938 2939 if (SameBoundary) { 2940 // Avoid critical resource consumption and balance the schedule. 2941 TryCand.initResourceDelta(DAG, SchedModel); 2942 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2943 TryCand, Cand, ResourceReduce)) 2944 return; 2945 if (tryGreater(TryCand.ResDelta.DemandedResources, 2946 Cand.ResDelta.DemandedResources, 2947 TryCand, Cand, ResourceDemand)) 2948 return; 2949 2950 // Avoid serializing long latency dependence chains. 2951 // For acyclic path limited loops, latency was already checked above. 2952 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2953 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2954 return; 2955 2956 // Fall through to original instruction order. 2957 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2958 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2959 TryCand.Reason = NodeOrder; 2960 } 2961 } 2962 } 2963 2964 /// Pick the best candidate from the queue. 2965 /// 2966 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2967 /// DAG building. To adjust for the current scheduling location we need to 2968 /// maintain the number of vreg uses remaining to be top-scheduled. 2969 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2970 const CandPolicy &ZonePolicy, 2971 const RegPressureTracker &RPTracker, 2972 SchedCandidate &Cand) { 2973 // getMaxPressureDelta temporarily modifies the tracker. 2974 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2975 2976 ReadyQueue &Q = Zone.Available; 2977 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2978 2979 SchedCandidate TryCand(ZonePolicy); 2980 initCandidate(TryCand, *I, Zone.isTop(), RPTracker, TempTracker); 2981 // Pass SchedBoundary only when comparing nodes from the same boundary. 2982 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 2983 tryCandidate(Cand, TryCand, ZoneArg); 2984 if (TryCand.Reason != NoCand) { 2985 // Initialize resource delta if needed in case future heuristics query it. 2986 if (TryCand.ResDelta == SchedResourceDelta()) 2987 TryCand.initResourceDelta(DAG, SchedModel); 2988 Cand.setBest(TryCand); 2989 DEBUG(traceCandidate(Cand)); 2990 } 2991 } 2992 } 2993 2994 /// Pick the best candidate node from either the top or bottom queue. 2995 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2996 // Schedule as far as possible in the direction of no choice. This is most 2997 // efficient, but also provides the best heuristics for CriticalPSets. 2998 if (SUnit *SU = Bot.pickOnlyChoice()) { 2999 IsTopNode = false; 3000 tracePick(Only1, false); 3001 return SU; 3002 } 3003 if (SUnit *SU = Top.pickOnlyChoice()) { 3004 IsTopNode = true; 3005 tracePick(Only1, true); 3006 return SU; 3007 } 3008 // Set the bottom-up policy based on the state of the current bottom zone and 3009 // the instructions outside the zone, including the top zone. 3010 CandPolicy BotPolicy; 3011 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3012 // Set the top-down policy based on the state of the current top zone and 3013 // the instructions outside the zone, including the bottom zone. 3014 CandPolicy TopPolicy; 3015 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3016 3017 // See if BotCand is still valid (because we previously scheduled from Top). 3018 DEBUG(dbgs() << "Picking from Bot:\n"); 3019 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3020 BotCand.Policy != BotPolicy) { 3021 BotCand.reset(CandPolicy()); 3022 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3023 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3024 } else { 3025 DEBUG(traceCandidate(BotCand)); 3026 #ifndef NDEBUG 3027 if (VerifyScheduling) { 3028 SchedCandidate TCand; 3029 TCand.reset(CandPolicy()); 3030 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3031 assert(TCand.SU == BotCand.SU && 3032 "Last pick result should correspond to re-picking right now"); 3033 } 3034 #endif 3035 } 3036 3037 // Check if the top Q has a better candidate. 3038 DEBUG(dbgs() << "Picking from Top:\n"); 3039 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3040 TopCand.Policy != TopPolicy) { 3041 TopCand.reset(CandPolicy()); 3042 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3043 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3044 } else { 3045 DEBUG(traceCandidate(TopCand)); 3046 #ifndef NDEBUG 3047 if (VerifyScheduling) { 3048 SchedCandidate TCand; 3049 TCand.reset(CandPolicy()); 3050 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3051 assert(TCand.SU == TopCand.SU && 3052 "Last pick result should correspond to re-picking right now"); 3053 } 3054 #endif 3055 } 3056 3057 // Pick best from BotCand and TopCand. 3058 assert(BotCand.isValid()); 3059 assert(TopCand.isValid()); 3060 SchedCandidate Cand = BotCand; 3061 TopCand.Reason = NoCand; 3062 tryCandidate(Cand, TopCand, nullptr); 3063 if (TopCand.Reason != NoCand) { 3064 Cand.setBest(TopCand); 3065 DEBUG(traceCandidate(Cand)); 3066 } 3067 3068 IsTopNode = Cand.AtTop; 3069 tracePick(Cand); 3070 return Cand.SU; 3071 } 3072 3073 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3074 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3075 if (DAG->top() == DAG->bottom()) { 3076 assert(Top.Available.empty() && Top.Pending.empty() && 3077 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3078 return nullptr; 3079 } 3080 SUnit *SU; 3081 do { 3082 if (RegionPolicy.OnlyTopDown) { 3083 SU = Top.pickOnlyChoice(); 3084 if (!SU) { 3085 CandPolicy NoPolicy; 3086 TopCand.reset(NoPolicy); 3087 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3088 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3089 tracePick(TopCand); 3090 SU = TopCand.SU; 3091 } 3092 IsTopNode = true; 3093 } else if (RegionPolicy.OnlyBottomUp) { 3094 SU = Bot.pickOnlyChoice(); 3095 if (!SU) { 3096 CandPolicy NoPolicy; 3097 BotCand.reset(NoPolicy); 3098 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3099 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3100 tracePick(BotCand); 3101 SU = BotCand.SU; 3102 } 3103 IsTopNode = false; 3104 } else { 3105 SU = pickNodeBidirectional(IsTopNode); 3106 } 3107 } while (SU->isScheduled); 3108 3109 if (SU->isTopReady()) 3110 Top.removeReady(SU); 3111 if (SU->isBottomReady()) 3112 Bot.removeReady(SU); 3113 3114 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3115 return SU; 3116 } 3117 3118 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3119 3120 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3121 if (!isTop) 3122 ++InsertPos; 3123 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3124 3125 // Find already scheduled copies with a single physreg dependence and move 3126 // them just above the scheduled instruction. 3127 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 3128 I != E; ++I) { 3129 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 3130 continue; 3131 SUnit *DepSU = I->getSUnit(); 3132 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3133 continue; 3134 MachineInstr *Copy = DepSU->getInstr(); 3135 if (!Copy->isCopy()) 3136 continue; 3137 DEBUG(dbgs() << " Rescheduling physreg copy "; 3138 I->getSUnit()->dump(DAG)); 3139 DAG->moveInstruction(Copy, InsertPos); 3140 } 3141 } 3142 3143 /// Update the scheduler's state after scheduling a node. This is the same node 3144 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3145 /// update it's state based on the current cycle before MachineSchedStrategy 3146 /// does. 3147 /// 3148 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3149 /// them here. See comments in biasPhysRegCopy. 3150 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3151 if (IsTopNode) { 3152 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3153 Top.bumpNode(SU); 3154 if (SU->hasPhysRegUses) 3155 reschedulePhysRegCopies(SU, true); 3156 } else { 3157 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3158 Bot.bumpNode(SU); 3159 if (SU->hasPhysRegDefs) 3160 reschedulePhysRegCopies(SU, false); 3161 } 3162 } 3163 3164 /// Create the standard converging machine scheduler. This will be used as the 3165 /// default scheduler if the target does not set a default. 3166 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3167 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)); 3168 // Register DAG post-processors. 3169 // 3170 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3171 // data and pass it to later mutations. Have a single mutation that gathers 3172 // the interesting nodes in one pass. 3173 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3174 if (EnableMemOpCluster) { 3175 if (DAG->TII->enableClusterLoads()) 3176 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 3177 if (DAG->TII->enableClusterStores()) 3178 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 3179 } 3180 if (EnableMacroFusion) 3181 DAG->addMutation(createMacroFusionDAGMutation(DAG->TII)); 3182 return DAG; 3183 } 3184 3185 static MachineSchedRegistry 3186 GenericSchedRegistry("converge", "Standard converging scheduler.", 3187 createGenericSchedLive); 3188 3189 //===----------------------------------------------------------------------===// 3190 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3191 //===----------------------------------------------------------------------===// 3192 3193 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3194 DAG = Dag; 3195 SchedModel = DAG->getSchedModel(); 3196 TRI = DAG->TRI; 3197 3198 Rem.init(DAG, SchedModel); 3199 Top.init(DAG, SchedModel, &Rem); 3200 BotRoots.clear(); 3201 3202 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3203 // or are disabled, then these HazardRecs will be disabled. 3204 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3205 if (!Top.HazardRec) { 3206 Top.HazardRec = 3207 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3208 Itin, DAG); 3209 } 3210 } 3211 3212 3213 void PostGenericScheduler::registerRoots() { 3214 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3215 3216 // Some roots may not feed into ExitSU. Check all of them in case. 3217 for (SmallVectorImpl<SUnit*>::const_iterator 3218 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3219 if ((*I)->getDepth() > Rem.CriticalPath) 3220 Rem.CriticalPath = (*I)->getDepth(); 3221 } 3222 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3223 if (DumpCriticalPathLength) { 3224 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3225 } 3226 } 3227 3228 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3229 /// 3230 /// \param Cand provides the policy and current best candidate. 3231 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3232 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3233 SchedCandidate &TryCand) { 3234 3235 // Initialize the candidate if needed. 3236 if (!Cand.isValid()) { 3237 TryCand.Reason = NodeOrder; 3238 return; 3239 } 3240 3241 // Prioritize instructions that read unbuffered resources by stall cycles. 3242 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3243 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3244 return; 3245 3246 // Avoid critical resource consumption and balance the schedule. 3247 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3248 TryCand, Cand, ResourceReduce)) 3249 return; 3250 if (tryGreater(TryCand.ResDelta.DemandedResources, 3251 Cand.ResDelta.DemandedResources, 3252 TryCand, Cand, ResourceDemand)) 3253 return; 3254 3255 // Avoid serializing long latency dependence chains. 3256 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3257 return; 3258 } 3259 3260 // Fall through to original instruction order. 3261 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3262 TryCand.Reason = NodeOrder; 3263 } 3264 3265 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3266 ReadyQueue &Q = Top.Available; 3267 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3268 SchedCandidate TryCand(Cand.Policy); 3269 TryCand.SU = *I; 3270 TryCand.AtTop = true; 3271 TryCand.initResourceDelta(DAG, SchedModel); 3272 tryCandidate(Cand, TryCand); 3273 if (TryCand.Reason != NoCand) { 3274 Cand.setBest(TryCand); 3275 DEBUG(traceCandidate(Cand)); 3276 } 3277 } 3278 } 3279 3280 /// Pick the next node to schedule. 3281 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3282 if (DAG->top() == DAG->bottom()) { 3283 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3284 return nullptr; 3285 } 3286 SUnit *SU; 3287 do { 3288 SU = Top.pickOnlyChoice(); 3289 if (SU) { 3290 tracePick(Only1, true); 3291 } else { 3292 CandPolicy NoPolicy; 3293 SchedCandidate TopCand(NoPolicy); 3294 // Set the top-down policy based on the state of the current top zone and 3295 // the instructions outside the zone, including the bottom zone. 3296 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3297 pickNodeFromQueue(TopCand); 3298 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3299 tracePick(TopCand); 3300 SU = TopCand.SU; 3301 } 3302 } while (SU->isScheduled); 3303 3304 IsTopNode = true; 3305 Top.removeReady(SU); 3306 3307 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3308 return SU; 3309 } 3310 3311 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3312 /// scheduled/remaining flags in the DAG nodes. 3313 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3314 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3315 Top.bumpNode(SU); 3316 } 3317 3318 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3319 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3320 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), 3321 /*RemoveKillFlags=*/true); 3322 } 3323 3324 //===----------------------------------------------------------------------===// 3325 // ILP Scheduler. Currently for experimental analysis of heuristics. 3326 //===----------------------------------------------------------------------===// 3327 3328 namespace { 3329 /// \brief Order nodes by the ILP metric. 3330 struct ILPOrder { 3331 const SchedDFSResult *DFSResult; 3332 const BitVector *ScheduledTrees; 3333 bool MaximizeILP; 3334 3335 ILPOrder(bool MaxILP) 3336 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {} 3337 3338 /// \brief Apply a less-than relation on node priority. 3339 /// 3340 /// (Return true if A comes after B in the Q.) 3341 bool operator()(const SUnit *A, const SUnit *B) const { 3342 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3343 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3344 if (SchedTreeA != SchedTreeB) { 3345 // Unscheduled trees have lower priority. 3346 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3347 return ScheduledTrees->test(SchedTreeB); 3348 3349 // Trees with shallower connections have have lower priority. 3350 if (DFSResult->getSubtreeLevel(SchedTreeA) 3351 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3352 return DFSResult->getSubtreeLevel(SchedTreeA) 3353 < DFSResult->getSubtreeLevel(SchedTreeB); 3354 } 3355 } 3356 if (MaximizeILP) 3357 return DFSResult->getILP(A) < DFSResult->getILP(B); 3358 else 3359 return DFSResult->getILP(A) > DFSResult->getILP(B); 3360 } 3361 }; 3362 3363 /// \brief Schedule based on the ILP metric. 3364 class ILPScheduler : public MachineSchedStrategy { 3365 ScheduleDAGMILive *DAG; 3366 ILPOrder Cmp; 3367 3368 std::vector<SUnit*> ReadyQ; 3369 public: 3370 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {} 3371 3372 void initialize(ScheduleDAGMI *dag) override { 3373 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3374 DAG = static_cast<ScheduleDAGMILive*>(dag); 3375 DAG->computeDFSResult(); 3376 Cmp.DFSResult = DAG->getDFSResult(); 3377 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3378 ReadyQ.clear(); 3379 } 3380 3381 void registerRoots() override { 3382 // Restore the heap in ReadyQ with the updated DFS results. 3383 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3384 } 3385 3386 /// Implement MachineSchedStrategy interface. 3387 /// ----------------------------------------- 3388 3389 /// Callback to select the highest priority node from the ready Q. 3390 SUnit *pickNode(bool &IsTopNode) override { 3391 if (ReadyQ.empty()) return nullptr; 3392 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3393 SUnit *SU = ReadyQ.back(); 3394 ReadyQ.pop_back(); 3395 IsTopNode = false; 3396 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3397 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3398 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3399 << DAG->getDFSResult()->getSubtreeLevel( 3400 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3401 << "Scheduling " << *SU->getInstr()); 3402 return SU; 3403 } 3404 3405 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3406 void scheduleTree(unsigned SubtreeID) override { 3407 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3408 } 3409 3410 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3411 /// DFSResults, and resort the priority Q. 3412 void schedNode(SUnit *SU, bool IsTopNode) override { 3413 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3414 } 3415 3416 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3417 3418 void releaseBottomNode(SUnit *SU) override { 3419 ReadyQ.push_back(SU); 3420 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3421 } 3422 }; 3423 } // namespace 3424 3425 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3426 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true)); 3427 } 3428 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3429 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false)); 3430 } 3431 static MachineSchedRegistry ILPMaxRegistry( 3432 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3433 static MachineSchedRegistry ILPMinRegistry( 3434 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3435 3436 //===----------------------------------------------------------------------===// 3437 // Machine Instruction Shuffler for Correctness Testing 3438 //===----------------------------------------------------------------------===// 3439 3440 #ifndef NDEBUG 3441 namespace { 3442 /// Apply a less-than relation on the node order, which corresponds to the 3443 /// instruction order prior to scheduling. IsReverse implements greater-than. 3444 template<bool IsReverse> 3445 struct SUnitOrder { 3446 bool operator()(SUnit *A, SUnit *B) const { 3447 if (IsReverse) 3448 return A->NodeNum > B->NodeNum; 3449 else 3450 return A->NodeNum < B->NodeNum; 3451 } 3452 }; 3453 3454 /// Reorder instructions as much as possible. 3455 class InstructionShuffler : public MachineSchedStrategy { 3456 bool IsAlternating; 3457 bool IsTopDown; 3458 3459 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3460 // gives nodes with a higher number higher priority causing the latest 3461 // instructions to be scheduled first. 3462 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3463 TopQ; 3464 // When scheduling bottom-up, use greater-than as the queue priority. 3465 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3466 BottomQ; 3467 public: 3468 InstructionShuffler(bool alternate, bool topdown) 3469 : IsAlternating(alternate), IsTopDown(topdown) {} 3470 3471 void initialize(ScheduleDAGMI*) override { 3472 TopQ.clear(); 3473 BottomQ.clear(); 3474 } 3475 3476 /// Implement MachineSchedStrategy interface. 3477 /// ----------------------------------------- 3478 3479 SUnit *pickNode(bool &IsTopNode) override { 3480 SUnit *SU; 3481 if (IsTopDown) { 3482 do { 3483 if (TopQ.empty()) return nullptr; 3484 SU = TopQ.top(); 3485 TopQ.pop(); 3486 } while (SU->isScheduled); 3487 IsTopNode = true; 3488 } else { 3489 do { 3490 if (BottomQ.empty()) return nullptr; 3491 SU = BottomQ.top(); 3492 BottomQ.pop(); 3493 } while (SU->isScheduled); 3494 IsTopNode = false; 3495 } 3496 if (IsAlternating) 3497 IsTopDown = !IsTopDown; 3498 return SU; 3499 } 3500 3501 void schedNode(SUnit *SU, bool IsTopNode) override {} 3502 3503 void releaseTopNode(SUnit *SU) override { 3504 TopQ.push(SU); 3505 } 3506 void releaseBottomNode(SUnit *SU) override { 3507 BottomQ.push(SU); 3508 } 3509 }; 3510 } // namespace 3511 3512 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3513 bool Alternate = !ForceTopDown && !ForceBottomUp; 3514 bool TopDown = !ForceBottomUp; 3515 assert((TopDown || !ForceTopDown) && 3516 "-misched-topdown incompatible with -misched-bottomup"); 3517 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown)); 3518 } 3519 static MachineSchedRegistry ShufflerRegistry( 3520 "shuffle", "Shuffle machine instructions alternating directions", 3521 createInstructionShuffler); 3522 #endif // !NDEBUG 3523 3524 //===----------------------------------------------------------------------===// 3525 // GraphWriter support for ScheduleDAGMILive. 3526 //===----------------------------------------------------------------------===// 3527 3528 #ifndef NDEBUG 3529 namespace llvm { 3530 3531 template<> struct GraphTraits< 3532 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3533 3534 template<> 3535 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3536 3537 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3538 3539 static std::string getGraphName(const ScheduleDAG *G) { 3540 return G->MF.getName(); 3541 } 3542 3543 static bool renderGraphFromBottomUp() { 3544 return true; 3545 } 3546 3547 static bool isNodeHidden(const SUnit *Node) { 3548 if (ViewMISchedCutoff == 0) 3549 return false; 3550 return (Node->Preds.size() > ViewMISchedCutoff 3551 || Node->Succs.size() > ViewMISchedCutoff); 3552 } 3553 3554 /// If you want to override the dot attributes printed for a particular 3555 /// edge, override this method. 3556 static std::string getEdgeAttributes(const SUnit *Node, 3557 SUnitIterator EI, 3558 const ScheduleDAG *Graph) { 3559 if (EI.isArtificialDep()) 3560 return "color=cyan,style=dashed"; 3561 if (EI.isCtrlDep()) 3562 return "color=blue,style=dashed"; 3563 return ""; 3564 } 3565 3566 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3567 std::string Str; 3568 raw_string_ostream SS(Str); 3569 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3570 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3571 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3572 SS << "SU:" << SU->NodeNum; 3573 if (DFS) 3574 SS << " I:" << DFS->getNumInstrs(SU); 3575 return SS.str(); 3576 } 3577 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3578 return G->getGraphNodeLabel(SU); 3579 } 3580 3581 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3582 std::string Str("shape=Mrecord"); 3583 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3584 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3585 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3586 if (DFS) { 3587 Str += ",style=filled,fillcolor=\"#"; 3588 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3589 Str += '"'; 3590 } 3591 return Str; 3592 } 3593 }; 3594 } // namespace llvm 3595 #endif // NDEBUG 3596 3597 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3598 /// rendered using 'dot'. 3599 /// 3600 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3601 #ifndef NDEBUG 3602 ViewGraph(this, Name, false, Title); 3603 #else 3604 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3605 << "systems with Graphviz or gv!\n"; 3606 #endif // NDEBUG 3607 } 3608 3609 /// Out-of-line implementation with no arguments is handy for gdb. 3610 void ScheduleDAGMI::viewGraph() { 3611 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3612 } 3613