1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/ADT/PriorityQueue.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/Passes.h" 23 #include "llvm/CodeGen/RegisterClassInfo.h" 24 #include "llvm/CodeGen/ScheduleDFS.h" 25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/GraphWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <queue> 32 33 using namespace llvm; 34 35 namespace llvm { 36 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 37 cl::desc("Force top-down list scheduling")); 38 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 39 cl::desc("Force bottom-up list scheduling")); 40 } 41 42 #ifndef NDEBUG 43 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 44 cl::desc("Pop up a window to show MISched dags after they are processed")); 45 46 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 47 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 48 #else 49 static bool ViewMISchedDAGs = false; 50 #endif // NDEBUG 51 52 // Experimental heuristics 53 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 54 cl::desc("Enable load clustering."), cl::init(true)); 55 56 // Experimental heuristics 57 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 58 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 59 60 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 61 cl::desc("Verify machine instrs before and after machine scheduling")); 62 63 // DAG subtrees must have at least this many nodes. 64 static const unsigned MinSubtreeSize = 8; 65 66 //===----------------------------------------------------------------------===// 67 // Machine Instruction Scheduling Pass and Registry 68 //===----------------------------------------------------------------------===// 69 70 MachineSchedContext::MachineSchedContext(): 71 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 72 RegClassInfo = new RegisterClassInfo(); 73 } 74 75 MachineSchedContext::~MachineSchedContext() { 76 delete RegClassInfo; 77 } 78 79 namespace { 80 /// MachineScheduler runs after coalescing and before register allocation. 81 class MachineScheduler : public MachineSchedContext, 82 public MachineFunctionPass { 83 public: 84 MachineScheduler(); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 87 88 virtual void releaseMemory() {} 89 90 virtual bool runOnMachineFunction(MachineFunction&); 91 92 virtual void print(raw_ostream &O, const Module* = 0) const; 93 94 static char ID; // Class identification, replacement for typeinfo 95 }; 96 } // namespace 97 98 char MachineScheduler::ID = 0; 99 100 char &llvm::MachineSchedulerID = MachineScheduler::ID; 101 102 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 103 "Machine Instruction Scheduler", false, false) 104 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 105 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 106 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 107 INITIALIZE_PASS_END(MachineScheduler, "misched", 108 "Machine Instruction Scheduler", false, false) 109 110 MachineScheduler::MachineScheduler() 111 : MachineFunctionPass(ID) { 112 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 113 } 114 115 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 116 AU.setPreservesCFG(); 117 AU.addRequiredID(MachineDominatorsID); 118 AU.addRequired<MachineLoopInfo>(); 119 AU.addRequired<AliasAnalysis>(); 120 AU.addRequired<TargetPassConfig>(); 121 AU.addRequired<SlotIndexes>(); 122 AU.addPreserved<SlotIndexes>(); 123 AU.addRequired<LiveIntervals>(); 124 AU.addPreserved<LiveIntervals>(); 125 MachineFunctionPass::getAnalysisUsage(AU); 126 } 127 128 MachinePassRegistry MachineSchedRegistry::Registry; 129 130 /// A dummy default scheduler factory indicates whether the scheduler 131 /// is overridden on the command line. 132 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 133 return 0; 134 } 135 136 /// MachineSchedOpt allows command line selection of the scheduler. 137 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 138 RegisterPassParser<MachineSchedRegistry> > 139 MachineSchedOpt("misched", 140 cl::init(&useDefaultMachineSched), cl::Hidden, 141 cl::desc("Machine instruction scheduler to use")); 142 143 static MachineSchedRegistry 144 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 145 useDefaultMachineSched); 146 147 /// Forward declare the standard machine scheduler. This will be used as the 148 /// default scheduler if the target does not set a default. 149 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); 150 151 152 /// Decrement this iterator until reaching the top or a non-debug instr. 153 static MachineBasicBlock::iterator 154 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { 155 assert(I != Beg && "reached the top of the region, cannot decrement"); 156 while (--I != Beg) { 157 if (!I->isDebugValue()) 158 break; 159 } 160 return I; 161 } 162 163 /// If this iterator is a debug value, increment until reaching the End or a 164 /// non-debug instruction. 165 static MachineBasicBlock::iterator 166 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { 167 for(; I != End; ++I) { 168 if (!I->isDebugValue()) 169 break; 170 } 171 return I; 172 } 173 174 /// Top-level MachineScheduler pass driver. 175 /// 176 /// Visit blocks in function order. Divide each block into scheduling regions 177 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 178 /// consistent with the DAG builder, which traverses the interior of the 179 /// scheduling regions bottom-up. 180 /// 181 /// This design avoids exposing scheduling boundaries to the DAG builder, 182 /// simplifying the DAG builder's support for "special" target instructions. 183 /// At the same time the design allows target schedulers to operate across 184 /// scheduling boundaries, for example to bundle the boudary instructions 185 /// without reordering them. This creates complexity, because the target 186 /// scheduler must update the RegionBegin and RegionEnd positions cached by 187 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 188 /// design would be to split blocks at scheduling boundaries, but LLVM has a 189 /// general bias against block splitting purely for implementation simplicity. 190 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 191 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 192 193 // Initialize the context of the pass. 194 MF = &mf; 195 MLI = &getAnalysis<MachineLoopInfo>(); 196 MDT = &getAnalysis<MachineDominatorTree>(); 197 PassConfig = &getAnalysis<TargetPassConfig>(); 198 AA = &getAnalysis<AliasAnalysis>(); 199 200 LIS = &getAnalysis<LiveIntervals>(); 201 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 202 203 if (VerifyScheduling) { 204 DEBUG(LIS->print(dbgs())); 205 MF->verify(this, "Before machine scheduling."); 206 } 207 RegClassInfo->runOnMachineFunction(*MF); 208 209 // Select the scheduler, or set the default. 210 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 211 if (Ctor == useDefaultMachineSched) { 212 // Get the default scheduler set by the target. 213 Ctor = MachineSchedRegistry::getDefault(); 214 if (!Ctor) { 215 Ctor = createConvergingSched; 216 MachineSchedRegistry::setDefault(Ctor); 217 } 218 } 219 // Instantiate the selected scheduler. 220 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); 221 222 // Visit all machine basic blocks. 223 // 224 // TODO: Visit blocks in global postorder or postorder within the bottom-up 225 // loop tree. Then we can optionally compute global RegPressure. 226 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 227 MBB != MBBEnd; ++MBB) { 228 229 Scheduler->startBlock(MBB); 230 231 // Break the block into scheduling regions [I, RegionEnd), and schedule each 232 // region as soon as it is discovered. RegionEnd points the scheduling 233 // boundary at the bottom of the region. The DAG does not include RegionEnd, 234 // but the region does (i.e. the next RegionEnd is above the previous 235 // RegionBegin). If the current block has no terminator then RegionEnd == 236 // MBB->end() for the bottom region. 237 // 238 // The Scheduler may insert instructions during either schedule() or 239 // exitRegion(), even for empty regions. So the local iterators 'I' and 240 // 'RegionEnd' are invalid across these calls. 241 unsigned RemainingInstrs = MBB->size(); 242 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 243 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { 244 245 // Avoid decrementing RegionEnd for blocks with no terminator. 246 if (RegionEnd != MBB->end() 247 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { 248 --RegionEnd; 249 // Count the boundary instruction. 250 --RemainingInstrs; 251 } 252 253 // The next region starts above the previous region. Look backward in the 254 // instruction stream until we find the nearest boundary. 255 MachineBasicBlock::iterator I = RegionEnd; 256 for(;I != MBB->begin(); --I, --RemainingInstrs) { 257 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) 258 break; 259 } 260 // Notify the scheduler of the region, even if we may skip scheduling 261 // it. Perhaps it still needs to be bundled. 262 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); 263 264 // Skip empty scheduling regions (0 or 1 schedulable instructions). 265 if (I == RegionEnd || I == llvm::prior(RegionEnd)) { 266 // Close the current region. Bundle the terminator if needed. 267 // This invalidates 'RegionEnd' and 'I'. 268 Scheduler->exitRegion(); 269 continue; 270 } 271 DEBUG(dbgs() << "********** MI Scheduling **********\n"); 272 DEBUG(dbgs() << MF->getName() 273 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 274 << "\n From: " << *I << " To: "; 275 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 276 else dbgs() << "End"; 277 dbgs() << " Remaining: " << RemainingInstrs << "\n"); 278 279 // Schedule a region: possibly reorder instructions. 280 // This invalidates 'RegionEnd' and 'I'. 281 Scheduler->schedule(); 282 283 // Close the current region. 284 Scheduler->exitRegion(); 285 286 // Scheduling has invalidated the current iterator 'I'. Ask the 287 // scheduler for the top of it's scheduled region. 288 RegionEnd = Scheduler->begin(); 289 } 290 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 291 Scheduler->finishBlock(); 292 } 293 Scheduler->finalizeSchedule(); 294 DEBUG(LIS->print(dbgs())); 295 if (VerifyScheduling) 296 MF->verify(this, "After machine scheduling."); 297 return true; 298 } 299 300 void MachineScheduler::print(raw_ostream &O, const Module* m) const { 301 // unimplemented 302 } 303 304 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 305 void ReadyQueue::dump() { 306 dbgs() << Name << ": "; 307 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 308 dbgs() << Queue[i]->NodeNum << " "; 309 dbgs() << "\n"; 310 } 311 #endif 312 313 //===----------------------------------------------------------------------===// 314 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals 315 // preservation. 316 //===----------------------------------------------------------------------===// 317 318 ScheduleDAGMI::~ScheduleDAGMI() { 319 delete DFSResult; 320 DeleteContainerPointers(Mutations); 321 delete SchedImpl; 322 } 323 324 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 325 if (SuccSU != &ExitSU) { 326 // Do not use WillCreateCycle, it assumes SD scheduling. 327 // If Pred is reachable from Succ, then the edge creates a cycle. 328 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 329 return false; 330 Topo.AddPred(SuccSU, PredDep.getSUnit()); 331 } 332 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 333 // Return true regardless of whether a new edge needed to be inserted. 334 return true; 335 } 336 337 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 338 /// NumPredsLeft reaches zero, release the successor node. 339 /// 340 /// FIXME: Adjust SuccSU height based on MinLatency. 341 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 342 SUnit *SuccSU = SuccEdge->getSUnit(); 343 344 if (SuccEdge->isWeak()) { 345 --SuccSU->WeakPredsLeft; 346 if (SuccEdge->isCluster()) 347 NextClusterSucc = SuccSU; 348 return; 349 } 350 #ifndef NDEBUG 351 if (SuccSU->NumPredsLeft == 0) { 352 dbgs() << "*** Scheduling failed! ***\n"; 353 SuccSU->dump(this); 354 dbgs() << " has been released too many times!\n"; 355 llvm_unreachable(0); 356 } 357 #endif 358 --SuccSU->NumPredsLeft; 359 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 360 SchedImpl->releaseTopNode(SuccSU); 361 } 362 363 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 364 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 365 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 366 I != E; ++I) { 367 releaseSucc(SU, &*I); 368 } 369 } 370 371 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 372 /// NumSuccsLeft reaches zero, release the predecessor node. 373 /// 374 /// FIXME: Adjust PredSU height based on MinLatency. 375 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 376 SUnit *PredSU = PredEdge->getSUnit(); 377 378 if (PredEdge->isWeak()) { 379 --PredSU->WeakSuccsLeft; 380 if (PredEdge->isCluster()) 381 NextClusterPred = PredSU; 382 return; 383 } 384 #ifndef NDEBUG 385 if (PredSU->NumSuccsLeft == 0) { 386 dbgs() << "*** Scheduling failed! ***\n"; 387 PredSU->dump(this); 388 dbgs() << " has been released too many times!\n"; 389 llvm_unreachable(0); 390 } 391 #endif 392 --PredSU->NumSuccsLeft; 393 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 394 SchedImpl->releaseBottomNode(PredSU); 395 } 396 397 /// releasePredecessors - Call releasePred on each of SU's predecessors. 398 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 399 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 400 I != E; ++I) { 401 releasePred(SU, &*I); 402 } 403 } 404 405 void ScheduleDAGMI::moveInstruction(MachineInstr *MI, 406 MachineBasicBlock::iterator InsertPos) { 407 // Advance RegionBegin if the first instruction moves down. 408 if (&*RegionBegin == MI) 409 ++RegionBegin; 410 411 // Update the instruction stream. 412 BB->splice(InsertPos, BB, MI); 413 414 // Update LiveIntervals 415 LIS->handleMove(MI, /*UpdateFlags=*/true); 416 417 // Recede RegionBegin if an instruction moves above the first. 418 if (RegionBegin == InsertPos) 419 RegionBegin = MI; 420 } 421 422 bool ScheduleDAGMI::checkSchedLimit() { 423 #ifndef NDEBUG 424 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 425 CurrentTop = CurrentBottom; 426 return false; 427 } 428 ++NumInstrsScheduled; 429 #endif 430 return true; 431 } 432 433 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 434 /// crossing a scheduling boundary. [begin, end) includes all instructions in 435 /// the region, including the boundary itself and single-instruction regions 436 /// that don't get scheduled. 437 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 438 MachineBasicBlock::iterator begin, 439 MachineBasicBlock::iterator end, 440 unsigned endcount) 441 { 442 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); 443 444 // For convenience remember the end of the liveness region. 445 LiveRegionEnd = 446 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); 447 } 448 449 // Setup the register pressure trackers for the top scheduled top and bottom 450 // scheduled regions. 451 void ScheduleDAGMI::initRegPressure() { 452 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 453 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 454 455 // Close the RPTracker to finalize live ins. 456 RPTracker.closeRegion(); 457 458 DEBUG(RPTracker.getPressure().dump(TRI)); 459 460 // Initialize the live ins and live outs. 461 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 462 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 463 464 // Close one end of the tracker so we can call 465 // getMaxUpward/DownwardPressureDelta before advancing across any 466 // instructions. This converts currently live regs into live ins/outs. 467 TopRPTracker.closeTop(); 468 BotRPTracker.closeBottom(); 469 470 // Account for liveness generated by the region boundary. 471 if (LiveRegionEnd != RegionEnd) 472 BotRPTracker.recede(); 473 474 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 475 476 // Cache the list of excess pressure sets in this region. This will also track 477 // the max pressure in the scheduled code for these sets. 478 RegionCriticalPSets.clear(); 479 const std::vector<unsigned> &RegionPressure = 480 RPTracker.getPressure().MaxSetPressure; 481 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 482 unsigned Limit = TRI->getRegPressureSetLimit(i); 483 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 484 << "Limit " << Limit 485 << " Actual " << RegionPressure[i] << "\n"); 486 if (RegionPressure[i] > Limit) 487 RegionCriticalPSets.push_back(PressureElement(i, 0)); 488 } 489 DEBUG(dbgs() << "Excess PSets: "; 490 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 491 dbgs() << TRI->getRegPressureSetName( 492 RegionCriticalPSets[i].PSetID) << " "; 493 dbgs() << "\n"); 494 } 495 496 // FIXME: When the pressure tracker deals in pressure differences then we won't 497 // iterate over all RegionCriticalPSets[i]. 498 void ScheduleDAGMI:: 499 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { 500 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { 501 unsigned ID = RegionCriticalPSets[i].PSetID; 502 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; 503 if ((int)NewMaxPressure[ID] > MaxUnits) 504 MaxUnits = NewMaxPressure[ID]; 505 } 506 } 507 508 /// schedule - Called back from MachineScheduler::runOnMachineFunction 509 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 510 /// only includes instructions that have DAG nodes, not scheduling boundaries. 511 /// 512 /// This is a skeletal driver, with all the functionality pushed into helpers, 513 /// so that it can be easilly extended by experimental schedulers. Generally, 514 /// implementing MachineSchedStrategy should be sufficient to implement a new 515 /// scheduling algorithm. However, if a scheduler further subclasses 516 /// ScheduleDAGMI then it will want to override this virtual method in order to 517 /// update any specialized state. 518 void ScheduleDAGMI::schedule() { 519 buildDAGWithRegPressure(); 520 521 Topo.InitDAGTopologicalSorting(); 522 523 postprocessDAG(); 524 525 SmallVector<SUnit*, 8> TopRoots, BotRoots; 526 findRootsAndBiasEdges(TopRoots, BotRoots); 527 528 // Initialize the strategy before modifying the DAG. 529 // This may initialize a DFSResult to be used for queue priority. 530 SchedImpl->initialize(this); 531 532 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 533 SUnits[su].dumpAll(this)); 534 if (ViewMISchedDAGs) viewGraph(); 535 536 // Initialize ready queues now that the DAG and priority data are finalized. 537 initQueues(TopRoots, BotRoots); 538 539 bool IsTopNode = false; 540 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 541 assert(!SU->isScheduled && "Node already scheduled"); 542 if (!checkSchedLimit()) 543 break; 544 545 scheduleMI(SU, IsTopNode); 546 547 updateQueues(SU, IsTopNode); 548 } 549 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 550 551 placeDebugValues(); 552 553 DEBUG({ 554 unsigned BBNum = begin()->getParent()->getNumber(); 555 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 556 dumpSchedule(); 557 dbgs() << '\n'; 558 }); 559 } 560 561 /// Build the DAG and setup three register pressure trackers. 562 void ScheduleDAGMI::buildDAGWithRegPressure() { 563 // Initialize the register pressure tracker used by buildSchedGraph. 564 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 565 566 // Account for liveness generate by the region boundary. 567 if (LiveRegionEnd != RegionEnd) 568 RPTracker.recede(); 569 570 // Build the DAG, and compute current register pressure. 571 buildSchedGraph(AA, &RPTracker); 572 573 // Initialize top/bottom trackers after computing region pressure. 574 initRegPressure(); 575 } 576 577 /// Apply each ScheduleDAGMutation step in order. 578 void ScheduleDAGMI::postprocessDAG() { 579 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 580 Mutations[i]->apply(this); 581 } 582 } 583 584 void ScheduleDAGMI::computeDFSResult() { 585 if (!DFSResult) 586 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 587 DFSResult->clear(); 588 ScheduledTrees.clear(); 589 DFSResult->resize(SUnits.size()); 590 DFSResult->compute(SUnits); 591 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 592 } 593 594 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 595 SmallVectorImpl<SUnit*> &BotRoots) { 596 for (std::vector<SUnit>::iterator 597 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 598 SUnit *SU = &(*I); 599 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 600 601 // Order predecessors so DFSResult follows the critical path. 602 SU->biasCriticalPath(); 603 604 // A SUnit is ready to top schedule if it has no predecessors. 605 if (!I->NumPredsLeft) 606 TopRoots.push_back(SU); 607 // A SUnit is ready to bottom schedule if it has no successors. 608 if (!I->NumSuccsLeft) 609 BotRoots.push_back(SU); 610 } 611 ExitSU.biasCriticalPath(); 612 } 613 614 /// Identify DAG roots and setup scheduler queues. 615 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 616 ArrayRef<SUnit*> BotRoots) { 617 NextClusterSucc = NULL; 618 NextClusterPred = NULL; 619 620 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 621 // 622 // Nodes with unreleased weak edges can still be roots. 623 // Release top roots in forward order. 624 for (SmallVectorImpl<SUnit*>::const_iterator 625 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 626 SchedImpl->releaseTopNode(*I); 627 } 628 // Release bottom roots in reverse order so the higher priority nodes appear 629 // first. This is more natural and slightly more efficient. 630 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 631 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 632 SchedImpl->releaseBottomNode(*I); 633 } 634 635 releaseSuccessors(&EntrySU); 636 releasePredecessors(&ExitSU); 637 638 SchedImpl->registerRoots(); 639 640 // Advance past initial DebugValues. 641 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 642 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 643 TopRPTracker.setPos(CurrentTop); 644 645 CurrentBottom = RegionEnd; 646 } 647 648 /// Move an instruction and update register pressure. 649 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { 650 // Move the instruction to its new location in the instruction stream. 651 MachineInstr *MI = SU->getInstr(); 652 653 if (IsTopNode) { 654 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 655 if (&*CurrentTop == MI) 656 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 657 else { 658 moveInstruction(MI, CurrentTop); 659 TopRPTracker.setPos(MI); 660 } 661 662 // Update top scheduled pressure. 663 TopRPTracker.advance(); 664 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 665 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); 666 } 667 else { 668 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 669 MachineBasicBlock::iterator priorII = 670 priorNonDebug(CurrentBottom, CurrentTop); 671 if (&*priorII == MI) 672 CurrentBottom = priorII; 673 else { 674 if (&*CurrentTop == MI) { 675 CurrentTop = nextIfDebug(++CurrentTop, priorII); 676 TopRPTracker.setPos(CurrentTop); 677 } 678 moveInstruction(MI, CurrentBottom); 679 CurrentBottom = MI; 680 } 681 // Update bottom scheduled pressure. 682 BotRPTracker.recede(); 683 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 684 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); 685 } 686 } 687 688 /// Update scheduler queues after scheduling an instruction. 689 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 690 // Release dependent instructions for scheduling. 691 if (IsTopNode) 692 releaseSuccessors(SU); 693 else 694 releasePredecessors(SU); 695 696 SU->isScheduled = true; 697 698 if (DFSResult) { 699 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 700 if (!ScheduledTrees.test(SubtreeID)) { 701 ScheduledTrees.set(SubtreeID); 702 DFSResult->scheduleTree(SubtreeID); 703 SchedImpl->scheduleTree(SubtreeID); 704 } 705 } 706 707 // Notify the scheduling strategy after updating the DAG. 708 SchedImpl->schedNode(SU, IsTopNode); 709 } 710 711 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 712 void ScheduleDAGMI::placeDebugValues() { 713 // If first instruction was a DBG_VALUE then put it back. 714 if (FirstDbgValue) { 715 BB->splice(RegionBegin, BB, FirstDbgValue); 716 RegionBegin = FirstDbgValue; 717 } 718 719 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 720 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 721 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); 722 MachineInstr *DbgValue = P.first; 723 MachineBasicBlock::iterator OrigPrevMI = P.second; 724 if (&*RegionBegin == DbgValue) 725 ++RegionBegin; 726 BB->splice(++OrigPrevMI, BB, DbgValue); 727 if (OrigPrevMI == llvm::prior(RegionEnd)) 728 RegionEnd = DbgValue; 729 } 730 DbgValues.clear(); 731 FirstDbgValue = NULL; 732 } 733 734 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 735 void ScheduleDAGMI::dumpSchedule() const { 736 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 737 if (SUnit *SU = getSUnit(&(*MI))) 738 SU->dump(this); 739 else 740 dbgs() << "Missing SUnit\n"; 741 } 742 } 743 #endif 744 745 //===----------------------------------------------------------------------===// 746 // LoadClusterMutation - DAG post-processing to cluster loads. 747 //===----------------------------------------------------------------------===// 748 749 namespace { 750 /// \brief Post-process the DAG to create cluster edges between neighboring 751 /// loads. 752 class LoadClusterMutation : public ScheduleDAGMutation { 753 struct LoadInfo { 754 SUnit *SU; 755 unsigned BaseReg; 756 unsigned Offset; 757 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 758 : SU(su), BaseReg(reg), Offset(ofs) {} 759 }; 760 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 761 const LoadClusterMutation::LoadInfo &RHS); 762 763 const TargetInstrInfo *TII; 764 const TargetRegisterInfo *TRI; 765 public: 766 LoadClusterMutation(const TargetInstrInfo *tii, 767 const TargetRegisterInfo *tri) 768 : TII(tii), TRI(tri) {} 769 770 virtual void apply(ScheduleDAGMI *DAG); 771 protected: 772 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 773 }; 774 } // anonymous 775 776 bool LoadClusterMutation::LoadInfoLess( 777 const LoadClusterMutation::LoadInfo &LHS, 778 const LoadClusterMutation::LoadInfo &RHS) { 779 if (LHS.BaseReg != RHS.BaseReg) 780 return LHS.BaseReg < RHS.BaseReg; 781 return LHS.Offset < RHS.Offset; 782 } 783 784 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 785 ScheduleDAGMI *DAG) { 786 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 787 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 788 SUnit *SU = Loads[Idx]; 789 unsigned BaseReg; 790 unsigned Offset; 791 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 792 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 793 } 794 if (LoadRecords.size() < 2) 795 return; 796 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 797 unsigned ClusterLength = 1; 798 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 799 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 800 ClusterLength = 1; 801 continue; 802 } 803 804 SUnit *SUa = LoadRecords[Idx].SU; 805 SUnit *SUb = LoadRecords[Idx+1].SU; 806 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 807 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 808 809 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 810 << SUb->NodeNum << ")\n"); 811 // Copy successor edges from SUa to SUb. Interleaving computation 812 // dependent on SUa can prevent load combining due to register reuse. 813 // Predecessor edges do not need to be copied from SUb to SUa since nearby 814 // loads should have effectively the same inputs. 815 for (SUnit::const_succ_iterator 816 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 817 if (SI->getSUnit() == SUb) 818 continue; 819 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 820 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 821 } 822 ++ClusterLength; 823 } 824 else 825 ClusterLength = 1; 826 } 827 } 828 829 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 830 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 831 // Map DAG NodeNum to store chain ID. 832 DenseMap<unsigned, unsigned> StoreChainIDs; 833 // Map each store chain to a set of dependent loads. 834 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 835 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 836 SUnit *SU = &DAG->SUnits[Idx]; 837 if (!SU->getInstr()->mayLoad()) 838 continue; 839 unsigned ChainPredID = DAG->SUnits.size(); 840 for (SUnit::const_pred_iterator 841 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 842 if (PI->isCtrl()) { 843 ChainPredID = PI->getSUnit()->NodeNum; 844 break; 845 } 846 } 847 // Check if this chain-like pred has been seen 848 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 849 unsigned NumChains = StoreChainDependents.size(); 850 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 851 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 852 if (Result.second) 853 StoreChainDependents.resize(NumChains + 1); 854 StoreChainDependents[Result.first->second].push_back(SU); 855 } 856 // Iterate over the store chains. 857 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 858 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 863 //===----------------------------------------------------------------------===// 864 865 namespace { 866 /// \brief Post-process the DAG to create cluster edges between instructions 867 /// that may be fused by the processor into a single operation. 868 class MacroFusion : public ScheduleDAGMutation { 869 const TargetInstrInfo *TII; 870 public: 871 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 872 873 virtual void apply(ScheduleDAGMI *DAG); 874 }; 875 } // anonymous 876 877 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 878 /// fused operations. 879 void MacroFusion::apply(ScheduleDAGMI *DAG) { 880 // For now, assume targets can only fuse with the branch. 881 MachineInstr *Branch = DAG->ExitSU.getInstr(); 882 if (!Branch) 883 return; 884 885 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 886 SUnit *SU = &DAG->SUnits[--Idx]; 887 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 888 continue; 889 890 // Create a single weak edge from SU to ExitSU. The only effect is to cause 891 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 892 // need to copy predecessor edges from ExitSU to SU, since top-down 893 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 894 // of SU, we could create an artificial edge from the deepest root, but it 895 // hasn't been needed yet. 896 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 897 (void)Success; 898 assert(Success && "No DAG nodes should be reachable from ExitSU"); 899 900 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 901 break; 902 } 903 } 904 905 //===----------------------------------------------------------------------===// 906 // ConvergingScheduler - Implementation of the standard MachineSchedStrategy. 907 //===----------------------------------------------------------------------===// 908 909 namespace { 910 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance 911 /// the schedule. 912 class ConvergingScheduler : public MachineSchedStrategy { 913 public: 914 /// Represent the type of SchedCandidate found within a single queue. 915 /// pickNodeBidirectional depends on these listed by decreasing priority. 916 enum CandReason { 917 NoCand, SingleExcess, SingleCritical, Cluster, 918 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 919 TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, 920 NodeOrder}; 921 922 #ifndef NDEBUG 923 static const char *getReasonStr(ConvergingScheduler::CandReason Reason); 924 #endif 925 926 /// Policy for scheduling the next instruction in the candidate's zone. 927 struct CandPolicy { 928 bool ReduceLatency; 929 unsigned ReduceResIdx; 930 unsigned DemandResIdx; 931 932 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 933 }; 934 935 /// Status of an instruction's critical resource consumption. 936 struct SchedResourceDelta { 937 // Count critical resources in the scheduled region required by SU. 938 unsigned CritResources; 939 940 // Count critical resources from another region consumed by SU. 941 unsigned DemandedResources; 942 943 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 944 945 bool operator==(const SchedResourceDelta &RHS) const { 946 return CritResources == RHS.CritResources 947 && DemandedResources == RHS.DemandedResources; 948 } 949 bool operator!=(const SchedResourceDelta &RHS) const { 950 return !operator==(RHS); 951 } 952 }; 953 954 /// Store the state used by ConvergingScheduler heuristics, required for the 955 /// lifetime of one invocation of pickNode(). 956 struct SchedCandidate { 957 CandPolicy Policy; 958 959 // The best SUnit candidate. 960 SUnit *SU; 961 962 // The reason for this candidate. 963 CandReason Reason; 964 965 // Register pressure values for the best candidate. 966 RegPressureDelta RPDelta; 967 968 // Critical resource consumption of the best candidate. 969 SchedResourceDelta ResDelta; 970 971 SchedCandidate(const CandPolicy &policy) 972 : Policy(policy), SU(NULL), Reason(NoCand) {} 973 974 bool isValid() const { return SU; } 975 976 // Copy the status of another candidate without changing policy. 977 void setBest(SchedCandidate &Best) { 978 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 979 SU = Best.SU; 980 Reason = Best.Reason; 981 RPDelta = Best.RPDelta; 982 ResDelta = Best.ResDelta; 983 } 984 985 void initResourceDelta(const ScheduleDAGMI *DAG, 986 const TargetSchedModel *SchedModel); 987 }; 988 989 /// Summarize the unscheduled region. 990 struct SchedRemainder { 991 // Critical path through the DAG in expected latency. 992 unsigned CriticalPath; 993 994 // Unscheduled resources 995 SmallVector<unsigned, 16> RemainingCounts; 996 // Critical resource for the unscheduled zone. 997 unsigned CritResIdx; 998 // Number of micro-ops left to schedule. 999 unsigned RemainingMicroOps; 1000 1001 void reset() { 1002 CriticalPath = 0; 1003 RemainingCounts.clear(); 1004 CritResIdx = 0; 1005 RemainingMicroOps = 0; 1006 } 1007 1008 SchedRemainder() { reset(); } 1009 1010 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); 1011 1012 unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const { 1013 if (!SchedModel->hasInstrSchedModel()) 1014 return 0; 1015 1016 return std::max( 1017 RemainingMicroOps * SchedModel->getMicroOpFactor(), 1018 RemainingCounts[CritResIdx]); 1019 } 1020 }; 1021 1022 /// Each Scheduling boundary is associated with ready queues. It tracks the 1023 /// current cycle in the direction of movement, and maintains the state 1024 /// of "hazards" and other interlocks at the current cycle. 1025 struct SchedBoundary { 1026 ScheduleDAGMI *DAG; 1027 const TargetSchedModel *SchedModel; 1028 SchedRemainder *Rem; 1029 1030 ReadyQueue Available; 1031 ReadyQueue Pending; 1032 bool CheckPending; 1033 1034 // For heuristics, keep a list of the nodes that immediately depend on the 1035 // most recently scheduled node. 1036 SmallPtrSet<const SUnit*, 8> NextSUs; 1037 1038 ScheduleHazardRecognizer *HazardRec; 1039 1040 unsigned CurrCycle; 1041 unsigned IssueCount; 1042 1043 /// MinReadyCycle - Cycle of the soonest available instruction. 1044 unsigned MinReadyCycle; 1045 1046 // The expected latency of the critical path in this scheduled zone. 1047 unsigned ExpectedLatency; 1048 1049 // Resources used in the scheduled zone beyond this boundary. 1050 SmallVector<unsigned, 16> ResourceCounts; 1051 1052 // Cache the critical resources ID in this scheduled zone. 1053 unsigned CritResIdx; 1054 1055 // Is the scheduled region resource limited vs. latency limited. 1056 bool IsResourceLimited; 1057 1058 unsigned ExpectedCount; 1059 1060 #ifndef NDEBUG 1061 // Remember the greatest min operand latency. 1062 unsigned MaxMinLatency; 1063 #endif 1064 1065 void reset() { 1066 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1067 delete HazardRec; 1068 1069 Available.clear(); 1070 Pending.clear(); 1071 CheckPending = false; 1072 NextSUs.clear(); 1073 HazardRec = 0; 1074 CurrCycle = 0; 1075 IssueCount = 0; 1076 MinReadyCycle = UINT_MAX; 1077 ExpectedLatency = 0; 1078 ResourceCounts.resize(1); 1079 assert(!ResourceCounts[0] && "nonzero count for bad resource"); 1080 CritResIdx = 0; 1081 IsResourceLimited = false; 1082 ExpectedCount = 0; 1083 #ifndef NDEBUG 1084 MaxMinLatency = 0; 1085 #endif 1086 // Reserve a zero-count for invalid CritResIdx. 1087 ResourceCounts.resize(1); 1088 } 1089 1090 /// Pending queues extend the ready queues with the same ID and the 1091 /// PendingFlag set. 1092 SchedBoundary(unsigned ID, const Twine &Name): 1093 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), 1094 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), 1095 HazardRec(0) { 1096 reset(); 1097 } 1098 1099 ~SchedBoundary() { delete HazardRec; } 1100 1101 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, 1102 SchedRemainder *rem); 1103 1104 bool isTop() const { 1105 return Available.getID() == ConvergingScheduler::TopQID; 1106 } 1107 1108 unsigned getUnscheduledLatency(SUnit *SU) const { 1109 if (isTop()) 1110 return SU->getHeight(); 1111 return SU->getDepth() + SU->Latency; 1112 } 1113 1114 unsigned getCriticalCount() const { 1115 return ResourceCounts[CritResIdx]; 1116 } 1117 1118 bool checkHazard(SUnit *SU); 1119 1120 void setLatencyPolicy(CandPolicy &Policy); 1121 1122 void releaseNode(SUnit *SU, unsigned ReadyCycle); 1123 1124 void bumpCycle(); 1125 1126 void countResource(unsigned PIdx, unsigned Cycles); 1127 1128 void bumpNode(SUnit *SU); 1129 1130 void releasePending(); 1131 1132 void removeReady(SUnit *SU); 1133 1134 SUnit *pickOnlyChoice(); 1135 }; 1136 1137 private: 1138 ScheduleDAGMI *DAG; 1139 const TargetSchedModel *SchedModel; 1140 const TargetRegisterInfo *TRI; 1141 1142 // State of the top and bottom scheduled instruction boundaries. 1143 SchedRemainder Rem; 1144 SchedBoundary Top; 1145 SchedBoundary Bot; 1146 1147 public: 1148 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) 1149 enum { 1150 TopQID = 1, 1151 BotQID = 2, 1152 LogMaxQID = 2 1153 }; 1154 1155 ConvergingScheduler(): 1156 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} 1157 1158 virtual void initialize(ScheduleDAGMI *dag); 1159 1160 virtual SUnit *pickNode(bool &IsTopNode); 1161 1162 virtual void schedNode(SUnit *SU, bool IsTopNode); 1163 1164 virtual void releaseTopNode(SUnit *SU); 1165 1166 virtual void releaseBottomNode(SUnit *SU); 1167 1168 virtual void registerRoots(); 1169 1170 protected: 1171 void balanceZones( 1172 ConvergingScheduler::SchedBoundary &CriticalZone, 1173 ConvergingScheduler::SchedCandidate &CriticalCand, 1174 ConvergingScheduler::SchedBoundary &OppositeZone, 1175 ConvergingScheduler::SchedCandidate &OppositeCand); 1176 1177 void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, 1178 ConvergingScheduler::SchedCandidate &BotCand); 1179 1180 void tryCandidate(SchedCandidate &Cand, 1181 SchedCandidate &TryCand, 1182 SchedBoundary &Zone, 1183 const RegPressureTracker &RPTracker, 1184 RegPressureTracker &TempTracker); 1185 1186 SUnit *pickNodeBidirectional(bool &IsTopNode); 1187 1188 void pickNodeFromQueue(SchedBoundary &Zone, 1189 const RegPressureTracker &RPTracker, 1190 SchedCandidate &Candidate); 1191 1192 #ifndef NDEBUG 1193 void traceCandidate(const SchedCandidate &Cand, const SchedBoundary &Zone); 1194 #endif 1195 }; 1196 } // namespace 1197 1198 void ConvergingScheduler::SchedRemainder:: 1199 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1200 reset(); 1201 if (!SchedModel->hasInstrSchedModel()) 1202 return; 1203 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1204 for (std::vector<SUnit>::iterator 1205 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1206 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1207 RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); 1208 for (TargetSchedModel::ProcResIter 1209 PI = SchedModel->getWriteProcResBegin(SC), 1210 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1211 unsigned PIdx = PI->ProcResourceIdx; 1212 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1213 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1214 } 1215 } 1216 for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds(); 1217 PIdx != PEnd; ++PIdx) { 1218 if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx]) 1219 >= (int)SchedModel->getLatencyFactor()) { 1220 CritResIdx = PIdx; 1221 } 1222 } 1223 } 1224 1225 void ConvergingScheduler::SchedBoundary:: 1226 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1227 reset(); 1228 DAG = dag; 1229 SchedModel = smodel; 1230 Rem = rem; 1231 if (SchedModel->hasInstrSchedModel()) 1232 ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); 1233 } 1234 1235 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { 1236 DAG = dag; 1237 SchedModel = DAG->getSchedModel(); 1238 TRI = DAG->TRI; 1239 1240 Rem.init(DAG, SchedModel); 1241 Top.init(DAG, SchedModel, &Rem); 1242 Bot.init(DAG, SchedModel, &Rem); 1243 1244 DAG->computeDFSResult(); 1245 1246 // Initialize resource counts. 1247 1248 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 1249 // are disabled, then these HazardRecs will be disabled. 1250 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 1251 const TargetMachine &TM = DAG->MF.getTarget(); 1252 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1253 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 1254 1255 assert((!ForceTopDown || !ForceBottomUp) && 1256 "-misched-topdown incompatible with -misched-bottomup"); 1257 } 1258 1259 void ConvergingScheduler::releaseTopNode(SUnit *SU) { 1260 if (SU->isScheduled) 1261 return; 1262 1263 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1264 I != E; ++I) { 1265 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1266 unsigned MinLatency = I->getMinLatency(); 1267 #ifndef NDEBUG 1268 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); 1269 #endif 1270 if (SU->TopReadyCycle < PredReadyCycle + MinLatency) 1271 SU->TopReadyCycle = PredReadyCycle + MinLatency; 1272 } 1273 Top.releaseNode(SU, SU->TopReadyCycle); 1274 } 1275 1276 void ConvergingScheduler::releaseBottomNode(SUnit *SU) { 1277 if (SU->isScheduled) 1278 return; 1279 1280 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1281 1282 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1283 I != E; ++I) { 1284 if (I->isWeak()) 1285 continue; 1286 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1287 unsigned MinLatency = I->getMinLatency(); 1288 #ifndef NDEBUG 1289 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); 1290 #endif 1291 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) 1292 SU->BotReadyCycle = SuccReadyCycle + MinLatency; 1293 } 1294 Bot.releaseNode(SU, SU->BotReadyCycle); 1295 } 1296 1297 void ConvergingScheduler::registerRoots() { 1298 Rem.CriticalPath = DAG->ExitSU.getDepth(); 1299 // Some roots may not feed into ExitSU. Check all of them in case. 1300 for (std::vector<SUnit*>::const_iterator 1301 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 1302 if ((*I)->getDepth() > Rem.CriticalPath) 1303 Rem.CriticalPath = (*I)->getDepth(); 1304 } 1305 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 1306 } 1307 1308 /// Does this SU have a hazard within the current instruction group. 1309 /// 1310 /// The scheduler supports two modes of hazard recognition. The first is the 1311 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1312 /// supports highly complicated in-order reservation tables 1313 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1314 /// 1315 /// The second is a streamlined mechanism that checks for hazards based on 1316 /// simple counters that the scheduler itself maintains. It explicitly checks 1317 /// for instruction dispatch limitations, including the number of micro-ops that 1318 /// can dispatch per cycle. 1319 /// 1320 /// TODO: Also check whether the SU must start a new group. 1321 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { 1322 if (HazardRec->isEnabled()) 1323 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 1324 1325 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1326 if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { 1327 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1328 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1329 return true; 1330 } 1331 return false; 1332 } 1333 1334 /// Compute the remaining latency to determine whether ILP should be increased. 1335 void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) { 1336 // FIXME: compile time. In all, we visit four queues here one we should only 1337 // need to visit the one that was last popped if we cache the result. 1338 unsigned RemLatency = 0; 1339 for (ReadyQueue::iterator I = Available.begin(), E = Available.end(); 1340 I != E; ++I) { 1341 unsigned L = getUnscheduledLatency(*I); 1342 if (L > RemLatency) 1343 RemLatency = L; 1344 } 1345 for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end(); 1346 I != E; ++I) { 1347 unsigned L = getUnscheduledLatency(*I); 1348 if (L > RemLatency) 1349 RemLatency = L; 1350 } 1351 unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow(); 1352 if (RemLatency + ExpectedLatency >= CriticalPathLimit 1353 && RemLatency > Rem->getMaxRemainingCount(SchedModel)) { 1354 Policy.ReduceLatency = true; 1355 DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n'); 1356 } 1357 } 1358 1359 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, 1360 unsigned ReadyCycle) { 1361 1362 if (ReadyCycle < MinReadyCycle) 1363 MinReadyCycle = ReadyCycle; 1364 1365 // Check for interlocks first. For the purpose of other heuristics, an 1366 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1367 if (ReadyCycle > CurrCycle || checkHazard(SU)) 1368 Pending.push(SU); 1369 else 1370 Available.push(SU); 1371 1372 // Record this node as an immediate dependent of the scheduled node. 1373 NextSUs.insert(SU); 1374 } 1375 1376 /// Move the boundary of scheduled code by one cycle. 1377 void ConvergingScheduler::SchedBoundary::bumpCycle() { 1378 unsigned Width = SchedModel->getIssueWidth(); 1379 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; 1380 1381 unsigned NextCycle = CurrCycle + 1; 1382 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1383 if (MinReadyCycle > NextCycle) { 1384 IssueCount = 0; 1385 NextCycle = MinReadyCycle; 1386 } 1387 1388 if (!HazardRec->isEnabled()) { 1389 // Bypass HazardRec virtual calls. 1390 CurrCycle = NextCycle; 1391 } 1392 else { 1393 // Bypass getHazardType calls in case of long latency. 1394 for (; CurrCycle != NextCycle; ++CurrCycle) { 1395 if (isTop()) 1396 HazardRec->AdvanceCycle(); 1397 else 1398 HazardRec->RecedeCycle(); 1399 } 1400 } 1401 CheckPending = true; 1402 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1403 1404 DEBUG(dbgs() << " *** " << Available.getName() << " cycle " 1405 << CurrCycle << '\n'); 1406 } 1407 1408 /// Add the given processor resource to this scheduled zone. 1409 void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, 1410 unsigned Cycles) { 1411 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1412 DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name 1413 << " +(" << Cycles << "x" << Factor 1414 << ") / " << SchedModel->getLatencyFactor() << '\n'); 1415 1416 unsigned Count = Factor * Cycles; 1417 ResourceCounts[PIdx] += Count; 1418 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1419 Rem->RemainingCounts[PIdx] -= Count; 1420 1421 // Check if this resource exceeds the current critical resource by a full 1422 // cycle. If so, it becomes the critical resource. 1423 if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) 1424 >= (int)SchedModel->getLatencyFactor()) { 1425 CritResIdx = PIdx; 1426 DEBUG(dbgs() << " *** Critical resource " 1427 << SchedModel->getProcResource(PIdx)->Name << " x" 1428 << ResourceCounts[PIdx] << '\n'); 1429 } 1430 } 1431 1432 /// Move the boundary of scheduled code by one SUnit. 1433 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { 1434 // Update the reservation table. 1435 if (HazardRec->isEnabled()) { 1436 if (!isTop() && SU->isCall) { 1437 // Calls are scheduled with their preceding instructions. For bottom-up 1438 // scheduling, clear the pipeline state before emitting. 1439 HazardRec->Reset(); 1440 } 1441 HazardRec->EmitInstruction(SU); 1442 } 1443 // Update resource counts and critical resource. 1444 if (SchedModel->hasInstrSchedModel()) { 1445 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1446 Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); 1447 for (TargetSchedModel::ProcResIter 1448 PI = SchedModel->getWriteProcResBegin(SC), 1449 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1450 countResource(PI->ProcResourceIdx, PI->Cycles); 1451 } 1452 } 1453 if (isTop()) { 1454 if (SU->getDepth() > ExpectedLatency) 1455 ExpectedLatency = SU->getDepth(); 1456 } 1457 else { 1458 if (SU->getHeight() > ExpectedLatency) 1459 ExpectedLatency = SU->getHeight(); 1460 } 1461 1462 IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); 1463 1464 // Check the instruction group dispatch limit. 1465 // TODO: Check if this SU must end a dispatch group. 1466 IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); 1467 1468 // checkHazard prevents scheduling multiple instructions per cycle that exceed 1469 // issue width. However, we commonly reach the maximum. In this case 1470 // opportunistically bump the cycle to avoid uselessly checking everything in 1471 // the readyQ. Furthermore, a single instruction may produce more than one 1472 // cycle's worth of micro-ops. 1473 if (IssueCount >= SchedModel->getIssueWidth()) { 1474 DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); 1475 bumpCycle(); 1476 } 1477 } 1478 1479 /// Release pending ready nodes in to the available queue. This makes them 1480 /// visible to heuristics. 1481 void ConvergingScheduler::SchedBoundary::releasePending() { 1482 // If the available queue is empty, it is safe to reset MinReadyCycle. 1483 if (Available.empty()) 1484 MinReadyCycle = UINT_MAX; 1485 1486 // Check to see if any of the pending instructions are ready to issue. If 1487 // so, add them to the available queue. 1488 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 1489 SUnit *SU = *(Pending.begin()+i); 1490 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 1491 1492 if (ReadyCycle < MinReadyCycle) 1493 MinReadyCycle = ReadyCycle; 1494 1495 if (ReadyCycle > CurrCycle) 1496 continue; 1497 1498 if (checkHazard(SU)) 1499 continue; 1500 1501 Available.push(SU); 1502 Pending.remove(Pending.begin()+i); 1503 --i; --e; 1504 } 1505 DEBUG(if (!Pending.empty()) Pending.dump()); 1506 CheckPending = false; 1507 } 1508 1509 /// Remove SU from the ready set for this boundary. 1510 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { 1511 if (Available.isInQueue(SU)) 1512 Available.remove(Available.find(SU)); 1513 else { 1514 assert(Pending.isInQueue(SU) && "bad ready count"); 1515 Pending.remove(Pending.find(SU)); 1516 } 1517 } 1518 1519 /// If this queue only has one ready candidate, return it. As a side effect, 1520 /// defer any nodes that now hit a hazard, and advance the cycle until at least 1521 /// one node is ready. If multiple instructions are ready, return NULL. 1522 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { 1523 if (CheckPending) 1524 releasePending(); 1525 1526 if (IssueCount > 0) { 1527 // Defer any ready instrs that now have a hazard. 1528 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 1529 if (checkHazard(*I)) { 1530 Pending.push(*I); 1531 I = Available.remove(I); 1532 continue; 1533 } 1534 ++I; 1535 } 1536 } 1537 for (unsigned i = 0; Available.empty(); ++i) { 1538 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && 1539 "permanent hazard"); (void)i; 1540 bumpCycle(); 1541 releasePending(); 1542 } 1543 if (Available.size() == 1) 1544 return *Available.begin(); 1545 return NULL; 1546 } 1547 1548 /// Record the candidate policy for opposite zones with different critical 1549 /// resources. 1550 /// 1551 /// If the CriticalZone is latency limited, don't force a policy for the 1552 /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed. 1553 void ConvergingScheduler::balanceZones( 1554 ConvergingScheduler::SchedBoundary &CriticalZone, 1555 ConvergingScheduler::SchedCandidate &CriticalCand, 1556 ConvergingScheduler::SchedBoundary &OppositeZone, 1557 ConvergingScheduler::SchedCandidate &OppositeCand) { 1558 1559 if (!CriticalZone.IsResourceLimited) 1560 return; 1561 assert(SchedModel->hasInstrSchedModel() && "required schedmodel"); 1562 1563 SchedRemainder *Rem = CriticalZone.Rem; 1564 1565 // If the critical zone is overconsuming a resource relative to the 1566 // remainder, try to reduce it. 1567 unsigned RemainingCritCount = 1568 Rem->RemainingCounts[CriticalZone.CritResIdx]; 1569 if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount) 1570 > (int)SchedModel->getLatencyFactor()) { 1571 CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; 1572 DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " 1573 << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name 1574 << '\n'); 1575 } 1576 // If the other zone is underconsuming a resource relative to the full zone, 1577 // try to increase it. 1578 unsigned OppositeCount = 1579 OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; 1580 if ((int)(OppositeZone.ExpectedCount - OppositeCount) 1581 > (int)SchedModel->getLatencyFactor()) { 1582 OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; 1583 DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " 1584 << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name 1585 << '\n'); 1586 } 1587 } 1588 1589 /// Determine if the scheduled zones exceed resource limits or critical path and 1590 /// set each candidate's ReduceHeight policy accordingly. 1591 void ConvergingScheduler::checkResourceLimits( 1592 ConvergingScheduler::SchedCandidate &TopCand, 1593 ConvergingScheduler::SchedCandidate &BotCand) { 1594 1595 // Set ReduceLatency to true if needed. 1596 Bot.setLatencyPolicy(BotCand.Policy); 1597 Top.setLatencyPolicy(TopCand.Policy); 1598 1599 // Handle resource-limited regions. 1600 if (Top.IsResourceLimited && Bot.IsResourceLimited 1601 && Top.CritResIdx == Bot.CritResIdx) { 1602 // If the scheduled critical resource in both zones is no longer the 1603 // critical remaining resource, attempt to reduce resource height both ways. 1604 if (Top.CritResIdx != Rem.CritResIdx) { 1605 TopCand.Policy.ReduceResIdx = Top.CritResIdx; 1606 BotCand.Policy.ReduceResIdx = Bot.CritResIdx; 1607 DEBUG(dbgs() << "Reduce scheduled " 1608 << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); 1609 } 1610 return; 1611 } 1612 // Handle latency-limited regions. 1613 if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { 1614 // If the total scheduled expected latency exceeds the region's critical 1615 // path then reduce latency both ways. 1616 // 1617 // Just because a zone is not resource limited does not mean it is latency 1618 // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle 1619 // to exceed expected latency. 1620 if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) 1621 && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { 1622 TopCand.Policy.ReduceLatency = true; 1623 BotCand.Policy.ReduceLatency = true; 1624 DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency 1625 << " + " << Bot.ExpectedLatency << '\n'); 1626 } 1627 return; 1628 } 1629 // The critical resource is different in each zone, so request balancing. 1630 1631 // Compute the cost of each zone. 1632 Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); 1633 Top.ExpectedCount = std::max( 1634 Top.getCriticalCount(), 1635 Top.ExpectedCount * SchedModel->getLatencyFactor()); 1636 Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); 1637 Bot.ExpectedCount = std::max( 1638 Bot.getCriticalCount(), 1639 Bot.ExpectedCount * SchedModel->getLatencyFactor()); 1640 1641 balanceZones(Top, TopCand, Bot, BotCand); 1642 balanceZones(Bot, BotCand, Top, TopCand); 1643 } 1644 1645 void ConvergingScheduler::SchedCandidate:: 1646 initResourceDelta(const ScheduleDAGMI *DAG, 1647 const TargetSchedModel *SchedModel) { 1648 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 1649 return; 1650 1651 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1652 for (TargetSchedModel::ProcResIter 1653 PI = SchedModel->getWriteProcResBegin(SC), 1654 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1655 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 1656 ResDelta.CritResources += PI->Cycles; 1657 if (PI->ProcResourceIdx == Policy.DemandResIdx) 1658 ResDelta.DemandedResources += PI->Cycles; 1659 } 1660 } 1661 1662 /// Return true if this heuristic determines order. 1663 static bool tryLess(unsigned TryVal, unsigned CandVal, 1664 ConvergingScheduler::SchedCandidate &TryCand, 1665 ConvergingScheduler::SchedCandidate &Cand, 1666 ConvergingScheduler::CandReason Reason) { 1667 if (TryVal < CandVal) { 1668 TryCand.Reason = Reason; 1669 return true; 1670 } 1671 if (TryVal > CandVal) { 1672 if (Cand.Reason > Reason) 1673 Cand.Reason = Reason; 1674 return true; 1675 } 1676 return false; 1677 } 1678 1679 static bool tryGreater(unsigned TryVal, unsigned CandVal, 1680 ConvergingScheduler::SchedCandidate &TryCand, 1681 ConvergingScheduler::SchedCandidate &Cand, 1682 ConvergingScheduler::CandReason Reason) { 1683 if (TryVal > CandVal) { 1684 TryCand.Reason = Reason; 1685 return true; 1686 } 1687 if (TryVal < CandVal) { 1688 if (Cand.Reason > Reason) 1689 Cand.Reason = Reason; 1690 return true; 1691 } 1692 return false; 1693 } 1694 1695 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 1696 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 1697 } 1698 1699 /// Apply a set of heursitics to a new candidate. Heuristics are currently 1700 /// hierarchical. This may be more efficient than a graduated cost model because 1701 /// we don't need to evaluate all aspects of the model for each node in the 1702 /// queue. But it's really done to make the heuristics easier to debug and 1703 /// statistically analyze. 1704 /// 1705 /// \param Cand provides the policy and current best candidate. 1706 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 1707 /// \param Zone describes the scheduled zone that we are extending. 1708 /// \param RPTracker describes reg pressure within the scheduled zone. 1709 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 1710 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, 1711 SchedCandidate &TryCand, 1712 SchedBoundary &Zone, 1713 const RegPressureTracker &RPTracker, 1714 RegPressureTracker &TempTracker) { 1715 1716 // Always initialize TryCand's RPDelta. 1717 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, 1718 DAG->getRegionCriticalPSets(), 1719 DAG->getRegPressure().MaxSetPressure); 1720 1721 // Initialize the candidate if needed. 1722 if (!Cand.isValid()) { 1723 TryCand.Reason = NodeOrder; 1724 return; 1725 } 1726 // Avoid exceeding the target's limit. 1727 if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, 1728 Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) 1729 return; 1730 if (Cand.Reason == SingleExcess) 1731 Cand.Reason = MultiPressure; 1732 1733 // Avoid increasing the max critical pressure in the scheduled region. 1734 if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, 1735 Cand.RPDelta.CriticalMax.UnitIncrease, 1736 TryCand, Cand, SingleCritical)) 1737 return; 1738 if (Cand.Reason == SingleCritical) 1739 Cand.Reason = MultiPressure; 1740 1741 // Keep clustered nodes together to encourage downstream peephole 1742 // optimizations which may reduce resource requirements. 1743 // 1744 // This is a best effort to set things up for a post-RA pass. Optimizations 1745 // like generating loads of multiple registers should ideally be done within 1746 // the scheduler pass by combining the loads during DAG postprocessing. 1747 const SUnit *NextClusterSU = 1748 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 1749 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 1750 TryCand, Cand, Cluster)) 1751 return; 1752 // Currently, weak edges are for clustering, so we hard-code that reason. 1753 // However, deferring the current TryCand will not change Cand's reason. 1754 CandReason OrigReason = Cand.Reason; 1755 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 1756 getWeakLeft(Cand.SU, Zone.isTop()), 1757 TryCand, Cand, Cluster)) { 1758 Cand.Reason = OrigReason; 1759 return; 1760 } 1761 // Avoid critical resource consumption and balance the schedule. 1762 TryCand.initResourceDelta(DAG, SchedModel); 1763 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 1764 TryCand, Cand, ResourceReduce)) 1765 return; 1766 if (tryGreater(TryCand.ResDelta.DemandedResources, 1767 Cand.ResDelta.DemandedResources, 1768 TryCand, Cand, ResourceDemand)) 1769 return; 1770 1771 // Avoid serializing long latency dependence chains. 1772 if (Cand.Policy.ReduceLatency) { 1773 if (Zone.isTop()) { 1774 if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() 1775 > Zone.ExpectedCount) { 1776 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1777 TryCand, Cand, TopDepthReduce)) 1778 return; 1779 } 1780 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1781 TryCand, Cand, TopPathReduce)) 1782 return; 1783 } 1784 else { 1785 if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() 1786 > Zone.ExpectedCount) { 1787 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 1788 TryCand, Cand, BotHeightReduce)) 1789 return; 1790 } 1791 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 1792 TryCand, Cand, BotPathReduce)) 1793 return; 1794 } 1795 } 1796 1797 // Avoid increasing the max pressure of the entire region. 1798 if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, 1799 Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) 1800 return; 1801 if (Cand.Reason == SingleMax) 1802 Cand.Reason = MultiPressure; 1803 1804 // Prefer immediate defs/users of the last scheduled instruction. This is a 1805 // nice pressure avoidance strategy that also conserves the processor's 1806 // register renaming resources and keeps the machine code readable. 1807 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), 1808 TryCand, Cand, NextDefUse)) 1809 return; 1810 1811 // Fall through to original instruction order. 1812 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 1813 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 1814 TryCand.Reason = NodeOrder; 1815 } 1816 } 1817 1818 /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is 1819 /// more desirable than RHS from scheduling standpoint. 1820 static bool compareRPDelta(const RegPressureDelta &LHS, 1821 const RegPressureDelta &RHS) { 1822 // Compare each component of pressure in decreasing order of importance 1823 // without checking if any are valid. Invalid PressureElements are assumed to 1824 // have UnitIncrease==0, so are neutral. 1825 1826 // Avoid increasing the max critical pressure in the scheduled region. 1827 if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { 1828 DEBUG(dbgs() << "RP excess top - bot: " 1829 << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); 1830 return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; 1831 } 1832 // Avoid increasing the max critical pressure in the scheduled region. 1833 if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { 1834 DEBUG(dbgs() << "RP critical top - bot: " 1835 << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) 1836 << '\n'); 1837 return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; 1838 } 1839 // Avoid increasing the max pressure of the entire region. 1840 if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { 1841 DEBUG(dbgs() << "RP current top - bot: " 1842 << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) 1843 << '\n'); 1844 return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; 1845 } 1846 return false; 1847 } 1848 1849 #ifndef NDEBUG 1850 const char *ConvergingScheduler::getReasonStr( 1851 ConvergingScheduler::CandReason Reason) { 1852 switch (Reason) { 1853 case NoCand: return "NOCAND "; 1854 case SingleExcess: return "REG-EXCESS"; 1855 case SingleCritical: return "REG-CRIT "; 1856 case Cluster: return "CLUSTER "; 1857 case SingleMax: return "REG-MAX "; 1858 case MultiPressure: return "REG-MULTI "; 1859 case ResourceReduce: return "RES-REDUCE"; 1860 case ResourceDemand: return "RES-DEMAND"; 1861 case TopDepthReduce: return "TOP-DEPTH "; 1862 case TopPathReduce: return "TOP-PATH "; 1863 case BotHeightReduce:return "BOT-HEIGHT"; 1864 case BotPathReduce: return "BOT-PATH "; 1865 case NextDefUse: return "DEF-USE "; 1866 case NodeOrder: return "ORDER "; 1867 }; 1868 llvm_unreachable("Unknown reason!"); 1869 } 1870 1871 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand, 1872 const SchedBoundary &Zone) { 1873 const char *Label = getReasonStr(Cand.Reason); 1874 PressureElement P; 1875 unsigned ResIdx = 0; 1876 unsigned Latency = 0; 1877 switch (Cand.Reason) { 1878 default: 1879 break; 1880 case SingleExcess: 1881 P = Cand.RPDelta.Excess; 1882 break; 1883 case SingleCritical: 1884 P = Cand.RPDelta.CriticalMax; 1885 break; 1886 case SingleMax: 1887 P = Cand.RPDelta.CurrentMax; 1888 break; 1889 case ResourceReduce: 1890 ResIdx = Cand.Policy.ReduceResIdx; 1891 break; 1892 case ResourceDemand: 1893 ResIdx = Cand.Policy.DemandResIdx; 1894 break; 1895 case TopDepthReduce: 1896 Latency = Cand.SU->getDepth(); 1897 break; 1898 case TopPathReduce: 1899 Latency = Cand.SU->getHeight(); 1900 break; 1901 case BotHeightReduce: 1902 Latency = Cand.SU->getHeight(); 1903 break; 1904 case BotPathReduce: 1905 Latency = Cand.SU->getDepth(); 1906 break; 1907 } 1908 dbgs() << Label << " " << Zone.Available.getName() << " "; 1909 if (P.isValid()) 1910 dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease 1911 << " "; 1912 else 1913 dbgs() << " "; 1914 if (ResIdx) 1915 dbgs() << SchedModel->getProcResource(ResIdx)->Name << " "; 1916 else 1917 dbgs() << " "; 1918 if (Latency) 1919 dbgs() << Latency << " cycles "; 1920 else 1921 dbgs() << " "; 1922 Cand.SU->dump(DAG); 1923 } 1924 #endif 1925 1926 /// Pick the best candidate from the top queue. 1927 /// 1928 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 1929 /// DAG building. To adjust for the current scheduling location we need to 1930 /// maintain the number of vreg uses remaining to be top-scheduled. 1931 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, 1932 const RegPressureTracker &RPTracker, 1933 SchedCandidate &Cand) { 1934 ReadyQueue &Q = Zone.Available; 1935 1936 DEBUG(Q.dump()); 1937 1938 // getMaxPressureDelta temporarily modifies the tracker. 1939 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 1940 1941 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 1942 1943 SchedCandidate TryCand(Cand.Policy); 1944 TryCand.SU = *I; 1945 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 1946 if (TryCand.Reason != NoCand) { 1947 // Initialize resource delta if needed in case future heuristics query it. 1948 if (TryCand.ResDelta == SchedResourceDelta()) 1949 TryCand.initResourceDelta(DAG, SchedModel); 1950 Cand.setBest(TryCand); 1951 DEBUG(traceCandidate(Cand, Zone)); 1952 } 1953 } 1954 } 1955 1956 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, 1957 bool IsTop) { 1958 DEBUG(dbgs() << "Pick " << (IsTop ? "top" : "bot") 1959 << " SU(" << Cand.SU->NodeNum << ") " 1960 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); 1961 } 1962 1963 /// Pick the best candidate node from either the top or bottom queue. 1964 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { 1965 // Schedule as far as possible in the direction of no choice. This is most 1966 // efficient, but also provides the best heuristics for CriticalPSets. 1967 if (SUnit *SU = Bot.pickOnlyChoice()) { 1968 IsTopNode = false; 1969 return SU; 1970 } 1971 if (SUnit *SU = Top.pickOnlyChoice()) { 1972 IsTopNode = true; 1973 return SU; 1974 } 1975 CandPolicy NoPolicy; 1976 SchedCandidate BotCand(NoPolicy); 1977 SchedCandidate TopCand(NoPolicy); 1978 checkResourceLimits(TopCand, BotCand); 1979 1980 // Prefer bottom scheduling when heuristics are silent. 1981 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 1982 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 1983 1984 // If either Q has a single candidate that provides the least increase in 1985 // Excess pressure, we can immediately schedule from that Q. 1986 // 1987 // RegionCriticalPSets summarizes the pressure within the scheduled region and 1988 // affects picking from either Q. If scheduling in one direction must 1989 // increase pressure for one of the excess PSets, then schedule in that 1990 // direction first to provide more freedom in the other direction. 1991 if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { 1992 IsTopNode = false; 1993 tracePick(BotCand, IsTopNode); 1994 return BotCand.SU; 1995 } 1996 // Check if the top Q has a better candidate. 1997 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 1998 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 1999 2000 // If either Q has a single candidate that minimizes pressure above the 2001 // original region's pressure pick it. 2002 if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { 2003 if (TopCand.Reason < BotCand.Reason) { 2004 IsTopNode = true; 2005 tracePick(TopCand, IsTopNode); 2006 return TopCand.SU; 2007 } 2008 IsTopNode = false; 2009 tracePick(BotCand, IsTopNode); 2010 return BotCand.SU; 2011 } 2012 // Check for a salient pressure difference and pick the best from either side. 2013 if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { 2014 IsTopNode = true; 2015 tracePick(TopCand, IsTopNode); 2016 return TopCand.SU; 2017 } 2018 // Otherwise prefer the bottom candidate, in node order if all else failed. 2019 if (TopCand.Reason < BotCand.Reason) { 2020 IsTopNode = true; 2021 tracePick(TopCand, IsTopNode); 2022 return TopCand.SU; 2023 } 2024 IsTopNode = false; 2025 tracePick(BotCand, IsTopNode); 2026 return BotCand.SU; 2027 } 2028 2029 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2030 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { 2031 if (DAG->top() == DAG->bottom()) { 2032 assert(Top.Available.empty() && Top.Pending.empty() && 2033 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2034 return NULL; 2035 } 2036 SUnit *SU; 2037 do { 2038 if (ForceTopDown) { 2039 SU = Top.pickOnlyChoice(); 2040 if (!SU) { 2041 CandPolicy NoPolicy; 2042 SchedCandidate TopCand(NoPolicy); 2043 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2044 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2045 SU = TopCand.SU; 2046 } 2047 IsTopNode = true; 2048 } 2049 else if (ForceBottomUp) { 2050 SU = Bot.pickOnlyChoice(); 2051 if (!SU) { 2052 CandPolicy NoPolicy; 2053 SchedCandidate BotCand(NoPolicy); 2054 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2055 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2056 SU = BotCand.SU; 2057 } 2058 IsTopNode = false; 2059 } 2060 else { 2061 SU = pickNodeBidirectional(IsTopNode); 2062 } 2063 } while (SU->isScheduled); 2064 2065 if (SU->isTopReady()) 2066 Top.removeReady(SU); 2067 if (SU->isBottomReady()) 2068 Bot.removeReady(SU); 2069 2070 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") 2071 << " Scheduling Instruction in cycle " 2072 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; 2073 SU->dump(DAG)); 2074 return SU; 2075 } 2076 2077 /// Update the scheduler's state after scheduling a node. This is the same node 2078 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update 2079 /// it's state based on the current cycle before MachineSchedStrategy does. 2080 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2081 if (IsTopNode) { 2082 SU->TopReadyCycle = Top.CurrCycle; 2083 Top.bumpNode(SU); 2084 } 2085 else { 2086 SU->BotReadyCycle = Bot.CurrCycle; 2087 Bot.bumpNode(SU); 2088 } 2089 } 2090 2091 /// Create the standard converging machine scheduler. This will be used as the 2092 /// default scheduler if the target does not set a default. 2093 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { 2094 assert((!ForceTopDown || !ForceBottomUp) && 2095 "-misched-topdown incompatible with -misched-bottomup"); 2096 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); 2097 // Register DAG post-processors. 2098 if (EnableLoadCluster) 2099 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 2100 if (EnableMacroFusion) 2101 DAG->addMutation(new MacroFusion(DAG->TII)); 2102 return DAG; 2103 } 2104 static MachineSchedRegistry 2105 ConvergingSchedRegistry("converge", "Standard converging scheduler.", 2106 createConvergingSched); 2107 2108 //===----------------------------------------------------------------------===// 2109 // ILP Scheduler. Currently for experimental analysis of heuristics. 2110 //===----------------------------------------------------------------------===// 2111 2112 namespace { 2113 /// \brief Order nodes by the ILP metric. 2114 struct ILPOrder { 2115 const SchedDFSResult *DFSResult; 2116 const BitVector *ScheduledTrees; 2117 bool MaximizeILP; 2118 2119 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 2120 2121 /// \brief Apply a less-than relation on node priority. 2122 /// 2123 /// (Return true if A comes after B in the Q.) 2124 bool operator()(const SUnit *A, const SUnit *B) const { 2125 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 2126 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 2127 if (SchedTreeA != SchedTreeB) { 2128 // Unscheduled trees have lower priority. 2129 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 2130 return ScheduledTrees->test(SchedTreeB); 2131 2132 // Trees with shallower connections have have lower priority. 2133 if (DFSResult->getSubtreeLevel(SchedTreeA) 2134 != DFSResult->getSubtreeLevel(SchedTreeB)) { 2135 return DFSResult->getSubtreeLevel(SchedTreeA) 2136 < DFSResult->getSubtreeLevel(SchedTreeB); 2137 } 2138 } 2139 if (MaximizeILP) 2140 return DFSResult->getILP(A) < DFSResult->getILP(B); 2141 else 2142 return DFSResult->getILP(A) > DFSResult->getILP(B); 2143 } 2144 }; 2145 2146 /// \brief Schedule based on the ILP metric. 2147 class ILPScheduler : public MachineSchedStrategy { 2148 /// In case all subtrees are eventually connected to a common root through 2149 /// data dependence (e.g. reduction), place an upper limit on their size. 2150 /// 2151 /// FIXME: A subtree limit is generally good, but in the situation commented 2152 /// above, where multiple similar subtrees feed a common root, we should 2153 /// only split at a point where the resulting subtrees will be balanced. 2154 /// (a motivating test case must be found). 2155 static const unsigned SubtreeLimit = 16; 2156 2157 ScheduleDAGMI *DAG; 2158 ILPOrder Cmp; 2159 2160 std::vector<SUnit*> ReadyQ; 2161 public: 2162 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 2163 2164 virtual void initialize(ScheduleDAGMI *dag) { 2165 DAG = dag; 2166 DAG->computeDFSResult(); 2167 Cmp.DFSResult = DAG->getDFSResult(); 2168 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 2169 ReadyQ.clear(); 2170 } 2171 2172 virtual void registerRoots() { 2173 // Restore the heap in ReadyQ with the updated DFS results. 2174 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2175 } 2176 2177 /// Implement MachineSchedStrategy interface. 2178 /// ----------------------------------------- 2179 2180 /// Callback to select the highest priority node from the ready Q. 2181 virtual SUnit *pickNode(bool &IsTopNode) { 2182 if (ReadyQ.empty()) return NULL; 2183 pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2184 SUnit *SU = ReadyQ.back(); 2185 ReadyQ.pop_back(); 2186 IsTopNode = false; 2187 DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " 2188 << *SU->getInstr() 2189 << " ILP: " << DAG->getDFSResult()->getILP(SU) 2190 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 2191 << DAG->getDFSResult()->getSubtreeLevel( 2192 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'); 2193 return SU; 2194 } 2195 2196 /// \brief Scheduler callback to notify that a new subtree is scheduled. 2197 virtual void scheduleTree(unsigned SubtreeID) { 2198 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2199 } 2200 2201 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 2202 /// DFSResults, and resort the priority Q. 2203 virtual void schedNode(SUnit *SU, bool IsTopNode) { 2204 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 2205 } 2206 2207 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } 2208 2209 virtual void releaseBottomNode(SUnit *SU) { 2210 ReadyQ.push_back(SU); 2211 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 2212 } 2213 }; 2214 } // namespace 2215 2216 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 2217 return new ScheduleDAGMI(C, new ILPScheduler(true)); 2218 } 2219 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 2220 return new ScheduleDAGMI(C, new ILPScheduler(false)); 2221 } 2222 static MachineSchedRegistry ILPMaxRegistry( 2223 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 2224 static MachineSchedRegistry ILPMinRegistry( 2225 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 2226 2227 //===----------------------------------------------------------------------===// 2228 // Machine Instruction Shuffler for Correctness Testing 2229 //===----------------------------------------------------------------------===// 2230 2231 #ifndef NDEBUG 2232 namespace { 2233 /// Apply a less-than relation on the node order, which corresponds to the 2234 /// instruction order prior to scheduling. IsReverse implements greater-than. 2235 template<bool IsReverse> 2236 struct SUnitOrder { 2237 bool operator()(SUnit *A, SUnit *B) const { 2238 if (IsReverse) 2239 return A->NodeNum > B->NodeNum; 2240 else 2241 return A->NodeNum < B->NodeNum; 2242 } 2243 }; 2244 2245 /// Reorder instructions as much as possible. 2246 class InstructionShuffler : public MachineSchedStrategy { 2247 bool IsAlternating; 2248 bool IsTopDown; 2249 2250 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 2251 // gives nodes with a higher number higher priority causing the latest 2252 // instructions to be scheduled first. 2253 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 2254 TopQ; 2255 // When scheduling bottom-up, use greater-than as the queue priority. 2256 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 2257 BottomQ; 2258 public: 2259 InstructionShuffler(bool alternate, bool topdown) 2260 : IsAlternating(alternate), IsTopDown(topdown) {} 2261 2262 virtual void initialize(ScheduleDAGMI *) { 2263 TopQ.clear(); 2264 BottomQ.clear(); 2265 } 2266 2267 /// Implement MachineSchedStrategy interface. 2268 /// ----------------------------------------- 2269 2270 virtual SUnit *pickNode(bool &IsTopNode) { 2271 SUnit *SU; 2272 if (IsTopDown) { 2273 do { 2274 if (TopQ.empty()) return NULL; 2275 SU = TopQ.top(); 2276 TopQ.pop(); 2277 } while (SU->isScheduled); 2278 IsTopNode = true; 2279 } 2280 else { 2281 do { 2282 if (BottomQ.empty()) return NULL; 2283 SU = BottomQ.top(); 2284 BottomQ.pop(); 2285 } while (SU->isScheduled); 2286 IsTopNode = false; 2287 } 2288 if (IsAlternating) 2289 IsTopDown = !IsTopDown; 2290 return SU; 2291 } 2292 2293 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 2294 2295 virtual void releaseTopNode(SUnit *SU) { 2296 TopQ.push(SU); 2297 } 2298 virtual void releaseBottomNode(SUnit *SU) { 2299 BottomQ.push(SU); 2300 } 2301 }; 2302 } // namespace 2303 2304 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 2305 bool Alternate = !ForceTopDown && !ForceBottomUp; 2306 bool TopDown = !ForceBottomUp; 2307 assert((TopDown || !ForceTopDown) && 2308 "-misched-topdown incompatible with -misched-bottomup"); 2309 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); 2310 } 2311 static MachineSchedRegistry ShufflerRegistry( 2312 "shuffle", "Shuffle machine instructions alternating directions", 2313 createInstructionShuffler); 2314 #endif // !NDEBUG 2315 2316 //===----------------------------------------------------------------------===// 2317 // GraphWriter support for ScheduleDAGMI. 2318 //===----------------------------------------------------------------------===// 2319 2320 #ifndef NDEBUG 2321 namespace llvm { 2322 2323 template<> struct GraphTraits< 2324 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 2325 2326 template<> 2327 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 2328 2329 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 2330 2331 static std::string getGraphName(const ScheduleDAG *G) { 2332 return G->MF.getName(); 2333 } 2334 2335 static bool renderGraphFromBottomUp() { 2336 return true; 2337 } 2338 2339 static bool isNodeHidden(const SUnit *Node) { 2340 return (Node->NumPreds > 10 || Node->NumSuccs > 10); 2341 } 2342 2343 static bool hasNodeAddressLabel(const SUnit *Node, 2344 const ScheduleDAG *Graph) { 2345 return false; 2346 } 2347 2348 /// If you want to override the dot attributes printed for a particular 2349 /// edge, override this method. 2350 static std::string getEdgeAttributes(const SUnit *Node, 2351 SUnitIterator EI, 2352 const ScheduleDAG *Graph) { 2353 if (EI.isArtificialDep()) 2354 return "color=cyan,style=dashed"; 2355 if (EI.isCtrlDep()) 2356 return "color=blue,style=dashed"; 2357 return ""; 2358 } 2359 2360 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 2361 std::string Str; 2362 raw_string_ostream SS(Str); 2363 SS << "SU(" << SU->NodeNum << ')'; 2364 return SS.str(); 2365 } 2366 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 2367 return G->getGraphNodeLabel(SU); 2368 } 2369 2370 static std::string getNodeAttributes(const SUnit *N, 2371 const ScheduleDAG *Graph) { 2372 std::string Str("shape=Mrecord"); 2373 const SchedDFSResult *DFS = 2374 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); 2375 if (DFS) { 2376 Str += ",style=filled,fillcolor=\"#"; 2377 Str += DOT::getColorString(DFS->getSubtreeID(N)); 2378 Str += '"'; 2379 } 2380 return Str; 2381 } 2382 }; 2383 } // namespace llvm 2384 #endif // NDEBUG 2385 2386 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 2387 /// rendered using 'dot'. 2388 /// 2389 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 2390 #ifndef NDEBUG 2391 ViewGraph(this, Name, false, Title); 2392 #else 2393 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 2394 << "systems with Graphviz or gv!\n"; 2395 #endif // NDEBUG 2396 } 2397 2398 /// Out-of-line implementation with no arguments is handy for gdb. 2399 void ScheduleDAGMI::viewGraph() { 2400 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 2401 } 2402