1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "RegisterClassInfo.h" 18 #include "RegisterPressure.h" 19 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 20 #include "llvm/CodeGen/MachineScheduler.h" 21 #include "llvm/CodeGen/Passes.h" 22 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Target/TargetInstrInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/ADT/OwningPtr.h" 30 #include "llvm/ADT/PriorityQueue.h" 31 32 #include <queue> 33 34 using namespace llvm; 35 36 static cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 37 cl::desc("Force top-down list scheduling")); 38 static cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 39 cl::desc("Force bottom-up list scheduling")); 40 41 #ifndef NDEBUG 42 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 43 cl::desc("Pop up a window to show MISched dags after they are processed")); 44 45 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 46 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 47 #else 48 static bool ViewMISchedDAGs = false; 49 #endif // NDEBUG 50 51 //===----------------------------------------------------------------------===// 52 // Machine Instruction Scheduling Pass and Registry 53 //===----------------------------------------------------------------------===// 54 55 MachineSchedContext::MachineSchedContext(): 56 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 57 RegClassInfo = new RegisterClassInfo(); 58 } 59 60 MachineSchedContext::~MachineSchedContext() { 61 delete RegClassInfo; 62 } 63 64 namespace { 65 /// MachineScheduler runs after coalescing and before register allocation. 66 class MachineScheduler : public MachineSchedContext, 67 public MachineFunctionPass { 68 public: 69 MachineScheduler(); 70 71 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 72 73 virtual void releaseMemory() {} 74 75 virtual bool runOnMachineFunction(MachineFunction&); 76 77 virtual void print(raw_ostream &O, const Module* = 0) const; 78 79 static char ID; // Class identification, replacement for typeinfo 80 }; 81 } // namespace 82 83 char MachineScheduler::ID = 0; 84 85 char &llvm::MachineSchedulerID = MachineScheduler::ID; 86 87 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 88 "Machine Instruction Scheduler", false, false) 89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 90 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 91 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 92 INITIALIZE_PASS_END(MachineScheduler, "misched", 93 "Machine Instruction Scheduler", false, false) 94 95 MachineScheduler::MachineScheduler() 96 : MachineFunctionPass(ID) { 97 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 98 } 99 100 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 101 AU.setPreservesCFG(); 102 AU.addRequiredID(MachineDominatorsID); 103 AU.addRequired<MachineLoopInfo>(); 104 AU.addRequired<AliasAnalysis>(); 105 AU.addRequired<TargetPassConfig>(); 106 AU.addRequired<SlotIndexes>(); 107 AU.addPreserved<SlotIndexes>(); 108 AU.addRequired<LiveIntervals>(); 109 AU.addPreserved<LiveIntervals>(); 110 MachineFunctionPass::getAnalysisUsage(AU); 111 } 112 113 MachinePassRegistry MachineSchedRegistry::Registry; 114 115 /// A dummy default scheduler factory indicates whether the scheduler 116 /// is overridden on the command line. 117 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 118 return 0; 119 } 120 121 /// MachineSchedOpt allows command line selection of the scheduler. 122 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 123 RegisterPassParser<MachineSchedRegistry> > 124 MachineSchedOpt("misched", 125 cl::init(&useDefaultMachineSched), cl::Hidden, 126 cl::desc("Machine instruction scheduler to use")); 127 128 static MachineSchedRegistry 129 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 130 useDefaultMachineSched); 131 132 /// Forward declare the standard machine scheduler. This will be used as the 133 /// default scheduler if the target does not set a default. 134 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 135 136 137 /// Decrement this iterator until reaching the top or a non-debug instr. 138 static MachineBasicBlock::iterator 139 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 140 assert(I != Beg && "reached the top of the region, cannot decrement"); 141 while (--I != Beg) { 142 if (!I->isDebugValue()) 143 break; 144 } 145 return I; 146 } 147 148 /// If this iterator is a debug value, increment until reaching the End or a 149 /// non-debug instruction. 150 static MachineBasicBlock::iterator 151 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 152 while(I != End) { 153 if (!I->isDebugValue()) 154 break; 155 } 156 return I; 157 } 158 159 /// Top-level MachineScheduler pass driver. 160 /// 161 /// Visit blocks in function order. Divide each block into scheduling regions 162 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 163 /// consistent with the DAG builder, which traverses the interior of the 164 /// scheduling regions bottom-up. 165 /// 166 /// This design avoids exposing scheduling boundaries to the DAG builder, 167 /// simplifying the DAG builder's support for "special" target instructions. 168 /// At the same time the design allows target schedulers to operate across 169 /// scheduling boundaries, for example to bundle the boudary instructions 170 /// without reordering them. This creates complexity, because the target 171 /// scheduler must update the RegionBegin and RegionEnd positions cached by 172 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 173 /// design would be to split blocks at scheduling boundaries, but LLVM has a 174 /// general bias against block splitting purely for implementation simplicity. 175 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 176 // Initialize the context of the pass. 177 MF = &mf; 178 MLI = &getAnalysis<MachineLoopInfo>(); 179 MDT = &getAnalysis<MachineDominatorTree>(); 180 PassConfig = &getAnalysis<TargetPassConfig>(); 181 AA = &getAnalysis<AliasAnalysis>(); 182 183 LIS = &getAnalysis<LiveIntervals>(); 184 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 185 186 RegClassInfo->runOnMachineFunction(*MF); 187 188 // Select the scheduler, or set the default. 189 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 190 if (Ctor == useDefaultMachineSched) { 191 // Get the default scheduler set by the target. 192 Ctor = MachineSchedRegistry::getDefault(); 193 if (!Ctor) { 194 Ctor = createConvergingSched; 195 MachineSchedRegistry::setDefault(Ctor); 196 } 197 } 198 // Instantiate the selected scheduler. 199 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 200 201 // Visit all machine basic blocks. 202 // 203 // TODO: Visit blocks in global postorder or postorder within the bottom-up 204 // loop tree. Then we can optionally compute global RegPressure. 205 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 206 MBB != MBBEnd; ++MBB) { 207 208 Scheduler->startBlock(MBB); 209 210 // Break the block into scheduling regions [I, RegionEnd), and schedule each 211 // region as soon as it is discovered. RegionEnd points the the scheduling 212 // boundary at the bottom of the region. The DAG does not include RegionEnd, 213 // but the region does (i.e. the next RegionEnd is above the previous 214 // RegionBegin). If the current block has no terminator then RegionEnd == 215 // MBB->end() for the bottom region. 216 // 217 // The Scheduler may insert instructions during either schedule() or 218 // exitRegion(), even for empty regions. So the local iterators 'I' and 219 // 'RegionEnd' are invalid across these calls. 220 unsigned RemainingCount = MBB->size(); 221 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 222 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 223 224 // Avoid decrementing RegionEnd for blocks with no terminator. 225 if (RegionEnd != MBB->end() 226 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 227 --RegionEnd; 228 // Count the boundary instruction. 229 --RemainingCount; 230 } 231 232 // The next region starts above the previous region. Look backward in the 233 // instruction stream until we find the nearest boundary. 234 MachineBasicBlock::iterator I = RegionEnd; 235 for(;I != MBB->begin(); --I, --RemainingCount) { 236 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 237 break; 238 } 239 // Notify the scheduler of the region, even if we may skip scheduling 240 // it. Perhaps it still needs to be bundled. 241 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount); 242 243 // Skip empty scheduling regions (0 or 1 schedulable instructions). 244 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 245 // Close the current region. Bundle the terminator if needed. 246 // This invalidates 'RegionEnd' and 'I'. 247 Scheduler->exitRegion(); 248 continue; 249 } 250 DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName() 251 << ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: "; 252 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 253 else dbgs() << "End"; 254 dbgs() << " Remaining: " << RemainingCount << "\n"); 255 256 // Schedule a region: possibly reorder instructions. 257 // This invalidates 'RegionEnd' and 'I'. 258 Scheduler->schedule(); 259 260 // Close the current region. 261 Scheduler->exitRegion(); 262 263 // Scheduling has invalidated the current iterator 'I'. Ask the 264 // scheduler for the top of it's scheduled region. 265 RegionEnd = Scheduler->begin(); 266 } 267 assert(RemainingCount == 0 && "Instruction count mismatch!"); 268 Scheduler->finishBlock(); 269 } 270 Scheduler->finalizeSchedule(); 271 DEBUG(LIS->print(dbgs())); 272 return true; 273 } 274 275 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 276 // unimplemented 277 } 278 279 //===----------------------------------------------------------------------===// 280 // MachineSchedStrategy - Interface to a machine scheduling algorithm. 281 //===----------------------------------------------------------------------===// 282 283 namespace { 284 class ScheduleDAGMI; 285 286 /// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected 287 /// scheduling algorithm. 288 /// 289 /// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it 290 /// in ScheduleDAGInstrs.h 291 class MachineSchedStrategy { 292 public: 293 virtual ~MachineSchedStrategy() {} 294 295 /// Initialize the strategy after building the DAG for a new region. 296 virtual void initialize(ScheduleDAGMI *DAG) = 0; 297 298 /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to 299 /// schedule the node at the top of the unscheduled region. Otherwise it will 300 /// be scheduled at the bottom. 301 virtual SUnit *pickNode(bool &IsTopNode) = 0; 302 303 /// When all predecessor dependencies have been resolved, free this node for 304 /// top-down scheduling. 305 virtual void releaseTopNode(SUnit *SU) = 0; 306 /// When all successor dependencies have been resolved, free this node for 307 /// bottom-up scheduling. 308 virtual void releaseBottomNode(SUnit *SU) = 0; 309 }; 310 } // namespace 311 312 //===----------------------------------------------------------------------===// 313 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 314 // preservation. 315 //===----------------------------------------------------------------------===// 316 317 namespace { 318 /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules 319 /// machine instructions while updating LiveIntervals. 320 class ScheduleDAGMI : public ScheduleDAGInstrs { 321 AliasAnalysis *AA; 322 RegisterClassInfo *RegClassInfo; 323 MachineSchedStrategy *SchedImpl; 324 325 // Register pressure in this region computed by buildSchedGraph. 326 IntervalPressure RegPressure; 327 RegPressureTracker RPTracker; 328 329 /// The top of the unscheduled zone. 330 MachineBasicBlock::iterator CurrentTop; 331 332 /// The bottom of the unscheduled zone. 333 MachineBasicBlock::iterator CurrentBottom; 334 335 /// The number of instructions scheduled so far. Used to cut off the 336 /// scheduler at the point determined by misched-cutoff. 337 unsigned NumInstrsScheduled; 338 public: 339 ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S): 340 ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS), 341 AA(C->AA), RegClassInfo(C->RegClassInfo), SchedImpl(S), 342 RPTracker(RegPressure), CurrentTop(), CurrentBottom(), 343 NumInstrsScheduled(0) {} 344 345 ~ScheduleDAGMI() { 346 delete SchedImpl; 347 } 348 349 MachineBasicBlock::iterator top() const { return CurrentTop; } 350 MachineBasicBlock::iterator bottom() const { return CurrentBottom; } 351 352 /// Implement the ScheduleDAGInstrs interface for handling the next scheduling 353 /// region. This covers all instructions in a block, while schedule() may only 354 /// cover a subset. 355 void enterRegion(MachineBasicBlock *bb, 356 MachineBasicBlock::iterator begin, 357 MachineBasicBlock::iterator end, 358 unsigned endcount); 359 360 /// Implement ScheduleDAGInstrs interface for scheduling a sequence of 361 /// reorderable instructions. 362 void schedule(); 363 364 protected: 365 void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos); 366 bool checkSchedLimit(); 367 368 void releaseSucc(SUnit *SU, SDep *SuccEdge); 369 void releaseSuccessors(SUnit *SU); 370 void releasePred(SUnit *SU, SDep *PredEdge); 371 void releasePredecessors(SUnit *SU); 372 373 void placeDebugValues(); 374 }; 375 } // namespace 376 377 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 378 /// NumPredsLeft reaches zero, release the successor node. 379 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 380 SUnit *SuccSU = SuccEdge->getSUnit(); 381 382 #ifndef NDEBUG 383 if (SuccSU->NumPredsLeft == 0) { 384 dbgs() << "*** Scheduling failed! ***\n"; 385 SuccSU->dump(this); 386 dbgs() << " has been released too many times!\n"; 387 llvm_unreachable(0); 388 } 389 #endif 390 --SuccSU->NumPredsLeft; 391 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 392 SchedImpl->releaseTopNode(SuccSU); 393 } 394 395 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 396 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 397 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 398 I != E; ++I) { 399 releaseSucc(SU, &*I); 400 } 401 } 402 403 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 404 /// NumSuccsLeft reaches zero, release the predecessor node. 405 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 406 SUnit *PredSU = PredEdge->getSUnit(); 407 408 #ifndef NDEBUG 409 if (PredSU->NumSuccsLeft == 0) { 410 dbgs() << "*** Scheduling failed! ***\n"; 411 PredSU->dump(this); 412 dbgs() << " has been released too many times!\n"; 413 llvm_unreachable(0); 414 } 415 #endif 416 --PredSU->NumSuccsLeft; 417 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 418 SchedImpl->releaseBottomNode(PredSU); 419 } 420 421 /// releasePredecessors - Call releasePred on each of SU's predecessors. 422 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 423 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 424 I != E; ++I) { 425 releasePred(SU, &*I); 426 } 427 } 428 429 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 430 MachineBasicBlock::iterator InsertPos) { 431 // Fix RegionBegin if the first instruction moves down. 432 if (&*RegionBegin == MI) 433 RegionBegin = llvm::next(RegionBegin); 434 BB->splice(InsertPos, BB, MI); 435 LIS->handleMove(MI); 436 // Fix RegionBegin if another instruction moves above the first instruction. 437 if (RegionBegin == InsertPos) 438 RegionBegin = MI; 439 } 440 441 bool ScheduleDAGMI::checkSchedLimit() { 442 #ifndef NDEBUG 443 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 444 CurrentTop = CurrentBottom; 445 return false; 446 } 447 ++NumInstrsScheduled; 448 #endif 449 return true; 450 } 451 452 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 453 /// crossing a scheduling boundary. [begin, end) includes all instructions in 454 /// the region, including the boundary itself and single-instruction regions 455 /// that don't get scheduled. 456 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 457 MachineBasicBlock::iterator begin, 458 MachineBasicBlock::iterator end, 459 unsigned endcount) 460 { 461 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); 462 // Setup the register pressure tracker to begin tracking at the end of this 463 // region. 464 RPTracker.init(&MF, RegClassInfo, LIS, BB, end); 465 } 466 467 /// schedule - Called back from MachineScheduler::runOnMachineFunction 468 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 469 /// only includes instructions that have DAG nodes, not scheduling boundaries. 470 void ScheduleDAGMI::schedule() { 471 while(RPTracker.getPos() != RegionEnd) { 472 bool Moved = RPTracker.recede(); 473 assert(Moved && "Regpressure tracker cannot find RegionEnd"); (void)Moved; 474 } 475 476 // Build the DAG. 477 buildSchedGraph(AA, &RPTracker); 478 479 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 480 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 481 SUnits[su].dumpAll(this)); 482 483 if (ViewMISchedDAGs) viewGraph(); 484 485 SchedImpl->initialize(this); 486 487 // Release edges from the special Entry node or to the special Exit node. 488 releaseSuccessors(&EntrySU); 489 releasePredecessors(&ExitSU); 490 491 // Release all DAG roots for scheduling. 492 for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end(); 493 I != E; ++I) { 494 // A SUnit is ready to top schedule if it has no predecessors. 495 if (I->Preds.empty()) 496 SchedImpl->releaseTopNode(&(*I)); 497 // A SUnit is ready to bottom schedule if it has no successors. 498 if (I->Succs.empty()) 499 SchedImpl->releaseBottomNode(&(*I)); 500 } 501 502 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 503 CurrentBottom = RegionEnd; 504 bool IsTopNode = false; 505 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 506 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") 507 << " Scheduling Instruction:\n"; SU->dump(this)); 508 if (!checkSchedLimit()) 509 break; 510 511 // Move the instruction to its new location in the instruction stream. 512 MachineInstr *MI = SU->getInstr(); 513 514 if (IsTopNode) { 515 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 516 if (&*CurrentTop == MI) 517 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 518 else 519 moveInstruction(MI, CurrentTop); 520 // Release dependent instructions for scheduling. 521 releaseSuccessors(SU); 522 } 523 else { 524 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 525 MachineBasicBlock::iterator priorII = 526 priorNonDebug(CurrentBottom, CurrentTop); 527 if (&*priorII == MI) 528 CurrentBottom = priorII; 529 else { 530 if (&*CurrentTop == MI) 531 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 532 moveInstruction(MI, CurrentBottom); 533 CurrentBottom = MI; 534 } 535 // Release dependent instructions for scheduling. 536 releasePredecessors(SU); 537 } 538 SU->isScheduled = true; 539 } 540 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 541 542 placeDebugValues(); 543 } 544 545 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 546 void ScheduleDAGMI::placeDebugValues() { 547 // If first instruction was a DBG_VALUE then put it back. 548 if (FirstDbgValue) { 549 BB->splice(RegionBegin, BB, FirstDbgValue); 550 RegionBegin = FirstDbgValue; 551 } 552 553 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 554 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 555 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 556 MachineInstr *DbgValue = P.first; 557 MachineBasicBlock::iterator OrigPrevMI = P.second; 558 BB->splice(++OrigPrevMI, BB, DbgValue); 559 if (OrigPrevMI == llvm::prior(RegionEnd)) 560 RegionEnd = DbgValue; 561 } 562 DbgValues.clear(); 563 FirstDbgValue = NULL; 564 } 565 566 //===----------------------------------------------------------------------===// 567 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. 568 //===----------------------------------------------------------------------===// 569 570 namespace { 571 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 572 /// the schedule. 573 class ConvergingScheduler : public MachineSchedStrategy { 574 ScheduleDAGMI *DAG; 575 576 unsigned NumTopReady; 577 unsigned NumBottomReady; 578 579 public: 580 virtual void initialize(ScheduleDAGMI *dag) { 581 DAG = dag; 582 583 assert((!ForceTopDown || !ForceBottomUp) && 584 "-misched-topdown incompatible with -misched-bottomup"); 585 } 586 587 virtual SUnit *pickNode(bool &IsTopNode) { 588 if (DAG->top() == DAG->bottom()) 589 return NULL; 590 591 // As an initial placeholder heuristic, schedule in the direction that has 592 // the fewest choices. 593 SUnit *SU; 594 if (ForceTopDown || (!ForceBottomUp && NumTopReady <= NumBottomReady)) { 595 SU = DAG->getSUnit(DAG->top()); 596 IsTopNode = true; 597 } 598 else { 599 SU = DAG->getSUnit(priorNonDebug(DAG->bottom(), DAG->top())); 600 IsTopNode = false; 601 } 602 if (SU->isTopReady()) { 603 assert(NumTopReady > 0 && "bad ready count"); 604 --NumTopReady; 605 } 606 if (SU->isBottomReady()) { 607 assert(NumBottomReady > 0 && "bad ready count"); 608 --NumBottomReady; 609 } 610 return SU; 611 } 612 613 virtual void releaseTopNode(SUnit *SU) { 614 ++NumTopReady; 615 } 616 virtual void releaseBottomNode(SUnit *SU) { 617 ++NumBottomReady; 618 } 619 }; 620 } // namespace 621 622 /// Create the standard converging machine scheduler. This will be used as the 623 /// default scheduler if the target does not set a default. 624 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 625 assert((!ForceTopDown || !ForceBottomUp) && 626 "-misched-topdown incompatible with -misched-bottomup"); 627 return new ScheduleDAGMI(C, new ConvergingScheduler()); 628 } 629 static MachineSchedRegistry 630 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 631 createConvergingSched); 632 633 //===----------------------------------------------------------------------===// 634 // Machine Instruction Shuffler for Correctness Testing 635 //===----------------------------------------------------------------------===// 636 637 #ifndef NDEBUG 638 namespace { 639 /// Apply a less-than relation on the node order, which corresponds to the 640 /// instruction order prior to scheduling. IsReverse implements greater-than. 641 template<bool IsReverse> 642 struct SUnitOrder { 643 bool operator()(SUnit *A, SUnit *B) const { 644 if (IsReverse) 645 return A->NodeNum > B->NodeNum; 646 else 647 return A->NodeNum < B->NodeNum; 648 } 649 }; 650 651 /// Reorder instructions as much as possible. 652 class InstructionShuffler : public MachineSchedStrategy { 653 bool IsAlternating; 654 bool IsTopDown; 655 656 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 657 // gives nodes with a higher number higher priority causing the latest 658 // instructions to be scheduled first. 659 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 660 TopQ; 661 // When scheduling bottom-up, use greater-than as the queue priority. 662 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 663 BottomQ; 664 public: 665 InstructionShuffler(bool alternate, bool topdown) 666 : IsAlternating(alternate), IsTopDown(topdown) {} 667 668 virtual void initialize(ScheduleDAGMI *) { 669 TopQ.clear(); 670 BottomQ.clear(); 671 } 672 673 /// Implement MachineSchedStrategy interface. 674 /// ----------------------------------------- 675 676 virtual SUnit *pickNode(bool &IsTopNode) { 677 SUnit *SU; 678 if (IsTopDown) { 679 do { 680 if (TopQ.empty()) return NULL; 681 SU = TopQ.top(); 682 TopQ.pop(); 683 } while (SU->isScheduled); 684 IsTopNode = true; 685 } 686 else { 687 do { 688 if (BottomQ.empty()) return NULL; 689 SU = BottomQ.top(); 690 BottomQ.pop(); 691 } while (SU->isScheduled); 692 IsTopNode = false; 693 } 694 if (IsAlternating) 695 IsTopDown = !IsTopDown; 696 return SU; 697 } 698 699 virtual void releaseTopNode(SUnit *SU) { 700 TopQ.push(SU); 701 } 702 virtual void releaseBottomNode(SUnit *SU) { 703 BottomQ.push(SU); 704 } 705 }; 706 } // namespace 707 708 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 709 bool Alternate = !ForceTopDown && !ForceBottomUp; 710 bool TopDown = !ForceBottomUp; 711 assert((TopDown || !ForceTopDown) && 712 "-misched-topdown incompatible with -misched-bottomup"); 713 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 714 } 715 static MachineSchedRegistry ShufflerRegistry( 716 "shuffle", "Shuffle machine instructions alternating directions", 717 createInstructionShuffler); 718 #endif // !NDEBUG 719