1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/ScheduleDFS.h" 27 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/GraphWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include <queue> 35 36 using namespace llvm; 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 } 44 45 #ifndef NDEBUG 46 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 47 cl::desc("Pop up a window to show MISched dags after they are processed")); 48 49 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 50 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 51 #else 52 static bool ViewMISchedDAGs = false; 53 #endif // NDEBUG 54 55 // FIXME: remove this flag after initial testing. It should always be a good 56 // thing. 57 static cl::opt<bool> EnableCopyConstrain("misched-vcopy", cl::Hidden, 58 cl::desc("Constrain vreg copies."), cl::init(true)); 59 60 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 61 cl::desc("Enable load clustering."), cl::init(true)); 62 63 // Experimental heuristics 64 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 65 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 66 67 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 68 cl::desc("Verify machine instrs before and after machine scheduling")); 69 70 // DAG subtrees must have at least this many nodes. 71 static const unsigned MinSubtreeSize = 8; 72 73 //===----------------------------------------------------------------------===// 74 // Machine Instruction Scheduling Pass and Registry 75 //===----------------------------------------------------------------------===// 76 77 MachineSchedContext::MachineSchedContext(): 78 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 79 RegClassInfo = new RegisterClassInfo(); 80 } 81 82 MachineSchedContext::~MachineSchedContext() { 83 delete RegClassInfo; 84 } 85 86 namespace { 87 /// MachineScheduler runs after coalescing and before register allocation. 88 class MachineScheduler : public MachineSchedContext, 89 public MachineFunctionPass { 90 public: 91 MachineScheduler(); 92 93 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 94 95 virtual void releaseMemory() {} 96 97 virtual bool runOnMachineFunction(MachineFunction&); 98 99 virtual void print(raw_ostream &O, const Module* = 0) const; 100 101 static char ID; // Class identification, replacement for typeinfo 102 }; 103 } // namespace 104 105 char MachineScheduler::ID = 0; 106 107 char &llvm::MachineSchedulerID = MachineScheduler::ID; 108 109 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 110 "Machine Instruction Scheduler", false, false) 111 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 112 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 113 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 114 INITIALIZE_PASS_END(MachineScheduler, "misched", 115 "Machine Instruction Scheduler", false, false) 116 117 MachineScheduler::MachineScheduler() 118 : MachineFunctionPass(ID) { 119 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 120 } 121 122 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 123 AU.setPreservesCFG(); 124 AU.addRequiredID(MachineDominatorsID); 125 AU.addRequired<MachineLoopInfo>(); 126 AU.addRequired<AliasAnalysis>(); 127 AU.addRequired<TargetPassConfig>(); 128 AU.addRequired<SlotIndexes>(); 129 AU.addPreserved<SlotIndexes>(); 130 AU.addRequired<LiveIntervals>(); 131 AU.addPreserved<LiveIntervals>(); 132 MachineFunctionPass::getAnalysisUsage(AU); 133 } 134 135 MachinePassRegistry MachineSchedRegistry::Registry; 136 137 /// A dummy default scheduler factory indicates whether the scheduler 138 /// is overridden on the command line. 139 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 140 return 0; 141 } 142 143 /// MachineSchedOpt allows command line selection of the scheduler. 144 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 145 RegisterPassParser<MachineSchedRegistry> > 146 MachineSchedOpt("misched", 147 cl::init(&useDefaultMachineSched), cl::Hidden, 148 cl::desc("Machine instruction scheduler to use")); 149 150 static MachineSchedRegistry 151 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 152 useDefaultMachineSched); 153 154 /// Forward declare the standard machine scheduler. This will be used as the 155 /// default scheduler if the target does not set a default. 156 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 157 158 159 /// Decrement this iterator until reaching the top or a non-debug instr. 160 static MachineBasicBlock::iterator 161 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 162 assert(I != Beg && "reached the top of the region, cannot decrement"); 163 while (--I != Beg) { 164 if (!I->isDebugValue()) 165 break; 166 } 167 return I; 168 } 169 170 /// If this iterator is a debug value, increment until reaching the End or a 171 /// non-debug instruction. 172 static MachineBasicBlock::iterator 173 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 174 for(; I != End; ++I) { 175 if (!I->isDebugValue()) 176 break; 177 } 178 return I; 179 } 180 181 /// Top-level MachineScheduler pass driver. 182 /// 183 /// Visit blocks in function order. Divide each block into scheduling regions 184 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 185 /// consistent with the DAG builder, which traverses the interior of the 186 /// scheduling regions bottom-up. 187 /// 188 /// This design avoids exposing scheduling boundaries to the DAG builder, 189 /// simplifying the DAG builder's support for "special" target instructions. 190 /// At the same time the design allows target schedulers to operate across 191 /// scheduling boundaries, for example to bundle the boudary instructions 192 /// without reordering them. This creates complexity, because the target 193 /// scheduler must update the RegionBegin and RegionEnd positions cached by 194 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 195 /// design would be to split blocks at scheduling boundaries, but LLVM has a 196 /// general bias against block splitting purely for implementation simplicity. 197 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 198 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 199 200 // Initialize the context of the pass. 201 MF = &mf; 202 MLI = &getAnalysis<MachineLoopInfo>(); 203 MDT = &getAnalysis<MachineDominatorTree>(); 204 PassConfig = &getAnalysis<TargetPassConfig>(); 205 AA = &getAnalysis<AliasAnalysis>(); 206 207 LIS = &getAnalysis<LiveIntervals>(); 208 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 209 210 if (VerifyScheduling) { 211 DEBUG(LIS->print(dbgs())); 212 MF->verify(this, "Before machine scheduling."); 213 } 214 RegClassInfo->runOnMachineFunction(*MF); 215 216 // Select the scheduler, or set the default. 217 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 218 if (Ctor == useDefaultMachineSched) { 219 // Get the default scheduler set by the target. 220 Ctor = MachineSchedRegistry::getDefault(); 221 if (!Ctor) { 222 Ctor = createConvergingSched; 223 MachineSchedRegistry::setDefault(Ctor); 224 } 225 } 226 // Instantiate the selected scheduler. 227 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 228 229 // Visit all machine basic blocks. 230 // 231 // TODO: Visit blocks in global postorder or postorder within the bottom-up 232 // loop tree. Then we can optionally compute global RegPressure. 233 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 234 MBB != MBBEnd; ++MBB) { 235 236 Scheduler->startBlock(MBB); 237 238 // Break the block into scheduling regions [I, RegionEnd), and schedule each 239 // region as soon as it is discovered. RegionEnd points the scheduling 240 // boundary at the bottom of the region. The DAG does not include RegionEnd, 241 // but the region does (i.e. the next RegionEnd is above the previous 242 // RegionBegin). If the current block has no terminator then RegionEnd == 243 // MBB->end() for the bottom region. 244 // 245 // The Scheduler may insert instructions during either schedule() or 246 // exitRegion(), even for empty regions. So the local iterators 'I' and 247 // 'RegionEnd' are invalid across these calls. 248 unsigned RemainingInstrs = MBB->size(); 249 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 250 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 251 252 // Avoid decrementing RegionEnd for blocks with no terminator. 253 if (RegionEnd != MBB->end() 254 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 255 --RegionEnd; 256 // Count the boundary instruction. 257 --RemainingInstrs; 258 } 259 260 // The next region starts above the previous region. Look backward in the 261 // instruction stream until we find the nearest boundary. 262 MachineBasicBlock::iterator I = RegionEnd; 263 for(;I != MBB->begin(); --I, --RemainingInstrs) { 264 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 265 break; 266 } 267 // Notify the scheduler of the region, even if we may skip scheduling 268 // it. Perhaps it still needs to be bundled. 269 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); 270 271 // Skip empty scheduling regions (0 or 1 schedulable instructions). 272 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 273 // Close the current region. Bundle the terminator if needed. 274 // This invalidates 'RegionEnd' and 'I'. 275 Scheduler->exitRegion(); 276 continue; 277 } 278 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 279 DEBUG(dbgs() << MF->getName() 280 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 281 << "\n From: " << *I << " To: "; 282 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 283 else dbgs() << "End"; 284 dbgs() << " Remaining: " << RemainingInstrs << "\n"); 285 286 // Schedule a region: possibly reorder instructions. 287 // This invalidates 'RegionEnd' and 'I'. 288 Scheduler->schedule(); 289 290 // Close the current region. 291 Scheduler->exitRegion(); 292 293 // Scheduling has invalidated the current iterator 'I'. Ask the 294 // scheduler for the top of it's scheduled region. 295 RegionEnd = Scheduler->begin(); 296 } 297 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 298 Scheduler->finishBlock(); 299 } 300 Scheduler->finalizeSchedule(); 301 DEBUG(LIS->print(dbgs())); 302 if (VerifyScheduling) 303 MF->verify(this, "After machine scheduling."); 304 return true; 305 } 306 307 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 308 // unimplemented 309 } 310 311 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 312 void ReadyQueue::dump() { 313 dbgs() << " " << Name << ": "; 314 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 315 dbgs() << Queue[i]->NodeNum << " "; 316 dbgs() << "\n"; 317 } 318 #endif 319 320 //===----------------------------------------------------------------------===// 321 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 322 // preservation. 323 //===----------------------------------------------------------------------===// 324 325 ScheduleDAGMI::~ScheduleDAGMI() { 326 delete DFSResult; 327 DeleteContainerPointers(Mutations); 328 delete SchedImpl; 329 } 330 331 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 332 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 333 } 334 335 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 336 if (SuccSU != &ExitSU) { 337 // Do not use WillCreateCycle, it assumes SD scheduling. 338 // If Pred is reachable from Succ, then the edge creates a cycle. 339 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 340 return false; 341 Topo.AddPred(SuccSU, PredDep.getSUnit()); 342 } 343 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 344 // Return true regardless of whether a new edge needed to be inserted. 345 return true; 346 } 347 348 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 349 /// NumPredsLeft reaches zero, release the successor node. 350 /// 351 /// FIXME: Adjust SuccSU height based on MinLatency. 352 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 353 SUnit *SuccSU = SuccEdge->getSUnit(); 354 355 if (SuccEdge->isWeak()) { 356 --SuccSU->WeakPredsLeft; 357 if (SuccEdge->isCluster()) 358 NextClusterSucc = SuccSU; 359 return; 360 } 361 #ifndef NDEBUG 362 if (SuccSU->NumPredsLeft == 0) { 363 dbgs() << "*** Scheduling failed! ***\n"; 364 SuccSU->dump(this); 365 dbgs() << " has been released too many times!\n"; 366 llvm_unreachable(0); 367 } 368 #endif 369 --SuccSU->NumPredsLeft; 370 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 371 SchedImpl->releaseTopNode(SuccSU); 372 } 373 374 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 375 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 376 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 377 I != E; ++I) { 378 releaseSucc(SU, &*I); 379 } 380 } 381 382 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 383 /// NumSuccsLeft reaches zero, release the predecessor node. 384 /// 385 /// FIXME: Adjust PredSU height based on MinLatency. 386 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 387 SUnit *PredSU = PredEdge->getSUnit(); 388 389 if (PredEdge->isWeak()) { 390 --PredSU->WeakSuccsLeft; 391 if (PredEdge->isCluster()) 392 NextClusterPred = PredSU; 393 return; 394 } 395 #ifndef NDEBUG 396 if (PredSU->NumSuccsLeft == 0) { 397 dbgs() << "*** Scheduling failed! ***\n"; 398 PredSU->dump(this); 399 dbgs() << " has been released too many times!\n"; 400 llvm_unreachable(0); 401 } 402 #endif 403 --PredSU->NumSuccsLeft; 404 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 405 SchedImpl->releaseBottomNode(PredSU); 406 } 407 408 /// releasePredecessors - Call releasePred on each of SU's predecessors. 409 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 410 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 411 I != E; ++I) { 412 releasePred(SU, &*I); 413 } 414 } 415 416 /// This is normally called from the main scheduler loop but may also be invoked 417 /// by the scheduling strategy to perform additional code motion. 418 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 419 MachineBasicBlock::iterator InsertPos) { 420 // Advance RegionBegin if the first instruction moves down. 421 if (&*RegionBegin == MI) 422 ++RegionBegin; 423 424 // Update the instruction stream. 425 BB->splice(InsertPos, BB, MI); 426 427 // Update LiveIntervals 428 LIS->handleMove(MI, /*UpdateFlags=*/true); 429 430 // Recede RegionBegin if an instruction moves above the first. 431 if (RegionBegin == InsertPos) 432 RegionBegin = MI; 433 } 434 435 bool ScheduleDAGMI::checkSchedLimit() { 436 #ifndef NDEBUG 437 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 438 CurrentTop = CurrentBottom; 439 return false; 440 } 441 ++NumInstrsScheduled; 442 #endif 443 return true; 444 } 445 446 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 447 /// crossing a scheduling boundary. [begin, end) includes all instructions in 448 /// the region, including the boundary itself and single-instruction regions 449 /// that don't get scheduled. 450 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 451 MachineBasicBlock::iterator begin, 452 MachineBasicBlock::iterator end, 453 unsigned endcount) 454 { 455 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); 456 457 // For convenience remember the end of the liveness region. 458 LiveRegionEnd = 459 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 460 } 461 462 // Setup the register pressure trackers for the top scheduled top and bottom 463 // scheduled regions. 464 void ScheduleDAGMI::initRegPressure() { 465 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 466 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 467 468 // Close the RPTracker to finalize live ins. 469 RPTracker.closeRegion(); 470 471 DEBUG(RPTracker.getPressure().dump(TRI)); 472 473 // Initialize the live ins and live outs. 474 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 475 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 476 477 // Close one end of the tracker so we can call 478 // getMaxUpward/DownwardPressureDelta before advancing across any 479 // instructions. This converts currently live regs into live ins/outs. 480 TopRPTracker.closeTop(); 481 BotRPTracker.closeBottom(); 482 483 // Account for liveness generated by the region boundary. 484 if (LiveRegionEnd != RegionEnd) 485 BotRPTracker.recede(); 486 487 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 488 489 // Cache the list of excess pressure sets in this region. This will also track 490 // the max pressure in the scheduled code for these sets. 491 RegionCriticalPSets.clear(); 492 const std::vector<unsigned> &RegionPressure = 493 RPTracker.getPressure().MaxSetPressure; 494 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 495 unsigned Limit = TRI->getRegPressureSetLimit(i); 496 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 497 << "Limit " << Limit 498 << " Actual " << RegionPressure[i] << "\n"); 499 if (RegionPressure[i] > Limit) 500 RegionCriticalPSets.push_back(PressureElement(i, 0)); 501 } 502 DEBUG(dbgs() << "Excess PSets: "; 503 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 504 dbgs() << TRI->getRegPressureSetName( 505 RegionCriticalPSets[i].PSetID) << " "; 506 dbgs() << "\n"); 507 } 508 509 // FIXME: When the pressure tracker deals in pressure differences then we won't 510 // iterate over all RegionCriticalPSets[i]. 511 void ScheduleDAGMI:: 512 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 513 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 514 unsigned ID = RegionCriticalPSets[i].PSetID; 515 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 516 if ((int)NewMaxPressure[ID] > MaxUnits) 517 MaxUnits = NewMaxPressure[ID]; 518 } 519 DEBUG( 520 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) { 521 unsigned Limit = TRI->getRegPressureSetLimit(i); 522 if (NewMaxPressure[i] > Limit ) { 523 dbgs() << " " << TRI->getRegPressureSetName(i) << ": " 524 << NewMaxPressure[i] << " > " << Limit << "\n"; 525 } 526 }); 527 } 528 529 /// schedule - Called back from MachineScheduler::runOnMachineFunction 530 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 531 /// only includes instructions that have DAG nodes, not scheduling boundaries. 532 /// 533 /// This is a skeletal driver, with all the functionality pushed into helpers, 534 /// so that it can be easilly extended by experimental schedulers. Generally, 535 /// implementing MachineSchedStrategy should be sufficient to implement a new 536 /// scheduling algorithm. However, if a scheduler further subclasses 537 /// ScheduleDAGMI then it will want to override this virtual method in order to 538 /// update any specialized state. 539 void ScheduleDAGMI::schedule() { 540 buildDAGWithRegPressure(); 541 542 Topo.InitDAGTopologicalSorting(); 543 544 postprocessDAG(); 545 546 SmallVector<SUnit*, 8> TopRoots, BotRoots; 547 findRootsAndBiasEdges(TopRoots, BotRoots); 548 549 // Initialize the strategy before modifying the DAG. 550 // This may initialize a DFSResult to be used for queue priority. 551 SchedImpl->initialize(this); 552 553 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 554 SUnits[su].dumpAll(this)); 555 if (ViewMISchedDAGs) viewGraph(); 556 557 // Initialize ready queues now that the DAG and priority data are finalized. 558 initQueues(TopRoots, BotRoots); 559 560 bool IsTopNode = false; 561 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 562 assert(!SU->isScheduled && "Node already scheduled"); 563 if (!checkSchedLimit()) 564 break; 565 566 scheduleMI(SU, IsTopNode); 567 568 updateQueues(SU, IsTopNode); 569 } 570 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 571 572 placeDebugValues(); 573 574 DEBUG({ 575 unsigned BBNum = begin()->getParent()->getNumber(); 576 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 577 dumpSchedule(); 578 dbgs() << '\n'; 579 }); 580 } 581 582 /// Build the DAG and setup three register pressure trackers. 583 void ScheduleDAGMI::buildDAGWithRegPressure() { 584 // Initialize the register pressure tracker used by buildSchedGraph. 585 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 586 587 // Account for liveness generate by the region boundary. 588 if (LiveRegionEnd != RegionEnd) 589 RPTracker.recede(); 590 591 // Build the DAG, and compute current register pressure. 592 buildSchedGraph(AA, &RPTracker); 593 594 // Initialize top/bottom trackers after computing region pressure. 595 initRegPressure(); 596 } 597 598 /// Apply each ScheduleDAGMutation step in order. 599 void ScheduleDAGMI::postprocessDAG() { 600 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 601 Mutations[i]->apply(this); 602 } 603 } 604 605 void ScheduleDAGMI::computeDFSResult() { 606 if (!DFSResult) 607 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 608 DFSResult->clear(); 609 ScheduledTrees.clear(); 610 DFSResult->resize(SUnits.size()); 611 DFSResult->compute(SUnits); 612 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 613 } 614 615 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 616 SmallVectorImpl<SUnit*> &BotRoots) { 617 for (std::vector<SUnit>::iterator 618 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 619 SUnit *SU = &(*I); 620 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 621 622 // Order predecessors so DFSResult follows the critical path. 623 SU->biasCriticalPath(); 624 625 // A SUnit is ready to top schedule if it has no predecessors. 626 if (!I->NumPredsLeft) 627 TopRoots.push_back(SU); 628 // A SUnit is ready to bottom schedule if it has no successors. 629 if (!I->NumSuccsLeft) 630 BotRoots.push_back(SU); 631 } 632 ExitSU.biasCriticalPath(); 633 } 634 635 /// Identify DAG roots and setup scheduler queues. 636 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 637 ArrayRef<SUnit*> BotRoots) { 638 NextClusterSucc = NULL; 639 NextClusterPred = NULL; 640 641 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 642 // 643 // Nodes with unreleased weak edges can still be roots. 644 // Release top roots in forward order. 645 for (SmallVectorImpl<SUnit*>::const_iterator 646 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 647 SchedImpl->releaseTopNode(*I); 648 } 649 // Release bottom roots in reverse order so the higher priority nodes appear 650 // first. This is more natural and slightly more efficient. 651 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 652 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 653 SchedImpl->releaseBottomNode(*I); 654 } 655 656 releaseSuccessors(&EntrySU); 657 releasePredecessors(&ExitSU); 658 659 SchedImpl->registerRoots(); 660 661 // Advance past initial DebugValues. 662 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 663 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 664 TopRPTracker.setPos(CurrentTop); 665 666 CurrentBottom = RegionEnd; 667 } 668 669 /// Move an instruction and update register pressure. 670 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 671 // Move the instruction to its new location in the instruction stream. 672 MachineInstr *MI = SU->getInstr(); 673 674 if (IsTopNode) { 675 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 676 if (&*CurrentTop == MI) 677 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 678 else { 679 moveInstruction(MI, CurrentTop); 680 TopRPTracker.setPos(MI); 681 } 682 683 // Update top scheduled pressure. 684 TopRPTracker.advance(); 685 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 686 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 687 } 688 else { 689 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 690 MachineBasicBlock::iterator priorII = 691 priorNonDebug(CurrentBottom, CurrentTop); 692 if (&*priorII == MI) 693 CurrentBottom = priorII; 694 else { 695 if (&*CurrentTop == MI) { 696 CurrentTop = nextIfDebug(++CurrentTop, priorII); 697 TopRPTracker.setPos(CurrentTop); 698 } 699 moveInstruction(MI, CurrentBottom); 700 CurrentBottom = MI; 701 } 702 // Update bottom scheduled pressure. 703 BotRPTracker.recede(); 704 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 705 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 706 } 707 } 708 709 /// Update scheduler queues after scheduling an instruction. 710 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 711 // Release dependent instructions for scheduling. 712 if (IsTopNode) 713 releaseSuccessors(SU); 714 else 715 releasePredecessors(SU); 716 717 SU->isScheduled = true; 718 719 if (DFSResult) { 720 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 721 if (!ScheduledTrees.test(SubtreeID)) { 722 ScheduledTrees.set(SubtreeID); 723 DFSResult->scheduleTree(SubtreeID); 724 SchedImpl->scheduleTree(SubtreeID); 725 } 726 } 727 728 // Notify the scheduling strategy after updating the DAG. 729 SchedImpl->schedNode(SU, IsTopNode); 730 } 731 732 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 733 void ScheduleDAGMI::placeDebugValues() { 734 // If first instruction was a DBG_VALUE then put it back. 735 if (FirstDbgValue) { 736 BB->splice(RegionBegin, BB, FirstDbgValue); 737 RegionBegin = FirstDbgValue; 738 } 739 740 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 741 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 742 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 743 MachineInstr *DbgValue = P.first; 744 MachineBasicBlock::iterator OrigPrevMI = P.second; 745 if (&*RegionBegin == DbgValue) 746 ++RegionBegin; 747 BB->splice(++OrigPrevMI, BB, DbgValue); 748 if (OrigPrevMI == llvm::prior(RegionEnd)) 749 RegionEnd = DbgValue; 750 } 751 DbgValues.clear(); 752 FirstDbgValue = NULL; 753 } 754 755 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 756 void ScheduleDAGMI::dumpSchedule() const { 757 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 758 if (SUnit *SU = getSUnit(&(*MI))) 759 SU->dump(this); 760 else 761 dbgs() << "Missing SUnit\n"; 762 } 763 } 764 #endif 765 766 //===----------------------------------------------------------------------===// 767 // LoadClusterMutation - DAG post-processing to cluster loads. 768 //===----------------------------------------------------------------------===// 769 770 namespace { 771 /// \brief Post-process the DAG to create cluster edges between neighboring 772 /// loads. 773 class LoadClusterMutation : public ScheduleDAGMutation { 774 struct LoadInfo { 775 SUnit *SU; 776 unsigned BaseReg; 777 unsigned Offset; 778 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 779 : SU(su), BaseReg(reg), Offset(ofs) {} 780 }; 781 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 782 const LoadClusterMutation::LoadInfo &RHS); 783 784 const TargetInstrInfo *TII; 785 const TargetRegisterInfo *TRI; 786 public: 787 LoadClusterMutation(const TargetInstrInfo *tii, 788 const TargetRegisterInfo *tri) 789 : TII(tii), TRI(tri) {} 790 791 virtual void apply(ScheduleDAGMI *DAG); 792 protected: 793 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 794 }; 795 } // anonymous 796 797 bool LoadClusterMutation::LoadInfoLess( 798 const LoadClusterMutation::LoadInfo &LHS, 799 const LoadClusterMutation::LoadInfo &RHS) { 800 if (LHS.BaseReg != RHS.BaseReg) 801 return LHS.BaseReg < RHS.BaseReg; 802 return LHS.Offset < RHS.Offset; 803 } 804 805 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 806 ScheduleDAGMI *DAG) { 807 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 808 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 809 SUnit *SU = Loads[Idx]; 810 unsigned BaseReg; 811 unsigned Offset; 812 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 813 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 814 } 815 if (LoadRecords.size() < 2) 816 return; 817 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 818 unsigned ClusterLength = 1; 819 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 820 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 821 ClusterLength = 1; 822 continue; 823 } 824 825 SUnit *SUa = LoadRecords[Idx].SU; 826 SUnit *SUb = LoadRecords[Idx+1].SU; 827 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 828 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 829 830 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 831 << SUb->NodeNum << ")\n"); 832 // Copy successor edges from SUa to SUb. Interleaving computation 833 // dependent on SUa can prevent load combining due to register reuse. 834 // Predecessor edges do not need to be copied from SUb to SUa since nearby 835 // loads should have effectively the same inputs. 836 for (SUnit::const_succ_iterator 837 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 838 if (SI->getSUnit() == SUb) 839 continue; 840 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 841 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 842 } 843 ++ClusterLength; 844 } 845 else 846 ClusterLength = 1; 847 } 848 } 849 850 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 851 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 852 // Map DAG NodeNum to store chain ID. 853 DenseMap<unsigned, unsigned> StoreChainIDs; 854 // Map each store chain to a set of dependent loads. 855 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 856 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 857 SUnit *SU = &DAG->SUnits[Idx]; 858 if (!SU->getInstr()->mayLoad()) 859 continue; 860 unsigned ChainPredID = DAG->SUnits.size(); 861 for (SUnit::const_pred_iterator 862 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 863 if (PI->isCtrl()) { 864 ChainPredID = PI->getSUnit()->NodeNum; 865 break; 866 } 867 } 868 // Check if this chain-like pred has been seen 869 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 870 unsigned NumChains = StoreChainDependents.size(); 871 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 872 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 873 if (Result.second) 874 StoreChainDependents.resize(NumChains + 1); 875 StoreChainDependents[Result.first->second].push_back(SU); 876 } 877 // Iterate over the store chains. 878 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 879 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 880 } 881 882 //===----------------------------------------------------------------------===// 883 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 884 //===----------------------------------------------------------------------===// 885 886 namespace { 887 /// \brief Post-process the DAG to create cluster edges between instructions 888 /// that may be fused by the processor into a single operation. 889 class MacroFusion : public ScheduleDAGMutation { 890 const TargetInstrInfo *TII; 891 public: 892 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 893 894 virtual void apply(ScheduleDAGMI *DAG); 895 }; 896 } // anonymous 897 898 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 899 /// fused operations. 900 void MacroFusion::apply(ScheduleDAGMI *DAG) { 901 // For now, assume targets can only fuse with the branch. 902 MachineInstr *Branch = DAG->ExitSU.getInstr(); 903 if (!Branch) 904 return; 905 906 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 907 SUnit *SU = &DAG->SUnits[--Idx]; 908 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 909 continue; 910 911 // Create a single weak edge from SU to ExitSU. The only effect is to cause 912 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 913 // need to copy predecessor edges from ExitSU to SU, since top-down 914 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 915 // of SU, we could create an artificial edge from the deepest root, but it 916 // hasn't been needed yet. 917 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 918 (void)Success; 919 assert(Success && "No DAG nodes should be reachable from ExitSU"); 920 921 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 922 break; 923 } 924 } 925 926 //===----------------------------------------------------------------------===// 927 // CopyConstrain - DAG post-processing to encourage copy elimination. 928 //===----------------------------------------------------------------------===// 929 930 namespace { 931 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 932 /// the one use that defines the copy's source vreg, most likely an induction 933 /// variable increment. 934 class CopyConstrain : public ScheduleDAGMutation { 935 // Transient state. 936 SlotIndex RegionBeginIdx; 937 // RegionEndIdx is the slot index of the last non-debug instruction in the 938 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 939 SlotIndex RegionEndIdx; 940 public: 941 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 942 943 virtual void apply(ScheduleDAGMI *DAG); 944 945 protected: 946 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); 947 }; 948 } // anonymous 949 950 /// constrainLocalCopy handles two possibilities: 951 /// 1) Local src: 952 /// I0: = dst 953 /// I1: src = ... 954 /// I2: = dst 955 /// I3: dst = src (copy) 956 /// (create pred->succ edges I0->I1, I2->I1) 957 /// 958 /// 2) Local copy: 959 /// I0: dst = src (copy) 960 /// I1: = dst 961 /// I2: src = ... 962 /// I3: = dst 963 /// (create pred->succ edges I1->I2, I3->I2) 964 /// 965 /// Although the MachineScheduler is currently constrained to single blocks, 966 /// this algorithm should handle extended blocks. An EBB is a set of 967 /// contiguously numbered blocks such that the previous block in the EBB is 968 /// always the single predecessor. 969 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { 970 LiveIntervals *LIS = DAG->getLIS(); 971 MachineInstr *Copy = CopySU->getInstr(); 972 973 // Check for pure vreg copies. 974 unsigned SrcReg = Copy->getOperand(1).getReg(); 975 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 976 return; 977 978 unsigned DstReg = Copy->getOperand(0).getReg(); 979 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 980 return; 981 982 // Check if either the dest or source is local. If it's live across a back 983 // edge, it's not local. Note that if both vregs are live across the back 984 // edge, we cannot successfully contrain the copy without cyclic scheduling. 985 unsigned LocalReg = DstReg; 986 unsigned GlobalReg = SrcReg; 987 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 988 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 989 LocalReg = SrcReg; 990 GlobalReg = DstReg; 991 LocalLI = &LIS->getInterval(LocalReg); 992 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 993 return; 994 } 995 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 996 997 // Find the global segment after the start of the local LI. 998 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 999 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1000 // local live range. We could create edges from other global uses to the local 1001 // start, but the coalescer should have already eliminated these cases, so 1002 // don't bother dealing with it. 1003 if (GlobalSegment == GlobalLI->end()) 1004 return; 1005 1006 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1007 // returned the next global segment. But if GlobalSegment overlaps with 1008 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1009 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1010 if (GlobalSegment->contains(LocalLI->beginIndex())) 1011 ++GlobalSegment; 1012 1013 if (GlobalSegment == GlobalLI->end()) 1014 return; 1015 1016 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1017 if (GlobalSegment != GlobalLI->begin()) { 1018 // Two address defs have no hole. 1019 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, 1020 GlobalSegment->start)) { 1021 return; 1022 } 1023 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1024 // it would be a disconnected component in the live range. 1025 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && 1026 "Disconnected LRG within the scheduling region."); 1027 } 1028 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1029 if (!GlobalDef) 1030 return; 1031 1032 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1033 if (!GlobalSU) 1034 return; 1035 1036 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1037 // constraining the uses of the last local def to precede GlobalDef. 1038 SmallVector<SUnit*,8> LocalUses; 1039 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1040 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1041 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1042 for (SUnit::const_succ_iterator 1043 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1044 I != E; ++I) { 1045 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1046 continue; 1047 if (I->getSUnit() == GlobalSU) 1048 continue; 1049 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1050 return; 1051 LocalUses.push_back(I->getSUnit()); 1052 } 1053 // Open the top of the GlobalLI hole by constraining any earlier global uses 1054 // to precede the start of LocalLI. 1055 SmallVector<SUnit*,8> GlobalUses; 1056 MachineInstr *FirstLocalDef = 1057 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1058 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1059 for (SUnit::const_pred_iterator 1060 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1061 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1062 continue; 1063 if (I->getSUnit() == FirstLocalSU) 1064 continue; 1065 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1066 return; 1067 GlobalUses.push_back(I->getSUnit()); 1068 } 1069 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1070 // Add the weak edges. 1071 for (SmallVectorImpl<SUnit*>::const_iterator 1072 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1073 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1074 << GlobalSU->NodeNum << ")\n"); 1075 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1076 } 1077 for (SmallVectorImpl<SUnit*>::const_iterator 1078 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1079 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1080 << FirstLocalSU->NodeNum << ")\n"); 1081 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1082 } 1083 } 1084 1085 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1086 /// copy elimination. 1087 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1088 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1089 if (FirstPos == DAG->end()) 1090 return; 1091 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1092 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1093 &*priorNonDebug(DAG->end(), DAG->begin())); 1094 1095 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1096 SUnit *SU = &DAG->SUnits[Idx]; 1097 if (!SU->getInstr()->isCopy()) 1098 continue; 1099 1100 constrainLocalCopy(SU, DAG); 1101 } 1102 } 1103 1104 //===----------------------------------------------------------------------===// 1105 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. 1106 //===----------------------------------------------------------------------===// 1107 1108 namespace { 1109 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 1110 /// the schedule. 1111 class ConvergingScheduler : public MachineSchedStrategy { 1112 public: 1113 /// Represent the type of SchedCandidate found within a single queue. 1114 /// pickNodeBidirectional depends on these listed by decreasing priority. 1115 enum CandReason { 1116 NoCand, PhysRegCopy, SingleExcess, SingleCritical, Cluster, Weak, 1117 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 1118 TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, 1119 NodeOrder}; 1120 1121 #ifndef NDEBUG 1122 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 1123 #endif 1124 1125 /// Policy for scheduling the next instruction in the candidate's zone. 1126 struct CandPolicy { 1127 bool ReduceLatency; 1128 unsigned ReduceResIdx; 1129 unsigned DemandResIdx; 1130 1131 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 1132 }; 1133 1134 /// Status of an instruction's critical resource consumption. 1135 struct SchedResourceDelta { 1136 // Count critical resources in the scheduled region required by SU. 1137 unsigned CritResources; 1138 1139 // Count critical resources from another region consumed by SU. 1140 unsigned DemandedResources; 1141 1142 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 1143 1144 bool operator==(const SchedResourceDelta &RHS) const { 1145 return CritResources == RHS.CritResources 1146 && DemandedResources == RHS.DemandedResources; 1147 } 1148 bool operator!=(const SchedResourceDelta &RHS) const { 1149 return !operator==(RHS); 1150 } 1151 }; 1152 1153 /// Store the state used by ConvergingScheduler heuristics, required for the 1154 /// lifetime of one invocation of pickNode(). 1155 struct SchedCandidate { 1156 CandPolicy Policy; 1157 1158 // The best SUnit candidate. 1159 SUnit *SU; 1160 1161 // The reason for this candidate. 1162 CandReason Reason; 1163 1164 // Register pressure values for the best candidate. 1165 RegPressureDelta RPDelta; 1166 1167 // Critical resource consumption of the best candidate. 1168 SchedResourceDelta ResDelta; 1169 1170 SchedCandidate(const CandPolicy &policy) 1171 : Policy(policy), SU(NULL), Reason(NoCand) {} 1172 1173 bool isValid() const { return SU; } 1174 1175 // Copy the status of another candidate without changing policy. 1176 void setBest(SchedCandidate &Best) { 1177 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 1178 SU = Best.SU; 1179 Reason = Best.Reason; 1180 RPDelta = Best.RPDelta; 1181 ResDelta = Best.ResDelta; 1182 } 1183 1184 void initResourceDelta(const ScheduleDAGMI *DAG, 1185 const TargetSchedModel *SchedModel); 1186 }; 1187 1188 /// Summarize the unscheduled region. 1189 struct SchedRemainder { 1190 // Critical path through the DAG in expected latency. 1191 unsigned CriticalPath; 1192 1193 // Unscheduled resources 1194 SmallVector<unsigned, 16> RemainingCounts; 1195 // Critical resource for the unscheduled zone. 1196 unsigned CritResIdx; 1197 // Number of micro-ops left to schedule. 1198 unsigned RemainingMicroOps; 1199 1200 void reset() { 1201 CriticalPath = 0; 1202 RemainingCounts.clear(); 1203 CritResIdx = 0; 1204 RemainingMicroOps = 0; 1205 } 1206 1207 SchedRemainder() { reset(); } 1208 1209 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1210 1211 unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const { 1212 if (!SchedModel->hasInstrSchedModel()) 1213 return 0; 1214 1215 return std::max( 1216 RemainingMicroOps * SchedModel->getMicroOpFactor(), 1217 RemainingCounts[CritResIdx]); 1218 } 1219 }; 1220 1221 /// Each Scheduling boundary is associated with ready queues. It tracks the 1222 /// current cycle in the direction of movement, and maintains the state 1223 /// of "hazards" and other interlocks at the current cycle. 1224 struct SchedBoundary { 1225 ScheduleDAGMI *DAG; 1226 const TargetSchedModel *SchedModel; 1227 SchedRemainder *Rem; 1228 1229 ReadyQueue Available; 1230 ReadyQueue Pending; 1231 bool CheckPending; 1232 1233 // For heuristics, keep a list of the nodes that immediately depend on the 1234 // most recently scheduled node. 1235 SmallPtrSet<const SUnit*, 8> NextSUs; 1236 1237 ScheduleHazardRecognizer *HazardRec; 1238 1239 unsigned CurrCycle; 1240 unsigned IssueCount; 1241 1242 /// MinReadyCycle - Cycle of the soonest available instruction. 1243 unsigned MinReadyCycle; 1244 1245 // The expected latency of the critical path in this scheduled zone. 1246 unsigned ExpectedLatency; 1247 1248 // Resources used in the scheduled zone beyond this boundary. 1249 SmallVector<unsigned, 16> ResourceCounts; 1250 1251 // Cache the critical resources ID in this scheduled zone. 1252 unsigned CritResIdx; 1253 1254 // Is the scheduled region resource limited vs. latency limited. 1255 bool IsResourceLimited; 1256 1257 unsigned ExpectedCount; 1258 1259 #ifndef NDEBUG 1260 // Remember the greatest min operand latency. 1261 unsigned MaxMinLatency; 1262 #endif 1263 1264 void reset() { 1265 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1266 delete HazardRec; 1267 1268 Available.clear(); 1269 Pending.clear(); 1270 CheckPending = false; 1271 NextSUs.clear(); 1272 HazardRec = 0; 1273 CurrCycle = 0; 1274 IssueCount = 0; 1275 MinReadyCycle = UINT_MAX; 1276 ExpectedLatency = 0; 1277 ResourceCounts.resize(1); 1278 assert(!ResourceCounts[0] && "nonzero count for bad resource"); 1279 CritResIdx = 0; 1280 IsResourceLimited = false; 1281 ExpectedCount = 0; 1282 #ifndef NDEBUG 1283 MaxMinLatency = 0; 1284 #endif 1285 // Reserve a zero-count for invalid CritResIdx. 1286 ResourceCounts.resize(1); 1287 } 1288 1289 /// Pending queues extend the ready queues with the same ID and the 1290 /// PendingFlag set. 1291 SchedBoundary(unsigned ID, const Twine &Name): 1292 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1293 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1294 HazardRec(0) { 1295 reset(); 1296 } 1297 1298 ~SchedBoundary() { delete HazardRec; } 1299 1300 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1301 SchedRemainder *rem); 1302 1303 bool isTop() const { 1304 return Available.getID() == ConvergingScheduler::TopQID; 1305 } 1306 1307 unsigned getUnscheduledLatency(SUnit *SU) const { 1308 if (isTop()) 1309 return SU->getHeight(); 1310 return SU->getDepth() + SU->Latency; 1311 } 1312 1313 unsigned getCriticalCount() const { 1314 return ResourceCounts[CritResIdx]; 1315 } 1316 1317 bool checkHazard(SUnit *SU); 1318 1319 void setLatencyPolicy(CandPolicy &Policy); 1320 1321 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1322 1323 void bumpCycle(); 1324 1325 void countResource(unsigned PIdx, unsigned Cycles); 1326 1327 void bumpNode(SUnit *SU); 1328 1329 void releasePending(); 1330 1331 void removeReady(SUnit *SU); 1332 1333 SUnit *pickOnlyChoice(); 1334 }; 1335 1336 private: 1337 ScheduleDAGMI *DAG; 1338 const TargetSchedModel *SchedModel; 1339 const TargetRegisterInfo *TRI; 1340 1341 // State of the top and bottom scheduled instruction boundaries. 1342 SchedRemainder Rem; 1343 SchedBoundary Top; 1344 SchedBoundary Bot; 1345 1346 public: 1347 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1348 enum { 1349 TopQID = 1, 1350 BotQID = 2, 1351 LogMaxQID = 2 1352 }; 1353 1354 ConvergingScheduler(): 1355 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1356 1357 virtual void initialize(ScheduleDAGMI *dag); 1358 1359 virtual SUnit *pickNode(bool &IsTopNode); 1360 1361 virtual void schedNode(SUnit *SU, bool IsTopNode); 1362 1363 virtual void releaseTopNode(SUnit *SU); 1364 1365 virtual void releaseBottomNode(SUnit *SU); 1366 1367 virtual void registerRoots(); 1368 1369 protected: 1370 void balanceZones( 1371 ConvergingScheduler::SchedBoundary &CriticalZone, 1372 ConvergingScheduler::SchedCandidate &CriticalCand, 1373 ConvergingScheduler::SchedBoundary &OppositeZone, 1374 ConvergingScheduler::SchedCandidate &OppositeCand); 1375 1376 void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, 1377 ConvergingScheduler::SchedCandidate &BotCand); 1378 1379 void tryCandidate(SchedCandidate &Cand, 1380 SchedCandidate &TryCand, 1381 SchedBoundary &Zone, 1382 const RegPressureTracker &RPTracker, 1383 RegPressureTracker &TempTracker); 1384 1385 SUnit *pickNodeBidirectional(bool &IsTopNode); 1386 1387 void pickNodeFromQueue(SchedBoundary &Zone, 1388 const RegPressureTracker &RPTracker, 1389 SchedCandidate &Candidate); 1390 1391 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 1392 1393 #ifndef NDEBUG 1394 void traceCandidate(const SchedCandidate &Cand); 1395 #endif 1396 }; 1397 } // namespace 1398 1399 void ConvergingScheduler::SchedRemainder:: 1400 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1401 reset(); 1402 if (!SchedModel->hasInstrSchedModel()) 1403 return; 1404 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1405 for (std::vector<SUnit>::iterator 1406 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1407 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1408 RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); 1409 for (TargetSchedModel::ProcResIter 1410 PI = SchedModel->getWriteProcResBegin(SC), 1411 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1412 unsigned PIdx = PI->ProcResourceIdx; 1413 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1414 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1415 } 1416 } 1417 for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds(); 1418 PIdx != PEnd; ++PIdx) { 1419 if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx]) 1420 >= (int)SchedModel->getLatencyFactor()) { 1421 CritResIdx = PIdx; 1422 } 1423 } 1424 DEBUG(dbgs() << "Critical Resource: " 1425 << SchedModel->getProcResource(CritResIdx)->Name 1426 << ": " << RemainingCounts[CritResIdx] 1427 << " / " << SchedModel->getLatencyFactor() << '\n'); 1428 } 1429 1430 void ConvergingScheduler::SchedBoundary:: 1431 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1432 reset(); 1433 DAG = dag; 1434 SchedModel = smodel; 1435 Rem = rem; 1436 if (SchedModel->hasInstrSchedModel()) 1437 ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); 1438 } 1439 1440 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1441 DAG = dag; 1442 SchedModel = DAG->getSchedModel(); 1443 TRI = DAG->TRI; 1444 1445 Rem.init(DAG, SchedModel); 1446 Top.init(DAG, SchedModel, &Rem); 1447 Bot.init(DAG, SchedModel, &Rem); 1448 1449 // Initialize resource counts. 1450 1451 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1452 // are disabled, then these HazardRecs will be disabled. 1453 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1454 const TargetMachine &TM = DAG->MF.getTarget(); 1455 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1456 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1457 1458 assert((!ForceTopDown || !ForceBottomUp) && 1459 "-misched-topdown incompatible with -misched-bottomup"); 1460 } 1461 1462 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1463 if (SU->isScheduled) 1464 return; 1465 1466 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1467 I != E; ++I) { 1468 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1469 unsigned MinLatency = I->getMinLatency(); 1470 #ifndef NDEBUG 1471 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); 1472 #endif 1473 if (SU->TopReadyCycle < PredReadyCycle + MinLatency) 1474 SU->TopReadyCycle = PredReadyCycle + MinLatency; 1475 } 1476 Top.releaseNode(SU, SU->TopReadyCycle); 1477 } 1478 1479 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1480 if (SU->isScheduled) 1481 return; 1482 1483 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1484 1485 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1486 I != E; ++I) { 1487 if (I->isWeak()) 1488 continue; 1489 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1490 unsigned MinLatency = I->getMinLatency(); 1491 #ifndef NDEBUG 1492 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); 1493 #endif 1494 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) 1495 SU->BotReadyCycle = SuccReadyCycle + MinLatency; 1496 } 1497 Bot.releaseNode(SU, SU->BotReadyCycle); 1498 } 1499 1500 void ConvergingScheduler::registerRoots() { 1501 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1502 // Some roots may not feed into ExitSU. Check all of them in case. 1503 for (std::vector<SUnit*>::const_iterator 1504 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1505 if ((*I)->getDepth() > Rem.CriticalPath) 1506 Rem.CriticalPath = (*I)->getDepth(); 1507 } 1508 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1509 } 1510 1511 /// Does this SU have a hazard within the current instruction group. 1512 /// 1513 /// The scheduler supports two modes of hazard recognition. The first is the 1514 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1515 /// supports highly complicated in-order reservation tables 1516 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1517 /// 1518 /// The second is a streamlined mechanism that checks for hazards based on 1519 /// simple counters that the scheduler itself maintains. It explicitly checks 1520 /// for instruction dispatch limitations, including the number of micro-ops that 1521 /// can dispatch per cycle. 1522 /// 1523 /// TODO: Also check whether the SU must start a new group. 1524 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1525 if (HazardRec->isEnabled()) 1526 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1527 1528 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1529 if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { 1530 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1531 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1532 return true; 1533 } 1534 return false; 1535 } 1536 1537 /// Compute the remaining latency to determine whether ILP should be increased. 1538 void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) { 1539 // FIXME: compile time. In all, we visit four queues here one we should only 1540 // need to visit the one that was last popped if we cache the result. 1541 unsigned RemLatency = 0; 1542 for (ReadyQueue::iterator I = Available.begin(), E = Available.end(); 1543 I != E; ++I) { 1544 unsigned L = getUnscheduledLatency(*I); 1545 DEBUG(dbgs() << " " << Available.getName() 1546 << " RemLatency SU(" << (*I)->NodeNum << ") " << L << '\n'); 1547 if (L > RemLatency) 1548 RemLatency = L; 1549 } 1550 for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end(); 1551 I != E; ++I) { 1552 unsigned L = getUnscheduledLatency(*I); 1553 if (L > RemLatency) 1554 RemLatency = L; 1555 } 1556 unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow(); 1557 DEBUG(dbgs() << " " << Available.getName() 1558 << " ExpectedLatency " << ExpectedLatency 1559 << " CP Limit " << CriticalPathLimit << '\n'); 1560 if (RemLatency + ExpectedLatency >= CriticalPathLimit 1561 && RemLatency > Rem->getMaxRemainingCount(SchedModel)) { 1562 Policy.ReduceLatency = true; 1563 DEBUG(dbgs() << " Increase ILP: " << Available.getName() << '\n'); 1564 } 1565 } 1566 1567 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1568 unsigned ReadyCycle) { 1569 1570 if (ReadyCycle < MinReadyCycle) 1571 MinReadyCycle = ReadyCycle; 1572 1573 // Check for interlocks first. For the purpose of other heuristics, an 1574 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1575 if (ReadyCycle > CurrCycle || checkHazard(SU)) 1576 Pending.push(SU); 1577 else 1578 Available.push(SU); 1579 1580 // Record this node as an immediate dependent of the scheduled node. 1581 NextSUs.insert(SU); 1582 } 1583 1584 /// Move the boundary of scheduled code by one cycle. 1585 void ConvergingScheduler::SchedBoundary::bumpCycle() { 1586 unsigned Width = SchedModel->getIssueWidth(); 1587 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; 1588 1589 unsigned NextCycle = CurrCycle + 1; 1590 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1591 if (MinReadyCycle > NextCycle) { 1592 IssueCount = 0; 1593 NextCycle = MinReadyCycle; 1594 } 1595 1596 if (!HazardRec->isEnabled()) { 1597 // Bypass HazardRec virtual calls. 1598 CurrCycle = NextCycle; 1599 } 1600 else { 1601 // Bypass getHazardType calls in case of long latency. 1602 for (; CurrCycle != NextCycle; ++CurrCycle) { 1603 if (isTop()) 1604 HazardRec->AdvanceCycle(); 1605 else 1606 HazardRec->RecedeCycle(); 1607 } 1608 } 1609 CheckPending = true; 1610 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1611 1612 DEBUG(dbgs() << " " << Available.getName() 1613 << " Cycle: " << CurrCycle << '\n'); 1614 } 1615 1616 /// Add the given processor resource to this scheduled zone. 1617 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, 1618 unsigned Cycles) { 1619 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1620 DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name 1621 << " +(" << Cycles << "x" << Factor 1622 << ") / " << SchedModel->getLatencyFactor() << '\n'); 1623 1624 unsigned Count = Factor * Cycles; 1625 ResourceCounts[PIdx] += Count; 1626 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1627 Rem->RemainingCounts[PIdx] -= Count; 1628 1629 // Check if this resource exceeds the current critical resource by a full 1630 // cycle. If so, it becomes the critical resource. 1631 if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) 1632 >= (int)SchedModel->getLatencyFactor()) { 1633 CritResIdx = PIdx; 1634 DEBUG(dbgs() << " *** Critical resource " 1635 << SchedModel->getProcResource(PIdx)->Name << " x" 1636 << ResourceCounts[PIdx] << '\n'); 1637 } 1638 } 1639 1640 /// Move the boundary of scheduled code by one SUnit. 1641 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1642 // Update the reservation table. 1643 if (HazardRec->isEnabled()) { 1644 if (!isTop() && SU->isCall) { 1645 // Calls are scheduled with their preceding instructions. For bottom-up 1646 // scheduling, clear the pipeline state before emitting. 1647 HazardRec->Reset(); 1648 } 1649 HazardRec->EmitInstruction(SU); 1650 } 1651 // Update resource counts and critical resource. 1652 if (SchedModel->hasInstrSchedModel()) { 1653 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1654 Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); 1655 for (TargetSchedModel::ProcResIter 1656 PI = SchedModel->getWriteProcResBegin(SC), 1657 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1658 countResource(PI->ProcResourceIdx, PI->Cycles); 1659 } 1660 } 1661 if (isTop()) { 1662 if (SU->getDepth() > ExpectedLatency) 1663 ExpectedLatency = SU->getDepth(); 1664 } 1665 else { 1666 if (SU->getHeight() > ExpectedLatency) 1667 ExpectedLatency = SU->getHeight(); 1668 } 1669 1670 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1671 1672 // Check the instruction group dispatch limit. 1673 // TODO: Check if this SU must end a dispatch group. 1674 IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); 1675 1676 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1677 // issue width. However, we commonly reach the maximum. In this case 1678 // opportunistically bump the cycle to avoid uselessly checking everything in 1679 // the readyQ. Furthermore, a single instruction may produce more than one 1680 // cycle's worth of micro-ops. 1681 if (IssueCount >= SchedModel->getIssueWidth()) { 1682 DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); 1683 bumpCycle(); 1684 } 1685 } 1686 1687 /// Release pending ready nodes in to the available queue. This makes them 1688 /// visible to heuristics. 1689 void ConvergingScheduler::SchedBoundary::releasePending() { 1690 // If the available queue is empty, it is safe to reset MinReadyCycle. 1691 if (Available.empty()) 1692 MinReadyCycle = UINT_MAX; 1693 1694 // Check to see if any of the pending instructions are ready to issue. If 1695 // so, add them to the available queue. 1696 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1697 SUnit *SU = *(Pending.begin()+i); 1698 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1699 1700 if (ReadyCycle < MinReadyCycle) 1701 MinReadyCycle = ReadyCycle; 1702 1703 if (ReadyCycle > CurrCycle) 1704 continue; 1705 1706 if (checkHazard(SU)) 1707 continue; 1708 1709 Available.push(SU); 1710 Pending.remove(Pending.begin()+i); 1711 --i; --e; 1712 } 1713 DEBUG(if (!Pending.empty()) Pending.dump()); 1714 CheckPending = false; 1715 } 1716 1717 /// Remove SU from the ready set for this boundary. 1718 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1719 if (Available.isInQueue(SU)) 1720 Available.remove(Available.find(SU)); 1721 else { 1722 assert(Pending.isInQueue(SU) && "bad ready count"); 1723 Pending.remove(Pending.find(SU)); 1724 } 1725 } 1726 1727 /// If this queue only has one ready candidate, return it. As a side effect, 1728 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1729 /// one node is ready. If multiple instructions are ready, return NULL. 1730 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1731 if (CheckPending) 1732 releasePending(); 1733 1734 if (IssueCount > 0) { 1735 // Defer any ready instrs that now have a hazard. 1736 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1737 if (checkHazard(*I)) { 1738 Pending.push(*I); 1739 I = Available.remove(I); 1740 continue; 1741 } 1742 ++I; 1743 } 1744 } 1745 for (unsigned i = 0; Available.empty(); ++i) { 1746 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && 1747 "permanent hazard"); (void)i; 1748 bumpCycle(); 1749 releasePending(); 1750 } 1751 if (Available.size() == 1) 1752 return *Available.begin(); 1753 return NULL; 1754 } 1755 1756 /// Record the candidate policy for opposite zones with different critical 1757 /// resources. 1758 /// 1759 /// If the CriticalZone is latency limited, don't force a policy for the 1760 /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed. 1761 void ConvergingScheduler::balanceZones( 1762 ConvergingScheduler::SchedBoundary &CriticalZone, 1763 ConvergingScheduler::SchedCandidate &CriticalCand, 1764 ConvergingScheduler::SchedBoundary &OppositeZone, 1765 ConvergingScheduler::SchedCandidate &OppositeCand) { 1766 1767 if (!CriticalZone.IsResourceLimited) 1768 return; 1769 assert(SchedModel->hasInstrSchedModel() && "required schedmodel"); 1770 1771 SchedRemainder *Rem = CriticalZone.Rem; 1772 1773 // If the critical zone is overconsuming a resource relative to the 1774 // remainder, try to reduce it. 1775 unsigned RemainingCritCount = 1776 Rem->RemainingCounts[CriticalZone.CritResIdx]; 1777 if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount) 1778 > (int)SchedModel->getLatencyFactor()) { 1779 CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; 1780 DEBUG(dbgs() << " Balance " << CriticalZone.Available.getName() 1781 << " reduce " 1782 << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name 1783 << '\n'); 1784 } 1785 // If the other zone is underconsuming a resource relative to the full zone, 1786 // try to increase it. 1787 unsigned OppositeCount = 1788 OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; 1789 if ((int)(OppositeZone.ExpectedCount - OppositeCount) 1790 > (int)SchedModel->getLatencyFactor()) { 1791 OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; 1792 DEBUG(dbgs() << " Balance " << OppositeZone.Available.getName() 1793 << " demand " 1794 << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name 1795 << '\n'); 1796 } 1797 } 1798 1799 /// Determine if the scheduled zones exceed resource limits or critical path and 1800 /// set each candidate's ReduceHeight policy accordingly. 1801 void ConvergingScheduler::checkResourceLimits( 1802 ConvergingScheduler::SchedCandidate &TopCand, 1803 ConvergingScheduler::SchedCandidate &BotCand) { 1804 1805 // Set ReduceLatency to true if needed. 1806 Bot.setLatencyPolicy(BotCand.Policy); 1807 Top.setLatencyPolicy(TopCand.Policy); 1808 1809 // Handle resource-limited regions. 1810 if (Top.IsResourceLimited && Bot.IsResourceLimited 1811 && Top.CritResIdx == Bot.CritResIdx) { 1812 // If the scheduled critical resource in both zones is no longer the 1813 // critical remaining resource, attempt to reduce resource height both ways. 1814 if (Top.CritResIdx != Rem.CritResIdx) { 1815 TopCand.Policy.ReduceResIdx = Top.CritResIdx; 1816 BotCand.Policy.ReduceResIdx = Bot.CritResIdx; 1817 DEBUG(dbgs() << " Reduce scheduled " 1818 << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); 1819 } 1820 return; 1821 } 1822 // Handle latency-limited regions. 1823 if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { 1824 // If the total scheduled expected latency exceeds the region's critical 1825 // path then reduce latency both ways. 1826 // 1827 // Just because a zone is not resource limited does not mean it is latency 1828 // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle 1829 // to exceed expected latency. 1830 if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) 1831 && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { 1832 TopCand.Policy.ReduceLatency = true; 1833 BotCand.Policy.ReduceLatency = true; 1834 DEBUG(dbgs() << " Reduce scheduled latency " << Top.ExpectedLatency 1835 << " + " << Bot.ExpectedLatency << '\n'); 1836 } 1837 return; 1838 } 1839 // The critical resource is different in each zone, so request balancing. 1840 1841 // Compute the cost of each zone. 1842 Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); 1843 Top.ExpectedCount = std::max( 1844 Top.getCriticalCount(), 1845 Top.ExpectedCount * SchedModel->getLatencyFactor()); 1846 Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); 1847 Bot.ExpectedCount = std::max( 1848 Bot.getCriticalCount(), 1849 Bot.ExpectedCount * SchedModel->getLatencyFactor()); 1850 1851 balanceZones(Top, TopCand, Bot, BotCand); 1852 balanceZones(Bot, BotCand, Top, TopCand); 1853 } 1854 1855 void ConvergingScheduler::SchedCandidate:: 1856 initResourceDelta(const ScheduleDAGMI *DAG, 1857 const TargetSchedModel *SchedModel) { 1858 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 1859 return; 1860 1861 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1862 for (TargetSchedModel::ProcResIter 1863 PI = SchedModel->getWriteProcResBegin(SC), 1864 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1865 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 1866 ResDelta.CritResources += PI->Cycles; 1867 if (PI->ProcResourceIdx == Policy.DemandResIdx) 1868 ResDelta.DemandedResources += PI->Cycles; 1869 } 1870 } 1871 1872 /// Return true if this heuristic determines order. 1873 static bool tryLess(int TryVal, int CandVal, 1874 ConvergingScheduler::SchedCandidate &TryCand, 1875 ConvergingScheduler::SchedCandidate &Cand, 1876 ConvergingScheduler::CandReason Reason) { 1877 if (TryVal < CandVal) { 1878 TryCand.Reason = Reason; 1879 return true; 1880 } 1881 if (TryVal > CandVal) { 1882 if (Cand.Reason > Reason) 1883 Cand.Reason = Reason; 1884 return true; 1885 } 1886 return false; 1887 } 1888 1889 static bool tryGreater(int TryVal, int CandVal, 1890 ConvergingScheduler::SchedCandidate &TryCand, 1891 ConvergingScheduler::SchedCandidate &Cand, 1892 ConvergingScheduler::CandReason Reason) { 1893 if (TryVal > CandVal) { 1894 TryCand.Reason = Reason; 1895 return true; 1896 } 1897 if (TryVal < CandVal) { 1898 if (Cand.Reason > Reason) 1899 Cand.Reason = Reason; 1900 return true; 1901 } 1902 return false; 1903 } 1904 1905 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 1906 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 1907 } 1908 1909 /// Minimize physical register live ranges. Regalloc wants them adjacent to 1910 /// their physreg def/use. 1911 /// 1912 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 1913 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 1914 /// with the operation that produces or consumes the physreg. We'll do this when 1915 /// regalloc has support for parallel copies. 1916 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 1917 const MachineInstr *MI = SU->getInstr(); 1918 if (!MI->isCopy()) 1919 return 0; 1920 1921 unsigned ScheduledOper = isTop ? 1 : 0; 1922 unsigned UnscheduledOper = isTop ? 0 : 1; 1923 // If we have already scheduled the physreg produce/consumer, immediately 1924 // schedule the copy. 1925 if (TargetRegisterInfo::isPhysicalRegister( 1926 MI->getOperand(ScheduledOper).getReg())) 1927 return 1; 1928 // If the physreg is at the boundary, defer it. Otherwise schedule it 1929 // immediately to free the dependent. We can hoist the copy later. 1930 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 1931 if (TargetRegisterInfo::isPhysicalRegister( 1932 MI->getOperand(UnscheduledOper).getReg())) 1933 return AtBoundary ? -1 : 1; 1934 return 0; 1935 } 1936 1937 /// Apply a set of heursitics to a new candidate. Heuristics are currently 1938 /// hierarchical. This may be more efficient than a graduated cost model because 1939 /// we don't need to evaluate all aspects of the model for each node in the 1940 /// queue. But it's really done to make the heuristics easier to debug and 1941 /// statistically analyze. 1942 /// 1943 /// \param Cand provides the policy and current best candidate. 1944 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 1945 /// \param Zone describes the scheduled zone that we are extending. 1946 /// \param RPTracker describes reg pressure within the scheduled zone. 1947 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 1948 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 1949 SchedCandidate &TryCand, 1950 SchedBoundary &Zone, 1951 const RegPressureTracker &RPTracker, 1952 RegPressureTracker &TempTracker) { 1953 1954 // Always initialize TryCand's RPDelta. 1955 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 1956 DAG->getRegionCriticalPSets(), 1957 DAG->getRegPressure().MaxSetPressure); 1958 1959 // Initialize the candidate if needed. 1960 if (!Cand.isValid()) { 1961 TryCand.Reason = NodeOrder; 1962 return; 1963 } 1964 1965 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 1966 biasPhysRegCopy(Cand.SU, Zone.isTop()), 1967 TryCand, Cand, PhysRegCopy)) 1968 return; 1969 1970 // Avoid exceeding the target's limit. 1971 if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, 1972 Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) 1973 return; 1974 if (Cand.Reason == SingleExcess) 1975 Cand.Reason = MultiPressure; 1976 1977 // Avoid increasing the max critical pressure in the scheduled region. 1978 if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, 1979 Cand.RPDelta.CriticalMax.UnitIncrease, 1980 TryCand, Cand, SingleCritical)) 1981 return; 1982 if (Cand.Reason == SingleCritical) 1983 Cand.Reason = MultiPressure; 1984 1985 // Keep clustered nodes together to encourage downstream peephole 1986 // optimizations which may reduce resource requirements. 1987 // 1988 // This is a best effort to set things up for a post-RA pass. Optimizations 1989 // like generating loads of multiple registers should ideally be done within 1990 // the scheduler pass by combining the loads during DAG postprocessing. 1991 const SUnit *NextClusterSU = 1992 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 1993 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 1994 TryCand, Cand, Cluster)) 1995 return; 1996 1997 // Weak edges are for clustering and other constraints. 1998 // 1999 // Deferring TryCand here does not change Cand's reason. This is good in the 2000 // sense that a bad candidate shouldn't affect a previous candidate's 2001 // goodness, but bad in that it is assymetric and depends on queue order. 2002 CandReason OrigReason = Cand.Reason; 2003 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2004 getWeakLeft(Cand.SU, Zone.isTop()), 2005 TryCand, Cand, Weak)) { 2006 Cand.Reason = OrigReason; 2007 return; 2008 } 2009 // Avoid critical resource consumption and balance the schedule. 2010 TryCand.initResourceDelta(DAG, SchedModel); 2011 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2012 TryCand, Cand, ResourceReduce)) 2013 return; 2014 if (tryGreater(TryCand.ResDelta.DemandedResources, 2015 Cand.ResDelta.DemandedResources, 2016 TryCand, Cand, ResourceDemand)) 2017 return; 2018 2019 // Avoid serializing long latency dependence chains. 2020 if (Cand.Policy.ReduceLatency) { 2021 if (Zone.isTop()) { 2022 if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() 2023 > Zone.ExpectedCount) { 2024 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2025 TryCand, Cand, TopDepthReduce)) 2026 return; 2027 } 2028 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2029 TryCand, Cand, TopPathReduce)) 2030 return; 2031 } 2032 else { 2033 if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() 2034 > Zone.ExpectedCount) { 2035 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2036 TryCand, Cand, BotHeightReduce)) 2037 return; 2038 } 2039 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2040 TryCand, Cand, BotPathReduce)) 2041 return; 2042 } 2043 } 2044 2045 // Avoid increasing the max pressure of the entire region. 2046 if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, 2047 Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) 2048 return; 2049 if (Cand.Reason == SingleMax) 2050 Cand.Reason = MultiPressure; 2051 2052 // Prefer immediate defs/users of the last scheduled instruction. This is a 2053 // nice pressure avoidance strategy that also conserves the processor's 2054 // register renaming resources and keeps the machine code readable. 2055 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 2056 TryCand, Cand, NextDefUse)) 2057 return; 2058 2059 // Fall through to original instruction order. 2060 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2061 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2062 TryCand.Reason = NodeOrder; 2063 } 2064 } 2065 2066 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is 2067 /// more desirable than RHS from scheduling standpoint. 2068 static bool compareRPDelta(const RegPressureDelta &LHS, 2069 const RegPressureDelta &RHS) { 2070 // Compare each component of pressure in decreasing order of importance 2071 // without checking if any are valid. Invalid PressureElements are assumed to 2072 // have UnitIncrease==0, so are neutral. 2073 2074 // Avoid increasing the max critical pressure in the scheduled region. 2075 if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { 2076 DEBUG(dbgs() << " RP excess top - bot: " 2077 << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); 2078 return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; 2079 } 2080 // Avoid increasing the max critical pressure in the scheduled region. 2081 if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { 2082 DEBUG(dbgs() << " RP critical top - bot: " 2083 << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) 2084 << '\n'); 2085 return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; 2086 } 2087 // Avoid increasing the max pressure of the entire region. 2088 if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { 2089 DEBUG(dbgs() << " RP current top - bot: " 2090 << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) 2091 << '\n'); 2092 return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; 2093 } 2094 return false; 2095 } 2096 2097 #ifndef NDEBUG 2098 const char *ConvergingScheduler::getReasonStr( 2099 ConvergingScheduler::CandReason Reason) { 2100 switch (Reason) { 2101 case NoCand: return "NOCAND "; 2102 case PhysRegCopy: return "PREG-COPY"; 2103 case SingleExcess: return "REG-EXCESS"; 2104 case SingleCritical: return "REG-CRIT "; 2105 case Cluster: return "CLUSTER "; 2106 case Weak: return "WEAK "; 2107 case SingleMax: return "REG-MAX "; 2108 case MultiPressure: return "REG-MULTI "; 2109 case ResourceReduce: return "RES-REDUCE"; 2110 case ResourceDemand: return "RES-DEMAND"; 2111 case TopDepthReduce: return "TOP-DEPTH "; 2112 case TopPathReduce: return "TOP-PATH "; 2113 case BotHeightReduce:return "BOT-HEIGHT"; 2114 case BotPathReduce: return "BOT-PATH "; 2115 case NextDefUse: return "DEF-USE "; 2116 case NodeOrder: return "ORDER "; 2117 }; 2118 llvm_unreachable("Unknown reason!"); 2119 } 2120 2121 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { 2122 PressureElement P; 2123 unsigned ResIdx = 0; 2124 unsigned Latency = 0; 2125 switch (Cand.Reason) { 2126 default: 2127 break; 2128 case SingleExcess: 2129 P = Cand.RPDelta.Excess; 2130 break; 2131 case SingleCritical: 2132 P = Cand.RPDelta.CriticalMax; 2133 break; 2134 case SingleMax: 2135 P = Cand.RPDelta.CurrentMax; 2136 break; 2137 case ResourceReduce: 2138 ResIdx = Cand.Policy.ReduceResIdx; 2139 break; 2140 case ResourceDemand: 2141 ResIdx = Cand.Policy.DemandResIdx; 2142 break; 2143 case TopDepthReduce: 2144 Latency = Cand.SU->getDepth(); 2145 break; 2146 case TopPathReduce: 2147 Latency = Cand.SU->getHeight(); 2148 break; 2149 case BotHeightReduce: 2150 Latency = Cand.SU->getHeight(); 2151 break; 2152 case BotPathReduce: 2153 Latency = Cand.SU->getDepth(); 2154 break; 2155 } 2156 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2157 if (P.isValid()) 2158 dbgs() << " " << TRI->getRegPressureSetName(P.PSetID) 2159 << ":" << P.UnitIncrease << " "; 2160 else 2161 dbgs() << " "; 2162 if (ResIdx) 2163 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2164 else 2165 dbgs() << " "; 2166 if (Latency) 2167 dbgs() << " " << Latency << " cycles "; 2168 else 2169 dbgs() << " "; 2170 dbgs() << '\n'; 2171 } 2172 #endif 2173 2174 /// Pick the best candidate from the top queue. 2175 /// 2176 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2177 /// DAG building. To adjust for the current scheduling location we need to 2178 /// maintain the number of vreg uses remaining to be top-scheduled. 2179 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2180 const RegPressureTracker &RPTracker, 2181 SchedCandidate &Cand) { 2182 ReadyQueue &Q = Zone.Available; 2183 2184 DEBUG(Q.dump()); 2185 2186 // getMaxPressureDelta temporarily modifies the tracker. 2187 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2188 2189 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2190 2191 SchedCandidate TryCand(Cand.Policy); 2192 TryCand.SU = *I; 2193 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2194 if (TryCand.Reason != NoCand) { 2195 // Initialize resource delta if needed in case future heuristics query it. 2196 if (TryCand.ResDelta == SchedResourceDelta()) 2197 TryCand.initResourceDelta(DAG, SchedModel); 2198 Cand.setBest(TryCand); 2199 DEBUG(traceCandidate(Cand)); 2200 } 2201 } 2202 } 2203 2204 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 2205 bool IsTop) { 2206 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2207 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 2208 } 2209 2210 /// Pick the best candidate node from either the top or bottom queue. 2211 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 2212 // Schedule as far as possible in the direction of no choice. This is most 2213 // efficient, but also provides the best heuristics for CriticalPSets. 2214 if (SUnit *SU = Bot.pickOnlyChoice()) { 2215 IsTopNode = false; 2216 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2217 return SU; 2218 } 2219 if (SUnit *SU = Top.pickOnlyChoice()) { 2220 IsTopNode = true; 2221 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2222 return SU; 2223 } 2224 CandPolicy NoPolicy; 2225 SchedCandidate BotCand(NoPolicy); 2226 SchedCandidate TopCand(NoPolicy); 2227 checkResourceLimits(TopCand, BotCand); 2228 2229 // Prefer bottom scheduling when heuristics are silent. 2230 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2231 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2232 2233 // If either Q has a single candidate that provides the least increase in 2234 // Excess pressure, we can immediately schedule from that Q. 2235 // 2236 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2237 // affects picking from either Q. If scheduling in one direction must 2238 // increase pressure for one of the excess PSets, then schedule in that 2239 // direction first to provide more freedom in the other direction. 2240 if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { 2241 IsTopNode = false; 2242 tracePick(BotCand, IsTopNode); 2243 return BotCand.SU; 2244 } 2245 // Check if the top Q has a better candidate. 2246 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2247 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2248 2249 // If either Q has a single candidate that minimizes pressure above the 2250 // original region's pressure pick it. 2251 if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { 2252 if (TopCand.Reason < BotCand.Reason) { 2253 IsTopNode = true; 2254 tracePick(TopCand, IsTopNode); 2255 return TopCand.SU; 2256 } 2257 IsTopNode = false; 2258 tracePick(BotCand, IsTopNode); 2259 return BotCand.SU; 2260 } 2261 // Check for a salient pressure difference and pick the best from either side. 2262 if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { 2263 IsTopNode = true; 2264 tracePick(TopCand, IsTopNode); 2265 return TopCand.SU; 2266 } 2267 // Otherwise prefer the bottom candidate, in node order if all else failed. 2268 if (TopCand.Reason < BotCand.Reason) { 2269 IsTopNode = true; 2270 tracePick(TopCand, IsTopNode); 2271 return TopCand.SU; 2272 } 2273 IsTopNode = false; 2274 tracePick(BotCand, IsTopNode); 2275 return BotCand.SU; 2276 } 2277 2278 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2279 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2280 if (DAG->top() == DAG->bottom()) { 2281 assert(Top.Available.empty() && Top.Pending.empty() && 2282 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2283 return NULL; 2284 } 2285 SUnit *SU; 2286 do { 2287 if (ForceTopDown) { 2288 SU = Top.pickOnlyChoice(); 2289 if (!SU) { 2290 CandPolicy NoPolicy; 2291 SchedCandidate TopCand(NoPolicy); 2292 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2293 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2294 SU = TopCand.SU; 2295 } 2296 IsTopNode = true; 2297 } 2298 else if (ForceBottomUp) { 2299 SU = Bot.pickOnlyChoice(); 2300 if (!SU) { 2301 CandPolicy NoPolicy; 2302 SchedCandidate BotCand(NoPolicy); 2303 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2304 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2305 SU = BotCand.SU; 2306 } 2307 IsTopNode = false; 2308 } 2309 else { 2310 SU = pickNodeBidirectional(IsTopNode); 2311 } 2312 } while (SU->isScheduled); 2313 2314 if (SU->isTopReady()) 2315 Top.removeReady(SU); 2316 if (SU->isBottomReady()) 2317 Bot.removeReady(SU); 2318 2319 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2320 return SU; 2321 } 2322 2323 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2324 2325 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2326 if (!isTop) 2327 ++InsertPos; 2328 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2329 2330 // Find already scheduled copies with a single physreg dependence and move 2331 // them just above the scheduled instruction. 2332 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2333 I != E; ++I) { 2334 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2335 continue; 2336 SUnit *DepSU = I->getSUnit(); 2337 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2338 continue; 2339 MachineInstr *Copy = DepSU->getInstr(); 2340 if (!Copy->isCopy()) 2341 continue; 2342 DEBUG(dbgs() << " Rescheduling physreg copy "; 2343 I->getSUnit()->dump(DAG)); 2344 DAG->moveInstruction(Copy, InsertPos); 2345 } 2346 } 2347 2348 /// Update the scheduler's state after scheduling a node. This is the same node 2349 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2350 /// it's state based on the current cycle before MachineSchedStrategy does. 2351 /// 2352 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2353 /// them here. See comments in biasPhysRegCopy. 2354 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2355 if (IsTopNode) { 2356 SU->TopReadyCycle = Top.CurrCycle; 2357 Top.bumpNode(SU); 2358 if (SU->hasPhysRegUses) 2359 reschedulePhysRegCopies(SU, true); 2360 } 2361 else { 2362 SU->BotReadyCycle = Bot.CurrCycle; 2363 Bot.bumpNode(SU); 2364 if (SU->hasPhysRegDefs) 2365 reschedulePhysRegCopies(SU, false); 2366 } 2367 } 2368 2369 /// Create the standard converging machine scheduler. This will be used as the 2370 /// default scheduler if the target does not set a default. 2371 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2372 assert((!ForceTopDown || !ForceBottomUp) && 2373 "-misched-topdown incompatible with -misched-bottomup"); 2374 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2375 // Register DAG post-processors. 2376 // 2377 // FIXME: extend the mutation API to allow earlier mutations to instantiate 2378 // data and pass it to later mutations. Have a single mutation that gathers 2379 // the interesting nodes in one pass. 2380 if (EnableCopyConstrain) 2381 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 2382 if (EnableLoadCluster) 2383 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2384 if (EnableMacroFusion) 2385 DAG->addMutation(new MacroFusion(DAG->TII)); 2386 return DAG; 2387 } 2388 static MachineSchedRegistry 2389 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2390 createConvergingSched); 2391 2392 //===----------------------------------------------------------------------===// 2393 // ILP Scheduler. Currently for experimental analysis of heuristics. 2394 //===----------------------------------------------------------------------===// 2395 2396 namespace { 2397 /// \brief Order nodes by the ILP metric. 2398 struct ILPOrder { 2399 const SchedDFSResult *DFSResult; 2400 const BitVector *ScheduledTrees; 2401 bool MaximizeILP; 2402 2403 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2404 2405 /// \brief Apply a less-than relation on node priority. 2406 /// 2407 /// (Return true if A comes after B in the Q.) 2408 bool operator()(const SUnit *A, const SUnit *B) const { 2409 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2410 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2411 if (SchedTreeA != SchedTreeB) { 2412 // Unscheduled trees have lower priority. 2413 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2414 return ScheduledTrees->test(SchedTreeB); 2415 2416 // Trees with shallower connections have have lower priority. 2417 if (DFSResult->getSubtreeLevel(SchedTreeA) 2418 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2419 return DFSResult->getSubtreeLevel(SchedTreeA) 2420 < DFSResult->getSubtreeLevel(SchedTreeB); 2421 } 2422 } 2423 if (MaximizeILP) 2424 return DFSResult->getILP(A) < DFSResult->getILP(B); 2425 else 2426 return DFSResult->getILP(A) > DFSResult->getILP(B); 2427 } 2428 }; 2429 2430 /// \brief Schedule based on the ILP metric. 2431 class ILPScheduler : public MachineSchedStrategy { 2432 /// In case all subtrees are eventually connected to a common root through 2433 /// data dependence (e.g. reduction), place an upper limit on their size. 2434 /// 2435 /// FIXME: A subtree limit is generally good, but in the situation commented 2436 /// above, where multiple similar subtrees feed a common root, we should 2437 /// only split at a point where the resulting subtrees will be balanced. 2438 /// (a motivating test case must be found). 2439 static const unsigned SubtreeLimit = 16; 2440 2441 ScheduleDAGMI *DAG; 2442 ILPOrder Cmp; 2443 2444 std::vector<SUnit*> ReadyQ; 2445 public: 2446 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2447 2448 virtual void initialize(ScheduleDAGMI *dag) { 2449 DAG = dag; 2450 DAG->computeDFSResult(); 2451 Cmp.DFSResult = DAG->getDFSResult(); 2452 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2453 ReadyQ.clear(); 2454 } 2455 2456 virtual void registerRoots() { 2457 // Restore the heap in ReadyQ with the updated DFS results. 2458 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2459 } 2460 2461 /// Implement MachineSchedStrategy interface. 2462 /// ----------------------------------------- 2463 2464 /// Callback to select the highest priority node from the ready Q. 2465 virtual SUnit *pickNode(bool &IsTopNode) { 2466 if (ReadyQ.empty()) return NULL; 2467 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2468 SUnit *SU = ReadyQ.back(); 2469 ReadyQ.pop_back(); 2470 IsTopNode = false; 2471 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 2472 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2473 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2474 << DAG->getDFSResult()->getSubtreeLevel( 2475 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 2476 << "Scheduling " << *SU->getInstr()); 2477 return SU; 2478 } 2479 2480 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2481 virtual void scheduleTree(unsigned SubtreeID) { 2482 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2483 } 2484 2485 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2486 /// DFSResults, and resort the priority Q. 2487 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2488 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2489 } 2490 2491 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2492 2493 virtual void releaseBottomNode(SUnit *SU) { 2494 ReadyQ.push_back(SU); 2495 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2496 } 2497 }; 2498 } // namespace 2499 2500 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2501 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2502 } 2503 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2504 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2505 } 2506 static MachineSchedRegistry ILPMaxRegistry( 2507 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2508 static MachineSchedRegistry ILPMinRegistry( 2509 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2510 2511 //===----------------------------------------------------------------------===// 2512 // Machine Instruction Shuffler for Correctness Testing 2513 //===----------------------------------------------------------------------===// 2514 2515 #ifndef NDEBUG 2516 namespace { 2517 /// Apply a less-than relation on the node order, which corresponds to the 2518 /// instruction order prior to scheduling. IsReverse implements greater-than. 2519 template<bool IsReverse> 2520 struct SUnitOrder { 2521 bool operator()(SUnit *A, SUnit *B) const { 2522 if (IsReverse) 2523 return A->NodeNum > B->NodeNum; 2524 else 2525 return A->NodeNum < B->NodeNum; 2526 } 2527 }; 2528 2529 /// Reorder instructions as much as possible. 2530 class InstructionShuffler : public MachineSchedStrategy { 2531 bool IsAlternating; 2532 bool IsTopDown; 2533 2534 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2535 // gives nodes with a higher number higher priority causing the latest 2536 // instructions to be scheduled first. 2537 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2538 TopQ; 2539 // When scheduling bottom-up, use greater-than as the queue priority. 2540 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2541 BottomQ; 2542 public: 2543 InstructionShuffler(bool alternate, bool topdown) 2544 : IsAlternating(alternate), IsTopDown(topdown) {} 2545 2546 virtual void initialize(ScheduleDAGMI *) { 2547 TopQ.clear(); 2548 BottomQ.clear(); 2549 } 2550 2551 /// Implement MachineSchedStrategy interface. 2552 /// ----------------------------------------- 2553 2554 virtual SUnit *pickNode(bool &IsTopNode) { 2555 SUnit *SU; 2556 if (IsTopDown) { 2557 do { 2558 if (TopQ.empty()) return NULL; 2559 SU = TopQ.top(); 2560 TopQ.pop(); 2561 } while (SU->isScheduled); 2562 IsTopNode = true; 2563 } 2564 else { 2565 do { 2566 if (BottomQ.empty()) return NULL; 2567 SU = BottomQ.top(); 2568 BottomQ.pop(); 2569 } while (SU->isScheduled); 2570 IsTopNode = false; 2571 } 2572 if (IsAlternating) 2573 IsTopDown = !IsTopDown; 2574 return SU; 2575 } 2576 2577 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2578 2579 virtual void releaseTopNode(SUnit *SU) { 2580 TopQ.push(SU); 2581 } 2582 virtual void releaseBottomNode(SUnit *SU) { 2583 BottomQ.push(SU); 2584 } 2585 }; 2586 } // namespace 2587 2588 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2589 bool Alternate = !ForceTopDown && !ForceBottomUp; 2590 bool TopDown = !ForceBottomUp; 2591 assert((TopDown || !ForceTopDown) && 2592 "-misched-topdown incompatible with -misched-bottomup"); 2593 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2594 } 2595 static MachineSchedRegistry ShufflerRegistry( 2596 "shuffle", "Shuffle machine instructions alternating directions", 2597 createInstructionShuffler); 2598 #endif // !NDEBUG 2599 2600 //===----------------------------------------------------------------------===// 2601 // GraphWriter support for ScheduleDAGMI. 2602 //===----------------------------------------------------------------------===// 2603 2604 #ifndef NDEBUG 2605 namespace llvm { 2606 2607 template<> struct GraphTraits< 2608 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2609 2610 template<> 2611 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2612 2613 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2614 2615 static std::string getGraphName(const ScheduleDAG *G) { 2616 return G->MF.getName(); 2617 } 2618 2619 static bool renderGraphFromBottomUp() { 2620 return true; 2621 } 2622 2623 static bool isNodeHidden(const SUnit *Node) { 2624 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2625 } 2626 2627 static bool hasNodeAddressLabel(const SUnit *Node, 2628 const ScheduleDAG *Graph) { 2629 return false; 2630 } 2631 2632 /// If you want to override the dot attributes printed for a particular 2633 /// edge, override this method. 2634 static std::string getEdgeAttributes(const SUnit *Node, 2635 SUnitIterator EI, 2636 const ScheduleDAG *Graph) { 2637 if (EI.isArtificialDep()) 2638 return "color=cyan,style=dashed"; 2639 if (EI.isCtrlDep()) 2640 return "color=blue,style=dashed"; 2641 return ""; 2642 } 2643 2644 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 2645 std::string Str; 2646 raw_string_ostream SS(Str); 2647 SS << "SU(" << SU->NodeNum << ')'; 2648 return SS.str(); 2649 } 2650 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 2651 return G->getGraphNodeLabel(SU); 2652 } 2653 2654 static std::string getNodeAttributes(const SUnit *N, 2655 const ScheduleDAG *Graph) { 2656 std::string Str("shape=Mrecord"); 2657 const SchedDFSResult *DFS = 2658 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 2659 if (DFS) { 2660 Str += ",style=filled,fillcolor=\"#"; 2661 Str += DOT::getColorString(DFS->getSubtreeID(N)); 2662 Str += '"'; 2663 } 2664 return Str; 2665 } 2666 }; 2667 } // namespace llvm 2668 #endif // NDEBUG 2669 2670 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 2671 /// rendered using 'dot'. 2672 /// 2673 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 2674 #ifndef NDEBUG 2675 ViewGraph(this, Name, false, Title); 2676 #else 2677 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 2678 << "systems with Graphviz or gv!\n"; 2679 #endif // NDEBUG 2680 } 2681 2682 /// Out-of-line implementation with no arguments is handy for gdb. 2683 void ScheduleDAGMI::viewGraph() { 2684 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 2685 } 2686