1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/MC/LaneBitmask.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/GraphWriter.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetLowering.h" 57 #include "llvm/Target/TargetRegisterInfo.h" 58 #include "llvm/Target/TargetSubtargetInfo.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 228 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequiredID(MachineDominatorsID); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<TargetPassConfig>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 MachinePassRegistry MachineSchedRegistry::Registry; 240 241 /// A dummy default scheduler factory indicates whether the scheduler 242 /// is overridden on the command line. 243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 244 return nullptr; 245 } 246 247 /// MachineSchedOpt allows command line selection of the scheduler. 248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 249 RegisterPassParser<MachineSchedRegistry>> 250 MachineSchedOpt("misched", 251 cl::init(&useDefaultMachineSched), cl::Hidden, 252 cl::desc("Machine instruction scheduler to use")); 253 254 static MachineSchedRegistry 255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 256 useDefaultMachineSched); 257 258 static cl::opt<bool> EnableMachineSched( 259 "enable-misched", 260 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 261 cl::Hidden); 262 263 static cl::opt<bool> EnablePostRAMachineSched( 264 "enable-post-misched", 265 cl::desc("Enable the post-ra machine instruction scheduling pass."), 266 cl::init(true), cl::Hidden); 267 268 /// Decrement this iterator until reaching the top or a non-debug instr. 269 static MachineBasicBlock::const_iterator 270 priorNonDebug(MachineBasicBlock::const_iterator I, 271 MachineBasicBlock::const_iterator Beg) { 272 assert(I != Beg && "reached the top of the region, cannot decrement"); 273 while (--I != Beg) { 274 if (!I->isDebugValue()) 275 break; 276 } 277 return I; 278 } 279 280 /// Non-const version. 281 static MachineBasicBlock::iterator 282 priorNonDebug(MachineBasicBlock::iterator I, 283 MachineBasicBlock::const_iterator Beg) { 284 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 285 .getNonConstIterator(); 286 } 287 288 /// If this iterator is a debug value, increment until reaching the End or a 289 /// non-debug instruction. 290 static MachineBasicBlock::const_iterator 291 nextIfDebug(MachineBasicBlock::const_iterator I, 292 MachineBasicBlock::const_iterator End) { 293 for(; I != End; ++I) { 294 if (!I->isDebugValue()) 295 break; 296 } 297 return I; 298 } 299 300 /// Non-const version. 301 static MachineBasicBlock::iterator 302 nextIfDebug(MachineBasicBlock::iterator I, 303 MachineBasicBlock::const_iterator End) { 304 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 305 .getNonConstIterator(); 306 } 307 308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 310 // Select the scheduler, or set the default. 311 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 312 if (Ctor != useDefaultMachineSched) 313 return Ctor(this); 314 315 // Get the default scheduler set by the target for this function. 316 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 317 if (Scheduler) 318 return Scheduler; 319 320 // Default to GenericScheduler. 321 return createGenericSchedLive(this); 322 } 323 324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 325 /// the caller. We don't have a command line option to override the postRA 326 /// scheduler. The Target must configure it. 327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 328 // Get the postRA scheduler set by the target for this function. 329 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 330 if (Scheduler) 331 return Scheduler; 332 333 // Default to GenericScheduler. 334 return createGenericSchedPostRA(this); 335 } 336 337 /// Top-level MachineScheduler pass driver. 338 /// 339 /// Visit blocks in function order. Divide each block into scheduling regions 340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 341 /// consistent with the DAG builder, which traverses the interior of the 342 /// scheduling regions bottom-up. 343 /// 344 /// This design avoids exposing scheduling boundaries to the DAG builder, 345 /// simplifying the DAG builder's support for "special" target instructions. 346 /// At the same time the design allows target schedulers to operate across 347 /// scheduling boundaries, for example to bundle the boudary instructions 348 /// without reordering them. This creates complexity, because the target 349 /// scheduler must update the RegionBegin and RegionEnd positions cached by 350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 351 /// design would be to split blocks at scheduling boundaries, but LLVM has a 352 /// general bias against block splitting purely for implementation simplicity. 353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 354 if (skipFunction(*mf.getFunction())) 355 return false; 356 357 if (EnableMachineSched.getNumOccurrences()) { 358 if (!EnableMachineSched) 359 return false; 360 } else if (!mf.getSubtarget().enableMachineScheduler()) 361 return false; 362 363 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 MDT = &getAnalysis<MachineDominatorTree>(); 369 PassConfig = &getAnalysis<TargetPassConfig>(); 370 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 371 372 LIS = &getAnalysis<LiveIntervals>(); 373 374 if (VerifyScheduling) { 375 DEBUG(LIS->dump()); 376 MF->verify(this, "Before machine scheduling."); 377 } 378 RegClassInfo->runOnMachineFunction(*MF); 379 380 // Instantiate the selected scheduler for this target, function, and 381 // optimization level. 382 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 383 scheduleRegions(*Scheduler, false); 384 385 DEBUG(LIS->dump()); 386 if (VerifyScheduling) 387 MF->verify(this, "After machine scheduling."); 388 return true; 389 } 390 391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 392 if (skipFunction(*mf.getFunction())) 393 return false; 394 395 if (EnablePostRAMachineSched.getNumOccurrences()) { 396 if (!EnablePostRAMachineSched) 397 return false; 398 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 399 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 400 return false; 401 } 402 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 403 404 // Initialize the context of the pass. 405 MF = &mf; 406 MLI = &getAnalysis<MachineLoopInfo>(); 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// A region of an MBB for scheduling. 440 namespace { 441 struct SchedRegion { 442 /// RegionBegin is the first instruction in the scheduling region, and 443 /// RegionEnd is either MBB->end() or the scheduling boundary after the 444 /// last instruction in the scheduling region. These iterators cannot refer 445 /// to instructions outside of the identified scheduling region because 446 /// those may be reordered before scheduling this region. 447 MachineBasicBlock::iterator RegionBegin; 448 MachineBasicBlock::iterator RegionEnd; 449 unsigned NumRegionInstrs; 450 451 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 452 unsigned N) : 453 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 454 }; 455 } // end anonymous namespace 456 457 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 458 459 static void 460 getSchedRegions(MachineBasicBlock *MBB, 461 MBBRegionsVector &Regions, 462 bool RegionsTopDown) { 463 MachineFunction *MF = MBB->getParent(); 464 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 465 466 MachineBasicBlock::iterator I = nullptr; 467 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 468 RegionEnd != MBB->begin(); RegionEnd = I) { 469 470 // Avoid decrementing RegionEnd for blocks with no terminator. 471 if (RegionEnd != MBB->end() || 472 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 473 --RegionEnd; 474 } 475 476 // The next region starts above the previous region. Look backward in the 477 // instruction stream until we find the nearest boundary. 478 unsigned NumRegionInstrs = 0; 479 I = RegionEnd; 480 for (;I != MBB->begin(); --I) { 481 MachineInstr &MI = *std::prev(I); 482 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 483 break; 484 if (!MI.isDebugValue()) 485 // MBB::size() uses instr_iterator to count. Here we need a bundle to 486 // count as a single instruction. 487 ++NumRegionInstrs; 488 } 489 490 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 491 } 492 493 if (RegionsTopDown) 494 std::reverse(Regions.begin(), Regions.end()); 495 } 496 497 /// Main driver for both MachineScheduler and PostMachineScheduler. 498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 499 bool FixKillFlags) { 500 // Visit all machine basic blocks. 501 // 502 // TODO: Visit blocks in global postorder or postorder within the bottom-up 503 // loop tree. Then we can optionally compute global RegPressure. 504 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 505 MBB != MBBEnd; ++MBB) { 506 507 Scheduler.startBlock(&*MBB); 508 509 #ifndef NDEBUG 510 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 511 continue; 512 if (SchedOnlyBlock.getNumOccurrences() 513 && (int)SchedOnlyBlock != MBB->getNumber()) 514 continue; 515 #endif 516 517 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 518 // points to the scheduling boundary at the bottom of the region. The DAG 519 // does not include RegionEnd, but the region does (i.e. the next 520 // RegionEnd is above the previous RegionBegin). If the current block has 521 // no terminator then RegionEnd == MBB->end() for the bottom region. 522 // 523 // All the regions of MBB are first found and stored in MBBRegions, which 524 // will be processed (MBB) top-down if initialized with true. 525 // 526 // The Scheduler may insert instructions during either schedule() or 527 // exitRegion(), even for empty regions. So the local iterators 'I' and 528 // 'RegionEnd' are invalid across these calls. Instructions must not be 529 // added to other regions than the current one without updating MBBRegions. 530 531 MBBRegionsVector MBBRegions; 532 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 533 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 534 R != MBBRegions.end(); ++R) { 535 MachineBasicBlock::iterator I = R->RegionBegin; 536 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 537 unsigned NumRegionInstrs = R->NumRegionInstrs; 538 539 // Notify the scheduler of the region, even if we may skip scheduling 540 // it. Perhaps it still needs to be bundled. 541 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (I == RegionEnd || I == std::prev(RegionEnd)) { 545 // Close the current region. Bundle the terminator if needed. 546 // This invalidates 'RegionEnd' and 'I'. 547 Scheduler.exitRegion(); 548 continue; 549 } 550 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 551 DEBUG(dbgs() << MF->getName() 552 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 553 << "\n From: " << *I << " To: "; 554 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 555 else dbgs() << "End"; 556 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 557 if (DumpCriticalPathLength) { 558 errs() << MF->getName(); 559 errs() << ":BB# " << MBB->getNumber(); 560 errs() << " " << MBB->getName() << " \n"; 561 } 562 563 // Schedule a region: possibly reorder instructions. 564 // This invalidates the original region iterators. 565 Scheduler.schedule(); 566 567 // Close the current region. 568 Scheduler.exitRegion(); 569 } 570 Scheduler.finishBlock(); 571 // FIXME: Ideally, no further passes should rely on kill flags. However, 572 // thumb2 size reduction is currently an exception, so the PostMIScheduler 573 // needs to do this. 574 if (FixKillFlags) 575 Scheduler.fixupKills(*MBB); 576 } 577 Scheduler.finalizeSchedule(); 578 } 579 580 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 581 // unimplemented 582 } 583 584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 585 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 586 dbgs() << "Queue " << Name << ": "; 587 for (const SUnit *SU : Queue) 588 dbgs() << SU->NodeNum << " "; 589 dbgs() << "\n"; 590 } 591 #endif 592 593 //===----------------------------------------------------------------------===// 594 // ScheduleDAGMI - Basic machine instruction scheduling. This is 595 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 596 // virtual registers. 597 // ===----------------------------------------------------------------------===/ 598 599 // Provide a vtable anchor. 600 ScheduleDAGMI::~ScheduleDAGMI() = default; 601 602 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 603 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 604 } 605 606 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 607 if (SuccSU != &ExitSU) { 608 // Do not use WillCreateCycle, it assumes SD scheduling. 609 // If Pred is reachable from Succ, then the edge creates a cycle. 610 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 611 return false; 612 Topo.AddPred(SuccSU, PredDep.getSUnit()); 613 } 614 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 615 // Return true regardless of whether a new edge needed to be inserted. 616 return true; 617 } 618 619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 620 /// NumPredsLeft reaches zero, release the successor node. 621 /// 622 /// FIXME: Adjust SuccSU height based on MinLatency. 623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 624 SUnit *SuccSU = SuccEdge->getSUnit(); 625 626 if (SuccEdge->isWeak()) { 627 --SuccSU->WeakPredsLeft; 628 if (SuccEdge->isCluster()) 629 NextClusterSucc = SuccSU; 630 return; 631 } 632 #ifndef NDEBUG 633 if (SuccSU->NumPredsLeft == 0) { 634 dbgs() << "*** Scheduling failed! ***\n"; 635 SuccSU->dump(this); 636 dbgs() << " has been released too many times!\n"; 637 llvm_unreachable(nullptr); 638 } 639 #endif 640 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 641 // CurrCycle may have advanced since then. 642 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 643 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 644 645 --SuccSU->NumPredsLeft; 646 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 647 SchedImpl->releaseTopNode(SuccSU); 648 } 649 650 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 652 for (SDep &Succ : SU->Succs) 653 releaseSucc(SU, &Succ); 654 } 655 656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 657 /// NumSuccsLeft reaches zero, release the predecessor node. 658 /// 659 /// FIXME: Adjust PredSU height based on MinLatency. 660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 661 SUnit *PredSU = PredEdge->getSUnit(); 662 663 if (PredEdge->isWeak()) { 664 --PredSU->WeakSuccsLeft; 665 if (PredEdge->isCluster()) 666 NextClusterPred = PredSU; 667 return; 668 } 669 #ifndef NDEBUG 670 if (PredSU->NumSuccsLeft == 0) { 671 dbgs() << "*** Scheduling failed! ***\n"; 672 PredSU->dump(this); 673 dbgs() << " has been released too many times!\n"; 674 llvm_unreachable(nullptr); 675 } 676 #endif 677 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 678 // CurrCycle may have advanced since then. 679 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 680 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 681 682 --PredSU->NumSuccsLeft; 683 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 684 SchedImpl->releaseBottomNode(PredSU); 685 } 686 687 /// releasePredecessors - Call releasePred on each of SU's predecessors. 688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 689 for (SDep &Pred : SU->Preds) 690 releasePred(SU, &Pred); 691 } 692 693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 694 ScheduleDAGInstrs::startBlock(bb); 695 SchedImpl->enterMBB(bb); 696 } 697 698 void ScheduleDAGMI::finishBlock() { 699 SchedImpl->leaveMBB(); 700 ScheduleDAGInstrs::finishBlock(); 701 } 702 703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 704 /// crossing a scheduling boundary. [begin, end) includes all instructions in 705 /// the region, including the boundary itself and single-instruction regions 706 /// that don't get scheduled. 707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 708 MachineBasicBlock::iterator begin, 709 MachineBasicBlock::iterator end, 710 unsigned regioninstrs) 711 { 712 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 713 714 SchedImpl->initPolicy(begin, end, regioninstrs); 715 } 716 717 /// This is normally called from the main scheduler loop but may also be invoked 718 /// by the scheduling strategy to perform additional code motion. 719 void ScheduleDAGMI::moveInstruction( 720 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 721 // Advance RegionBegin if the first instruction moves down. 722 if (&*RegionBegin == MI) 723 ++RegionBegin; 724 725 // Update the instruction stream. 726 BB->splice(InsertPos, BB, MI); 727 728 // Update LiveIntervals 729 if (LIS) 730 LIS->handleMove(*MI, /*UpdateFlags=*/true); 731 732 // Recede RegionBegin if an instruction moves above the first. 733 if (RegionBegin == InsertPos) 734 RegionBegin = MI; 735 } 736 737 bool ScheduleDAGMI::checkSchedLimit() { 738 #ifndef NDEBUG 739 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 740 CurrentTop = CurrentBottom; 741 return false; 742 } 743 ++NumInstrsScheduled; 744 #endif 745 return true; 746 } 747 748 /// Per-region scheduling driver, called back from 749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 750 /// does not consider liveness or register pressure. It is useful for PostRA 751 /// scheduling and potentially other custom schedulers. 752 void ScheduleDAGMI::schedule() { 753 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 754 DEBUG(SchedImpl->dumpPolicy()); 755 756 // Build the DAG. 757 buildSchedGraph(AA); 758 759 Topo.InitDAGTopologicalSorting(); 760 761 postprocessDAG(); 762 763 SmallVector<SUnit*, 8> TopRoots, BotRoots; 764 findRootsAndBiasEdges(TopRoots, BotRoots); 765 766 // Initialize the strategy before modifying the DAG. 767 // This may initialize a DFSResult to be used for queue priority. 768 SchedImpl->initialize(this); 769 770 DEBUG( 771 if (EntrySU.getInstr() != nullptr) 772 EntrySU.dumpAll(this); 773 for (const SUnit &SU : SUnits) 774 SU.dumpAll(this); 775 if (ExitSU.getInstr() != nullptr) 776 ExitSU.dumpAll(this); 777 ); 778 if (ViewMISchedDAGs) viewGraph(); 779 780 // Initialize ready queues now that the DAG and priority data are finalized. 781 initQueues(TopRoots, BotRoots); 782 783 bool IsTopNode = false; 784 while (true) { 785 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 786 SUnit *SU = SchedImpl->pickNode(IsTopNode); 787 if (!SU) break; 788 789 assert(!SU->isScheduled && "Node already scheduled"); 790 if (!checkSchedLimit()) 791 break; 792 793 MachineInstr *MI = SU->getInstr(); 794 if (IsTopNode) { 795 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 798 else 799 moveInstruction(MI, CurrentTop); 800 } else { 801 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 802 MachineBasicBlock::iterator priorII = 803 priorNonDebug(CurrentBottom, CurrentTop); 804 if (&*priorII == MI) 805 CurrentBottom = priorII; 806 else { 807 if (&*CurrentTop == MI) 808 CurrentTop = nextIfDebug(++CurrentTop, priorII); 809 moveInstruction(MI, CurrentBottom); 810 CurrentBottom = MI; 811 } 812 } 813 // Notify the scheduling strategy before updating the DAG. 814 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 815 // runs, it can then use the accurate ReadyCycle time to determine whether 816 // newly released nodes can move to the readyQ. 817 SchedImpl->schedNode(SU, IsTopNode); 818 819 updateQueues(SU, IsTopNode); 820 } 821 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 822 823 placeDebugValues(); 824 825 DEBUG({ 826 unsigned BBNum = begin()->getParent()->getNumber(); 827 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 828 dumpSchedule(); 829 dbgs() << '\n'; 830 }); 831 } 832 833 /// Apply each ScheduleDAGMutation step in order. 834 void ScheduleDAGMI::postprocessDAG() { 835 for (auto &m : Mutations) 836 m->apply(this); 837 } 838 839 void ScheduleDAGMI:: 840 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 841 SmallVectorImpl<SUnit*> &BotRoots) { 842 for (SUnit &SU : SUnits) { 843 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 844 845 // Order predecessors so DFSResult follows the critical path. 846 SU.biasCriticalPath(); 847 848 // A SUnit is ready to top schedule if it has no predecessors. 849 if (!SU.NumPredsLeft) 850 TopRoots.push_back(&SU); 851 // A SUnit is ready to bottom schedule if it has no successors. 852 if (!SU.NumSuccsLeft) 853 BotRoots.push_back(&SU); 854 } 855 ExitSU.biasCriticalPath(); 856 } 857 858 /// Identify DAG roots and setup scheduler queues. 859 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 860 ArrayRef<SUnit*> BotRoots) { 861 NextClusterSucc = nullptr; 862 NextClusterPred = nullptr; 863 864 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 865 // 866 // Nodes with unreleased weak edges can still be roots. 867 // Release top roots in forward order. 868 for (SUnit *SU : TopRoots) 869 SchedImpl->releaseTopNode(SU); 870 871 // Release bottom roots in reverse order so the higher priority nodes appear 872 // first. This is more natural and slightly more efficient. 873 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 874 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 875 SchedImpl->releaseBottomNode(*I); 876 } 877 878 releaseSuccessors(&EntrySU); 879 releasePredecessors(&ExitSU); 880 881 SchedImpl->registerRoots(); 882 883 // Advance past initial DebugValues. 884 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 885 CurrentBottom = RegionEnd; 886 } 887 888 /// Update scheduler queues after scheduling an instruction. 889 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 890 // Release dependent instructions for scheduling. 891 if (IsTopNode) 892 releaseSuccessors(SU); 893 else 894 releasePredecessors(SU); 895 896 SU->isScheduled = true; 897 } 898 899 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 900 void ScheduleDAGMI::placeDebugValues() { 901 // If first instruction was a DBG_VALUE then put it back. 902 if (FirstDbgValue) { 903 BB->splice(RegionBegin, BB, FirstDbgValue); 904 RegionBegin = FirstDbgValue; 905 } 906 907 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 908 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 909 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 910 MachineInstr *DbgValue = P.first; 911 MachineBasicBlock::iterator OrigPrevMI = P.second; 912 if (&*RegionBegin == DbgValue) 913 ++RegionBegin; 914 BB->splice(++OrigPrevMI, BB, DbgValue); 915 if (OrigPrevMI == std::prev(RegionEnd)) 916 RegionEnd = DbgValue; 917 } 918 DbgValues.clear(); 919 FirstDbgValue = nullptr; 920 } 921 922 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 923 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 924 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 925 if (SUnit *SU = getSUnit(&(*MI))) 926 SU->dump(this); 927 else 928 dbgs() << "Missing SUnit\n"; 929 } 930 } 931 #endif 932 933 //===----------------------------------------------------------------------===// 934 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 935 // preservation. 936 //===----------------------------------------------------------------------===// 937 938 ScheduleDAGMILive::~ScheduleDAGMILive() { 939 delete DFSResult; 940 } 941 942 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 943 const MachineInstr &MI = *SU.getInstr(); 944 for (const MachineOperand &MO : MI.operands()) { 945 if (!MO.isReg()) 946 continue; 947 if (!MO.readsReg()) 948 continue; 949 if (TrackLaneMasks && !MO.isUse()) 950 continue; 951 952 unsigned Reg = MO.getReg(); 953 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 954 continue; 955 956 // Ignore re-defs. 957 if (TrackLaneMasks) { 958 bool FoundDef = false; 959 for (const MachineOperand &MO2 : MI.operands()) { 960 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 961 FoundDef = true; 962 break; 963 } 964 } 965 if (FoundDef) 966 continue; 967 } 968 969 // Record this local VReg use. 970 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 971 for (; UI != VRegUses.end(); ++UI) { 972 if (UI->SU == &SU) 973 break; 974 } 975 if (UI == VRegUses.end()) 976 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 977 } 978 } 979 980 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 981 /// crossing a scheduling boundary. [begin, end) includes all instructions in 982 /// the region, including the boundary itself and single-instruction regions 983 /// that don't get scheduled. 984 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 985 MachineBasicBlock::iterator begin, 986 MachineBasicBlock::iterator end, 987 unsigned regioninstrs) 988 { 989 // ScheduleDAGMI initializes SchedImpl's per-region policy. 990 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 991 992 // For convenience remember the end of the liveness region. 993 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 994 995 SUPressureDiffs.clear(); 996 997 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 998 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 999 1000 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1001 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1002 } 1003 1004 // Setup the register pressure trackers for the top scheduled top and bottom 1005 // scheduled regions. 1006 void ScheduleDAGMILive::initRegPressure() { 1007 VRegUses.clear(); 1008 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1009 for (SUnit &SU : SUnits) 1010 collectVRegUses(SU); 1011 1012 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1013 ShouldTrackLaneMasks, false); 1014 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1015 ShouldTrackLaneMasks, false); 1016 1017 // Close the RPTracker to finalize live ins. 1018 RPTracker.closeRegion(); 1019 1020 DEBUG(RPTracker.dump()); 1021 1022 // Initialize the live ins and live outs. 1023 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1024 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1025 1026 // Close one end of the tracker so we can call 1027 // getMaxUpward/DownwardPressureDelta before advancing across any 1028 // instructions. This converts currently live regs into live ins/outs. 1029 TopRPTracker.closeTop(); 1030 BotRPTracker.closeBottom(); 1031 1032 BotRPTracker.initLiveThru(RPTracker); 1033 if (!BotRPTracker.getLiveThru().empty()) { 1034 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1035 DEBUG(dbgs() << "Live Thru: "; 1036 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1037 }; 1038 1039 // For each live out vreg reduce the pressure change associated with other 1040 // uses of the same vreg below the live-out reaching def. 1041 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1042 1043 // Account for liveness generated by the region boundary. 1044 if (LiveRegionEnd != RegionEnd) { 1045 SmallVector<RegisterMaskPair, 8> LiveUses; 1046 BotRPTracker.recede(&LiveUses); 1047 updatePressureDiffs(LiveUses); 1048 } 1049 1050 DEBUG( 1051 dbgs() << "Top Pressure:\n"; 1052 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1053 dbgs() << "Bottom Pressure:\n"; 1054 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1055 ); 1056 1057 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 1058 1059 // Cache the list of excess pressure sets in this region. This will also track 1060 // the max pressure in the scheduled code for these sets. 1061 RegionCriticalPSets.clear(); 1062 const std::vector<unsigned> &RegionPressure = 1063 RPTracker.getPressure().MaxSetPressure; 1064 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1065 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1066 if (RegionPressure[i] > Limit) { 1067 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1068 << " Limit " << Limit 1069 << " Actual " << RegionPressure[i] << "\n"); 1070 RegionCriticalPSets.push_back(PressureChange(i)); 1071 } 1072 } 1073 DEBUG(dbgs() << "Excess PSets: "; 1074 for (const PressureChange &RCPS : RegionCriticalPSets) 1075 dbgs() << TRI->getRegPressureSetName( 1076 RCPS.getPSet()) << " "; 1077 dbgs() << "\n"); 1078 } 1079 1080 void ScheduleDAGMILive:: 1081 updateScheduledPressure(const SUnit *SU, 1082 const std::vector<unsigned> &NewMaxPressure) { 1083 const PressureDiff &PDiff = getPressureDiff(SU); 1084 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1085 for (const PressureChange &PC : PDiff) { 1086 if (!PC.isValid()) 1087 break; 1088 unsigned ID = PC.getPSet(); 1089 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1090 ++CritIdx; 1091 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1092 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1093 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1094 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1095 } 1096 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1097 if (NewMaxPressure[ID] >= Limit - 2) { 1098 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1099 << NewMaxPressure[ID] 1100 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1101 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1102 } 1103 } 1104 } 1105 1106 /// Update the PressureDiff array for liveness after scheduling this 1107 /// instruction. 1108 void ScheduleDAGMILive::updatePressureDiffs( 1109 ArrayRef<RegisterMaskPair> LiveUses) { 1110 for (const RegisterMaskPair &P : LiveUses) { 1111 unsigned Reg = P.RegUnit; 1112 /// FIXME: Currently assuming single-use physregs. 1113 if (!TRI->isVirtualRegister(Reg)) 1114 continue; 1115 1116 if (ShouldTrackLaneMasks) { 1117 // If the register has just become live then other uses won't change 1118 // this fact anymore => decrement pressure. 1119 // If the register has just become dead then other uses make it come 1120 // back to life => increment pressure. 1121 bool Decrement = P.LaneMask.any(); 1122 1123 for (const VReg2SUnit &V2SU 1124 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1125 SUnit &SU = *V2SU.SU; 1126 if (SU.isScheduled || &SU == &ExitSU) 1127 continue; 1128 1129 PressureDiff &PDiff = getPressureDiff(&SU); 1130 PDiff.addPressureChange(Reg, Decrement, &MRI); 1131 DEBUG( 1132 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1133 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1134 << ' ' << *SU.getInstr(); 1135 dbgs() << " to "; 1136 PDiff.dump(*TRI); 1137 ); 1138 } 1139 } else { 1140 assert(P.LaneMask.any()); 1141 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1142 // This may be called before CurrentBottom has been initialized. However, 1143 // BotRPTracker must have a valid position. We want the value live into the 1144 // instruction or live out of the block, so ask for the previous 1145 // instruction's live-out. 1146 const LiveInterval &LI = LIS->getInterval(Reg); 1147 VNInfo *VNI; 1148 MachineBasicBlock::const_iterator I = 1149 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1150 if (I == BB->end()) 1151 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1152 else { 1153 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1154 VNI = LRQ.valueIn(); 1155 } 1156 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1157 assert(VNI && "No live value at use."); 1158 for (const VReg2SUnit &V2SU 1159 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1160 SUnit *SU = V2SU.SU; 1161 // If this use comes before the reaching def, it cannot be a last use, 1162 // so decrease its pressure change. 1163 if (!SU->isScheduled && SU != &ExitSU) { 1164 LiveQueryResult LRQ = 1165 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1166 if (LRQ.valueIn() == VNI) { 1167 PressureDiff &PDiff = getPressureDiff(SU); 1168 PDiff.addPressureChange(Reg, true, &MRI); 1169 DEBUG( 1170 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1171 << *SU->getInstr(); 1172 dbgs() << " to "; 1173 PDiff.dump(*TRI); 1174 ); 1175 } 1176 } 1177 } 1178 } 1179 } 1180 } 1181 1182 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1183 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1184 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1185 /// 1186 /// This is a skeletal driver, with all the functionality pushed into helpers, 1187 /// so that it can be easily extended by experimental schedulers. Generally, 1188 /// implementing MachineSchedStrategy should be sufficient to implement a new 1189 /// scheduling algorithm. However, if a scheduler further subclasses 1190 /// ScheduleDAGMILive then it will want to override this virtual method in order 1191 /// to update any specialized state. 1192 void ScheduleDAGMILive::schedule() { 1193 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1194 DEBUG(SchedImpl->dumpPolicy()); 1195 buildDAGWithRegPressure(); 1196 1197 Topo.InitDAGTopologicalSorting(); 1198 1199 postprocessDAG(); 1200 1201 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1202 findRootsAndBiasEdges(TopRoots, BotRoots); 1203 1204 // Initialize the strategy before modifying the DAG. 1205 // This may initialize a DFSResult to be used for queue priority. 1206 SchedImpl->initialize(this); 1207 1208 DEBUG( 1209 if (EntrySU.getInstr() != nullptr) 1210 EntrySU.dumpAll(this); 1211 for (const SUnit &SU : SUnits) { 1212 SU.dumpAll(this); 1213 if (ShouldTrackPressure) { 1214 dbgs() << " Pressure Diff : "; 1215 getPressureDiff(&SU).dump(*TRI); 1216 } 1217 dbgs() << " Single Issue : "; 1218 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1219 SchedModel.mustEndGroup(SU.getInstr())) 1220 dbgs() << "true;"; 1221 else 1222 dbgs() << "false;"; 1223 dbgs() << '\n'; 1224 } 1225 if (ExitSU.getInstr() != nullptr) 1226 ExitSU.dumpAll(this); 1227 ); 1228 if (ViewMISchedDAGs) viewGraph(); 1229 1230 // Initialize ready queues now that the DAG and priority data are finalized. 1231 initQueues(TopRoots, BotRoots); 1232 1233 bool IsTopNode = false; 1234 while (true) { 1235 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1236 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1237 if (!SU) break; 1238 1239 assert(!SU->isScheduled && "Node already scheduled"); 1240 if (!checkSchedLimit()) 1241 break; 1242 1243 scheduleMI(SU, IsTopNode); 1244 1245 if (DFSResult) { 1246 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1247 if (!ScheduledTrees.test(SubtreeID)) { 1248 ScheduledTrees.set(SubtreeID); 1249 DFSResult->scheduleTree(SubtreeID); 1250 SchedImpl->scheduleTree(SubtreeID); 1251 } 1252 } 1253 1254 // Notify the scheduling strategy after updating the DAG. 1255 SchedImpl->schedNode(SU, IsTopNode); 1256 1257 updateQueues(SU, IsTopNode); 1258 } 1259 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1260 1261 placeDebugValues(); 1262 1263 DEBUG({ 1264 unsigned BBNum = begin()->getParent()->getNumber(); 1265 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1266 dumpSchedule(); 1267 dbgs() << '\n'; 1268 }); 1269 } 1270 1271 /// Build the DAG and setup three register pressure trackers. 1272 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1273 if (!ShouldTrackPressure) { 1274 RPTracker.reset(); 1275 RegionCriticalPSets.clear(); 1276 buildSchedGraph(AA); 1277 return; 1278 } 1279 1280 // Initialize the register pressure tracker used by buildSchedGraph. 1281 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1282 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1283 1284 // Account for liveness generate by the region boundary. 1285 if (LiveRegionEnd != RegionEnd) 1286 RPTracker.recede(); 1287 1288 // Build the DAG, and compute current register pressure. 1289 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1290 1291 // Initialize top/bottom trackers after computing region pressure. 1292 initRegPressure(); 1293 } 1294 1295 void ScheduleDAGMILive::computeDFSResult() { 1296 if (!DFSResult) 1297 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1298 DFSResult->clear(); 1299 ScheduledTrees.clear(); 1300 DFSResult->resize(SUnits.size()); 1301 DFSResult->compute(SUnits); 1302 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1303 } 1304 1305 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1306 /// only provides the critical path for single block loops. To handle loops that 1307 /// span blocks, we could use the vreg path latencies provided by 1308 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1309 /// available for use in the scheduler. 1310 /// 1311 /// The cyclic path estimation identifies a def-use pair that crosses the back 1312 /// edge and considers the depth and height of the nodes. For example, consider 1313 /// the following instruction sequence where each instruction has unit latency 1314 /// and defines an epomymous virtual register: 1315 /// 1316 /// a->b(a,c)->c(b)->d(c)->exit 1317 /// 1318 /// The cyclic critical path is a two cycles: b->c->b 1319 /// The acyclic critical path is four cycles: a->b->c->d->exit 1320 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1321 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1322 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1323 /// LiveInDepth = depth(b) = len(a->b) = 1 1324 /// 1325 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1326 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1327 /// CyclicCriticalPath = min(2, 2) = 2 1328 /// 1329 /// This could be relevant to PostRA scheduling, but is currently implemented 1330 /// assuming LiveIntervals. 1331 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1332 // This only applies to single block loop. 1333 if (!BB->isSuccessor(BB)) 1334 return 0; 1335 1336 unsigned MaxCyclicLatency = 0; 1337 // Visit each live out vreg def to find def/use pairs that cross iterations. 1338 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1339 unsigned Reg = P.RegUnit; 1340 if (!TRI->isVirtualRegister(Reg)) 1341 continue; 1342 const LiveInterval &LI = LIS->getInterval(Reg); 1343 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1344 if (!DefVNI) 1345 continue; 1346 1347 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1348 const SUnit *DefSU = getSUnit(DefMI); 1349 if (!DefSU) 1350 continue; 1351 1352 unsigned LiveOutHeight = DefSU->getHeight(); 1353 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1354 // Visit all local users of the vreg def. 1355 for (const VReg2SUnit &V2SU 1356 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1357 SUnit *SU = V2SU.SU; 1358 if (SU == &ExitSU) 1359 continue; 1360 1361 // Only consider uses of the phi. 1362 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1363 if (!LRQ.valueIn()->isPHIDef()) 1364 continue; 1365 1366 // Assume that a path spanning two iterations is a cycle, which could 1367 // overestimate in strange cases. This allows cyclic latency to be 1368 // estimated as the minimum slack of the vreg's depth or height. 1369 unsigned CyclicLatency = 0; 1370 if (LiveOutDepth > SU->getDepth()) 1371 CyclicLatency = LiveOutDepth - SU->getDepth(); 1372 1373 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1374 if (LiveInHeight > LiveOutHeight) { 1375 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1376 CyclicLatency = LiveInHeight - LiveOutHeight; 1377 } else 1378 CyclicLatency = 0; 1379 1380 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1381 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1382 if (CyclicLatency > MaxCyclicLatency) 1383 MaxCyclicLatency = CyclicLatency; 1384 } 1385 } 1386 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1387 return MaxCyclicLatency; 1388 } 1389 1390 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1391 /// the Top RP tracker in case the region beginning has changed. 1392 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1393 ArrayRef<SUnit*> BotRoots) { 1394 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1395 if (ShouldTrackPressure) { 1396 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1397 TopRPTracker.setPos(CurrentTop); 1398 } 1399 } 1400 1401 /// Move an instruction and update register pressure. 1402 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1403 // Move the instruction to its new location in the instruction stream. 1404 MachineInstr *MI = SU->getInstr(); 1405 1406 if (IsTopNode) { 1407 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1408 if (&*CurrentTop == MI) 1409 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1410 else { 1411 moveInstruction(MI, CurrentTop); 1412 TopRPTracker.setPos(MI); 1413 } 1414 1415 if (ShouldTrackPressure) { 1416 // Update top scheduled pressure. 1417 RegisterOperands RegOpers; 1418 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1419 if (ShouldTrackLaneMasks) { 1420 // Adjust liveness and add missing dead+read-undef flags. 1421 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1422 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1423 } else { 1424 // Adjust for missing dead-def flags. 1425 RegOpers.detectDeadDefs(*MI, *LIS); 1426 } 1427 1428 TopRPTracker.advance(RegOpers); 1429 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1430 DEBUG( 1431 dbgs() << "Top Pressure:\n"; 1432 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1433 ); 1434 1435 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1436 } 1437 } else { 1438 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1439 MachineBasicBlock::iterator priorII = 1440 priorNonDebug(CurrentBottom, CurrentTop); 1441 if (&*priorII == MI) 1442 CurrentBottom = priorII; 1443 else { 1444 if (&*CurrentTop == MI) { 1445 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1446 TopRPTracker.setPos(CurrentTop); 1447 } 1448 moveInstruction(MI, CurrentBottom); 1449 CurrentBottom = MI; 1450 } 1451 if (ShouldTrackPressure) { 1452 RegisterOperands RegOpers; 1453 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1454 if (ShouldTrackLaneMasks) { 1455 // Adjust liveness and add missing dead+read-undef flags. 1456 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1457 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1458 } else { 1459 // Adjust for missing dead-def flags. 1460 RegOpers.detectDeadDefs(*MI, *LIS); 1461 } 1462 1463 BotRPTracker.recedeSkipDebugValues(); 1464 SmallVector<RegisterMaskPair, 8> LiveUses; 1465 BotRPTracker.recede(RegOpers, &LiveUses); 1466 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1467 DEBUG( 1468 dbgs() << "Bottom Pressure:\n"; 1469 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1470 ); 1471 1472 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1473 updatePressureDiffs(LiveUses); 1474 } 1475 } 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1480 //===----------------------------------------------------------------------===// 1481 1482 namespace { 1483 1484 /// \brief Post-process the DAG to create cluster edges between neighboring 1485 /// loads or between neighboring stores. 1486 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1487 struct MemOpInfo { 1488 SUnit *SU; 1489 unsigned BaseReg; 1490 int64_t Offset; 1491 1492 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1493 : SU(su), BaseReg(reg), Offset(ofs) {} 1494 1495 bool operator<(const MemOpInfo&RHS) const { 1496 return std::tie(BaseReg, Offset, SU->NodeNum) < 1497 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1498 } 1499 }; 1500 1501 const TargetInstrInfo *TII; 1502 const TargetRegisterInfo *TRI; 1503 bool IsLoad; 1504 1505 public: 1506 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1507 const TargetRegisterInfo *tri, bool IsLoad) 1508 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1509 1510 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1511 1512 protected: 1513 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1514 }; 1515 1516 class StoreClusterMutation : public BaseMemOpClusterMutation { 1517 public: 1518 StoreClusterMutation(const TargetInstrInfo *tii, 1519 const TargetRegisterInfo *tri) 1520 : BaseMemOpClusterMutation(tii, tri, false) {} 1521 }; 1522 1523 class LoadClusterMutation : public BaseMemOpClusterMutation { 1524 public: 1525 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1526 : BaseMemOpClusterMutation(tii, tri, true) {} 1527 }; 1528 1529 } // end anonymous namespace 1530 1531 namespace llvm { 1532 1533 std::unique_ptr<ScheduleDAGMutation> 1534 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1535 const TargetRegisterInfo *TRI) { 1536 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1537 : nullptr; 1538 } 1539 1540 std::unique_ptr<ScheduleDAGMutation> 1541 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1542 const TargetRegisterInfo *TRI) { 1543 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1544 : nullptr; 1545 } 1546 1547 } // end namespace llvm 1548 1549 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1550 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1551 SmallVector<MemOpInfo, 32> MemOpRecords; 1552 for (SUnit *SU : MemOps) { 1553 unsigned BaseReg; 1554 int64_t Offset; 1555 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1556 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1557 } 1558 if (MemOpRecords.size() < 2) 1559 return; 1560 1561 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1562 unsigned ClusterLength = 1; 1563 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1564 SUnit *SUa = MemOpRecords[Idx].SU; 1565 SUnit *SUb = MemOpRecords[Idx+1].SU; 1566 if (TII->shouldClusterMemOps(*SUa->getInstr(), MemOpRecords[Idx].BaseReg, 1567 *SUb->getInstr(), MemOpRecords[Idx+1].BaseReg, 1568 ClusterLength) && 1569 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1570 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1571 << SUb->NodeNum << ")\n"); 1572 // Copy successor edges from SUa to SUb. Interleaving computation 1573 // dependent on SUa can prevent load combining due to register reuse. 1574 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1575 // loads should have effectively the same inputs. 1576 for (const SDep &Succ : SUa->Succs) { 1577 if (Succ.getSUnit() == SUb) 1578 continue; 1579 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1580 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1581 } 1582 ++ClusterLength; 1583 } else 1584 ClusterLength = 1; 1585 } 1586 } 1587 1588 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1589 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1590 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1591 1592 // Map DAG NodeNum to store chain ID. 1593 DenseMap<unsigned, unsigned> StoreChainIDs; 1594 // Map each store chain to a set of dependent MemOps. 1595 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1596 for (SUnit &SU : DAG->SUnits) { 1597 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1598 (!IsLoad && !SU.getInstr()->mayStore())) 1599 continue; 1600 1601 unsigned ChainPredID = DAG->SUnits.size(); 1602 for (const SDep &Pred : SU.Preds) { 1603 if (Pred.isCtrl()) { 1604 ChainPredID = Pred.getSUnit()->NodeNum; 1605 break; 1606 } 1607 } 1608 // Check if this chain-like pred has been seen 1609 // before. ChainPredID==MaxNodeID at the top of the schedule. 1610 unsigned NumChains = StoreChainDependents.size(); 1611 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1612 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1613 if (Result.second) 1614 StoreChainDependents.resize(NumChains + 1); 1615 StoreChainDependents[Result.first->second].push_back(&SU); 1616 } 1617 1618 // Iterate over the store chains. 1619 for (auto &SCD : StoreChainDependents) 1620 clusterNeighboringMemOps(SCD, DAG); 1621 } 1622 1623 //===----------------------------------------------------------------------===// 1624 // CopyConstrain - DAG post-processing to encourage copy elimination. 1625 //===----------------------------------------------------------------------===// 1626 1627 namespace { 1628 1629 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1630 /// the one use that defines the copy's source vreg, most likely an induction 1631 /// variable increment. 1632 class CopyConstrain : public ScheduleDAGMutation { 1633 // Transient state. 1634 SlotIndex RegionBeginIdx; 1635 1636 // RegionEndIdx is the slot index of the last non-debug instruction in the 1637 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1638 SlotIndex RegionEndIdx; 1639 1640 public: 1641 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1642 1643 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1644 1645 protected: 1646 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1647 }; 1648 1649 } // end anonymous namespace 1650 1651 namespace llvm { 1652 1653 std::unique_ptr<ScheduleDAGMutation> 1654 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1655 const TargetRegisterInfo *TRI) { 1656 return llvm::make_unique<CopyConstrain>(TII, TRI); 1657 } 1658 1659 } // end namespace llvm 1660 1661 /// constrainLocalCopy handles two possibilities: 1662 /// 1) Local src: 1663 /// I0: = dst 1664 /// I1: src = ... 1665 /// I2: = dst 1666 /// I3: dst = src (copy) 1667 /// (create pred->succ edges I0->I1, I2->I1) 1668 /// 1669 /// 2) Local copy: 1670 /// I0: dst = src (copy) 1671 /// I1: = dst 1672 /// I2: src = ... 1673 /// I3: = dst 1674 /// (create pred->succ edges I1->I2, I3->I2) 1675 /// 1676 /// Although the MachineScheduler is currently constrained to single blocks, 1677 /// this algorithm should handle extended blocks. An EBB is a set of 1678 /// contiguously numbered blocks such that the previous block in the EBB is 1679 /// always the single predecessor. 1680 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1681 LiveIntervals *LIS = DAG->getLIS(); 1682 MachineInstr *Copy = CopySU->getInstr(); 1683 1684 // Check for pure vreg copies. 1685 const MachineOperand &SrcOp = Copy->getOperand(1); 1686 unsigned SrcReg = SrcOp.getReg(); 1687 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1688 return; 1689 1690 const MachineOperand &DstOp = Copy->getOperand(0); 1691 unsigned DstReg = DstOp.getReg(); 1692 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1693 return; 1694 1695 // Check if either the dest or source is local. If it's live across a back 1696 // edge, it's not local. Note that if both vregs are live across the back 1697 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1698 // If both the copy's source and dest are local live intervals, then we 1699 // should treat the dest as the global for the purpose of adding 1700 // constraints. This adds edges from source's other uses to the copy. 1701 unsigned LocalReg = SrcReg; 1702 unsigned GlobalReg = DstReg; 1703 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1704 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1705 LocalReg = DstReg; 1706 GlobalReg = SrcReg; 1707 LocalLI = &LIS->getInterval(LocalReg); 1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1709 return; 1710 } 1711 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1712 1713 // Find the global segment after the start of the local LI. 1714 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1715 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1716 // local live range. We could create edges from other global uses to the local 1717 // start, but the coalescer should have already eliminated these cases, so 1718 // don't bother dealing with it. 1719 if (GlobalSegment == GlobalLI->end()) 1720 return; 1721 1722 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1723 // returned the next global segment. But if GlobalSegment overlaps with 1724 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1725 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1726 if (GlobalSegment->contains(LocalLI->beginIndex())) 1727 ++GlobalSegment; 1728 1729 if (GlobalSegment == GlobalLI->end()) 1730 return; 1731 1732 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1733 if (GlobalSegment != GlobalLI->begin()) { 1734 // Two address defs have no hole. 1735 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1736 GlobalSegment->start)) { 1737 return; 1738 } 1739 // If the prior global segment may be defined by the same two-address 1740 // instruction that also defines LocalLI, then can't make a hole here. 1741 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1742 LocalLI->beginIndex())) { 1743 return; 1744 } 1745 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1746 // it would be a disconnected component in the live range. 1747 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1748 "Disconnected LRG within the scheduling region."); 1749 } 1750 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1751 if (!GlobalDef) 1752 return; 1753 1754 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1755 if (!GlobalSU) 1756 return; 1757 1758 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1759 // constraining the uses of the last local def to precede GlobalDef. 1760 SmallVector<SUnit*,8> LocalUses; 1761 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1762 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1763 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1764 for (const SDep &Succ : LastLocalSU->Succs) { 1765 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1766 continue; 1767 if (Succ.getSUnit() == GlobalSU) 1768 continue; 1769 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1770 return; 1771 LocalUses.push_back(Succ.getSUnit()); 1772 } 1773 // Open the top of the GlobalLI hole by constraining any earlier global uses 1774 // to precede the start of LocalLI. 1775 SmallVector<SUnit*,8> GlobalUses; 1776 MachineInstr *FirstLocalDef = 1777 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1778 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1779 for (const SDep &Pred : GlobalSU->Preds) { 1780 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1781 continue; 1782 if (Pred.getSUnit() == FirstLocalSU) 1783 continue; 1784 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1785 return; 1786 GlobalUses.push_back(Pred.getSUnit()); 1787 } 1788 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1789 // Add the weak edges. 1790 for (SmallVectorImpl<SUnit*>::const_iterator 1791 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1792 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1793 << GlobalSU->NodeNum << ")\n"); 1794 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1795 } 1796 for (SmallVectorImpl<SUnit*>::const_iterator 1797 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1798 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1799 << FirstLocalSU->NodeNum << ")\n"); 1800 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1801 } 1802 } 1803 1804 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1805 /// copy elimination. 1806 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1807 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1808 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1809 1810 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1811 if (FirstPos == DAG->end()) 1812 return; 1813 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1814 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1815 *priorNonDebug(DAG->end(), DAG->begin())); 1816 1817 for (SUnit &SU : DAG->SUnits) { 1818 if (!SU.getInstr()->isCopy()) 1819 continue; 1820 1821 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1822 } 1823 } 1824 1825 //===----------------------------------------------------------------------===// 1826 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1827 // and possibly other custom schedulers. 1828 //===----------------------------------------------------------------------===// 1829 1830 static const unsigned InvalidCycle = ~0U; 1831 1832 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1833 1834 void SchedBoundary::reset() { 1835 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1836 // Destroying and reconstructing it is very expensive though. So keep 1837 // invalid, placeholder HazardRecs. 1838 if (HazardRec && HazardRec->isEnabled()) { 1839 delete HazardRec; 1840 HazardRec = nullptr; 1841 } 1842 Available.clear(); 1843 Pending.clear(); 1844 CheckPending = false; 1845 CurrCycle = 0; 1846 CurrMOps = 0; 1847 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1848 ExpectedLatency = 0; 1849 DependentLatency = 0; 1850 RetiredMOps = 0; 1851 MaxExecutedResCount = 0; 1852 ZoneCritResIdx = 0; 1853 IsResourceLimited = false; 1854 ReservedCycles.clear(); 1855 #ifndef NDEBUG 1856 // Track the maximum number of stall cycles that could arise either from the 1857 // latency of a DAG edge or the number of cycles that a processor resource is 1858 // reserved (SchedBoundary::ReservedCycles). 1859 MaxObservedStall = 0; 1860 #endif 1861 // Reserve a zero-count for invalid CritResIdx. 1862 ExecutedResCounts.resize(1); 1863 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1864 } 1865 1866 void SchedRemainder:: 1867 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1868 reset(); 1869 if (!SchedModel->hasInstrSchedModel()) 1870 return; 1871 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1872 for (SUnit &SU : DAG->SUnits) { 1873 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1874 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1875 * SchedModel->getMicroOpFactor(); 1876 for (TargetSchedModel::ProcResIter 1877 PI = SchedModel->getWriteProcResBegin(SC), 1878 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1879 unsigned PIdx = PI->ProcResourceIdx; 1880 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1881 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1882 } 1883 } 1884 } 1885 1886 void SchedBoundary:: 1887 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1888 reset(); 1889 DAG = dag; 1890 SchedModel = smodel; 1891 Rem = rem; 1892 if (SchedModel->hasInstrSchedModel()) { 1893 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1894 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1895 } 1896 } 1897 1898 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1899 /// these "soft stalls" differently than the hard stall cycles based on CPU 1900 /// resources and computed by checkHazard(). A fully in-order model 1901 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1902 /// available for scheduling until they are ready. However, a weaker in-order 1903 /// model may use this for heuristics. For example, if a processor has in-order 1904 /// behavior when reading certain resources, this may come into play. 1905 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1906 if (!SU->isUnbuffered) 1907 return 0; 1908 1909 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1910 if (ReadyCycle > CurrCycle) 1911 return ReadyCycle - CurrCycle; 1912 return 0; 1913 } 1914 1915 /// Compute the next cycle at which the given processor resource can be 1916 /// scheduled. 1917 unsigned SchedBoundary:: 1918 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1919 unsigned NextUnreserved = ReservedCycles[PIdx]; 1920 // If this resource has never been used, always return cycle zero. 1921 if (NextUnreserved == InvalidCycle) 1922 return 0; 1923 // For bottom-up scheduling add the cycles needed for the current operation. 1924 if (!isTop()) 1925 NextUnreserved += Cycles; 1926 return NextUnreserved; 1927 } 1928 1929 /// Does this SU have a hazard within the current instruction group. 1930 /// 1931 /// The scheduler supports two modes of hazard recognition. The first is the 1932 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1933 /// supports highly complicated in-order reservation tables 1934 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1935 /// 1936 /// The second is a streamlined mechanism that checks for hazards based on 1937 /// simple counters that the scheduler itself maintains. It explicitly checks 1938 /// for instruction dispatch limitations, including the number of micro-ops that 1939 /// can dispatch per cycle. 1940 /// 1941 /// TODO: Also check whether the SU must start a new group. 1942 bool SchedBoundary::checkHazard(SUnit *SU) { 1943 if (HazardRec->isEnabled() 1944 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1945 return true; 1946 } 1947 1948 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1949 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1950 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1951 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1952 return true; 1953 } 1954 1955 if (CurrMOps > 0 && 1956 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1957 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1958 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1959 << (isTop()? "begin" : "end") << " group\n"); 1960 return true; 1961 } 1962 1963 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1964 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1965 for (const MCWriteProcResEntry &PE : 1966 make_range(SchedModel->getWriteProcResBegin(SC), 1967 SchedModel->getWriteProcResEnd(SC))) { 1968 unsigned ResIdx = PE.ProcResourceIdx; 1969 unsigned Cycles = PE.Cycles; 1970 unsigned NRCycle = getNextResourceCycle(ResIdx, Cycles); 1971 if (NRCycle > CurrCycle) { 1972 #ifndef NDEBUG 1973 MaxObservedStall = std::max(Cycles, MaxObservedStall); 1974 #endif 1975 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1976 << SchedModel->getResourceName(ResIdx) 1977 << "=" << NRCycle << "c\n"); 1978 return true; 1979 } 1980 } 1981 } 1982 return false; 1983 } 1984 1985 // Find the unscheduled node in ReadySUs with the highest latency. 1986 unsigned SchedBoundary:: 1987 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1988 SUnit *LateSU = nullptr; 1989 unsigned RemLatency = 0; 1990 for (SUnit *SU : ReadySUs) { 1991 unsigned L = getUnscheduledLatency(SU); 1992 if (L > RemLatency) { 1993 RemLatency = L; 1994 LateSU = SU; 1995 } 1996 } 1997 if (LateSU) { 1998 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1999 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2000 } 2001 return RemLatency; 2002 } 2003 2004 // Count resources in this zone and the remaining unscheduled 2005 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2006 // resource index, or zero if the zone is issue limited. 2007 unsigned SchedBoundary:: 2008 getOtherResourceCount(unsigned &OtherCritIdx) { 2009 OtherCritIdx = 0; 2010 if (!SchedModel->hasInstrSchedModel()) 2011 return 0; 2012 2013 unsigned OtherCritCount = Rem->RemIssueCount 2014 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2015 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2016 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2017 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2018 PIdx != PEnd; ++PIdx) { 2019 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2020 if (OtherCount > OtherCritCount) { 2021 OtherCritCount = OtherCount; 2022 OtherCritIdx = PIdx; 2023 } 2024 } 2025 if (OtherCritIdx) { 2026 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2027 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2028 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2029 } 2030 return OtherCritCount; 2031 } 2032 2033 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2034 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2035 2036 #ifndef NDEBUG 2037 // ReadyCycle was been bumped up to the CurrCycle when this node was 2038 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2039 // scheduling, so may now be greater than ReadyCycle. 2040 if (ReadyCycle > CurrCycle) 2041 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2042 #endif 2043 2044 if (ReadyCycle < MinReadyCycle) 2045 MinReadyCycle = ReadyCycle; 2046 2047 // Check for interlocks first. For the purpose of other heuristics, an 2048 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2049 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2050 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2051 Available.size() >= ReadyListLimit) 2052 Pending.push(SU); 2053 else 2054 Available.push(SU); 2055 } 2056 2057 /// Move the boundary of scheduled code by one cycle. 2058 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2059 if (SchedModel->getMicroOpBufferSize() == 0) { 2060 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2061 "MinReadyCycle uninitialized"); 2062 if (MinReadyCycle > NextCycle) 2063 NextCycle = MinReadyCycle; 2064 } 2065 // Update the current micro-ops, which will issue in the next cycle. 2066 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2067 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2068 2069 // Decrement DependentLatency based on the next cycle. 2070 if ((NextCycle - CurrCycle) > DependentLatency) 2071 DependentLatency = 0; 2072 else 2073 DependentLatency -= (NextCycle - CurrCycle); 2074 2075 if (!HazardRec->isEnabled()) { 2076 // Bypass HazardRec virtual calls. 2077 CurrCycle = NextCycle; 2078 } else { 2079 // Bypass getHazardType calls in case of long latency. 2080 for (; CurrCycle != NextCycle; ++CurrCycle) { 2081 if (isTop()) 2082 HazardRec->AdvanceCycle(); 2083 else 2084 HazardRec->RecedeCycle(); 2085 } 2086 } 2087 CheckPending = true; 2088 unsigned LFactor = SchedModel->getLatencyFactor(); 2089 IsResourceLimited = 2090 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2091 > (int)LFactor; 2092 2093 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2094 } 2095 2096 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2097 ExecutedResCounts[PIdx] += Count; 2098 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2099 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2100 } 2101 2102 /// Add the given processor resource to this scheduled zone. 2103 /// 2104 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2105 /// during which this resource is consumed. 2106 /// 2107 /// \return the next cycle at which the instruction may execute without 2108 /// oversubscribing resources. 2109 unsigned SchedBoundary:: 2110 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2111 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2112 unsigned Count = Factor * Cycles; 2113 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2114 << " +" << Cycles << "x" << Factor << "u\n"); 2115 2116 // Update Executed resources counts. 2117 incExecutedResources(PIdx, Count); 2118 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2119 Rem->RemainingCounts[PIdx] -= Count; 2120 2121 // Check if this resource exceeds the current critical resource. If so, it 2122 // becomes the critical resource. 2123 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2124 ZoneCritResIdx = PIdx; 2125 DEBUG(dbgs() << " *** Critical resource " 2126 << SchedModel->getResourceName(PIdx) << ": " 2127 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2128 } 2129 // For reserved resources, record the highest cycle using the resource. 2130 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2131 if (NextAvailable > CurrCycle) { 2132 DEBUG(dbgs() << " Resource conflict: " 2133 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2134 << NextAvailable << "\n"); 2135 } 2136 return NextAvailable; 2137 } 2138 2139 /// Move the boundary of scheduled code by one SUnit. 2140 void SchedBoundary::bumpNode(SUnit *SU) { 2141 // Update the reservation table. 2142 if (HazardRec->isEnabled()) { 2143 if (!isTop() && SU->isCall) { 2144 // Calls are scheduled with their preceding instructions. For bottom-up 2145 // scheduling, clear the pipeline state before emitting. 2146 HazardRec->Reset(); 2147 } 2148 HazardRec->EmitInstruction(SU); 2149 } 2150 // checkHazard should prevent scheduling multiple instructions per cycle that 2151 // exceed the issue width. 2152 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2153 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2154 assert( 2155 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2156 "Cannot schedule this instruction's MicroOps in the current cycle."); 2157 2158 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2159 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2160 2161 unsigned NextCycle = CurrCycle; 2162 switch (SchedModel->getMicroOpBufferSize()) { 2163 case 0: 2164 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2165 break; 2166 case 1: 2167 if (ReadyCycle > NextCycle) { 2168 NextCycle = ReadyCycle; 2169 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2170 } 2171 break; 2172 default: 2173 // We don't currently model the OOO reorder buffer, so consider all 2174 // scheduled MOps to be "retired". We do loosely model in-order resource 2175 // latency. If this instruction uses an in-order resource, account for any 2176 // likely stall cycles. 2177 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2178 NextCycle = ReadyCycle; 2179 break; 2180 } 2181 RetiredMOps += IncMOps; 2182 2183 // Update resource counts and critical resource. 2184 if (SchedModel->hasInstrSchedModel()) { 2185 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2186 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2187 Rem->RemIssueCount -= DecRemIssue; 2188 if (ZoneCritResIdx) { 2189 // Scale scheduled micro-ops for comparing with the critical resource. 2190 unsigned ScaledMOps = 2191 RetiredMOps * SchedModel->getMicroOpFactor(); 2192 2193 // If scaled micro-ops are now more than the previous critical resource by 2194 // a full cycle, then micro-ops issue becomes critical. 2195 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2196 >= (int)SchedModel->getLatencyFactor()) { 2197 ZoneCritResIdx = 0; 2198 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2199 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2200 } 2201 } 2202 for (TargetSchedModel::ProcResIter 2203 PI = SchedModel->getWriteProcResBegin(SC), 2204 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2205 unsigned RCycle = 2206 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2207 if (RCycle > NextCycle) 2208 NextCycle = RCycle; 2209 } 2210 if (SU->hasReservedResource) { 2211 // For reserved resources, record the highest cycle using the resource. 2212 // For top-down scheduling, this is the cycle in which we schedule this 2213 // instruction plus the number of cycles the operations reserves the 2214 // resource. For bottom-up is it simply the instruction's cycle. 2215 for (TargetSchedModel::ProcResIter 2216 PI = SchedModel->getWriteProcResBegin(SC), 2217 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2218 unsigned PIdx = PI->ProcResourceIdx; 2219 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2220 if (isTop()) { 2221 ReservedCycles[PIdx] = 2222 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2223 } 2224 else 2225 ReservedCycles[PIdx] = NextCycle; 2226 } 2227 } 2228 } 2229 } 2230 // Update ExpectedLatency and DependentLatency. 2231 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2232 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2233 if (SU->getDepth() > TopLatency) { 2234 TopLatency = SU->getDepth(); 2235 DEBUG(dbgs() << " " << Available.getName() 2236 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2237 } 2238 if (SU->getHeight() > BotLatency) { 2239 BotLatency = SU->getHeight(); 2240 DEBUG(dbgs() << " " << Available.getName() 2241 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2242 } 2243 // If we stall for any reason, bump the cycle. 2244 if (NextCycle > CurrCycle) { 2245 bumpCycle(NextCycle); 2246 } else { 2247 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2248 // resource limited. If a stall occurred, bumpCycle does this. 2249 unsigned LFactor = SchedModel->getLatencyFactor(); 2250 IsResourceLimited = 2251 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2252 > (int)LFactor; 2253 } 2254 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2255 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2256 // one cycle. Since we commonly reach the max MOps here, opportunistically 2257 // bump the cycle to avoid uselessly checking everything in the readyQ. 2258 CurrMOps += IncMOps; 2259 2260 // Bump the cycle count for issue group constraints. 2261 // This must be done after NextCycle has been adjust for all other stalls. 2262 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2263 // currCycle to X. 2264 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2265 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2266 DEBUG(dbgs() << " Bump cycle to " 2267 << (isTop() ? "end" : "begin") << " group\n"); 2268 bumpCycle(++NextCycle); 2269 } 2270 2271 while (CurrMOps >= SchedModel->getIssueWidth()) { 2272 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2273 << " at cycle " << CurrCycle << '\n'); 2274 bumpCycle(++NextCycle); 2275 } 2276 DEBUG(dumpScheduledState()); 2277 } 2278 2279 /// Release pending ready nodes in to the available queue. This makes them 2280 /// visible to heuristics. 2281 void SchedBoundary::releasePending() { 2282 // If the available queue is empty, it is safe to reset MinReadyCycle. 2283 if (Available.empty()) 2284 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2285 2286 // Check to see if any of the pending instructions are ready to issue. If 2287 // so, add them to the available queue. 2288 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2289 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2290 SUnit *SU = *(Pending.begin()+i); 2291 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2292 2293 if (ReadyCycle < MinReadyCycle) 2294 MinReadyCycle = ReadyCycle; 2295 2296 if (!IsBuffered && ReadyCycle > CurrCycle) 2297 continue; 2298 2299 if (checkHazard(SU)) 2300 continue; 2301 2302 if (Available.size() >= ReadyListLimit) 2303 break; 2304 2305 Available.push(SU); 2306 Pending.remove(Pending.begin()+i); 2307 --i; --e; 2308 } 2309 CheckPending = false; 2310 } 2311 2312 /// Remove SU from the ready set for this boundary. 2313 void SchedBoundary::removeReady(SUnit *SU) { 2314 if (Available.isInQueue(SU)) 2315 Available.remove(Available.find(SU)); 2316 else { 2317 assert(Pending.isInQueue(SU) && "bad ready count"); 2318 Pending.remove(Pending.find(SU)); 2319 } 2320 } 2321 2322 /// If this queue only has one ready candidate, return it. As a side effect, 2323 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2324 /// one node is ready. If multiple instructions are ready, return NULL. 2325 SUnit *SchedBoundary::pickOnlyChoice() { 2326 if (CheckPending) 2327 releasePending(); 2328 2329 if (CurrMOps > 0) { 2330 // Defer any ready instrs that now have a hazard. 2331 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2332 if (checkHazard(*I)) { 2333 Pending.push(*I); 2334 I = Available.remove(I); 2335 continue; 2336 } 2337 ++I; 2338 } 2339 } 2340 for (unsigned i = 0; Available.empty(); ++i) { 2341 // FIXME: Re-enable assert once PR20057 is resolved. 2342 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2343 // "permanent hazard"); 2344 (void)i; 2345 bumpCycle(CurrCycle + 1); 2346 releasePending(); 2347 } 2348 2349 DEBUG(Pending.dump()); 2350 DEBUG(Available.dump()); 2351 2352 if (Available.size() == 1) 2353 return *Available.begin(); 2354 return nullptr; 2355 } 2356 2357 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2358 // This is useful information to dump after bumpNode. 2359 // Note that the Queue contents are more useful before pickNodeFromQueue. 2360 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2361 unsigned ResFactor; 2362 unsigned ResCount; 2363 if (ZoneCritResIdx) { 2364 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2365 ResCount = getResourceCount(ZoneCritResIdx); 2366 } else { 2367 ResFactor = SchedModel->getMicroOpFactor(); 2368 ResCount = RetiredMOps * ResFactor; 2369 } 2370 unsigned LFactor = SchedModel->getLatencyFactor(); 2371 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2372 << " Retired: " << RetiredMOps; 2373 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2374 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2375 << ResCount / ResFactor << " " 2376 << SchedModel->getResourceName(ZoneCritResIdx) 2377 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2378 << (IsResourceLimited ? " - Resource" : " - Latency") 2379 << " limited.\n"; 2380 } 2381 #endif 2382 2383 //===----------------------------------------------------------------------===// 2384 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2385 //===----------------------------------------------------------------------===// 2386 2387 void GenericSchedulerBase::SchedCandidate:: 2388 initResourceDelta(const ScheduleDAGMI *DAG, 2389 const TargetSchedModel *SchedModel) { 2390 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2391 return; 2392 2393 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2394 for (TargetSchedModel::ProcResIter 2395 PI = SchedModel->getWriteProcResBegin(SC), 2396 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2397 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2398 ResDelta.CritResources += PI->Cycles; 2399 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2400 ResDelta.DemandedResources += PI->Cycles; 2401 } 2402 } 2403 2404 /// Set the CandPolicy given a scheduling zone given the current resources and 2405 /// latencies inside and outside the zone. 2406 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2407 SchedBoundary &CurrZone, 2408 SchedBoundary *OtherZone) { 2409 // Apply preemptive heuristics based on the total latency and resources 2410 // inside and outside this zone. Potential stalls should be considered before 2411 // following this policy. 2412 2413 // Compute remaining latency. We need this both to determine whether the 2414 // overall schedule has become latency-limited and whether the instructions 2415 // outside this zone are resource or latency limited. 2416 // 2417 // The "dependent" latency is updated incrementally during scheduling as the 2418 // max height/depth of scheduled nodes minus the cycles since it was 2419 // scheduled: 2420 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2421 // 2422 // The "independent" latency is the max ready queue depth: 2423 // ILat = max N.depth for N in Available|Pending 2424 // 2425 // RemainingLatency is the greater of independent and dependent latency. 2426 unsigned RemLatency = CurrZone.getDependentLatency(); 2427 RemLatency = std::max(RemLatency, 2428 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2429 RemLatency = std::max(RemLatency, 2430 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2431 2432 // Compute the critical resource outside the zone. 2433 unsigned OtherCritIdx = 0; 2434 unsigned OtherCount = 2435 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2436 2437 bool OtherResLimited = false; 2438 if (SchedModel->hasInstrSchedModel()) { 2439 unsigned LFactor = SchedModel->getLatencyFactor(); 2440 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2441 } 2442 // Schedule aggressively for latency in PostRA mode. We don't check for 2443 // acyclic latency during PostRA, and highly out-of-order processors will 2444 // skip PostRA scheduling. 2445 if (!OtherResLimited) { 2446 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2447 Policy.ReduceLatency |= true; 2448 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2449 << " RemainingLatency " << RemLatency << " + " 2450 << CurrZone.getCurrCycle() << "c > CritPath " 2451 << Rem.CriticalPath << "\n"); 2452 } 2453 } 2454 // If the same resource is limiting inside and outside the zone, do nothing. 2455 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2456 return; 2457 2458 DEBUG( 2459 if (CurrZone.isResourceLimited()) { 2460 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2461 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2462 << "\n"; 2463 } 2464 if (OtherResLimited) 2465 dbgs() << " RemainingLimit: " 2466 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2467 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2468 dbgs() << " Latency limited both directions.\n"); 2469 2470 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2471 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2472 2473 if (OtherResLimited) 2474 Policy.DemandResIdx = OtherCritIdx; 2475 } 2476 2477 #ifndef NDEBUG 2478 const char *GenericSchedulerBase::getReasonStr( 2479 GenericSchedulerBase::CandReason Reason) { 2480 switch (Reason) { 2481 case NoCand: return "NOCAND "; 2482 case Only1: return "ONLY1 "; 2483 case PhysRegCopy: return "PREG-COPY "; 2484 case RegExcess: return "REG-EXCESS"; 2485 case RegCritical: return "REG-CRIT "; 2486 case Stall: return "STALL "; 2487 case Cluster: return "CLUSTER "; 2488 case Weak: return "WEAK "; 2489 case RegMax: return "REG-MAX "; 2490 case ResourceReduce: return "RES-REDUCE"; 2491 case ResourceDemand: return "RES-DEMAND"; 2492 case TopDepthReduce: return "TOP-DEPTH "; 2493 case TopPathReduce: return "TOP-PATH "; 2494 case BotHeightReduce:return "BOT-HEIGHT"; 2495 case BotPathReduce: return "BOT-PATH "; 2496 case NextDefUse: return "DEF-USE "; 2497 case NodeOrder: return "ORDER "; 2498 }; 2499 llvm_unreachable("Unknown reason!"); 2500 } 2501 2502 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2503 PressureChange P; 2504 unsigned ResIdx = 0; 2505 unsigned Latency = 0; 2506 switch (Cand.Reason) { 2507 default: 2508 break; 2509 case RegExcess: 2510 P = Cand.RPDelta.Excess; 2511 break; 2512 case RegCritical: 2513 P = Cand.RPDelta.CriticalMax; 2514 break; 2515 case RegMax: 2516 P = Cand.RPDelta.CurrentMax; 2517 break; 2518 case ResourceReduce: 2519 ResIdx = Cand.Policy.ReduceResIdx; 2520 break; 2521 case ResourceDemand: 2522 ResIdx = Cand.Policy.DemandResIdx; 2523 break; 2524 case TopDepthReduce: 2525 Latency = Cand.SU->getDepth(); 2526 break; 2527 case TopPathReduce: 2528 Latency = Cand.SU->getHeight(); 2529 break; 2530 case BotHeightReduce: 2531 Latency = Cand.SU->getHeight(); 2532 break; 2533 case BotPathReduce: 2534 Latency = Cand.SU->getDepth(); 2535 break; 2536 } 2537 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2538 if (P.isValid()) 2539 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2540 << ":" << P.getUnitInc() << " "; 2541 else 2542 dbgs() << " "; 2543 if (ResIdx) 2544 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2545 else 2546 dbgs() << " "; 2547 if (Latency) 2548 dbgs() << " " << Latency << " cycles "; 2549 else 2550 dbgs() << " "; 2551 dbgs() << '\n'; 2552 } 2553 #endif 2554 2555 /// Return true if this heuristic determines order. 2556 static bool tryLess(int TryVal, int CandVal, 2557 GenericSchedulerBase::SchedCandidate &TryCand, 2558 GenericSchedulerBase::SchedCandidate &Cand, 2559 GenericSchedulerBase::CandReason Reason) { 2560 if (TryVal < CandVal) { 2561 TryCand.Reason = Reason; 2562 return true; 2563 } 2564 if (TryVal > CandVal) { 2565 if (Cand.Reason > Reason) 2566 Cand.Reason = Reason; 2567 return true; 2568 } 2569 return false; 2570 } 2571 2572 static bool tryGreater(int TryVal, int CandVal, 2573 GenericSchedulerBase::SchedCandidate &TryCand, 2574 GenericSchedulerBase::SchedCandidate &Cand, 2575 GenericSchedulerBase::CandReason Reason) { 2576 if (TryVal > CandVal) { 2577 TryCand.Reason = Reason; 2578 return true; 2579 } 2580 if (TryVal < CandVal) { 2581 if (Cand.Reason > Reason) 2582 Cand.Reason = Reason; 2583 return true; 2584 } 2585 return false; 2586 } 2587 2588 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2589 GenericSchedulerBase::SchedCandidate &Cand, 2590 SchedBoundary &Zone) { 2591 if (Zone.isTop()) { 2592 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2593 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2594 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2595 return true; 2596 } 2597 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2598 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2599 return true; 2600 } else { 2601 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2602 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2603 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2604 return true; 2605 } 2606 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2607 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2608 return true; 2609 } 2610 return false; 2611 } 2612 2613 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2614 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2615 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2616 } 2617 2618 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2619 tracePick(Cand.Reason, Cand.AtTop); 2620 } 2621 2622 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2623 assert(dag->hasVRegLiveness() && 2624 "(PreRA)GenericScheduler needs vreg liveness"); 2625 DAG = static_cast<ScheduleDAGMILive*>(dag); 2626 SchedModel = DAG->getSchedModel(); 2627 TRI = DAG->TRI; 2628 2629 Rem.init(DAG, SchedModel); 2630 Top.init(DAG, SchedModel, &Rem); 2631 Bot.init(DAG, SchedModel, &Rem); 2632 2633 // Initialize resource counts. 2634 2635 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2636 // are disabled, then these HazardRecs will be disabled. 2637 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2638 if (!Top.HazardRec) { 2639 Top.HazardRec = 2640 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2641 Itin, DAG); 2642 } 2643 if (!Bot.HazardRec) { 2644 Bot.HazardRec = 2645 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2646 Itin, DAG); 2647 } 2648 TopCand.SU = nullptr; 2649 BotCand.SU = nullptr; 2650 } 2651 2652 /// Initialize the per-region scheduling policy. 2653 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2654 MachineBasicBlock::iterator End, 2655 unsigned NumRegionInstrs) { 2656 const MachineFunction &MF = *Begin->getMF(); 2657 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2658 2659 // Avoid setting up the register pressure tracker for small regions to save 2660 // compile time. As a rough heuristic, only track pressure when the number of 2661 // schedulable instructions exceeds half the integer register file. 2662 RegionPolicy.ShouldTrackPressure = true; 2663 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2664 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2665 if (TLI->isTypeLegal(LegalIntVT)) { 2666 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2667 TLI->getRegClassFor(LegalIntVT)); 2668 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2669 } 2670 } 2671 2672 // For generic targets, we default to bottom-up, because it's simpler and more 2673 // compile-time optimizations have been implemented in that direction. 2674 RegionPolicy.OnlyBottomUp = true; 2675 2676 // Allow the subtarget to override default policy. 2677 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2678 2679 // After subtarget overrides, apply command line options. 2680 if (!EnableRegPressure) 2681 RegionPolicy.ShouldTrackPressure = false; 2682 2683 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2684 // e.g. -misched-bottomup=false allows scheduling in both directions. 2685 assert((!ForceTopDown || !ForceBottomUp) && 2686 "-misched-topdown incompatible with -misched-bottomup"); 2687 if (ForceBottomUp.getNumOccurrences() > 0) { 2688 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2689 if (RegionPolicy.OnlyBottomUp) 2690 RegionPolicy.OnlyTopDown = false; 2691 } 2692 if (ForceTopDown.getNumOccurrences() > 0) { 2693 RegionPolicy.OnlyTopDown = ForceTopDown; 2694 if (RegionPolicy.OnlyTopDown) 2695 RegionPolicy.OnlyBottomUp = false; 2696 } 2697 } 2698 2699 void GenericScheduler::dumpPolicy() const { 2700 // Cannot completely remove virtual function even in release mode. 2701 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2702 dbgs() << "GenericScheduler RegionPolicy: " 2703 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2704 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2705 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2706 << "\n"; 2707 #endif 2708 } 2709 2710 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2711 /// critical path by more cycles than it takes to drain the instruction buffer. 2712 /// We estimate an upper bounds on in-flight instructions as: 2713 /// 2714 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2715 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2716 /// InFlightResources = InFlightIterations * LoopResources 2717 /// 2718 /// TODO: Check execution resources in addition to IssueCount. 2719 void GenericScheduler::checkAcyclicLatency() { 2720 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2721 return; 2722 2723 // Scaled number of cycles per loop iteration. 2724 unsigned IterCount = 2725 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2726 Rem.RemIssueCount); 2727 // Scaled acyclic critical path. 2728 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2729 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2730 unsigned InFlightCount = 2731 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2732 unsigned BufferLimit = 2733 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2734 2735 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2736 2737 DEBUG(dbgs() << "IssueCycles=" 2738 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2739 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2740 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2741 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2742 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2743 if (Rem.IsAcyclicLatencyLimited) 2744 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2745 } 2746 2747 void GenericScheduler::registerRoots() { 2748 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2749 2750 // Some roots may not feed into ExitSU. Check all of them in case. 2751 for (const SUnit *SU : Bot.Available) { 2752 if (SU->getDepth() > Rem.CriticalPath) 2753 Rem.CriticalPath = SU->getDepth(); 2754 } 2755 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2756 if (DumpCriticalPathLength) { 2757 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2758 } 2759 2760 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2761 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2762 checkAcyclicLatency(); 2763 } 2764 } 2765 2766 static bool tryPressure(const PressureChange &TryP, 2767 const PressureChange &CandP, 2768 GenericSchedulerBase::SchedCandidate &TryCand, 2769 GenericSchedulerBase::SchedCandidate &Cand, 2770 GenericSchedulerBase::CandReason Reason, 2771 const TargetRegisterInfo *TRI, 2772 const MachineFunction &MF) { 2773 // If one candidate decreases and the other increases, go with it. 2774 // Invalid candidates have UnitInc==0. 2775 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2776 Reason)) { 2777 return true; 2778 } 2779 // Do not compare the magnitude of pressure changes between top and bottom 2780 // boundary. 2781 if (Cand.AtTop != TryCand.AtTop) 2782 return false; 2783 2784 // If both candidates affect the same set in the same boundary, go with the 2785 // smallest increase. 2786 unsigned TryPSet = TryP.getPSetOrMax(); 2787 unsigned CandPSet = CandP.getPSetOrMax(); 2788 if (TryPSet == CandPSet) { 2789 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2790 Reason); 2791 } 2792 2793 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2794 std::numeric_limits<int>::max(); 2795 2796 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2797 std::numeric_limits<int>::max(); 2798 2799 // If the candidates are decreasing pressure, reverse priority. 2800 if (TryP.getUnitInc() < 0) 2801 std::swap(TryRank, CandRank); 2802 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2803 } 2804 2805 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2806 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2807 } 2808 2809 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2810 /// their physreg def/use. 2811 /// 2812 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2813 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2814 /// with the operation that produces or consumes the physreg. We'll do this when 2815 /// regalloc has support for parallel copies. 2816 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2817 const MachineInstr *MI = SU->getInstr(); 2818 if (!MI->isCopy()) 2819 return 0; 2820 2821 unsigned ScheduledOper = isTop ? 1 : 0; 2822 unsigned UnscheduledOper = isTop ? 0 : 1; 2823 // If we have already scheduled the physreg produce/consumer, immediately 2824 // schedule the copy. 2825 if (TargetRegisterInfo::isPhysicalRegister( 2826 MI->getOperand(ScheduledOper).getReg())) 2827 return 1; 2828 // If the physreg is at the boundary, defer it. Otherwise schedule it 2829 // immediately to free the dependent. We can hoist the copy later. 2830 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2831 if (TargetRegisterInfo::isPhysicalRegister( 2832 MI->getOperand(UnscheduledOper).getReg())) 2833 return AtBoundary ? -1 : 1; 2834 return 0; 2835 } 2836 2837 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2838 bool AtTop, 2839 const RegPressureTracker &RPTracker, 2840 RegPressureTracker &TempTracker) { 2841 Cand.SU = SU; 2842 Cand.AtTop = AtTop; 2843 if (DAG->isTrackingPressure()) { 2844 if (AtTop) { 2845 TempTracker.getMaxDownwardPressureDelta( 2846 Cand.SU->getInstr(), 2847 Cand.RPDelta, 2848 DAG->getRegionCriticalPSets(), 2849 DAG->getRegPressure().MaxSetPressure); 2850 } else { 2851 if (VerifyScheduling) { 2852 TempTracker.getMaxUpwardPressureDelta( 2853 Cand.SU->getInstr(), 2854 &DAG->getPressureDiff(Cand.SU), 2855 Cand.RPDelta, 2856 DAG->getRegionCriticalPSets(), 2857 DAG->getRegPressure().MaxSetPressure); 2858 } else { 2859 RPTracker.getUpwardPressureDelta( 2860 Cand.SU->getInstr(), 2861 DAG->getPressureDiff(Cand.SU), 2862 Cand.RPDelta, 2863 DAG->getRegionCriticalPSets(), 2864 DAG->getRegPressure().MaxSetPressure); 2865 } 2866 } 2867 } 2868 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2869 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2870 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2871 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2872 } 2873 2874 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2875 /// hierarchical. This may be more efficient than a graduated cost model because 2876 /// we don't need to evaluate all aspects of the model for each node in the 2877 /// queue. But it's really done to make the heuristics easier to debug and 2878 /// statistically analyze. 2879 /// 2880 /// \param Cand provides the policy and current best candidate. 2881 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2882 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2883 // if Cand is from a different zone than TryCand. 2884 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2885 SchedCandidate &TryCand, 2886 SchedBoundary *Zone) { 2887 // Initialize the candidate if needed. 2888 if (!Cand.isValid()) { 2889 TryCand.Reason = NodeOrder; 2890 return; 2891 } 2892 2893 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2894 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2895 TryCand, Cand, PhysRegCopy)) 2896 return; 2897 2898 // Avoid exceeding the target's limit. 2899 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2900 Cand.RPDelta.Excess, 2901 TryCand, Cand, RegExcess, TRI, 2902 DAG->MF)) 2903 return; 2904 2905 // Avoid increasing the max critical pressure in the scheduled region. 2906 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2907 Cand.RPDelta.CriticalMax, 2908 TryCand, Cand, RegCritical, TRI, 2909 DAG->MF)) 2910 return; 2911 2912 // We only compare a subset of features when comparing nodes between 2913 // Top and Bottom boundary. Some properties are simply incomparable, in many 2914 // other instances we should only override the other boundary if something 2915 // is a clear good pick on one boundary. Skip heuristics that are more 2916 // "tie-breaking" in nature. 2917 bool SameBoundary = Zone != nullptr; 2918 if (SameBoundary) { 2919 // For loops that are acyclic path limited, aggressively schedule for 2920 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2921 // heuristics to take precedence. 2922 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2923 tryLatency(TryCand, Cand, *Zone)) 2924 return; 2925 2926 // Prioritize instructions that read unbuffered resources by stall cycles. 2927 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2928 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2929 return; 2930 } 2931 2932 // Keep clustered nodes together to encourage downstream peephole 2933 // optimizations which may reduce resource requirements. 2934 // 2935 // This is a best effort to set things up for a post-RA pass. Optimizations 2936 // like generating loads of multiple registers should ideally be done within 2937 // the scheduler pass by combining the loads during DAG postprocessing. 2938 const SUnit *CandNextClusterSU = 2939 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2940 const SUnit *TryCandNextClusterSU = 2941 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2942 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2943 Cand.SU == CandNextClusterSU, 2944 TryCand, Cand, Cluster)) 2945 return; 2946 2947 if (SameBoundary) { 2948 // Weak edges are for clustering and other constraints. 2949 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2950 getWeakLeft(Cand.SU, Cand.AtTop), 2951 TryCand, Cand, Weak)) 2952 return; 2953 } 2954 2955 // Avoid increasing the max pressure of the entire region. 2956 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2957 Cand.RPDelta.CurrentMax, 2958 TryCand, Cand, RegMax, TRI, 2959 DAG->MF)) 2960 return; 2961 2962 if (SameBoundary) { 2963 // Avoid critical resource consumption and balance the schedule. 2964 TryCand.initResourceDelta(DAG, SchedModel); 2965 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2966 TryCand, Cand, ResourceReduce)) 2967 return; 2968 if (tryGreater(TryCand.ResDelta.DemandedResources, 2969 Cand.ResDelta.DemandedResources, 2970 TryCand, Cand, ResourceDemand)) 2971 return; 2972 2973 // Avoid serializing long latency dependence chains. 2974 // For acyclic path limited loops, latency was already checked above. 2975 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2976 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2977 return; 2978 2979 // Fall through to original instruction order. 2980 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2981 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2982 TryCand.Reason = NodeOrder; 2983 } 2984 } 2985 } 2986 2987 /// Pick the best candidate from the queue. 2988 /// 2989 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2990 /// DAG building. To adjust for the current scheduling location we need to 2991 /// maintain the number of vreg uses remaining to be top-scheduled. 2992 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2993 const CandPolicy &ZonePolicy, 2994 const RegPressureTracker &RPTracker, 2995 SchedCandidate &Cand) { 2996 // getMaxPressureDelta temporarily modifies the tracker. 2997 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2998 2999 ReadyQueue &Q = Zone.Available; 3000 for (SUnit *SU : Q) { 3001 3002 SchedCandidate TryCand(ZonePolicy); 3003 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3004 // Pass SchedBoundary only when comparing nodes from the same boundary. 3005 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3006 tryCandidate(Cand, TryCand, ZoneArg); 3007 if (TryCand.Reason != NoCand) { 3008 // Initialize resource delta if needed in case future heuristics query it. 3009 if (TryCand.ResDelta == SchedResourceDelta()) 3010 TryCand.initResourceDelta(DAG, SchedModel); 3011 Cand.setBest(TryCand); 3012 DEBUG(traceCandidate(Cand)); 3013 } 3014 } 3015 } 3016 3017 /// Pick the best candidate node from either the top or bottom queue. 3018 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3019 // Schedule as far as possible in the direction of no choice. This is most 3020 // efficient, but also provides the best heuristics for CriticalPSets. 3021 if (SUnit *SU = Bot.pickOnlyChoice()) { 3022 IsTopNode = false; 3023 tracePick(Only1, false); 3024 return SU; 3025 } 3026 if (SUnit *SU = Top.pickOnlyChoice()) { 3027 IsTopNode = true; 3028 tracePick(Only1, true); 3029 return SU; 3030 } 3031 // Set the bottom-up policy based on the state of the current bottom zone and 3032 // the instructions outside the zone, including the top zone. 3033 CandPolicy BotPolicy; 3034 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3035 // Set the top-down policy based on the state of the current top zone and 3036 // the instructions outside the zone, including the bottom zone. 3037 CandPolicy TopPolicy; 3038 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3039 3040 // See if BotCand is still valid (because we previously scheduled from Top). 3041 DEBUG(dbgs() << "Picking from Bot:\n"); 3042 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3043 BotCand.Policy != BotPolicy) { 3044 BotCand.reset(CandPolicy()); 3045 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3046 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3047 } else { 3048 DEBUG(traceCandidate(BotCand)); 3049 #ifndef NDEBUG 3050 if (VerifyScheduling) { 3051 SchedCandidate TCand; 3052 TCand.reset(CandPolicy()); 3053 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3054 assert(TCand.SU == BotCand.SU && 3055 "Last pick result should correspond to re-picking right now"); 3056 } 3057 #endif 3058 } 3059 3060 // Check if the top Q has a better candidate. 3061 DEBUG(dbgs() << "Picking from Top:\n"); 3062 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3063 TopCand.Policy != TopPolicy) { 3064 TopCand.reset(CandPolicy()); 3065 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3066 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3067 } else { 3068 DEBUG(traceCandidate(TopCand)); 3069 #ifndef NDEBUG 3070 if (VerifyScheduling) { 3071 SchedCandidate TCand; 3072 TCand.reset(CandPolicy()); 3073 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3074 assert(TCand.SU == TopCand.SU && 3075 "Last pick result should correspond to re-picking right now"); 3076 } 3077 #endif 3078 } 3079 3080 // Pick best from BotCand and TopCand. 3081 assert(BotCand.isValid()); 3082 assert(TopCand.isValid()); 3083 SchedCandidate Cand = BotCand; 3084 TopCand.Reason = NoCand; 3085 tryCandidate(Cand, TopCand, nullptr); 3086 if (TopCand.Reason != NoCand) { 3087 Cand.setBest(TopCand); 3088 DEBUG(traceCandidate(Cand)); 3089 } 3090 3091 IsTopNode = Cand.AtTop; 3092 tracePick(Cand); 3093 return Cand.SU; 3094 } 3095 3096 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3097 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3098 if (DAG->top() == DAG->bottom()) { 3099 assert(Top.Available.empty() && Top.Pending.empty() && 3100 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3101 return nullptr; 3102 } 3103 SUnit *SU; 3104 do { 3105 if (RegionPolicy.OnlyTopDown) { 3106 SU = Top.pickOnlyChoice(); 3107 if (!SU) { 3108 CandPolicy NoPolicy; 3109 TopCand.reset(NoPolicy); 3110 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3111 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3112 tracePick(TopCand); 3113 SU = TopCand.SU; 3114 } 3115 IsTopNode = true; 3116 } else if (RegionPolicy.OnlyBottomUp) { 3117 SU = Bot.pickOnlyChoice(); 3118 if (!SU) { 3119 CandPolicy NoPolicy; 3120 BotCand.reset(NoPolicy); 3121 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3122 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3123 tracePick(BotCand); 3124 SU = BotCand.SU; 3125 } 3126 IsTopNode = false; 3127 } else { 3128 SU = pickNodeBidirectional(IsTopNode); 3129 } 3130 } while (SU->isScheduled); 3131 3132 if (SU->isTopReady()) 3133 Top.removeReady(SU); 3134 if (SU->isBottomReady()) 3135 Bot.removeReady(SU); 3136 3137 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3138 return SU; 3139 } 3140 3141 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3142 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3143 if (!isTop) 3144 ++InsertPos; 3145 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3146 3147 // Find already scheduled copies with a single physreg dependence and move 3148 // them just above the scheduled instruction. 3149 for (SDep &Dep : Deps) { 3150 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3151 continue; 3152 SUnit *DepSU = Dep.getSUnit(); 3153 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3154 continue; 3155 MachineInstr *Copy = DepSU->getInstr(); 3156 if (!Copy->isCopy()) 3157 continue; 3158 DEBUG(dbgs() << " Rescheduling physreg copy "; 3159 Dep.getSUnit()->dump(DAG)); 3160 DAG->moveInstruction(Copy, InsertPos); 3161 } 3162 } 3163 3164 /// Update the scheduler's state after scheduling a node. This is the same node 3165 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3166 /// update it's state based on the current cycle before MachineSchedStrategy 3167 /// does. 3168 /// 3169 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3170 /// them here. See comments in biasPhysRegCopy. 3171 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3172 if (IsTopNode) { 3173 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3174 Top.bumpNode(SU); 3175 if (SU->hasPhysRegUses) 3176 reschedulePhysRegCopies(SU, true); 3177 } else { 3178 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3179 Bot.bumpNode(SU); 3180 if (SU->hasPhysRegDefs) 3181 reschedulePhysRegCopies(SU, false); 3182 } 3183 } 3184 3185 /// Create the standard converging machine scheduler. This will be used as the 3186 /// default scheduler if the target does not set a default. 3187 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3188 ScheduleDAGMILive *DAG = 3189 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3190 // Register DAG post-processors. 3191 // 3192 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3193 // data and pass it to later mutations. Have a single mutation that gathers 3194 // the interesting nodes in one pass. 3195 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3196 return DAG; 3197 } 3198 3199 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3200 return createGenericSchedLive(C); 3201 } 3202 3203 static MachineSchedRegistry 3204 GenericSchedRegistry("converge", "Standard converging scheduler.", 3205 createConveringSched); 3206 3207 //===----------------------------------------------------------------------===// 3208 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3209 //===----------------------------------------------------------------------===// 3210 3211 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3212 DAG = Dag; 3213 SchedModel = DAG->getSchedModel(); 3214 TRI = DAG->TRI; 3215 3216 Rem.init(DAG, SchedModel); 3217 Top.init(DAG, SchedModel, &Rem); 3218 BotRoots.clear(); 3219 3220 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3221 // or are disabled, then these HazardRecs will be disabled. 3222 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3223 if (!Top.HazardRec) { 3224 Top.HazardRec = 3225 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3226 Itin, DAG); 3227 } 3228 } 3229 3230 void PostGenericScheduler::registerRoots() { 3231 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3232 3233 // Some roots may not feed into ExitSU. Check all of them in case. 3234 for (const SUnit *SU : BotRoots) { 3235 if (SU->getDepth() > Rem.CriticalPath) 3236 Rem.CriticalPath = SU->getDepth(); 3237 } 3238 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3239 if (DumpCriticalPathLength) { 3240 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3241 } 3242 } 3243 3244 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3245 /// 3246 /// \param Cand provides the policy and current best candidate. 3247 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3248 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3249 SchedCandidate &TryCand) { 3250 // Initialize the candidate if needed. 3251 if (!Cand.isValid()) { 3252 TryCand.Reason = NodeOrder; 3253 return; 3254 } 3255 3256 // Prioritize instructions that read unbuffered resources by stall cycles. 3257 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3258 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3259 return; 3260 3261 // Keep clustered nodes together. 3262 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3263 Cand.SU == DAG->getNextClusterSucc(), 3264 TryCand, Cand, Cluster)) 3265 return; 3266 3267 // Avoid critical resource consumption and balance the schedule. 3268 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3269 TryCand, Cand, ResourceReduce)) 3270 return; 3271 if (tryGreater(TryCand.ResDelta.DemandedResources, 3272 Cand.ResDelta.DemandedResources, 3273 TryCand, Cand, ResourceDemand)) 3274 return; 3275 3276 // Avoid serializing long latency dependence chains. 3277 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3278 return; 3279 } 3280 3281 // Fall through to original instruction order. 3282 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3283 TryCand.Reason = NodeOrder; 3284 } 3285 3286 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3287 ReadyQueue &Q = Top.Available; 3288 for (SUnit *SU : Q) { 3289 SchedCandidate TryCand(Cand.Policy); 3290 TryCand.SU = SU; 3291 TryCand.AtTop = true; 3292 TryCand.initResourceDelta(DAG, SchedModel); 3293 tryCandidate(Cand, TryCand); 3294 if (TryCand.Reason != NoCand) { 3295 Cand.setBest(TryCand); 3296 DEBUG(traceCandidate(Cand)); 3297 } 3298 } 3299 } 3300 3301 /// Pick the next node to schedule. 3302 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3303 if (DAG->top() == DAG->bottom()) { 3304 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3305 return nullptr; 3306 } 3307 SUnit *SU; 3308 do { 3309 SU = Top.pickOnlyChoice(); 3310 if (SU) { 3311 tracePick(Only1, true); 3312 } else { 3313 CandPolicy NoPolicy; 3314 SchedCandidate TopCand(NoPolicy); 3315 // Set the top-down policy based on the state of the current top zone and 3316 // the instructions outside the zone, including the bottom zone. 3317 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3318 pickNodeFromQueue(TopCand); 3319 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3320 tracePick(TopCand); 3321 SU = TopCand.SU; 3322 } 3323 } while (SU->isScheduled); 3324 3325 IsTopNode = true; 3326 Top.removeReady(SU); 3327 3328 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3329 return SU; 3330 } 3331 3332 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3333 /// scheduled/remaining flags in the DAG nodes. 3334 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3335 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3336 Top.bumpNode(SU); 3337 } 3338 3339 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3340 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3341 /*RemoveKillFlags=*/true); 3342 } 3343 3344 //===----------------------------------------------------------------------===// 3345 // ILP Scheduler. Currently for experimental analysis of heuristics. 3346 //===----------------------------------------------------------------------===// 3347 3348 namespace { 3349 3350 /// \brief Order nodes by the ILP metric. 3351 struct ILPOrder { 3352 const SchedDFSResult *DFSResult = nullptr; 3353 const BitVector *ScheduledTrees = nullptr; 3354 bool MaximizeILP; 3355 3356 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3357 3358 /// \brief Apply a less-than relation on node priority. 3359 /// 3360 /// (Return true if A comes after B in the Q.) 3361 bool operator()(const SUnit *A, const SUnit *B) const { 3362 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3363 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3364 if (SchedTreeA != SchedTreeB) { 3365 // Unscheduled trees have lower priority. 3366 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3367 return ScheduledTrees->test(SchedTreeB); 3368 3369 // Trees with shallower connections have have lower priority. 3370 if (DFSResult->getSubtreeLevel(SchedTreeA) 3371 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3372 return DFSResult->getSubtreeLevel(SchedTreeA) 3373 < DFSResult->getSubtreeLevel(SchedTreeB); 3374 } 3375 } 3376 if (MaximizeILP) 3377 return DFSResult->getILP(A) < DFSResult->getILP(B); 3378 else 3379 return DFSResult->getILP(A) > DFSResult->getILP(B); 3380 } 3381 }; 3382 3383 /// \brief Schedule based on the ILP metric. 3384 class ILPScheduler : public MachineSchedStrategy { 3385 ScheduleDAGMILive *DAG = nullptr; 3386 ILPOrder Cmp; 3387 3388 std::vector<SUnit*> ReadyQ; 3389 3390 public: 3391 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3392 3393 void initialize(ScheduleDAGMI *dag) override { 3394 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3395 DAG = static_cast<ScheduleDAGMILive*>(dag); 3396 DAG->computeDFSResult(); 3397 Cmp.DFSResult = DAG->getDFSResult(); 3398 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3399 ReadyQ.clear(); 3400 } 3401 3402 void registerRoots() override { 3403 // Restore the heap in ReadyQ with the updated DFS results. 3404 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3405 } 3406 3407 /// Implement MachineSchedStrategy interface. 3408 /// ----------------------------------------- 3409 3410 /// Callback to select the highest priority node from the ready Q. 3411 SUnit *pickNode(bool &IsTopNode) override { 3412 if (ReadyQ.empty()) return nullptr; 3413 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3414 SUnit *SU = ReadyQ.back(); 3415 ReadyQ.pop_back(); 3416 IsTopNode = false; 3417 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3418 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3419 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3420 << DAG->getDFSResult()->getSubtreeLevel( 3421 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3422 << "Scheduling " << *SU->getInstr()); 3423 return SU; 3424 } 3425 3426 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3427 void scheduleTree(unsigned SubtreeID) override { 3428 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3429 } 3430 3431 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3432 /// DFSResults, and resort the priority Q. 3433 void schedNode(SUnit *SU, bool IsTopNode) override { 3434 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3435 } 3436 3437 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3438 3439 void releaseBottomNode(SUnit *SU) override { 3440 ReadyQ.push_back(SU); 3441 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3442 } 3443 }; 3444 3445 } // end anonymous namespace 3446 3447 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3448 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3449 } 3450 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3451 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3452 } 3453 3454 static MachineSchedRegistry ILPMaxRegistry( 3455 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3456 static MachineSchedRegistry ILPMinRegistry( 3457 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3458 3459 //===----------------------------------------------------------------------===// 3460 // Machine Instruction Shuffler for Correctness Testing 3461 //===----------------------------------------------------------------------===// 3462 3463 #ifndef NDEBUG 3464 namespace { 3465 3466 /// Apply a less-than relation on the node order, which corresponds to the 3467 /// instruction order prior to scheduling. IsReverse implements greater-than. 3468 template<bool IsReverse> 3469 struct SUnitOrder { 3470 bool operator()(SUnit *A, SUnit *B) const { 3471 if (IsReverse) 3472 return A->NodeNum > B->NodeNum; 3473 else 3474 return A->NodeNum < B->NodeNum; 3475 } 3476 }; 3477 3478 /// Reorder instructions as much as possible. 3479 class InstructionShuffler : public MachineSchedStrategy { 3480 bool IsAlternating; 3481 bool IsTopDown; 3482 3483 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3484 // gives nodes with a higher number higher priority causing the latest 3485 // instructions to be scheduled first. 3486 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3487 TopQ; 3488 3489 // When scheduling bottom-up, use greater-than as the queue priority. 3490 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3491 BottomQ; 3492 3493 public: 3494 InstructionShuffler(bool alternate, bool topdown) 3495 : IsAlternating(alternate), IsTopDown(topdown) {} 3496 3497 void initialize(ScheduleDAGMI*) override { 3498 TopQ.clear(); 3499 BottomQ.clear(); 3500 } 3501 3502 /// Implement MachineSchedStrategy interface. 3503 /// ----------------------------------------- 3504 3505 SUnit *pickNode(bool &IsTopNode) override { 3506 SUnit *SU; 3507 if (IsTopDown) { 3508 do { 3509 if (TopQ.empty()) return nullptr; 3510 SU = TopQ.top(); 3511 TopQ.pop(); 3512 } while (SU->isScheduled); 3513 IsTopNode = true; 3514 } else { 3515 do { 3516 if (BottomQ.empty()) return nullptr; 3517 SU = BottomQ.top(); 3518 BottomQ.pop(); 3519 } while (SU->isScheduled); 3520 IsTopNode = false; 3521 } 3522 if (IsAlternating) 3523 IsTopDown = !IsTopDown; 3524 return SU; 3525 } 3526 3527 void schedNode(SUnit *SU, bool IsTopNode) override {} 3528 3529 void releaseTopNode(SUnit *SU) override { 3530 TopQ.push(SU); 3531 } 3532 void releaseBottomNode(SUnit *SU) override { 3533 BottomQ.push(SU); 3534 } 3535 }; 3536 3537 } // end anonymous namespace 3538 3539 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3540 bool Alternate = !ForceTopDown && !ForceBottomUp; 3541 bool TopDown = !ForceBottomUp; 3542 assert((TopDown || !ForceTopDown) && 3543 "-misched-topdown incompatible with -misched-bottomup"); 3544 return new ScheduleDAGMILive( 3545 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3546 } 3547 3548 static MachineSchedRegistry ShufflerRegistry( 3549 "shuffle", "Shuffle machine instructions alternating directions", 3550 createInstructionShuffler); 3551 #endif // !NDEBUG 3552 3553 //===----------------------------------------------------------------------===// 3554 // GraphWriter support for ScheduleDAGMILive. 3555 //===----------------------------------------------------------------------===// 3556 3557 #ifndef NDEBUG 3558 namespace llvm { 3559 3560 template<> struct GraphTraits< 3561 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3562 3563 template<> 3564 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3565 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3566 3567 static std::string getGraphName(const ScheduleDAG *G) { 3568 return G->MF.getName(); 3569 } 3570 3571 static bool renderGraphFromBottomUp() { 3572 return true; 3573 } 3574 3575 static bool isNodeHidden(const SUnit *Node) { 3576 if (ViewMISchedCutoff == 0) 3577 return false; 3578 return (Node->Preds.size() > ViewMISchedCutoff 3579 || Node->Succs.size() > ViewMISchedCutoff); 3580 } 3581 3582 /// If you want to override the dot attributes printed for a particular 3583 /// edge, override this method. 3584 static std::string getEdgeAttributes(const SUnit *Node, 3585 SUnitIterator EI, 3586 const ScheduleDAG *Graph) { 3587 if (EI.isArtificialDep()) 3588 return "color=cyan,style=dashed"; 3589 if (EI.isCtrlDep()) 3590 return "color=blue,style=dashed"; 3591 return ""; 3592 } 3593 3594 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3595 std::string Str; 3596 raw_string_ostream SS(Str); 3597 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3598 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3599 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3600 SS << "SU:" << SU->NodeNum; 3601 if (DFS) 3602 SS << " I:" << DFS->getNumInstrs(SU); 3603 return SS.str(); 3604 } 3605 3606 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3607 return G->getGraphNodeLabel(SU); 3608 } 3609 3610 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3611 std::string Str("shape=Mrecord"); 3612 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3613 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3614 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3615 if (DFS) { 3616 Str += ",style=filled,fillcolor=\"#"; 3617 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3618 Str += '"'; 3619 } 3620 return Str; 3621 } 3622 }; 3623 3624 } // end namespace llvm 3625 #endif // NDEBUG 3626 3627 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3628 /// rendered using 'dot'. 3629 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3630 #ifndef NDEBUG 3631 ViewGraph(this, Name, false, Title); 3632 #else 3633 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3634 << "systems with Graphviz or gv!\n"; 3635 #endif // NDEBUG 3636 } 3637 3638 /// Out-of-line implementation with no arguments is handy for gdb. 3639 void ScheduleDAGMI::viewGraph() { 3640 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3641 } 3642