1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/MachineScheduler.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePassRegistry.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/MachineValueType.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/ScheduleDAG.h" 40 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 41 #include "llvm/CodeGen/ScheduleDAGMutation.h" 42 #include "llvm/CodeGen/ScheduleDFS.h" 43 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 44 #include "llvm/CodeGen/SlotIndexes.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/MC/LaneBitmask.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/GraphWriter.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetLowering.h" 57 #include "llvm/Target/TargetRegisterInfo.h" 58 #include "llvm/Target/TargetSubtargetInfo.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <tuple> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "machine-scheduler" 73 74 namespace llvm { 75 76 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 77 cl::desc("Force top-down list scheduling")); 78 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 79 cl::desc("Force bottom-up list scheduling")); 80 cl::opt<bool> 81 DumpCriticalPathLength("misched-dcpl", cl::Hidden, 82 cl::desc("Print critical path length to stdout")); 83 84 } // end namespace llvm 85 86 #ifndef NDEBUG 87 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 88 cl::desc("Pop up a window to show MISched dags after they are processed")); 89 90 /// In some situations a few uninteresting nodes depend on nearly all other 91 /// nodes in the graph, provide a cutoff to hide them. 92 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, 93 cl::desc("Hide nodes with more predecessor/successor than cutoff")); 94 95 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 96 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 97 98 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 99 cl::desc("Only schedule this function")); 100 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 101 cl::desc("Only schedule this MBB#")); 102 #else 103 static bool ViewMISchedDAGs = false; 104 #endif // NDEBUG 105 106 /// Avoid quadratic complexity in unusually large basic blocks by limiting the 107 /// size of the ready lists. 108 static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, 109 cl::desc("Limit ready list to N instructions"), cl::init(256)); 110 111 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 112 cl::desc("Enable register pressure scheduling."), cl::init(true)); 113 114 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 115 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 116 117 static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, 118 cl::desc("Enable memop clustering."), 119 cl::init(true)); 120 121 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 122 cl::desc("Verify machine instrs before and after machine scheduling")); 123 124 // DAG subtrees must have at least this many nodes. 125 static const unsigned MinSubtreeSize = 8; 126 127 // Pin the vtables to this file. 128 void MachineSchedStrategy::anchor() {} 129 130 void ScheduleDAGMutation::anchor() {} 131 132 //===----------------------------------------------------------------------===// 133 // Machine Instruction Scheduling Pass and Registry 134 //===----------------------------------------------------------------------===// 135 136 MachineSchedContext::MachineSchedContext() { 137 RegClassInfo = new RegisterClassInfo(); 138 } 139 140 MachineSchedContext::~MachineSchedContext() { 141 delete RegClassInfo; 142 } 143 144 namespace { 145 146 /// Base class for a machine scheduler class that can run at any point. 147 class MachineSchedulerBase : public MachineSchedContext, 148 public MachineFunctionPass { 149 public: 150 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 151 152 void print(raw_ostream &O, const Module* = nullptr) const override; 153 154 protected: 155 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); 156 }; 157 158 /// MachineScheduler runs after coalescing and before register allocation. 159 class MachineScheduler : public MachineSchedulerBase { 160 public: 161 MachineScheduler(); 162 163 void getAnalysisUsage(AnalysisUsage &AU) const override; 164 165 bool runOnMachineFunction(MachineFunction&) override; 166 167 static char ID; // Class identification, replacement for typeinfo 168 169 protected: 170 ScheduleDAGInstrs *createMachineScheduler(); 171 }; 172 173 /// PostMachineScheduler runs after shortly before code emission. 174 class PostMachineScheduler : public MachineSchedulerBase { 175 public: 176 PostMachineScheduler(); 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override; 179 180 bool runOnMachineFunction(MachineFunction&) override; 181 182 static char ID; // Class identification, replacement for typeinfo 183 184 protected: 185 ScheduleDAGInstrs *createPostMachineScheduler(); 186 }; 187 188 } // end anonymous namespace 189 190 char MachineScheduler::ID = 0; 191 192 char &llvm::MachineSchedulerID = MachineScheduler::ID; 193 194 INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, 195 "Machine Instruction Scheduler", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 198 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 199 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 200 INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, 201 "Machine Instruction Scheduler", false, false) 202 203 MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { 204 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 205 } 206 207 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 208 AU.setPreservesCFG(); 209 AU.addRequiredID(MachineDominatorsID); 210 AU.addRequired<MachineLoopInfo>(); 211 AU.addRequired<AAResultsWrapperPass>(); 212 AU.addRequired<TargetPassConfig>(); 213 AU.addRequired<SlotIndexes>(); 214 AU.addPreserved<SlotIndexes>(); 215 AU.addRequired<LiveIntervals>(); 216 AU.addPreserved<LiveIntervals>(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 char PostMachineScheduler::ID = 0; 221 222 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 223 224 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 225 "PostRA Machine Instruction Scheduler", false, false) 226 227 PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { 228 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 229 } 230 231 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesCFG(); 233 AU.addRequiredID(MachineDominatorsID); 234 AU.addRequired<MachineLoopInfo>(); 235 AU.addRequired<TargetPassConfig>(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 } 238 239 MachinePassRegistry MachineSchedRegistry::Registry; 240 241 /// A dummy default scheduler factory indicates whether the scheduler 242 /// is overridden on the command line. 243 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 244 return nullptr; 245 } 246 247 /// MachineSchedOpt allows command line selection of the scheduler. 248 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 249 RegisterPassParser<MachineSchedRegistry>> 250 MachineSchedOpt("misched", 251 cl::init(&useDefaultMachineSched), cl::Hidden, 252 cl::desc("Machine instruction scheduler to use")); 253 254 static MachineSchedRegistry 255 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 256 useDefaultMachineSched); 257 258 static cl::opt<bool> EnableMachineSched( 259 "enable-misched", 260 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), 261 cl::Hidden); 262 263 static cl::opt<bool> EnablePostRAMachineSched( 264 "enable-post-misched", 265 cl::desc("Enable the post-ra machine instruction scheduling pass."), 266 cl::init(true), cl::Hidden); 267 268 /// Decrement this iterator until reaching the top or a non-debug instr. 269 static MachineBasicBlock::const_iterator 270 priorNonDebug(MachineBasicBlock::const_iterator I, 271 MachineBasicBlock::const_iterator Beg) { 272 assert(I != Beg && "reached the top of the region, cannot decrement"); 273 while (--I != Beg) { 274 if (!I->isDebugValue()) 275 break; 276 } 277 return I; 278 } 279 280 /// Non-const version. 281 static MachineBasicBlock::iterator 282 priorNonDebug(MachineBasicBlock::iterator I, 283 MachineBasicBlock::const_iterator Beg) { 284 return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) 285 .getNonConstIterator(); 286 } 287 288 /// If this iterator is a debug value, increment until reaching the End or a 289 /// non-debug instruction. 290 static MachineBasicBlock::const_iterator 291 nextIfDebug(MachineBasicBlock::const_iterator I, 292 MachineBasicBlock::const_iterator End) { 293 for(; I != End; ++I) { 294 if (!I->isDebugValue()) 295 break; 296 } 297 return I; 298 } 299 300 /// Non-const version. 301 static MachineBasicBlock::iterator 302 nextIfDebug(MachineBasicBlock::iterator I, 303 MachineBasicBlock::const_iterator End) { 304 return nextIfDebug(MachineBasicBlock::const_iterator(I), End) 305 .getNonConstIterator(); 306 } 307 308 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 309 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 310 // Select the scheduler, or set the default. 311 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 312 if (Ctor != useDefaultMachineSched) 313 return Ctor(this); 314 315 // Get the default scheduler set by the target for this function. 316 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 317 if (Scheduler) 318 return Scheduler; 319 320 // Default to GenericScheduler. 321 return createGenericSchedLive(this); 322 } 323 324 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 325 /// the caller. We don't have a command line option to override the postRA 326 /// scheduler. The Target must configure it. 327 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 328 // Get the postRA scheduler set by the target for this function. 329 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 330 if (Scheduler) 331 return Scheduler; 332 333 // Default to GenericScheduler. 334 return createGenericSchedPostRA(this); 335 } 336 337 /// Top-level MachineScheduler pass driver. 338 /// 339 /// Visit blocks in function order. Divide each block into scheduling regions 340 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 341 /// consistent with the DAG builder, which traverses the interior of the 342 /// scheduling regions bottom-up. 343 /// 344 /// This design avoids exposing scheduling boundaries to the DAG builder, 345 /// simplifying the DAG builder's support for "special" target instructions. 346 /// At the same time the design allows target schedulers to operate across 347 /// scheduling boundaries, for example to bundle the boudary instructions 348 /// without reordering them. This creates complexity, because the target 349 /// scheduler must update the RegionBegin and RegionEnd positions cached by 350 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 351 /// design would be to split blocks at scheduling boundaries, but LLVM has a 352 /// general bias against block splitting purely for implementation simplicity. 353 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 354 if (skipFunction(*mf.getFunction())) 355 return false; 356 357 if (EnableMachineSched.getNumOccurrences()) { 358 if (!EnableMachineSched) 359 return false; 360 } else if (!mf.getSubtarget().enableMachineScheduler()) 361 return false; 362 363 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); 364 365 // Initialize the context of the pass. 366 MF = &mf; 367 MLI = &getAnalysis<MachineLoopInfo>(); 368 MDT = &getAnalysis<MachineDominatorTree>(); 369 PassConfig = &getAnalysis<TargetPassConfig>(); 370 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 371 372 LIS = &getAnalysis<LiveIntervals>(); 373 374 if (VerifyScheduling) { 375 DEBUG(LIS->dump()); 376 MF->verify(this, "Before machine scheduling."); 377 } 378 RegClassInfo->runOnMachineFunction(*MF); 379 380 // Instantiate the selected scheduler for this target, function, and 381 // optimization level. 382 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 383 scheduleRegions(*Scheduler, false); 384 385 DEBUG(LIS->dump()); 386 if (VerifyScheduling) 387 MF->verify(this, "After machine scheduling."); 388 return true; 389 } 390 391 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 392 if (skipFunction(*mf.getFunction())) 393 return false; 394 395 if (EnablePostRAMachineSched.getNumOccurrences()) { 396 if (!EnablePostRAMachineSched) 397 return false; 398 } else if (!mf.getSubtarget().enablePostRAScheduler()) { 399 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); 400 return false; 401 } 402 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 403 404 // Initialize the context of the pass. 405 MF = &mf; 406 MLI = &getAnalysis<MachineLoopInfo>(); 407 PassConfig = &getAnalysis<TargetPassConfig>(); 408 409 if (VerifyScheduling) 410 MF->verify(this, "Before post machine scheduling."); 411 412 // Instantiate the selected scheduler for this target, function, and 413 // optimization level. 414 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 415 scheduleRegions(*Scheduler, true); 416 417 if (VerifyScheduling) 418 MF->verify(this, "After post machine scheduling."); 419 return true; 420 } 421 422 /// Return true of the given instruction should not be included in a scheduling 423 /// region. 424 /// 425 /// MachineScheduler does not currently support scheduling across calls. To 426 /// handle calls, the DAG builder needs to be modified to create register 427 /// anti/output dependencies on the registers clobbered by the call's regmask 428 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 429 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 430 /// the boundary, but there would be no benefit to postRA scheduling across 431 /// calls this late anyway. 432 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 433 MachineBasicBlock *MBB, 434 MachineFunction *MF, 435 const TargetInstrInfo *TII) { 436 return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); 437 } 438 439 /// A region of an MBB for scheduling. 440 namespace { 441 struct SchedRegion { 442 /// RegionBegin is the first instruction in the scheduling region, and 443 /// RegionEnd is either MBB->end() or the scheduling boundary after the 444 /// last instruction in the scheduling region. These iterators cannot refer 445 /// to instructions outside of the identified scheduling region because 446 /// those may be reordered before scheduling this region. 447 MachineBasicBlock::iterator RegionBegin; 448 MachineBasicBlock::iterator RegionEnd; 449 unsigned NumRegionInstrs; 450 451 SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, 452 unsigned N) : 453 RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} 454 }; 455 } // end anonymous namespace 456 457 using MBBRegionsVector = SmallVector<SchedRegion, 16>; 458 459 static void 460 getSchedRegions(MachineBasicBlock *MBB, 461 MBBRegionsVector &Regions, 462 bool RegionsTopDown) { 463 MachineFunction *MF = MBB->getParent(); 464 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 465 466 MachineBasicBlock::iterator I = nullptr; 467 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 468 RegionEnd != MBB->begin(); RegionEnd = I) { 469 470 // Avoid decrementing RegionEnd for blocks with no terminator. 471 if (RegionEnd != MBB->end() || 472 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { 473 --RegionEnd; 474 } 475 476 // The next region starts above the previous region. Look backward in the 477 // instruction stream until we find the nearest boundary. 478 unsigned NumRegionInstrs = 0; 479 I = RegionEnd; 480 for (;I != MBB->begin(); --I) { 481 MachineInstr &MI = *std::prev(I); 482 if (isSchedBoundary(&MI, &*MBB, MF, TII)) 483 break; 484 if (!MI.isDebugValue()) 485 // MBB::size() uses instr_iterator to count. Here we need a bundle to 486 // count as a single instruction. 487 ++NumRegionInstrs; 488 } 489 490 Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); 491 } 492 493 if (RegionsTopDown) 494 std::reverse(Regions.begin(), Regions.end()); 495 } 496 497 /// Main driver for both MachineScheduler and PostMachineScheduler. 498 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, 499 bool FixKillFlags) { 500 // Visit all machine basic blocks. 501 // 502 // TODO: Visit blocks in global postorder or postorder within the bottom-up 503 // loop tree. Then we can optionally compute global RegPressure. 504 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 505 MBB != MBBEnd; ++MBB) { 506 507 Scheduler.startBlock(&*MBB); 508 509 #ifndef NDEBUG 510 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 511 continue; 512 if (SchedOnlyBlock.getNumOccurrences() 513 && (int)SchedOnlyBlock != MBB->getNumber()) 514 continue; 515 #endif 516 517 // Break the block into scheduling regions [I, RegionEnd). RegionEnd 518 // points to the scheduling boundary at the bottom of the region. The DAG 519 // does not include RegionEnd, but the region does (i.e. the next 520 // RegionEnd is above the previous RegionBegin). If the current block has 521 // no terminator then RegionEnd == MBB->end() for the bottom region. 522 // 523 // All the regions of MBB are first found and stored in MBBRegions, which 524 // will be processed (MBB) top-down if initialized with true. 525 // 526 // The Scheduler may insert instructions during either schedule() or 527 // exitRegion(), even for empty regions. So the local iterators 'I' and 528 // 'RegionEnd' are invalid across these calls. Instructions must not be 529 // added to other regions than the current one without updating MBBRegions. 530 531 MBBRegionsVector MBBRegions; 532 getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); 533 for (MBBRegionsVector::iterator R = MBBRegions.begin(); 534 R != MBBRegions.end(); ++R) { 535 MachineBasicBlock::iterator I = R->RegionBegin; 536 MachineBasicBlock::iterator RegionEnd = R->RegionEnd; 537 unsigned NumRegionInstrs = R->NumRegionInstrs; 538 539 // Notify the scheduler of the region, even if we may skip scheduling 540 // it. Perhaps it still needs to be bundled. 541 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); 542 543 // Skip empty scheduling regions (0 or 1 schedulable instructions). 544 if (I == RegionEnd || I == std::prev(RegionEnd)) { 545 // Close the current region. Bundle the terminator if needed. 546 // This invalidates 'RegionEnd' and 'I'. 547 Scheduler.exitRegion(); 548 continue; 549 } 550 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 551 DEBUG(dbgs() << MF->getName() 552 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 553 << "\n From: " << *I << " To: "; 554 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 555 else dbgs() << "End"; 556 dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); 557 if (DumpCriticalPathLength) { 558 errs() << MF->getName(); 559 errs() << ":BB# " << MBB->getNumber(); 560 errs() << " " << MBB->getName() << " \n"; 561 } 562 563 // Schedule a region: possibly reorder instructions. 564 // This invalidates the original region iterators. 565 Scheduler.schedule(); 566 567 // Close the current region. 568 Scheduler.exitRegion(); 569 } 570 Scheduler.finishBlock(); 571 // FIXME: Ideally, no further passes should rely on kill flags. However, 572 // thumb2 size reduction is currently an exception, so the PostMIScheduler 573 // needs to do this. 574 if (FixKillFlags) 575 Scheduler.fixupKills(*MBB); 576 } 577 Scheduler.finalizeSchedule(); 578 } 579 580 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 581 // unimplemented 582 } 583 584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 585 LLVM_DUMP_METHOD void ReadyQueue::dump() const { 586 dbgs() << "Queue " << Name << ": "; 587 for (const SUnit *SU : Queue) 588 dbgs() << SU->NodeNum << " "; 589 dbgs() << "\n"; 590 } 591 #endif 592 593 //===----------------------------------------------------------------------===// 594 // ScheduleDAGMI - Basic machine instruction scheduling. This is 595 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 596 // virtual registers. 597 // ===----------------------------------------------------------------------===/ 598 599 // Provide a vtable anchor. 600 ScheduleDAGMI::~ScheduleDAGMI() = default; 601 602 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 603 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 604 } 605 606 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 607 if (SuccSU != &ExitSU) { 608 // Do not use WillCreateCycle, it assumes SD scheduling. 609 // If Pred is reachable from Succ, then the edge creates a cycle. 610 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 611 return false; 612 Topo.AddPred(SuccSU, PredDep.getSUnit()); 613 } 614 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 615 // Return true regardless of whether a new edge needed to be inserted. 616 return true; 617 } 618 619 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 620 /// NumPredsLeft reaches zero, release the successor node. 621 /// 622 /// FIXME: Adjust SuccSU height based on MinLatency. 623 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 624 SUnit *SuccSU = SuccEdge->getSUnit(); 625 626 if (SuccEdge->isWeak()) { 627 --SuccSU->WeakPredsLeft; 628 if (SuccEdge->isCluster()) 629 NextClusterSucc = SuccSU; 630 return; 631 } 632 #ifndef NDEBUG 633 if (SuccSU->NumPredsLeft == 0) { 634 dbgs() << "*** Scheduling failed! ***\n"; 635 SuccSU->dump(this); 636 dbgs() << " has been released too many times!\n"; 637 llvm_unreachable(nullptr); 638 } 639 #endif 640 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, 641 // CurrCycle may have advanced since then. 642 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) 643 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); 644 645 --SuccSU->NumPredsLeft; 646 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 647 SchedImpl->releaseTopNode(SuccSU); 648 } 649 650 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 651 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 652 for (SDep &Succ : SU->Succs) 653 releaseSucc(SU, &Succ); 654 } 655 656 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 657 /// NumSuccsLeft reaches zero, release the predecessor node. 658 /// 659 /// FIXME: Adjust PredSU height based on MinLatency. 660 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 661 SUnit *PredSU = PredEdge->getSUnit(); 662 663 if (PredEdge->isWeak()) { 664 --PredSU->WeakSuccsLeft; 665 if (PredEdge->isCluster()) 666 NextClusterPred = PredSU; 667 return; 668 } 669 #ifndef NDEBUG 670 if (PredSU->NumSuccsLeft == 0) { 671 dbgs() << "*** Scheduling failed! ***\n"; 672 PredSU->dump(this); 673 dbgs() << " has been released too many times!\n"; 674 llvm_unreachable(nullptr); 675 } 676 #endif 677 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, 678 // CurrCycle may have advanced since then. 679 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) 680 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); 681 682 --PredSU->NumSuccsLeft; 683 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 684 SchedImpl->releaseBottomNode(PredSU); 685 } 686 687 /// releasePredecessors - Call releasePred on each of SU's predecessors. 688 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 689 for (SDep &Pred : SU->Preds) 690 releasePred(SU, &Pred); 691 } 692 693 void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { 694 ScheduleDAGInstrs::startBlock(bb); 695 SchedImpl->enterMBB(bb); 696 } 697 698 void ScheduleDAGMI::finishBlock() { 699 SchedImpl->leaveMBB(); 700 ScheduleDAGInstrs::finishBlock(); 701 } 702 703 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 704 /// crossing a scheduling boundary. [begin, end) includes all instructions in 705 /// the region, including the boundary itself and single-instruction regions 706 /// that don't get scheduled. 707 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 708 MachineBasicBlock::iterator begin, 709 MachineBasicBlock::iterator end, 710 unsigned regioninstrs) 711 { 712 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 713 714 SchedImpl->initPolicy(begin, end, regioninstrs); 715 } 716 717 /// This is normally called from the main scheduler loop but may also be invoked 718 /// by the scheduling strategy to perform additional code motion. 719 void ScheduleDAGMI::moveInstruction( 720 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 721 // Advance RegionBegin if the first instruction moves down. 722 if (&*RegionBegin == MI) 723 ++RegionBegin; 724 725 // Update the instruction stream. 726 BB->splice(InsertPos, BB, MI); 727 728 // Update LiveIntervals 729 if (LIS) 730 LIS->handleMove(*MI, /*UpdateFlags=*/true); 731 732 // Recede RegionBegin if an instruction moves above the first. 733 if (RegionBegin == InsertPos) 734 RegionBegin = MI; 735 } 736 737 bool ScheduleDAGMI::checkSchedLimit() { 738 #ifndef NDEBUG 739 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 740 CurrentTop = CurrentBottom; 741 return false; 742 } 743 ++NumInstrsScheduled; 744 #endif 745 return true; 746 } 747 748 /// Per-region scheduling driver, called back from 749 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 750 /// does not consider liveness or register pressure. It is useful for PostRA 751 /// scheduling and potentially other custom schedulers. 752 void ScheduleDAGMI::schedule() { 753 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); 754 DEBUG(SchedImpl->dumpPolicy()); 755 756 // Build the DAG. 757 buildSchedGraph(AA); 758 759 Topo.InitDAGTopologicalSorting(); 760 761 postprocessDAG(); 762 763 SmallVector<SUnit*, 8> TopRoots, BotRoots; 764 findRootsAndBiasEdges(TopRoots, BotRoots); 765 766 // Initialize the strategy before modifying the DAG. 767 // This may initialize a DFSResult to be used for queue priority. 768 SchedImpl->initialize(this); 769 770 DEBUG( 771 if (EntrySU.getInstr() != nullptr) 772 EntrySU.dumpAll(this); 773 for (const SUnit &SU : SUnits) 774 SU.dumpAll(this); 775 if (ExitSU.getInstr() != nullptr) 776 ExitSU.dumpAll(this); 777 ); 778 if (ViewMISchedDAGs) viewGraph(); 779 780 // Initialize ready queues now that the DAG and priority data are finalized. 781 initQueues(TopRoots, BotRoots); 782 783 bool IsTopNode = false; 784 while (true) { 785 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); 786 SUnit *SU = SchedImpl->pickNode(IsTopNode); 787 if (!SU) break; 788 789 assert(!SU->isScheduled && "Node already scheduled"); 790 if (!checkSchedLimit()) 791 break; 792 793 MachineInstr *MI = SU->getInstr(); 794 if (IsTopNode) { 795 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 796 if (&*CurrentTop == MI) 797 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 798 else 799 moveInstruction(MI, CurrentTop); 800 } else { 801 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 802 MachineBasicBlock::iterator priorII = 803 priorNonDebug(CurrentBottom, CurrentTop); 804 if (&*priorII == MI) 805 CurrentBottom = priorII; 806 else { 807 if (&*CurrentTop == MI) 808 CurrentTop = nextIfDebug(++CurrentTop, priorII); 809 moveInstruction(MI, CurrentBottom); 810 CurrentBottom = MI; 811 } 812 } 813 // Notify the scheduling strategy before updating the DAG. 814 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues 815 // runs, it can then use the accurate ReadyCycle time to determine whether 816 // newly released nodes can move to the readyQ. 817 SchedImpl->schedNode(SU, IsTopNode); 818 819 updateQueues(SU, IsTopNode); 820 } 821 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 822 823 placeDebugValues(); 824 825 DEBUG({ 826 unsigned BBNum = begin()->getParent()->getNumber(); 827 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 828 dumpSchedule(); 829 dbgs() << '\n'; 830 }); 831 } 832 833 /// Apply each ScheduleDAGMutation step in order. 834 void ScheduleDAGMI::postprocessDAG() { 835 for (auto &m : Mutations) 836 m->apply(this); 837 } 838 839 void ScheduleDAGMI:: 840 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 841 SmallVectorImpl<SUnit*> &BotRoots) { 842 for (SUnit &SU : SUnits) { 843 assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); 844 845 // Order predecessors so DFSResult follows the critical path. 846 SU.biasCriticalPath(); 847 848 // A SUnit is ready to top schedule if it has no predecessors. 849 if (!SU.NumPredsLeft) 850 TopRoots.push_back(&SU); 851 // A SUnit is ready to bottom schedule if it has no successors. 852 if (!SU.NumSuccsLeft) 853 BotRoots.push_back(&SU); 854 } 855 ExitSU.biasCriticalPath(); 856 } 857 858 /// Identify DAG roots and setup scheduler queues. 859 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 860 ArrayRef<SUnit*> BotRoots) { 861 NextClusterSucc = nullptr; 862 NextClusterPred = nullptr; 863 864 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 865 // 866 // Nodes with unreleased weak edges can still be roots. 867 // Release top roots in forward order. 868 for (SUnit *SU : TopRoots) 869 SchedImpl->releaseTopNode(SU); 870 871 // Release bottom roots in reverse order so the higher priority nodes appear 872 // first. This is more natural and slightly more efficient. 873 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 874 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 875 SchedImpl->releaseBottomNode(*I); 876 } 877 878 releaseSuccessors(&EntrySU); 879 releasePredecessors(&ExitSU); 880 881 SchedImpl->registerRoots(); 882 883 // Advance past initial DebugValues. 884 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 885 CurrentBottom = RegionEnd; 886 } 887 888 /// Update scheduler queues after scheduling an instruction. 889 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 890 // Release dependent instructions for scheduling. 891 if (IsTopNode) 892 releaseSuccessors(SU); 893 else 894 releasePredecessors(SU); 895 896 SU->isScheduled = true; 897 } 898 899 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 900 void ScheduleDAGMI::placeDebugValues() { 901 // If first instruction was a DBG_VALUE then put it back. 902 if (FirstDbgValue) { 903 BB->splice(RegionBegin, BB, FirstDbgValue); 904 RegionBegin = FirstDbgValue; 905 } 906 907 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator 908 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 909 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 910 MachineInstr *DbgValue = P.first; 911 MachineBasicBlock::iterator OrigPrevMI = P.second; 912 if (&*RegionBegin == DbgValue) 913 ++RegionBegin; 914 BB->splice(++OrigPrevMI, BB, DbgValue); 915 if (OrigPrevMI == std::prev(RegionEnd)) 916 RegionEnd = DbgValue; 917 } 918 DbgValues.clear(); 919 FirstDbgValue = nullptr; 920 } 921 922 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 923 LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { 924 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 925 if (SUnit *SU = getSUnit(&(*MI))) 926 SU->dump(this); 927 else 928 dbgs() << "Missing SUnit\n"; 929 } 930 } 931 #endif 932 933 //===----------------------------------------------------------------------===// 934 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 935 // preservation. 936 //===----------------------------------------------------------------------===// 937 938 ScheduleDAGMILive::~ScheduleDAGMILive() { 939 delete DFSResult; 940 } 941 942 void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { 943 const MachineInstr &MI = *SU.getInstr(); 944 for (const MachineOperand &MO : MI.operands()) { 945 if (!MO.isReg()) 946 continue; 947 if (!MO.readsReg()) 948 continue; 949 if (TrackLaneMasks && !MO.isUse()) 950 continue; 951 952 unsigned Reg = MO.getReg(); 953 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 954 continue; 955 956 // Ignore re-defs. 957 if (TrackLaneMasks) { 958 bool FoundDef = false; 959 for (const MachineOperand &MO2 : MI.operands()) { 960 if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { 961 FoundDef = true; 962 break; 963 } 964 } 965 if (FoundDef) 966 continue; 967 } 968 969 // Record this local VReg use. 970 VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); 971 for (; UI != VRegUses.end(); ++UI) { 972 if (UI->SU == &SU) 973 break; 974 } 975 if (UI == VRegUses.end()) 976 VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); 977 } 978 } 979 980 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 981 /// crossing a scheduling boundary. [begin, end) includes all instructions in 982 /// the region, including the boundary itself and single-instruction regions 983 /// that don't get scheduled. 984 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 985 MachineBasicBlock::iterator begin, 986 MachineBasicBlock::iterator end, 987 unsigned regioninstrs) 988 { 989 // ScheduleDAGMI initializes SchedImpl's per-region policy. 990 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 991 992 // For convenience remember the end of the liveness region. 993 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 994 995 SUPressureDiffs.clear(); 996 997 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 998 ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); 999 1000 assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && 1001 "ShouldTrackLaneMasks requires ShouldTrackPressure"); 1002 } 1003 1004 // Setup the register pressure trackers for the top scheduled top and bottom 1005 // scheduled regions. 1006 void ScheduleDAGMILive::initRegPressure() { 1007 VRegUses.clear(); 1008 VRegUses.setUniverse(MRI.getNumVirtRegs()); 1009 for (SUnit &SU : SUnits) 1010 collectVRegUses(SU); 1011 1012 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, 1013 ShouldTrackLaneMasks, false); 1014 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1015 ShouldTrackLaneMasks, false); 1016 1017 // Close the RPTracker to finalize live ins. 1018 RPTracker.closeRegion(); 1019 1020 DEBUG(RPTracker.dump()); 1021 1022 // Initialize the live ins and live outs. 1023 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 1024 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 1025 1026 // Close one end of the tracker so we can call 1027 // getMaxUpward/DownwardPressureDelta before advancing across any 1028 // instructions. This converts currently live regs into live ins/outs. 1029 TopRPTracker.closeTop(); 1030 BotRPTracker.closeBottom(); 1031 1032 BotRPTracker.initLiveThru(RPTracker); 1033 if (!BotRPTracker.getLiveThru().empty()) { 1034 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 1035 DEBUG(dbgs() << "Live Thru: "; 1036 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 1037 }; 1038 1039 // For each live out vreg reduce the pressure change associated with other 1040 // uses of the same vreg below the live-out reaching def. 1041 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 1042 1043 // Account for liveness generated by the region boundary. 1044 if (LiveRegionEnd != RegionEnd) { 1045 SmallVector<RegisterMaskPair, 8> LiveUses; 1046 BotRPTracker.recede(&LiveUses); 1047 updatePressureDiffs(LiveUses); 1048 } 1049 1050 DEBUG( 1051 dbgs() << "Top Pressure:\n"; 1052 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1053 dbgs() << "Bottom Pressure:\n"; 1054 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1055 ); 1056 1057 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 1058 1059 // Cache the list of excess pressure sets in this region. This will also track 1060 // the max pressure in the scheduled code for these sets. 1061 RegionCriticalPSets.clear(); 1062 const std::vector<unsigned> &RegionPressure = 1063 RPTracker.getPressure().MaxSetPressure; 1064 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 1065 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 1066 if (RegionPressure[i] > Limit) { 1067 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 1068 << " Limit " << Limit 1069 << " Actual " << RegionPressure[i] << "\n"); 1070 RegionCriticalPSets.push_back(PressureChange(i)); 1071 } 1072 } 1073 DEBUG(dbgs() << "Excess PSets: "; 1074 for (const PressureChange &RCPS : RegionCriticalPSets) 1075 dbgs() << TRI->getRegPressureSetName( 1076 RCPS.getPSet()) << " "; 1077 dbgs() << "\n"); 1078 } 1079 1080 void ScheduleDAGMILive:: 1081 updateScheduledPressure(const SUnit *SU, 1082 const std::vector<unsigned> &NewMaxPressure) { 1083 const PressureDiff &PDiff = getPressureDiff(SU); 1084 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 1085 for (const PressureChange &PC : PDiff) { 1086 if (!PC.isValid()) 1087 break; 1088 unsigned ID = PC.getPSet(); 1089 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 1090 ++CritIdx; 1091 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 1092 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 1093 && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) 1094 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 1095 } 1096 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 1097 if (NewMaxPressure[ID] >= Limit - 2) { 1098 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 1099 << NewMaxPressure[ID] 1100 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit 1101 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 1102 } 1103 } 1104 } 1105 1106 /// Update the PressureDiff array for liveness after scheduling this 1107 /// instruction. 1108 void ScheduleDAGMILive::updatePressureDiffs( 1109 ArrayRef<RegisterMaskPair> LiveUses) { 1110 for (const RegisterMaskPair &P : LiveUses) { 1111 unsigned Reg = P.RegUnit; 1112 /// FIXME: Currently assuming single-use physregs. 1113 if (!TRI->isVirtualRegister(Reg)) 1114 continue; 1115 1116 if (ShouldTrackLaneMasks) { 1117 // If the register has just become live then other uses won't change 1118 // this fact anymore => decrement pressure. 1119 // If the register has just become dead then other uses make it come 1120 // back to life => increment pressure. 1121 bool Decrement = P.LaneMask.any(); 1122 1123 for (const VReg2SUnit &V2SU 1124 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1125 SUnit &SU = *V2SU.SU; 1126 if (SU.isScheduled || &SU == &ExitSU) 1127 continue; 1128 1129 PressureDiff &PDiff = getPressureDiff(&SU); 1130 PDiff.addPressureChange(Reg, Decrement, &MRI); 1131 DEBUG( 1132 dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " 1133 << PrintReg(Reg, TRI) << ':' << PrintLaneMask(P.LaneMask) 1134 << ' ' << *SU.getInstr(); 1135 dbgs() << " to "; 1136 PDiff.dump(*TRI); 1137 ); 1138 } 1139 } else { 1140 assert(P.LaneMask.any()); 1141 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 1142 // This may be called before CurrentBottom has been initialized. However, 1143 // BotRPTracker must have a valid position. We want the value live into the 1144 // instruction or live out of the block, so ask for the previous 1145 // instruction's live-out. 1146 const LiveInterval &LI = LIS->getInterval(Reg); 1147 VNInfo *VNI; 1148 MachineBasicBlock::const_iterator I = 1149 nextIfDebug(BotRPTracker.getPos(), BB->end()); 1150 if (I == BB->end()) 1151 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1152 else { 1153 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); 1154 VNI = LRQ.valueIn(); 1155 } 1156 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 1157 assert(VNI && "No live value at use."); 1158 for (const VReg2SUnit &V2SU 1159 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1160 SUnit *SU = V2SU.SU; 1161 // If this use comes before the reaching def, it cannot be a last use, 1162 // so decrease its pressure change. 1163 if (!SU->isScheduled && SU != &ExitSU) { 1164 LiveQueryResult LRQ = 1165 LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1166 if (LRQ.valueIn() == VNI) { 1167 PressureDiff &PDiff = getPressureDiff(SU); 1168 PDiff.addPressureChange(Reg, true, &MRI); 1169 DEBUG( 1170 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 1171 << *SU->getInstr(); 1172 dbgs() << " to "; 1173 PDiff.dump(*TRI); 1174 ); 1175 } 1176 } 1177 } 1178 } 1179 } 1180 } 1181 1182 /// schedule - Called back from MachineScheduler::runOnMachineFunction 1183 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 1184 /// only includes instructions that have DAG nodes, not scheduling boundaries. 1185 /// 1186 /// This is a skeletal driver, with all the functionality pushed into helpers, 1187 /// so that it can be easily extended by experimental schedulers. Generally, 1188 /// implementing MachineSchedStrategy should be sufficient to implement a new 1189 /// scheduling algorithm. However, if a scheduler further subclasses 1190 /// ScheduleDAGMILive then it will want to override this virtual method in order 1191 /// to update any specialized state. 1192 void ScheduleDAGMILive::schedule() { 1193 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); 1194 DEBUG(SchedImpl->dumpPolicy()); 1195 buildDAGWithRegPressure(); 1196 1197 Topo.InitDAGTopologicalSorting(); 1198 1199 postprocessDAG(); 1200 1201 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1202 findRootsAndBiasEdges(TopRoots, BotRoots); 1203 1204 // Initialize the strategy before modifying the DAG. 1205 // This may initialize a DFSResult to be used for queue priority. 1206 SchedImpl->initialize(this); 1207 1208 DEBUG( 1209 if (EntrySU.getInstr() != nullptr) 1210 EntrySU.dumpAll(this); 1211 for (const SUnit &SU : SUnits) { 1212 SU.dumpAll(this); 1213 if (ShouldTrackPressure) { 1214 dbgs() << " Pressure Diff : "; 1215 getPressureDiff(&SU).dump(*TRI); 1216 } 1217 dbgs() << " Single Issue : "; 1218 if (SchedModel.mustBeginGroup(SU.getInstr()) && 1219 SchedModel.mustEndGroup(SU.getInstr())) 1220 dbgs() << "true;"; 1221 else 1222 dbgs() << "false;"; 1223 dbgs() << '\n'; 1224 } 1225 if (ExitSU.getInstr() != nullptr) 1226 ExitSU.dumpAll(this); 1227 ); 1228 if (ViewMISchedDAGs) viewGraph(); 1229 1230 // Initialize ready queues now that the DAG and priority data are finalized. 1231 initQueues(TopRoots, BotRoots); 1232 1233 bool IsTopNode = false; 1234 while (true) { 1235 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); 1236 SUnit *SU = SchedImpl->pickNode(IsTopNode); 1237 if (!SU) break; 1238 1239 assert(!SU->isScheduled && "Node already scheduled"); 1240 if (!checkSchedLimit()) 1241 break; 1242 1243 scheduleMI(SU, IsTopNode); 1244 1245 if (DFSResult) { 1246 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1247 if (!ScheduledTrees.test(SubtreeID)) { 1248 ScheduledTrees.set(SubtreeID); 1249 DFSResult->scheduleTree(SubtreeID); 1250 SchedImpl->scheduleTree(SubtreeID); 1251 } 1252 } 1253 1254 // Notify the scheduling strategy after updating the DAG. 1255 SchedImpl->schedNode(SU, IsTopNode); 1256 1257 updateQueues(SU, IsTopNode); 1258 } 1259 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1260 1261 placeDebugValues(); 1262 1263 DEBUG({ 1264 unsigned BBNum = begin()->getParent()->getNumber(); 1265 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1266 dumpSchedule(); 1267 dbgs() << '\n'; 1268 }); 1269 } 1270 1271 /// Build the DAG and setup three register pressure trackers. 1272 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1273 if (!ShouldTrackPressure) { 1274 RPTracker.reset(); 1275 RegionCriticalPSets.clear(); 1276 buildSchedGraph(AA); 1277 return; 1278 } 1279 1280 // Initialize the register pressure tracker used by buildSchedGraph. 1281 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1282 ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); 1283 1284 // Account for liveness generate by the region boundary. 1285 if (LiveRegionEnd != RegionEnd) 1286 RPTracker.recede(); 1287 1288 // Build the DAG, and compute current register pressure. 1289 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); 1290 1291 // Initialize top/bottom trackers after computing region pressure. 1292 initRegPressure(); 1293 } 1294 1295 void ScheduleDAGMILive::computeDFSResult() { 1296 if (!DFSResult) 1297 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1298 DFSResult->clear(); 1299 ScheduledTrees.clear(); 1300 DFSResult->resize(SUnits.size()); 1301 DFSResult->compute(SUnits); 1302 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1303 } 1304 1305 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1306 /// only provides the critical path for single block loops. To handle loops that 1307 /// span blocks, we could use the vreg path latencies provided by 1308 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1309 /// available for use in the scheduler. 1310 /// 1311 /// The cyclic path estimation identifies a def-use pair that crosses the back 1312 /// edge and considers the depth and height of the nodes. For example, consider 1313 /// the following instruction sequence where each instruction has unit latency 1314 /// and defines an epomymous virtual register: 1315 /// 1316 /// a->b(a,c)->c(b)->d(c)->exit 1317 /// 1318 /// The cyclic critical path is a two cycles: b->c->b 1319 /// The acyclic critical path is four cycles: a->b->c->d->exit 1320 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1321 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1322 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1323 /// LiveInDepth = depth(b) = len(a->b) = 1 1324 /// 1325 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1326 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1327 /// CyclicCriticalPath = min(2, 2) = 2 1328 /// 1329 /// This could be relevant to PostRA scheduling, but is currently implemented 1330 /// assuming LiveIntervals. 1331 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1332 // This only applies to single block loop. 1333 if (!BB->isSuccessor(BB)) 1334 return 0; 1335 1336 unsigned MaxCyclicLatency = 0; 1337 // Visit each live out vreg def to find def/use pairs that cross iterations. 1338 for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { 1339 unsigned Reg = P.RegUnit; 1340 if (!TRI->isVirtualRegister(Reg)) 1341 continue; 1342 const LiveInterval &LI = LIS->getInterval(Reg); 1343 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1344 if (!DefVNI) 1345 continue; 1346 1347 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1348 const SUnit *DefSU = getSUnit(DefMI); 1349 if (!DefSU) 1350 continue; 1351 1352 unsigned LiveOutHeight = DefSU->getHeight(); 1353 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1354 // Visit all local users of the vreg def. 1355 for (const VReg2SUnit &V2SU 1356 : make_range(VRegUses.find(Reg), VRegUses.end())) { 1357 SUnit *SU = V2SU.SU; 1358 if (SU == &ExitSU) 1359 continue; 1360 1361 // Only consider uses of the phi. 1362 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); 1363 if (!LRQ.valueIn()->isPHIDef()) 1364 continue; 1365 1366 // Assume that a path spanning two iterations is a cycle, which could 1367 // overestimate in strange cases. This allows cyclic latency to be 1368 // estimated as the minimum slack of the vreg's depth or height. 1369 unsigned CyclicLatency = 0; 1370 if (LiveOutDepth > SU->getDepth()) 1371 CyclicLatency = LiveOutDepth - SU->getDepth(); 1372 1373 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; 1374 if (LiveInHeight > LiveOutHeight) { 1375 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1376 CyclicLatency = LiveInHeight - LiveOutHeight; 1377 } else 1378 CyclicLatency = 0; 1379 1380 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1381 << SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1382 if (CyclicLatency > MaxCyclicLatency) 1383 MaxCyclicLatency = CyclicLatency; 1384 } 1385 } 1386 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1387 return MaxCyclicLatency; 1388 } 1389 1390 /// Release ExitSU predecessors and setup scheduler queues. Re-position 1391 /// the Top RP tracker in case the region beginning has changed. 1392 void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, 1393 ArrayRef<SUnit*> BotRoots) { 1394 ScheduleDAGMI::initQueues(TopRoots, BotRoots); 1395 if (ShouldTrackPressure) { 1396 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1397 TopRPTracker.setPos(CurrentTop); 1398 } 1399 } 1400 1401 /// Move an instruction and update register pressure. 1402 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1403 // Move the instruction to its new location in the instruction stream. 1404 MachineInstr *MI = SU->getInstr(); 1405 1406 if (IsTopNode) { 1407 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1408 if (&*CurrentTop == MI) 1409 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1410 else { 1411 moveInstruction(MI, CurrentTop); 1412 TopRPTracker.setPos(MI); 1413 } 1414 1415 if (ShouldTrackPressure) { 1416 // Update top scheduled pressure. 1417 RegisterOperands RegOpers; 1418 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1419 if (ShouldTrackLaneMasks) { 1420 // Adjust liveness and add missing dead+read-undef flags. 1421 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1422 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1423 } else { 1424 // Adjust for missing dead-def flags. 1425 RegOpers.detectDeadDefs(*MI, *LIS); 1426 } 1427 1428 TopRPTracker.advance(RegOpers); 1429 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1430 DEBUG( 1431 dbgs() << "Top Pressure:\n"; 1432 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); 1433 ); 1434 1435 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1436 } 1437 } else { 1438 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1439 MachineBasicBlock::iterator priorII = 1440 priorNonDebug(CurrentBottom, CurrentTop); 1441 if (&*priorII == MI) 1442 CurrentBottom = priorII; 1443 else { 1444 if (&*CurrentTop == MI) { 1445 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1446 TopRPTracker.setPos(CurrentTop); 1447 } 1448 moveInstruction(MI, CurrentBottom); 1449 CurrentBottom = MI; 1450 } 1451 if (ShouldTrackPressure) { 1452 RegisterOperands RegOpers; 1453 RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); 1454 if (ShouldTrackLaneMasks) { 1455 // Adjust liveness and add missing dead+read-undef flags. 1456 SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); 1457 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); 1458 } else { 1459 // Adjust for missing dead-def flags. 1460 RegOpers.detectDeadDefs(*MI, *LIS); 1461 } 1462 1463 BotRPTracker.recedeSkipDebugValues(); 1464 SmallVector<RegisterMaskPair, 8> LiveUses; 1465 BotRPTracker.recede(RegOpers, &LiveUses); 1466 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1467 DEBUG( 1468 dbgs() << "Bottom Pressure:\n"; 1469 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI); 1470 ); 1471 1472 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1473 updatePressureDiffs(LiveUses); 1474 } 1475 } 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. 1480 //===----------------------------------------------------------------------===// 1481 1482 namespace { 1483 1484 /// \brief Post-process the DAG to create cluster edges between neighboring 1485 /// loads or between neighboring stores. 1486 class BaseMemOpClusterMutation : public ScheduleDAGMutation { 1487 struct MemOpInfo { 1488 SUnit *SU; 1489 unsigned BaseReg; 1490 int64_t Offset; 1491 1492 MemOpInfo(SUnit *su, unsigned reg, int64_t ofs) 1493 : SU(su), BaseReg(reg), Offset(ofs) {} 1494 1495 bool operator<(const MemOpInfo&RHS) const { 1496 return std::tie(BaseReg, Offset, SU->NodeNum) < 1497 std::tie(RHS.BaseReg, RHS.Offset, RHS.SU->NodeNum); 1498 } 1499 }; 1500 1501 const TargetInstrInfo *TII; 1502 const TargetRegisterInfo *TRI; 1503 bool IsLoad; 1504 1505 public: 1506 BaseMemOpClusterMutation(const TargetInstrInfo *tii, 1507 const TargetRegisterInfo *tri, bool IsLoad) 1508 : TII(tii), TRI(tri), IsLoad(IsLoad) {} 1509 1510 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1511 1512 protected: 1513 void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG); 1514 }; 1515 1516 class StoreClusterMutation : public BaseMemOpClusterMutation { 1517 public: 1518 StoreClusterMutation(const TargetInstrInfo *tii, 1519 const TargetRegisterInfo *tri) 1520 : BaseMemOpClusterMutation(tii, tri, false) {} 1521 }; 1522 1523 class LoadClusterMutation : public BaseMemOpClusterMutation { 1524 public: 1525 LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) 1526 : BaseMemOpClusterMutation(tii, tri, true) {} 1527 }; 1528 1529 } // end anonymous namespace 1530 1531 namespace llvm { 1532 1533 std::unique_ptr<ScheduleDAGMutation> 1534 createLoadClusterDAGMutation(const TargetInstrInfo *TII, 1535 const TargetRegisterInfo *TRI) { 1536 return EnableMemOpCluster ? llvm::make_unique<LoadClusterMutation>(TII, TRI) 1537 : nullptr; 1538 } 1539 1540 std::unique_ptr<ScheduleDAGMutation> 1541 createStoreClusterDAGMutation(const TargetInstrInfo *TII, 1542 const TargetRegisterInfo *TRI) { 1543 return EnableMemOpCluster ? llvm::make_unique<StoreClusterMutation>(TII, TRI) 1544 : nullptr; 1545 } 1546 1547 } // end namespace llvm 1548 1549 void BaseMemOpClusterMutation::clusterNeighboringMemOps( 1550 ArrayRef<SUnit *> MemOps, ScheduleDAGMI *DAG) { 1551 SmallVector<MemOpInfo, 32> MemOpRecords; 1552 for (SUnit *SU : MemOps) { 1553 unsigned BaseReg; 1554 int64_t Offset; 1555 if (TII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseReg, Offset, TRI)) 1556 MemOpRecords.push_back(MemOpInfo(SU, BaseReg, Offset)); 1557 } 1558 if (MemOpRecords.size() < 2) 1559 return; 1560 1561 std::sort(MemOpRecords.begin(), MemOpRecords.end()); 1562 unsigned ClusterLength = 1; 1563 for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { 1564 if (MemOpRecords[Idx].BaseReg != MemOpRecords[Idx+1].BaseReg) { 1565 ClusterLength = 1; 1566 continue; 1567 } 1568 1569 SUnit *SUa = MemOpRecords[Idx].SU; 1570 SUnit *SUb = MemOpRecords[Idx+1].SU; 1571 if (TII->shouldClusterMemOps(*SUa->getInstr(), *SUb->getInstr(), 1572 ClusterLength) && 1573 DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1574 DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" 1575 << SUb->NodeNum << ")\n"); 1576 // Copy successor edges from SUa to SUb. Interleaving computation 1577 // dependent on SUa can prevent load combining due to register reuse. 1578 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1579 // loads should have effectively the same inputs. 1580 for (const SDep &Succ : SUa->Succs) { 1581 if (Succ.getSUnit() == SUb) 1582 continue; 1583 DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n"); 1584 DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); 1585 } 1586 ++ClusterLength; 1587 } else 1588 ClusterLength = 1; 1589 } 1590 } 1591 1592 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1593 void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAGInstrs) { 1594 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1595 1596 // Map DAG NodeNum to store chain ID. 1597 DenseMap<unsigned, unsigned> StoreChainIDs; 1598 // Map each store chain to a set of dependent MemOps. 1599 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1600 for (SUnit &SU : DAG->SUnits) { 1601 if ((IsLoad && !SU.getInstr()->mayLoad()) || 1602 (!IsLoad && !SU.getInstr()->mayStore())) 1603 continue; 1604 1605 unsigned ChainPredID = DAG->SUnits.size(); 1606 for (const SDep &Pred : SU.Preds) { 1607 if (Pred.isCtrl()) { 1608 ChainPredID = Pred.getSUnit()->NodeNum; 1609 break; 1610 } 1611 } 1612 // Check if this chain-like pred has been seen 1613 // before. ChainPredID==MaxNodeID at the top of the schedule. 1614 unsigned NumChains = StoreChainDependents.size(); 1615 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1616 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1617 if (Result.second) 1618 StoreChainDependents.resize(NumChains + 1); 1619 StoreChainDependents[Result.first->second].push_back(&SU); 1620 } 1621 1622 // Iterate over the store chains. 1623 for (auto &SCD : StoreChainDependents) 1624 clusterNeighboringMemOps(SCD, DAG); 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 // CopyConstrain - DAG post-processing to encourage copy elimination. 1629 //===----------------------------------------------------------------------===// 1630 1631 namespace { 1632 1633 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1634 /// the one use that defines the copy's source vreg, most likely an induction 1635 /// variable increment. 1636 class CopyConstrain : public ScheduleDAGMutation { 1637 // Transient state. 1638 SlotIndex RegionBeginIdx; 1639 1640 // RegionEndIdx is the slot index of the last non-debug instruction in the 1641 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1642 SlotIndex RegionEndIdx; 1643 1644 public: 1645 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1646 1647 void apply(ScheduleDAGInstrs *DAGInstrs) override; 1648 1649 protected: 1650 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1651 }; 1652 1653 } // end anonymous namespace 1654 1655 namespace llvm { 1656 1657 std::unique_ptr<ScheduleDAGMutation> 1658 createCopyConstrainDAGMutation(const TargetInstrInfo *TII, 1659 const TargetRegisterInfo *TRI) { 1660 return llvm::make_unique<CopyConstrain>(TII, TRI); 1661 } 1662 1663 } // end namespace llvm 1664 1665 /// constrainLocalCopy handles two possibilities: 1666 /// 1) Local src: 1667 /// I0: = dst 1668 /// I1: src = ... 1669 /// I2: = dst 1670 /// I3: dst = src (copy) 1671 /// (create pred->succ edges I0->I1, I2->I1) 1672 /// 1673 /// 2) Local copy: 1674 /// I0: dst = src (copy) 1675 /// I1: = dst 1676 /// I2: src = ... 1677 /// I3: = dst 1678 /// (create pred->succ edges I1->I2, I3->I2) 1679 /// 1680 /// Although the MachineScheduler is currently constrained to single blocks, 1681 /// this algorithm should handle extended blocks. An EBB is a set of 1682 /// contiguously numbered blocks such that the previous block in the EBB is 1683 /// always the single predecessor. 1684 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1685 LiveIntervals *LIS = DAG->getLIS(); 1686 MachineInstr *Copy = CopySU->getInstr(); 1687 1688 // Check for pure vreg copies. 1689 const MachineOperand &SrcOp = Copy->getOperand(1); 1690 unsigned SrcReg = SrcOp.getReg(); 1691 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !SrcOp.readsReg()) 1692 return; 1693 1694 const MachineOperand &DstOp = Copy->getOperand(0); 1695 unsigned DstReg = DstOp.getReg(); 1696 if (!TargetRegisterInfo::isVirtualRegister(DstReg) || DstOp.isDead()) 1697 return; 1698 1699 // Check if either the dest or source is local. If it's live across a back 1700 // edge, it's not local. Note that if both vregs are live across the back 1701 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1702 // If both the copy's source and dest are local live intervals, then we 1703 // should treat the dest as the global for the purpose of adding 1704 // constraints. This adds edges from source's other uses to the copy. 1705 unsigned LocalReg = SrcReg; 1706 unsigned GlobalReg = DstReg; 1707 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1708 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1709 LocalReg = DstReg; 1710 GlobalReg = SrcReg; 1711 LocalLI = &LIS->getInterval(LocalReg); 1712 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1713 return; 1714 } 1715 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1716 1717 // Find the global segment after the start of the local LI. 1718 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1719 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1720 // local live range. We could create edges from other global uses to the local 1721 // start, but the coalescer should have already eliminated these cases, so 1722 // don't bother dealing with it. 1723 if (GlobalSegment == GlobalLI->end()) 1724 return; 1725 1726 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1727 // returned the next global segment. But if GlobalSegment overlaps with 1728 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1729 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1730 if (GlobalSegment->contains(LocalLI->beginIndex())) 1731 ++GlobalSegment; 1732 1733 if (GlobalSegment == GlobalLI->end()) 1734 return; 1735 1736 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1737 if (GlobalSegment != GlobalLI->begin()) { 1738 // Two address defs have no hole. 1739 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1740 GlobalSegment->start)) { 1741 return; 1742 } 1743 // If the prior global segment may be defined by the same two-address 1744 // instruction that also defines LocalLI, then can't make a hole here. 1745 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1746 LocalLI->beginIndex())) { 1747 return; 1748 } 1749 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1750 // it would be a disconnected component in the live range. 1751 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1752 "Disconnected LRG within the scheduling region."); 1753 } 1754 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1755 if (!GlobalDef) 1756 return; 1757 1758 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1759 if (!GlobalSU) 1760 return; 1761 1762 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1763 // constraining the uses of the last local def to precede GlobalDef. 1764 SmallVector<SUnit*,8> LocalUses; 1765 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1766 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1767 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1768 for (const SDep &Succ : LastLocalSU->Succs) { 1769 if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) 1770 continue; 1771 if (Succ.getSUnit() == GlobalSU) 1772 continue; 1773 if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) 1774 return; 1775 LocalUses.push_back(Succ.getSUnit()); 1776 } 1777 // Open the top of the GlobalLI hole by constraining any earlier global uses 1778 // to precede the start of LocalLI. 1779 SmallVector<SUnit*,8> GlobalUses; 1780 MachineInstr *FirstLocalDef = 1781 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1782 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1783 for (const SDep &Pred : GlobalSU->Preds) { 1784 if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) 1785 continue; 1786 if (Pred.getSUnit() == FirstLocalSU) 1787 continue; 1788 if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) 1789 return; 1790 GlobalUses.push_back(Pred.getSUnit()); 1791 } 1792 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1793 // Add the weak edges. 1794 for (SmallVectorImpl<SUnit*>::const_iterator 1795 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1796 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1797 << GlobalSU->NodeNum << ")\n"); 1798 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1799 } 1800 for (SmallVectorImpl<SUnit*>::const_iterator 1801 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1802 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1803 << FirstLocalSU->NodeNum << ")\n"); 1804 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1805 } 1806 } 1807 1808 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1809 /// copy elimination. 1810 void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { 1811 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1812 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1813 1814 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1815 if (FirstPos == DAG->end()) 1816 return; 1817 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); 1818 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1819 *priorNonDebug(DAG->end(), DAG->begin())); 1820 1821 for (SUnit &SU : DAG->SUnits) { 1822 if (!SU.getInstr()->isCopy()) 1823 continue; 1824 1825 constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); 1826 } 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1831 // and possibly other custom schedulers. 1832 //===----------------------------------------------------------------------===// 1833 1834 static const unsigned InvalidCycle = ~0U; 1835 1836 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1837 1838 void SchedBoundary::reset() { 1839 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1840 // Destroying and reconstructing it is very expensive though. So keep 1841 // invalid, placeholder HazardRecs. 1842 if (HazardRec && HazardRec->isEnabled()) { 1843 delete HazardRec; 1844 HazardRec = nullptr; 1845 } 1846 Available.clear(); 1847 Pending.clear(); 1848 CheckPending = false; 1849 CurrCycle = 0; 1850 CurrMOps = 0; 1851 MinReadyCycle = std::numeric_limits<unsigned>::max(); 1852 ExpectedLatency = 0; 1853 DependentLatency = 0; 1854 RetiredMOps = 0; 1855 MaxExecutedResCount = 0; 1856 ZoneCritResIdx = 0; 1857 IsResourceLimited = false; 1858 ReservedCycles.clear(); 1859 #ifndef NDEBUG 1860 // Track the maximum number of stall cycles that could arise either from the 1861 // latency of a DAG edge or the number of cycles that a processor resource is 1862 // reserved (SchedBoundary::ReservedCycles). 1863 MaxObservedStall = 0; 1864 #endif 1865 // Reserve a zero-count for invalid CritResIdx. 1866 ExecutedResCounts.resize(1); 1867 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1868 } 1869 1870 void SchedRemainder:: 1871 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1872 reset(); 1873 if (!SchedModel->hasInstrSchedModel()) 1874 return; 1875 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1876 for (SUnit &SU : DAG->SUnits) { 1877 const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); 1878 RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) 1879 * SchedModel->getMicroOpFactor(); 1880 for (TargetSchedModel::ProcResIter 1881 PI = SchedModel->getWriteProcResBegin(SC), 1882 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1883 unsigned PIdx = PI->ProcResourceIdx; 1884 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1885 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1886 } 1887 } 1888 } 1889 1890 void SchedBoundary:: 1891 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1892 reset(); 1893 DAG = dag; 1894 SchedModel = smodel; 1895 Rem = rem; 1896 if (SchedModel->hasInstrSchedModel()) { 1897 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1898 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1899 } 1900 } 1901 1902 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1903 /// these "soft stalls" differently than the hard stall cycles based on CPU 1904 /// resources and computed by checkHazard(). A fully in-order model 1905 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1906 /// available for scheduling until they are ready. However, a weaker in-order 1907 /// model may use this for heuristics. For example, if a processor has in-order 1908 /// behavior when reading certain resources, this may come into play. 1909 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1910 if (!SU->isUnbuffered) 1911 return 0; 1912 1913 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1914 if (ReadyCycle > CurrCycle) 1915 return ReadyCycle - CurrCycle; 1916 return 0; 1917 } 1918 1919 /// Compute the next cycle at which the given processor resource can be 1920 /// scheduled. 1921 unsigned SchedBoundary:: 1922 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1923 unsigned NextUnreserved = ReservedCycles[PIdx]; 1924 // If this resource has never been used, always return cycle zero. 1925 if (NextUnreserved == InvalidCycle) 1926 return 0; 1927 // For bottom-up scheduling add the cycles needed for the current operation. 1928 if (!isTop()) 1929 NextUnreserved += Cycles; 1930 return NextUnreserved; 1931 } 1932 1933 /// Does this SU have a hazard within the current instruction group. 1934 /// 1935 /// The scheduler supports two modes of hazard recognition. The first is the 1936 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1937 /// supports highly complicated in-order reservation tables 1938 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1939 /// 1940 /// The second is a streamlined mechanism that checks for hazards based on 1941 /// simple counters that the scheduler itself maintains. It explicitly checks 1942 /// for instruction dispatch limitations, including the number of micro-ops that 1943 /// can dispatch per cycle. 1944 /// 1945 /// TODO: Also check whether the SU must start a new group. 1946 bool SchedBoundary::checkHazard(SUnit *SU) { 1947 if (HazardRec->isEnabled() 1948 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1949 return true; 1950 } 1951 1952 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1953 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1954 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1955 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1956 return true; 1957 } 1958 1959 if (CurrMOps > 0 && 1960 ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || 1961 (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { 1962 DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " 1963 << (isTop()? "begin" : "end") << " group\n"); 1964 return true; 1965 } 1966 1967 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1968 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1969 for (TargetSchedModel::ProcResIter 1970 PI = SchedModel->getWriteProcResBegin(SC), 1971 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1972 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles); 1973 if (NRCycle > CurrCycle) { 1974 #ifndef NDEBUG 1975 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall); 1976 #endif 1977 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " 1978 << SchedModel->getResourceName(PI->ProcResourceIdx) 1979 << "=" << NRCycle << "c\n"); 1980 return true; 1981 } 1982 } 1983 } 1984 return false; 1985 } 1986 1987 // Find the unscheduled node in ReadySUs with the highest latency. 1988 unsigned SchedBoundary:: 1989 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1990 SUnit *LateSU = nullptr; 1991 unsigned RemLatency = 0; 1992 for (SUnit *SU : ReadySUs) { 1993 unsigned L = getUnscheduledLatency(SU); 1994 if (L > RemLatency) { 1995 RemLatency = L; 1996 LateSU = SU; 1997 } 1998 } 1999 if (LateSU) { 2000 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 2001 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 2002 } 2003 return RemLatency; 2004 } 2005 2006 // Count resources in this zone and the remaining unscheduled 2007 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 2008 // resource index, or zero if the zone is issue limited. 2009 unsigned SchedBoundary:: 2010 getOtherResourceCount(unsigned &OtherCritIdx) { 2011 OtherCritIdx = 0; 2012 if (!SchedModel->hasInstrSchedModel()) 2013 return 0; 2014 2015 unsigned OtherCritCount = Rem->RemIssueCount 2016 + (RetiredMOps * SchedModel->getMicroOpFactor()); 2017 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 2018 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 2019 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 2020 PIdx != PEnd; ++PIdx) { 2021 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 2022 if (OtherCount > OtherCritCount) { 2023 OtherCritCount = OtherCount; 2024 OtherCritIdx = PIdx; 2025 } 2026 } 2027 if (OtherCritIdx) { 2028 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 2029 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 2030 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 2031 } 2032 return OtherCritCount; 2033 } 2034 2035 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 2036 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 2037 2038 #ifndef NDEBUG 2039 // ReadyCycle was been bumped up to the CurrCycle when this node was 2040 // scheduled, but CurrCycle may have been eagerly advanced immediately after 2041 // scheduling, so may now be greater than ReadyCycle. 2042 if (ReadyCycle > CurrCycle) 2043 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); 2044 #endif 2045 2046 if (ReadyCycle < MinReadyCycle) 2047 MinReadyCycle = ReadyCycle; 2048 2049 // Check for interlocks first. For the purpose of other heuristics, an 2050 // instruction that cannot issue appears as if it's not in the ReadyQueue. 2051 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2052 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU) || 2053 Available.size() >= ReadyListLimit) 2054 Pending.push(SU); 2055 else 2056 Available.push(SU); 2057 } 2058 2059 /// Move the boundary of scheduled code by one cycle. 2060 void SchedBoundary::bumpCycle(unsigned NextCycle) { 2061 if (SchedModel->getMicroOpBufferSize() == 0) { 2062 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && 2063 "MinReadyCycle uninitialized"); 2064 if (MinReadyCycle > NextCycle) 2065 NextCycle = MinReadyCycle; 2066 } 2067 // Update the current micro-ops, which will issue in the next cycle. 2068 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 2069 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 2070 2071 // Decrement DependentLatency based on the next cycle. 2072 if ((NextCycle - CurrCycle) > DependentLatency) 2073 DependentLatency = 0; 2074 else 2075 DependentLatency -= (NextCycle - CurrCycle); 2076 2077 if (!HazardRec->isEnabled()) { 2078 // Bypass HazardRec virtual calls. 2079 CurrCycle = NextCycle; 2080 } else { 2081 // Bypass getHazardType calls in case of long latency. 2082 for (; CurrCycle != NextCycle; ++CurrCycle) { 2083 if (isTop()) 2084 HazardRec->AdvanceCycle(); 2085 else 2086 HazardRec->RecedeCycle(); 2087 } 2088 } 2089 CheckPending = true; 2090 unsigned LFactor = SchedModel->getLatencyFactor(); 2091 IsResourceLimited = 2092 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2093 > (int)LFactor; 2094 2095 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 2096 } 2097 2098 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 2099 ExecutedResCounts[PIdx] += Count; 2100 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 2101 MaxExecutedResCount = ExecutedResCounts[PIdx]; 2102 } 2103 2104 /// Add the given processor resource to this scheduled zone. 2105 /// 2106 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 2107 /// during which this resource is consumed. 2108 /// 2109 /// \return the next cycle at which the instruction may execute without 2110 /// oversubscribing resources. 2111 unsigned SchedBoundary:: 2112 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 2113 unsigned Factor = SchedModel->getResourceFactor(PIdx); 2114 unsigned Count = Factor * Cycles; 2115 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 2116 << " +" << Cycles << "x" << Factor << "u\n"); 2117 2118 // Update Executed resources counts. 2119 incExecutedResources(PIdx, Count); 2120 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 2121 Rem->RemainingCounts[PIdx] -= Count; 2122 2123 // Check if this resource exceeds the current critical resource. If so, it 2124 // becomes the critical resource. 2125 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 2126 ZoneCritResIdx = PIdx; 2127 DEBUG(dbgs() << " *** Critical resource " 2128 << SchedModel->getResourceName(PIdx) << ": " 2129 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 2130 } 2131 // For reserved resources, record the highest cycle using the resource. 2132 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 2133 if (NextAvailable > CurrCycle) { 2134 DEBUG(dbgs() << " Resource conflict: " 2135 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 2136 << NextAvailable << "\n"); 2137 } 2138 return NextAvailable; 2139 } 2140 2141 /// Move the boundary of scheduled code by one SUnit. 2142 void SchedBoundary::bumpNode(SUnit *SU) { 2143 // Update the reservation table. 2144 if (HazardRec->isEnabled()) { 2145 if (!isTop() && SU->isCall) { 2146 // Calls are scheduled with their preceding instructions. For bottom-up 2147 // scheduling, clear the pipeline state before emitting. 2148 HazardRec->Reset(); 2149 } 2150 HazardRec->EmitInstruction(SU); 2151 } 2152 // checkHazard should prevent scheduling multiple instructions per cycle that 2153 // exceed the issue width. 2154 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2155 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 2156 assert( 2157 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 2158 "Cannot schedule this instruction's MicroOps in the current cycle."); 2159 2160 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 2161 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 2162 2163 unsigned NextCycle = CurrCycle; 2164 switch (SchedModel->getMicroOpBufferSize()) { 2165 case 0: 2166 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 2167 break; 2168 case 1: 2169 if (ReadyCycle > NextCycle) { 2170 NextCycle = ReadyCycle; 2171 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 2172 } 2173 break; 2174 default: 2175 // We don't currently model the OOO reorder buffer, so consider all 2176 // scheduled MOps to be "retired". We do loosely model in-order resource 2177 // latency. If this instruction uses an in-order resource, account for any 2178 // likely stall cycles. 2179 if (SU->isUnbuffered && ReadyCycle > NextCycle) 2180 NextCycle = ReadyCycle; 2181 break; 2182 } 2183 RetiredMOps += IncMOps; 2184 2185 // Update resource counts and critical resource. 2186 if (SchedModel->hasInstrSchedModel()) { 2187 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 2188 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 2189 Rem->RemIssueCount -= DecRemIssue; 2190 if (ZoneCritResIdx) { 2191 // Scale scheduled micro-ops for comparing with the critical resource. 2192 unsigned ScaledMOps = 2193 RetiredMOps * SchedModel->getMicroOpFactor(); 2194 2195 // If scaled micro-ops are now more than the previous critical resource by 2196 // a full cycle, then micro-ops issue becomes critical. 2197 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 2198 >= (int)SchedModel->getLatencyFactor()) { 2199 ZoneCritResIdx = 0; 2200 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 2201 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 2202 } 2203 } 2204 for (TargetSchedModel::ProcResIter 2205 PI = SchedModel->getWriteProcResBegin(SC), 2206 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2207 unsigned RCycle = 2208 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 2209 if (RCycle > NextCycle) 2210 NextCycle = RCycle; 2211 } 2212 if (SU->hasReservedResource) { 2213 // For reserved resources, record the highest cycle using the resource. 2214 // For top-down scheduling, this is the cycle in which we schedule this 2215 // instruction plus the number of cycles the operations reserves the 2216 // resource. For bottom-up is it simply the instruction's cycle. 2217 for (TargetSchedModel::ProcResIter 2218 PI = SchedModel->getWriteProcResBegin(SC), 2219 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2220 unsigned PIdx = PI->ProcResourceIdx; 2221 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 2222 if (isTop()) { 2223 ReservedCycles[PIdx] = 2224 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles); 2225 } 2226 else 2227 ReservedCycles[PIdx] = NextCycle; 2228 } 2229 } 2230 } 2231 } 2232 // Update ExpectedLatency and DependentLatency. 2233 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 2234 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 2235 if (SU->getDepth() > TopLatency) { 2236 TopLatency = SU->getDepth(); 2237 DEBUG(dbgs() << " " << Available.getName() 2238 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 2239 } 2240 if (SU->getHeight() > BotLatency) { 2241 BotLatency = SU->getHeight(); 2242 DEBUG(dbgs() << " " << Available.getName() 2243 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 2244 } 2245 // If we stall for any reason, bump the cycle. 2246 if (NextCycle > CurrCycle) { 2247 bumpCycle(NextCycle); 2248 } else { 2249 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 2250 // resource limited. If a stall occurred, bumpCycle does this. 2251 unsigned LFactor = SchedModel->getLatencyFactor(); 2252 IsResourceLimited = 2253 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 2254 > (int)LFactor; 2255 } 2256 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 2257 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 2258 // one cycle. Since we commonly reach the max MOps here, opportunistically 2259 // bump the cycle to avoid uselessly checking everything in the readyQ. 2260 CurrMOps += IncMOps; 2261 2262 // Bump the cycle count for issue group constraints. 2263 // This must be done after NextCycle has been adjust for all other stalls. 2264 // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set 2265 // currCycle to X. 2266 if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || 2267 (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { 2268 DEBUG(dbgs() << " Bump cycle to " 2269 << (isTop() ? "end" : "begin") << " group\n"); 2270 bumpCycle(++NextCycle); 2271 } 2272 2273 while (CurrMOps >= SchedModel->getIssueWidth()) { 2274 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 2275 << " at cycle " << CurrCycle << '\n'); 2276 bumpCycle(++NextCycle); 2277 } 2278 DEBUG(dumpScheduledState()); 2279 } 2280 2281 /// Release pending ready nodes in to the available queue. This makes them 2282 /// visible to heuristics. 2283 void SchedBoundary::releasePending() { 2284 // If the available queue is empty, it is safe to reset MinReadyCycle. 2285 if (Available.empty()) 2286 MinReadyCycle = std::numeric_limits<unsigned>::max(); 2287 2288 // Check to see if any of the pending instructions are ready to issue. If 2289 // so, add them to the available queue. 2290 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2291 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2292 SUnit *SU = *(Pending.begin()+i); 2293 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2294 2295 if (ReadyCycle < MinReadyCycle) 2296 MinReadyCycle = ReadyCycle; 2297 2298 if (!IsBuffered && ReadyCycle > CurrCycle) 2299 continue; 2300 2301 if (checkHazard(SU)) 2302 continue; 2303 2304 if (Available.size() >= ReadyListLimit) 2305 break; 2306 2307 Available.push(SU); 2308 Pending.remove(Pending.begin()+i); 2309 --i; --e; 2310 } 2311 CheckPending = false; 2312 } 2313 2314 /// Remove SU from the ready set for this boundary. 2315 void SchedBoundary::removeReady(SUnit *SU) { 2316 if (Available.isInQueue(SU)) 2317 Available.remove(Available.find(SU)); 2318 else { 2319 assert(Pending.isInQueue(SU) && "bad ready count"); 2320 Pending.remove(Pending.find(SU)); 2321 } 2322 } 2323 2324 /// If this queue only has one ready candidate, return it. As a side effect, 2325 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2326 /// one node is ready. If multiple instructions are ready, return NULL. 2327 SUnit *SchedBoundary::pickOnlyChoice() { 2328 if (CheckPending) 2329 releasePending(); 2330 2331 if (CurrMOps > 0) { 2332 // Defer any ready instrs that now have a hazard. 2333 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2334 if (checkHazard(*I)) { 2335 Pending.push(*I); 2336 I = Available.remove(I); 2337 continue; 2338 } 2339 ++I; 2340 } 2341 } 2342 for (unsigned i = 0; Available.empty(); ++i) { 2343 // FIXME: Re-enable assert once PR20057 is resolved. 2344 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && 2345 // "permanent hazard"); 2346 (void)i; 2347 bumpCycle(CurrCycle + 1); 2348 releasePending(); 2349 } 2350 2351 DEBUG(Pending.dump()); 2352 DEBUG(Available.dump()); 2353 2354 if (Available.size() == 1) 2355 return *Available.begin(); 2356 return nullptr; 2357 } 2358 2359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2360 // This is useful information to dump after bumpNode. 2361 // Note that the Queue contents are more useful before pickNodeFromQueue. 2362 LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { 2363 unsigned ResFactor; 2364 unsigned ResCount; 2365 if (ZoneCritResIdx) { 2366 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2367 ResCount = getResourceCount(ZoneCritResIdx); 2368 } else { 2369 ResFactor = SchedModel->getMicroOpFactor(); 2370 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2371 } 2372 unsigned LFactor = SchedModel->getLatencyFactor(); 2373 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2374 << " Retired: " << RetiredMOps; 2375 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2376 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2377 << ResCount / ResFactor << " " 2378 << SchedModel->getResourceName(ZoneCritResIdx) 2379 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2380 << (IsResourceLimited ? " - Resource" : " - Latency") 2381 << " limited.\n"; 2382 } 2383 #endif 2384 2385 //===----------------------------------------------------------------------===// 2386 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2387 //===----------------------------------------------------------------------===// 2388 2389 void GenericSchedulerBase::SchedCandidate:: 2390 initResourceDelta(const ScheduleDAGMI *DAG, 2391 const TargetSchedModel *SchedModel) { 2392 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2393 return; 2394 2395 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2396 for (TargetSchedModel::ProcResIter 2397 PI = SchedModel->getWriteProcResBegin(SC), 2398 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2399 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2400 ResDelta.CritResources += PI->Cycles; 2401 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2402 ResDelta.DemandedResources += PI->Cycles; 2403 } 2404 } 2405 2406 /// Set the CandPolicy given a scheduling zone given the current resources and 2407 /// latencies inside and outside the zone. 2408 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, 2409 SchedBoundary &CurrZone, 2410 SchedBoundary *OtherZone) { 2411 // Apply preemptive heuristics based on the total latency and resources 2412 // inside and outside this zone. Potential stalls should be considered before 2413 // following this policy. 2414 2415 // Compute remaining latency. We need this both to determine whether the 2416 // overall schedule has become latency-limited and whether the instructions 2417 // outside this zone are resource or latency limited. 2418 // 2419 // The "dependent" latency is updated incrementally during scheduling as the 2420 // max height/depth of scheduled nodes minus the cycles since it was 2421 // scheduled: 2422 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2423 // 2424 // The "independent" latency is the max ready queue depth: 2425 // ILat = max N.depth for N in Available|Pending 2426 // 2427 // RemainingLatency is the greater of independent and dependent latency. 2428 unsigned RemLatency = CurrZone.getDependentLatency(); 2429 RemLatency = std::max(RemLatency, 2430 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2431 RemLatency = std::max(RemLatency, 2432 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2433 2434 // Compute the critical resource outside the zone. 2435 unsigned OtherCritIdx = 0; 2436 unsigned OtherCount = 2437 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2438 2439 bool OtherResLimited = false; 2440 if (SchedModel->hasInstrSchedModel()) { 2441 unsigned LFactor = SchedModel->getLatencyFactor(); 2442 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2443 } 2444 // Schedule aggressively for latency in PostRA mode. We don't check for 2445 // acyclic latency during PostRA, and highly out-of-order processors will 2446 // skip PostRA scheduling. 2447 if (!OtherResLimited) { 2448 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2449 Policy.ReduceLatency |= true; 2450 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2451 << " RemainingLatency " << RemLatency << " + " 2452 << CurrZone.getCurrCycle() << "c > CritPath " 2453 << Rem.CriticalPath << "\n"); 2454 } 2455 } 2456 // If the same resource is limiting inside and outside the zone, do nothing. 2457 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2458 return; 2459 2460 DEBUG( 2461 if (CurrZone.isResourceLimited()) { 2462 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2463 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2464 << "\n"; 2465 } 2466 if (OtherResLimited) 2467 dbgs() << " RemainingLimit: " 2468 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2469 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2470 dbgs() << " Latency limited both directions.\n"); 2471 2472 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2473 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2474 2475 if (OtherResLimited) 2476 Policy.DemandResIdx = OtherCritIdx; 2477 } 2478 2479 #ifndef NDEBUG 2480 const char *GenericSchedulerBase::getReasonStr( 2481 GenericSchedulerBase::CandReason Reason) { 2482 switch (Reason) { 2483 case NoCand: return "NOCAND "; 2484 case Only1: return "ONLY1 "; 2485 case PhysRegCopy: return "PREG-COPY "; 2486 case RegExcess: return "REG-EXCESS"; 2487 case RegCritical: return "REG-CRIT "; 2488 case Stall: return "STALL "; 2489 case Cluster: return "CLUSTER "; 2490 case Weak: return "WEAK "; 2491 case RegMax: return "REG-MAX "; 2492 case ResourceReduce: return "RES-REDUCE"; 2493 case ResourceDemand: return "RES-DEMAND"; 2494 case TopDepthReduce: return "TOP-DEPTH "; 2495 case TopPathReduce: return "TOP-PATH "; 2496 case BotHeightReduce:return "BOT-HEIGHT"; 2497 case BotPathReduce: return "BOT-PATH "; 2498 case NextDefUse: return "DEF-USE "; 2499 case NodeOrder: return "ORDER "; 2500 }; 2501 llvm_unreachable("Unknown reason!"); 2502 } 2503 2504 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2505 PressureChange P; 2506 unsigned ResIdx = 0; 2507 unsigned Latency = 0; 2508 switch (Cand.Reason) { 2509 default: 2510 break; 2511 case RegExcess: 2512 P = Cand.RPDelta.Excess; 2513 break; 2514 case RegCritical: 2515 P = Cand.RPDelta.CriticalMax; 2516 break; 2517 case RegMax: 2518 P = Cand.RPDelta.CurrentMax; 2519 break; 2520 case ResourceReduce: 2521 ResIdx = Cand.Policy.ReduceResIdx; 2522 break; 2523 case ResourceDemand: 2524 ResIdx = Cand.Policy.DemandResIdx; 2525 break; 2526 case TopDepthReduce: 2527 Latency = Cand.SU->getDepth(); 2528 break; 2529 case TopPathReduce: 2530 Latency = Cand.SU->getHeight(); 2531 break; 2532 case BotHeightReduce: 2533 Latency = Cand.SU->getHeight(); 2534 break; 2535 case BotPathReduce: 2536 Latency = Cand.SU->getDepth(); 2537 break; 2538 } 2539 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2540 if (P.isValid()) 2541 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2542 << ":" << P.getUnitInc() << " "; 2543 else 2544 dbgs() << " "; 2545 if (ResIdx) 2546 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2547 else 2548 dbgs() << " "; 2549 if (Latency) 2550 dbgs() << " " << Latency << " cycles "; 2551 else 2552 dbgs() << " "; 2553 dbgs() << '\n'; 2554 } 2555 #endif 2556 2557 /// Return true if this heuristic determines order. 2558 static bool tryLess(int TryVal, int CandVal, 2559 GenericSchedulerBase::SchedCandidate &TryCand, 2560 GenericSchedulerBase::SchedCandidate &Cand, 2561 GenericSchedulerBase::CandReason Reason) { 2562 if (TryVal < CandVal) { 2563 TryCand.Reason = Reason; 2564 return true; 2565 } 2566 if (TryVal > CandVal) { 2567 if (Cand.Reason > Reason) 2568 Cand.Reason = Reason; 2569 return true; 2570 } 2571 return false; 2572 } 2573 2574 static bool tryGreater(int TryVal, int CandVal, 2575 GenericSchedulerBase::SchedCandidate &TryCand, 2576 GenericSchedulerBase::SchedCandidate &Cand, 2577 GenericSchedulerBase::CandReason Reason) { 2578 if (TryVal > CandVal) { 2579 TryCand.Reason = Reason; 2580 return true; 2581 } 2582 if (TryVal < CandVal) { 2583 if (Cand.Reason > Reason) 2584 Cand.Reason = Reason; 2585 return true; 2586 } 2587 return false; 2588 } 2589 2590 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2591 GenericSchedulerBase::SchedCandidate &Cand, 2592 SchedBoundary &Zone) { 2593 if (Zone.isTop()) { 2594 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2595 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2596 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2597 return true; 2598 } 2599 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2600 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2601 return true; 2602 } else { 2603 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2604 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2605 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2606 return true; 2607 } 2608 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2609 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2610 return true; 2611 } 2612 return false; 2613 } 2614 2615 static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { 2616 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2617 << GenericSchedulerBase::getReasonStr(Reason) << '\n'); 2618 } 2619 2620 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { 2621 tracePick(Cand.Reason, Cand.AtTop); 2622 } 2623 2624 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2625 assert(dag->hasVRegLiveness() && 2626 "(PreRA)GenericScheduler needs vreg liveness"); 2627 DAG = static_cast<ScheduleDAGMILive*>(dag); 2628 SchedModel = DAG->getSchedModel(); 2629 TRI = DAG->TRI; 2630 2631 Rem.init(DAG, SchedModel); 2632 Top.init(DAG, SchedModel, &Rem); 2633 Bot.init(DAG, SchedModel, &Rem); 2634 2635 // Initialize resource counts. 2636 2637 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2638 // are disabled, then these HazardRecs will be disabled. 2639 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2640 if (!Top.HazardRec) { 2641 Top.HazardRec = 2642 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2643 Itin, DAG); 2644 } 2645 if (!Bot.HazardRec) { 2646 Bot.HazardRec = 2647 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 2648 Itin, DAG); 2649 } 2650 TopCand.SU = nullptr; 2651 BotCand.SU = nullptr; 2652 } 2653 2654 /// Initialize the per-region scheduling policy. 2655 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2656 MachineBasicBlock::iterator End, 2657 unsigned NumRegionInstrs) { 2658 const MachineFunction &MF = *Begin->getParent()->getParent(); 2659 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2660 2661 // Avoid setting up the register pressure tracker for small regions to save 2662 // compile time. As a rough heuristic, only track pressure when the number of 2663 // schedulable instructions exceeds half the integer register file. 2664 RegionPolicy.ShouldTrackPressure = true; 2665 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2666 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2667 if (TLI->isTypeLegal(LegalIntVT)) { 2668 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2669 TLI->getRegClassFor(LegalIntVT)); 2670 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2671 } 2672 } 2673 2674 // For generic targets, we default to bottom-up, because it's simpler and more 2675 // compile-time optimizations have been implemented in that direction. 2676 RegionPolicy.OnlyBottomUp = true; 2677 2678 // Allow the subtarget to override default policy. 2679 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); 2680 2681 // After subtarget overrides, apply command line options. 2682 if (!EnableRegPressure) 2683 RegionPolicy.ShouldTrackPressure = false; 2684 2685 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2686 // e.g. -misched-bottomup=false allows scheduling in both directions. 2687 assert((!ForceTopDown || !ForceBottomUp) && 2688 "-misched-topdown incompatible with -misched-bottomup"); 2689 if (ForceBottomUp.getNumOccurrences() > 0) { 2690 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2691 if (RegionPolicy.OnlyBottomUp) 2692 RegionPolicy.OnlyTopDown = false; 2693 } 2694 if (ForceTopDown.getNumOccurrences() > 0) { 2695 RegionPolicy.OnlyTopDown = ForceTopDown; 2696 if (RegionPolicy.OnlyTopDown) 2697 RegionPolicy.OnlyBottomUp = false; 2698 } 2699 } 2700 2701 void GenericScheduler::dumpPolicy() const { 2702 // Cannot completely remove virtual function even in release mode. 2703 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2704 dbgs() << "GenericScheduler RegionPolicy: " 2705 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure 2706 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown 2707 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp 2708 << "\n"; 2709 #endif 2710 } 2711 2712 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2713 /// critical path by more cycles than it takes to drain the instruction buffer. 2714 /// We estimate an upper bounds on in-flight instructions as: 2715 /// 2716 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2717 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2718 /// InFlightResources = InFlightIterations * LoopResources 2719 /// 2720 /// TODO: Check execution resources in addition to IssueCount. 2721 void GenericScheduler::checkAcyclicLatency() { 2722 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2723 return; 2724 2725 // Scaled number of cycles per loop iteration. 2726 unsigned IterCount = 2727 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2728 Rem.RemIssueCount); 2729 // Scaled acyclic critical path. 2730 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2731 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2732 unsigned InFlightCount = 2733 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2734 unsigned BufferLimit = 2735 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2736 2737 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2738 2739 DEBUG(dbgs() << "IssueCycles=" 2740 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2741 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2742 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2743 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2744 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2745 if (Rem.IsAcyclicLatencyLimited) 2746 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2747 } 2748 2749 void GenericScheduler::registerRoots() { 2750 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2751 2752 // Some roots may not feed into ExitSU. Check all of them in case. 2753 for (const SUnit *SU : Bot.Available) { 2754 if (SU->getDepth() > Rem.CriticalPath) 2755 Rem.CriticalPath = SU->getDepth(); 2756 } 2757 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); 2758 if (DumpCriticalPathLength) { 2759 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; 2760 } 2761 2762 if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { 2763 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2764 checkAcyclicLatency(); 2765 } 2766 } 2767 2768 static bool tryPressure(const PressureChange &TryP, 2769 const PressureChange &CandP, 2770 GenericSchedulerBase::SchedCandidate &TryCand, 2771 GenericSchedulerBase::SchedCandidate &Cand, 2772 GenericSchedulerBase::CandReason Reason, 2773 const TargetRegisterInfo *TRI, 2774 const MachineFunction &MF) { 2775 // If one candidate decreases and the other increases, go with it. 2776 // Invalid candidates have UnitInc==0. 2777 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2778 Reason)) { 2779 return true; 2780 } 2781 // Do not compare the magnitude of pressure changes between top and bottom 2782 // boundary. 2783 if (Cand.AtTop != TryCand.AtTop) 2784 return false; 2785 2786 // If both candidates affect the same set in the same boundary, go with the 2787 // smallest increase. 2788 unsigned TryPSet = TryP.getPSetOrMax(); 2789 unsigned CandPSet = CandP.getPSetOrMax(); 2790 if (TryPSet == CandPSet) { 2791 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2792 Reason); 2793 } 2794 2795 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : 2796 std::numeric_limits<int>::max(); 2797 2798 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : 2799 std::numeric_limits<int>::max(); 2800 2801 // If the candidates are decreasing pressure, reverse priority. 2802 if (TryP.getUnitInc() < 0) 2803 std::swap(TryRank, CandRank); 2804 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2805 } 2806 2807 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2808 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2809 } 2810 2811 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2812 /// their physreg def/use. 2813 /// 2814 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2815 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2816 /// with the operation that produces or consumes the physreg. We'll do this when 2817 /// regalloc has support for parallel copies. 2818 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2819 const MachineInstr *MI = SU->getInstr(); 2820 if (!MI->isCopy()) 2821 return 0; 2822 2823 unsigned ScheduledOper = isTop ? 1 : 0; 2824 unsigned UnscheduledOper = isTop ? 0 : 1; 2825 // If we have already scheduled the physreg produce/consumer, immediately 2826 // schedule the copy. 2827 if (TargetRegisterInfo::isPhysicalRegister( 2828 MI->getOperand(ScheduledOper).getReg())) 2829 return 1; 2830 // If the physreg is at the boundary, defer it. Otherwise schedule it 2831 // immediately to free the dependent. We can hoist the copy later. 2832 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2833 if (TargetRegisterInfo::isPhysicalRegister( 2834 MI->getOperand(UnscheduledOper).getReg())) 2835 return AtBoundary ? -1 : 1; 2836 return 0; 2837 } 2838 2839 void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, 2840 bool AtTop, 2841 const RegPressureTracker &RPTracker, 2842 RegPressureTracker &TempTracker) { 2843 Cand.SU = SU; 2844 Cand.AtTop = AtTop; 2845 if (DAG->isTrackingPressure()) { 2846 if (AtTop) { 2847 TempTracker.getMaxDownwardPressureDelta( 2848 Cand.SU->getInstr(), 2849 Cand.RPDelta, 2850 DAG->getRegionCriticalPSets(), 2851 DAG->getRegPressure().MaxSetPressure); 2852 } else { 2853 if (VerifyScheduling) { 2854 TempTracker.getMaxUpwardPressureDelta( 2855 Cand.SU->getInstr(), 2856 &DAG->getPressureDiff(Cand.SU), 2857 Cand.RPDelta, 2858 DAG->getRegionCriticalPSets(), 2859 DAG->getRegPressure().MaxSetPressure); 2860 } else { 2861 RPTracker.getUpwardPressureDelta( 2862 Cand.SU->getInstr(), 2863 DAG->getPressureDiff(Cand.SU), 2864 Cand.RPDelta, 2865 DAG->getRegionCriticalPSets(), 2866 DAG->getRegPressure().MaxSetPressure); 2867 } 2868 } 2869 } 2870 DEBUG(if (Cand.RPDelta.Excess.isValid()) 2871 dbgs() << " Try SU(" << Cand.SU->NodeNum << ") " 2872 << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) 2873 << ":" << Cand.RPDelta.Excess.getUnitInc() << "\n"); 2874 } 2875 2876 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2877 /// hierarchical. This may be more efficient than a graduated cost model because 2878 /// we don't need to evaluate all aspects of the model for each node in the 2879 /// queue. But it's really done to make the heuristics easier to debug and 2880 /// statistically analyze. 2881 /// 2882 /// \param Cand provides the policy and current best candidate. 2883 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2884 /// \param Zone describes the scheduled zone that we are extending, or nullptr 2885 // if Cand is from a different zone than TryCand. 2886 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2887 SchedCandidate &TryCand, 2888 SchedBoundary *Zone) { 2889 // Initialize the candidate if needed. 2890 if (!Cand.isValid()) { 2891 TryCand.Reason = NodeOrder; 2892 return; 2893 } 2894 2895 if (tryGreater(biasPhysRegCopy(TryCand.SU, TryCand.AtTop), 2896 biasPhysRegCopy(Cand.SU, Cand.AtTop), 2897 TryCand, Cand, PhysRegCopy)) 2898 return; 2899 2900 // Avoid exceeding the target's limit. 2901 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2902 Cand.RPDelta.Excess, 2903 TryCand, Cand, RegExcess, TRI, 2904 DAG->MF)) 2905 return; 2906 2907 // Avoid increasing the max critical pressure in the scheduled region. 2908 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2909 Cand.RPDelta.CriticalMax, 2910 TryCand, Cand, RegCritical, TRI, 2911 DAG->MF)) 2912 return; 2913 2914 // We only compare a subset of features when comparing nodes between 2915 // Top and Bottom boundary. Some properties are simply incomparable, in many 2916 // other instances we should only override the other boundary if something 2917 // is a clear good pick on one boundary. Skip heuristics that are more 2918 // "tie-breaking" in nature. 2919 bool SameBoundary = Zone != nullptr; 2920 if (SameBoundary) { 2921 // For loops that are acyclic path limited, aggressively schedule for 2922 // latency. Within an single cycle, whenever CurrMOps > 0, allow normal 2923 // heuristics to take precedence. 2924 if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && 2925 tryLatency(TryCand, Cand, *Zone)) 2926 return; 2927 2928 // Prioritize instructions that read unbuffered resources by stall cycles. 2929 if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), 2930 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2931 return; 2932 } 2933 2934 // Keep clustered nodes together to encourage downstream peephole 2935 // optimizations which may reduce resource requirements. 2936 // 2937 // This is a best effort to set things up for a post-RA pass. Optimizations 2938 // like generating loads of multiple registers should ideally be done within 2939 // the scheduler pass by combining the loads during DAG postprocessing. 2940 const SUnit *CandNextClusterSU = 2941 Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2942 const SUnit *TryCandNextClusterSU = 2943 TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2944 if (tryGreater(TryCand.SU == TryCandNextClusterSU, 2945 Cand.SU == CandNextClusterSU, 2946 TryCand, Cand, Cluster)) 2947 return; 2948 2949 if (SameBoundary) { 2950 // Weak edges are for clustering and other constraints. 2951 if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), 2952 getWeakLeft(Cand.SU, Cand.AtTop), 2953 TryCand, Cand, Weak)) 2954 return; 2955 } 2956 2957 // Avoid increasing the max pressure of the entire region. 2958 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2959 Cand.RPDelta.CurrentMax, 2960 TryCand, Cand, RegMax, TRI, 2961 DAG->MF)) 2962 return; 2963 2964 if (SameBoundary) { 2965 // Avoid critical resource consumption and balance the schedule. 2966 TryCand.initResourceDelta(DAG, SchedModel); 2967 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2968 TryCand, Cand, ResourceReduce)) 2969 return; 2970 if (tryGreater(TryCand.ResDelta.DemandedResources, 2971 Cand.ResDelta.DemandedResources, 2972 TryCand, Cand, ResourceDemand)) 2973 return; 2974 2975 // Avoid serializing long latency dependence chains. 2976 // For acyclic path limited loops, latency was already checked above. 2977 if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && 2978 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) 2979 return; 2980 2981 // Fall through to original instruction order. 2982 if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2983 || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2984 TryCand.Reason = NodeOrder; 2985 } 2986 } 2987 } 2988 2989 /// Pick the best candidate from the queue. 2990 /// 2991 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2992 /// DAG building. To adjust for the current scheduling location we need to 2993 /// maintain the number of vreg uses remaining to be top-scheduled. 2994 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2995 const CandPolicy &ZonePolicy, 2996 const RegPressureTracker &RPTracker, 2997 SchedCandidate &Cand) { 2998 // getMaxPressureDelta temporarily modifies the tracker. 2999 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 3000 3001 ReadyQueue &Q = Zone.Available; 3002 for (SUnit *SU : Q) { 3003 3004 SchedCandidate TryCand(ZonePolicy); 3005 initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); 3006 // Pass SchedBoundary only when comparing nodes from the same boundary. 3007 SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; 3008 tryCandidate(Cand, TryCand, ZoneArg); 3009 if (TryCand.Reason != NoCand) { 3010 // Initialize resource delta if needed in case future heuristics query it. 3011 if (TryCand.ResDelta == SchedResourceDelta()) 3012 TryCand.initResourceDelta(DAG, SchedModel); 3013 Cand.setBest(TryCand); 3014 DEBUG(traceCandidate(Cand)); 3015 } 3016 } 3017 } 3018 3019 /// Pick the best candidate node from either the top or bottom queue. 3020 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 3021 // Schedule as far as possible in the direction of no choice. This is most 3022 // efficient, but also provides the best heuristics for CriticalPSets. 3023 if (SUnit *SU = Bot.pickOnlyChoice()) { 3024 IsTopNode = false; 3025 tracePick(Only1, false); 3026 return SU; 3027 } 3028 if (SUnit *SU = Top.pickOnlyChoice()) { 3029 IsTopNode = true; 3030 tracePick(Only1, true); 3031 return SU; 3032 } 3033 // Set the bottom-up policy based on the state of the current bottom zone and 3034 // the instructions outside the zone, including the top zone. 3035 CandPolicy BotPolicy; 3036 setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); 3037 // Set the top-down policy based on the state of the current top zone and 3038 // the instructions outside the zone, including the bottom zone. 3039 CandPolicy TopPolicy; 3040 setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); 3041 3042 // See if BotCand is still valid (because we previously scheduled from Top). 3043 DEBUG(dbgs() << "Picking from Bot:\n"); 3044 if (!BotCand.isValid() || BotCand.SU->isScheduled || 3045 BotCand.Policy != BotPolicy) { 3046 BotCand.reset(CandPolicy()); 3047 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); 3048 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 3049 } else { 3050 DEBUG(traceCandidate(BotCand)); 3051 #ifndef NDEBUG 3052 if (VerifyScheduling) { 3053 SchedCandidate TCand; 3054 TCand.reset(CandPolicy()); 3055 pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); 3056 assert(TCand.SU == BotCand.SU && 3057 "Last pick result should correspond to re-picking right now"); 3058 } 3059 #endif 3060 } 3061 3062 // Check if the top Q has a better candidate. 3063 DEBUG(dbgs() << "Picking from Top:\n"); 3064 if (!TopCand.isValid() || TopCand.SU->isScheduled || 3065 TopCand.Policy != TopPolicy) { 3066 TopCand.reset(CandPolicy()); 3067 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); 3068 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 3069 } else { 3070 DEBUG(traceCandidate(TopCand)); 3071 #ifndef NDEBUG 3072 if (VerifyScheduling) { 3073 SchedCandidate TCand; 3074 TCand.reset(CandPolicy()); 3075 pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); 3076 assert(TCand.SU == TopCand.SU && 3077 "Last pick result should correspond to re-picking right now"); 3078 } 3079 #endif 3080 } 3081 3082 // Pick best from BotCand and TopCand. 3083 assert(BotCand.isValid()); 3084 assert(TopCand.isValid()); 3085 SchedCandidate Cand = BotCand; 3086 TopCand.Reason = NoCand; 3087 tryCandidate(Cand, TopCand, nullptr); 3088 if (TopCand.Reason != NoCand) { 3089 Cand.setBest(TopCand); 3090 DEBUG(traceCandidate(Cand)); 3091 } 3092 3093 IsTopNode = Cand.AtTop; 3094 tracePick(Cand); 3095 return Cand.SU; 3096 } 3097 3098 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 3099 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 3100 if (DAG->top() == DAG->bottom()) { 3101 assert(Top.Available.empty() && Top.Pending.empty() && 3102 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 3103 return nullptr; 3104 } 3105 SUnit *SU; 3106 do { 3107 if (RegionPolicy.OnlyTopDown) { 3108 SU = Top.pickOnlyChoice(); 3109 if (!SU) { 3110 CandPolicy NoPolicy; 3111 TopCand.reset(NoPolicy); 3112 pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); 3113 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3114 tracePick(TopCand); 3115 SU = TopCand.SU; 3116 } 3117 IsTopNode = true; 3118 } else if (RegionPolicy.OnlyBottomUp) { 3119 SU = Bot.pickOnlyChoice(); 3120 if (!SU) { 3121 CandPolicy NoPolicy; 3122 BotCand.reset(NoPolicy); 3123 pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); 3124 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 3125 tracePick(BotCand); 3126 SU = BotCand.SU; 3127 } 3128 IsTopNode = false; 3129 } else { 3130 SU = pickNodeBidirectional(IsTopNode); 3131 } 3132 } while (SU->isScheduled); 3133 3134 if (SU->isTopReady()) 3135 Top.removeReady(SU); 3136 if (SU->isBottomReady()) 3137 Bot.removeReady(SU); 3138 3139 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3140 return SU; 3141 } 3142 3143 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 3144 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 3145 if (!isTop) 3146 ++InsertPos; 3147 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 3148 3149 // Find already scheduled copies with a single physreg dependence and move 3150 // them just above the scheduled instruction. 3151 for (SDep &Dep : Deps) { 3152 if (Dep.getKind() != SDep::Data || !TRI->isPhysicalRegister(Dep.getReg())) 3153 continue; 3154 SUnit *DepSU = Dep.getSUnit(); 3155 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 3156 continue; 3157 MachineInstr *Copy = DepSU->getInstr(); 3158 if (!Copy->isCopy()) 3159 continue; 3160 DEBUG(dbgs() << " Rescheduling physreg copy "; 3161 Dep.getSUnit()->dump(DAG)); 3162 DAG->moveInstruction(Copy, InsertPos); 3163 } 3164 } 3165 3166 /// Update the scheduler's state after scheduling a node. This is the same node 3167 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 3168 /// update it's state based on the current cycle before MachineSchedStrategy 3169 /// does. 3170 /// 3171 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 3172 /// them here. See comments in biasPhysRegCopy. 3173 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3174 if (IsTopNode) { 3175 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3176 Top.bumpNode(SU); 3177 if (SU->hasPhysRegUses) 3178 reschedulePhysRegCopies(SU, true); 3179 } else { 3180 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 3181 Bot.bumpNode(SU); 3182 if (SU->hasPhysRegDefs) 3183 reschedulePhysRegCopies(SU, false); 3184 } 3185 } 3186 3187 /// Create the standard converging machine scheduler. This will be used as the 3188 /// default scheduler if the target does not set a default. 3189 ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { 3190 ScheduleDAGMILive *DAG = 3191 new ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)); 3192 // Register DAG post-processors. 3193 // 3194 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3195 // data and pass it to later mutations. Have a single mutation that gathers 3196 // the interesting nodes in one pass. 3197 DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); 3198 return DAG; 3199 } 3200 3201 static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) { 3202 return createGenericSchedLive(C); 3203 } 3204 3205 static MachineSchedRegistry 3206 GenericSchedRegistry("converge", "Standard converging scheduler.", 3207 createConveringSched); 3208 3209 //===----------------------------------------------------------------------===// 3210 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3211 //===----------------------------------------------------------------------===// 3212 3213 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { 3214 DAG = Dag; 3215 SchedModel = DAG->getSchedModel(); 3216 TRI = DAG->TRI; 3217 3218 Rem.init(DAG, SchedModel); 3219 Top.init(DAG, SchedModel, &Rem); 3220 BotRoots.clear(); 3221 3222 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3223 // or are disabled, then these HazardRecs will be disabled. 3224 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3225 if (!Top.HazardRec) { 3226 Top.HazardRec = 3227 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( 3228 Itin, DAG); 3229 } 3230 } 3231 3232 void PostGenericScheduler::registerRoots() { 3233 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3234 3235 // Some roots may not feed into ExitSU. Check all of them in case. 3236 for (const SUnit *SU : BotRoots) { 3237 if (SU->getDepth() > Rem.CriticalPath) 3238 Rem.CriticalPath = SU->getDepth(); 3239 } 3240 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); 3241 if (DumpCriticalPathLength) { 3242 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; 3243 } 3244 } 3245 3246 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3247 /// 3248 /// \param Cand provides the policy and current best candidate. 3249 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3250 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3251 SchedCandidate &TryCand) { 3252 // Initialize the candidate if needed. 3253 if (!Cand.isValid()) { 3254 TryCand.Reason = NodeOrder; 3255 return; 3256 } 3257 3258 // Prioritize instructions that read unbuffered resources by stall cycles. 3259 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3260 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3261 return; 3262 3263 // Keep clustered nodes together. 3264 if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), 3265 Cand.SU == DAG->getNextClusterSucc(), 3266 TryCand, Cand, Cluster)) 3267 return; 3268 3269 // Avoid critical resource consumption and balance the schedule. 3270 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3271 TryCand, Cand, ResourceReduce)) 3272 return; 3273 if (tryGreater(TryCand.ResDelta.DemandedResources, 3274 Cand.ResDelta.DemandedResources, 3275 TryCand, Cand, ResourceDemand)) 3276 return; 3277 3278 // Avoid serializing long latency dependence chains. 3279 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3280 return; 3281 } 3282 3283 // Fall through to original instruction order. 3284 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3285 TryCand.Reason = NodeOrder; 3286 } 3287 3288 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3289 ReadyQueue &Q = Top.Available; 3290 for (SUnit *SU : Q) { 3291 SchedCandidate TryCand(Cand.Policy); 3292 TryCand.SU = SU; 3293 TryCand.AtTop = true; 3294 TryCand.initResourceDelta(DAG, SchedModel); 3295 tryCandidate(Cand, TryCand); 3296 if (TryCand.Reason != NoCand) { 3297 Cand.setBest(TryCand); 3298 DEBUG(traceCandidate(Cand)); 3299 } 3300 } 3301 } 3302 3303 /// Pick the next node to schedule. 3304 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3305 if (DAG->top() == DAG->bottom()) { 3306 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3307 return nullptr; 3308 } 3309 SUnit *SU; 3310 do { 3311 SU = Top.pickOnlyChoice(); 3312 if (SU) { 3313 tracePick(Only1, true); 3314 } else { 3315 CandPolicy NoPolicy; 3316 SchedCandidate TopCand(NoPolicy); 3317 // Set the top-down policy based on the state of the current top zone and 3318 // the instructions outside the zone, including the bottom zone. 3319 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); 3320 pickNodeFromQueue(TopCand); 3321 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3322 tracePick(TopCand); 3323 SU = TopCand.SU; 3324 } 3325 } while (SU->isScheduled); 3326 3327 IsTopNode = true; 3328 Top.removeReady(SU); 3329 3330 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3331 return SU; 3332 } 3333 3334 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3335 /// scheduled/remaining flags in the DAG nodes. 3336 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3337 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3338 Top.bumpNode(SU); 3339 } 3340 3341 ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { 3342 return new ScheduleDAGMI(C, llvm::make_unique<PostGenericScheduler>(C), 3343 /*RemoveKillFlags=*/true); 3344 } 3345 3346 //===----------------------------------------------------------------------===// 3347 // ILP Scheduler. Currently for experimental analysis of heuristics. 3348 //===----------------------------------------------------------------------===// 3349 3350 namespace { 3351 3352 /// \brief Order nodes by the ILP metric. 3353 struct ILPOrder { 3354 const SchedDFSResult *DFSResult = nullptr; 3355 const BitVector *ScheduledTrees = nullptr; 3356 bool MaximizeILP; 3357 3358 ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} 3359 3360 /// \brief Apply a less-than relation on node priority. 3361 /// 3362 /// (Return true if A comes after B in the Q.) 3363 bool operator()(const SUnit *A, const SUnit *B) const { 3364 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3365 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3366 if (SchedTreeA != SchedTreeB) { 3367 // Unscheduled trees have lower priority. 3368 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3369 return ScheduledTrees->test(SchedTreeB); 3370 3371 // Trees with shallower connections have have lower priority. 3372 if (DFSResult->getSubtreeLevel(SchedTreeA) 3373 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3374 return DFSResult->getSubtreeLevel(SchedTreeA) 3375 < DFSResult->getSubtreeLevel(SchedTreeB); 3376 } 3377 } 3378 if (MaximizeILP) 3379 return DFSResult->getILP(A) < DFSResult->getILP(B); 3380 else 3381 return DFSResult->getILP(A) > DFSResult->getILP(B); 3382 } 3383 }; 3384 3385 /// \brief Schedule based on the ILP metric. 3386 class ILPScheduler : public MachineSchedStrategy { 3387 ScheduleDAGMILive *DAG = nullptr; 3388 ILPOrder Cmp; 3389 3390 std::vector<SUnit*> ReadyQ; 3391 3392 public: 3393 ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} 3394 3395 void initialize(ScheduleDAGMI *dag) override { 3396 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3397 DAG = static_cast<ScheduleDAGMILive*>(dag); 3398 DAG->computeDFSResult(); 3399 Cmp.DFSResult = DAG->getDFSResult(); 3400 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3401 ReadyQ.clear(); 3402 } 3403 3404 void registerRoots() override { 3405 // Restore the heap in ReadyQ with the updated DFS results. 3406 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3407 } 3408 3409 /// Implement MachineSchedStrategy interface. 3410 /// ----------------------------------------- 3411 3412 /// Callback to select the highest priority node from the ready Q. 3413 SUnit *pickNode(bool &IsTopNode) override { 3414 if (ReadyQ.empty()) return nullptr; 3415 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3416 SUnit *SU = ReadyQ.back(); 3417 ReadyQ.pop_back(); 3418 IsTopNode = false; 3419 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3420 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3421 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3422 << DAG->getDFSResult()->getSubtreeLevel( 3423 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3424 << "Scheduling " << *SU->getInstr()); 3425 return SU; 3426 } 3427 3428 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3429 void scheduleTree(unsigned SubtreeID) override { 3430 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3431 } 3432 3433 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3434 /// DFSResults, and resort the priority Q. 3435 void schedNode(SUnit *SU, bool IsTopNode) override { 3436 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3437 } 3438 3439 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3440 3441 void releaseBottomNode(SUnit *SU) override { 3442 ReadyQ.push_back(SU); 3443 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3444 } 3445 }; 3446 3447 } // end anonymous namespace 3448 3449 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3450 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(true)); 3451 } 3452 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3453 return new ScheduleDAGMILive(C, llvm::make_unique<ILPScheduler>(false)); 3454 } 3455 3456 static MachineSchedRegistry ILPMaxRegistry( 3457 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3458 static MachineSchedRegistry ILPMinRegistry( 3459 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3460 3461 //===----------------------------------------------------------------------===// 3462 // Machine Instruction Shuffler for Correctness Testing 3463 //===----------------------------------------------------------------------===// 3464 3465 #ifndef NDEBUG 3466 namespace { 3467 3468 /// Apply a less-than relation on the node order, which corresponds to the 3469 /// instruction order prior to scheduling. IsReverse implements greater-than. 3470 template<bool IsReverse> 3471 struct SUnitOrder { 3472 bool operator()(SUnit *A, SUnit *B) const { 3473 if (IsReverse) 3474 return A->NodeNum > B->NodeNum; 3475 else 3476 return A->NodeNum < B->NodeNum; 3477 } 3478 }; 3479 3480 /// Reorder instructions as much as possible. 3481 class InstructionShuffler : public MachineSchedStrategy { 3482 bool IsAlternating; 3483 bool IsTopDown; 3484 3485 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3486 // gives nodes with a higher number higher priority causing the latest 3487 // instructions to be scheduled first. 3488 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> 3489 TopQ; 3490 3491 // When scheduling bottom-up, use greater-than as the queue priority. 3492 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> 3493 BottomQ; 3494 3495 public: 3496 InstructionShuffler(bool alternate, bool topdown) 3497 : IsAlternating(alternate), IsTopDown(topdown) {} 3498 3499 void initialize(ScheduleDAGMI*) override { 3500 TopQ.clear(); 3501 BottomQ.clear(); 3502 } 3503 3504 /// Implement MachineSchedStrategy interface. 3505 /// ----------------------------------------- 3506 3507 SUnit *pickNode(bool &IsTopNode) override { 3508 SUnit *SU; 3509 if (IsTopDown) { 3510 do { 3511 if (TopQ.empty()) return nullptr; 3512 SU = TopQ.top(); 3513 TopQ.pop(); 3514 } while (SU->isScheduled); 3515 IsTopNode = true; 3516 } else { 3517 do { 3518 if (BottomQ.empty()) return nullptr; 3519 SU = BottomQ.top(); 3520 BottomQ.pop(); 3521 } while (SU->isScheduled); 3522 IsTopNode = false; 3523 } 3524 if (IsAlternating) 3525 IsTopDown = !IsTopDown; 3526 return SU; 3527 } 3528 3529 void schedNode(SUnit *SU, bool IsTopNode) override {} 3530 3531 void releaseTopNode(SUnit *SU) override { 3532 TopQ.push(SU); 3533 } 3534 void releaseBottomNode(SUnit *SU) override { 3535 BottomQ.push(SU); 3536 } 3537 }; 3538 3539 } // end anonymous namespace 3540 3541 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3542 bool Alternate = !ForceTopDown && !ForceBottomUp; 3543 bool TopDown = !ForceBottomUp; 3544 assert((TopDown || !ForceTopDown) && 3545 "-misched-topdown incompatible with -misched-bottomup"); 3546 return new ScheduleDAGMILive( 3547 C, llvm::make_unique<InstructionShuffler>(Alternate, TopDown)); 3548 } 3549 3550 static MachineSchedRegistry ShufflerRegistry( 3551 "shuffle", "Shuffle machine instructions alternating directions", 3552 createInstructionShuffler); 3553 #endif // !NDEBUG 3554 3555 //===----------------------------------------------------------------------===// 3556 // GraphWriter support for ScheduleDAGMILive. 3557 //===----------------------------------------------------------------------===// 3558 3559 #ifndef NDEBUG 3560 namespace llvm { 3561 3562 template<> struct GraphTraits< 3563 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3564 3565 template<> 3566 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3567 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} 3568 3569 static std::string getGraphName(const ScheduleDAG *G) { 3570 return G->MF.getName(); 3571 } 3572 3573 static bool renderGraphFromBottomUp() { 3574 return true; 3575 } 3576 3577 static bool isNodeHidden(const SUnit *Node) { 3578 if (ViewMISchedCutoff == 0) 3579 return false; 3580 return (Node->Preds.size() > ViewMISchedCutoff 3581 || Node->Succs.size() > ViewMISchedCutoff); 3582 } 3583 3584 /// If you want to override the dot attributes printed for a particular 3585 /// edge, override this method. 3586 static std::string getEdgeAttributes(const SUnit *Node, 3587 SUnitIterator EI, 3588 const ScheduleDAG *Graph) { 3589 if (EI.isArtificialDep()) 3590 return "color=cyan,style=dashed"; 3591 if (EI.isCtrlDep()) 3592 return "color=blue,style=dashed"; 3593 return ""; 3594 } 3595 3596 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3597 std::string Str; 3598 raw_string_ostream SS(Str); 3599 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3600 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3601 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3602 SS << "SU:" << SU->NodeNum; 3603 if (DFS) 3604 SS << " I:" << DFS->getNumInstrs(SU); 3605 return SS.str(); 3606 } 3607 3608 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3609 return G->getGraphNodeLabel(SU); 3610 } 3611 3612 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3613 std::string Str("shape=Mrecord"); 3614 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3615 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3616 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; 3617 if (DFS) { 3618 Str += ",style=filled,fillcolor=\"#"; 3619 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3620 Str += '"'; 3621 } 3622 return Str; 3623 } 3624 }; 3625 3626 } // end namespace llvm 3627 #endif // NDEBUG 3628 3629 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3630 /// rendered using 'dot'. 3631 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3632 #ifndef NDEBUG 3633 ViewGraph(this, Name, false, Title); 3634 #else 3635 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3636 << "systems with Graphviz or gv!\n"; 3637 #endif // NDEBUG 3638 } 3639 3640 /// Out-of-line implementation with no arguments is handy for gdb. 3641 void ScheduleDAGMI::viewGraph() { 3642 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3643 } 3644