1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // MachineScheduler schedules machine instructions after phi elimination. It 11 // preserves LiveIntervals so it can be invoked before register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "misched" 16 17 #include "llvm/CodeGen/MachineScheduler.h" 18 #include "llvm/ADT/PriorityQueue.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/RegisterClassInfo.h" 26 #include "llvm/CodeGen/ScheduleDFS.h" 27 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/GraphWriter.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include <queue> 35 36 using namespace llvm; 37 38 namespace llvm { 39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, 40 cl::desc("Force top-down list scheduling")); 41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, 42 cl::desc("Force bottom-up list scheduling")); 43 } 44 45 #ifndef NDEBUG 46 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, 47 cl::desc("Pop up a window to show MISched dags after they are processed")); 48 49 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, 50 cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); 51 52 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, 53 cl::desc("Only schedule this function")); 54 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, 55 cl::desc("Only schedule this MBB#")); 56 #else 57 static bool ViewMISchedDAGs = false; 58 #endif // NDEBUG 59 60 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, 61 cl::desc("Enable register pressure scheduling."), cl::init(true)); 62 63 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, 64 cl::desc("Enable cyclic critical path analysis."), cl::init(true)); 65 66 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, 67 cl::desc("Enable load clustering."), cl::init(true)); 68 69 // Experimental heuristics 70 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, 71 cl::desc("Enable scheduling for macro fusion."), cl::init(true)); 72 73 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, 74 cl::desc("Verify machine instrs before and after machine scheduling")); 75 76 // DAG subtrees must have at least this many nodes. 77 static const unsigned MinSubtreeSize = 8; 78 79 // Pin the vtables to this file. 80 void MachineSchedStrategy::anchor() {} 81 void ScheduleDAGMutation::anchor() {} 82 83 //===----------------------------------------------------------------------===// 84 // Machine Instruction Scheduling Pass and Registry 85 //===----------------------------------------------------------------------===// 86 87 MachineSchedContext::MachineSchedContext(): 88 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { 89 RegClassInfo = new RegisterClassInfo(); 90 } 91 92 MachineSchedContext::~MachineSchedContext() { 93 delete RegClassInfo; 94 } 95 96 namespace { 97 /// Base class for a machine scheduler class that can run at any point. 98 class MachineSchedulerBase : public MachineSchedContext, 99 public MachineFunctionPass { 100 public: 101 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} 102 103 void print(raw_ostream &O, const Module* = 0) const override; 104 105 protected: 106 void scheduleRegions(ScheduleDAGInstrs &Scheduler); 107 }; 108 109 /// MachineScheduler runs after coalescing and before register allocation. 110 class MachineScheduler : public MachineSchedulerBase { 111 public: 112 MachineScheduler(); 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override; 115 116 bool runOnMachineFunction(MachineFunction&) override; 117 118 static char ID; // Class identification, replacement for typeinfo 119 120 protected: 121 ScheduleDAGInstrs *createMachineScheduler(); 122 }; 123 124 /// PostMachineScheduler runs after shortly before code emission. 125 class PostMachineScheduler : public MachineSchedulerBase { 126 public: 127 PostMachineScheduler(); 128 129 void getAnalysisUsage(AnalysisUsage &AU) const override; 130 131 bool runOnMachineFunction(MachineFunction&) override; 132 133 static char ID; // Class identification, replacement for typeinfo 134 135 protected: 136 ScheduleDAGInstrs *createPostMachineScheduler(); 137 }; 138 } // namespace 139 140 char MachineScheduler::ID = 0; 141 142 char &llvm::MachineSchedulerID = MachineScheduler::ID; 143 144 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", 145 "Machine Instruction Scheduler", false, false) 146 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_END(MachineScheduler, "misched", 150 "Machine Instruction Scheduler", false, false) 151 152 MachineScheduler::MachineScheduler() 153 : MachineSchedulerBase(ID) { 154 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 155 } 156 157 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 158 AU.setPreservesCFG(); 159 AU.addRequiredID(MachineDominatorsID); 160 AU.addRequired<MachineLoopInfo>(); 161 AU.addRequired<AliasAnalysis>(); 162 AU.addRequired<TargetPassConfig>(); 163 AU.addRequired<SlotIndexes>(); 164 AU.addPreserved<SlotIndexes>(); 165 AU.addRequired<LiveIntervals>(); 166 AU.addPreserved<LiveIntervals>(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 } 169 170 char PostMachineScheduler::ID = 0; 171 172 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; 173 174 INITIALIZE_PASS(PostMachineScheduler, "postmisched", 175 "PostRA Machine Instruction Scheduler", false, false) 176 177 PostMachineScheduler::PostMachineScheduler() 178 : MachineSchedulerBase(ID) { 179 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); 180 } 181 182 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { 183 AU.setPreservesCFG(); 184 AU.addRequiredID(MachineDominatorsID); 185 AU.addRequired<MachineLoopInfo>(); 186 AU.addRequired<TargetPassConfig>(); 187 MachineFunctionPass::getAnalysisUsage(AU); 188 } 189 190 MachinePassRegistry MachineSchedRegistry::Registry; 191 192 /// A dummy default scheduler factory indicates whether the scheduler 193 /// is overridden on the command line. 194 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { 195 return 0; 196 } 197 198 /// MachineSchedOpt allows command line selection of the scheduler. 199 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, 200 RegisterPassParser<MachineSchedRegistry> > 201 MachineSchedOpt("misched", 202 cl::init(&useDefaultMachineSched), cl::Hidden, 203 cl::desc("Machine instruction scheduler to use")); 204 205 static MachineSchedRegistry 206 DefaultSchedRegistry("default", "Use the target's default scheduler choice.", 207 useDefaultMachineSched); 208 209 /// Forward declare the standard machine scheduler. This will be used as the 210 /// default scheduler if the target does not set a default. 211 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C); 212 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C); 213 214 /// Decrement this iterator until reaching the top or a non-debug instr. 215 static MachineBasicBlock::const_iterator 216 priorNonDebug(MachineBasicBlock::const_iterator I, 217 MachineBasicBlock::const_iterator Beg) { 218 assert(I != Beg && "reached the top of the region, cannot decrement"); 219 while (--I != Beg) { 220 if (!I->isDebugValue()) 221 break; 222 } 223 return I; 224 } 225 226 /// Non-const version. 227 static MachineBasicBlock::iterator 228 priorNonDebug(MachineBasicBlock::iterator I, 229 MachineBasicBlock::const_iterator Beg) { 230 return const_cast<MachineInstr*>( 231 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); 232 } 233 234 /// If this iterator is a debug value, increment until reaching the End or a 235 /// non-debug instruction. 236 static MachineBasicBlock::const_iterator 237 nextIfDebug(MachineBasicBlock::const_iterator I, 238 MachineBasicBlock::const_iterator End) { 239 for(; I != End; ++I) { 240 if (!I->isDebugValue()) 241 break; 242 } 243 return I; 244 } 245 246 /// Non-const version. 247 static MachineBasicBlock::iterator 248 nextIfDebug(MachineBasicBlock::iterator I, 249 MachineBasicBlock::const_iterator End) { 250 // Cast the return value to nonconst MachineInstr, then cast to an 251 // instr_iterator, which does not check for null, finally return a 252 // bundle_iterator. 253 return MachineBasicBlock::instr_iterator( 254 const_cast<MachineInstr*>( 255 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 256 } 257 258 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. 259 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { 260 // Select the scheduler, or set the default. 261 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; 262 if (Ctor != useDefaultMachineSched) 263 return Ctor(this); 264 265 // Get the default scheduler set by the target for this function. 266 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); 267 if (Scheduler) 268 return Scheduler; 269 270 // Default to GenericScheduler. 271 return createGenericSchedLive(this); 272 } 273 274 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by 275 /// the caller. We don't have a command line option to override the postRA 276 /// scheduler. The Target must configure it. 277 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { 278 // Get the postRA scheduler set by the target for this function. 279 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); 280 if (Scheduler) 281 return Scheduler; 282 283 // Default to GenericScheduler. 284 return createGenericSchedPostRA(this); 285 } 286 287 /// Top-level MachineScheduler pass driver. 288 /// 289 /// Visit blocks in function order. Divide each block into scheduling regions 290 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is 291 /// consistent with the DAG builder, which traverses the interior of the 292 /// scheduling regions bottom-up. 293 /// 294 /// This design avoids exposing scheduling boundaries to the DAG builder, 295 /// simplifying the DAG builder's support for "special" target instructions. 296 /// At the same time the design allows target schedulers to operate across 297 /// scheduling boundaries, for example to bundle the boudary instructions 298 /// without reordering them. This creates complexity, because the target 299 /// scheduler must update the RegionBegin and RegionEnd positions cached by 300 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler 301 /// design would be to split blocks at scheduling boundaries, but LLVM has a 302 /// general bias against block splitting purely for implementation simplicity. 303 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { 304 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); 305 306 // Initialize the context of the pass. 307 MF = &mf; 308 MLI = &getAnalysis<MachineLoopInfo>(); 309 MDT = &getAnalysis<MachineDominatorTree>(); 310 PassConfig = &getAnalysis<TargetPassConfig>(); 311 AA = &getAnalysis<AliasAnalysis>(); 312 313 LIS = &getAnalysis<LiveIntervals>(); 314 315 if (VerifyScheduling) { 316 DEBUG(LIS->dump()); 317 MF->verify(this, "Before machine scheduling."); 318 } 319 RegClassInfo->runOnMachineFunction(*MF); 320 321 // Instantiate the selected scheduler for this target, function, and 322 // optimization level. 323 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); 324 scheduleRegions(*Scheduler); 325 326 DEBUG(LIS->dump()); 327 if (VerifyScheduling) 328 MF->verify(this, "After machine scheduling."); 329 return true; 330 } 331 332 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { 333 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); 334 335 // Initialize the context of the pass. 336 MF = &mf; 337 PassConfig = &getAnalysis<TargetPassConfig>(); 338 339 if (VerifyScheduling) 340 MF->verify(this, "Before post machine scheduling."); 341 342 // Instantiate the selected scheduler for this target, function, and 343 // optimization level. 344 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); 345 scheduleRegions(*Scheduler); 346 347 if (VerifyScheduling) 348 MF->verify(this, "After post machine scheduling."); 349 return true; 350 } 351 352 /// Return true of the given instruction should not be included in a scheduling 353 /// region. 354 /// 355 /// MachineScheduler does not currently support scheduling across calls. To 356 /// handle calls, the DAG builder needs to be modified to create register 357 /// anti/output dependencies on the registers clobbered by the call's regmask 358 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents 359 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce 360 /// the boundary, but there would be no benefit to postRA scheduling across 361 /// calls this late anyway. 362 static bool isSchedBoundary(MachineBasicBlock::iterator MI, 363 MachineBasicBlock *MBB, 364 MachineFunction *MF, 365 const TargetInstrInfo *TII, 366 bool IsPostRA) { 367 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF); 368 } 369 370 /// Main driver for both MachineScheduler and PostMachineScheduler. 371 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) { 372 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 373 bool IsPostRA = Scheduler.isPostRA(); 374 375 // Visit all machine basic blocks. 376 // 377 // TODO: Visit blocks in global postorder or postorder within the bottom-up 378 // loop tree. Then we can optionally compute global RegPressure. 379 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); 380 MBB != MBBEnd; ++MBB) { 381 382 Scheduler.startBlock(MBB); 383 384 #ifndef NDEBUG 385 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) 386 continue; 387 if (SchedOnlyBlock.getNumOccurrences() 388 && (int)SchedOnlyBlock != MBB->getNumber()) 389 continue; 390 #endif 391 392 // Break the block into scheduling regions [I, RegionEnd), and schedule each 393 // region as soon as it is discovered. RegionEnd points the scheduling 394 // boundary at the bottom of the region. The DAG does not include RegionEnd, 395 // but the region does (i.e. the next RegionEnd is above the previous 396 // RegionBegin). If the current block has no terminator then RegionEnd == 397 // MBB->end() for the bottom region. 398 // 399 // The Scheduler may insert instructions during either schedule() or 400 // exitRegion(), even for empty regions. So the local iterators 'I' and 401 // 'RegionEnd' are invalid across these calls. 402 // 403 // MBB::size() uses instr_iterator to count. Here we need a bundle to count 404 // as a single instruction. 405 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end()); 406 for(MachineBasicBlock::iterator RegionEnd = MBB->end(); 407 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) { 408 409 // Avoid decrementing RegionEnd for blocks with no terminator. 410 if (RegionEnd != MBB->end() || 411 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) { 412 --RegionEnd; 413 // Count the boundary instruction. 414 --RemainingInstrs; 415 } 416 417 // The next region starts above the previous region. Look backward in the 418 // instruction stream until we find the nearest boundary. 419 unsigned NumRegionInstrs = 0; 420 MachineBasicBlock::iterator I = RegionEnd; 421 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { 422 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA)) 423 break; 424 } 425 // Notify the scheduler of the region, even if we may skip scheduling 426 // it. Perhaps it still needs to be bundled. 427 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs); 428 429 // Skip empty scheduling regions (0 or 1 schedulable instructions). 430 if (I == RegionEnd || I == std::prev(RegionEnd)) { 431 // Close the current region. Bundle the terminator if needed. 432 // This invalidates 'RegionEnd' and 'I'. 433 Scheduler.exitRegion(); 434 continue; 435 } 436 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "") 437 << "MI Scheduling **********\n"); 438 DEBUG(dbgs() << MF->getName() 439 << ":BB#" << MBB->getNumber() << " " << MBB->getName() 440 << "\n From: " << *I << " To: "; 441 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; 442 else dbgs() << "End"; 443 dbgs() << " RegionInstrs: " << NumRegionInstrs 444 << " Remaining: " << RemainingInstrs << "\n"); 445 446 // Schedule a region: possibly reorder instructions. 447 // This invalidates 'RegionEnd' and 'I'. 448 Scheduler.schedule(); 449 450 // Close the current region. 451 Scheduler.exitRegion(); 452 453 // Scheduling has invalidated the current iterator 'I'. Ask the 454 // scheduler for the top of it's scheduled region. 455 RegionEnd = Scheduler.begin(); 456 } 457 assert(RemainingInstrs == 0 && "Instruction count mismatch!"); 458 Scheduler.finishBlock(); 459 if (Scheduler.isPostRA()) { 460 // FIXME: Ideally, no further passes should rely on kill flags. However, 461 // thumb2 size reduction is currently an exception. 462 Scheduler.fixupKills(MBB); 463 } 464 } 465 Scheduler.finalizeSchedule(); 466 } 467 468 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { 469 // unimplemented 470 } 471 472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 473 void ReadyQueue::dump() { 474 dbgs() << Name << ": "; 475 for (unsigned i = 0, e = Queue.size(); i < e; ++i) 476 dbgs() << Queue[i]->NodeNum << " "; 477 dbgs() << "\n"; 478 } 479 #endif 480 481 //===----------------------------------------------------------------------===// 482 // ScheduleDAGMI - Basic machine instruction scheduling. This is 483 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for 484 // virtual registers. 485 // ===----------------------------------------------------------------------===/ 486 487 ScheduleDAGMI::~ScheduleDAGMI() { 488 DeleteContainerPointers(Mutations); 489 delete SchedImpl; 490 } 491 492 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 493 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 494 } 495 496 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { 497 if (SuccSU != &ExitSU) { 498 // Do not use WillCreateCycle, it assumes SD scheduling. 499 // If Pred is reachable from Succ, then the edge creates a cycle. 500 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 501 return false; 502 Topo.AddPred(SuccSU, PredDep.getSUnit()); 503 } 504 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 505 // Return true regardless of whether a new edge needed to be inserted. 506 return true; 507 } 508 509 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When 510 /// NumPredsLeft reaches zero, release the successor node. 511 /// 512 /// FIXME: Adjust SuccSU height based on MinLatency. 513 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { 514 SUnit *SuccSU = SuccEdge->getSUnit(); 515 516 if (SuccEdge->isWeak()) { 517 --SuccSU->WeakPredsLeft; 518 if (SuccEdge->isCluster()) 519 NextClusterSucc = SuccSU; 520 return; 521 } 522 #ifndef NDEBUG 523 if (SuccSU->NumPredsLeft == 0) { 524 dbgs() << "*** Scheduling failed! ***\n"; 525 SuccSU->dump(this); 526 dbgs() << " has been released too many times!\n"; 527 llvm_unreachable(0); 528 } 529 #endif 530 --SuccSU->NumPredsLeft; 531 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 532 SchedImpl->releaseTopNode(SuccSU); 533 } 534 535 /// releaseSuccessors - Call releaseSucc on each of SU's successors. 536 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { 537 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 538 I != E; ++I) { 539 releaseSucc(SU, &*I); 540 } 541 } 542 543 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When 544 /// NumSuccsLeft reaches zero, release the predecessor node. 545 /// 546 /// FIXME: Adjust PredSU height based on MinLatency. 547 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { 548 SUnit *PredSU = PredEdge->getSUnit(); 549 550 if (PredEdge->isWeak()) { 551 --PredSU->WeakSuccsLeft; 552 if (PredEdge->isCluster()) 553 NextClusterPred = PredSU; 554 return; 555 } 556 #ifndef NDEBUG 557 if (PredSU->NumSuccsLeft == 0) { 558 dbgs() << "*** Scheduling failed! ***\n"; 559 PredSU->dump(this); 560 dbgs() << " has been released too many times!\n"; 561 llvm_unreachable(0); 562 } 563 #endif 564 --PredSU->NumSuccsLeft; 565 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) 566 SchedImpl->releaseBottomNode(PredSU); 567 } 568 569 /// releasePredecessors - Call releasePred on each of SU's predecessors. 570 void ScheduleDAGMI::releasePredecessors(SUnit *SU) { 571 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 572 I != E; ++I) { 573 releasePred(SU, &*I); 574 } 575 } 576 577 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 578 /// crossing a scheduling boundary. [begin, end) includes all instructions in 579 /// the region, including the boundary itself and single-instruction regions 580 /// that don't get scheduled. 581 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, 582 MachineBasicBlock::iterator begin, 583 MachineBasicBlock::iterator end, 584 unsigned regioninstrs) 585 { 586 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 587 588 SchedImpl->initPolicy(begin, end, regioninstrs); 589 } 590 591 /// This is normally called from the main scheduler loop but may also be invoked 592 /// by the scheduling strategy to perform additional code motion. 593 void ScheduleDAGMI::moveInstruction( 594 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { 595 // Advance RegionBegin if the first instruction moves down. 596 if (&*RegionBegin == MI) 597 ++RegionBegin; 598 599 // Update the instruction stream. 600 BB->splice(InsertPos, BB, MI); 601 602 // Update LiveIntervals 603 if (LIS) 604 LIS->handleMove(MI, /*UpdateFlags=*/true); 605 606 // Recede RegionBegin if an instruction moves above the first. 607 if (RegionBegin == InsertPos) 608 RegionBegin = MI; 609 } 610 611 bool ScheduleDAGMI::checkSchedLimit() { 612 #ifndef NDEBUG 613 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { 614 CurrentTop = CurrentBottom; 615 return false; 616 } 617 ++NumInstrsScheduled; 618 #endif 619 return true; 620 } 621 622 /// Per-region scheduling driver, called back from 623 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that 624 /// does not consider liveness or register pressure. It is useful for PostRA 625 /// scheduling and potentially other custom schedulers. 626 void ScheduleDAGMI::schedule() { 627 // Build the DAG. 628 buildSchedGraph(AA); 629 630 Topo.InitDAGTopologicalSorting(); 631 632 postprocessDAG(); 633 634 SmallVector<SUnit*, 8> TopRoots, BotRoots; 635 findRootsAndBiasEdges(TopRoots, BotRoots); 636 637 // Initialize the strategy before modifying the DAG. 638 // This may initialize a DFSResult to be used for queue priority. 639 SchedImpl->initialize(this); 640 641 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 642 SUnits[su].dumpAll(this)); 643 if (ViewMISchedDAGs) viewGraph(); 644 645 // Initialize ready queues now that the DAG and priority data are finalized. 646 initQueues(TopRoots, BotRoots); 647 648 bool IsTopNode = false; 649 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 650 assert(!SU->isScheduled && "Node already scheduled"); 651 if (!checkSchedLimit()) 652 break; 653 654 MachineInstr *MI = SU->getInstr(); 655 if (IsTopNode) { 656 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 657 if (&*CurrentTop == MI) 658 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 659 else 660 moveInstruction(MI, CurrentTop); 661 } 662 else { 663 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 664 MachineBasicBlock::iterator priorII = 665 priorNonDebug(CurrentBottom, CurrentTop); 666 if (&*priorII == MI) 667 CurrentBottom = priorII; 668 else { 669 if (&*CurrentTop == MI) 670 CurrentTop = nextIfDebug(++CurrentTop, priorII); 671 moveInstruction(MI, CurrentBottom); 672 CurrentBottom = MI; 673 } 674 } 675 updateQueues(SU, IsTopNode); 676 677 // Notify the scheduling strategy after updating the DAG. 678 SchedImpl->schedNode(SU, IsTopNode); 679 } 680 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 681 682 placeDebugValues(); 683 684 DEBUG({ 685 unsigned BBNum = begin()->getParent()->getNumber(); 686 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 687 dumpSchedule(); 688 dbgs() << '\n'; 689 }); 690 } 691 692 /// Apply each ScheduleDAGMutation step in order. 693 void ScheduleDAGMI::postprocessDAG() { 694 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { 695 Mutations[i]->apply(this); 696 } 697 } 698 699 void ScheduleDAGMI:: 700 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, 701 SmallVectorImpl<SUnit*> &BotRoots) { 702 for (std::vector<SUnit>::iterator 703 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { 704 SUnit *SU = &(*I); 705 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); 706 707 // Order predecessors so DFSResult follows the critical path. 708 SU->biasCriticalPath(); 709 710 // A SUnit is ready to top schedule if it has no predecessors. 711 if (!I->NumPredsLeft) 712 TopRoots.push_back(SU); 713 // A SUnit is ready to bottom schedule if it has no successors. 714 if (!I->NumSuccsLeft) 715 BotRoots.push_back(SU); 716 } 717 ExitSU.biasCriticalPath(); 718 } 719 720 /// Identify DAG roots and setup scheduler queues. 721 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, 722 ArrayRef<SUnit*> BotRoots) { 723 NextClusterSucc = NULL; 724 NextClusterPred = NULL; 725 726 // Release all DAG roots for scheduling, not including EntrySU/ExitSU. 727 // 728 // Nodes with unreleased weak edges can still be roots. 729 // Release top roots in forward order. 730 for (SmallVectorImpl<SUnit*>::const_iterator 731 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { 732 SchedImpl->releaseTopNode(*I); 733 } 734 // Release bottom roots in reverse order so the higher priority nodes appear 735 // first. This is more natural and slightly more efficient. 736 for (SmallVectorImpl<SUnit*>::const_reverse_iterator 737 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { 738 SchedImpl->releaseBottomNode(*I); 739 } 740 741 releaseSuccessors(&EntrySU); 742 releasePredecessors(&ExitSU); 743 744 SchedImpl->registerRoots(); 745 746 // Advance past initial DebugValues. 747 CurrentTop = nextIfDebug(RegionBegin, RegionEnd); 748 CurrentBottom = RegionEnd; 749 } 750 751 /// Update scheduler queues after scheduling an instruction. 752 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { 753 // Release dependent instructions for scheduling. 754 if (IsTopNode) 755 releaseSuccessors(SU); 756 else 757 releasePredecessors(SU); 758 759 SU->isScheduled = true; 760 } 761 762 /// Reinsert any remaining debug_values, just like the PostRA scheduler. 763 void ScheduleDAGMI::placeDebugValues() { 764 // If first instruction was a DBG_VALUE then put it back. 765 if (FirstDbgValue) { 766 BB->splice(RegionBegin, BB, FirstDbgValue); 767 RegionBegin = FirstDbgValue; 768 } 769 770 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 771 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 772 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 773 MachineInstr *DbgValue = P.first; 774 MachineBasicBlock::iterator OrigPrevMI = P.second; 775 if (&*RegionBegin == DbgValue) 776 ++RegionBegin; 777 BB->splice(++OrigPrevMI, BB, DbgValue); 778 if (OrigPrevMI == std::prev(RegionEnd)) 779 RegionEnd = DbgValue; 780 } 781 DbgValues.clear(); 782 FirstDbgValue = NULL; 783 } 784 785 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 786 void ScheduleDAGMI::dumpSchedule() const { 787 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { 788 if (SUnit *SU = getSUnit(&(*MI))) 789 SU->dump(this); 790 else 791 dbgs() << "Missing SUnit\n"; 792 } 793 } 794 #endif 795 796 //===----------------------------------------------------------------------===// 797 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals 798 // preservation. 799 //===----------------------------------------------------------------------===// 800 801 ScheduleDAGMILive::~ScheduleDAGMILive() { 802 delete DFSResult; 803 } 804 805 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after 806 /// crossing a scheduling boundary. [begin, end) includes all instructions in 807 /// the region, including the boundary itself and single-instruction regions 808 /// that don't get scheduled. 809 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, 810 MachineBasicBlock::iterator begin, 811 MachineBasicBlock::iterator end, 812 unsigned regioninstrs) 813 { 814 // ScheduleDAGMI initializes SchedImpl's per-region policy. 815 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); 816 817 // For convenience remember the end of the liveness region. 818 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); 819 820 SUPressureDiffs.clear(); 821 822 ShouldTrackPressure = SchedImpl->shouldTrackPressure(); 823 } 824 825 // Setup the register pressure trackers for the top scheduled top and bottom 826 // scheduled regions. 827 void ScheduleDAGMILive::initRegPressure() { 828 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); 829 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); 830 831 // Close the RPTracker to finalize live ins. 832 RPTracker.closeRegion(); 833 834 DEBUG(RPTracker.dump()); 835 836 // Initialize the live ins and live outs. 837 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 838 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 839 840 // Close one end of the tracker so we can call 841 // getMaxUpward/DownwardPressureDelta before advancing across any 842 // instructions. This converts currently live regs into live ins/outs. 843 TopRPTracker.closeTop(); 844 BotRPTracker.closeBottom(); 845 846 BotRPTracker.initLiveThru(RPTracker); 847 if (!BotRPTracker.getLiveThru().empty()) { 848 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); 849 DEBUG(dbgs() << "Live Thru: "; 850 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); 851 }; 852 853 // For each live out vreg reduce the pressure change associated with other 854 // uses of the same vreg below the live-out reaching def. 855 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); 856 857 // Account for liveness generated by the region boundary. 858 if (LiveRegionEnd != RegionEnd) { 859 SmallVector<unsigned, 8> LiveUses; 860 BotRPTracker.recede(&LiveUses); 861 updatePressureDiffs(LiveUses); 862 } 863 864 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); 865 866 // Cache the list of excess pressure sets in this region. This will also track 867 // the max pressure in the scheduled code for these sets. 868 RegionCriticalPSets.clear(); 869 const std::vector<unsigned> &RegionPressure = 870 RPTracker.getPressure().MaxSetPressure; 871 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { 872 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); 873 if (RegionPressure[i] > Limit) { 874 DEBUG(dbgs() << TRI->getRegPressureSetName(i) 875 << " Limit " << Limit 876 << " Actual " << RegionPressure[i] << "\n"); 877 RegionCriticalPSets.push_back(PressureChange(i)); 878 } 879 } 880 DEBUG(dbgs() << "Excess PSets: "; 881 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) 882 dbgs() << TRI->getRegPressureSetName( 883 RegionCriticalPSets[i].getPSet()) << " "; 884 dbgs() << "\n"); 885 } 886 887 void ScheduleDAGMILive:: 888 updateScheduledPressure(const SUnit *SU, 889 const std::vector<unsigned> &NewMaxPressure) { 890 const PressureDiff &PDiff = getPressureDiff(SU); 891 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); 892 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); 893 I != E; ++I) { 894 if (!I->isValid()) 895 break; 896 unsigned ID = I->getPSet(); 897 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) 898 ++CritIdx; 899 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { 900 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() 901 && NewMaxPressure[ID] <= INT16_MAX) 902 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); 903 } 904 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); 905 if (NewMaxPressure[ID] >= Limit - 2) { 906 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " 907 << NewMaxPressure[ID] << " > " << Limit << "(+ " 908 << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); 909 } 910 } 911 } 912 913 /// Update the PressureDiff array for liveness after scheduling this 914 /// instruction. 915 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { 916 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { 917 /// FIXME: Currently assuming single-use physregs. 918 unsigned Reg = LiveUses[LUIdx]; 919 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); 920 if (!TRI->isVirtualRegister(Reg)) 921 continue; 922 923 // This may be called before CurrentBottom has been initialized. However, 924 // BotRPTracker must have a valid position. We want the value live into the 925 // instruction or live out of the block, so ask for the previous 926 // instruction's live-out. 927 const LiveInterval &LI = LIS->getInterval(Reg); 928 VNInfo *VNI; 929 MachineBasicBlock::const_iterator I = 930 nextIfDebug(BotRPTracker.getPos(), BB->end()); 931 if (I == BB->end()) 932 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 933 else { 934 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); 935 VNI = LRQ.valueIn(); 936 } 937 // RegisterPressureTracker guarantees that readsReg is true for LiveUses. 938 assert(VNI && "No live value at use."); 939 for (VReg2UseMap::iterator 940 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 941 SUnit *SU = UI->SU; 942 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " 943 << *SU->getInstr()); 944 // If this use comes before the reaching def, it cannot be a last use, so 945 // descrease its pressure change. 946 if (!SU->isScheduled && SU != &ExitSU) { 947 LiveQueryResult LRQ 948 = LI.Query(LIS->getInstructionIndex(SU->getInstr())); 949 if (LRQ.valueIn() == VNI) 950 getPressureDiff(SU).addPressureChange(Reg, true, &MRI); 951 } 952 } 953 } 954 } 955 956 /// schedule - Called back from MachineScheduler::runOnMachineFunction 957 /// after setting up the current scheduling region. [RegionBegin, RegionEnd) 958 /// only includes instructions that have DAG nodes, not scheduling boundaries. 959 /// 960 /// This is a skeletal driver, with all the functionality pushed into helpers, 961 /// so that it can be easilly extended by experimental schedulers. Generally, 962 /// implementing MachineSchedStrategy should be sufficient to implement a new 963 /// scheduling algorithm. However, if a scheduler further subclasses 964 /// ScheduleDAGMILive then it will want to override this virtual method in order 965 /// to update any specialized state. 966 void ScheduleDAGMILive::schedule() { 967 buildDAGWithRegPressure(); 968 969 Topo.InitDAGTopologicalSorting(); 970 971 postprocessDAG(); 972 973 SmallVector<SUnit*, 8> TopRoots, BotRoots; 974 findRootsAndBiasEdges(TopRoots, BotRoots); 975 976 // Initialize the strategy before modifying the DAG. 977 // This may initialize a DFSResult to be used for queue priority. 978 SchedImpl->initialize(this); 979 980 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 981 SUnits[su].dumpAll(this)); 982 if (ViewMISchedDAGs) viewGraph(); 983 984 // Initialize ready queues now that the DAG and priority data are finalized. 985 initQueues(TopRoots, BotRoots); 986 987 if (ShouldTrackPressure) { 988 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 989 TopRPTracker.setPos(CurrentTop); 990 } 991 992 bool IsTopNode = false; 993 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 994 assert(!SU->isScheduled && "Node already scheduled"); 995 if (!checkSchedLimit()) 996 break; 997 998 scheduleMI(SU, IsTopNode); 999 1000 updateQueues(SU, IsTopNode); 1001 1002 if (DFSResult) { 1003 unsigned SubtreeID = DFSResult->getSubtreeID(SU); 1004 if (!ScheduledTrees.test(SubtreeID)) { 1005 ScheduledTrees.set(SubtreeID); 1006 DFSResult->scheduleTree(SubtreeID); 1007 SchedImpl->scheduleTree(SubtreeID); 1008 } 1009 } 1010 1011 // Notify the scheduling strategy after updating the DAG. 1012 SchedImpl->schedNode(SU, IsTopNode); 1013 } 1014 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1015 1016 placeDebugValues(); 1017 1018 DEBUG({ 1019 unsigned BBNum = begin()->getParent()->getNumber(); 1020 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1021 dumpSchedule(); 1022 dbgs() << '\n'; 1023 }); 1024 } 1025 1026 /// Build the DAG and setup three register pressure trackers. 1027 void ScheduleDAGMILive::buildDAGWithRegPressure() { 1028 if (!ShouldTrackPressure) { 1029 RPTracker.reset(); 1030 RegionCriticalPSets.clear(); 1031 buildSchedGraph(AA); 1032 return; 1033 } 1034 1035 // Initialize the register pressure tracker used by buildSchedGraph. 1036 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, 1037 /*TrackUntiedDefs=*/true); 1038 1039 // Account for liveness generate by the region boundary. 1040 if (LiveRegionEnd != RegionEnd) 1041 RPTracker.recede(); 1042 1043 // Build the DAG, and compute current register pressure. 1044 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); 1045 1046 // Initialize top/bottom trackers after computing region pressure. 1047 initRegPressure(); 1048 } 1049 1050 void ScheduleDAGMILive::computeDFSResult() { 1051 if (!DFSResult) 1052 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); 1053 DFSResult->clear(); 1054 ScheduledTrees.clear(); 1055 DFSResult->resize(SUnits.size()); 1056 DFSResult->compute(SUnits); 1057 ScheduledTrees.resize(DFSResult->getNumSubtrees()); 1058 } 1059 1060 /// Compute the max cyclic critical path through the DAG. The scheduling DAG 1061 /// only provides the critical path for single block loops. To handle loops that 1062 /// span blocks, we could use the vreg path latencies provided by 1063 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently 1064 /// available for use in the scheduler. 1065 /// 1066 /// The cyclic path estimation identifies a def-use pair that crosses the back 1067 /// edge and considers the depth and height of the nodes. For example, consider 1068 /// the following instruction sequence where each instruction has unit latency 1069 /// and defines an epomymous virtual register: 1070 /// 1071 /// a->b(a,c)->c(b)->d(c)->exit 1072 /// 1073 /// The cyclic critical path is a two cycles: b->c->b 1074 /// The acyclic critical path is four cycles: a->b->c->d->exit 1075 /// LiveOutHeight = height(c) = len(c->d->exit) = 2 1076 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 1077 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 1078 /// LiveInDepth = depth(b) = len(a->b) = 1 1079 /// 1080 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 1081 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 1082 /// CyclicCriticalPath = min(2, 2) = 2 1083 /// 1084 /// This could be relevant to PostRA scheduling, but is currently implemented 1085 /// assuming LiveIntervals. 1086 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { 1087 // This only applies to single block loop. 1088 if (!BB->isSuccessor(BB)) 1089 return 0; 1090 1091 unsigned MaxCyclicLatency = 0; 1092 // Visit each live out vreg def to find def/use pairs that cross iterations. 1093 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; 1094 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); 1095 RI != RE; ++RI) { 1096 unsigned Reg = *RI; 1097 if (!TRI->isVirtualRegister(Reg)) 1098 continue; 1099 const LiveInterval &LI = LIS->getInterval(Reg); 1100 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); 1101 if (!DefVNI) 1102 continue; 1103 1104 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); 1105 const SUnit *DefSU = getSUnit(DefMI); 1106 if (!DefSU) 1107 continue; 1108 1109 unsigned LiveOutHeight = DefSU->getHeight(); 1110 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; 1111 // Visit all local users of the vreg def. 1112 for (VReg2UseMap::iterator 1113 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { 1114 if (UI->SU == &ExitSU) 1115 continue; 1116 1117 // Only consider uses of the phi. 1118 LiveQueryResult LRQ = 1119 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); 1120 if (!LRQ.valueIn()->isPHIDef()) 1121 continue; 1122 1123 // Assume that a path spanning two iterations is a cycle, which could 1124 // overestimate in strange cases. This allows cyclic latency to be 1125 // estimated as the minimum slack of the vreg's depth or height. 1126 unsigned CyclicLatency = 0; 1127 if (LiveOutDepth > UI->SU->getDepth()) 1128 CyclicLatency = LiveOutDepth - UI->SU->getDepth(); 1129 1130 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; 1131 if (LiveInHeight > LiveOutHeight) { 1132 if (LiveInHeight - LiveOutHeight < CyclicLatency) 1133 CyclicLatency = LiveInHeight - LiveOutHeight; 1134 } 1135 else 1136 CyclicLatency = 0; 1137 1138 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" 1139 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); 1140 if (CyclicLatency > MaxCyclicLatency) 1141 MaxCyclicLatency = CyclicLatency; 1142 } 1143 } 1144 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); 1145 return MaxCyclicLatency; 1146 } 1147 1148 /// Move an instruction and update register pressure. 1149 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { 1150 // Move the instruction to its new location in the instruction stream. 1151 MachineInstr *MI = SU->getInstr(); 1152 1153 if (IsTopNode) { 1154 assert(SU->isTopReady() && "node still has unscheduled dependencies"); 1155 if (&*CurrentTop == MI) 1156 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); 1157 else { 1158 moveInstruction(MI, CurrentTop); 1159 TopRPTracker.setPos(MI); 1160 } 1161 1162 if (ShouldTrackPressure) { 1163 // Update top scheduled pressure. 1164 TopRPTracker.advance(); 1165 assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); 1166 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); 1167 } 1168 } 1169 else { 1170 assert(SU->isBottomReady() && "node still has unscheduled dependencies"); 1171 MachineBasicBlock::iterator priorII = 1172 priorNonDebug(CurrentBottom, CurrentTop); 1173 if (&*priorII == MI) 1174 CurrentBottom = priorII; 1175 else { 1176 if (&*CurrentTop == MI) { 1177 CurrentTop = nextIfDebug(++CurrentTop, priorII); 1178 TopRPTracker.setPos(CurrentTop); 1179 } 1180 moveInstruction(MI, CurrentBottom); 1181 CurrentBottom = MI; 1182 } 1183 if (ShouldTrackPressure) { 1184 // Update bottom scheduled pressure. 1185 SmallVector<unsigned, 8> LiveUses; 1186 BotRPTracker.recede(&LiveUses); 1187 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); 1188 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); 1189 updatePressureDiffs(LiveUses); 1190 } 1191 } 1192 } 1193 1194 //===----------------------------------------------------------------------===// 1195 // LoadClusterMutation - DAG post-processing to cluster loads. 1196 //===----------------------------------------------------------------------===// 1197 1198 namespace { 1199 /// \brief Post-process the DAG to create cluster edges between neighboring 1200 /// loads. 1201 class LoadClusterMutation : public ScheduleDAGMutation { 1202 struct LoadInfo { 1203 SUnit *SU; 1204 unsigned BaseReg; 1205 unsigned Offset; 1206 LoadInfo(SUnit *su, unsigned reg, unsigned ofs) 1207 : SU(su), BaseReg(reg), Offset(ofs) {} 1208 }; 1209 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, 1210 const LoadClusterMutation::LoadInfo &RHS); 1211 1212 const TargetInstrInfo *TII; 1213 const TargetRegisterInfo *TRI; 1214 public: 1215 LoadClusterMutation(const TargetInstrInfo *tii, 1216 const TargetRegisterInfo *tri) 1217 : TII(tii), TRI(tri) {} 1218 1219 void apply(ScheduleDAGMI *DAG) override; 1220 protected: 1221 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); 1222 }; 1223 } // anonymous 1224 1225 bool LoadClusterMutation::LoadInfoLess( 1226 const LoadClusterMutation::LoadInfo &LHS, 1227 const LoadClusterMutation::LoadInfo &RHS) { 1228 if (LHS.BaseReg != RHS.BaseReg) 1229 return LHS.BaseReg < RHS.BaseReg; 1230 return LHS.Offset < RHS.Offset; 1231 } 1232 1233 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, 1234 ScheduleDAGMI *DAG) { 1235 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; 1236 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { 1237 SUnit *SU = Loads[Idx]; 1238 unsigned BaseReg; 1239 unsigned Offset; 1240 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) 1241 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); 1242 } 1243 if (LoadRecords.size() < 2) 1244 return; 1245 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); 1246 unsigned ClusterLength = 1; 1247 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { 1248 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { 1249 ClusterLength = 1; 1250 continue; 1251 } 1252 1253 SUnit *SUa = LoadRecords[Idx].SU; 1254 SUnit *SUb = LoadRecords[Idx+1].SU; 1255 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) 1256 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { 1257 1258 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" 1259 << SUb->NodeNum << ")\n"); 1260 // Copy successor edges from SUa to SUb. Interleaving computation 1261 // dependent on SUa can prevent load combining due to register reuse. 1262 // Predecessor edges do not need to be copied from SUb to SUa since nearby 1263 // loads should have effectively the same inputs. 1264 for (SUnit::const_succ_iterator 1265 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { 1266 if (SI->getSUnit() == SUb) 1267 continue; 1268 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); 1269 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); 1270 } 1271 ++ClusterLength; 1272 } 1273 else 1274 ClusterLength = 1; 1275 } 1276 } 1277 1278 /// \brief Callback from DAG postProcessing to create cluster edges for loads. 1279 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { 1280 // Map DAG NodeNum to store chain ID. 1281 DenseMap<unsigned, unsigned> StoreChainIDs; 1282 // Map each store chain to a set of dependent loads. 1283 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; 1284 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1285 SUnit *SU = &DAG->SUnits[Idx]; 1286 if (!SU->getInstr()->mayLoad()) 1287 continue; 1288 unsigned ChainPredID = DAG->SUnits.size(); 1289 for (SUnit::const_pred_iterator 1290 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { 1291 if (PI->isCtrl()) { 1292 ChainPredID = PI->getSUnit()->NodeNum; 1293 break; 1294 } 1295 } 1296 // Check if this chain-like pred has been seen 1297 // before. ChainPredID==MaxNodeID for loads at the top of the schedule. 1298 unsigned NumChains = StoreChainDependents.size(); 1299 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = 1300 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); 1301 if (Result.second) 1302 StoreChainDependents.resize(NumChains + 1); 1303 StoreChainDependents[Result.first->second].push_back(SU); 1304 } 1305 // Iterate over the store chains. 1306 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) 1307 clusterNeighboringLoads(StoreChainDependents[Idx], DAG); 1308 } 1309 1310 //===----------------------------------------------------------------------===// 1311 // MacroFusion - DAG post-processing to encourage fusion of macro ops. 1312 //===----------------------------------------------------------------------===// 1313 1314 namespace { 1315 /// \brief Post-process the DAG to create cluster edges between instructions 1316 /// that may be fused by the processor into a single operation. 1317 class MacroFusion : public ScheduleDAGMutation { 1318 const TargetInstrInfo *TII; 1319 public: 1320 MacroFusion(const TargetInstrInfo *tii): TII(tii) {} 1321 1322 void apply(ScheduleDAGMI *DAG) override; 1323 }; 1324 } // anonymous 1325 1326 /// \brief Callback from DAG postProcessing to create cluster edges to encourage 1327 /// fused operations. 1328 void MacroFusion::apply(ScheduleDAGMI *DAG) { 1329 // For now, assume targets can only fuse with the branch. 1330 MachineInstr *Branch = DAG->ExitSU.getInstr(); 1331 if (!Branch) 1332 return; 1333 1334 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { 1335 SUnit *SU = &DAG->SUnits[--Idx]; 1336 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) 1337 continue; 1338 1339 // Create a single weak edge from SU to ExitSU. The only effect is to cause 1340 // bottom-up scheduling to heavily prioritize the clustered SU. There is no 1341 // need to copy predecessor edges from ExitSU to SU, since top-down 1342 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling 1343 // of SU, we could create an artificial edge from the deepest root, but it 1344 // hasn't been needed yet. 1345 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); 1346 (void)Success; 1347 assert(Success && "No DAG nodes should be reachable from ExitSU"); 1348 1349 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); 1350 break; 1351 } 1352 } 1353 1354 //===----------------------------------------------------------------------===// 1355 // CopyConstrain - DAG post-processing to encourage copy elimination. 1356 //===----------------------------------------------------------------------===// 1357 1358 namespace { 1359 /// \brief Post-process the DAG to create weak edges from all uses of a copy to 1360 /// the one use that defines the copy's source vreg, most likely an induction 1361 /// variable increment. 1362 class CopyConstrain : public ScheduleDAGMutation { 1363 // Transient state. 1364 SlotIndex RegionBeginIdx; 1365 // RegionEndIdx is the slot index of the last non-debug instruction in the 1366 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. 1367 SlotIndex RegionEndIdx; 1368 public: 1369 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} 1370 1371 void apply(ScheduleDAGMI *DAG) override; 1372 1373 protected: 1374 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); 1375 }; 1376 } // anonymous 1377 1378 /// constrainLocalCopy handles two possibilities: 1379 /// 1) Local src: 1380 /// I0: = dst 1381 /// I1: src = ... 1382 /// I2: = dst 1383 /// I3: dst = src (copy) 1384 /// (create pred->succ edges I0->I1, I2->I1) 1385 /// 1386 /// 2) Local copy: 1387 /// I0: dst = src (copy) 1388 /// I1: = dst 1389 /// I2: src = ... 1390 /// I3: = dst 1391 /// (create pred->succ edges I1->I2, I3->I2) 1392 /// 1393 /// Although the MachineScheduler is currently constrained to single blocks, 1394 /// this algorithm should handle extended blocks. An EBB is a set of 1395 /// contiguously numbered blocks such that the previous block in the EBB is 1396 /// always the single predecessor. 1397 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { 1398 LiveIntervals *LIS = DAG->getLIS(); 1399 MachineInstr *Copy = CopySU->getInstr(); 1400 1401 // Check for pure vreg copies. 1402 unsigned SrcReg = Copy->getOperand(1).getReg(); 1403 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1404 return; 1405 1406 unsigned DstReg = Copy->getOperand(0).getReg(); 1407 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1408 return; 1409 1410 // Check if either the dest or source is local. If it's live across a back 1411 // edge, it's not local. Note that if both vregs are live across the back 1412 // edge, we cannot successfully contrain the copy without cyclic scheduling. 1413 unsigned LocalReg = DstReg; 1414 unsigned GlobalReg = SrcReg; 1415 LiveInterval *LocalLI = &LIS->getInterval(LocalReg); 1416 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { 1417 LocalReg = SrcReg; 1418 GlobalReg = DstReg; 1419 LocalLI = &LIS->getInterval(LocalReg); 1420 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) 1421 return; 1422 } 1423 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); 1424 1425 // Find the global segment after the start of the local LI. 1426 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); 1427 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a 1428 // local live range. We could create edges from other global uses to the local 1429 // start, but the coalescer should have already eliminated these cases, so 1430 // don't bother dealing with it. 1431 if (GlobalSegment == GlobalLI->end()) 1432 return; 1433 1434 // If GlobalSegment is killed at the LocalLI->start, the call to find() 1435 // returned the next global segment. But if GlobalSegment overlaps with 1436 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI 1437 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. 1438 if (GlobalSegment->contains(LocalLI->beginIndex())) 1439 ++GlobalSegment; 1440 1441 if (GlobalSegment == GlobalLI->end()) 1442 return; 1443 1444 // Check if GlobalLI contains a hole in the vicinity of LocalLI. 1445 if (GlobalSegment != GlobalLI->begin()) { 1446 // Two address defs have no hole. 1447 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, 1448 GlobalSegment->start)) { 1449 return; 1450 } 1451 // If the prior global segment may be defined by the same two-address 1452 // instruction that also defines LocalLI, then can't make a hole here. 1453 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, 1454 LocalLI->beginIndex())) { 1455 return; 1456 } 1457 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise 1458 // it would be a disconnected component in the live range. 1459 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && 1460 "Disconnected LRG within the scheduling region."); 1461 } 1462 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); 1463 if (!GlobalDef) 1464 return; 1465 1466 SUnit *GlobalSU = DAG->getSUnit(GlobalDef); 1467 if (!GlobalSU) 1468 return; 1469 1470 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by 1471 // constraining the uses of the last local def to precede GlobalDef. 1472 SmallVector<SUnit*,8> LocalUses; 1473 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); 1474 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); 1475 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); 1476 for (SUnit::const_succ_iterator 1477 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); 1478 I != E; ++I) { 1479 if (I->getKind() != SDep::Data || I->getReg() != LocalReg) 1480 continue; 1481 if (I->getSUnit() == GlobalSU) 1482 continue; 1483 if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) 1484 return; 1485 LocalUses.push_back(I->getSUnit()); 1486 } 1487 // Open the top of the GlobalLI hole by constraining any earlier global uses 1488 // to precede the start of LocalLI. 1489 SmallVector<SUnit*,8> GlobalUses; 1490 MachineInstr *FirstLocalDef = 1491 LIS->getInstructionFromIndex(LocalLI->beginIndex()); 1492 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); 1493 for (SUnit::const_pred_iterator 1494 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { 1495 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) 1496 continue; 1497 if (I->getSUnit() == FirstLocalSU) 1498 continue; 1499 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) 1500 return; 1501 GlobalUses.push_back(I->getSUnit()); 1502 } 1503 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); 1504 // Add the weak edges. 1505 for (SmallVectorImpl<SUnit*>::const_iterator 1506 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { 1507 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" 1508 << GlobalSU->NodeNum << ")\n"); 1509 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); 1510 } 1511 for (SmallVectorImpl<SUnit*>::const_iterator 1512 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { 1513 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" 1514 << FirstLocalSU->NodeNum << ")\n"); 1515 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); 1516 } 1517 } 1518 1519 /// \brief Callback from DAG postProcessing to create weak edges to encourage 1520 /// copy elimination. 1521 void CopyConstrain::apply(ScheduleDAGMI *DAG) { 1522 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); 1523 1524 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); 1525 if (FirstPos == DAG->end()) 1526 return; 1527 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); 1528 RegionEndIdx = DAG->getLIS()->getInstructionIndex( 1529 &*priorNonDebug(DAG->end(), DAG->begin())); 1530 1531 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { 1532 SUnit *SU = &DAG->SUnits[Idx]; 1533 if (!SU->getInstr()->isCopy()) 1534 continue; 1535 1536 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG)); 1537 } 1538 } 1539 1540 //===----------------------------------------------------------------------===// 1541 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler 1542 // and possibly other custom schedulers. 1543 //===----------------------------------------------------------------------===// 1544 1545 static const unsigned InvalidCycle = ~0U; 1546 1547 SchedBoundary::~SchedBoundary() { delete HazardRec; } 1548 1549 void SchedBoundary::reset() { 1550 // A new HazardRec is created for each DAG and owned by SchedBoundary. 1551 // Destroying and reconstructing it is very expensive though. So keep 1552 // invalid, placeholder HazardRecs. 1553 if (HazardRec && HazardRec->isEnabled()) { 1554 delete HazardRec; 1555 HazardRec = 0; 1556 } 1557 Available.clear(); 1558 Pending.clear(); 1559 CheckPending = false; 1560 NextSUs.clear(); 1561 CurrCycle = 0; 1562 CurrMOps = 0; 1563 MinReadyCycle = UINT_MAX; 1564 ExpectedLatency = 0; 1565 DependentLatency = 0; 1566 RetiredMOps = 0; 1567 MaxExecutedResCount = 0; 1568 ZoneCritResIdx = 0; 1569 IsResourceLimited = false; 1570 ReservedCycles.clear(); 1571 #ifndef NDEBUG 1572 // Track the maximum number of stall cycles that could arise either from the 1573 // latency of a DAG edge or the number of cycles that a processor resource is 1574 // reserved (SchedBoundary::ReservedCycles). 1575 MaxObservedLatency = 0; 1576 #endif 1577 // Reserve a zero-count for invalid CritResIdx. 1578 ExecutedResCounts.resize(1); 1579 assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); 1580 } 1581 1582 void SchedRemainder:: 1583 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { 1584 reset(); 1585 if (!SchedModel->hasInstrSchedModel()) 1586 return; 1587 RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); 1588 for (std::vector<SUnit>::iterator 1589 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { 1590 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); 1591 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) 1592 * SchedModel->getMicroOpFactor(); 1593 for (TargetSchedModel::ProcResIter 1594 PI = SchedModel->getWriteProcResBegin(SC), 1595 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1596 unsigned PIdx = PI->ProcResourceIdx; 1597 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1598 RemainingCounts[PIdx] += (Factor * PI->Cycles); 1599 } 1600 } 1601 } 1602 1603 void SchedBoundary:: 1604 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { 1605 reset(); 1606 DAG = dag; 1607 SchedModel = smodel; 1608 Rem = rem; 1609 if (SchedModel->hasInstrSchedModel()) { 1610 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); 1611 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle); 1612 } 1613 } 1614 1615 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat 1616 /// these "soft stalls" differently than the hard stall cycles based on CPU 1617 /// resources and computed by checkHazard(). A fully in-order model 1618 /// (MicroOpBufferSize==0) will not make use of this since instructions are not 1619 /// available for scheduling until they are ready. However, a weaker in-order 1620 /// model may use this for heuristics. For example, if a processor has in-order 1621 /// behavior when reading certain resources, this may come into play. 1622 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { 1623 if (!SU->isUnbuffered) 1624 return 0; 1625 1626 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1627 if (ReadyCycle > CurrCycle) 1628 return ReadyCycle - CurrCycle; 1629 return 0; 1630 } 1631 1632 /// Compute the next cycle at which the given processor resource can be 1633 /// scheduled. 1634 unsigned SchedBoundary:: 1635 getNextResourceCycle(unsigned PIdx, unsigned Cycles) { 1636 unsigned NextUnreserved = ReservedCycles[PIdx]; 1637 // If this resource has never been used, always return cycle zero. 1638 if (NextUnreserved == InvalidCycle) 1639 return 0; 1640 // For bottom-up scheduling add the cycles needed for the current operation. 1641 if (!isTop()) 1642 NextUnreserved += Cycles; 1643 return NextUnreserved; 1644 } 1645 1646 /// Does this SU have a hazard within the current instruction group. 1647 /// 1648 /// The scheduler supports two modes of hazard recognition. The first is the 1649 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 1650 /// supports highly complicated in-order reservation tables 1651 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. 1652 /// 1653 /// The second is a streamlined mechanism that checks for hazards based on 1654 /// simple counters that the scheduler itself maintains. It explicitly checks 1655 /// for instruction dispatch limitations, including the number of micro-ops that 1656 /// can dispatch per cycle. 1657 /// 1658 /// TODO: Also check whether the SU must start a new group. 1659 bool SchedBoundary::checkHazard(SUnit *SU) { 1660 if (HazardRec->isEnabled() 1661 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { 1662 return true; 1663 } 1664 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 1665 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { 1666 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" 1667 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); 1668 return true; 1669 } 1670 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { 1671 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1672 for (TargetSchedModel::ProcResIter 1673 PI = SchedModel->getWriteProcResBegin(SC), 1674 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1675 if (getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles) > CurrCycle) 1676 return true; 1677 } 1678 } 1679 return false; 1680 } 1681 1682 // Find the unscheduled node in ReadySUs with the highest latency. 1683 unsigned SchedBoundary:: 1684 findMaxLatency(ArrayRef<SUnit*> ReadySUs) { 1685 SUnit *LateSU = 0; 1686 unsigned RemLatency = 0; 1687 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); 1688 I != E; ++I) { 1689 unsigned L = getUnscheduledLatency(*I); 1690 if (L > RemLatency) { 1691 RemLatency = L; 1692 LateSU = *I; 1693 } 1694 } 1695 if (LateSU) { 1696 DEBUG(dbgs() << Available.getName() << " RemLatency SU(" 1697 << LateSU->NodeNum << ") " << RemLatency << "c\n"); 1698 } 1699 return RemLatency; 1700 } 1701 1702 // Count resources in this zone and the remaining unscheduled 1703 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical 1704 // resource index, or zero if the zone is issue limited. 1705 unsigned SchedBoundary:: 1706 getOtherResourceCount(unsigned &OtherCritIdx) { 1707 OtherCritIdx = 0; 1708 if (!SchedModel->hasInstrSchedModel()) 1709 return 0; 1710 1711 unsigned OtherCritCount = Rem->RemIssueCount 1712 + (RetiredMOps * SchedModel->getMicroOpFactor()); 1713 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " 1714 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); 1715 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); 1716 PIdx != PEnd; ++PIdx) { 1717 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; 1718 if (OtherCount > OtherCritCount) { 1719 OtherCritCount = OtherCount; 1720 OtherCritIdx = PIdx; 1721 } 1722 } 1723 if (OtherCritIdx) { 1724 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " 1725 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) 1726 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); 1727 } 1728 return OtherCritCount; 1729 } 1730 1731 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) { 1732 if (ReadyCycle < MinReadyCycle) 1733 MinReadyCycle = ReadyCycle; 1734 1735 // Check for interlocks first. For the purpose of other heuristics, an 1736 // instruction that cannot issue appears as if it's not in the ReadyQueue. 1737 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 1738 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) 1739 Pending.push(SU); 1740 else 1741 Available.push(SU); 1742 1743 // Record this node as an immediate dependent of the scheduled node. 1744 NextSUs.insert(SU); 1745 } 1746 1747 void SchedBoundary::releaseTopNode(SUnit *SU) { 1748 if (SU->isScheduled) 1749 return; 1750 1751 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 1752 I != E; ++I) { 1753 if (I->isWeak()) 1754 continue; 1755 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 1756 unsigned Latency = I->getLatency(); 1757 #ifndef NDEBUG 1758 MaxObservedLatency = std::max(Latency, MaxObservedLatency); 1759 #endif 1760 if (SU->TopReadyCycle < PredReadyCycle + Latency) 1761 SU->TopReadyCycle = PredReadyCycle + Latency; 1762 } 1763 releaseNode(SU, SU->TopReadyCycle); 1764 } 1765 1766 void SchedBoundary::releaseBottomNode(SUnit *SU) { 1767 if (SU->isScheduled) 1768 return; 1769 1770 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 1771 1772 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 1773 I != E; ++I) { 1774 if (I->isWeak()) 1775 continue; 1776 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 1777 unsigned Latency = I->getLatency(); 1778 #ifndef NDEBUG 1779 MaxObservedLatency = std::max(Latency, MaxObservedLatency); 1780 #endif 1781 if (SU->BotReadyCycle < SuccReadyCycle + Latency) 1782 SU->BotReadyCycle = SuccReadyCycle + Latency; 1783 } 1784 releaseNode(SU, SU->BotReadyCycle); 1785 } 1786 1787 /// Move the boundary of scheduled code by one cycle. 1788 void SchedBoundary::bumpCycle(unsigned NextCycle) { 1789 if (SchedModel->getMicroOpBufferSize() == 0) { 1790 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 1791 if (MinReadyCycle > NextCycle) 1792 NextCycle = MinReadyCycle; 1793 } 1794 // Update the current micro-ops, which will issue in the next cycle. 1795 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); 1796 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; 1797 1798 // Decrement DependentLatency based on the next cycle. 1799 if ((NextCycle - CurrCycle) > DependentLatency) 1800 DependentLatency = 0; 1801 else 1802 DependentLatency -= (NextCycle - CurrCycle); 1803 1804 if (!HazardRec->isEnabled()) { 1805 // Bypass HazardRec virtual calls. 1806 CurrCycle = NextCycle; 1807 } 1808 else { 1809 // Bypass getHazardType calls in case of long latency. 1810 for (; CurrCycle != NextCycle; ++CurrCycle) { 1811 if (isTop()) 1812 HazardRec->AdvanceCycle(); 1813 else 1814 HazardRec->RecedeCycle(); 1815 } 1816 } 1817 CheckPending = true; 1818 unsigned LFactor = SchedModel->getLatencyFactor(); 1819 IsResourceLimited = 1820 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1821 > (int)LFactor; 1822 1823 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); 1824 } 1825 1826 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { 1827 ExecutedResCounts[PIdx] += Count; 1828 if (ExecutedResCounts[PIdx] > MaxExecutedResCount) 1829 MaxExecutedResCount = ExecutedResCounts[PIdx]; 1830 } 1831 1832 /// Add the given processor resource to this scheduled zone. 1833 /// 1834 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles 1835 /// during which this resource is consumed. 1836 /// 1837 /// \return the next cycle at which the instruction may execute without 1838 /// oversubscribing resources. 1839 unsigned SchedBoundary:: 1840 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) { 1841 unsigned Factor = SchedModel->getResourceFactor(PIdx); 1842 unsigned Count = Factor * Cycles; 1843 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) 1844 << " +" << Cycles << "x" << Factor << "u\n"); 1845 1846 // Update Executed resources counts. 1847 incExecutedResources(PIdx, Count); 1848 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); 1849 Rem->RemainingCounts[PIdx] -= Count; 1850 1851 // Check if this resource exceeds the current critical resource. If so, it 1852 // becomes the critical resource. 1853 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { 1854 ZoneCritResIdx = PIdx; 1855 DEBUG(dbgs() << " *** Critical resource " 1856 << SchedModel->getResourceName(PIdx) << ": " 1857 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); 1858 } 1859 // For reserved resources, record the highest cycle using the resource. 1860 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles); 1861 if (NextAvailable > CurrCycle) { 1862 DEBUG(dbgs() << " Resource conflict: " 1863 << SchedModel->getProcResource(PIdx)->Name << " reserved until @" 1864 << NextAvailable << "\n"); 1865 } 1866 return NextAvailable; 1867 } 1868 1869 /// Move the boundary of scheduled code by one SUnit. 1870 void SchedBoundary::bumpNode(SUnit *SU) { 1871 // Update the reservation table. 1872 if (HazardRec->isEnabled()) { 1873 if (!isTop() && SU->isCall) { 1874 // Calls are scheduled with their preceding instructions. For bottom-up 1875 // scheduling, clear the pipeline state before emitting. 1876 HazardRec->Reset(); 1877 } 1878 HazardRec->EmitInstruction(SU); 1879 } 1880 // checkHazard should prevent scheduling multiple instructions per cycle that 1881 // exceed the issue width. 1882 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 1883 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); 1884 assert( 1885 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && 1886 "Cannot schedule this instruction's MicroOps in the current cycle."); 1887 1888 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); 1889 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); 1890 1891 unsigned NextCycle = CurrCycle; 1892 switch (SchedModel->getMicroOpBufferSize()) { 1893 case 0: 1894 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); 1895 break; 1896 case 1: 1897 if (ReadyCycle > NextCycle) { 1898 NextCycle = ReadyCycle; 1899 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); 1900 } 1901 break; 1902 default: 1903 // We don't currently model the OOO reorder buffer, so consider all 1904 // scheduled MOps to be "retired". We do loosely model in-order resource 1905 // latency. If this instruction uses an in-order resource, account for any 1906 // likely stall cycles. 1907 if (SU->isUnbuffered && ReadyCycle > NextCycle) 1908 NextCycle = ReadyCycle; 1909 break; 1910 } 1911 RetiredMOps += IncMOps; 1912 1913 // Update resource counts and critical resource. 1914 if (SchedModel->hasInstrSchedModel()) { 1915 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); 1916 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); 1917 Rem->RemIssueCount -= DecRemIssue; 1918 if (ZoneCritResIdx) { 1919 // Scale scheduled micro-ops for comparing with the critical resource. 1920 unsigned ScaledMOps = 1921 RetiredMOps * SchedModel->getMicroOpFactor(); 1922 1923 // If scaled micro-ops are now more than the previous critical resource by 1924 // a full cycle, then micro-ops issue becomes critical. 1925 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) 1926 >= (int)SchedModel->getLatencyFactor()) { 1927 ZoneCritResIdx = 0; 1928 DEBUG(dbgs() << " *** Critical resource NumMicroOps: " 1929 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); 1930 } 1931 } 1932 for (TargetSchedModel::ProcResIter 1933 PI = SchedModel->getWriteProcResBegin(SC), 1934 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1935 unsigned RCycle = 1936 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle); 1937 if (RCycle > NextCycle) 1938 NextCycle = RCycle; 1939 } 1940 if (SU->hasReservedResource) { 1941 // For reserved resources, record the highest cycle using the resource. 1942 // For top-down scheduling, this is the cycle in which we schedule this 1943 // instruction plus the number of cycles the operations reserves the 1944 // resource. For bottom-up is it simply the instruction's cycle. 1945 for (TargetSchedModel::ProcResIter 1946 PI = SchedModel->getWriteProcResBegin(SC), 1947 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 1948 unsigned PIdx = PI->ProcResourceIdx; 1949 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { 1950 ReservedCycles[PIdx] = isTop() ? NextCycle + PI->Cycles : NextCycle; 1951 #ifndef NDEBUG 1952 MaxObservedLatency = std::max(PI->Cycles, MaxObservedLatency); 1953 #endif 1954 } 1955 } 1956 } 1957 } 1958 // Update ExpectedLatency and DependentLatency. 1959 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; 1960 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; 1961 if (SU->getDepth() > TopLatency) { 1962 TopLatency = SU->getDepth(); 1963 DEBUG(dbgs() << " " << Available.getName() 1964 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); 1965 } 1966 if (SU->getHeight() > BotLatency) { 1967 BotLatency = SU->getHeight(); 1968 DEBUG(dbgs() << " " << Available.getName() 1969 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); 1970 } 1971 // If we stall for any reason, bump the cycle. 1972 if (NextCycle > CurrCycle) { 1973 bumpCycle(NextCycle); 1974 } 1975 else { 1976 // After updating ZoneCritResIdx and ExpectedLatency, check if we're 1977 // resource limited. If a stall occurred, bumpCycle does this. 1978 unsigned LFactor = SchedModel->getLatencyFactor(); 1979 IsResourceLimited = 1980 (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) 1981 > (int)LFactor; 1982 } 1983 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle 1984 // resets CurrMOps. Loop to handle instructions with more MOps than issue in 1985 // one cycle. Since we commonly reach the max MOps here, opportunistically 1986 // bump the cycle to avoid uselessly checking everything in the readyQ. 1987 CurrMOps += IncMOps; 1988 while (CurrMOps >= SchedModel->getIssueWidth()) { 1989 DEBUG(dbgs() << " *** Max MOps " << CurrMOps 1990 << " at cycle " << CurrCycle << '\n'); 1991 bumpCycle(++NextCycle); 1992 } 1993 DEBUG(dumpScheduledState()); 1994 } 1995 1996 /// Release pending ready nodes in to the available queue. This makes them 1997 /// visible to heuristics. 1998 void SchedBoundary::releasePending() { 1999 // If the available queue is empty, it is safe to reset MinReadyCycle. 2000 if (Available.empty()) 2001 MinReadyCycle = UINT_MAX; 2002 2003 // Check to see if any of the pending instructions are ready to issue. If 2004 // so, add them to the available queue. 2005 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; 2006 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 2007 SUnit *SU = *(Pending.begin()+i); 2008 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 2009 2010 if (ReadyCycle < MinReadyCycle) 2011 MinReadyCycle = ReadyCycle; 2012 2013 if (!IsBuffered && ReadyCycle > CurrCycle) 2014 continue; 2015 2016 if (checkHazard(SU)) 2017 continue; 2018 2019 Available.push(SU); 2020 Pending.remove(Pending.begin()+i); 2021 --i; --e; 2022 } 2023 DEBUG(if (!Pending.empty()) Pending.dump()); 2024 CheckPending = false; 2025 } 2026 2027 /// Remove SU from the ready set for this boundary. 2028 void SchedBoundary::removeReady(SUnit *SU) { 2029 if (Available.isInQueue(SU)) 2030 Available.remove(Available.find(SU)); 2031 else { 2032 assert(Pending.isInQueue(SU) && "bad ready count"); 2033 Pending.remove(Pending.find(SU)); 2034 } 2035 } 2036 2037 /// If this queue only has one ready candidate, return it. As a side effect, 2038 /// defer any nodes that now hit a hazard, and advance the cycle until at least 2039 /// one node is ready. If multiple instructions are ready, return NULL. 2040 SUnit *SchedBoundary::pickOnlyChoice() { 2041 if (CheckPending) 2042 releasePending(); 2043 2044 if (CurrMOps > 0) { 2045 // Defer any ready instrs that now have a hazard. 2046 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { 2047 if (checkHazard(*I)) { 2048 Pending.push(*I); 2049 I = Available.remove(I); 2050 continue; 2051 } 2052 ++I; 2053 } 2054 } 2055 for (unsigned i = 0; Available.empty(); ++i) { 2056 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && 2057 "permanent hazard"); (void)i; 2058 bumpCycle(CurrCycle + 1); 2059 releasePending(); 2060 } 2061 if (Available.size() == 1) 2062 return *Available.begin(); 2063 return NULL; 2064 } 2065 2066 #ifndef NDEBUG 2067 // This is useful information to dump after bumpNode. 2068 // Note that the Queue contents are more useful before pickNodeFromQueue. 2069 void SchedBoundary::dumpScheduledState() { 2070 unsigned ResFactor; 2071 unsigned ResCount; 2072 if (ZoneCritResIdx) { 2073 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); 2074 ResCount = getResourceCount(ZoneCritResIdx); 2075 } 2076 else { 2077 ResFactor = SchedModel->getMicroOpFactor(); 2078 ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); 2079 } 2080 unsigned LFactor = SchedModel->getLatencyFactor(); 2081 dbgs() << Available.getName() << " @" << CurrCycle << "c\n" 2082 << " Retired: " << RetiredMOps; 2083 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; 2084 dbgs() << "\n Critical: " << ResCount / LFactor << "c, " 2085 << ResCount / ResFactor << " " 2086 << SchedModel->getResourceName(ZoneCritResIdx) 2087 << "\n ExpectedLatency: " << ExpectedLatency << "c\n" 2088 << (IsResourceLimited ? " - Resource" : " - Latency") 2089 << " limited.\n"; 2090 } 2091 #endif 2092 2093 //===----------------------------------------------------------------------===// 2094 // GenericScheduler - Generic implementation of MachineSchedStrategy. 2095 //===----------------------------------------------------------------------===// 2096 2097 namespace { 2098 /// Base class for GenericScheduler. This class maintains information about 2099 /// scheduling candidates based on TargetSchedModel making it easy to implement 2100 /// heuristics for either preRA or postRA scheduling. 2101 class GenericSchedulerBase : public MachineSchedStrategy { 2102 public: 2103 /// Represent the type of SchedCandidate found within a single queue. 2104 /// pickNodeBidirectional depends on these listed by decreasing priority. 2105 enum CandReason { 2106 NoCand, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, RegMax, 2107 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, 2108 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; 2109 2110 #ifndef NDEBUG 2111 static const char *getReasonStr(GenericSchedulerBase::CandReason Reason); 2112 #endif 2113 2114 /// Policy for scheduling the next instruction in the candidate's zone. 2115 struct CandPolicy { 2116 bool ReduceLatency; 2117 unsigned ReduceResIdx; 2118 unsigned DemandResIdx; 2119 2120 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} 2121 }; 2122 2123 /// Status of an instruction's critical resource consumption. 2124 struct SchedResourceDelta { 2125 // Count critical resources in the scheduled region required by SU. 2126 unsigned CritResources; 2127 2128 // Count critical resources from another region consumed by SU. 2129 unsigned DemandedResources; 2130 2131 SchedResourceDelta(): CritResources(0), DemandedResources(0) {} 2132 2133 bool operator==(const SchedResourceDelta &RHS) const { 2134 return CritResources == RHS.CritResources 2135 && DemandedResources == RHS.DemandedResources; 2136 } 2137 bool operator!=(const SchedResourceDelta &RHS) const { 2138 return !operator==(RHS); 2139 } 2140 }; 2141 2142 /// Store the state used by GenericScheduler heuristics, required for the 2143 /// lifetime of one invocation of pickNode(). 2144 struct SchedCandidate { 2145 CandPolicy Policy; 2146 2147 // The best SUnit candidate. 2148 SUnit *SU; 2149 2150 // The reason for this candidate. 2151 CandReason Reason; 2152 2153 // Set of reasons that apply to multiple candidates. 2154 uint32_t RepeatReasonSet; 2155 2156 // Register pressure values for the best candidate. 2157 RegPressureDelta RPDelta; 2158 2159 // Critical resource consumption of the best candidate. 2160 SchedResourceDelta ResDelta; 2161 2162 SchedCandidate(const CandPolicy &policy) 2163 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} 2164 2165 bool isValid() const { return SU; } 2166 2167 // Copy the status of another candidate without changing policy. 2168 void setBest(SchedCandidate &Best) { 2169 assert(Best.Reason != NoCand && "uninitialized Sched candidate"); 2170 SU = Best.SU; 2171 Reason = Best.Reason; 2172 RPDelta = Best.RPDelta; 2173 ResDelta = Best.ResDelta; 2174 } 2175 2176 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } 2177 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } 2178 2179 void initResourceDelta(const ScheduleDAGMI *DAG, 2180 const TargetSchedModel *SchedModel); 2181 }; 2182 2183 protected: 2184 const MachineSchedContext *Context; 2185 const TargetSchedModel *SchedModel; 2186 const TargetRegisterInfo *TRI; 2187 2188 SchedRemainder Rem; 2189 protected: 2190 GenericSchedulerBase(const MachineSchedContext *C): 2191 Context(C), SchedModel(0), TRI(0) {} 2192 2193 void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, 2194 SchedBoundary *OtherZone); 2195 2196 #ifndef NDEBUG 2197 void traceCandidate(const SchedCandidate &Cand); 2198 #endif 2199 }; 2200 } // namespace 2201 2202 void GenericSchedulerBase::SchedCandidate:: 2203 initResourceDelta(const ScheduleDAGMI *DAG, 2204 const TargetSchedModel *SchedModel) { 2205 if (!Policy.ReduceResIdx && !Policy.DemandResIdx) 2206 return; 2207 2208 const MCSchedClassDesc *SC = DAG->getSchedClass(SU); 2209 for (TargetSchedModel::ProcResIter 2210 PI = SchedModel->getWriteProcResBegin(SC), 2211 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { 2212 if (PI->ProcResourceIdx == Policy.ReduceResIdx) 2213 ResDelta.CritResources += PI->Cycles; 2214 if (PI->ProcResourceIdx == Policy.DemandResIdx) 2215 ResDelta.DemandedResources += PI->Cycles; 2216 } 2217 } 2218 2219 /// Set the CandPolicy given a scheduling zone given the current resources and 2220 /// latencies inside and outside the zone. 2221 void GenericSchedulerBase::setPolicy(CandPolicy &Policy, 2222 bool IsPostRA, 2223 SchedBoundary &CurrZone, 2224 SchedBoundary *OtherZone) { 2225 // Apply preemptive heuristics based on the the total latency and resources 2226 // inside and outside this zone. Potential stalls should be considered before 2227 // following this policy. 2228 2229 // Compute remaining latency. We need this both to determine whether the 2230 // overall schedule has become latency-limited and whether the instructions 2231 // outside this zone are resource or latency limited. 2232 // 2233 // The "dependent" latency is updated incrementally during scheduling as the 2234 // max height/depth of scheduled nodes minus the cycles since it was 2235 // scheduled: 2236 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone 2237 // 2238 // The "independent" latency is the max ready queue depth: 2239 // ILat = max N.depth for N in Available|Pending 2240 // 2241 // RemainingLatency is the greater of independent and dependent latency. 2242 unsigned RemLatency = CurrZone.getDependentLatency(); 2243 RemLatency = std::max(RemLatency, 2244 CurrZone.findMaxLatency(CurrZone.Available.elements())); 2245 RemLatency = std::max(RemLatency, 2246 CurrZone.findMaxLatency(CurrZone.Pending.elements())); 2247 2248 // Compute the critical resource outside the zone. 2249 unsigned OtherCritIdx = 0; 2250 unsigned OtherCount = 2251 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; 2252 2253 bool OtherResLimited = false; 2254 if (SchedModel->hasInstrSchedModel()) { 2255 unsigned LFactor = SchedModel->getLatencyFactor(); 2256 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; 2257 } 2258 // Schedule aggressively for latency in PostRA mode. We don't check for 2259 // acyclic latency during PostRA, and highly out-of-order processors will 2260 // skip PostRA scheduling. 2261 if (!OtherResLimited) { 2262 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) { 2263 Policy.ReduceLatency |= true; 2264 DEBUG(dbgs() << " " << CurrZone.Available.getName() 2265 << " RemainingLatency " << RemLatency << " + " 2266 << CurrZone.getCurrCycle() << "c > CritPath " 2267 << Rem.CriticalPath << "\n"); 2268 } 2269 } 2270 // If the same resource is limiting inside and outside the zone, do nothing. 2271 if (CurrZone.getZoneCritResIdx() == OtherCritIdx) 2272 return; 2273 2274 DEBUG( 2275 if (CurrZone.isResourceLimited()) { 2276 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " 2277 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) 2278 << "\n"; 2279 } 2280 if (OtherResLimited) 2281 dbgs() << " RemainingLimit: " 2282 << SchedModel->getResourceName(OtherCritIdx) << "\n"; 2283 if (!CurrZone.isResourceLimited() && !OtherResLimited) 2284 dbgs() << " Latency limited both directions.\n"); 2285 2286 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) 2287 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); 2288 2289 if (OtherResLimited) 2290 Policy.DemandResIdx = OtherCritIdx; 2291 } 2292 2293 #ifndef NDEBUG 2294 const char *GenericSchedulerBase::getReasonStr( 2295 GenericSchedulerBase::CandReason Reason) { 2296 switch (Reason) { 2297 case NoCand: return "NOCAND "; 2298 case PhysRegCopy: return "PREG-COPY"; 2299 case RegExcess: return "REG-EXCESS"; 2300 case RegCritical: return "REG-CRIT "; 2301 case Stall: return "STALL "; 2302 case Cluster: return "CLUSTER "; 2303 case Weak: return "WEAK "; 2304 case RegMax: return "REG-MAX "; 2305 case ResourceReduce: return "RES-REDUCE"; 2306 case ResourceDemand: return "RES-DEMAND"; 2307 case TopDepthReduce: return "TOP-DEPTH "; 2308 case TopPathReduce: return "TOP-PATH "; 2309 case BotHeightReduce:return "BOT-HEIGHT"; 2310 case BotPathReduce: return "BOT-PATH "; 2311 case NextDefUse: return "DEF-USE "; 2312 case NodeOrder: return "ORDER "; 2313 }; 2314 llvm_unreachable("Unknown reason!"); 2315 } 2316 2317 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { 2318 PressureChange P; 2319 unsigned ResIdx = 0; 2320 unsigned Latency = 0; 2321 switch (Cand.Reason) { 2322 default: 2323 break; 2324 case RegExcess: 2325 P = Cand.RPDelta.Excess; 2326 break; 2327 case RegCritical: 2328 P = Cand.RPDelta.CriticalMax; 2329 break; 2330 case RegMax: 2331 P = Cand.RPDelta.CurrentMax; 2332 break; 2333 case ResourceReduce: 2334 ResIdx = Cand.Policy.ReduceResIdx; 2335 break; 2336 case ResourceDemand: 2337 ResIdx = Cand.Policy.DemandResIdx; 2338 break; 2339 case TopDepthReduce: 2340 Latency = Cand.SU->getDepth(); 2341 break; 2342 case TopPathReduce: 2343 Latency = Cand.SU->getHeight(); 2344 break; 2345 case BotHeightReduce: 2346 Latency = Cand.SU->getHeight(); 2347 break; 2348 case BotPathReduce: 2349 Latency = Cand.SU->getDepth(); 2350 break; 2351 } 2352 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 2353 if (P.isValid()) 2354 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) 2355 << ":" << P.getUnitInc() << " "; 2356 else 2357 dbgs() << " "; 2358 if (ResIdx) 2359 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; 2360 else 2361 dbgs() << " "; 2362 if (Latency) 2363 dbgs() << " " << Latency << " cycles "; 2364 else 2365 dbgs() << " "; 2366 dbgs() << '\n'; 2367 } 2368 #endif 2369 2370 /// Return true if this heuristic determines order. 2371 static bool tryLess(int TryVal, int CandVal, 2372 GenericSchedulerBase::SchedCandidate &TryCand, 2373 GenericSchedulerBase::SchedCandidate &Cand, 2374 GenericSchedulerBase::CandReason Reason) { 2375 if (TryVal < CandVal) { 2376 TryCand.Reason = Reason; 2377 return true; 2378 } 2379 if (TryVal > CandVal) { 2380 if (Cand.Reason > Reason) 2381 Cand.Reason = Reason; 2382 return true; 2383 } 2384 Cand.setRepeat(Reason); 2385 return false; 2386 } 2387 2388 static bool tryGreater(int TryVal, int CandVal, 2389 GenericSchedulerBase::SchedCandidate &TryCand, 2390 GenericSchedulerBase::SchedCandidate &Cand, 2391 GenericSchedulerBase::CandReason Reason) { 2392 if (TryVal > CandVal) { 2393 TryCand.Reason = Reason; 2394 return true; 2395 } 2396 if (TryVal < CandVal) { 2397 if (Cand.Reason > Reason) 2398 Cand.Reason = Reason; 2399 return true; 2400 } 2401 Cand.setRepeat(Reason); 2402 return false; 2403 } 2404 2405 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, 2406 GenericSchedulerBase::SchedCandidate &Cand, 2407 SchedBoundary &Zone) { 2408 if (Zone.isTop()) { 2409 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { 2410 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2411 TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) 2412 return true; 2413 } 2414 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2415 TryCand, Cand, GenericSchedulerBase::TopPathReduce)) 2416 return true; 2417 } 2418 else { 2419 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { 2420 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), 2421 TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) 2422 return true; 2423 } 2424 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), 2425 TryCand, Cand, GenericSchedulerBase::BotPathReduce)) 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand, 2432 bool IsTop) { 2433 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") 2434 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n'); 2435 } 2436 2437 namespace { 2438 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance 2439 /// the schedule. 2440 class GenericScheduler : public GenericSchedulerBase { 2441 ScheduleDAGMILive *DAG; 2442 2443 // State of the top and bottom scheduled instruction boundaries. 2444 SchedBoundary Top; 2445 SchedBoundary Bot; 2446 2447 MachineSchedPolicy RegionPolicy; 2448 public: 2449 GenericScheduler(const MachineSchedContext *C): 2450 GenericSchedulerBase(C), DAG(0), Top(SchedBoundary::TopQID, "TopQ"), 2451 Bot(SchedBoundary::BotQID, "BotQ") {} 2452 2453 virtual void initPolicy(MachineBasicBlock::iterator Begin, 2454 MachineBasicBlock::iterator End, 2455 unsigned NumRegionInstrs) override; 2456 2457 virtual bool shouldTrackPressure() const override { 2458 return RegionPolicy.ShouldTrackPressure; 2459 } 2460 2461 virtual void initialize(ScheduleDAGMI *dag) override; 2462 2463 virtual SUnit *pickNode(bool &IsTopNode) override; 2464 2465 virtual void schedNode(SUnit *SU, bool IsTopNode) override; 2466 2467 virtual void releaseTopNode(SUnit *SU) override { 2468 Top.releaseTopNode(SU); 2469 } 2470 2471 virtual void releaseBottomNode(SUnit *SU) override { 2472 Bot.releaseBottomNode(SU); 2473 } 2474 2475 virtual void registerRoots() override; 2476 2477 protected: 2478 void checkAcyclicLatency(); 2479 2480 void tryCandidate(SchedCandidate &Cand, 2481 SchedCandidate &TryCand, 2482 SchedBoundary &Zone, 2483 const RegPressureTracker &RPTracker, 2484 RegPressureTracker &TempTracker); 2485 2486 SUnit *pickNodeBidirectional(bool &IsTopNode); 2487 2488 void pickNodeFromQueue(SchedBoundary &Zone, 2489 const RegPressureTracker &RPTracker, 2490 SchedCandidate &Candidate); 2491 2492 void reschedulePhysRegCopies(SUnit *SU, bool isTop); 2493 }; 2494 } // namespace 2495 2496 void GenericScheduler::initialize(ScheduleDAGMI *dag) { 2497 assert(dag->hasVRegLiveness() && 2498 "(PreRA)GenericScheduler needs vreg liveness"); 2499 DAG = static_cast<ScheduleDAGMILive*>(dag); 2500 SchedModel = DAG->getSchedModel(); 2501 TRI = DAG->TRI; 2502 2503 Rem.init(DAG, SchedModel); 2504 Top.init(DAG, SchedModel, &Rem); 2505 Bot.init(DAG, SchedModel, &Rem); 2506 2507 // Initialize resource counts. 2508 2509 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 2510 // are disabled, then these HazardRecs will be disabled. 2511 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 2512 const TargetMachine &TM = DAG->MF.getTarget(); 2513 if (!Top.HazardRec) { 2514 Top.HazardRec = 2515 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2516 } 2517 if (!Bot.HazardRec) { 2518 Bot.HazardRec = 2519 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 2520 } 2521 } 2522 2523 /// Initialize the per-region scheduling policy. 2524 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, 2525 MachineBasicBlock::iterator End, 2526 unsigned NumRegionInstrs) { 2527 const TargetMachine &TM = Context->MF->getTarget(); 2528 const TargetLowering *TLI = TM.getTargetLowering(); 2529 2530 // Avoid setting up the register pressure tracker for small regions to save 2531 // compile time. As a rough heuristic, only track pressure when the number of 2532 // schedulable instructions exceeds half the integer register file. 2533 RegionPolicy.ShouldTrackPressure = true; 2534 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { 2535 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; 2536 if (TLI->isTypeLegal(LegalIntVT)) { 2537 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( 2538 TLI->getRegClassFor(LegalIntVT)); 2539 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); 2540 } 2541 } 2542 2543 // For generic targets, we default to bottom-up, because it's simpler and more 2544 // compile-time optimizations have been implemented in that direction. 2545 RegionPolicy.OnlyBottomUp = true; 2546 2547 // Allow the subtarget to override default policy. 2548 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); 2549 ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs); 2550 2551 // After subtarget overrides, apply command line options. 2552 if (!EnableRegPressure) 2553 RegionPolicy.ShouldTrackPressure = false; 2554 2555 // Check -misched-topdown/bottomup can force or unforce scheduling direction. 2556 // e.g. -misched-bottomup=false allows scheduling in both directions. 2557 assert((!ForceTopDown || !ForceBottomUp) && 2558 "-misched-topdown incompatible with -misched-bottomup"); 2559 if (ForceBottomUp.getNumOccurrences() > 0) { 2560 RegionPolicy.OnlyBottomUp = ForceBottomUp; 2561 if (RegionPolicy.OnlyBottomUp) 2562 RegionPolicy.OnlyTopDown = false; 2563 } 2564 if (ForceTopDown.getNumOccurrences() > 0) { 2565 RegionPolicy.OnlyTopDown = ForceTopDown; 2566 if (RegionPolicy.OnlyTopDown) 2567 RegionPolicy.OnlyBottomUp = false; 2568 } 2569 } 2570 2571 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic 2572 /// critical path by more cycles than it takes to drain the instruction buffer. 2573 /// We estimate an upper bounds on in-flight instructions as: 2574 /// 2575 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) 2576 /// InFlightIterations = AcyclicPath / CyclesPerIteration 2577 /// InFlightResources = InFlightIterations * LoopResources 2578 /// 2579 /// TODO: Check execution resources in addition to IssueCount. 2580 void GenericScheduler::checkAcyclicLatency() { 2581 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) 2582 return; 2583 2584 // Scaled number of cycles per loop iteration. 2585 unsigned IterCount = 2586 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), 2587 Rem.RemIssueCount); 2588 // Scaled acyclic critical path. 2589 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); 2590 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop 2591 unsigned InFlightCount = 2592 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; 2593 unsigned BufferLimit = 2594 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); 2595 2596 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; 2597 2598 DEBUG(dbgs() << "IssueCycles=" 2599 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " 2600 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() 2601 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount 2602 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() 2603 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; 2604 if (Rem.IsAcyclicLatencyLimited) 2605 dbgs() << " ACYCLIC LATENCY LIMIT\n"); 2606 } 2607 2608 void GenericScheduler::registerRoots() { 2609 Rem.CriticalPath = DAG->ExitSU.getDepth(); 2610 2611 // Some roots may not feed into ExitSU. Check all of them in case. 2612 for (std::vector<SUnit*>::const_iterator 2613 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { 2614 if ((*I)->getDepth() > Rem.CriticalPath) 2615 Rem.CriticalPath = (*I)->getDepth(); 2616 } 2617 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 2618 2619 if (EnableCyclicPath) { 2620 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); 2621 checkAcyclicLatency(); 2622 } 2623 } 2624 2625 static bool tryPressure(const PressureChange &TryP, 2626 const PressureChange &CandP, 2627 GenericSchedulerBase::SchedCandidate &TryCand, 2628 GenericSchedulerBase::SchedCandidate &Cand, 2629 GenericSchedulerBase::CandReason Reason) { 2630 int TryRank = TryP.getPSetOrMax(); 2631 int CandRank = CandP.getPSetOrMax(); 2632 // If both candidates affect the same set, go with the smallest increase. 2633 if (TryRank == CandRank) { 2634 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, 2635 Reason); 2636 } 2637 // If one candidate decreases and the other increases, go with it. 2638 // Invalid candidates have UnitInc==0. 2639 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, 2640 Reason)) { 2641 return true; 2642 } 2643 // If the candidates are decreasing pressure, reverse priority. 2644 if (TryP.getUnitInc() < 0) 2645 std::swap(TryRank, CandRank); 2646 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); 2647 } 2648 2649 static unsigned getWeakLeft(const SUnit *SU, bool isTop) { 2650 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; 2651 } 2652 2653 /// Minimize physical register live ranges. Regalloc wants them adjacent to 2654 /// their physreg def/use. 2655 /// 2656 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf 2657 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled 2658 /// with the operation that produces or consumes the physreg. We'll do this when 2659 /// regalloc has support for parallel copies. 2660 static int biasPhysRegCopy(const SUnit *SU, bool isTop) { 2661 const MachineInstr *MI = SU->getInstr(); 2662 if (!MI->isCopy()) 2663 return 0; 2664 2665 unsigned ScheduledOper = isTop ? 1 : 0; 2666 unsigned UnscheduledOper = isTop ? 0 : 1; 2667 // If we have already scheduled the physreg produce/consumer, immediately 2668 // schedule the copy. 2669 if (TargetRegisterInfo::isPhysicalRegister( 2670 MI->getOperand(ScheduledOper).getReg())) 2671 return 1; 2672 // If the physreg is at the boundary, defer it. Otherwise schedule it 2673 // immediately to free the dependent. We can hoist the copy later. 2674 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; 2675 if (TargetRegisterInfo::isPhysicalRegister( 2676 MI->getOperand(UnscheduledOper).getReg())) 2677 return AtBoundary ? -1 : 1; 2678 return 0; 2679 } 2680 2681 /// Apply a set of heursitics to a new candidate. Heuristics are currently 2682 /// hierarchical. This may be more efficient than a graduated cost model because 2683 /// we don't need to evaluate all aspects of the model for each node in the 2684 /// queue. But it's really done to make the heuristics easier to debug and 2685 /// statistically analyze. 2686 /// 2687 /// \param Cand provides the policy and current best candidate. 2688 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 2689 /// \param Zone describes the scheduled zone that we are extending. 2690 /// \param RPTracker describes reg pressure within the scheduled zone. 2691 /// \param TempTracker is a scratch pressure tracker to reuse in queries. 2692 void GenericScheduler::tryCandidate(SchedCandidate &Cand, 2693 SchedCandidate &TryCand, 2694 SchedBoundary &Zone, 2695 const RegPressureTracker &RPTracker, 2696 RegPressureTracker &TempTracker) { 2697 2698 if (DAG->isTrackingPressure()) { 2699 // Always initialize TryCand's RPDelta. 2700 if (Zone.isTop()) { 2701 TempTracker.getMaxDownwardPressureDelta( 2702 TryCand.SU->getInstr(), 2703 TryCand.RPDelta, 2704 DAG->getRegionCriticalPSets(), 2705 DAG->getRegPressure().MaxSetPressure); 2706 } 2707 else { 2708 if (VerifyScheduling) { 2709 TempTracker.getMaxUpwardPressureDelta( 2710 TryCand.SU->getInstr(), 2711 &DAG->getPressureDiff(TryCand.SU), 2712 TryCand.RPDelta, 2713 DAG->getRegionCriticalPSets(), 2714 DAG->getRegPressure().MaxSetPressure); 2715 } 2716 else { 2717 RPTracker.getUpwardPressureDelta( 2718 TryCand.SU->getInstr(), 2719 DAG->getPressureDiff(TryCand.SU), 2720 TryCand.RPDelta, 2721 DAG->getRegionCriticalPSets(), 2722 DAG->getRegPressure().MaxSetPressure); 2723 } 2724 } 2725 } 2726 DEBUG(if (TryCand.RPDelta.Excess.isValid()) 2727 dbgs() << " SU(" << TryCand.SU->NodeNum << ") " 2728 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) 2729 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); 2730 2731 // Initialize the candidate if needed. 2732 if (!Cand.isValid()) { 2733 TryCand.Reason = NodeOrder; 2734 return; 2735 } 2736 2737 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), 2738 biasPhysRegCopy(Cand.SU, Zone.isTop()), 2739 TryCand, Cand, PhysRegCopy)) 2740 return; 2741 2742 // Avoid exceeding the target's limit. If signed PSetID is negative, it is 2743 // invalid; convert it to INT_MAX to give it lowest priority. 2744 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, 2745 Cand.RPDelta.Excess, 2746 TryCand, Cand, RegExcess)) 2747 return; 2748 2749 // Avoid increasing the max critical pressure in the scheduled region. 2750 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, 2751 Cand.RPDelta.CriticalMax, 2752 TryCand, Cand, RegCritical)) 2753 return; 2754 2755 // For loops that are acyclic path limited, aggressively schedule for latency. 2756 // This can result in very long dependence chains scheduled in sequence, so 2757 // once every cycle (when CurrMOps == 0), switch to normal heuristics. 2758 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps() 2759 && tryLatency(TryCand, Cand, Zone)) 2760 return; 2761 2762 // Prioritize instructions that read unbuffered resources by stall cycles. 2763 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU), 2764 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 2765 return; 2766 2767 // Keep clustered nodes together to encourage downstream peephole 2768 // optimizations which may reduce resource requirements. 2769 // 2770 // This is a best effort to set things up for a post-RA pass. Optimizations 2771 // like generating loads of multiple registers should ideally be done within 2772 // the scheduler pass by combining the loads during DAG postprocessing. 2773 const SUnit *NextClusterSU = 2774 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); 2775 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, 2776 TryCand, Cand, Cluster)) 2777 return; 2778 2779 // Weak edges are for clustering and other constraints. 2780 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), 2781 getWeakLeft(Cand.SU, Zone.isTop()), 2782 TryCand, Cand, Weak)) { 2783 return; 2784 } 2785 // Avoid increasing the max pressure of the entire region. 2786 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, 2787 Cand.RPDelta.CurrentMax, 2788 TryCand, Cand, RegMax)) 2789 return; 2790 2791 // Avoid critical resource consumption and balance the schedule. 2792 TryCand.initResourceDelta(DAG, SchedModel); 2793 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 2794 TryCand, Cand, ResourceReduce)) 2795 return; 2796 if (tryGreater(TryCand.ResDelta.DemandedResources, 2797 Cand.ResDelta.DemandedResources, 2798 TryCand, Cand, ResourceDemand)) 2799 return; 2800 2801 // Avoid serializing long latency dependence chains. 2802 // For acyclic path limited loops, latency was already checked above. 2803 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited 2804 && tryLatency(TryCand, Cand, Zone)) { 2805 return; 2806 } 2807 2808 // Prefer immediate defs/users of the last scheduled instruction. This is a 2809 // local pressure avoidance strategy that also makes the machine code 2810 // readable. 2811 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU), 2812 TryCand, Cand, NextDefUse)) 2813 return; 2814 2815 // Fall through to original instruction order. 2816 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) 2817 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { 2818 TryCand.Reason = NodeOrder; 2819 } 2820 } 2821 2822 /// Pick the best candidate from the queue. 2823 /// 2824 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 2825 /// DAG building. To adjust for the current scheduling location we need to 2826 /// maintain the number of vreg uses remaining to be top-scheduled. 2827 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, 2828 const RegPressureTracker &RPTracker, 2829 SchedCandidate &Cand) { 2830 ReadyQueue &Q = Zone.Available; 2831 2832 DEBUG(Q.dump()); 2833 2834 // getMaxPressureDelta temporarily modifies the tracker. 2835 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 2836 2837 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 2838 2839 SchedCandidate TryCand(Cand.Policy); 2840 TryCand.SU = *I; 2841 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); 2842 if (TryCand.Reason != NoCand) { 2843 // Initialize resource delta if needed in case future heuristics query it. 2844 if (TryCand.ResDelta == SchedResourceDelta()) 2845 TryCand.initResourceDelta(DAG, SchedModel); 2846 Cand.setBest(TryCand); 2847 DEBUG(traceCandidate(Cand)); 2848 } 2849 } 2850 } 2851 2852 /// Pick the best candidate node from either the top or bottom queue. 2853 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { 2854 // Schedule as far as possible in the direction of no choice. This is most 2855 // efficient, but also provides the best heuristics for CriticalPSets. 2856 if (SUnit *SU = Bot.pickOnlyChoice()) { 2857 IsTopNode = false; 2858 DEBUG(dbgs() << "Pick Bot NOCAND\n"); 2859 return SU; 2860 } 2861 if (SUnit *SU = Top.pickOnlyChoice()) { 2862 IsTopNode = true; 2863 DEBUG(dbgs() << "Pick Top NOCAND\n"); 2864 return SU; 2865 } 2866 CandPolicy NoPolicy; 2867 SchedCandidate BotCand(NoPolicy); 2868 SchedCandidate TopCand(NoPolicy); 2869 // Set the bottom-up policy based on the state of the current bottom zone and 2870 // the instructions outside the zone, including the top zone. 2871 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top); 2872 // Set the top-down policy based on the state of the current top zone and 2873 // the instructions outside the zone, including the bottom zone. 2874 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot); 2875 2876 // Prefer bottom scheduling when heuristics are silent. 2877 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2878 assert(BotCand.Reason != NoCand && "failed to find the first candidate"); 2879 2880 // If either Q has a single candidate that provides the least increase in 2881 // Excess pressure, we can immediately schedule from that Q. 2882 // 2883 // RegionCriticalPSets summarizes the pressure within the scheduled region and 2884 // affects picking from either Q. If scheduling in one direction must 2885 // increase pressure for one of the excess PSets, then schedule in that 2886 // direction first to provide more freedom in the other direction. 2887 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) 2888 || (BotCand.Reason == RegCritical 2889 && !BotCand.isRepeat(RegCritical))) 2890 { 2891 IsTopNode = false; 2892 tracePick(BotCand, IsTopNode); 2893 return BotCand.SU; 2894 } 2895 // Check if the top Q has a better candidate. 2896 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2897 assert(TopCand.Reason != NoCand && "failed to find the first candidate"); 2898 2899 // Choose the queue with the most important (lowest enum) reason. 2900 if (TopCand.Reason < BotCand.Reason) { 2901 IsTopNode = true; 2902 tracePick(TopCand, IsTopNode); 2903 return TopCand.SU; 2904 } 2905 // Otherwise prefer the bottom candidate, in node order if all else failed. 2906 IsTopNode = false; 2907 tracePick(BotCand, IsTopNode); 2908 return BotCand.SU; 2909 } 2910 2911 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 2912 SUnit *GenericScheduler::pickNode(bool &IsTopNode) { 2913 if (DAG->top() == DAG->bottom()) { 2914 assert(Top.Available.empty() && Top.Pending.empty() && 2915 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 2916 return NULL; 2917 } 2918 SUnit *SU; 2919 do { 2920 if (RegionPolicy.OnlyTopDown) { 2921 SU = Top.pickOnlyChoice(); 2922 if (!SU) { 2923 CandPolicy NoPolicy; 2924 SchedCandidate TopCand(NoPolicy); 2925 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); 2926 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 2927 tracePick(TopCand, true); 2928 SU = TopCand.SU; 2929 } 2930 IsTopNode = true; 2931 } 2932 else if (RegionPolicy.OnlyBottomUp) { 2933 SU = Bot.pickOnlyChoice(); 2934 if (!SU) { 2935 CandPolicy NoPolicy; 2936 SchedCandidate BotCand(NoPolicy); 2937 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); 2938 assert(BotCand.Reason != NoCand && "failed to find a candidate"); 2939 tracePick(BotCand, false); 2940 SU = BotCand.SU; 2941 } 2942 IsTopNode = false; 2943 } 2944 else { 2945 SU = pickNodeBidirectional(IsTopNode); 2946 } 2947 } while (SU->isScheduled); 2948 2949 if (SU->isTopReady()) 2950 Top.removeReady(SU); 2951 if (SU->isBottomReady()) 2952 Bot.removeReady(SU); 2953 2954 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 2955 return SU; 2956 } 2957 2958 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { 2959 2960 MachineBasicBlock::iterator InsertPos = SU->getInstr(); 2961 if (!isTop) 2962 ++InsertPos; 2963 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; 2964 2965 // Find already scheduled copies with a single physreg dependence and move 2966 // them just above the scheduled instruction. 2967 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); 2968 I != E; ++I) { 2969 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) 2970 continue; 2971 SUnit *DepSU = I->getSUnit(); 2972 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) 2973 continue; 2974 MachineInstr *Copy = DepSU->getInstr(); 2975 if (!Copy->isCopy()) 2976 continue; 2977 DEBUG(dbgs() << " Rescheduling physreg copy "; 2978 I->getSUnit()->dump(DAG)); 2979 DAG->moveInstruction(Copy, InsertPos); 2980 } 2981 } 2982 2983 /// Update the scheduler's state after scheduling a node. This is the same node 2984 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to 2985 /// update it's state based on the current cycle before MachineSchedStrategy 2986 /// does. 2987 /// 2988 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling 2989 /// them here. See comments in biasPhysRegCopy. 2990 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 2991 if (IsTopNode) { 2992 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 2993 Top.bumpNode(SU); 2994 if (SU->hasPhysRegUses) 2995 reschedulePhysRegCopies(SU, true); 2996 } 2997 else { 2998 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); 2999 Bot.bumpNode(SU); 3000 if (SU->hasPhysRegDefs) 3001 reschedulePhysRegCopies(SU, false); 3002 } 3003 } 3004 3005 /// Create the standard converging machine scheduler. This will be used as the 3006 /// default scheduler if the target does not set a default. 3007 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) { 3008 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, new GenericScheduler(C)); 3009 // Register DAG post-processors. 3010 // 3011 // FIXME: extend the mutation API to allow earlier mutations to instantiate 3012 // data and pass it to later mutations. Have a single mutation that gathers 3013 // the interesting nodes in one pass. 3014 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); 3015 if (EnableLoadCluster && DAG->TII->enableClusterLoads()) 3016 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); 3017 if (EnableMacroFusion) 3018 DAG->addMutation(new MacroFusion(DAG->TII)); 3019 return DAG; 3020 } 3021 3022 static MachineSchedRegistry 3023 GenericSchedRegistry("converge", "Standard converging scheduler.", 3024 createGenericSchedLive); 3025 3026 //===----------------------------------------------------------------------===// 3027 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. 3028 //===----------------------------------------------------------------------===// 3029 3030 namespace { 3031 /// PostGenericScheduler - Interface to the scheduling algorithm used by 3032 /// ScheduleDAGMI. 3033 /// 3034 /// Callbacks from ScheduleDAGMI: 3035 /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ... 3036 class PostGenericScheduler : public GenericSchedulerBase { 3037 ScheduleDAGMI *DAG; 3038 SchedBoundary Top; 3039 SmallVector<SUnit*, 8> BotRoots; 3040 public: 3041 PostGenericScheduler(const MachineSchedContext *C): 3042 GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {} 3043 3044 virtual ~PostGenericScheduler() {} 3045 3046 virtual void initPolicy(MachineBasicBlock::iterator Begin, 3047 MachineBasicBlock::iterator End, 3048 unsigned NumRegionInstrs) override { 3049 /* no configurable policy */ 3050 }; 3051 3052 /// PostRA scheduling does not track pressure. 3053 virtual bool shouldTrackPressure() const override { return false; } 3054 3055 virtual void initialize(ScheduleDAGMI *Dag) override { 3056 DAG = Dag; 3057 SchedModel = DAG->getSchedModel(); 3058 TRI = DAG->TRI; 3059 3060 Rem.init(DAG, SchedModel); 3061 Top.init(DAG, SchedModel, &Rem); 3062 BotRoots.clear(); 3063 3064 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, 3065 // or are disabled, then these HazardRecs will be disabled. 3066 const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); 3067 const TargetMachine &TM = DAG->MF.getTarget(); 3068 if (!Top.HazardRec) { 3069 Top.HazardRec = 3070 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 3071 } 3072 } 3073 3074 virtual void registerRoots() override; 3075 3076 virtual SUnit *pickNode(bool &IsTopNode) override; 3077 3078 virtual void scheduleTree(unsigned SubtreeID) override { 3079 llvm_unreachable("PostRA scheduler does not support subtree analysis."); 3080 } 3081 3082 virtual void schedNode(SUnit *SU, bool IsTopNode) override; 3083 3084 virtual void releaseTopNode(SUnit *SU) override { 3085 Top.releaseTopNode(SU); 3086 } 3087 3088 // Only called for roots. 3089 virtual void releaseBottomNode(SUnit *SU) override { 3090 BotRoots.push_back(SU); 3091 } 3092 3093 protected: 3094 void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand); 3095 3096 void pickNodeFromQueue(SchedCandidate &Cand); 3097 }; 3098 } // namespace 3099 3100 void PostGenericScheduler::registerRoots() { 3101 Rem.CriticalPath = DAG->ExitSU.getDepth(); 3102 3103 // Some roots may not feed into ExitSU. Check all of them in case. 3104 for (SmallVectorImpl<SUnit*>::const_iterator 3105 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) { 3106 if ((*I)->getDepth() > Rem.CriticalPath) 3107 Rem.CriticalPath = (*I)->getDepth(); 3108 } 3109 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); 3110 } 3111 3112 /// Apply a set of heursitics to a new candidate for PostRA scheduling. 3113 /// 3114 /// \param Cand provides the policy and current best candidate. 3115 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. 3116 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand, 3117 SchedCandidate &TryCand) { 3118 3119 // Initialize the candidate if needed. 3120 if (!Cand.isValid()) { 3121 TryCand.Reason = NodeOrder; 3122 return; 3123 } 3124 3125 // Prioritize instructions that read unbuffered resources by stall cycles. 3126 if (tryLess(Top.getLatencyStallCycles(TryCand.SU), 3127 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) 3128 return; 3129 3130 // Avoid critical resource consumption and balance the schedule. 3131 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, 3132 TryCand, Cand, ResourceReduce)) 3133 return; 3134 if (tryGreater(TryCand.ResDelta.DemandedResources, 3135 Cand.ResDelta.DemandedResources, 3136 TryCand, Cand, ResourceDemand)) 3137 return; 3138 3139 // Avoid serializing long latency dependence chains. 3140 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { 3141 return; 3142 } 3143 3144 // Fall through to original instruction order. 3145 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) 3146 TryCand.Reason = NodeOrder; 3147 } 3148 3149 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { 3150 ReadyQueue &Q = Top.Available; 3151 3152 DEBUG(Q.dump()); 3153 3154 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 3155 SchedCandidate TryCand(Cand.Policy); 3156 TryCand.SU = *I; 3157 TryCand.initResourceDelta(DAG, SchedModel); 3158 tryCandidate(Cand, TryCand); 3159 if (TryCand.Reason != NoCand) { 3160 Cand.setBest(TryCand); 3161 DEBUG(traceCandidate(Cand)); 3162 } 3163 } 3164 } 3165 3166 /// Pick the next node to schedule. 3167 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { 3168 if (DAG->top() == DAG->bottom()) { 3169 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); 3170 return NULL; 3171 } 3172 SUnit *SU; 3173 do { 3174 SU = Top.pickOnlyChoice(); 3175 if (!SU) { 3176 CandPolicy NoPolicy; 3177 SchedCandidate TopCand(NoPolicy); 3178 // Set the top-down policy based on the state of the current top zone and 3179 // the instructions outside the zone, including the bottom zone. 3180 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, NULL); 3181 pickNodeFromQueue(TopCand); 3182 assert(TopCand.Reason != NoCand && "failed to find a candidate"); 3183 tracePick(TopCand, true); 3184 SU = TopCand.SU; 3185 } 3186 } while (SU->isScheduled); 3187 3188 IsTopNode = true; 3189 Top.removeReady(SU); 3190 3191 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); 3192 return SU; 3193 } 3194 3195 /// Called after ScheduleDAGMI has scheduled an instruction and updated 3196 /// scheduled/remaining flags in the DAG nodes. 3197 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { 3198 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); 3199 Top.bumpNode(SU); 3200 } 3201 3202 /// Create a generic scheduler with no vreg liveness or DAG mutation passes. 3203 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) { 3204 return new ScheduleDAGMI(C, new PostGenericScheduler(C), /*IsPostRA=*/true); 3205 } 3206 3207 //===----------------------------------------------------------------------===// 3208 // ILP Scheduler. Currently for experimental analysis of heuristics. 3209 //===----------------------------------------------------------------------===// 3210 3211 namespace { 3212 /// \brief Order nodes by the ILP metric. 3213 struct ILPOrder { 3214 const SchedDFSResult *DFSResult; 3215 const BitVector *ScheduledTrees; 3216 bool MaximizeILP; 3217 3218 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} 3219 3220 /// \brief Apply a less-than relation on node priority. 3221 /// 3222 /// (Return true if A comes after B in the Q.) 3223 bool operator()(const SUnit *A, const SUnit *B) const { 3224 unsigned SchedTreeA = DFSResult->getSubtreeID(A); 3225 unsigned SchedTreeB = DFSResult->getSubtreeID(B); 3226 if (SchedTreeA != SchedTreeB) { 3227 // Unscheduled trees have lower priority. 3228 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) 3229 return ScheduledTrees->test(SchedTreeB); 3230 3231 // Trees with shallower connections have have lower priority. 3232 if (DFSResult->getSubtreeLevel(SchedTreeA) 3233 != DFSResult->getSubtreeLevel(SchedTreeB)) { 3234 return DFSResult->getSubtreeLevel(SchedTreeA) 3235 < DFSResult->getSubtreeLevel(SchedTreeB); 3236 } 3237 } 3238 if (MaximizeILP) 3239 return DFSResult->getILP(A) < DFSResult->getILP(B); 3240 else 3241 return DFSResult->getILP(A) > DFSResult->getILP(B); 3242 } 3243 }; 3244 3245 /// \brief Schedule based on the ILP metric. 3246 class ILPScheduler : public MachineSchedStrategy { 3247 ScheduleDAGMILive *DAG; 3248 ILPOrder Cmp; 3249 3250 std::vector<SUnit*> ReadyQ; 3251 public: 3252 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} 3253 3254 void initialize(ScheduleDAGMI *dag) override { 3255 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); 3256 DAG = static_cast<ScheduleDAGMILive*>(dag); 3257 DAG->computeDFSResult(); 3258 Cmp.DFSResult = DAG->getDFSResult(); 3259 Cmp.ScheduledTrees = &DAG->getScheduledTrees(); 3260 ReadyQ.clear(); 3261 } 3262 3263 void registerRoots() override { 3264 // Restore the heap in ReadyQ with the updated DFS results. 3265 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3266 } 3267 3268 /// Implement MachineSchedStrategy interface. 3269 /// ----------------------------------------- 3270 3271 /// Callback to select the highest priority node from the ready Q. 3272 SUnit *pickNode(bool &IsTopNode) override { 3273 if (ReadyQ.empty()) return NULL; 3274 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3275 SUnit *SU = ReadyQ.back(); 3276 ReadyQ.pop_back(); 3277 IsTopNode = false; 3278 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " 3279 << " ILP: " << DAG->getDFSResult()->getILP(SU) 3280 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" 3281 << DAG->getDFSResult()->getSubtreeLevel( 3282 DAG->getDFSResult()->getSubtreeID(SU)) << '\n' 3283 << "Scheduling " << *SU->getInstr()); 3284 return SU; 3285 } 3286 3287 /// \brief Scheduler callback to notify that a new subtree is scheduled. 3288 void scheduleTree(unsigned SubtreeID) override { 3289 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3290 } 3291 3292 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify 3293 /// DFSResults, and resort the priority Q. 3294 void schedNode(SUnit *SU, bool IsTopNode) override { 3295 assert(!IsTopNode && "SchedDFSResult needs bottom-up"); 3296 } 3297 3298 void releaseTopNode(SUnit *) override { /*only called for top roots*/ } 3299 3300 void releaseBottomNode(SUnit *SU) override { 3301 ReadyQ.push_back(SU); 3302 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); 3303 } 3304 }; 3305 } // namespace 3306 3307 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { 3308 return new ScheduleDAGMILive(C, new ILPScheduler(true)); 3309 } 3310 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { 3311 return new ScheduleDAGMILive(C, new ILPScheduler(false)); 3312 } 3313 static MachineSchedRegistry ILPMaxRegistry( 3314 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); 3315 static MachineSchedRegistry ILPMinRegistry( 3316 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); 3317 3318 //===----------------------------------------------------------------------===// 3319 // Machine Instruction Shuffler for Correctness Testing 3320 //===----------------------------------------------------------------------===// 3321 3322 #ifndef NDEBUG 3323 namespace { 3324 /// Apply a less-than relation on the node order, which corresponds to the 3325 /// instruction order prior to scheduling. IsReverse implements greater-than. 3326 template<bool IsReverse> 3327 struct SUnitOrder { 3328 bool operator()(SUnit *A, SUnit *B) const { 3329 if (IsReverse) 3330 return A->NodeNum > B->NodeNum; 3331 else 3332 return A->NodeNum < B->NodeNum; 3333 } 3334 }; 3335 3336 /// Reorder instructions as much as possible. 3337 class InstructionShuffler : public MachineSchedStrategy { 3338 bool IsAlternating; 3339 bool IsTopDown; 3340 3341 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority 3342 // gives nodes with a higher number higher priority causing the latest 3343 // instructions to be scheduled first. 3344 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > 3345 TopQ; 3346 // When scheduling bottom-up, use greater-than as the queue priority. 3347 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > 3348 BottomQ; 3349 public: 3350 InstructionShuffler(bool alternate, bool topdown) 3351 : IsAlternating(alternate), IsTopDown(topdown) {} 3352 3353 virtual void initialize(ScheduleDAGMI*) { 3354 TopQ.clear(); 3355 BottomQ.clear(); 3356 } 3357 3358 /// Implement MachineSchedStrategy interface. 3359 /// ----------------------------------------- 3360 3361 virtual SUnit *pickNode(bool &IsTopNode) { 3362 SUnit *SU; 3363 if (IsTopDown) { 3364 do { 3365 if (TopQ.empty()) return NULL; 3366 SU = TopQ.top(); 3367 TopQ.pop(); 3368 } while (SU->isScheduled); 3369 IsTopNode = true; 3370 } 3371 else { 3372 do { 3373 if (BottomQ.empty()) return NULL; 3374 SU = BottomQ.top(); 3375 BottomQ.pop(); 3376 } while (SU->isScheduled); 3377 IsTopNode = false; 3378 } 3379 if (IsAlternating) 3380 IsTopDown = !IsTopDown; 3381 return SU; 3382 } 3383 3384 virtual void schedNode(SUnit *SU, bool IsTopNode) {} 3385 3386 virtual void releaseTopNode(SUnit *SU) { 3387 TopQ.push(SU); 3388 } 3389 virtual void releaseBottomNode(SUnit *SU) { 3390 BottomQ.push(SU); 3391 } 3392 }; 3393 } // namespace 3394 3395 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { 3396 bool Alternate = !ForceTopDown && !ForceBottomUp; 3397 bool TopDown = !ForceBottomUp; 3398 assert((TopDown || !ForceTopDown) && 3399 "-misched-topdown incompatible with -misched-bottomup"); 3400 return new ScheduleDAGMILive(C, new InstructionShuffler(Alternate, TopDown)); 3401 } 3402 static MachineSchedRegistry ShufflerRegistry( 3403 "shuffle", "Shuffle machine instructions alternating directions", 3404 createInstructionShuffler); 3405 #endif // !NDEBUG 3406 3407 //===----------------------------------------------------------------------===// 3408 // GraphWriter support for ScheduleDAGMILive. 3409 //===----------------------------------------------------------------------===// 3410 3411 #ifndef NDEBUG 3412 namespace llvm { 3413 3414 template<> struct GraphTraits< 3415 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; 3416 3417 template<> 3418 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { 3419 3420 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 3421 3422 static std::string getGraphName(const ScheduleDAG *G) { 3423 return G->MF.getName(); 3424 } 3425 3426 static bool renderGraphFromBottomUp() { 3427 return true; 3428 } 3429 3430 static bool isNodeHidden(const SUnit *Node) { 3431 return (Node->Preds.size() > 10 || Node->Succs.size() > 10); 3432 } 3433 3434 static bool hasNodeAddressLabel(const SUnit *Node, 3435 const ScheduleDAG *Graph) { 3436 return false; 3437 } 3438 3439 /// If you want to override the dot attributes printed for a particular 3440 /// edge, override this method. 3441 static std::string getEdgeAttributes(const SUnit *Node, 3442 SUnitIterator EI, 3443 const ScheduleDAG *Graph) { 3444 if (EI.isArtificialDep()) 3445 return "color=cyan,style=dashed"; 3446 if (EI.isCtrlDep()) 3447 return "color=blue,style=dashed"; 3448 return ""; 3449 } 3450 3451 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { 3452 std::string Str; 3453 raw_string_ostream SS(Str); 3454 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3455 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3456 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : 0; 3457 SS << "SU:" << SU->NodeNum; 3458 if (DFS) 3459 SS << " I:" << DFS->getNumInstrs(SU); 3460 return SS.str(); 3461 } 3462 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { 3463 return G->getGraphNodeLabel(SU); 3464 } 3465 3466 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { 3467 std::string Str("shape=Mrecord"); 3468 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); 3469 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? 3470 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : 0; 3471 if (DFS) { 3472 Str += ",style=filled,fillcolor=\"#"; 3473 Str += DOT::getColorString(DFS->getSubtreeID(N)); 3474 Str += '"'; 3475 } 3476 return Str; 3477 } 3478 }; 3479 } // namespace llvm 3480 #endif // NDEBUG 3481 3482 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG 3483 /// rendered using 'dot'. 3484 /// 3485 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { 3486 #ifndef NDEBUG 3487 ViewGraph(this, Name, false, Title); 3488 #else 3489 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " 3490 << "systems with Graphviz or gv!\n"; 3491 #endif // NDEBUG 3492 } 3493 3494 /// Out-of-line implementation with no arguments is handy for gdb. 3495 void ScheduleDAGMI::viewGraph() { 3496 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); 3497 } 3498